
Figure 4.15: Geven,data(V, T ) as a function of V at several temperatures.

Godd,data(V, T ) ≡ Gremainder(V, T )−Gremainder(−V, T )

2
, (4.10)

respectively. According to the definitions (4.9) and (4.10), we plot Geven,data(V, T )

and Godd,data(V, T ) in Fig. 4.15 and Fig. 4.16 respectively.
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Figure 4.16: Godd,data(V, T ) as a function of V at several temperatures.
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4.5 Weak Coupling Regime

4.5.1 Geven,data(V, T )

Now, we want to fit the Geven,data(V, T ) using the theoretical calculation for the

even conductance in the weak coupling regime, Geven,weak(V, T ). From (2.144),

Geven,weak(V, T ) can be expressed as

Gweak
even (V, T ) = A−B

∫ ∞

−∞
[

∫ E0

−E0

tanh( ε′
2kBT

)

ε′ − ω
dε′]

∂f(ω − eV )

∂ω
dω

(4.11)

≈ A−B ln
[(eV )2 + (nkBT )2]1/2

E0

, (4.12)

where (4.12) is an interpolation function of (4.11) [39]. We will fit the data using

the integration form (4.11) instead of the interpolation function (4.12).

There are three parameters in (4.11): A, B, and E0. According to (4.12), the

effect of E0 is to result an offset, −B lnE0. It means that if B was fixed, the

effect of varying E0 is equivalent to the effect of varying A. Since the validity of

(4.11) is based on the assumption that eV << E0, we arbitrarily choose E0 =

100 meV, which is much greater than the boundary of the region (∼ ±20 mV)

within which the conductance peak occurs. After fixing the value of E0, we have

two parameters A and B to be fitted. The fitting procedures are described in the

following: For a fixed temperature Ti, we plot the magnitudes of Geven,data(Vi, Ti)

v.s. the magnitudes of h(Vi, Ti) for each Vi, where Vi is the voltage part of each data

point (Vi, Geven,data(Vi, Ti)) in the Geven,data(V, T ) spectra, where

h(V, T ) ≡
∫ ∞

−∞
[

∫ E0

−E0

tanh( ε′
2kBT

)

ε′ − ω
dε′]

∂f(ω − eV )

∂ω
dω. (4.13)
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If Gweak
even (V, T ) can describe Geven,data(V, T ), the plot should be linear, i.e.,

Geven,data(Vi, Ti) = a(Ti) + b(Ti) h(Vi, Ti), (4.14)

and the parameters A(Ti) and B(Ti) are determined as

A(Ti) = a(Ti),

B(Ti) = −b(Ti). (4.15)

We repeat the procedures mentioned above for all the Ti’s at which we take the

data. If the number of Ti’s is NT , after running over all the Ti’s, we will get NT

”Geven,data(Vi, Ti) v.s. h(Vi, Ti)” curves. According to Appelbaum’s theory, A and

B are constants to temperature, so all these NT curves should collapse onto a single

straight line.

Fig. 4.17 shows the Geven,data(Vi, Ti) v.s. h(Vi, Ti) relations for all the temper-

atures at which we measured the G(V, T ) spectra. Here h(V, T ) was calculated

numerically using Simpson’s rule, which is described in appendix B. We find, in

Fig. 4.17, the Geven,data(Vi, Ti) v.s. h(Vi, Ti) relations are nearly linear for T = 32,

24, and 16 K, and deviate from the linearity for T = 12, 8, 5.5, and 2.5 K. The

lower the temperature, the larger the deviation. We focus on the liner relation and

determine the linear function. As shown in Fig. 4.18, for T = 32, 24, and 16 K, the

fitted linear function is

Geven,data(V, T ) = 0.95 h(V, T )− 2.618, (4.16)

Therefore from (4.11), and (4.13)∼(4.15), the A and B parameters in (4.11) can be

determined as −2.618 and −0.95 respectively.

87



Figure 4.17: Geven,data(V, T ) vs. h(V, T ) plots at several temperatures.

88



Figure 4.18: The linear fitting of Geven,data(V, T ) vs. h(V, T ) plots at T = 32, 24, 16
K.
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Figure 4.19: The fitting of Geven,data(V, T ) in terms of Gweak
even (V, T ) at T = 32 K.

Using these parameters values, we plot Gweak
even (V, T ) as a function of V for all the

Ti’s and compare these with Geven,data(Vi, Ti). Fig. 4.19 ∼ Fig. 4.25 show the results

for each Ti. We find for T = 32 K, 24 K, and 16 K, the theory can describe the

data well, but the data deviate from the theoretical calculation for T . 12 K, the

lower the temperature, the larger the deviations. This is consistent with the plots

of Geven,data(Vi, Ti) v.s. h(Vi, Ti) as shown in Fig. 4.17. The results for T = 32, 24,

and 16 K are combined in Fig. 4.26, and the results for T = 12, 8, 5.5, and 2.5 K

are combined in Fig. 4.27.

The deviations of the theoretical curves from the data can be understood
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Figure 4.20: The fitting of Geven,data(V, T ) in terms of Gweak
even (V, T ) at T = 24 K.

91



0 5 10 15 20
0

2

4

6

2006/10/02

T=16 K
 Geven,data
 Geven,weak

 

 

G
ev
en

 (
S

)

V (mV)

Figure 4.21: The fitting of Geven,data(V, T ) in terms of Gweak
even (V, T ) at T = 16 K.
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Figure 4.22: The fitting of Geven,data(V, T ) in terms of Gweak
even (V, T ) at T = 12 K.
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Figure 4.23: The fitting of Geven,data(V, T ) in terms of Gweak
even (V, T ) at T = 8 K.
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Figure 4.24: The fitting of Geven,data(V, T ) in terms of Gweak
even (V, T ) at T = 5.5 K.
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Figure 4.25: The fitting of Geven,data(V, T ) in terms of Gweak
even (V, T ) at T = 2.5 K.
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Figure 4.26: The fitting of Geven,data(V, T ) in terms of Gweak
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Figure 4.27: The fitting of Geven,data(V, T ) in terms of Gweak
even (V, T ) at T = 12, 8, 5.5,

and 2.5 K.
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as the following: Appelbaum calculated the transition rate due to s − d exchange

interaction perturbatively to second order Born’s approximation, and the using of

perturbation method is valid if the coupling between the conduction electrons and

localized spins is weak. In these Al/AlOx/Sc tunnel junctions, for T & 16 K, the

coupling is weak and therefore the theory can describe the data well. For T . 12

K, the singlet ground state gradually forms and the coupling gets stronger as the

temperature goes lower, and therefore the data gradually depart from the theoretic

curves, the lower the temperature, the more serious the departure.

4.5.2 Geven,data(0, T )

Now we turn to the zero-bias conductance as a function of temperature. We use the

same values of E0, A, and B mentioned above to calculate Gweak
even (0, T ) numerically.

Fig. 4.28 shows the plots of both Geven,data(0, T ) and Gweak
even (0, T ) as functions of T .

Here the Geven,data(0, T ) v.s. T is similar to the original measured G(0, T ) v.s. T as

shown in Fig. 4.5. The difference between them is that in Fig. 4.5, G(0, T ) contains

the contribution of the background at V = 0, but in Fig. 4.28, the background has

been subtracted.

We find, in Fig. 4.28, the theoretically calculated zero-bias conductance, Geven,data(0, T ),

has −logT dependence. For 14 K . T . 32 K, the theoretical calculation can de-

scribe the data well, but for T . 14 K, the data start to deviate from the −logT

dependence. The lower the temperature, the larger the deviation, which is consistent

with the spectra fitting mentioned above. We should note Geven,data(0, T ) gradually

saturates at low temperatures. Therefore, from the Geven,data(0, T ) fitting, we can

roughly say 14 K . T . 32 K is the weak coupling regime. In Fig. 4.28, we also
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Figure 4.28: The fitting of Geven,data(0, T ) in terms of Gweak
even (0, T ).
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find at low temperatures (T . 3.6 K), Geven,data(0, T ) has ”c−dT 2” behavior, which

marks the strong coupling regime, and will be discussed latter.

4.5.3 Godd,data(V, T )

After fitting Geven,data(V, T ) in terms of Gweak
even (V, T ), we turn to the asymmetric

data, Godd,data(V, T ). According to Appelbaum’s theory described in chapter 2, in

addition to the s − d exchange interaction, the existence of the localized state in

the insulating barrier will cause an assisted tunneling channel due to the impurity

potential scattering. This channel will interfere with the the s−d interaction channel

and cause an symmetric tunneling current, and therefore, an asymmetric differential

conductance. The asymmetric conductance, according to (2.146), is

Gweak
odd (V, T ) =

6π3e2TaTJ

~
ρb(0)ρa(0)(Jρa)2

∫ ∞

−∞
dω{−∂f(ω + eV )

∂(eV )

× tanh
ω

2kBT
(1− 6Jρaln| ω

E0

|)}

= α

∫ ∞

−∞
dω
−∂f(ω + eV )

∂(eV )
tanh

ω

2kBT
(1− 6Jρaln| ω

E0

|),

(4.17)

where

α =
6π3e2TaTJ

~
ρb(0)ρa(0)(Jρa)2. (4.18)

Note that Gweak
odd (V, T ) is asymmetric to V . And we should note in Appelbaum’s

derivations, the localized spins are assumed to be present in the vicinity of the (lead

A)-(insulator) interface, and the bias V is applied to lead A while treating lead B

as ground. A corresponds to the Sc lead, and B corresponds to the Al lead, in our

Al/AlOx/Sc case.
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We think the asymmetric term in the data, Godd,data(V, T ), may be due to the

interference effect as described by Appelbaum, and try to fit it by Gweak
odd (V, T ).

There are three parameters α, Jρa, and E0 in Gweak
odd (V, T ), as shown in (4.17). We

find just tuning these three parameters cannot fit the data except we add another

parameter β to multiply 2kBT in the denominator of hyperbolic tangent function.

Since we set E0 = 100 meV in the Gven,data(V, T ) fitting, we adopt the same E0 value

and add another parameter γ to multiply E0 in the denominator of the logarithmic

function. Finally, we have totally four parameters, α, β, γ, and Jρa, and the formula

in (4.17) can be written as

Gweak
odd (V, T ) = α

∫ ∞

−∞
dω
−∂f(ω + eV )

∂(eV )
tanh

ω

2kBTβ
(1 + 6Jρaln| ω

γE0

|). (4.19)

First, we fit Godd,data(V, T ) by (4.19) at T = 32 K. The integration in (4.19) was

carried out using Simpson’s rule as in the case of Geven,data(V, T ) fitting. The re-

sult is plotted in Fig. 4.29 and the parameters values obtained from the fitting

are α = −1.4, β = 5, γ = 0.0348, and Jρa = 0.1. Here Jρa > 0 represents an-

tiferromagnetic coupling between the conduction electrons and the localized spins

(J > 0). We should note that the fitted α < 0 is contradicts the definition in (4.18)

which guarantees α > 0. This is because in our measurement, we apply the bias V

to the Sc lead and treating the Al lead as ground as mentioned in chapter 3. But

to derive (4.19), Appelbaum assumed the bias V was applied to the lead which is

closer to the localized spins. If we change the electrical polarity in our measurement,

i.e., apply bias V to the Al lead while treating Sc lead as ground, then we will get

α = +1.4 > 0, which is consistent with the definition in (4.18). This seems implying

that the localized spins (the diffused Sc atoms) in the insulating barrier are closer to

the Al lead than to the Sc lead although this violates our intuition that the localized

102



spins (Sc atoms) are closer to the Sc lead since they should diffuse from the Sc lead

into the insulating barrier.

Let us temporarily put aside the violation of the intuition and return to Fig. 4.29

again. The theoretical calculation Gweak
odd (V, T ) describe the data Godd,data(V, T ) quite

well at T = 32 K. We then use the same parameters values to plot the theoretical

calculation at other temperatures as we had done in the Geven,data(V, T ) fitting. We

find, at T = 24 K, the deviation between Gweak
odd (V, T ) and Godd,data(V, T ) appears,

which can be seen in Fig. 4.30. In Fig. 4.29 ∼ Fig. 4.37, we find the lower the

temperature, the larger the deviation.

4.6 Strong Coupling Regime

For 16 K . T . 32 K, Appelbaum’s perturbation calculation can describe both

Geven,data(V, T ) as a function of V and the −logT dependence of Geven,data(0, T ) well.

But the data deviate from the theoretical prediction as T . 16 K, and gradually

saturate at low temperatures (∼ 2.5 K). This is due to as T < TK , the perturba-

tion method breaks down as mentioned in chapter 2. When T → 0, the system

will reach its singlet ground state and can be described by the Fermi liquid the-

ory. In this low temperature limit regime, the zero-bias conductance has c − dT 2

dependence as shown in Fig. 4.28. The G(0, T ) can be calculated by the Numerical

Renormalization Group (NRG) method [13, 33] for the whole temperature regime.

Goldhaber-Gordon [21] found an empirical expression which can well approximate

the result of the numerical calculation, as mentioned in (2.82) (in the tunnel junction

103



-20 -10 0 10 20
-0.2

-0.1

0.0

0.1

0.2

2006/10/02

 

 

 G
odd,data

 32 K
 G

odd,weak
 32 K

G
od
d (

S
)

V (mV)

Figure 4.29: The fitting of Godd,data(V, T ) in terms of Gweak
odd (V, T ) at T = 32 K.
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Figure 4.30: The fitting of Godd,data(V, T ) in terms of Gweak
odd (V, T ) at T = 24 K.
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Figure 4.31: The fitting of Godd,data(V, T ) in terms of Gweak
odd (V, T ) at T = 16 K.
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Figure 4.32: The fitting of Godd,data(V, T ) in terms of Gweak
odd (V, T ) at T = 12 K.
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Figure 4.33: The fitting of Godd,data(V, T ) in terms of Gweak
odd (V, T ) at T = 8 K.
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Figure 4.34: The fitting of Godd,data(V, T ) in terms of Gweak
odd (V, T ) at T = 5.5 K.
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Figure 4.35: The fitting of Godd,data(V, T ) in terms of Gweak
odd (V, T ) at T = 2.5 K.
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Figure 4.36: The fitting of Godd,data(V, T ) in terms of Gweak
odd (V, T ) at T = 32, 24, and

16 K.
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Figure 4.37: The fitting of Godd,data(V, T ) in terms of Gweak
odd (V, T ) at T = 12, 8, 5.5,

and 2.5 K.
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Sample
Gb(µS)

at ∼ 50 K
Aj

(mm2)
Gb/Aj

(µS/mm2)
TK

(K)
α

20060321 146.5 0.8 183.1 20.28 0.210± 0.010
20061002 82.5 0.5 165.0 38.03 0.207± 0.010
20061030 84.3 0.5 168.6 26.65 0.205± 0.010

Table 4.1: The fitted values of TK and α in several Al/AlOx/Sc tunnel junctions.

case, the resistance is replaced by conductance):

GNRG,empirical(0, T ) = G0(0, 0)(
T 2

0

T 2 + T 2
0

)α, (4.20)

where T0 = TK/
√

21/α − 1, and α ≈ 0.2 ± 0.01 for the S = 1/2 case. We fit the

G(0, T ) data by (4.20) in several samples and show the fitting parameters in Table

4.1. The fitted values of TK in different samples range from ∼ 20 K to ∼ 38 K, and

the fitted values of α are all ∼ 0.21 as shown in Table 4.1. This is consistent with

the S = 1/2 case as we will expect in these Al/AlOx/Sc tunnel junctions since the

spin angular momentum of the diffused Sc atoms is 1/2. We plot the data in these

different samples, which was scaled using the corresponding parameters TK and α,

and the empirical expression (4.20) with α = 0.21 together in Fig. 4.38. We find

good agreement between the experimental data and the NRG calculations.

In addition to the reasonable value of α, we find the fitted values of TK depend

on the background conductance per unit junction area, Gb/Aj (Aj is the area of

the junction cross section). The values of Gb/Aj and the corresponding fitted TK in

different samples are listed in Table 4.1. We find, in Table 4.1, the larger the Gb/Aj,

the smaller the magnitude of TK . On the other hand, we know the magnitude of

Gb/Aj characterizes the thickness of the insulating barrier. The larger the Gb/Aj,

the thinner the barrier and therefore, the larger the coupling strength Γ between
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the free electrons and the localized states. According to [?, 21], TK relates to Γ as

TK =
Γ

2
eπε0(ε0+U)/(ΓU), (4.21)

From (4.21), the larger the Γ (the larger the Gb/Aj), the larger the TK , which

contracts to our results. The contradiction has also appeared in Lee et al.’s recent

work [40], in which the Kondo effect in magnetic tunnel junctions was studied. They

found TK is larger in the longer oxidized (which will cause the thicker barrier and

therefore the smaller Γ) samples.

Appelbaum [3] also calculated the dI/dV as a function of bias V in the strong

coupling regime (T → 0), as mentioned in chapter 2. The even part of the conduc-

tance in the strong coupling regime, Gstrong
even (V ), can be expressed as (see (2.155))

Gstrong
even (V ) =

a1 × (eV )2 + a2 ×∆2

(eV )2 + ∆2
, (4.22)

where

a1 =
4πe2

~
T 2

a ρa(0)ρb(0),

a2 =
4e2

~π(Jρa)2
T 2

J ρa(0)ρb(0),

∆ = kBTK . (4.23)

In Fig. 4.38, we find, for the sample ”20061002”, at 2.5 K (T/TK ≈ 0.0657),

the zero-bias conductance is passed through by a ”c − dT 2” curve. This indicates

that this sample is in in the strong coupling regime at 2.5 K. Therefore we can fit

the Geven,data(V, T = 2.5 K) in terms of (4.22). The fitting parameters a1 ≈ 2.7,

a2 ≈ 7, and ∆ ≈ 3 meV. This implies TK ≈ 34.8 K according to (4.23), and is quite

consistent with the value (≈ 38 K) fitted by the empirical expression (4.20). The
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Figure 4.39: The fitting of Geven,data(V, T ) in terms of Gstrong
even (V, T ) at T = 2.5 K.

results are shown in Fig. 4.39, and we find the theory (4.22) describes the data very

well for −4 mV . V . 4 mV.

4.7 The Effect of Applying a Magnetic Field

So far we have analyzed the conductance spectra in both the weak and strong

coupling regime, and fitted the zero-bias conductance for the whole temperature

regime in terms of the NRG calculations. We attribute the phenomena we observed

to the Kondo effect, i.e., the interaction between the tunneling electrons and the
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Figure 4.40: The Geven,data(V, T ) at T = 2.5 K for H = 0 and H = 4 T.

localized moments. There is a direct method to verify the existence of the localized

moments: to apply a magnetic field H to the samples and see if the Zeeman splitting

can be observed. We compare the conductance spectra for H = 0 and H = 4 T

perpendicular to the junction cross section (parallel to the tunneling current) at

2.5 K in the ”20061002” sample, and plot them in Fig. 4.40. We find there is

no Zeeman splitting even under a magnetic field up to 4 T which can be shown

in an enlarged plot Fig. 4.41. Theoretically, the splitting energy due to Zeeman

effect ∆Zeeman = gµBH ≈ 0.46 meV (where we assume g = 2 in this case) is larger

than the thermal smearing effect ≈ 0.22 meV at 2.5 K, and the splitting should
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Figure 4.41: The Geven,data(V, T ) at T = 2.5 K for H = 0 and H = 4 T, which is
enlarged from Fig. 4.40.
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be observed. Indeed, the Zeeman splitting was widely observed in many literatures

[41, 42, 43]. It seems a conflict to our assertion that the anomalies in the differential

conductance are due to Kondo effect.

Recently, a theoretical work [33] indicated that there exists a critical magnetic

field Hc above which the Zeeman splitting will occur. The value of Hc is dependent

on temperature:

Hc ≈ kBTK

2gµB

, for 0 ≤ T ≤ TK

4
(4.24)

≈ 3kBT

gµB

, for T ≥ TK

4
(4.25)

The Kondo temperature TK in the ”20061002” sample, according to the fitting of

the Geven,data(0, T ) in terms of the NRG calculations, is ≈ 38 K. For T = 2.5 K,

which is less than TK/4 (≈ 9.5 K), Hc ≈ 14 T according to (4.24). The magnetic

field we applied, 4 T, is far below this critical value, and hence the Zeeman splitting

was not observed.

4.8 Summary

In this chapter, we investigated Kondo effect in Al/AlOx/Sc tunnel junctions by

analyzing the zero-bias conductance as a function of temperature and the differen-

tial conductance dI/dV spectrum as a function of voltage at several temperatures.

All the junctions had similar behaviors and we chose one, namely ”20061002”, to

be discussed. Before the analysis proceeding, the quality of the insulating barrier

was examined by measuring the superconducting gap of the Al film. The results

demonstrated the leakage current through the barrier could be neglected and the

conduction mechanism through the junction was electron tunneling. Besides, the
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height and thickness of the AlOx insulating layer in these Al/AlOx/Sc junctions

can be determined by fitting the dI/dV spectra in Al/AlOx/Al junctions, whose

barrier were grew with the same parameters as used to grow in the former, in terms

of the BDR model. The fitting results showed reasonable values of the height and

thickness.

After proving the good quality of the barrier, we turn to the dI/dV spectra in

these Al/AlOx/Sc tunnel junctions. Although the dI/dV contained the contribu-

tions of the normal tunneling, of the s − d exchange interaction, and of the DOS

effect in the two metal leads, the last contribution was showed to be insignificant

and could be neglected and the first contribution could be subtracted according to

the BDR model. After the subtracting, the remainder conductance was found to

contain an asymmetric term in it, and hence could be divided into an even term

Geven,data(V, T ) and an odd term Godd,data(V, T ).

Geven,data(V, T ) had a peak around zero-bias for T . 32 K, the lower the tem-

perature, the higher the peak and the narrower the peak width. The zero-bias

conductance Geven,data(0, T ) had a ”a − blogT” relation, namely the weak coupling

regime, for 14 K . T . 32 K, and crossed over to a ”c−dT 2” relation, namely strong

coupling regime, for T . 3.6 K. In the weak coupling regime, both Geven,data(V, T )

spectra at several temperatures (32 K, 24 K, and 16 K) and Geven,data(0, T ) could

be described by Appelbaum’s perturbation theory, while outside the weak coupling

regime, the perturbation calculation failed to describe the experimental data. In the

strong coupling regime, we fitted the Geven,data(V, T ) spectrum at 2.5 K in terms of

Appelbaum’s self-consistent theory which was used to calculate in the strong cou-

pling regime, and found a good agreement between the experimental data and the
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theoretical calculation, and the Kondo temperature TAppelbaum
K could be extracted

to ≈ 34.8 K from the fitting. On the other hand, we also fitted the Geven,data(0, T )

data in several samples in terms of the numerical renormalization group (NRG) cal-

culation for the whole temperature regime (from weak to strong coupling regime),

and the TNRG
K could be determined from the fitting. In the sample ”20061002”, the

fitted TNRG
K ≈ 38 K, and was quite consistent with the value of TAppelbaum

K (≈ 34.8

K). We attributed the existence of the Godd,data(V, T ) to the effect of the interference

between the s−d exchange interaction enhanced tunneling and the impurity assisted

tunneling, and tried to fit it by Appelbaum’s corresponding calculation. We found

the theory could describe the Godd,data(V, T ) qualitatively, rather than quantitatively.

We also studied the effect of applying a magnetic field. For the sample ”20061002”

at 2.5 K, under the magnetic field 4 T, the zero-bias conductance decreased ≈ 3.4%

but no Zeeman splitting was observed. The absentation of the Zeeman splitting was

due to the high TK in this sample. A critical field Hc ≈ 14 T, which was calculated

using TNRG
K ≈ 38 K, was predicted to see the Zeeman splitting.
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