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免衰減操作無自迴授比例式記憶細胞 

非線性網路之設計 

學生：吳諭    指導教授：吳重雨 博士 

國立交通大學 

電子工程學系  電子研究所碩士班 

摘要 

在圖形辨識的領域上，聯想式記憶是一個相當熱門的辨識方法，而無自迴授比例式

記憶類神經網路則已被證實可以作為一種聯想式記憶的實現方法。然而，無自迴授比例

式記憶類神經網路需要一段漏電操作以產生高辨識率的比例鍵值，而這段漏電操作的時

間則會因所學習的圖形不同而改變，造成圖形辨識上的困擾。 

本論文的主旨在於闡述免漏電操作無自迴授比例式記憶細胞非線性網路架構之分

析與設計及其在聯想式記憶及圖像辨識上之應用。免漏電操作無自迴授比例式記憶類神

經網路在產生高辨識率的比例鍵值時，無須使用到漏電操作，可在圖形學習完畢後，直

接產生所需的比例鍵值，並達到和原本比例式記憶類神經網路相同的辨識率。 

本論文中引述了免漏電操作比例式記憶類神經網路所用以直接產生比例鍵值的理

論，並實際用 TSMC 0.35um 2P4M Mixed-Signal 製程設計了一個解析度為 9x9 的免漏電

操作比例式記憶類神經網路，並實現之且加以量測。電路中用到架構簡單的比較器，以

節省面積。並使用計數器和比較器的組合以簡單地達到免漏電產生比例鍵值的目的。此

設計中，還加上了得以任意輸入所希望學習的圖形的介面，因此，此電路可以學習任何

9x9 的圖形。另外，本論文中的設計省略了原本無自迴授比例式記憶類神經網路所需要

的乘除法器，使得此設計的單位面積比原本的無自迴授比例式記憶細胞非線性網路來的

小。 

 在量測上，雖然所學習的三個圖形，有一個辨識的不順利，但此論文也對造成此結

果的原因做了探討。並重新設計電路，在 Hspice 模擬上驗證新電路確實可以改善此缺陷
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ABSTRACT 

 The associative memory is a hot topic in domain of pattern recognition. It is proven that 

the non-self-feedback ratio memory nonlinear network (RMCNN) with elapsed operation can 

be used as a kind of associative memory. However, the RMCNN with elapsed operation needs 

a elapsed period to get the feature enhanced ratio weights. The elapsed period changes as 

learning patterns change, and thus the elapsed operation let the process of pattern recognition 

inconvenient. 

 This thesis expounds the design and usage of RMCNN without elapsed operation 

(RMCNN w/o EO) in the domain of pattern recognition. The RMCNN w/o EO doesn’t need 

the elapsed period when it generates the feature enhance ratio weights. The design in this 

thesis can generate the feature enhance ratio weights directly after pattern learning, and it has 

a good recognition rate that is the same with RMCNN with elapsed operation. 

 This thesis quotes the theory used to generate the feature enhance ratio weights directly. 

In this thesis, the circuit of RMCNN w/o EO is designed and a 9x9 RMCNN w/o EO is 

implemented by TSMC 0.35um 2P4M mixed-signal process. A simple comparator is used to 

save chip area. The counters and comparators let the ratio weights without elapsed operation 

be generated easily. In this design, a pattern input interface that can input any patterns into the 
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circuit is implemented too. Thus this chip can learn any patterns. Besides, the design in this 

thesis didn’t use the M/D in the RMCNN with elapsed operation, and the area of one cell is 

smaller than the RMCNN with elapsed operation. 

 The experimental result isn’t successful completely. One of the three learning patterns 

isn’t recognized successfully. This thesis discovers the cause of the experiment defect, and the 

circuit is redesigned. The new circuit operates well in the simulation result. 
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CHAPTER 1  

INTRODUCTION 
 
1.1 Background of Cellular Nonlinear Network 
 

Due to the advantageous feature of local connectivity, the cellular nonlinear network 

(CNN) introduced by Chua and Yang [1] is very suitable for VLSI implementation and thus 

enables many applications [2]-[3]. So far, some research works on the applications of CNNs 

as neural associative memories for pattern learning, recognition, and association have been 

explored [4], [5], [6]-[10]. Among them, many innovative algorithms and software 

simulations of CNN associated memories were reported [4], [5], [6]-[8]. As to the hardware 

implementation, special learning algorithm and digital hardware implementation for CNNs 

were proposed in [9] to solve the sensitivity problems caused by the limited precision of 

analog weights. Moreover, CMOS chip implementation of CNN associative memory was also 

reported in [10].  

In realizing CNN associative memories, the learning circuitry can be integrated on-chip 

with CNNs. The major advantages of on-chip learning are : 1) No host computer is needed to 

perform the learning task off-line. This makes the interface of neural system chips simple for 

many practical applications; 2) The spatial-variant template weights can be on-chip learned 

without being loaded from outside to the CNN chips. Thus long loading time, complex cell 

global interconnection, and analog weight storage elements to perform the loading operation for 

large numbers of spatial-variant template weights can be avoided; 3) The adaptability to the 

process variations of CNN chips can be enhanced. 

The ratio memory (RM) of Grossberg outstar structure [11], [12]-[13] has been used in 

both feedforward and feedback neural network ICs for image processing [14]-[15]. It is found 

that the RM in neural network ICs has the advantages of long memory time and image feature 
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enhancement under constant leakage on stored weights.  

In this chapter, both RM and modified Hebbian learning function [16] are implemented 

in the CNN structure with spatial-variant templates and constant leakage on stored template 

weights [17] for pattern learning, storing, and recognition. The proposed CNN with ratio 

memory (RM) is called the RMCNN. It has the advantages of on-chip learning as mentioned 

above. Since most of on-chip learning circuits can be shared with both RM and CNN core 

circuits, the extra chip area required for on-chip learning circuits is small. Moreover, the 

RMCNN can have longer template-weight storage time or equivalently pattern recognition 

time which is one of the advantages of RM. Due to the feature enhancement effect of the RM 

which well separates the learned weights and decreases the insignificant weights to zero, more 

patterns can be stored and recognized in the RMCNN as compared to the CNN associative 

memory without RM, but with spatial-variant template weights, the same constant leakage on 

template weights, and the same learning rule. As a demonstrative example, a 9x9 RMCNN 

without elapsed operation (RMCNN w/o EO) is realized in CMOS technology. Both 

simulation and experimental results have verified the advantageous characteristics of the 

RMCNN. 

 
1.2 Algorithm of Ratio Memory Cellular Nonlinear Network 
 

 In our ratio memory cellular nonlinear network (RMCNN), the cell state , its 

derivation , and the cell output for a regular cells can be expressed as [1]-[3] 

)(txij

)(txij )(tyij

 ij
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 where xij(t) is the state of cell(i,j), and ukl(t) is the input of cell(k,l) in the r-neighborhood 
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system Nr(i, j) of the cell(i, j). In this thesis, i or k is the row number and j or l are the column 

number of an MxN CNN cell array. So, cell(i,j) means the ith row and jth column cell. The 

r-neighborhood system Nr(i, j) of the cell cell(i, j) is defined as the set of all cells including 

cell(i, j) and its neighboring cells, which satisfy the following property. 

{ }rjliklklkjiNr ≤-- N,≤≤M,1≤≤1 ),(C),( += [18]  Eq.(1.3) 

The term r is called as the radius or the number of neighboring layer. In our design, r is 1. 

aijkl(t) is template A weight(coefficient) which correlates the cell output ykl(t) to the cell state 

xij(t). bijkl(t) is the template B weight(coefficient) which correlates the cell input ukl to the cell 

state xij and zij is the threshold or bias of cell(i,j). 

 The template B and the threshold zij are constant and space-invariant. The setting is 

         Eq.(1.4) 

0 0 0
( ) 0 1 0        

0 0 0
ij t
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That means the input of every cell influences itself only. In a r-neighborhood system Nr(i, j), 

the input of neighboring cell doesn’t influence the central cell. The threshold zij is zero 

everywhere. The template A is spatial-variant and time-variant[18]-[19], and the template Aij 

can be written as: 

( 1)
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That means only four cell are correlated to the central cell. That’s up, down, left and right side 

cells. In the original RMCNN with elapsed operation[18]. The weights in template A can be 

produced by the blow equation. 

 
1(0)

1
P

m
p p

ij klT
p

ijkl

u u dt
a

sum
==
∑∫

    Eq.(1.5) 

 3



    (   1) ,   (   1),   ( 1), ( 1)kl i - j i j - i j  i j∈ + +     Eq.(1.6) 

∑ ∑ ∫
=

=
kl

m

1p
T

p
kl

p
ij

P

dtuu1um
 

s    Eq.(1.7) 

Where  is the pth pattern input of cell(i,j). Similarly,  is the pth pattern of cell(k,l). 

The relationship between ij and kl is shown as Eq.(1.6) that is equivalent to . The  is the 

learning time for the RMCNN to learn p-th pattern and the total learning time for the 

RMCNN to learn m patterns is . a

p
iju p

klu

PT

∑
=

=
m

1p
PL TT ijkl is called as the ratio weight, and the 

numerator of aijkl is called as the absolute-weight. 

 The boundary cells don’t correlate to four cells. For example, the boundary cells at 

corners only correlate to two cells. Thus the boundary condition of the boundary cells can be 

written as 

     )(    ,  )( ** 0tu0tx
jiji ** ==    Eq.(1.8) 

The i*j* means this cell is a boundary cell. 

 

1.3 Research Motivation and Thesis Organization 

 

 After learning period, the weight aijkl(0) in Eq(1.5) are not used directly. Instead , we use 

the aijkl(T) after elapsed period[18]-[19]. The weight aijkl(T) can be written as  

 
1

(  )
( )

1 ( )
P
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p p

ij klT
p

ijkl

kl

u u dt c T
a T

sum c T
=

−
=

−
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∑

( )
   Eq.(1.9) 

The c(T) is the amount of the absolute-weight decaying. After the elapsed process, all 

absolute-weights decay. Some of the absolute weights even decays to zero. But not all of the 

ratio weights aijkl decay, some of the ratio weights are enhanced and the others decay. After 

this elapsed period, the important ratio weights become larger and the trivial weights are 
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smaller. Table 1.1 shows some template A of absolute-weights and ratio weights.[18]-[19] 

Before elapsed period, the template A of ratio weights A44(0s) are the learning result according 

to Eq.(1.5), and the ss44 is the numerator of Eq.(1.5). A44(0s) and ss44(0s) both don’t have zero 

elements. It’s obvious, after elapsed period, some of elements in ss44(850s) decay to zero. 

Computing the corresponding ratio weights with Eq.(1.5), then we’ll get the A44(850). In 

A44(850), the important ratio weight 1
2

 increases to 1, and the others decrease to 0. So the 

template A becomes a feature enhanced template. With this characteristic, the recognition rate 

is improved. 

The original design, RMCNN with elapsed operation, needs a elapsed period to get the 

feature enhance ratio weights Aij. But the length of elapsed period must be controlled well. If 

the length of elapsed period is too long, all of the ratio weights decay to zero and the circuit 

doesn’t have any recognition function. If the length of elapsed period is too short, we can’t get 

a good feature enhanced ratio weights. Some weights that should decay to zero don’t decay to 

zero completely.  

When those learning patterns change, the best length of elapsed period changes too. Then 

it’s necessary to tune the best length of elapsed period with software when we want to let the 

circuit learn different patterns. This step let the operation of this circuit not automatic enough. 

 We develop a new RMCNN w/o EO. This new structure generates the feature enhanced 

ratio weights directly after learning period. When the learning patterns change, we needn’t 

adjust the elapsed time. The new structure can recognize noisy pattern directly after learning 

period. In this thesis, chapter 2 describes the architecture and the CMOS circuit 

implementation. Chapter 3 is about the simulation result of Hspice and Matlab. The 

experimental result and some layout description are in chapter 4. Finally, chapter 5 is the 

conclusion and future work. 
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Table 1.1 Template A of ratio weights and the corresponding absolute-weights 

RMCNN Ratio weights Corresponding absolute-weights 

9x9 

r = 1 

4 4A (0 s)=  

0
2
10

6
10

6
1

0
6

10

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −

 

44A (850 s)=  
 

010
000
000

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

4 4s s (0 s)=

10 0
3

1 10  
3 3

10 0
1

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

44ss (850 s)=  
0

3
20

000
000

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

 

9x9 

r = 1 

5 1A (0 s)=

30 0
5

10 0
5

10 0
5

⎡ ⎤
⎢ ⎥
⎢

 ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
 

51A (850 s)=  

0 1 0
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢
⎢ ⎥⎣ ⎦

 ⎥

5 1s s (0 s)=

10 0
1

10 0
3

10 0
3

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

51ss (850 s)=

20 0
3

0 0 0
0 0 0

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

9x9 

r = 1 

4 4A (0 s)=

10 0
8

3 0 3
8 8

10 0
8

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

62A (850 s)=

0 0 0
0 .5 0 0 .5  
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

6 2s s (0 s)=

10 0
3

1 10  
1 1

10 0
3

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

62ss (850 s)=

0 0 0
2 20  
3 3
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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CHAPTER 2   

ARCHITECTURE AND CIRCUIT 

IMPLEMENTATION 
 
2.1 Operational Principle and Architecture 

It is known that the ratio memory (RM) can suppress the unimportant weight and 

enhance the significant weight to get the feature enhance characteristics.[18]-[19] Since the 

absolute weights are decreased with the leakage current, significant ratio weights increase 

whereas the unimportant ratio weights decrease. For example, two of the four weights in 

template A increase and the others decrease. Finally the two increasing weights increase up to 

1/2. Similarly, these significant three (four) weights increase to 1/3 (1/4). 

After leakage current decay the absolute weight, some ratio weights increase and some 

decrease. The equation used to distinguish which ratio weights increase and which ratio 

weights decrease can be written as[20] 

( )
1

( )
( )

n

aw j
j

Mss

I t
I t

n
==
∑

     Eq (2.1) 

where ( )MssI t is the mean of absolute memory current and ( ) ( )aw jI t is the jth absolute memory 

current. If ( ) ( )aw jI t is larger than ( )MssI t , ratio memory current increase gradually. Otherwise 

the ratio weights decrease. So the increasing and decreasing ratio weights are detected. After 

the comparing operation, the increasing weights are set an appropriate value (1,1/2,1/3 or 1/4) 

and the decreasing weights are set zero directly This equation is used to determine the final 

ratio weights directly rather than elapsed operation. The new Hebbian learning algorithm can 

be written as blow: 
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Step 1 : find the absolute weights template A Sij(p) after p patterns are learned 

      
( 1)

( 1) ( 1)

( 1)

0 ( ) 0
( )    ( ) 0 ( )

0 ( ) 0

ij i j

ij iji j iji j

ij i j

ss p
S p ss p ss p

ss p

−

− +

+

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

    1 1( 1) ( ) p p
ijkl ijkl ij klss p ss p u u+ ++ = +  

( , )   ( 1, )  ( , 1)  ( -1, )  ( , -1)k l can be i j or i j or i j or i j+ +  

Step 2 : find the absolute mean of the absolute weights in a template 

( )ss ijklM mean ss= ∑  

Step 3 : generate the ratio weights 

( , )

1   if   

0                if  

ijkl ijkl
Nr i j

ijkl ijkl

a ss
PN

a ss

⎧ = >⎪
⎨
⎪ = <⎩

Mss

Mss
 

 Where  and  are the input of cell(i,j) and cell(k,l) respectively. The 

 is number of preserved weights in N

1p
iju + 1p

klu +

( , )Nr i jPN r(i,j) and r=1. 

A 9x9 array size RMCNN is implemented in this thesis. Fig. 2.1 shows the block 

diagram of the RMCNN w/o EO and the controlling relationship between every block. The 

9x9 shift register is used to store learning patterns. The learning patterns is generated by 

pattern generator and is inputted into the shift registers in series. When a learning pattern is 

stored in register completely, the pattern is inputted into RMCNN w/o EO in parallel for 

pattern learning. After every pattern is learned, the RMCNN w/o EO enter recognition period. 

The recognized result is sent to the output stage that is controlled by two decoders and the 

output stage output the state of each cell in series. The decoder Decoder_C selects the 

columns, and Decoder_R selects the rows of the 9x9 array of output stage. 

The general architecture of RMCNN is shown as Fig. 2.2. Fig. 2.2 shows the connections 

between cells and RMs. Each cell connects with four RMs (the up, left, right, down side). And 
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every RM supports the ratio weight between two pixels. With the power supply 3V in the 

circuit, 1.5V is defined as zero whereas 2.1V(0.9V) as +1(-1). 

 

 
Fig. 2.1 The block diagram of RMCNN 

 

 
Fig. 2.2 The general architecture of RMCNN 

 

The detailed block diagram of cell and RM is shown in Fig. 2.3. In Fig. 2.3, cell(i,j) is 
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the ith row and jth column cell and is the cell(i,j) input voltage of pth pattern. The block 

T1、T3 in the cell (i,j) is a V-I converter to change voltage to current. . T2D contains a 

detector to detect the sign of state X

p
iju

ij. T2D block is also a V-I converter, and its output is 

absolute current. The sign of T2D input voltage is detected and stored separately. The block 

W uses current mirror to multiply the cell outputs by 1, 1/2, 1/3, or 1/4. One of the four 

weights will be chosen by Counter_L according to how many weight are preserved. The 

capacitor Cw stores absolute weight in learning period, and the V-I converter T3 transfer the 

voltage on Cw to absolute current to the COMP block. COMP is a simple comparator. 

COMP block compares the mean of the four absolute memory currents with the absolute 

memory current, and deciding if the ratio weight should be kept. The Counter_L controls 

block W to weight the output of each cell. The block T3, capacitor Cw, and several switch 

form RM. Other blocks form CNN cell. 

 

 

Fig. 2.3 The detail architecture of RMCNN 

 

The Operation of this circuit is divided to two parts: learning period and recognition 
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period. In learning period, clk1 is high and clk2 is low. So the architecture in learning period 

is shown in Fig. 2.4. In learning period, the cell(i,j) input voltage of pth pattern  is 

transferred to current Iu

p
iju

ij by T1 and sent to the node xij. Current Ixij can be written as  

1

1

( 1.5)

0
(1.5 )

p
T ij

ij
p

T i

Iusat
Gm u

Iu
Gm u

Iusat

⎧
⎪ × −⎪
⎪= ⎨
⎪− × −⎪
⎪−⎩

j

   Eq.(2.2) 

2.1

1.5 2.1

1.5

0.9 1.5

0.9

p
ij

p
ij

p
ij

p
ij

p
ij

when u V

when V u V

when u V

when V u V

when u V

>

< <

=

< <

<

.Where GmT1 is the transconductance of V-I converter T1. The voltage level 1.5V is 

defined as zero, so the current flow to opposite direction when  is larger or smaller than 

1.5V. When  is larger than 2.1V or smaller than 0.9V, output current Iu

p
iju

p
iju ij of T1 becomes 

saturated and keeps at the current Iusat. Iusat is about 5.5uA. 

 

 
Fig. 2.4 Architecture of RMCNN in learning period 

 

The current Iuij flows to the node xij and is converted into a voltage Vxij through the 

resistor Rij and capacitor Cij. T2D outputs an absolute current Iyij and a sign(Iyij) according to 
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the value of Vxij. Since the structure of T2D is similar to T1 and T2D has a absolute-value 

circuit, the output current Iyij and the sign(Iyij) can be written as 

2

2

( 1.5

0
(1.5 )

p
T D ij

ij
p

T D ij

Iysat
Gm u

Iy
Gm u

Iysat

⎧
⎪ × −⎪
⎪= ⎨
⎪ × −⎪
⎪⎩

)

.5

.5

    Eq.(2.3) 

2.1

1.5 2.1

1.5

0.9 1.5

0.9

ij

ij

ij

ij

ij

when Vx V

when V Vx V

when Vx V

when V Vx V

when Vx V

>

< <

=

< <

<

0 1
( )

3 1
ij

ij
ij

V if Vx V
sign Iy

V f Vx V

<⎧⎪= ⎨
>⎪⎩

         Eq.(2.4) 

.Where GmT2D is the transconductance of T2D and the current Iysat is the saturated output 

current of T2D. It is about 5.5uA too. Note that Iyij always flows to the same direction 

whether Vxij is larger or smaller than 1.5V. The sign of Vxij is detected by a detector in T2D 

and sent to the block W. Current Iyij flows into the block W. According to the signs of input 

voltage Vxij and Vxkl, the output current of W charges or discharges the capacitor Cw. The 

block W is set to a default state in learning period. The default state is multiplying Iyij by 1/4. 

The choice of this default state is just for circuit design convenience and we can control the 

length of learning time to charge or discharge the capacitor Cw. The capacitor Cw is a MOS 

capacitor and the capacitance value is 2p F. The capacitance value of Cw and Iysat is as large 

as RMCNN with elapsed operation [18]. To consider the leakage current effect, a constant 

leakage current of 0.8 fA is applied to the capacitor Cw of 2 pF so the voltage Vwaijkl is 

decreased. The 2 pF capacitor Cw is implemented on the chip. The value of 2 pF is chosen as 

a compromise between weight storage time and capacitor chip area. The capacitance value of 

Cw can’t be chosen too small because of the leakage current consideration. Thus 2 pF is 

chosen. The current Iysat is chosen as the smallest current that can let the V-I converter 

operates regularly. The current Iysat must be small because the voltage Vwaijkl stored on Cw 

must be charged or discharged slowly and then the value of Vwaijkl can be controlled slightly. 

Thus the Iysat is chosen as 5.5uA and the learning time of a pattern is 100ns. 
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This charging or discharging Cw process is the learning behavior and generates the 

absolute weight at the capacitor Cw. When the inputs of neighboring cell(i,j) and cell(k,l) are 

white or black in a learning pattern. The capacitor Cw between these two cells is charged. 

Otherwise, when the inputs of these two cells are opposite color, the capacitor Cw is 

discharged. The voltage  stored on Cw can be written as ijklVwa

1( )
2( 1)
1( )
2

ijkl

ijkl

ijkl

Iysat tVwa p
CwVwa p

Iysat tVwa p
Cw

×⎧ +⎪⎪+ = ⎨ ×⎪ −
⎪⎩

  
'

ij kl

ij kl

when sign of Vx and Vx are the same

when sign of Vx and Vx aren t the same
  Eq.(2.5) 

( )ijklVwa p  means the voltage level after the pth pattern is learned. The output current of 

block W is 1
4

Iysat , and there are two W blocks charge or discharge a Cw at the same time. 

Thus after each pattern learning, the voltage changing is 1
2

Iysat t
Cw

×  ( 12
4

Iysat× ). The 

learning time of each pattern is 100ns. 

After every pattern is input to circuit, capacitor Cw stores the absolute voltage weight 

. Then T3 converts the voltage  to current and sends this current to the current 

mode comparator COMP. The COMP compares two current: I

ijklVwa ijklVwa

oj and Iom . Ioj is the current 

transferred from T3; Iom is the mean of all absolute weight current in one template A. If Ioj is 

larger than Iom , COMP gives the Counter_L a “logic high” that means the ratio weight 

between the two pixels should be preserved. 

The connection between COMP and Counter_L is shown as Fig. 2.5. Since each cell 

just connects with the four nearest cells, there are four COMPs in one cell. Every COMP 

gives a logic output to Counter_L. At the end of learning period, Counter_L counts how 

many “logic high” are given from the four COMPs. If there is (are) only one (two) “logic 

high”, only one (two) ratio should be preserved. Then Counter_L controls the W to weight 

the output current of T2D as 1 ijIy×  ( 1
2 ijIy× ). Similarly, according to the output situation of 
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COMPs in one cell, the Counter_L may control the block W to weight output current of 

T2D as 1
3 ijIy×  or 1

4 ijIy× . The logic output of COMP in cell(i,j) (cell(k,l)) also controls the 

switch sw2(sw1) in Fig. 2.2. For example if the logic output of COMP in cell(i,j) is low (that 

means the ratio weight should be zero.), the switch sw2 turns off. Then the information from 

cell(k,l) in recognition period is isolated. That behavior is equivalent to setting a ratio weight 

in a template A as zero. 

 

Fig. 2.5 The connection relationships of COMP, Counter_L and RM 
 

At the ending of learning period, every Counter_L counts how many “logic high” are 

sent from COMPs and controls the W appropriately. 

After learning period, the operating process enters recognition period. In this period, the 

input pattern is noisy pattern. The architecture in recognition period is shown as Fig.2.5. In 

Fig. 2.6, clk1 is low and clk2 is high. The states of switches sw1 and sw2 are controlled by 

COMP. In this period,  and  are the input voltage of noisy pattern.  are 

inputted to T1 and transferred to current 

noi
iju noi

klu noi
iju

noi
ijIu . noi

ijIu  and the output current klIw  from other 

 14



neighboring cell C(k,l) (  ) flow to the node 

x

, , 1 , 1 1, 1,k l i j or i j or i j or i j∈ − + − +

ij and form the voltage Vxij. According to KCL, the V ijx  can be written as 

0

.

( , ) ( , )

( ) ij noi
ij ij kl ij

C k l N i jij

Vx
C Vx t Iw Iu

R ∈

= − + +∑
r

      Eq.(2.6) 

a
kl kl klIw w Iy= ×            Eq.(2.7) 

1 11
2 3

a
klw or or or∈

1
4

        Eq.(2.8) 

, , 1 , 1 1, 1,k l i j or i j or i j or i j∈ − + − +     Eq.(2.9) 

 
Fig. 2.6 Architecture of RMCNN in recognition period 

Where  is the template A ratio weight. It is generated by W. The Eq.(2.6) implement 

the RMCNN mathematical equation Eq.(1.1). Because of the settings of template B and 

threshold are Eq.(1.4) and Eq.(1.5). Thus in Eq.(2.6) there isn’t the threshold and the 

coefficient of input 

a
klw

noi
ijIu  is 1. 

2.2 Circuit Implementation 

2.2.1 V-I Converter 

The circuit of T1 and Rij is shown as Fig. 2.7. In all of the circuit implementation figure, 
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the MOS size is written next to the MOS number. The unit of MOS size is micro meter. In Fig. 

2.7, the left side is a differential pair structure, and right side is MOS resistor. The voltage 

Vb1 and Vref are constant bias voltage. Vb1 is 2.5V and Vref is 1.5V. MOS M5 and M6 

perform as large resistances to let the linear operating range larger. When the input voltage 

Vin is larger than Vref, the output current Io flows from left to right. Then the voltage Vxij 

rises. Similarly, when the Vin is smaller than Vref, the voltage Vxij falls. 

 
Fig. 2.7 The V-I converter T1 

Fig. 2.8 is the circuit of T2D. T2D is similar to T1, but it has a detector and an absolute 

output current structure. The circuit of detector is shown as Fig. 2.9. The detector is just an 

inverter chain. It is used to detect the sign of T2D input, and the function of detector is 

described as Eq.(2.6). In Fig. 2.8, left side is also differential pair structure, and right side is 

the absolute output current structure. The constant bias voltage Vb2 is 1.5V, and the constant 

bias voltage Vb1 and Vref are the same with T1. When the input voltage Vin is larger than 

Vref, the current Io flows from left to right. Then the MOS M10 in Fig. 2.8 turns off, and 

MOS M11 turns on. The current are mirrored by current mirror M12 and M13, and flow 
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through the M8. Then the MOS M94 mirrors the current of M8 and output the current Ioabs. 

Similarly, if the voltage Vin is smaller than Vref, M10 turns on and M11 turns off. The output 

current Ioabs is mirrored by the current mirror M8 and M94 directly. Whether the input 

voltage Vin is larger than Vref or not, the flowing direction of Ioabs is always the same. So 

the circuit has an absolute output current. The usage of the MOS M26 will be explained in 

section 4.3. 

 
Fig. 2.8 The V-I converter in T2D 

 

 
Fig. 2.9 The detector in T2D 
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The circuit of block W is Fig. 2.10. Actually, the block W is combined with T2D. In 

order to show the MOS size of these two circuits, the diagrams are drawn respectively. Note 

that the MOS M94 in Fig. 2.10 and the M94 in Fig. 2.8 are the same MOS. The complete 

circuit diagram of T2D and W is shown as Fig. 2.11. The function of W is to weight the 

output of T2D. We use current mirror to weight the output of T2D. In Fig. 2.10, because M94, 

M91, M92 and M93 are current mirror, we don’t use minimum length to avoid strong channel 

modulation effect. In Fig. 2.11, the drain current of M94 is 1
4

Ioabs× , but the size of M94 

isn’t really 1
4

 time of M8. Because even we use 1 micro meter channel length, the drain and 

source voltage drops Vds of M8 and M94 still influence the current accuracy. Thus the 

channel width of M94 is adjusted to modify the current accuracy. Similarly, the sizes of M92 

and M93 are adjusted too. A better method to let the current mirror operate accurately is using 

MOS parallel connection. A small MOS is chosen as a unity MOS first. Then the M8 in T2D 

uses twelve unity MOSs that has parallel connection with each other and M94 uses three unity 

MOSs has parallel connection with each other. Similarly M91 uses twelve unity MOSs and 

M92 uses six unity MOSs and M93 uses four unity MOSs. This modified structure will has 

more accurate mirrored current. 

The switches Sw_a, Sw_b, Sw_c, Sw_d, Sw_e and Sw_f are controlled by Counter_L. 

According to output of counter, only one path of these switches turns on at the same time. The 

XOR gate in Fig. 2.10 is used to control the flowing direction of output current. In learning 

period, the VinT1(k,l) is inputted to the XOR gate and the VinT3ijkl is inputted to the XOR gate in 

recognition period. 
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Fig. 2.10 The CMOS circuit of W 

 

 

Fig. 2.11 The overview of T2D and W 
 

The V-I converter T3 is similar to T2D. The circuit is shown in Fig. 2.12. In Fig. 2.3, T3 
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has four outputs. Two of the four outputs are sent to COMP, and the others are sent for 

summation. Thus the circuit in Fig. 2.12 has four outputs, and the MOS sizes of the current 

mirrors (M9s1, M9s2, M9s3, M9s4 and M8) are the same. 

 
Fig. 2.12 The CMOS circuit of T3 

 

2.2.2 Comparator 

Fig. 2.13 shows the circuit of Comparator. In order to save the area of whole chip, we 

use a simple current mode comparator. In Fig. 2.13, if the input current IMss is larger than Iaw, 

the logic output Vout is low. Otherwise, Vout is high. The port IMss is used to receive the mean 

of summed currents, and the port Iaw receives the absolute-weight current that is transferred 

from T3. In the above algorithm, if the absolute-weight current equals to the mean of the 

summed current, the ratio weights should be preserved too. That means the logic output of 

comparator should be high if IMss equals to Iaw. Because the usages of IMss and Iaw are specified, 

the sizes of Mc3 and Mc4 are designed as little smaller than Mc1 and Mc2. The difference of 

the MOS size makes the logic output is high even if IMss equals to Iaw. 
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Fig. 2.13 The CMOS circuit of comparator (COMP) 

 

In section 2.1, it is described that we need to count the mean of four absolute-weight 

current. That means it is necessary to divide a summed current by four. But there isn’t any 

divider in this circuit, the dividing behavior is implemented by the wire connection of COMP. 

The detail is shown as Fig. 2.14. In Fig. 2.14, two of the T3 output ports are drawn, and the 

others are abridged. The four output currents of T3i(j+1), T3i(j-1), T3(i+1)j and T3(i-1)j are summed 

at the node N and form the current Isum. Because the connection of MOS Mc1 and Mc2 in Fig. 

2.13 are diode connection, they are all in saturation region. The input impedance of Iin1 port is 

very large and isn’t sensitive to the drain and source voltage drop Vds and the flowing current. 

In Fig. 2.14, node N is connected to the input of all four comparators. Because of the similar 

input impedance of the four comparators, the current Isum flows into the four comparators 

averagely. Thus the currents flow into Mc11, Mc12, Mc13 and Mc14 are 1
4 sumI  and the 

current 1
4 sumI  is the mean of summed current.  

Process variation is considered in the RMCNN w/o EO. If the capacitor Cw and all of 

the V-I converter have process variation, the COMP can’t get the accurate current. However, 

if the neighboring five cell has the same process variation, the comparative magnitude of 
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absolute weights Iaw and the mean IMss doesn’t change. Thus the RMCNN w/o EO has a little 

tolerance to process variation. 

 
Fig. 2.14 The method that divides the summed current by 4 

 

2.2.3 Counter and Weight Selection Structure 

The counter in this architecture is formed by two D-flip-flop. The structure of counter is 

shown as Fig. 2.15. DFF_P is a positive edge trigger D-flip-flop, and DFF_N is a negative 

edge trigger D-flip-flop. The MOS M1 is used to reset the signal Cou_L(Cou_G). Switch 

S_en enables the counting operation. The counting operation can be described as Fig. 2.16. 

Note that b0 is the output of positive edge trigger D-flip-flop, and b1 is the output of negative 

edge trigger D-flip-flop. If the signal R is high, Cou_L(Cou_G), b0 and b1 are always low. 
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When the signal S_en is low, b0 and b1 don’t change even if Cou_L(Cou_G) is oscillating. 

 

 
Fig. 2.15 The circuit of the counters in this chip 

 

 

Fig. 2.16 A counting example of the counter 
 

Dynamic D-flip-flop is used in this chip, because the transistors count is less than static 

D-flip-flop. The circuit of the dynamic D-flip-flop is shown in Fig. 2.17. MOS M0 and M9 

are used to reset the output of D-flip-flop. Fig. 2.17 is a positive edge trigger D-flip-flop. If 

change the port position of DFF and DFF , that’s negative edge trigger D-flip-flop. The 

D-flip-flop in Fig. 2.17 has static power consumption when the port D and R is high and DFF 

is low. Thus we should use static D-flip-flop instead of the dynamic D-flip-flop to save power 
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consumption.. 

 In Fig. 2.10, it is known that Sw_a~Sw_f are controlled by counter. Fig. 2.18 shows 

how the counter controls those switches. In Fig. 2.18, some I/O ports are abridged. In a 

r-neighborhood system Nr(i, j) (r=1) of the cell cell(i, j), four comparators connect with a 

counter. The output of each comparator controls the switch S_en of the counter. The switches 

S_en1~S_en6 are controlled by another global counter Counter_G and only one path of 

S_en1~S_en6 turns on at the same time. The controlling method of S_en1~S_en6 is similar to 

Sw_a~Sw_f. At the ending of learning period, Cou_L (Cou_G) oscillates four times. The 

Cou_L (Cou_G) oscillates, the turn-on path of S_en1~Sen6 changes. If the output of COMP 

is high, the binary number output of counter adds one. That’s the method used to count how 

many ratio weights should be preserved 

 
Fig. 2.17 The circuit of DFF_P 
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Every cell has a Counter_L, but there is only one Counter_G that is used to control 

switches S_en1~S_en6 in the whole chip circuit. Fig. 2.19 shows how the Counter_G 

controls the switches S_en1~S_en6 in every cell. The Counter_G is drived by the signal 

Cou_G, and all Counter_L are driven by the signal Cou_L.  

 
Fig. 2.18 The connection between W and Counter_L 

 
Fig. 2.19 The connection between Counter_G and every cell 
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2.2.4 Output stage and input pattern interface 

The output stage is shown as Fig. 2.20. The nodes x11~x99 are the node xij in Fig. 2.4. 

M11~M99 perform as level shifter to drive parasitical capacitance of the switches and metal 

line. The unit gain buffer is a negative feedback OP and it is used to drive the output pad. The 

circuit of unit gain buffer is shown as Fig. 2.22. Two 4-bit decoders are used to control those 

switches Swc11~Swc99 and Swr1~Swr9. One decoder controls column switches Swc11~Swc19 

(Swc21~Swc29, Swc31~Swc39, …etc.), and the other controls switches Swr1~Swr9. This structure 

is used to read out every pixel one by one. 

There are some current source can be shared in the output stage shown in Fig. 2.20. The 

modified output stage is shown as Fig. 2.21. In Fig. 2.21 every MOS in the same row uses one 

current source. This modified output stage saves much power consumption. 

 

Fig. 2.20 The output stage 
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Fig. 2.21 The modified output stage 

 

In order to input any arbitrary learning patterns, the shift registers input interface is used. 

Fig. 2.23 shows the input interface. DFF_N is negative edge trigger D type flip-flop. In the 

beginning of learning period, clk1 and newp turn on and ptni inputs the learning pattern pixel 

by pixel. After the CLK of DFF_N oscillates nine times (because the cell array has 9 

columns), pin turns on to input the learning pattern into each cell. When pin turns on, newp 

turns off to prevent the pattern changes as a glitch occurs on CLK of DFF_N. After the first 

pattern is learned, clk1 and newp turn on again and pin turns off. Then shift registers transfer 

the stored learning pattern and the learning of the second pattern starts.  

Fig. 2.24 is one part of Fig. 2.23 and it shows how to mix the noise with learning pattern 

in recognition period. The capacitance Cgp is the gate capacitance of M1 in Fig. 2.7 and other 

parasitical capacitance. In learning period, the capacitance Cnoi is pre-charge to Vnoi and noi 

always turns off. When recognition period starts, the innocent pattern is already stored in shift 
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register and clk1 turns off to isolate D-flip-flop. Then noi turns on and charge sharing occurs 

between Cgp and Cnoi. So the voltage on node Nd is a mid level voltage and the amplitude can 

be adjusted by changing the capacitance ratio of Cgp and Cnoi.  

 

 

Fig. 2.22 The unit gain buffer in the output stage 
 
 
 

 

Fig. 2.23 The pattern input interface that formed by shift register 
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Fig. 2.24 The structure that used to mix noise with innocent pattern 
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CHAPTER 3  

SIMULATION RESULT 
 
 
3.1 Matlab Simulation Result 
 The MATLAB software is used to simulate the behavior of the CNN with ratio memory 

(RMCNN) as an associative memory. In the MATLAB simulation, 9x9 cells are used to form 

the RMCNN with r = 1. Thus, it can process patterns with 81 pixels. The total three learning 

pattern is shown as Fig. 3.1. The patterns are Chinese character “one”, “two” and “four”. 

Normal distribution and uniform distribution noise are both mixed with the clear pattern 

respectively, and the Matlab simulation result shows that the three patterns can be recovered. 

Fig. 3.2 shows the three patterns mixed with normal distribution noise. Fig. 3.3 shows the 

three patterns mixed with uniform distribution noise.  

 

   
Fig. 3.1 The three clear learning patterns 

   
Fig. 3.2 Patterns mixed with normal distribution noise (standard deviation:0.5) 

   
Fig. 3.3 Patterns mixed with uniform distribution noise  
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 The design in this thesis implements a method that generates ratio weights without 

elapsed operation. Table 3.1 compares the ratio weights generated by elapsed operation and 

ratio weights generated by this design. In the RMCNN with elapsed operation design, the 

absolute-weights stored on capacitance are decayed by leakage current. To consider the 

leakage current effect, a constant leakage current of 0.8 fA is applied to the capacitor Css of 2 

pF. In Table 3.1, the elapsed time is 800s. Some small ratio weights generated by elapsed 

operation don’t decay to zero completely, and some largest ratio weights generated by elapsed 

operation don’t enhance to one. So the ratio weights aren’t feature enhanced enough. If the 

elapsed time is longer (for example: 850s), the ratio weights generated by elapsed operation 

can be feature enhanced completely. But if the elapsed time is too long, the ratio weights 

disappear (because all of the absolute-weights decay to zero). RMCNN w/o EO doesn’t have 

this trouble. We needn’t tune the best elapsed time and the circuit can get the best feature 

enhanced ratio weights. 

In Matlab simulation result, not all of the noisy pattern can be recognized. If the intensity 

of mixed noisy is very strong, RMCNN can’t recognize the noisy pattern too. Two kinds of 

noise are simulated in this thesis: normal distribution and uniform distribution. If the standard 

deviation of noise is larger than 0.3, the recognition rate is lower than 90%. 

The recognition rate is also simulated. Ninety random noisy patterns (thirty noisy 

patterns for each Chinese character) are generated by Matlab and recognized. Fig. 3.4 shows 

the recognition rates of three algorithms. The “CNN without RM” means that the algorithm 

recognizes noisy patterns directly after learning process. It doesn’t have the feature enhanced 

ratio weights, and its recognition rate is worst. Chinese character “four” always can’t be 

recognized. The recognition rates of “RMCNN with elapsed operation” and “RMCNN 

without elapsed operation” is similar. In Fig. 3.4, the elapsed time of “RMCNN with elapsed 

operation is 800s. So the recognition rate of “RMCNN without elapsed operation” is lightly 

better than “RMCNN with elapsed operation”. If the elapsed time is 850s, the two recognition 
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rates are the same completely because they get the same ratio weights.  

 

 

 

 Table 3.1 The ratio weights generated by (1) RMCNN with elapsed operation (2) 
RMCNN w/o EO 

Ratio Weights With elapsed operation Without elapsed operation 

9x9 

r = 1 

4 5A (800s)=

0 0.49 0
0 0 0
0 0.49 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

53A (800 s)=  

0 0.944 0
0.018 0 0.018  

0 -0.018 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

85A (800 s)=

0 0 0
0 .4 9 0 0 .4 9  

0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

75A (800 s)=

0 0.311 0
0.311 0 0.311  

0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

4 5A =

0 0 .5 0
0 0 0
0 0 .5 0

−
 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

54A =

0 1 0
0 0 0
0 0 0

 
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

85A =

0 0 0
0 .5 0 0 .5  

0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

75A =

0 0.333 0
0.333 0 0.333  

0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Fig. 3.4 Recognition rate of Matlab simulation (1) CNN without RM  (2)RMCNN with 
elapsed operation  (3) RMCNN w/o EO 

 
 

3.2 Hspice Simulation Result 

 The simulation of T1 and Rij shown in Fig. 2.7 is shown as Fig. 3.5. When the input 

voltage is between 0.9V and 2.1V, the transfer curve in Fig. 3.5 is linear. If the input voltage 

of T1 is smaller than 0.9V or larger than 2.1V, the output voltage is saturated. Thus it is 

described in chapter 2 that the voltage level 2.1V (0.9V) is defined as +1 (-1). Fig. 3.6 shows 

the simulation result of T2D. Because the output current of T2D is an absolute current, the 

flowing direction of the output current is the same when the input voltage of T2D is larger or 

smaller than 1.5V. The transfer curve of T2D is linear when the input voltage is between 0.9V 

and 2.1V. The simulation result of COMP is shown as Fig. 3.7. In Fig. 3.7, The input current 

IMss is swept and Iaw is kept as constant. Fig. 3.7 has three rows. The first row is the overall 

observation of .DC simulation. To observe the dead zone of the COMP, the second row of 
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Fig. 3.7 is the transfer curve which is zoomed out. In Fig. 3.7, the first and second rows are 

the transfer curve of Vout in Fig. 2.13, and the third row is the transfer curve of Vout  in Fig. 

2.13. Fig. 3.7 shows the dead zone of the comparator is about 10nA. 

 

 

Fig. 3.5 Transferring curve of the V-I converter T1 and Rij

 

 
Fig. 3.6 Transferring curve of the V-I converter T2D 
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Fig. 3.7 .DC Simulation result of comparator 

 

Fig. 3.8 and Fig. 3.9 show the simulation result of the unit gain buffer in Fig. 2.20 and 

Fig. 2.21. Fig. 3.8 shows the frequency response of the OP in Fig. 2.21 and Fig. 3.9 shows the 

difference between Vin and Vout of the unit gain buffer in Fig 2.18. Table 3.2 is the 

specification of the OP in Fig. 2.21. 

 

 
Fig. 3.8 Frequency response of the OP that performed as unit gain buffer 
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Fig. 3.9 The voltage difference between Vin and Vout of unit gain buffer 

 

Table 3.2 Specification of the OP performed as unit gain buffer 
DC gain 37.2 dB 
3dB freq 24K Hz 
Unit gain freq 1.8M Hz 
Load capacitor 20p  
Bias current 800 uA 

The Whole chip recognition process is also simulated by Hspice. Because there are 81 

pixels, it isn’t feasible to show the learning and recognition process of all pixels. Thus several 

pixels are shown as examples. All of the pixels are checked and they are all recovered.  

Fig. 3.10~Fig. 3.13 show the whole chip learning and recognition process of four pixels. 

In Fig. 3.10~Fig. 3.13, circuit learns patterns in “learning period”, and the “pattern 

transferring” is used to transfer the learning patterns stored in shift register. The timing 

“counter” means the counter is counting how many ratio weights are preserved. In “noisy 

pattern read in”, the noisy pattern that supposed to be recognized is inputted into the circuit. 
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After the “noisy pattern read in”, the recognition process starts. 

It is described in chapter 2 that the pure black voltage level is defined as 2.1V and the 

pure white voltage level is defined as 0.9V. Fig. 3.10 is the operation process of the second 

row and the fourth column pixel P(2,4) and Fig. 3.11 is the operation process of P(2,2). P(2,2) 

is a white pixel with noise, and P(2,4) is a white pixel without noise. When “noisy pattern 

read in” starts, the voltage level of P(2,4) is between 0.9V and 2.1V. Thus that’s a gray pixel. 

When recognition period begins, the voltage level of P(2,4) is pulled blow 0.9V, thus P(2,4) is 

recognized and recovered. P(2.2) is also pulled blow 0.9V after recognition period. Thus the 

P(2,2) is recognized too. Fig. 3.12 shows the operation process of P(3,8), and Fig. 3.13 shows 

the operation process of P(3,2). P(3,8) is a black pixel without noise, and P(3,2) is a black 

pixel with noise. Similarly, when “noisy pattern read in” starts, voltage level of P(3,2) is 

between 0.9 and 2.1V. That means P(3,2) is a gray pixel in this timing. After recognition 

period, this pixel is pulled over 2.1V, and that shows it is recover to a pure black pixel. 

Similarly, P(3,8) is pulled over 2.1V too, and it is recognized. 

 
Fig. 3.10 Recognizing process of the white pixel without noise P(2,4) (Hspice) 
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Fig. 3.11 Recognizing process of the white pixel with noise P(2,2) (Hspice) 

 

 
Fig. 3.12 Recognizing process of the black pixel without noise P(3,8) (Hspice) 
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Fig. 3.13 Recognizing process of the black pixel with noise P(3,2) (Hspice) 
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CHAPTER 4  

LAYOUT DESCRIPTIONS AND EXPERIMENTAL 

RESULTS 
 

4.1 Layout and Experimental Environment Setup 

Fig. 4.1 and Fig. 4.2 show the layout of the chip. Fig. 4.1 shows the layout of one cell and two 

ratio memories. The central part of Fig. 4.1 is cell, and the left side and right side of Fig. 4.1 

are ratio memories. The area of one cell and two RM is 400x250 um2. Fig. 4.2 shows the 

whole chip layout. In Fig. 4.2, the TSMC standard pads which include ESD device, pre-driver 

and post-driver are used. The die area is 4.56x3.49 mm2. Fig. 4.3 is the package diagram, and 

the package is 84 pins LCC84. The die photo is shown as Fig. 4.4. Table 4.1 shows the 

summary of performance. That performance is compared with RMCNN with elapsed 

operation[18]. The RMCNN w/o EO is compared with the RMCNN with elapsed operation. 

The area per pixel of RMCNN w/o EO is smaller than the RMCNN with elapsed operation, 

but the whole chip area of RMCNN w/o EO is larger. Because the large TSMC standard pad 

is adapted in RMCNN w/o EO, the whole chip area is larger even if the area per pixel is 

smaller.  

 The environment of measurement is shown as Fig. 4.5. The controlling signals and some 

input signals are generated by the pattern generator of HP/Agilent 16702A. The clock in the 

pattern generator is 12.5MHz and the signal rising (falling) time is about 4.5ns. Output 

waveform is shown on the oscilloscope TDK 3054B. The power supply is 3V. 
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 Fig. 4.1 Layout of one pixel (two RM and one cell) 

 

3.49 

mm 

4.56 mm 
 

Fig. 4.2 Layout of the whole chip (pad included) 
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Fig. 4.3 The package diagram 

 

 
Fig. 4.4 The die photo of 9x9 RMCNN without elapsed period 
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Table 4.1 the summary of the RMCNN w/o EO compared with RMCNN with elapsed 
operation 

 RMCNN with EO RMCNN w/o EO 

Technology 
0.35 µm 1P4M 
Mixed-Signal Process 

0.35um 2P4M 
Mixed-Signal Process 

Resolution 9 x 9 Cells 9x9 Cells 

No. of RM blocks 144 RMs 144 RMs 

1 Pixels 1 cell + 2 RMs 1 cell + 2 RMs  

Single pixel area 350 µm x 350 µm 400 um x 250um 

CNN array size (include pads) 3800 µm x 3900 µm 4560 um x 3900 um 

Power supply 3 V 3V 

Total quiescent power dissipation 120 mW 87mW 

Minimum readout time of a pixel 1 µs 100ns 

Elapsed operation Require Not require 

 

 
Fig. 4.5 The environment of measurement  
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 This circuit is controlled by many controlling signals. Fig. 4.6 shows the timing 

relationship of these controlling signals. The circuit figures in chapter 2 explained how these 

controlling signals control the circuit. The signals clk1 and clk2 determine the architecture of 

the circuit. If clk1 is high, the architecture of the circuit is learning architecture which is 

shown as Fig. 2.4. If clk2 is high, the architecture of the circuit is recognition architecture 

which is shown as Fig. 2.6. Thus the signals clk1 and clk2 can’t be high at the same time. 

Otherwise the circuit can’t operate correctly.  

In Fig. 4.6, the learning period is marked in the timing that clk1 is high. Similarly, 

recognition period is marked in the timing that clk2 is high. Signal R is used to reset the 

output of some sub-circuits in the circuit. The DFF is used to drive the negative edge trigger 

D-flip-flop in Fig. 2.22. The signals newp and pin appear in Fig. 2.22. When the newp is low, 

the connection between shift registers is cut off. Then the data in shift registers won’t be 

changed by the glitch on signal DFF. When newp is high, the shift registers can transfer the 

learning patterns. Thus the signal DFF oscillates only when newp is high. Signal pin let the 

pattern stored in shift register input into cells. After learning period, the ratio weights are 

generated in the timing “Ratio weight generating”. In this timing, the signals Cou_L and 

Cou_G which appear in Fig. 2.18 and 2.19 oscillate four times to change the output of 

Counter_L and Counter_G from “00” to “11” sequentially. Then the paths of Sw_a~Sw_f 

and S_en1~S_en6 turn on one by one and the ratio weight will be generated. After the timing 

“Ratio weight generating”, the signals noi and pin which appear in Fig. 2.23 become high to 

input the noisy pattern into cells. Then the circuit starts recognition period to recover the 

noisy pattern. Table 4.1 shows the function and usage of the all controlling signals. 
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Fig. 4.6 The control-timing diagram in the measurement of the 9x9 RMCNN with r = 1. 

 
 

Table 4.1 The function of every controlling signal 

Control signal Usage 

clk1 
High：learning period starts 
Low：learning period stops 

R 
High：reset the circuit 
Low：don’t reset 

DFF 
Drive the shift registers (negative trigger D-flip-flop) used to 
store the learning patterns. 

newp 
High：the shift register can transfer the learning patterns 
Low：the shift register can’t transfer the learning patterns 

pin 
High：the pattern stored in shift registers input to the cells. 
Low：the path between shift registers and cells is cut off 

Cou_L Drive every local counter in every cell 
Cou_G Drive the global counter 

clk2 
High：recognition period start 
Low：recognition period stop 

noi 
High：the pattern in shift registers becomes noisy 
Low：isolate the noise and innocent pattern in shift register 
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4.2 Experimental Result 

 The output stage is described in chapter 2 and Fig. 2.20. Only one pad is used to output 

the state of every cell. Thus the 81 pixels are read out sequentially.  

 Before pattern recognition, the learning function is checked first. That verification of 

learning function checks if the learning patterns are sent into the shift register exactly and the 

patterns stored in shift registers input to every cell correctly. The pattern is read out directly 

after the pattern is inputted into the circuit. Fig. 4.7~Fig. 4.9 is the verified result of learning 

function. Fig. 4.7 shows the learning pattern ”一” in the shift registers. Fig. 4.8 shows the 

learning pattern ”二” and Fig. 4.9 shows the learning pattern ”四” in the shift registers. In Fig. 

4.7~Fig. 4.9, “Ch 2” is the output data of the chip and “Ch 3” is the LSB of the decoder which 

controls the switches Swc11~Swc99 in Fig. 2.20. “Ch 1” is a trigger signal, and it is 

meaningless in this measurement. Each row is read out sequentially. The first row is read out 

first, and then the second row is following. Each row is marked in Fig. 4.7~Fig. 4.9. The 

output waveform of “Ch 2” in Fig. 4.7~Fig.4.9 can be cut off and recombined to form a new 

pattern that is more easily discerned. Fig. 4.10~Fig. 4.12 show these recombined output 

waveform. Left sides of Fig. 4.10~Fig. 4.12 is the pattern that supposed to be learned, and 

right side is the recombined output waveform. In Fig. 4.7~Fig. 4.12, the output of black pixel 

is about 1.5V, and the output of white pixel is about 0.2V. 

 It is obvious that all of the learning patterns are inputted exactly into the circuit, and the 

shift register indeed work well. But the measurement of recognition function isn’t so 

successful. Fig. 4.13 is the recognition result of pattern “四” without noise, and Fig. 4.14 

shows the recombined output waveform of Fig. 4.13. It is obvious that some pixels in row 4 

and row5 are not pulled up enough. That means these pixels are not recover to pure black of 

pure white color. The colors of these pixels are just gray. Though the recognition of innocent 

pattern “四” isn’t successful, however the recognition result of patterns “一” and “二” without 

noise are very successful. Fig. 4.15 and Fig. 4.16 are the measurement result of recognition of 

 46



patterns “一” and “二”. 

 

Fig. 4.7 Experimental verification of learning function (“一”) 

 

 
Fig. 4.8 Experimental verification of learning function (“二”) 
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Fig. 4.9 Experimental verification of learning function (“四”) 

 
Fig. 4.10 The recombined waveform of the verification of learning function (“一”) 

 
Fig. 4.11 The recombined waveform of the verification of learning function (“二”) 
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Fig. 4.12 The recombined waveform of the verification of learning function (“四”) 

 
 
 

 
Fig. 4.13 Experimental recognizing result of the clear pattern “四” 
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Fig. 4.14 The recombined waveform of the experimental recognizing result of the clear 

pattern “四” 
 

 

 

Fig. 4.15 Experimental recognizing result of the clear pattern “一” 
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Fig. 4.16 Experimental recognizing result of the clear pattern “二”  

 

The recognition result of noisy pattern with noise level 0.5 is shown as Fig 4.17 and Fig 

4.18. Fig. 4.17 is the recognition result of pattern “一”, and Fig. 4.18 is the recognition result 

of pattern “二”. Both the two noisy pattern is unrecognized. The noisy pattern with noise level 

0.5 is unrecognized in simulation result too. 

 

 
Fig. 4.17 Experimental recognizing result of the noisy pattern “一” with noise level 0.5 
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Fig. 4.18 Experimental recognizing result of the noisy pattern “二” with noise level 0.5 

 

4.3 Cause of the Imperfect Experimental Result 

 The cause of the unsuccessful recognition is found in this thesis. Table 4.2 shows the 

absolute-weight of cell(4,4) which is recognized unsuccessfully. Three simulation conditions 

are in Table 4.2. The absolute-weight 44
Mss  is simulated by Matlab, and that is a ideal weight. 

The absolute-weight  is simulated by Hspice in typical-typical corner condition. The 

absolute-weight  is simulated by Hspice in fast-slow corner condition. The 

absolute-weights  and  are strange. The absolute-weights in practical circuit is 

stored on the capacitor Cw in Fig. 2.4. The Hspice simulation result shows the charging and 

discharging currents are unbalanced. It is described in chapter 2 that the ratio weights are 

generated according to the absolute mean of absolute-weight. Table 4.3 shows the generated 

ratio weights according to the absolute-weights in Table 4.2. Because of the wrong 

absolute-weights  and , the absolute means of the two absolute-weights are wrong 

too. Though the mean of  is wrong, there is still only one weight that is larger than the 

mean of . Thus the ratio weight of  is the same with the ratio weight of 

44
TTss

44
FSss

44
TTss 44

FSss

44
TTss 44

FSss

44
TTss

44
TTss 44

TTss 44
Mss , and 

these two ratio weights are correct. But the mean of  is too wrong to get a correct ratio 44
FSss
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weights. There are three weights in  larger than the mean of , so the generated 

ratio weight of  is completely wrong. The wrong ratio weight results the wrong 

recognition. The cause of the wrong absolute-weights is shown as blow. 

44
FSss 44

FSss

44
FSss

 Chapter 2 explained the learning structure and the all detailed sub-circuits. Fig. 4.19 is 

the learning structure. The block W charges or discharges the capacitor Cw according to the 

input of two neighboring cells, and the charging current direction is controlled by the XOR 

gate in Fig. 4.20. Fig. 4.20 is a part of Fig. 2.10. The two inputs of XOR gate are the signs of 

two neighboring cells. Fig. 4.21 shows that one of the two inputs of XOR is connected to the 

Vin of T2. 

 When a pattern is learned, the shift registers need to transfer the new pattern. The pattern 

transferring takes a little time, and the MOS M26 in Fig. 2.8 is turned on in this timing. The 

MOS M26 in Fig. 2.8 is turned on and let the current I_charge in Fig. 4.19 become very small. 

However, this small current still influences the absolute-weights on Cw, and Fig 4.22 shows 

the small current in the pattern transferring time. Note that there is small current in the pattern 

transferring time. Because M26 in Fig. 2.8 is turned on in the pattern transferring time, one 

input of the XOR gate would be Vref(1.5V). Because one input of the XOR gate is connected 

with 1.5V, the output of XOR is unpredictable. Thus the influence of the small current in the 

pattern transferring timing is out of control, and the absolute-weights are affected by the small 

current. 

 The modified circuit is shown as Fig. 4.23. A new path connected with a dummy load is 

inserted. The path turns on when patterns is transferring, and then the small current in the 

pattern transferring timing doesn’t influence the absolute-weights. Fig 4.24 is the simulation 

result of modified T2D, and it shows the modified design of T2D doesn’t contribute a small 

current to Cw. One pixel model with modified T2D is simulated too, and the modified design 

can indeed recognize the noisy pixel. 
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Table 4.2 The absolute weight of cell(4,4) in three simulation condition 
Simulation condition Absolute-weight of cell(4,4) 

Matlab (ideal) 
44
Mss =

0 -0.33 0
0.33 0 0.33  

0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Hspice (TT) 
44
TTss =

0 -0.15 0
0.28 0 0.28  

0 0.78 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Hspice (FS) 
44
FSss =

0 0.116 0
0.41 0 0.41  

0 0.7 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
Table 4.3 The absolute mean and generated ratio weights of cell(4,4) in three simulation 

condition 
Simulation 
condition 

Absolute-weight of cell(4,4) Mean Ratio weights of cell(4,4) 

Matlab 
44
Mss =

0 -0.33 0
0.33 0 0.33  

0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0.5 
44A =

0 0 0
0 0 0
0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Hspice (TT) 
44
TTss =

0 -0.15 0
0.28 0 0.28  

0 0.78 0

⎡ ⎤
⎢ ⎥
⎢
⎢ ⎥⎣ ⎦

⎥ 0.3725
44A =  

0 0 0
0 0 0
0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Hspice (FS) 
44
FSss =

0 0.116 0
0.41 0 0.41  
0 0.7 0

⎡ ⎤
⎢ ⎥
⎢
⎢ ⎥⎣ ⎦

⎥ 0.409
44A =  

0 0 0
0.33 0 0.33  
0 0.33 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Fig. 4.19 The absolute-weights learning structure 

 
 
 
 
 
 

 

Fig. 4.20 The structure that controls flowing direction of I_charge 
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Fig. 4.21 The connection between T2 and input of XOR gate 

 
 
 
 

 
Fig. 4.22 The integration of T2D output current and time 
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Fig. 4.23 The modified circuit 

 
 
 
 

 
Fig. 4.24 The integration of T2D output current and time  1) the modified design          

2) the original design 
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Fig. 4.25 Simulation result of one cell model  1) the original design  2) the modified design 
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CHAPTER 5   

CONCLUSION AND FUTURE WORK 
 

5.1 Conclusion 

A new circuit of RMCNN w/o EO is implemented. The new circuit has the same 

recognition rate with RMCNN with elapsed operation, but the operation of RMCNN w/o EO 

is simpler.  

 The new RMCNN w/o EO doesn’t need a elapsed period to get the feature enhanced 

ratio weights. The RMCNN w/o EO can generate the feature enhance ratio weights directly 

after pattern learning, and it has a good recognition rate that is the same with RMCNN with 

elapsed operation. Though the operation of the RMCNN w/o EO is simpler, the circuit of 

RMCNN w/o EO isn’t complicated. The RMCNN w/o EO doesn’t need the multi-divider 

(M/D)[18] in the RMCNN with elapsed operation. Thus the transistors count of RMCNN w/o 

EO is less than the RMCNN with elapsed operation. Besides, there is a division behavior in 

RMCNN w/o EO, but there isn’t any divider in the circuit. Thus the hardware of RMCNN w/o 

EO is simple.  

 The number of the learning patterns of RMCNN w/o EO is 3. They are Chinese 

characteristic one , two and four (一, 二 and 四). Maximum standard deviation of normal 

distribution noise is about 0.3. The number of learning patterns that RMCNN w/o EO can 

remember is still few. To increase the number of learning patterns that can be remembered, we 

should modify the learning algorithm or the recognizing algorithm continuously in the future. 

In the experimental result, some vertical lines of pattern “四” are unrecognized. The 

recognition results of patterns “一” and “二” are successful and all lines in pattern “一” and 

“二” are horizontal. That doesn’t mean the recognition rate of horizontal lines is better than 

vertical lines. The failure of recognition result dues to the ratio weights around one pixel and 
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the inputs of neighborhood pixels. If the ratio weights around one pixel are wrong, the 

recognition fails even that pixel is on horizontal line. Thus the failure of recognition will 

appear in other patterns like “五” if the wrong ratio weights are generated. Fig. 5.1 shows 

some examples that recognizing failure may happen and not all of the failure examples are 

vertical lines. 

 
Fig. 5.1 Examples of Recognizing failure 

5.2 Future Works 

 The RMCNN w/o EO in this thesis can’t recognize all of the three patterns. The cause is 

found and the circuit is also redesigned in this thesis. Simulation supported that the modified 

design can really recognized all of the three patterns. Thus the RMCNN w/o EO should be 

taped out again. To reduce the chip area, the routing of RMCNN w/o EO should be modified 

too. 

 There are some modifying methods for the next chip are proposed in this thesis 

1. The capacitance value should be optimized in the future. The operating speed of 

RMCNN w/o EO should be decided and the capacitance value of Cw and the 

saturated output current of T2D Iysat can be chosen according to the operating speed 

of RMCNN w/o EO. 

2. The routing of layout can be more effective and save die area and the smaller die area 

has less process variation. 

3. The static D-flip-flop should be used instead of dynamic D-flip-flop. 

4. The modified output stage can be used to save power consumption. 
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