LERFETREp DN BRI e
FREE R 2 R

The Design of CMOS Non-Self-Feedback Ratio Memory
Cellular Nonlinear Network without Elapsed Operation

for Pattern Learning and Recognition

E ST G
h#Fsr 0 LEa H

PEARAY e £ B






LEFETRp RGN BRI e

The Design of CMOS Non-Self-Feedback Ratio Memory
Cellular Nonlinear Network without Elapsed Operation

for Pattern Learning and Recognition

A Student : YuWu
R ILa mE Advisor : Prof. Chung-Yu Wu
Bz~ 5
THFIRE RIFETARALTL
AL~
A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical Engineering and Computer Science
National Chiao-Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master in Electronics Engineering

September 2005
Hsin-Chu, Taiwan, Republic of China

P ER 4 E






F2 A hErE: s £4

# &

,’}_}%]l'l/fﬁ':;gm RN RE - B }fgfg‘ B FEE S 2 > @ E ok PR B 3
TR SRR REF T UL - AN EROFT I 2 o Ra o &AL
NEREAN SRR IE-EAETHERITUAL FIERF TGN GEE > A BRI (TOpE
BRI € R84 Rl A7 b oa s 0 @ Bt TFE o

Ame el g AN RHEALET FEITE P P2 G| R e e 2R R R 2 Jf# A
FTERF 2 ABMENTRE BFER L 2T c LARIEITE P 40 BN R

SRBAAD FIERF O G AR FRTRT T AREYRLE

# %% %% TSMC 0.35um 2P4M Mixed-Signal 4z % +* 1 - 315 & 5 OXO thiL i @

J}ﬁ Tk f}]];\] ga.]‘%é\ﬁ}é 4 ‘Pf’ﬁvx IFL7 v 4p uﬁ /?J o &X N E'J f#—?gﬁ L ﬁig’g ) 1
B BT PR R B f BRI ART AL bl e e

Wt o BAe L WERE AR Y OB o B P ERT NEY ER
OXQ (TS o T ¢k Athe P AR A T R AR P4 Gl e RATA SRR R
ZEES ‘f/z s @ PRI E g A R A E P PR BN el e e 2LAL M e s ke
)

2

Ik

B BE

T

Rer By hz BEAG 0 - BIERI R kKT S
i

i@
SR IR R ST o I EATR G L & Hspice kR BEATT RAER e 4 b



The Design of CMOS Non-Self-Feedback Ratio Memory
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Student: Yu Wu Advisor: Prof. Chung-Yu Wu

Department of Electronics Engineering & Institute of Electronics

National Chiao-Tung University

ABSTRACT

The associative memory is a hot topic in domain of pattern recognition. It is proven that
the non-self-feedback ratio memory nonlinear network (RMCNN) with elapsed operation can
be used as a kind of associative memory. However, the RMCNN with elapsed operation needs
a elapsed period to get the feature enhanced ratio weights. The elapsed period changes as
learning patterns change, and thus the elapsed operation let the process of pattern recognition
inconvenient.

This thesis expounds the design and usage of RMCNN without elapsed operation
(RMCNN w/o EQ) in the domain of pattern recognition. The RMCNN w/o EO doesn’t need
the elapsed period when it generates the feature enhance ratio weights. The design in this
thesis can generate the feature enhance ratio weights directly after pattern learning, and it has
a good recognition rate that is the same with RMCNN with elapsed operation.

This thesis quotes the theory used to generate the feature enhance ratio weights directly.
In this thesis, the circuit of RMCNN w/o EO is designed and a 9x9 RMCNN w/o EO is
implemented by TSMC 0.35um 2P4M mixed-signal process. A simple comparator is used to
save chip area. The counters and comparators let the ratio weights without elapsed operation
be generated easily. In this design, a pattern input interface that can input any patterns into the



circuit is implemented too. Thus this chip can learn any patterns. Besides, the design in this
thesis didn’t use the M/D in the RMCNN with elapsed operation, and the area of one cell is
smaller than the RMCNN with elapsed operation.

The experimental result isn’t successful completely. One of the three learning patterns
isn’t recognized successfully. This thesis discovers the cause of the experiment defect, and the

circuit is redesigned. The new circuit operates well in the simulation result.
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CHAPTER 1
INTRODUCTION

1.1 Background of Cellular Nonlinear Network

Due to the advantageous feature of local connectivity, the cellular nonlinear network
(CNN) introduced by Chua and Yang [1] is very suitable for VLSI implementation and thus
enables many applications [2]-[3]. So far, some research works on the applications of CNNs
as neural associative memories for pattern learning, recognition, and association have been
explored [4], [5], [6]-[10]. Among them, many innovative algorithms and software
simulations of CNN associated memories were reported [4], [5], [6]-[8]. As to the hardware
implementation, special learning algorithm and digital hardware implementation for CNNs
were proposed in [9] to solve the sensitivity problems caused by the limited precision of
analog weights. Moreover, CMOS chip implementation of CNN associative memory was also
reported in [10].

In realizing CNN associative memories, the learning circuitry can be integrated on-chip
with CNNs. The major advantages of on-chip learning are : 1) No host computer is needed to
perform the learning task off-line. This makes the interface of neural system chips simple for
many practical applications; 2) The spatial-variant template weights can be on-chip learned
without being loaded from outside to the CNN chips. Thus long loading time, complex cell
global interconnection, and analog weight storage elements to perform the loading operation for
large numbers of spatial-variant template weights can be avoided; 3) The adaptability to the
process variations of CNN chips can be enhanced.

The ratio memory (RM) of Grossberg outstar structure [11], [12]-[13] has been used in
both feedforward and feedback neural network ICs for image processing [14]-[15]. It is found

that the RM in neural network ICs has the advantages of long memory time and image feature



enhancement under constant leakage on stored weights.

In this chapter, both RM and modified Hebbian learning function [16] are implemented
in the CNN structure with spatial-variant templates and constant leakage on stored template
weights [17] for pattern learning, storing, and recognition. The proposed CNN with ratio
memory (RM) is called the RMCNN. It has the advantages of on-chip learning as mentioned
above. Since most of on-chip learning circuits can be shared with both RM and CNN core
circuits, the extra chip area required for on-chip learning circuits is small. Moreover, the
RMCNN can have longer template-weight storage time or equivalently pattern recognition
time which is one of the advantages of RM. Due to the feature enhancement effect of the RM
which well separates the learned weights and decreases the insignificant weights to zero, more
patterns can be stored and recognized in the RMCNN as compared to the CNN associative
memory without RM, but with spatial-variant template weights, the same constant leakage on
template weights, and the same learning rule. As a demonstrative example, a 9x9 RMCNN
without elapsed operation (RMCNN w/o EO) is realized in CMOS technology. Both
simulation and experimental results have verified the advantageous characteristics of the

RMCNN.
1.2 Algorithm of Ratio Memory Cellular Nonlinear Network

In our ratio memory cellular nonlinear network (RMCNN), the cell state x;(t), its

derivation X; (t), and the cell output y; (t)for a regular cells can be expressed as [1]-[3]

X t)= —Xjj t)+ Zaijkl Oy )+ Zbijkl (Duy, + Z Eq.(1.1)
C(kI)EN (i, }) Ck ) ENr (i, j)
X; (1) if -1=<x;(t) =+1
v, (0 = f(x, (©)=1+1 if % () > +1 Eq.(1.2)
-1 if o ox;(t)<-1

where Xij(t) is the state of cell(i,j), and uk(t) is the input of cell(k,I) in the r-neighborhood



system N(i, j) of the cell(i, j). In this thesis, i or k is the row number and j or | are the column
number of an MxN CNN cell array. So, cell(i,j) means the ith row and jth column cell. The
r-neighborhood system N(i, j) of the cell cell(i, j) is defined as the set of all cells including

cell(i, j) and its neighboring cells, which satisfy the following property.
N, (i, j) = {Ck. D[ 1 <k <M,1<I <N, [k-i[+]1 - j| <r}[18] Eq.(1.3)

The term r is called as the radius or the number of neighboring layer. In our design, r is 1.
ajju(t) is template A weight(coefficient) which correlates the cell output y(t) to the cell state
Xij(t). bija(t) is the template B weight(coefficient) which correlates the cell input uy to the cell
state x;j and zij is the threshold or bias of cell(i,j).

The template B and the threshold z;; are constant and space-invariant. The setting is

0.0 0

B,(t)={0 1 0 Eq.(1.4)
=4E10

z,(t) =0 Eq.(1.5)

That means the input of every cell influences itself only. In a r-neighborhood system N(i, ),
the input of neighboring cell doesn’t influence the central cell. The threshold zj is zero
everywhere. The template A is spatial-variant and time-variant[18]-[19], and the template Aj;

can be written as:

0 Aj(i-1) | 0) 0

A1j 0)= ji(j1) (0) 0 ji(js1) (0) Eq.(1.4)
0 (1) (0) 0

That means only four cell are correlated to the central cell. That’s up, down, left and right side
cells. In the original RMCNN with elapsed operation[18]. The weights in template A can be

produced by the blow equation.

ZJ-T upub dt

a4 (0) = T Spuml Eq.(1.5)

3



Kloe (i -0)j, i§ - 1), iG+1), (i+1)] Eq.(1.6)

m
> jTPuifuk?dt

p=1

sum1=z

kl

Eq.(1.7)

Where uijf’ is the pth pattern input of cell(i,j). Similarly, uj is the pth pattern of cell(kI).

The relationship between ij and ki is shown as Eq.(1.6) that is equivalent to . The T, is the

learning time for the RMCNN to learn p-th pattern and the total learning time for the

RMCNN to learn m patterns is T, =ZTP. ajji IS called as the ratio weight, and the

p=1

numerator of ajjq is called as the absolute-weight.
The boundary cells don’t correlate to four cells. For example, the boundary cells at
corners only correlate to two cells. Thus the boundary condition of the boundary cells can be

written as

X () =0F Up e (t)=0 Eq.(1.8)

The i’j" means this cell is a boundary cell.

1.3 Research Motivation and Thesis Organization

After learning period, the weight a;jq(0) in Eq(1.5) are not used directly. Instead , we use

the aj(T) after elapsed period[18]-[19]. The weight ajju(T) can be written as

] uguf dt)—c(T)
aijkI(T): - suml—Zc(T)

Eq.(1.9)

The ¢(T) is the amount of the absolute-weight decaying. After the elapsed process, all
absolute-weights decay. Some of the absolute weights even decays to zero. But not all of the
ratio weights ajjq decay, some of the ratio weights are enhanced and the others decay. After

this elapsed period, the important ratio weights become larger and the trivial weights are



smaller. Table 1.1 shows some template A of absolute-weights and ratio weights.[18]-[19]
Before elapsed period, the template A of ratio weights A44(0s) are the learning result according
to Eq.(1.5), and the ssa4 is the numerator of Eq.(1.5). A44(0s) and ss44(0s) both don’t have zero
elements. It’s obvious, after elapsed period, some of elements in ss44(850s) decay to zero.

Computing the corresponding ratio weights with Eq.(1.5), then we’ll get the A44(850). In

A44(850), the important ratio weight % increases to 1, and the others decrease to 0. So the

template A becomes a feature enhanced template. With this characteristic, the recognition rate
is improved.

The original design, RMCNN with elapsed operation, needs a elapsed period to get the
feature enhance ratio weights Aij. But the length of elapsed period must be controlled well. If
the length of elapsed period is too long, all of the ratio weights decay to zero and the circuit
doesn’t have any recognition function. If the length of elapsed period is too short, we can’t get
a good feature enhanced ratio weights. Some weights that should decay to zero don’t decay to
zero completely.

When those learning patterns change, the best length of elapsed period changes too. Then
it’s necessary to tune the best length of elapsed period with software when we want to let the
circuit learn different patterns. This step let the operation of this circuit not automatic enough.

We develop a new RMCNN w/o EO. This new structure generates the feature enhanced
ratio weights directly after learning period. When the learning patterns change, we needn’t
adjust the elapsed time. The new structure can recognize noisy pattern directly after learning
period. In this thesis, chapter 2 describes the architecture and the CMOS circuit
implementation. Chapter 3 is about the simulation result of Hspice and Matlab. The
experimental result and some layout description are in chapter 4. Finally, chapter 5 is the

conclusion and future work.



Table 1.1 Template A of ratio weights and the corresponding absolute-weights

RMCNN Ratio weights Corresponding absolute-weights
_ _ B 1 7]
-1 0O -= 0
i ° (1) 1 ’ 1
A44 (O 5): 6_ 0 6_ SSy4 (O S): 5 0 g
1
9x9 0 > 0 0 = 0
r=1 7 - -
O 0 O 0 0 0
A,, (850 5)= 0 0 ss,, (850 5)=| 0 (2) 0
0O 1 O — 0
| I 3 |
- . i 1 ]
0 — 0
S i
1 ss;, 0s)=| 0 o L
A;;(0s)=| O 0 - 3
1 0 1 0
9x9 0 = Y : 3 |
i 5 . - » _
r=1 it
0 0 0 3 0
0O 0 O
A;, (850 s)= 0 0 855, (850 5)= 0 0 o0
0 O
- — _ _ n _
0 — 0 =
3 0 3 0
3 3 1 1
A44 (0 S): 8_ 0 8— SS;, (OS): I 0 I
1 1
0 — 0 ll
9x9 I 3 | i 0 3 0 |
r=1 r .
0 0 0 0 0 0
0.5 0 0.5 z 0 z
A, (8505)=| . 855, (8505)=| 35 3
0 0 0 (0 0 0]




CHAPTER 2
ARCHITECTURE AND CIRCUIT
IMPLEMENTATION

2.1 Operational Principle and Architecture

It is known that the ratio memory (RM) can suppress the unimportant weight and
enhance the significant weight to get the feature enhance characteristics.[18]-[19] Since the
absolute weights are decreased with the leakage current, significant ratio weights increase
whereas the unimportant ratio weights decrease. For example, two of the four weights in
template A increase and the others decrease. Finally the two increasing weights increase up to
1/2. Similarly, these significant three (four) weights increase to 1/3 (1/4).

After leakage current decay the absolute weight, some ratio weights increase and some
decrease. The equation used to distinguish which ratio weights increase and which ratio

weights decrease can be written as[20]

n

2 Vauy @

e (1) = FH—— Eq (2.1)
n
where I, (t) is the mean of absolute memory current and I, ; (t) is the jth absolute memory

current. If1_,;,(t)is larger thanl, (t), ratio memory current increase gradually. Otherwise

the ratio weights decrease. So the increasing and decreasing ratio weights are detected. After
the comparing operation, the increasing weights are set an appropriate value (1,1/2,1/3 or 1/4)
and the decreasing weights are set zero directly This equation is used to determine the final
ratio weights directly rather than elapsed operation. The new Hebbian learning algorithm can

be written as blow:



Step 1 : find the absolute weights template A S;j(p) after p patterns are learned

0 SSij(izyj (P) 0
Si(P) = |sS(jn(P) 0 $S;i(j+1) (P)
0 SSijcisay; (P) 0

$Sj0 (P+1) =8, (p) +u " uf™

(k,1) can be (i+1, j) or (i, j+1) or (i-1, j) or (i, ]-1)
Step 2 : find the absolute mean of the absolute weights in a template

My, =mean(}"[ss;,)

Step 3 : generate the ratio weights

if ss.., > Mss

a ijkl

ik = PN—

Nr (i, j)

a., =0 if ss.

ijkl ik < Mss

Where uijf”l and u!™ are the input of cell(i,j) and cell(k,I) respectively. The

PNy, 1S number of preserved weights in N(i,j) and r=1.

A 9x9 array size RMCNN is implemented in this thesis. Fig. 2.1 shows the block
diagram of the RMCNN w/o EO and the controlling relationship between every block. The
9x9 shift register is used to store learning patterns. The learning patterns is generated by
pattern generator and is inputted into the shift registers in series. When a learning pattern is
stored in register completely, the pattern is inputted into RMCNN w/o EO in parallel for
pattern learning. After every pattern is learned, the RMCNN w/o EO enter recognition period.
The recognized result is sent to the output stage that is controlled by two decoders and the
output stage output the state of each cell in series. The decoder Decoder C selects the
columns, and Decoder_R selects the rows of the 9x9 array of output stage.

The general architecture of RMCNN is shown as Fig. 2.2. Fig. 2.2 shows the connections
between cells and RMs. Each cell connects with four RMs (the up, left, right, down side). And

8



every RM supports the ratio weight between two pixels. With the power supply 3V in the

circuit, 1.5V is defined as zero whereas 2.1V(0.9V) as +1(-1).

Output in
. series
Implemented on chip
= IIEui-"—"_"“"_"-'iT'";': ........ |
i State X of ' e S :
9x9 S
: RMCNN pvery cell = Quiput Decoder C
: wlo EO stage -
I

Controlling

i sigiil Selecting
s s male oo i — 1 rows
. Controlling
Eatiem »{ Decoder R
Input generator —
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Fig. 2.1 The block diagram of RMCNN
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Fig. 2.2 The general architecture of RMCNN

The detailed block diagram of cell and RM is shown in Fig. 2.3. In Fig. 2.3, cell(i,j) is



the ith row and jth column cell and u? is the cell(i,j) input voltage of pth pattern. The block

T1 -~ T3 in the cell (i;j) is a V-l converter to change voltage to current. . T2D contains a
detector to detect the sign of state Xj; T2D block is also a V-1 converter, and its output is
absolute current. The sign of T2D input voltage is detected and stored separately. The block
W uses current mirror to multiply the cell outputs by 1, 1/2, 1/3, or 1/4. One of the four
weights will be chosen by Counter L according to how many weight are preserved. The
capacitor Cw stores absolute weight in learning period, and the V-1 converter T3 transfer the
voltage on Cw to absolute current to the COMP block. COMP is a simple comparator.
COMP block compares the mean of the four absolute memory currents with the absolute
memory current, and deciding if the ratio weight should be kept. The Counter_L controls
block W to weight the output of each cell. The block T3, capacitor Cw, and several switch

form RM. Other blocks form CNN cell.

Fig. 2.3 The detail architecture of RMCNN

The Operation of this circuit is divided to two parts: learning period and recognition
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period. In learning period, clkl is high and clk2 is low. So the architecture in learning period

is shown in Fig. 2.4. In learning period, the cell(i,j) input voltage of pth pattern ui}) IS

transferred to current lu;; by T1 and sent to the node Xx;;. Current Ix;; can be written as

lusat when uy >2.1v
Gm;, x (Ui —1.5) when 15V <up <2V
lu; =40 when uy =1.5v Eq.(2.2)
—-Gm, x (L.5-up when 0.9V <uf <15V
—lusat when uP <0.9v

.Where Gmr; is the transconductance of V-l converter T1. The voltage level 1.5V is

defined as zero, so the current flow to opposite direction when uiJP is larger or smaller than

1.5V. When uf is larger than 2.1V or smaller than 0.9V, output current lu;; of T1 becomes

saturated and keeps at the current lusat. lusat is about 5.5uA.

co
MP

m

Counter_L

Iu”.* Xy (Vx,_-; ) I} - ‘ Xy (Vxu) )
'lg -r—):bp w 6 N\ 1[")2 / w
R,
) Cyy :{ ! Cu i Vi
o v g — 2
Iyu

Fig. 2.4 Architecture of RMCNN in learning period

The current lu;; flows to the node X and is converted into a voltage Vx; through the

resistor Rj; and capacitor Cjj. T2D outputs an absolute current ly; and a sign(ly;;) according to
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the value of Vx;j. Since the structure of T2D is similar to T1 and T2D has a absolute-value

circuit, the output current ly;; and the sign(ly;;) can be written as

lysat when Vx; > 2.V
Gm,,, x (uf —1.5) when 1.5V <Vx; <2V
ly; =10 when Vx;, =1.5V Eq.(2.3)
Gmy,p x(1.5-uf when 0.9V <Vx; <15V
lysat when Vx; <0.9V
) ov if Vx; <1.5V
sign(ly;) = {3\/ £ v, >15v Eq.(2.4)

\Where Gmr,p is the transconductance of T2D and the current lysat is the saturated output
current of T2D. It is about 5.5uA too. Note that ly; always flows to the same direction
whether Vx;; is larger or smaller than 1.5V. The sign of Vx; is detected by a detector in T2D
and sent to the block W. Current ly;; flows into the block W. According to the signs of input
voltage Vx; and Vxq, the output current of W charges or discharges the capacitor Cw. The
block W is set to a default state in learning period. The default state is multiplying ly;jby 1/4.
The choice of this default state is just for circuit design convenience and we can control the
length of learning time to charge or discharge the capacitor Cw. The capacitor Cw is a MOS
capacitor and the capacitance value is 2p F. The capacitance value of Cw and lysat is as large
as RMCNN with elapsed operation [18]. To consider the leakage current effect, a constant
leakage current of 0.8 fA is applied to the capacitor Cw of 2 pF so the voltage Vwaijjq is
decreased. The 2 pF capacitor Cw is implemented on the chip. The value of 2 pF is chosen as
a compromise between weight storage time and capacitor chip area. The capacitance value of
Cw can’t be chosen too small because of the leakage current consideration. Thus 2 pF is
chosen. The current lysat is chosen as the smallest current that can let the V-1 converter
operates regularly. The current lysat must be small because the voltage Vwaijq stored on Cw
must be charged or discharged slowly and then the value of Vwaijjq can be controlled slightly.
Thus the lysat is chosen as 5.5uA and the learning time of a pattern is 100ns.
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This charging or discharging Cw process is the learning behavior and generates the
absolute weight at the capacitor Cw. When the inputs of neighboring cell(i,j) and cell(k,l) are
white or black in a learning pattern. The capacitor Cw between these two cells is charged.

Otherwise, when the inputs of these two cells are opposite color, the capacitor Cw is

discharged. The voltage Vway, stored on Cw can be written as

1 lysat xt .
Vwaijkl(p)+§ yCWX wen sign of  ad \k, ae tre sae s
V ij 1 = . .
Waya (P +1) 1 lysat xt . , q.(25)
Vwa'ijkl(p)_z ow wen sign of Vi and \k, aen't te sare

Vway,, (p) means the voltage level after the pth pattern is learned. The output current of

block W is %Iysat, and there are two W blocks charge or discharge a Cw at the same time.

Thus after each pattern learning, the voltage changing is %Iysgtxt
W

(2><% lysat ). The

learning time of each pattern is 100ns.

After every pattern is input to circuit, capacitor Cw stores the absolute voltage weight

Vwa,,, . Then T3 converts the voltage Vway, to current and sends this current to the current

mode comparator COMP. The COMP compares two current: lo; and lom . loj is the current
transferred from T3; lom is the mean of all absolute weight current in one template A. If 1y is
larger than I, , COMP gives the Counter_L a “logic high” that means the ratio weight
between the two pixels should be preserved.

The connection between COMP and Counter_L is shown as Fig. 2.5. Since each cell
just connects with the four nearest cells, there are four COMPs in one cell. Every COMP
gives a logic output to Counter_L. At the end of learning period, Counter_L counts how
many “logic high” are given from the four COMPs. If there is (are) only one (two) “logic

high”, only one (two) ratio should be preserved. Then Counter_L controls the W to weight

the output current of T2D as 1x ly, (%x ly; ). Similarly, according to the output situation of

13



COMPs in one cell, the Counter_L may control the block W to weight output current of

T2D as %x ly; or %x ly; - The logic output of COMP in cell(i,j) (cell(k,I)) also controls the

switch sw2(swl) in Fig. 2.2. For example if the logic output of COMP in cell(i,j) is low (that
means the ratio weight should be zero.), the switch sw2 turns off. Then the information from
cell(k,l) in recognition period is isolated. That behavior is equivalent to setting a ratio weight

in a template A as zero.

i RM Counter L : i i
: ~ee—»| MP MP [+ :
Emsmmmed A Y v () e

,,,,,,,,,,

Fig. 2.5 The connection relationships of COMP, Counter_L and RM

At the ending of learning period, every Counter_L counts how many “logic high” are
sent from COMPs and controls the W appropriately.

After learning period, the operating process enters recognition period. In this period, the
input pattern is noisy pattern. The architecture in recognition period is shown as Fig.2.5. In

Fig. 2.6, clkl is low and clk2 is high. The states of switches swl and sw2 are controlled by

noi

COMP. In this period, u' and ul” are the input voltage of noisy pattern. u;

i are

noi
ij

noi

inputted to T1 and transferred to current lu;™. Iu

and the output current Iw,, from other
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neighboring cell C(k,l) (k,lei,j—1 or i,j+1 or i-1j or i+l j )flow to the node

xij and form the voltage Vx;;. According to KCL, the inj can be written as

y VXi' noi
C,Vx, ) =——2+ > Iw,+Iu Eq.(2.6)

ij
ij C(k,eN?(i,j)

W = Wg x 1y, Eq.(2.7)
1 1 1
wiel or = or= or = Eq.(2.8
W€ 5 3 2 0.(2.8)
kK,lei,j=1 or i,j+1 or i-1j or i+l ] Eq.(2.9)
e e e ST S S ] R~ TR | SR e

Cell(k,I) Jr

noi

;| co collu, |co

[ I
I I
| I
| [
| i
! MP 1 MP
”Wﬁ-njl : :
|
| [
| Il
I s [ ]
| I I(.‘ountcr_l;l I 1
| ® ™ fal |
| h ) [
| X.. - \ [
Iw;g. I s X
: ij-1) J if = Iwyg.p " Il kINg T2 W
D
| D
U Iwg, AR /‘ . Ry C /,
| ) (i+1)j - C{}. ']/‘-;1’.4 kl ‘}H
| < r
|
|

Fig. 2.6 Architecture of RMCNN in recognition period

Where W, is the template A ratio weight. It is generated by W. The Eq.(2.6) implement
the RMCNN mathematical equation Eq.(1.1). Because of the settings of template B and
threshold are Eq.(1.4) and Eq.(1.5). Thus in Eq.(2.6) there isn’t the threshold and the
coefficient of input 1uf® is 1.

2.2 Circuit Implementation

2.2.1 V-1 Converter

The circuit of T1 and Rj; is shown as Fig. 2.7. In all of the circuit implementation figure,
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the MOS size is written next to the MOS number. The unit of MOS size is micro meter. In Fig.
2.7, the left side is a differential pair structure, and right side is MOS resistor. The voltage
VDbl and Vref are constant bias voltage. Vbl is 2.5V and Vref is 1.5V. MOS M5 and M6
perform as large resistances to let the linear operating range larger. When the input voltage
Vin is larger than Vref, the output current lo flows from left to right. Then the voltage Vx;

rises. Similarly, when the Vin is smaller than Vref, the voltage Vx;; falls.

M7b | | | |
5/2 I:I 5/2

MR2
1/8

]
]
Ti E Resistor Rij
— ]
VDD i
M4 i MRI
2/1.4 i To 1/8
|—O E i (Vixy)
]
Vref
5.5uA D _ | R I
Vbl M6 i TG

1/5 : ki

i gnd
"
:
1
:
]
:

Fig. 2.7 The V-1 converter T1
Fig. 2.8 is the circuit of T2D. T2D is similar to T1, but it has a detector and an absolute

output current structure. The circuit of detector is shown as Fig. 2.9. The detector is just an
inverter chain. It is used to detect the sign of T2D input, and the function of detector is
described as Eq.(2.6). In Fig. 2.8, left side is also differential pair structure, and right side is
the absolute output current structure. The constant bias voltage Vb2 is 1.5V, and the constant
bias voltage Vb1 and Vref are the same with T1. When the input voltage Vin is larger than
Vref, the current lo flows from left to right. Then the MOS M10 in Fig. 2.8 turns off, and
MOS M11 turns on. The current are mirrored by current mirror M12 and M13, and flow
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through the M8. Then the MOS M94 mirrors the current of M8 and output the current loabs.
Similarly, if the voltage Vin is smaller than Vref, M10 turns on and M11 turns off. The output
current loabs is mirrored by the current mirror M8 and M94 directly. Whether the input
voltage Vin is larger than Vref or not, the flowing direction of loabs is always the same. So

the circuit has an absolute output current. The usage of the MOS M26 will be explained in

section 4.3.
T vDD
: MS L3 — M94
QO - ’
: 6/1 El | | 1.8/1
Vin M10
- o [ M F vor
B pino—| Vref |1.4/0.35 | l 1B
M26 1/0.35 MI1 , ;
Vb1© 42035_|- 72 |
M7b MI2 El | ”:IM13
5/2 1.4/2 |_ 1.4/2

Fig. 2.8 The V-1 converter in T2D

. T VDD

3.8/0.35
M3
_°| —ci 11.4/0.35
B
i
M2 I3
1/0.35 I

Fig. 2.9 The detector in T2D
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The circuit of block W is Fig. 2.10. Actually, the block W is combined with T2D. In
order to show the MOS size of these two circuits, the diagrams are drawn respectively. Note
that the MOS M94 in Fig. 2.10 and the M94 in Fig. 2.8 are the same MOS. The complete
circuit diagram of T2D and W is shown as Fig. 2.11. The function of W is to weight the
output of T2D. We use current mirror to weight the output of T2D. In Fig. 2.10, because M94,

M91, M92 and M93 are current mirror, we don’t use minimum length to avoid strong channel

modulation effect. In Fig. 2.11, the drain current of M94 is %x loabs, but the size of M94

isn’t really % time of M8. Because even we use 1 micro meter channel length, the drain and

source voltage drops Vds of M8 and M94 still influence the current accuracy. Thus the
channel width of M94 is adjusted to modify the current accuracy. Similarly, the sizes of M92
and M93 are adjusted too. A better method to let the current mirror operate accurately is using
MOS parallel connection. A small MOS is chosen as a unity MOS first. Then the M8 in T2D
uses twelve unity MOSs that has parallel connection with each other and M94 uses three unity
MOSs has parallel connection with each other. Similarly M91 uses twelve unity MOSs and
M92 uses six unity MOSs and M93 uses four unity MOSs. This modified structure will has
more accurate mirrored current.

The switches Sw_a, Sw_b, Sw_c, Sw_d, Sw_e and Sw_f are controlled by Counter_L.
According to output of counter, only one path of these switches turns on at the same time. The
XOR gate in Fig. 2.10 is used to control the flowing direction of output current. In learning
period, the Vinry) is inputted to the XOR gate and the Vinrs;jg is inputted to the XOR gate in

recognition period.
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Fig. 2.11 The overview of T2D and W

The V-1 converter T3 is similar to T2D. The circuit is shown in Fig. 2.12. In Fig. 2.3, T3
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has four outputs. Two of the four outputs are sent to COMP, and the others are sent for
summation. Thus the circuit in Fig. 2.12 has four outputs, and the MOS sizes of the current

mirrors (M9s1, M9s2, M9s3, M9s4 and M8) are the same.

VDD
M3 M4 MS$ L
2/1.4 214 To 6/1

: ' M9s1 [M9s2{MIw1 | MIw2
v Ml M2 .
| M10 6/1 [ 6/1 | 6/1 | 601
13 153 _ Vbl
Vief | 1.4/0.35
5.5uA D |
Ml i 8 &
o . vy [+ 8 b
o Mo 42035 |P
Mo, | MI12 l:M13
52 l:II 1472 r 1.4/2

Fig. 2.12 The CMOS circuit of T3

2.2.2 Comparator

Fig. 2.13 shows the circuit of Comparator. In order to save the area of whole chip, we
use a simple current mode comparator. In Fig. 2.13, if the input current lyss is larger than Iy,
the logic output Vout is low. Otherwise, Vout is high. The port lyss is used to receive the mean
of summed currents, and the port I, receives the absolute-weight current that is transferred
from T3. In the above algorithm, if the absolute-weight current equals to the mean of the
summed current, the ratio weights should be preserved too. That means the logic output of
comparator should be high if Iyss equals to l,,. Because the usages of lyss and I, are specified,
the sizes of Mc3 and Mc4 are designed as little smaller than Mc1 and Mc2. The difference of

the MOS size makes the logic output is high even if Iyss equals to lay.
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Fig. 2.13 The CMOS circuit of comparator (COMP)

In section 2.1, it is described that we need to count the mean of four absolute-weight
current. That means it is necessary to divide a summed current by four. But there isn’t any
divider in this circuit, the dividing behavior is implemented by the wire connection of COMP.
The detail is shown as Fig. 2.14. In Fig. 2.14, two of the T3 output ports are drawn, and the
others are abridged. The four output currents of T3jj+1), T3ig-1), T3(i+1); and T3(i.1); are summed
at the node N and form the current Ig,m. Because the connection of MOS Mc1 and Mc2 in Fig.
2.13 are diode connection, they are all in saturation region. The input impedance of I;,; port is
very large and isn’t sensitive to the drain and source voltage drop Vds and the flowing current.
In Fig. 2.14, node N is connected to the input of all four comparators. Because of the similar

input impedance of the four comparators, the current lg, flows into the four comparators

averagely. Thus the currents flow into Mc11, Mc12, Mc13 and Mc14 are %I and the

sum

sum

1 ]
current 2 I is the mean of summed current.

Process variation is considered in the RMCNN w/o EO. If the capacitor Cw and all of
the V-I converter have process variation, the COMP can’t get the accurate current. However,
if the neighboring five cell has the same process variation, the comparative magnitude of
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absolute weights I, and the mean lIys doesn’t change. Thus the RMCNN w/o EO has a little

tolerance to process variation.

I Me3l hMedl
ij+1
—l
T3+ A
Mell Mc2
Mc32 Mc42
T35, pi ‘ [
II—I- Mcl2 Mc22
4 sum
» Mc33 Mc43
T3i+]j Fy
Mcl3 Mc23
Liyj Mec34 Mecdd
o | L
1 1
I]sum I
+

Mcld Mc24
Fig. 2.14 The method that divides the summed current by 4

2.2.3 Counter and Weight Selection Structure

The counter in this architecture is formed by two D-flip-flop. The structure of counter is
shown as Fig. 2.15. DFF_P is a positive edge trigger D-flip-flop, and DFF_N is a negative
edge trigger D-flip-flop. The MOS M1 is used to reset the signal Cou_L(Cou_G). Switch
S_en enables the counting operation. The counting operation can be described as Fig. 2.16.
Note that b0 is the output of positive edge trigger D-flip-flop, and b1 is the output of negative

edge trigger D-flip-flop. If the signal R is high, Cou_L(Cou_G), b0 and b1 are always low.
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When the signal S_en is low, b0 and b1 don’t change even if Cou_L(Cou_G) is oscillating.

b0 bObar
DFF P T‘ T\ DFF N
S_en D DFF g r II; Do DFF 0 C—T t"
((C:ou_é o__\%_--bo—}m é 'a [0 DFF (_) C
ou ()
M1 > D D
R °_-| 1/0.35 |- 9
Fig. 2.15 The circuit of the counters in this chip
CLK e
S_en IS S I S S SR S B
R [ ] ' . : H : :
b0 < unknown :,ﬂ' ! I '
bObar < unknown )! E _E
bl < Tnknown > ; ; | v | ; :
bilbar <__unknown S| ; : ; : :
number <__unknown }E 00 E 00 E 01 E 10 E 11 E 00 E 01 E

Fig. 2.16 A counting example of the counter

Dynamic D-flip-flop is used in this chip, because the transistors count is less than static
D-flip-flop. The circuit of the dynamic D-flip-flop is shown in Fig. 2.17. MOS MO and M9
are used to reset the output of D-flip-flop. Fig. 2.17 is a positive edge trigger D-flip-flop. If
change the port position of DFF and DFF , that’s negative edge trigger D-flip-flop. The
D-flip-flop in Fig. 2.17 has static power consumption when the port D and R is high and DFF

is low. Thus we should use static D-flip-flop instead of the dynamic D-flip-flop to save power
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consumption..

In Fig. 2.10, it is known that Sw_a~Sw_f are controlled by counter. Fig. 2.18 shows
how the counter controls those switches. In Fig. 2.18, some /O ports are abridged. In a
r-neighborhood system Nc(i, j) (r=1) of the cell cell(i, j), four comparators connect with a
counter. The output of each comparator controls the switch S_en of the counter. The switches
S _enl~S en6 are controlled by another global counter Counter_G and only one path of
S_enl~S_en6 turns on at the same time. The controlling method of S_en1~S_en6 is similar to
Sw_a~Sw_f. At the ending of learning period, Cou_L (Cou_G) oscillates four times. The
Cou_L (Cou_G) oscillates, the turn-on path of S_en1~Sen6 changes. If the output of COMP
is high, the binary number output of counter adds one. That’s the method used to count how

many ratio weights should be preserved

-— VDD

M2 _T MO
38033 g R O—| 1/0.35
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]
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3.8/0.35 0—4 3.8/0.35
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J M3 DFF J M7

1/0.35 o—l 1/0.35
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O—I 1/0.35
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Fig. 2.17 The circuit of DFF_P
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Every cell has a Counter_L, but there is only one Counter_G that is used to control
switches S _enl1~S en6 in the whole chip circuit. Fig. 2.19 shows how the Counter_G

controls the switches S_enl1~S en6 in every cell. The Counter_G is drived by the signal

Cou_G, and all Counter_L are driven by the signal Cou_L.
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Fig. 2.18 The connection between W and Counter_L
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Fig. 2.19 The connection between Counter_G and every cell

25



2.2.4 Output stage and input pattern interface

The output stage is shown as Fig. 2.20. The nodes xi1~Xg9 are the node x;; in Fig. 2.4.
M11~M99 perform as level shifter to drive parasitical capacitance of the switches and metal
line. The unit gain buffer is a negative feedback OP and it is used to drive the output pad. The
circuit of unit gain buffer is shown as Fig. 2.22. Two 4-bit decoders are used to control those
switches Swci11~SwWegg and Swii~Swiye. One decoder controls column switches Sweii~SWeag
(SWc21~SWep9 SWe31~SWesg, ...€tC.), and the other controls switches Swy~Swr9. This structure
is used to read out every pixel one by one.

There are some current source can be shared in the output stage shown in Fig. 2.20. The
modified output stage is shown as Fig. 2.21. In Fig. 2.21 every MOS in the same row uses one

current source. This modified output stage saves much power consumption.

Swen

Lnit
gain
buffer Cutput

E Pad

Sweog

Aog

Fig. 2.20 The output stage
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Fig. 2.21 The modified output stage

In order to input any arbitrary learning patterns, the shift registers input interface is used.
Fig. 2.23 shows the input interface. DFF_N is negative edge trigger D type flip-flop. In the
beginning of learning period, clkl and newp turn on and ptn; inputs the learning pattern pixel
by pixel. After the CLK of DFF_N oscillates nine times (because the cell array has 9
columns), pin turns on to input the learning pattern into each cell. When pin turns on, newp
turns off to prevent the pattern changes as a glitch occurs on CLK of DFF_N. After the first
pattern is learned, clkl and newp turn on again and pin turns off. Then shift registers transfer
the stored learning pattern and the learning of the second pattern starts.

Fig. 2.24 is one part of Fig. 2.23 and it shows how to mix the noise with learning pattern
in recognition period. The capacitance Cgyp, is the gate capacitance of M1 in Fig. 2.7 and other
parasitical capacitance. In learning period, the capacitance C;is pre-charge to Vne and noi
always turns off. When recognition period starts, the innocent pattern is already stored in shift
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register and clkl turns off to isolate D-flip-flop. Then noi turns on and charge sharing occurs

between Cy, and Cyi. So the voltage on node Nd is a mid level voltage and the amplitude can

be adjusted by changing the capacitance ratio of Cy, and Chpg;.

VDD
40uA
MIO MI1
03.6/0.35 03.6/0.35
Vin | Vout
M13 M12
T2.8/0.7 72.8/0.7

—L— GND

Fig. 2.22 The unit gain buffer in the output stage
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Fig. 2.23 The pattern input interface that formed by shift register
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CHAPTER 3
SIMULATION RESULT

3.1 Matlab Simulation Result
The MATLAB software is used to simulate the behavior of the CNN with ratio memory

(RMCNN) as an associative memory. In the MATLAB simulation, 9x9 cells are used to form
the RMCNN with r = 1. Thus, it can process patterns with 81 pixels. The total three learning
pattern is shown as Fig. 3.1. The patterns are Chinese character “one”, “two” and “four”.
Normal distribution and uniform distribution noise are both mixed with the clear pattern
respectively, and the Matlab simulation result shows that the three patterns can be recovered.
Fig. 3.2 shows the three patterns mixed with normal distribution noise. Fig. 3.3 shows the

three patterns mixed with uniform distribution noise.

Fig. 3.1 The three clear learning patterns

Fig. 3.2 Patterns mixed with normal distribution noise (standard deviation:0.5)

1

Fig. 3.3 Patterns mixed with uniform distribution noise

30



The design in this thesis implements a method that generates ratio weights without
elapsed operation. Table 3.1 compares the ratio weights generated by elapsed operation and
ratio weights generated by this design. In the RMCNN with elapsed operation design, the
absolute-weights stored on capacitance are decayed by leakage current. To consider the
leakage current effect, a constant leakage current of 0.8 fA is applied to the capacitor Css of 2
pF. In Table 3.1, the elapsed time is 800s. Some small ratio weights generated by elapsed
operation don’t decay to zero completely, and some largest ratio weights generated by elapsed
operation don’t enhance to one. So the ratio weights aren’t feature enhanced enough. If the
elapsed time is longer (for example: 850s), the ratio weights generated by elapsed operation
can be feature enhanced completely. But if the elapsed time is too long, the ratio weights
disappear (because all of the absolute-weights decay to zero). RMCNN w/o EO doesn’t have
this trouble. We needn’t tune the best elapsed time and the circuit can get the best feature
enhanced ratio weights.

In Matlab simulation result, not all of the noisy pattern can be recognized. If the intensity
of mixed noisy is very strong, RMCNN can’t recognize the noisy pattern too. Two kinds of
noise are simulated in this thesis: normal distribution and uniform distribution. If the standard
deviation of noise is larger than 0.3, the recognition rate is lower than 90%.

The recognition rate is also simulated. Ninety random noisy patterns (thirty noisy
patterns for each Chinese character) are generated by Matlab and recognized. Fig. 3.4 shows
the recognition rates of three algorithms. The “CNN without RM” means that the algorithm
recognizes noisy patterns directly after learning process. It doesn’t have the feature enhanced
ratio weights, and its recognition rate is worst. Chinese character “four” always can’t be
recognized. The recognition rates of “RMCNN with elapsed operation” and “RMCNN
without elapsed operation” is similar. In Fig. 3.4, the elapsed time of “RMCNN with elapsed
operation is 800s. So the recognition rate of “RMCNN without elapsed operation” is lightly
better than “RMCNN with elapsed operation”. If the elapsed time is 850s, the two recognition
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rates are the same completely because they get the same ratio weights.

Table 3.1 The ratio weights generated by (1) RMCNN with elapsed operation (2)

RMCNN w/o EO

Ratio Weights

With elapsed operation

Without elapsed operation

0 -0.49 O]
0 0 0
A, (800s)=
0 049 0
0 094 0
A, (800 5)= 0018 0 0018
| 0 0018 O
0 0
A, (800s)=| 0.49 0 0.49
0 0
0 0311 O
A, (@B00s)=| 0311 0 0311
0 0 0

0 -05 0
0 0 O
A45_
0 05 O
0 1 0
aA=l0 0 0
0 0 0
0 0 0
A=[05 0 05
0 0 0
0 033 0
A /0383 0 033
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Fig. 3.4 Recognition rate of Matlab simulation (1) CNN without RM  (2)RMCNN with
elapsed operation (3) RMCNN w/o EO

3.2 Hspice Simulation Result

The simulation of T1 and Rj; shown in Fig. 2.7 is shown as Fig. 3.5. When the input
voltage is between 0.9V and 2.1V, the transfer curve in Fig. 3.5 is linear. If the input voltage
of T1 is smaller than 0.9V or larger than 2.1V, the output voltage is saturated. Thus it is
described in chapter 2 that the voltage level 2.1V (0.9V) is defined as +1 (-1). Fig. 3.6 shows
the simulation result of T2D. Because the output current of T2D is an absolute current, the
flowing direction of the output current is the same when the input voltage of T2D is larger or
smaller than 1.5V. The transfer curve of T2D is linear when the input voltage is between 0.9V
and 2.1V. The simulation result of COMP is shown as Fig. 3.7. In Fig. 3.7, The input current
Imss 1S swept and I,y IS kept as constant. Fig. 3.7 has three rows. The first row is the overall

observation of .DC simulation. To observe the dead zone of the COMP, the second row of
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Fig. 3.7 is the transfer curve which is zoomed out. In Fig. 3.7, the first and second rows are

the transfer curve of Vout in Fig. 2.13, and the third row is the transfer curve of Vout in Fig.

2.13. Fig. 3.7 shows the dead zone of the comparator is about 10nA.

Xij
V) |

1.5]

0.8
0 0.5 1 15 2 25 Vin(V)

Fig. 3.5 Transferring curve of the V-I converter T1 and R;;
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Fig. 3.6 Transferring curve of the V-1 converter T2D
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Fig. 3.7 .DC Simulation result of comparator

Fig. 3.8 and Fig. 3.9 show the simulation result of the unit gain buffer in Fig. 2.20 and
Fig. 2.21. Fig. 3.8 shows the frequency response of the OP in Fig. 2.21 and Fig. 3.9 shows the
difference between Vin and Vout of the unit gain buffer in Fig 2.18. Table 3.2 is the

specification of the OP in Fig. 2.21.

-0

Volts dB (lin)
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Fig. 3.8 Frequency response of the OP that performed as unit gain buffer
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Fig. 3.9 The voltage difference between Vin and Vout of unit gain buffer
Table 3.2 Specification of the OP performed as unit gain buffer
DC gain 37.2dB
3dB freq 24K Hz
Unit gain freq 1.8M Hz
Load capacitor 20p
Bias current 800 uA

The Whole chip recognition process is also simulated by Hspice. Because there are 81
pixels, it isn’t feasible to show the learning and recognition process of all pixels. Thus several
pixels are shown as examples. All of the pixels are checked and they are all recovered.
Fig. 3.10~Fig. 3.13 show the whole chip learning and recognition process of four pixels.
In Fig. 3.10~Fig. 3.13, circuit learns patterns in “learning period”, and the “pattern
transferring” is used to transfer the learning patterns stored in shift register. The timing
“counter” means the counter is counting how many ratio weights are preserved. In “noisy

pattern read in”, the noisy pattern that supposed to be recognized is inputted into the circuit.
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After the “noisy pattern read in”, the recognition process starts.

It is described in chapter 2 that the pure black voltage level is defined as 2.1V and the
pure white voltage level is defined as 0.9V. Fig. 3.10 is the operation process of the second
row and the fourth column pixel P(2,4) and Fig. 3.11 is the operation process of P(2,2). P(2,2)
is a white pixel with noise, and P(2,4) is a white pixel without noise. When “noisy pattern
read in” starts, the voltage level of P(2,4) is between 0.9V and 2.1V. Thus that’s a gray pixel.
When recognition period begins, the voltage level of P(2,4) is pulled blow 0.9V, thus P(2,4) is
recognized and recovered. P(2.2) is also pulled blow 0.9V after recognition period. Thus the
P(2,2) is recognized too. Fig. 3.12 shows the operation process of P(3,8), and Fig. 3.13 shows
the operation process of P(3,2). P(3,8) is a black pixel without noise, and P(3,2) is a black
pixel with noise. Similarly, when “noisy pattern read in” starts, voltage level of P(3,2) is
between 0.9 and 2.1V. That means P(3,2) is a gray pixel in this timing. After recognition
period, this pixel is pulled over 2.1V, and that shows it is recover to a pure black pixel.

Similarly, P(3,8) is pulled over 2.1V too, and it is recognized.

X24(V) ] ~ _ : &
1.41
1.2
1
0.8
0.6 recognition
: learning period period
i | M
0.4] |¢
| < > |4
0.2 & transfer transfer transfer
T pattern pattern pattern noisy
patterm pattern
] learning readin
; 0 1u 2u 3u 4u 5u time(s)

Fig. 3.10 Recognizing process of the white pixel without noise P(2,4) (Hspice)
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Fig. 3.11 Recognizing process of the white pixel with noise P(2,2) (Hspice)
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Fig. 3.12 Recognizing process of the black pixel without noise P(3,8) (Hspice)
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Fig. 3.13 Recognizing process of the black pixel with noise P(3,2) (Hspice)
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CHAPTER 4
LAYOUT DESCRIPTIONS AND EXPERIMENTAL
RESULTS

4.1 Layout and Experimental Environment Setup
Fig. 4.1 and Fig. 4.2 show the layout of the chip. Fig. 4.1 shows the layout of one cell and two
ratio memories. The central part of Fig. 4.1 is cell, and the left side and right side of Fig. 4.1
are ratio memories. The area of one cell and two RM is 400x250 um?. Fig. 4.2 shows the
whole chip layout. In Fig. 4.2, the TSMC standard pads which include ESD device, pre-driver
and post-driver are used. The die area is 4.56x3.49 mm?. Fig. 4.3 is the package diagram, and
the package is 84 pins LCC84. The die photo is shown as Fig. 4.4. Table 4.1 shows the
summary of performance. That performance is compared with RMCNN with elapsed
operation[18]. The RMCNN w/o EO is compared with the RMCNN with elapsed operation.
The area per pixel of RMCNN w/o EO is smaller than the RMCNN with elapsed operation,
but the whole chip area of RMCNN w/o EO is larger. Because the large TSMC standard pad
is adapted in RMCNN w/o EO, the whole chip area is larger even if the area per pixel is
smaller.

The environment of measurement is shown as Fig. 4.5. The controlling signals and some
input signals are generated by the pattern generator of HP/Agilent 16702A. The clock in the
pattern generator is 12.5MHz and the signal rising (falling) time is about 4.5ns. Output

waveform is shown on the oscilloscope TDK 3054B. The power supply is 3V.
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Fig. 4.3 The package diagram
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Fig. 4.4 The die photo of 9x9 RMCNN without elapsed period
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Table 4.1 the summary of the RMCNN w/o EO compared with RMCNN with elapsed

operation

RMCNN with EO RMCNN w/o EO
Technology 0.1.35 pHm .1P4M 0.3.’5um 2.P4M

Mixed-Signal Process Mixed-Signal Process
Resolution 9x9 Cells 9x9 Cells
No. of RM blocks 144 RMs 144 RMs
1 Pixels 1 cell + 2 RMs 1 cell + 2 RMs
Single pixel area 350 um x 350 pm 400 um x 250um
CNN array size (include pads) 3800 pum x 3900 um 4560 um x 3900 um
Power supply 3V 3V
Total quiescent power dissipation 120 mW 87Tmw
Minimum readout time of a pixel 1pus 100ns
Elapsed operation Require Not require

HP/Agilent
N 16702A

Controlling bus
// 18 bit

TDK 3054B

Fig. 4.5 The environment of measurement
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This circuit is controlled by many controlling signals. Fig. 4.6 shows the timing
relationship of these controlling signals. The circuit figures in chapter 2 explained how these
controlling signals control the circuit. The signals clkl and clk2 determine the architecture of
the circuit. If clkl is high, the architecture of the circuit is learning architecture which is
shown as Fig. 2.4. If clk2 is high, the architecture of the circuit is recognition architecture
which is shown as Fig. 2.6. Thus the signals clkl and clk2 can’t be high at the same time.
Otherwise the circuit can’t operate correctly.

In Fig. 4.6, the learning period is marked in the timing that clkl is high. Similarly,
recognition period is marked in the timing that clk2 is high. Signal R is used to reset the
output of some sub-circuits in the circuit. The DFF is used to drive the negative edge trigger
D-flip-flop in Fig. 2.22. The signals newp and pin appear in Fig. 2.22. When the newp is low,
the connection between shift registers is cut off. Then the data in shift registers won’t be
changed by the glitch on signal DFF. When newp is high, the shift registers can transfer the
learning patterns. Thus the signal DFF oscillates only when newp is high. Signal pin let the
pattern stored in shift register input into cells. After learning period, the ratio weights are
generated in the timing “Ratio weight generating”. In this timing, the signals Cou_L and
Cou_G which appear in Fig. 2.18 and 2.19 oscillate four times to change the output of
Counter_L and Counter_G from “00” to “11” sequentially. Then the paths of Sw_a~Sw_f
and S_enl1~S_en6 turn on one by one and the ratio weight will be generated. After the timing
“Ratio weight generating”, the signals noi and pin which appear in Fig. 2.23 become high to
input the noisy pattern into cells. Then the circuit starts recognition period to recover the

noisy pattern. Table 4.1 shows the function and usage of the all controlling signals.
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Fig. 4.6 The control-timing diagram in the measurement of the 9x9 RMCNN with r = 1.

Table 4.1 The function of every controlling signal

Control signal Usage
High : learning period starts
clkl Low : learning period stops
High : reset the circuit
R
Low : don’t reset
DEF Drive the shift registers (negative trigger D-flip-flop) used to
store the learning patterns.
High : the shift register can transfer the learning patterns
newp Low : the shift register can’t transfer the learning patterns
) High : the pattern stored in shift registers input to the cells.
pin Low : the path between shift registers and cells is cut off
Cou_L Drive every local counter in every cell
Cou_G Drive the global counter
High : recognition period start
clk Low : recognition period stop
) High : the pattern in shift registers becomes noisy
not Low : isolate the noise and innocent pattern in shift register
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4.2 Experimental Result

The output stage is described in chapter 2 and Fig. 2.20. Only one pad is used to output
the state of every cell. Thus the 81 pixels are read out sequentially.

Before pattern recognition, the learning function is checked first. That verification of
learning function checks if the learning patterns are sent into the shift register exactly and the
patterns stored in shift registers input to every cell correctly. The pattern is read out directly
after the pattern is inputted into the circuit. Fig. 4.7~Fig. 4.9 is the verified result of learning
function. Fig. 4.7 shows the learning pattern ”—  in the shift registers. Fig. 4.8 shows the
learning pattern 7~ ” and Fig. 4.9 shows the learning pattern """ in the shift registers. In Fig.
4.7~Fig. 4.9, “Ch 2” is the output data of the chip and “Ch 3” is the LSB of the decoder which
controls the switches Swcii~Swegg in Fig. 2.20. “Ch 1” is a trigger signal, and it is
meaningless in this measurement. Each row is read out sequentially. The first row is read out
first, and then the second row is following. Each row is marked in Fig. 4.7~Fig. 4.9. The
output waveform of “Ch 2” in Fig. 4.7~Fig.4.9 can be cut off and recombined to form a new
pattern that is more easily discerned. Fig. 4.10~Fig. 4.12 show these recombined output
waveform. Left sides of Fig. 4.10~Fig. 4.12 is the pattern that supposed to be learned, and
right side is the recombined output waveform. In Fig. 4.7~Fig. 4.12, the output of black pixel
Is about 1.5V, and the output of white pixel is about 0.2V.

It is obvious that all of the learning patterns are inputted exactly into the circuit, and the
shift register indeed work well. But the measurement of recognition function isn’t so
successful. Fig. 4.13 is the recognition result of pattern ““” without noise, and Fig. 4.14
shows the recombined output waveform of Fig. 4.13. It is obvious that some pixels in row 4
and row5 are not pulled up enough. That means these pixels are not recover to pure black of
pure white color. The colors of these pixels are just gray. Though the recognition of innocent
pattern “[Y” isn’t successful, however the recognition result of patterns “— ” and “~ ”” without
noise are very successful. Fig. 4.15 and Fig. 4.16 are the measurement result of recognition of
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Fig. 4.11 The recombined waveform of the verification of learning function (“= )
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Fig. 4.13 Experimental recognizing result of the clear pattern “=
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Fig. 4.14 The recombined waveform of the experimental recognizing result of the clear
pattern “z ”
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Fig. 4.15 Experimental recognizing result of the clear pattern “- ”
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Fig. 4.16 Experimental recognizing result of the clear pattern “= ”

The recognition result of noisy pattern with noise level 0.5 is shown as Fig 4.17 and Fig
4.18. Fig. 4.17 is the recognition result of pattern “~ ", and Fig. 4.18 is the recognition result
of pattern “= . Both the two noisy pattern is unrecognized. The noisy pattern with noise level

0.5 is unrecognized in simulation result too.
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Fig. 4.17 Experimental recognizing result of the noisy pattern “—  with noise level 0.5
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Fig. 4.18 Experimental recognizing result of the noisy pattern “=  with noise level 0.5
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4.3 Cause of the Imperfect Experimental Result
The cause of the unsuccessful recognition is found in this thesis. Table 4.2 shows the

absolute-weight of cell(4,4) which is recognized unsuccessfully. Three simulation conditions

are in Table 4.2. The absolute-weight ss,, is simulated by Matlab, and that is a ideal weight.
The absolute-weight ss;, is simulated by Hspice in typical-typical corner condition. The
absolute-weight ss;” is simulated by Hspice in fast-slow corner condition. The

absolute-weights ss,, and ss;; are strange. The absolute-weights in practical circuit is

stored on the capacitor Cw in Fig. 2.4. The Hspice simulation result shows the charging and
discharging currents are unbalanced. It is described in chapter 2 that the ratio weights are
generated according to the absolute mean of absolute-weight. Table 4.3 shows the generated

ratio weights according to the absolute-weights in Table 4.2. Because of the wrong

absolute-weights ss,, and ss,, , the absolute means of the two absolute-weights are wrong
too. Though the mean of ss,, is wrong, there is still only one weight that is larger than the
mean of ss,, . Thus the ratio weight of ss,, is the same with the ratio weight of ss;; , and

these two ratio weights are correct. But the mean of ss;,’ is too wrong to get a correct ratio
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weights. There are three weights in ss;; larger than the mean of ss;, , so the generated

ratio weight of ss;° is completely wrong. The wrong ratio weight results the wrong

recognition. The cause of the wrong absolute-weights is shown as blow.

Chapter 2 explained the learning structure and the all detailed sub-circuits. Fig. 4.19 is
the learning structure. The block W charges or discharges the capacitor Cw according to the
input of two neighboring cells, and the charging current direction is controlled by the XOR
gate in Fig. 4.20. Fig. 4.20 is a part of Fig. 2.10. The two inputs of XOR gate are the signs of
two neighboring cells. Fig. 4.21 shows that one of the two inputs of XOR is connected to the
Vin of T2.

When a pattern is learned, the shift registers need to transfer the new pattern. The pattern
transferring takes a little time, and the MOS M26 in Fig. 2.8 is turned on in this timing. The
MOS M26 in Fig. 2.8 is turned on and let the current |_charge in Fig. 4.19 become very small.
However, this small current still influences the absolute-weights on Cw, and Fig 4.22 shows
the small current in the pattern transferring time. Note that there is small current in the pattern
transferring time. Because M26 in Fig. 2.8 is turned on in the pattern transferring time, one
input of the XOR gate would be Vref(1.5V). Because one input of the XOR gate is connected
with 1.5V, the output of XOR is unpredictable. Thus the influence of the small current in the
pattern transferring timing is out of control, and the absolute-weights are affected by the small
current.

The modified circuit is shown as Fig. 4.23. A new path connected with a dummy load is
inserted. The path turns on when patterns is transferring, and then the small current in the
pattern transferring timing doesn’t influence the absolute-weights. Fig 4.24 is the simulation
result of modified T2D, and it shows the modified design of T2D doesn’t contribute a small
current to Cw. One pixel model with modified T2D is simulated too, and the modified design

can indeed recognize the noisy pixel.
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Table 4.2 The absolute weight of cell(4,4) in three simulation condition

Simulation condition Absolute-weight of cell(4,4)
0 033 0
Matlab (ideal) s = 033 0 033
0 1 0

0 -015 0 |

Hspice (TT) 5517 = 028 0 0.28

0 0.78 0 |

0 0116 0 |

Hspice (FS) 5575 = 041 0 041

0 07 0

Table 4.3 The absolute mean and generated ratio weights of cell(4,4) in three simulation

condition
Simul_a?ion Absolute-weight of cell(4,4) | Mean Ratio weights of cell(4,4)
condition

0 033 0] 0O 0 O
Matlab | (w_[033 0 033 | o5 |, [0 0 0
0 1 0| 0 1 0
0 015 0 | (0 0 O
Hspice (TT) | (e 028 0 02| jos7s| , _|0 0 O
| 0 078 0 0 1 0
0 0116 O | 0 0 O

Hspice (FS) | (s _ 041 0 041| | 0.409 A =033 0 033
“lo 07 o 0 03 0
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Fig. 4.19 The absolute-weights learning structure
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Fig. 4.25 Simulation result of one cell model 1) the original design 2) the modified design
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CHAPTER 5
CONCLUSION AND FUTURE WORK

5.1 Conclusion

A new circuit of RMCNN w/o EO is implemented. The new circuit has the same
recognition rate with RMCNN with elapsed operation, but the operation of RMCNN w/o EO
Is simpler.

The new RMCNN w/o EO doesn’t need a elapsed period to get the feature enhanced
ratio weights. The RMCNN w/o EO can generate the feature enhance ratio weights directly
after pattern learning, and it has a good recognition rate that is the same with RMCNN with
elapsed operation. Though the operation of the RMCNN w/o EO is simpler, the circuit of
RMCNN w/o EO isn’t complicated. The RMCNN w/o EO doesn’t need the multi-divider
(M/D)[18] in the RMCNN with elapsed operation. Thus the transistors count of RMCNN w/o
EO is less than the RMCNN with elapsed operation. Besides, there is a division behavior in
RMCNN w/o EO, but there isn’t any divider in the circuit. Thus the hardware of RMCNN w/o
EO is simple.

The number of the learning patterns of RMCNN w/o EO is 3. They are Chinese
characteristic one , two and four (-, = and = ). Maximum standard deviation of normal
distribution noise is about 0.3. The number of learning patterns that RMCNN w/o EO can
remember is still few. To increase the number of learning patterns that can be remembered, we
should modify the learning algorithm or the recognizing algorithm continuously in the future.

In the experimental result, some vertical lines of pattern “w ” are unrecognized. The
recognition results of patterns “~ ” and “= " are successful and all lines in pattern “- ” and
“= " are horizontal. That doesn’t mean the recognition rate of horizontal lines is better than

vertical lines. The failure of recognition result dues to the ratio weights around one pixel and
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the inputs of neighborhood pixels. If the ratio weights around one pixel are wrong, the
recognition fails even that pixel is on horizontal line. Thus the failure of recognition will
appear in other patterns like “7 ” if the wrong ratio weights are generated. Fig. 5.1 shows

some examples that recognizing failure may happen and not all of the failure examples are

vertical lines.
Input of . . E
th: cells . . . . . . . .
B []
The A 0 0.33 0 0.33
template of |0.33 0.33] 10.33 0| ]0.33 0.33] |0.33 0.33
ratio weight 0.33 0.33 0.33 0

Fig. 5.1 Examples of Recognizing failure

5.2 Future Works
The RMCNN w/o EO in this thesis can’t recognize all of the three patterns. The cause is
found and the circuit is also redesigned in this thesis. Simulation supported that the modified
design can really recognized all of the three patterns. Thus the RMCNN w/o EO should be
taped out again. To reduce the chip area, the routing of RMCNN w/o EO should be modified
too.
There are some modifying methods for the next chip are proposed in this thesis
1. The capacitance value should be optimized in the future. The operating speed of
RMCNN w/o EO should be decided and the capacitance value of Cw and the
saturated output current of T2D lysat can be chosen according to the operating speed
of RMCNN w/o EO.
2. The routing of layout can be more effective and save die area and the smaller die area
has less process variation.
3. The static D-flip-flop should be used instead of dynamic D-flip-flop.
4. The modified output stage can be used to save power consumption.
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