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摘  要 

 

在不對等接收與傳送速率的系統中，並使用一減低複雜度的架構下，

我們提出一些有效的可適性訊號處理演算法以減低因重新取樣後而

增加的運算量。使用這個減低複雜度架構的 LMS 演算法已經在[1]中

被討論過。而在這篇論文中我們將會分析其收斂行為。另外一方面，

當使用不理想的重新取樣濾波器而衍生出來的實際問題也會在這篇

論文中討論。最後，我們將會使用模擬的結果來描述所討論的問題以

及驗證這些演算法的效能。 
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ABSTRACT 

 

Based on a reduced-complexity structure for mismatched rate adaptive 

signal processing, we present several efficient adaptive algorithms to 

reduce the computation cost due to the increasing amount of data after the 

re-sampling block. LMS algorithm using this reduced-complexity 

structure has been investigated in [1] and we shall give an analysis of its 

convergence behavior. On the other hand, practical issues such as 

problems introduced by imperfect re-sampling blocks will also be 

discussed. Furthermore, simulation results will be shown to verify the 

performance of the algorithms and illustrate our problems in discussion. 
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Chapter1 Introduction 

Adaptive linear filters have been successfully used in areas such as modeling of 

unknown systems, linear prediction, adaptive noise canceling, channel equalization 

systems with high-speed digital communication, echo cancellation, and in many other 

applications. Applying these adaptive signal processing algorithms to systems with 

identical transmit rate, say, R_tx samples per sec, and receive rate, say, R_rx samples 

per sec, is straight forward. However, if a system is with unequal transmit and receive 

rate, there must exist a rate matching function that accommodates the receiving signal 

to the filtered signal operating under the same rate for correct data processing. Such 

mismatched transmit and receive rate scheme can be seen, for example, the echo 

cancellation filter in the recent applications such as ADSL and VDSL systems. Figure 

1.1 shows the conventional rate matching block diagram. 

 

Figure.1.1 Conventional rate matching structure. R_rx≠R_tx. 

 

There are two situations, one is the higher transmission rate than the receive rate, and 

Re-sampling 
block 

Adaptive  
filter 

Wide band signal 
+ 

Narrow band signal R_rx
Narrow / Wide band 

signal 

Wide / Narrow band R_tx

signal 

 1



the other is the reverse. For the former, conventional configuration using algorithms 

such as sub-band adaptive filtering or simply down-sampling the transmitted signal 

can handle that well. Here, we will not consider that further. But for the latter ( R_rx 

> R_tx ), the adaptive filter must operate at a higher receive rate which results in an 

inefficient design. Such configuration shown in figure 1.1 with higher receive rate 

will increase the length of the filter proportional to R_rx/R_tx and then will quadratic 

increase the computation complexity of the following adaptive signal processing. For 

a long system path such as acoustic echo in telephone communication system, such 

increasing may be inhibited. 

Alper et al. [1] have proposed an alternative structure shown in Figure 1.2. 

 

Figure 1.2 Reduced complexity rate matching structure. R_rx > R_tx. 

 

The configuration reverses the order of the re-sampling block and the filter in the 

conventional structure. In this structure, the adaptive filter is able to operate at the 

lower transmit rate and thus yields a more efficient design. 

Re-sampling 
block 

Adaptive  
filter 

R_txNarrow band signal 

Wide band signal 
Wide band signal + 

R_rx
Narrow band signal 
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1.1: Definition of the mismatched ratio 

Consider echo cancellation in ADSL system. In this system, the demanding 

downstream bandwidth is typically a multiple of the bandwidth of the upstream. 

Particularly, it allows the downstream band to overlap with the upstream band. 

Suppose the upstream signal is band-limited within f1 and is sampled at a frequency fs1 

that is at least larger than twice of f1 to avoid samples aliasing. The downstream signal 

is band-limited within f2 and is sampled a frequency fs2 which is also a value twice 

more than f2. Then the mismatched ratio is defined as 

Mismatched ratio: s2

s1

fM
f

= =
R_rx
R_tx

     (1.1) 

For example, suppose the transmit signal and the receive signal are both over-sampled 

twice, and the upstream and downstream bandwidths are 256 KHz and 1 MHz, 

respectively, then M = 4. 

 

In this paper, we will consider R_rx is an integer multiple of R_tx. Based on the 

mismatched rate scheme, we will consider the LMS (Least Mean Square) and the RLS 

(Recursive Least Square) algorithms in chapter 2. We will also give a convergence 

analysis of the reduced complexity mismatched rate LMS in chapter 3. Some 

performance effects introduced by non-ideal re-sampling blocks will be discussed in 

chapter 4. In chapter 5, simulation will be shown to verify the performance of the 

algorithms and illustrate our problems in discussion. We conclude this paper in 

chapter 6. 

Finally, small capital symbol in bold face denotes a vector, and capital symbol in bold 

face denotes a matrix in this paper. Transposition of a vector/matrix is denoted as {.}T. 

Dimension of a symbol will denote beside with lower case if necessary. 
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Chapter2 Matched and Mismatched Rate Adaptive Algorithms 

Here two popular adaptive algorithms will present, one is LMS, and the other is RLS. 

In this chapter, we will show how the reduced complexity mismatched rate LMS and 

RLS is derived. We will first introduce the necessary derivations of conventional LMS 

and RLS in matched rate environment. The mismatched-rate LMS and RLS with 

reduced complexity will use their analogies. 

2.1: Matched rate adaptive algorithms 

2.1.1: General descriptions 

( )0w n ( )1w n ( )K 1w n−

( )x n K 1− +( )x n 1−( )x n

( )d n

( )y n

( )e n
−

. . .

 

Figure 2.1 A K-tap transversal adaptive filter 

 

In Figure 2.1, d(n) is the desired signal generated by a system we are going to identify. 
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d(n) can be viewed as a linear combination of the last K samples of the input signal, 

corrupted by independent zero-mean plant noise v(n). Our aim in this application is to 

estimate an unknown plant through minimization of the output error e(n) in the mean 

square sense. For purposes of analysis, we consider the plant to be a transversal FIR 

filter. 

Referring to Figure 2.1, the input signal vector at the nth sampling instant is denoted 

by 

( ) ( ) ( )  
T

n x n , ... ,x n K 1⎡ ⎤= − +⎣ ⎦x ,                (2.1)   

and the set of weights of the adaptive transversal filter is denoted by 

( ) ( ) ( )  
T

0 K 1n w n , ... ,w n−⎡ ⎤= ⎣ ⎦w .     (2.2) 

The nth output sample is 

( ) ( ) ( ) ( ) ( ) ( ) ( )
K 1

i
i 0

y n w n x n i n n n n .
−

=

= − = =∑ T Tw x x w   (2.3) 

The input signal vector and the desired response are assumed to be wide-sense 

stationary. Denoting the desired signal as d(n), the error at the nth time is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )e n d n y n d n n n d n n n= − = − = −T Tw x x w .  (2.4) 

The square of this error is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2e n d n 2d n n n n n n= − +T T Tx w w x x w n .  (2.5) 

The mean square error (MSE), ξ , defined as the expected value of , is ( )2e n

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

   = 

   = 

2

2

2

E e n

E d n 2E d n n n n E n n n

E d n 2 n n n ,

ξ ⎡ ⎤≡ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ − +⎣ ⎦

T T T

T T

x w w x x w

p w w Rw

 (2.6) 

where the cross-correlation vector between the input signal and the desired response is 

defined as 

( ) ( )E d n n⎡ ⎤ ≡⎣
Tx ⎦ p ,      (2.7) 
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and the input autocorrelation matrix  is defined as R

( ) ( )E n n⎡ ⎤ ≡ =⎣ ⎦
Tx x R R .T      (2.8) 

2.1.2: Wiener filter 

The minimum minξ  of ξ  can be obtained by differentiating ξ  with respect to 

( time index is omitted for clarity ). It can be written in vector gradient form: w

  ... 
0 1 K 1w w w
ξ ξ ξξ

−

⎡ ⎤∂ ∂ ∂
∇ = ⎢ ⎥∂ ∂ ∂⎣ ⎦

T

      (2.9) 

where  denotes the gradient operator. ∇

By applying matrix differentiations listed in appendix, the gradient vector can be 

written as: 

( ){ } ( ) ( )
( )                                   

2E d n

.

ξ ⎡ ⎤∇ = ∇ − = ∇ − +∇⎣ ⎦

= − +

T T T T

T

2w p + w Rw 2w p w Rw

2p R + R w
  (2.10) 

Since  is symmetric, (2.10) can be written as: R

ξ∇ = 2Rw - 2p .      (2.11) 

By setting the gradient to zero, we can obtain the well-known Wiener-Hopf equation: 

=oRw p  ,       (2.12) 

where 

= = -1
0w w R p       (2.13) 

is the optimal weight vector known as the Wiener filter tap vector or the Wiener 

solution. 

Replacing  by  and  by p in (2.6), we obtain ( )nw ow oRw

( )
( )

= 

     = 

2
min

2

E d n

E d n .

ξ ⎡ ⎤ −⎣ ⎦
⎡ ⎤ −⎣ ⎦

T
o

T
o o

w p

w Rw
     (2.14) 
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This is the minimum mean-square error that can be achieved by the transversal 

Wiener filter and is obtained when its tap weights are chosen according to the 

optimum solution given by (2.13). 

 

Recall (2.6), the MSE ξ  can be rearranged as follows: 

( ) ( ) ( ) ( ) ( ) 2n n n n E d nξ ⎡ ⎤= − − + ⎣ ⎦
T T Tw Rw p w w p . 

We substitute p with (2.12) and reform the above equation with additional term 

, we obtain T
ow Rwo

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )

 

  

2

2

n n n n n E d n

n n E d n .

ξ ⎡ ⎤= − − + + −⎣ ⎦

⎡ ⎤= − − + −⎣ ⎦

T T T T T
o o o o o o

T T
o o o o

w Rw w R w w Rw w Rw w Rw

w w R w w w Rw

T

 

Substitute the right most two terms of the above equation with (2.14), we get

( )( ) ( )( )min n nξ ξ= + − −
T

ow w R w wo  .   (2.15)

We will use (2.15) to study the MSE convergence behavior in chapter 3.

2.1.3: Steepest-Descent algorithm 

Directly find out the Wiener solution of  is not practical. Instead of solving (2.12), 

the steepest-descent algorithm provides a general scheme that iteratively searches for 

the minimum point of any convex function. By starting with an initial guess of , 

the general iterative update procedure is: 

w

w

( ) ( )n 1 n µ ξ+ = − ∇w w         (2.16) 

where µ  is a positive scalar step-size, and ξ  is the function whose minimum is the 

goal we are searching for. 

Substitute (2.11) into (2.16), we derive the steepest-descent update equation: 
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( ) ( ) ( )( )n 1 n 2 nµ+ = − −w w Rw p .    (2.17) 

The reason why we outline the steepest-descent method here is because one of the 

important issues in this paper: LMS convergence behavior, will take advantage of its 

exact description of the stochastic learning curve. 

2.1.4: LMS 

LMS is a robust algorithm that is notified by its simplicity of computation and 

performance of tracking ability. Conventional LMS algorithm is a stochastic 

implementation of the steepest-descent method. It simply replaces the cost function 

( )2E e nξ ⎡= ⎣ ⎤⎦  by its instantaneous coarse estimate ( )2e n  in (2.16): 

( ) ( ) ( )2n 1 n e nµ+ = − ∇w w .      (2.18) 

Noting that the gradient differentiates respect to , the last term can be written as: w

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )2e n 2e n e n 2e n d n n n 2e n n∇ = ∇ = ∇ − = −Tw x x .  (2.19) 

Substitute (2.19) into (2.18), the LMS recursive update equation can be written as: 

( ) ( ) ( ) ( )n 1 n 2 e n nµ+ = +w w x .     (2.20) 
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2.1.5: RLS 

On the goal to obtain the optimum solution, the method of least squares provides a 

different point of view whose method is primarily based on a deterministic framework, 

while the LMS provides a statistical framework. In the method of least-squares, at any 

time instant n > 0, the adaptive filter parameters are calculated so that the cost 

function 

( ) ( ) ( )
n

2
n n

k 1
n k eζ λ

=

=∑ k       (2.21) 

is minimized. 

As RLS is named, it recursively update the adaptive filter tap-weights with feedback 

estimation error  and the gain vector ( )n 1ê n− ( )nk  in the form: 

( ) ( ) ( ) ( )n 1ˆ ˆ ˆn n 1 n e −= − +w w k n .       (2.22) 

The following contents of this sub section will give a brief demonstration of how the 

update equation holds. 

Rewrite (2.21) in matrix form: 

( ) ( ) ( ) ( )n n nζ = Te Λ e n

⎤⎦

,     (2.23) 

where 

( ) ( ) ( ) ( )   n n nn e 1 e 2 e n⎡= ⎣
T

e L  is a collection of errors, (2.24) 

and  

( )    1 ,  is the forgetting factor.n-1 n-2n diag 0 1,λ λ λ⎡ ⎤= < <⎣ ⎦Λ L   

There is a corresponding filtered signal y(n) for the desired response d(n) to obtain a 

specified residue error in the relation of 

   ( ) ( ) ( ) ( ) ( ) ( )  i ne n d i y i d i n i , i 1 ~ n= − = − =Tw x .  (2.25) 
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The corresponding desired response vector 

      ( ) ( ) ( ) ( )   n d 1 d 2 d n⎡ ⎤= ⎣ ⎦
T

d L     (2.26) 

and the corresponding filtered signal vector 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

   n n nn y 1 y 2 y n
ˆ ˆn n n n

⎡ ⎤= ⎣ ⎦
≡ =

T

T T

y

w X X w

L
    (2.27) 

where 

( ) ( ) ( ) ( )   ˆ n 1 2 n⎡ ⎤≡ ⎣ ⎦X x x xL     (2.28) 

is the observed input data matrix. 

The cost function shown in (2.23) can now be written as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n 2 n n n nζ = − +T T T
λ λd Λ d θ w w Ψ w n ,  (2.29) 

where the cross correlation with the desired signal vector 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

         

         

ˆn n n n

n d n n 1 d n 1

n 1 n d n

λ

λ

=

= + − −

= − +

λ

λ

θ X Λ d

x x

θ x

L+     (2.30) 

and the correlation matrix 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
          

          

ˆ ˆn n n n

n n n 1 n 1

n 1 n n .

λ

λ

=

= + − −

= − +

T
λ

T T

T
λ

Ψ X Λ X

x x x x

Ψ x x

L+    (2.31) 

Differentiate (2.29) with respect to ( )nw  and set the resulting gradient equation to 

zero, we can write down the normal equation for a linear least-squares filter: 

( ) ( ) ( )ˆn n n=λΨ w θλ       (2.32) 

where  is the estimate of filter tap-weight in the least-squares sense. ( )ˆ nw

It follows the least-squares solution: 
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( )        

ˆ n n n

n n 1 n n d nλ

=

= − +

-1
λ λ

-1 -1
λ λ λ

w Ψ θ

Ψ θ Ψ x .
  (2.33) 

Substitute (2.33) into (2.29), the minimum value of ( )nζ  is obtained as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )            

min n n n n n n

ˆn n n n n .

ζ = −

= −

T T -1
λ λ λ

T T
λ

d Λ d θ Ψ θ

d Λ d θ w

n
   (2.34) 

In (2.33), it is clear that if we want to find the optimum solution of ,  

must be solved. 

( )ˆ nw ( )n-1
λΨ

Using (2.31) and the matrix inverse lemma shown in appendix B, we have 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )           

2
1

1

1

n 1 n n n 1
n n 1

1 n n 1 n

n 1 n n n 1 ,

λ
λ

λ

λ

−
−

−

−

− −
− −

+ −

⎡ ⎤≡ − − −⎣ ⎦

-1 T -1
λ λ-1 -1

λ λ T -1
λ

-1 T -1
λ λ

Ψ x x Ψ
Ψ = Ψ

x Ψ x

Ψ k x Ψ
  (2.35) 

where 

( ) ( ) ( )
( ) ( ) ( )

1

1

n 1 n
n

1 n n 1
λ

λ

−

−

−
≡

+ −

-1
λ

T -1
λ

Ψ x
k

x Ψ x n
.    (2.36) 

Write (2.36) out, we have 

( ) ( ) ( ) ( ) ( ) ( )1n n 1 n n n 1λ− ⎡ ⎤= − − −⎣ ⎦
-1 T -1
λ λk Ψ k x Ψ x n .   (2.37) 

Substitute (2.35) into (2.37), we obtain 

( ) ( ) ( )n n= -1
λk Ψ x n .      (2.38) 

Rewrite (2.33) with (2.38), we have 

( ) ( ) ( ) ( ) ( )ˆ n n n 1 n dλ= − +-1
λ λw Ψ θ k n .    (2.39) 

Now replace ( )n-1
λΨ  with the recursion derived in (2.35), we get 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

        

        

        n 1

ˆ n n 1 n 1 n n n 1 n 1 n d

ˆ ˆn 1 n n n 1 n d n

ˆ ˆn 1 n d n n n 1

ˆ n 1 n e n .−

= − − + − − +

= − − − +

= − + − −

≡ − +

-1 T -1
λ λ λ λ

T

T

w Ψ θ k x Ψ θ k

w k x w k

w k x w

w k

)n

(2.40) 

Here the estimation error  is defined as: ( )n 1e n−

( ) ( ) ( ) ( )n 1 ˆe n d n n n 1− = − −Tx w , determined by past weights and current input. (2.41) 

In summary, the standard RLS update procedures is as follows: 

1. Update the gain vector: (2.36) 

( ) ( ) ( )
( ) ( )

( ) ( )

n n 1

denk n n ,

n
n .

denk

λ

= −

= +

=

-1
λ

T

u Ψ x

x u

u
k

n ,

 

2. Update the estimation error ( )n 1e n− : (2.41) 

( ) ( ) ( ) ( )n 1 ˆe n d n n n 1− = − −Tx w . 

3. Update the tap weights : (2.40) ( )ˆ nw

( ) ( ) ( ) ( )n 1ˆ ˆn n 1 n e −= − +w w k n . 

4. Update : (2.35) ( )n-1
λΨ

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ }           

1

1

n n 1 n n n

Tri n 1 n n

λ

λ

−

−

1⎡ ⎤= − − −⎣ ⎦

⎡ ⎤= − −⎣ ⎦

-1 -1 T -1
λ λ λ

-1 T
λ

Ψ Ψ k x Ψ

Ψ k u
. 

The last equation has two purposes. One is to save the computation and the other 

is to stabilize the RLS convergence in implementation. Tri{} is the operator that 

extracting the lower or upper part of the operating matrix and copies them to the 

either side except the diagonal. 
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2.2: Mismatched-rate adaptive algorithms with reduced complexity 

y0

y1

M

I.F

x

y

M

e

ep adaptive filter

d

D.F

 

Figure 2.2 Reduced complexity adaptive filter. 

 

The most significant difference between the matched rate and the mismatched rate 

system is that the number of the received desired signal samples in the mismatched 

rate system is M (or even larger) times more than that in the matched rate system. To 

cooperate with the characteristics of the received signal d, the identifying filtered 

signal y must be designed, at least, to match d in number. On the other hand, the 

reduced complexity structure is meaningfully proposed because the structure is using 

conventional adaptive algorithms even though it is in an environment that gives an 

increasing amount of data. In figure 2.2, the reduced complexity structure shows its 

clever collaboration. “IF” and “DF” denote the interpolation filter and the decimation 

filter respectively. The structure uses up-sample block to treat the filter output to 

match the number of received signal, and uses down-sample block to treat the filter 

input to maintain the low complexity. Notice that if extra wide band noise was added 
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such that the signal d is not a narrow band signal, the down-sample block may give a 

mechanism that suppresses the disturbance and makes the filter input less noisy. 

2.2.1: General descriptions 

In order to derive the reduced complexity adaptive filter update rule, we now write 

each necessary component out. Starts from the output of the adaptive filter , all 

necessary components following the arrow direction in figure 2.2 will be shown step 

by step. The operating function of each component will be also described in detail. 

0y

Let NI and ND denote the order of the interpolation and the decimation filter. We start 

from , a simply K-tap linear transversal filter output: 0y

( ) ( ) ( ) ( ) ( ) ( ) ( )
K 1

0 i
i 0

y n w n x n i n n n n .
−

=

= − = =∑ T Tw x x w   (2.42) 

In the initial state, the reduced complexity adaptive filter starts to train until it collects 

L filtered outputs, where L is a number we will show later. In other words, the filter 

starts to train when n = L, and at the same time, ( ) ( )0 0y 1 , , y LL  have already 

collected. Reform the filtered outputs into a vector form 

( )
( )

( )

( ) ( )

( ) ( )

( ) ( )

           
                                  

         

K 1

i
0 i 0

K 1
0

i
i 0

w n x n iy n
n

y n L 1 w n x n L 1 i

n n ,

−

=

−

=

⎡ ⎤
−⎢ ⎥⎡ ⎤

⎢ ⎥⎢ ⎥
= = ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥− + ⎢ ⎥⎣ ⎦ − + −
⎢ ⎥⎣ ⎦

≡

∑

∑
0y

X w

M M
  (2.43) 

where the input data are organized in a Hankel matrix form as 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) (

                                

                            
                                                          

                

L K

x n x n 1 x n K 1

x n 1 x n 2 x n K
n

)x n L 1 x n L x n L K 2

×

⎡ ⎤− −
⎢ ⎥

− − −⎢ ⎥≡ ⎢
⎢
⎢ − + − − − +⎣ ⎦

X

L

L

M M M M

L

⎥
⎥
⎥

+

.  (2.44) 
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From (2.44), we can see that the adaptive filter pays L+K-1 latencies before starting 

to train. 

Passing y0(n) through an M times zero insertion up-sampler, we write the resulting 

vector y1(n) in matrix form: 

( ) ( ) ( ) ( )  n n n≡ =1 0y Ω y Ω X w n ,

M

     (2.45) 

where  is a zero insertion matrix. For example, if M = 2,  can be written as Ω Ω

1 0 0                 0
0 0 0                 0
0 1 0                 0
0 0 0                 0
                            

0 0 0           0 1 0
0 0 0           0 0 0

 0 0 0           

J L× =Ω

L

L

L

L

M

L

L

L 0 0 1
0 0 0           0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦L

       

where J = ND+NI+M-2, which is a number designed to fit the following matrix 

operation. 

In view of , we can now determine that L = ceil( J/M ). Ω

Next we determine the signal ( )ny  that passes ( )n1y  through the interpolation 

filter as: 

( ) ( ) ( ) ( )   n n n≡ =1y F y F Ω X w n ,     (2.46) 

where  is the convolution matrix with dimension NF D+M-1 by J. Suppose the 

interpolation filter coefficients are  
I1 Nf fL ,  can be written as: F

                           

                    

                                     
                             

I 1 I

I 1 I

I 1 I

1 2 N N

1 2 N N

1 2 N N

f f f f

f f f f

f f f f

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

F

0

L

L

O O

L

.    (2.47) 
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In (2.46), it shows that there are ND+M-1 samples to match the desired response. 

Actually, only first M samples are needed and the rest of them are not in use at present. 

One may question that if the rest of samples are useless, why do we need to compute 

them? This answer lies in whether we use the decimation filter or not. If we neglect 

the decimation filter, the dimension of ( )ny  is M and no redundant computations 

will be needed. However, in specific application such as echo cancellation in ADSL, 

the downlink high frequency components will exist in the operating band of the 

received signal and is recognized as a disturbance for echo identification (notice that 

we only want the signal generated by the echo path in the received signal for echo 

cancellation). If there is no barrier such as the low pass decimation filter, the feedback 

error will be no longer clean and the performance will consequently decay. 

Return to our discussion, the error vector ( )ne  with dimension ND+M-1 is 

( ) ( ) ( )n n= −e d y n  .        

Suppose the decimation filter coefficients are   
D1g gL N , and one of the first M 

phases, say, phase p, is selected to do the decimation. Then we can write the down 

sampled error ep(n), a scalar, as: 

( ) ( )pe n n= pg e ,      (2.48) 

where the combined effect of decimation filter and the decimator can be written as: 

( ) ( )    
D1 Nzeros p 1 g g zeros M p , 1 p M⎡ ⎤= − − ≤ ≤⎣ ⎦pg L .   (2.49) 

Here “zeros(k)” means there are k zeros line in a row, . k 0≥

Finally, we combine the effects of the up-sample block and the down-sample block 

into a vector , dimension 1 by L: ph

 =p ph g F Ω ,       (2.50) 
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where p is the decimator chosen phase. 

The study of the combined effect  is one of the major topics in this paper. ph

2.2.2: LMS 

The cost function here is . ( )2
pe n

By using (2.46), (2.48) and (2.50), the square of the down sampled error can be 

written as: 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

   

             

           

          

2 22
p

2

2

2

e n n n n

n n

n n n

n n n

n

.

⎡ ⎤ ⎡ ⎤= = −⎣ ⎦ ⎣ ⎦

⎡ ⎤= −⎣ ⎦

⎡ ⎤= −⎣ ⎦

⎡ ⎤= −⎣ ⎦

p p p

p p

p p

T T T T T
p p

g e g d g y

g d g F Ω X w

g d h X w

d g w X h

   (2.51) 

Using the analogies of (2.18), differentiate (2.51) with respect to , we get w

( ) ( ) ( )
( ) ( )           

2
p p p

p

e n 2e n e n

2e n n .

∇ = ∇

= − T
pX hT

     (2.52) 

Substitute (2.52) into (2.18), we have the LMS update rule: 

( ) ( ) ( ) ( )pn 1 n 2 e n nµ+ = + T
pw w X Th .    (2.53) 

Notice that since  is determined once the IF and DF are determined, rather than 

calculating the whole , one may use the shifting property of  such that 

only the latest L data have to be processed during each update. 

ph

( )nph X ( )nX
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2.2.2.1: Simplified version 

Since both the interpolation filter and the decimation filter are low pass filters, the 

combined effect  can be designed to have an impulse response similar to sinc 

function with one dominant coefficient. The simplified version  set the dominant 

coefficient of  one and set the rest of them zeros. Now we can get 

ph

ˆ
ph

ph

( ) ( ) ( ) ( )   ˆ n x n d x n d 1 x n d K 1⎡ ⎤= − − − − − −⎣ ⎦ph X L , 

where d is the index of the largest element of . Then the update rule of LMS can 

be written as 

ph

( ) ( ) ( ) ( )pn 1 n 2 e n n dµ+ = + −w w x .    (2.54) 

Observe (2.54), it is just the same as the conventional LMS update equation in (2.20). 

 

Compared to the original LMS, the simplified version replaces the color factor hp 

with a delta function . Before the original LMS updates, it has to process the input 

data by the combined effect h

 ˆ ph

p. As we shall discuss in chapter 4, the combined effect 

will become a color factor of the input data if the distortion exists within the 

up-sample and down-sample blocks. The simplified version can avoid such color 

effect of the input data and hence the convergence speed will be faster than the 

original LMS in most of the cases.  

Performance comparison between the reduced complexity adaptive algorithm and its 

simplified version will be shown in section 5.1. 
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2.2.3: RLS 

Reduced complexity RLS algorithm is similar to the conventional RLS algorithm by 

simply modifies the input data sequence. In this paper, we call this reduced 

complexity RLS for mismatched rate system by “vector input” RLS. 

Recall (2.44), the Hankel input data matrix can be written as 

( ) ( ) ( ) ( )    
L K

n n n 1 n K
×

⎡ ⎤= − −⎣ ⎦X x x xL 1+ , 

where 

( ) ( ) ( ) ( )    
L 1

n x n x n 1 x n L 1
×

⎡ ⎤= − − +⎣ ⎦
T

x L . 

Then the “vector input” RLS data sequence has the form: 

( ) ( ) ( ) ( )    
1 K

n n n 1 n K 1
×

⎡ ⎤= − −⎣ ⎦p p p ph X h x h x h xL + .   (2.55) 

The difference between the “vector input” RLS and the conventional RLS is that the 

update of the “vector input” RLS data sequence needs to compute ( )nph x , which 

requires L multiplications and L-1 additions, and the conventional RLS needs just a 

shift. The “vector input” RLS is named because it requires a vector ( )nx  with length 

L to compute the latest input data feasible for updating the mismatched rate RLS 

system. 

The “vector input” RLS modifies the conventional RLS by its input from ( )x n  

to ( ) nph x , so the cross correlation vector becomes 

( ) ( ) ( ) ( ) n n 1 n dλ= − + T
λ λ pθ θ X h n ,    (2.56) 

and the correlation matrix becomes 

( ) ( ) ( ) ( ) n n 1 nλ= − + T T
λ λ p pΨ Ψ X h h X n .   (2.57) 
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By simply substitute  in conventional RLS with ( )nx ( )n⎡ ⎤⎣ ⎦
T

ph X , we summarize 

the reduced complexity mismatched rate RLS as follows.  

1. Update the gain vector: 

( ) ( ) ( )
( ) ( )

( ) ( )

n n 1 n

denk n n ,

n
n .

denk

λ

= −

= +

=

-1 T T
λ p

p

u Ψ X h

h X u

u
k

,

 

2.  Update the filtering error ( )pe n : 

( ) ( ) ( )
( ) ( ) ( )

  

 note that  p

n n n

e n n n ,

=

⎡ ⎤= − =⎣ ⎦p p

y F Ω X w

g d y h g F Ω.

n

 

3.  Update the tap weights : ( )nw

( ) ( ) ( ) ( )pn n 1 n e= − +w w k . 

4.  Update : ( )n-1
λΨ

( ) ( ) ( ) ( ){ }1n Tri n 1 n nλ− ⎡ ⎤= − −⎣ ⎦
-1 -1 T
λ λΨ Ψ k u . 

 

RLS simplified version can use the same update methods listed above by replacing 

 by , where  is exactly the same described in section 2.2.2.1. ph ˆ
ph ˆ

ph

Applying conventional RLS into this structure is straight forward, but there are still 

something special we have to take care with, we point them out in the next 

sub-section. 

2.2.3.1: Initialization problems 

Two kinds of initialization scheme we will demonstrate in this paper, one happens in 
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the beginning of the training, and the other may happen in the midway.  

For the initialization in the beginning of training, there are several kinds of popular 

data matrix windowing [2]. Here we will use two of them. One is pre-windowing, and 

the other is covariance windowing. Using the pre-windowing for the data matrix is to 

start the input data sequence from all zero and no latencies are paid. Using covariance 

windowing for the data matrix is to fill the input data sequence with only data and we 

have to pay L-K+1 latencies for full-filling the data matrix. In this paper, we often use 

the covariance windowing. The pre-windowing is used in some special cases such as 

re-initialization problem.  

In the reduced complexity structure, the performance of the pre-windowing version is 

a little worse than the covariance windowing version which pays latencies for 

initializing the sequence with hpX(n). We will see the demonstrations in section 5.2.1. 

 

The initialization problem can apply not only in the beginning of the training, but also 

in the midway. In real time applications, the limited memory size in DSP and the 

power consumption may be big factors for continuous adaptation of RLS. One of the 

straight forward solutions is to stop adaptation for a while and wait until the previous 

computations complete offline. To maintain the performance under this stagnant 

adaptation, the re-initialization is developed for this RLS computation-relaxed case. 

The other application for the RLS re-initialization is the adaptation for time varying 

channels. If the RLS adaptive filter has finished training for a channel before it 

changes, we may periodically modify the existing RLS parameters to fit the current 

channel condition. For such modification, re-initialization may be used to maintain 

the tracking performance. We will not consider this case in our simulation experiment. 

For the computation-relaxed problems, the performance of the transient state 

(convergence) and the steady state (tracking) of the adaptive filter are both under 

 21



challenges due to un-consistent adaptations. We can assert that the performance will 

degradation if the algorithm has no modification for this situation. In section 5.2.2, we 

will demonstrate the re-initialization phenomenon. 

2.3: Remarks 

The adaptive filters demonstrated in section 2.2 are all designed based on minimizing 

 no matter in its statistical property or in exact value. Because of the filter 

inputs h

( )2
pe n

pX(n) and are all operating in a lower rate, it is natural to see that the 

complexity of the mismatched rate system adaptation is similar to that of the 

conventional adaptive algorithm. Table 2.1 shows the number of multiplications at 

each update iteration applying different architectures for these algorithms. 

( )  2
pe n

 

 LMS Simplified LMS RLS 

Reduced complexity 

structure. Fig.1.2 

(L+1)(K+ND+M) (L+1)(K+ND+M)-L 2K2+(L+2)K 

+(L+1)(ND+M-1)+L

Conventional 

structure. Fig.1.1 

~M2 times more 

than the above. 

“ ~M2 times more than 

the above. 

Table 2.1:  Number of multiplications in update equations. 

 

At last, the performance comparison between LMS and RLS by inputting the same 

sequence (input data and desired responses) will also be shown in section 5.3. 
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Chapter3 Convergence Behavior of mismatched Rate LMS  

In this chapter, the convergence behavior of the reduced complexity mismatched rate 

LMS algorithm will be addressed. Besides its MSE learning curve, we will also give a 

prediction of its convergence speed and optimum convergence bound. In this chapter, 

we will first show some basic concepts about how conventional LMS is modeled for 

its convergence behavior. Some tools such as the steepest-descent method and 

Wiener-Hopf equation introduced in section 2.1 will be used to analyze the LMS 

convergence. Then the reduced complexity algorithm will be studied. 

 

3.1: Matched rate LMS convergence behavior 

Before entering the LMS convergence section, we first introduce the convergence 

analysis of the steepest-descent method, which will give us some deterministic 

insights of the convergence behavior of such stochastic adaptive algorithms. The 

convergence analysis is following the derivations listed in [4], [5]. 

 

3.1.1: The steepest-descent method 

The steepest-descent method provides us a deterministic way to derive some 

necessary convergence indices such as the time constants that we will use later. To 

study the convergence behavior of stochastic adaptive algorithm, we start from 

analyzing their MSE (mean square error). 
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Recall (2.15), the learning curve can be written as 

( ) ( )( ) ( )( )minn n nξ ξ= + − −
T

o ow w R w w . 

Note that the learning curve is defined as the MSE ξ  versus the time index n. 

This formula shows that the convergence goes to a steady state once its filter 

tap-weights approach w0, at that moment, minξ ξ≅ . Here, given the stationary signals 

x(n) and d(n), the optimum tap-weight vector w0, can be determined according to the 

Wiener-Hopf equation listed in (2.13). 

However, with only (2.15), there is not enough information to give further insights 

such as convergence speed and some other interesting issues. The right-hand term of 

(2.15) can be expanded 

( ) ( )( ) ( )( )minn n nξ ξ= + − −
T T

ow w QΛQ w wo .   (3.1) 

Here we use the unitary similarity decomposition property of a symmetric matrix, R is 

decomposed as 

= TR QΛQ ,       (3.2) 

where  is a diagonal matrix consisting of the eigenvalues Λ 0 1 K 1, , ,λ λ λ −L  of R and 

the columns of Q contain the corresponding orthonormal eigenvectors. 

Define the weight-error vector v(n) as 

( ) ( )n n= − ov w w ,      (3.3) 

we can rewrite (3.1) as 

( ) ( ) ( )minn nξ ξ= + T Tv QΛQ v n .     (3.4) 

Now define the transformed weight-error vector v’(n) as v’(n) = QT v(n), we can get 

( ) ( ) ( )

( )           (scalar form)

min

K 1
2

min i i
i 0

n ' n ' n

v' n .

ξ ξ

ξ λ
−

=

= +

= +∑

Tv Λv
   (3.5) 

To derive the transformed weight-error v’(n) for the steepest-descent method, its 
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update equation (2.16) is rewritten as 

( ) ( ) ( )n 1 2 n 2µ µ+ = − +w I R w p .     (3.6) 

where I is the K by K identity matrix. 

Subtract w0 from both sides of (3.6) and rearrange the result to obtain 

( ) ( ) ( )( )n 1 2 nµ+ − = − −ow w I R w ow     (3.7) 

here we replace p by (2.12). Substitute into (3.7), we obtain 

( ) ( ) ( )n 1 2 nµ+ = −v I R v .     (3.8) 

Substituting (3.8) into (3.7) and replacing I with QQT, rewrite (3.8) as 

( ) ( ) ( )
( ) ( )            

n 1 2 n

2 n

µ

µ

+ = −

= −

T T

T

v QQ QΛQ v

Q I Λ Q v .
    (3.9) 

Then transform v(n) to v’(n) by pre-multiplying (3.9) by QT, the recursive equation 

(3.9) is now reformed as 

( ) ( ) ( )' n 1 2 ' nµ+ = −v I Λ v .     (3.10) 

The vector recursion (3.10) can be separated into the scalar recursive equations 

( ) ( ) ( )  for i i iv ' n 1 1 2 v ' n , i 0,1,...,K 1µλ+ = − = − ,   (3.11) 

where  is the ith element of the vector ( )iv ' n ( )' nv . 

Starting with a set of initial values ( ) ( ) ( )0 1 K 1v ' 0 ,v ' 0 , ,v ' 0−L  and iterating n times, 

the scalar recursion can be written as 

( ) ( ) ( )  for n
i i iv ' n 1 2 v ' 0 , i 0,1,...,K 1µλ= − = − .   (3.12) 

Substitute (3.12) into (3.5), we now derive the learning behavior of the steepest 

descent method: 
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( ) ( )

( ) (       

K 1
2

min i i
i 0

K 1
2n 2

min i i i
i 0

n v' n

1 2 v' 0

ξ ξ λ

ξ λ µλ

−

=

−

=

= +

= + −

∑

∑ ) .
    (3.13) 

If µ  is property selected, then (3.13) converges to minξ  as n increases.  

In (3.13), the MSE is consisted of the sum of K exponentially decaying terms each of 

which corresponds to one of the modes of convergence of the algorithm. 

 

3.1.2: Eigenvalue spread 

Each exponential term in (3.13) can be characterized by a time constant which is 

obtained as follows. 

Let  

( ) i
2n n /

i1 2 e τµλ −− =      (3.14) 

and define iτ  as the time constant associated with the exponential term . ( )2n
i1 2µλ−

Solving (3.14) for iτ , we get 

( )i
i

1
2 ln 1 2

τ
µλ

−
=

−
.      (3.15) 

When i2 1µλ = , ( )iln 1 2 2 iµλ µλ− ≅ − . Substitute this in (3.15), we obtain 

i
i

1
4

τ
µλ

≅ .      (3.16) 

We can see in (3.16) that large eigenvalue iλ  causes small time constant, so there is 

a faster convergence speed for the tap-weight coefficient . 

However, the MSE convergence is determined by the whole tap-weight coefficients, a 

single time constant cannot thoroughly govern the convergence speed. We observe 

this situation in (3.12). The necessary and sufficient condition of convergence is  

, iw i 0,1,...,K 1= −
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( ) , as nn2µ− → →I Λ 0 ∞

∞

,      

or      . (3.17) 

( )
( )

( )

        0                 0  

       0                      , as n
                                            

       0                         

n
0

n
0

n
0

1 2

1 2

1 2

µλ

µλ

µλ

⎡ ⎤−
⎢ ⎥
⎢ ⎥−

→ →⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

0

L

M

M O M

L L

So that if the maximum of these eigenvalues, say, maxλ , is large, and others are 

relatively small, the convergence speed will still be delayed by the other eigenvalues. 

Hence, the eigenvalue spread provides a good merit for the convergence speed. It is 

defined as 

( )Eigenvalue spread max

min

λχ
λ

=R .     (3.18) 

Eigenvalue spread is a condition number of matrix R. R is ill-conditioned if the 

eigenvalue spread is large. Some analysis [4], [5] have shown that the eigenvalue 

spread is relative to the spectrum of the input data sequence. The eigenvalue spread is 

bounded by the ratio of the maximum and the minimum of the input data spectrum 

and is approximately the same when the sequence length is long enough. In this 

observation, it is natural to conclude that the input data with a flatter spectrum has a 

smaller eigenvalue spread, and accordingly the adaptive filter will have a faster 

convergence speed. 
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3.1.3: LMS convergence behavior 

Assume that the input signal x(n) and the desired response d(n) are zero-mean 

stationary process and are all jointly Gaussain-distributed random variables. And at 

time n, the tap-weight vector w(n) is independent of the input vector x(n) and the 

desired response d(n). Based on these assumptions, we start to analyze the mean 

square error E[e2(n)] of the conventional LMS algorithm. Such analysis can be seen in 

[4], [5]. 

Recall (2.20), the update equation of LMS, subtracting w0 from both sides, we obtain: 

( ) ( ) ( ) ( )n 1 n 2 e n nµ+ = +v v x .     (3.19) 

where v(n) = w(n) - w0 is the weight-error vector. Also notes that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )

       

       o

e n d n y n d n n n d n n n

d n n n n

e n n n

= − = − = −

= − − −

= −

T T

T T
0 0

T

w x x w

x w x w w

x v

  (3.20) 

where  

( ) ( ) ( )oe n d n n= − T
ox w      (3.21) 

is the estimation error when the filter tap weights are optimum. 

Squaring both sides of (3.20) and taking the expectation on both sides, we obtain 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
22 2

o oe n E e n E n n 2E e n n n⎡ ⎤⎡ ⎤ ⎡= + −⎣ ⎦ ⎣⎢ ⎥⎣ ⎦
T Tv x v x ⎤⎦ .  (3.22) 

Noting that ( ) ( ) ( ) ( )n n n n=T Tv x x v  and using the independent assumption 

between the tap weights and the input signal, the second term on the right-hand side 

of (3.22) can be expanded as 
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( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

                            

                             

2
E n n E n n n n

E n E n n n

E n n .

⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤= ⎣ ⎦⎣ ⎦
⎡ ⎤= ⎣ ⎦

T T T

T T

T

v x v x x v

v x x v

v R v

   (3.23) 

Noting that  is a scalar, rewrite (3.5) as ( ) ( )n nTv x

( ) ( )( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ){ }
( ) ( ){ }

                            

                             

                             

                            

2
E n n tr E n n n n

tr E n E n n n

E tr n n

E tr n n

tr E

⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤= ⎣ ⎦⎣ ⎦

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

=

T T T

T T

T

T

v x v x x v

v x x v

v R v

v v R

( ) ( ){ } n n .⎡ ⎤⎣ ⎦
Tv v R

  (3.24) 

Here we use the matrix trace property: { } { }tr tr=AB BA  for facilitating the term 

exchanging operation. Define the correlation matrix of the weight-error vector v(n) as 

( ) ( ) ( )n E n n⎡ ⎤≡ ⎣ ⎦
TK v v  ,     (3.25) 

the above result reduces (3.6) to 

( ) ( )( ) ( ){2
E n n tr n⎡ ⎤ =⎢ ⎥⎣ ⎦

Tv x K R} .    (3.26) 

 

Using the independent assumption and noting that eo(n) is a scalar, the last term on the 

right-hand side of (3.22) can be written as 

( ) ( ) ( ) ( ) ( ) ( ) 02 2
o oE e n n n E n E n e n⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ⎣

T Tv x v x ⎦ ,  (3.27) 

Using (3.26) and (3.27) in (3.22), we obtain 

( ) ( ){ }2
minE e n tr nξ ξ⎡ ⎤= = +⎣ ⎦ K R .    (3.28) 

where ( )2
min oE e nξ ⎡= ⎣ ⎤⎦ , that is, the minimum mean-square error (MSE) at the filter 

output. 

(3.28) can be written in a form that is more convenient for future analysis. Recall (3.2), 
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by decomposing R and using the matrix trace term commute rule, we obtain 

( ) ( ){ }2
minE e n tr ' nξ ξ⎡ ⎤= = +⎣ ⎦ K Λ .

Q

    (3.29) 

where . Furthermore, using (3.25) and definition v’(n) = Q( ) ( )' n n= TK Q K T v(n) 

from section 3.1, we find that 

( ) ( ) ( )' n E ' n ' n⎡ ⎤≡ ⎣ ⎦
TK v v .     (3.30) 

Noting that  is a diagonal matrix composed of eigenvalues of R, (3.29) can be 

expanded as 

Λ

( ) ( )
K 1

2
min i ii

i 0
E e n k nξ ξ

−

=

⎡ ⎤= = +⎣ ⎦ ∑ 'λ     (3.31) 

where  is the ijth element of the matrix ( )'
ijk n ( )' nK . 

The LMS on average follows the same trajectory as the steepest-descent method [4]. 

Despites the noisy variation of the filter tap weight, the learning curve of the LMS 

matches closely the theoretical results of the steepest-descent method. To this end, 

(3.13) is applicable and the time constant  

i
i

1
4

τ
µλ

≅       (3.32) 

can be used for predicting the transient behavior of the LMS algorithm. Consequently, 

the eigenvalue spread introduced in section 3.1.1.1, can be used to indicate the 

convergence speed of the LMS algorithm given an input data autocorrelation matrix. 
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3.2: Mismatched rate LMS convergence behavior 

M

I.F

x

y

M

e

ep LMS

d

D.F

 

Figure. 3.1 Reduced complexity mismatched rate LMS filter. 

 

Let the down sampled desired signal dp(n) as 

( ) ( )  pd n n , 1 p M= ≤ ≤pg d      (3.33) 

where ( ) ( )     .
D1 Nzeros p 1 g g zeros M p , 1 p M⎡ ⎤= − − ≤⎣ ⎦pg L ≤  

Rewrite the down sampled error (2.51) as 

( ) ( )
          

2 22
p p

2
p p p

E e E E d

E d E d E d E .

⎡ ⎤ ⎡ ⎤⎡ ⎤ = − = −⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= − − +⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

p p p

T T T T T T
p p p p

g d g y h Xw

w X h h X w w X h h X w
 (3.34) 

Define the cross correlation vector of the mismatched rate system as 

( ) pE n d⎡ ⎤ ≡⎣ ⎦
T T

pX h qp      (3.35) 

and the autocorrelation matrix as 

( ) ( )E n n⎡ ⎤ ≡⎣ ⎦
T T

p p p pX h h X R = RT .    (3.36) 

Substitute (3.35) and (3.36) into (3.34), we can get: 
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 2 2
p pE e E d 2 , 1 p⎡ ⎤ ⎡ ⎤= − + ≤ ≤⎣ ⎦ ⎣ ⎦

T T
p pw q w R w M .   (3.37) 

Using the Wiener-Hopf equation (2.12), the optimum tap-weight is 

= -1
o,p p pw R q .      (3.38) 

With this optimum tap-weight, the convergence of this structure has an optimum to 

approach. Similar to (2.15), (3.37) can be written as 

( ) ( )    2
p min, pE e , 1 p Mξ⎡ ⎤ = + − − ≤ ≤⎣ ⎦

T

o, p p o, pw w R w w . (3.39) 

where  min, pξ  is the minimum mean square error of the mismatched rate LMS training 

system and can be written as 

    2
min, p pE d , 1ξ ⎡ ⎤= − ≤ ≤⎣ ⎦

T -1
p p pq R q p M .   (3.40) 

One must notice that the lower case of “p” besides these symbols. It represents which 

phase of the error vector e(n) is chosen and the convergence of MSE and its MMSE 

are all relative to it. The effects of choosing different phase (performance, 

convergence speed) will be discussed in the next chapter. 

 

Similar to the LMS convergence derivation, by replacing the autocorrelation matrix 

with Rp, we can obtain the behavior of the mean square value of  as: pe

( ) ( ){ }  p min, pn tr n , 1 pξ ξ= + ≤ ≤p pK R M .    (3.41) 

Here we define vp(n) = w(n) – wo,p is the weight-error vector with respect to phase p, 

and define the correlation matrix of the weight-error vector vp(n) as 

( ) ( ) ( )n E n n⎡ ⎤≡ ⎣ ⎦
T

p p pK v v .     (3.42) 

Decompose Rp as: 

= T
p p pR Q Λ Qp ,       (3.43) 

 32



where  is a diagonal matrix consisting of the eigenvalues pΛ    0 ,p 1,p K 1,p, ,λ λ λ −L  of 

Rp and the columns of Qp contain the corresponding orthonormal eigenvectors. 

Using (3.43), we can write (3.42) as 

( ) ( ){ }  p min, pn tr ' n , 1 pξ ξ= + ≤ ≤p pK Λ M     (3.44) 

Notice that , then ( ) ( )' n n= T
p p pv Q v

( ) ( ) ( )

( )           

' n E ' n ' n

n

⎡ ⎤= ⎣ ⎦
=

T
p p p

T
p p p

K v v

Q K Q
.     (3.45) 

(3.44) can be also written in scalar form as 

( ) ( ) ( )   
K 1

2 '
p p min, p i ,p ii , p

i 0
n E e n k n , 1 p Mξ ξ λ

−

=

⎡ ⎤= = + ≤⎣ ⎦ ∑ ≤   (3.46) 

where  is the ijth element of the matrix ( ) 
'
ij , pk n ( )' npK . 

 

The above can be seen as the convergence behavior of the mismatched rate system, 

but for problems such as echo cancellation, equation (3.46) may not be able to provide 

us enough information about the echo attenuation level. For such problems, the “true 

error” we concern is the input of the down-sampling block, the error vector e(n). 

Unlike ep(n), it only gives a partial information, the value of e(n) (norm) is the direct 

result of the interpolated filtered signal and the received signal. It gives us a more 

complete information about the system identification. Here, we take e(n) as our 

performance index and the rest of this chapter will be devoted to derive its 

convergence behavior. 

 

Now, we focus on the derivation of ( ) 2
E n⎡ ⎤
⎢ ⎥⎣ ⎦

e . 

Recall (2.48) and (2.49), we collect all ep(n)s,  p = 1~M  in a vector ep(n) 
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( )
( )

( )
( )   

1

M

e n
n

e n

⎡ ⎤
⎢ ⎥

= =⎢ ⎥
⎢ ⎥
⎣ ⎦

pe M nGe      (3.47) 

where 

( )

                     

                                    
                        

D 1 D

D

D 1 D

1 2 N N

M N M 1

1 2 N N

g g g g

g g g g

−

−

× + −

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

0

G
0

L

O

L

O   (3.48) 

is a convolution matrix filled with coefficients of the decimation filter. 

 
In (3.47), we can see that 

( ) ( )n = -1
pe G e n  if G-1 exits.     (3.49) 

But as we can see in (3.48), the dimension of the convolution matrix makes the 

existence of G-1 impossible. If we force a matrix A such that AG = I, we may find the 

left inverse matrix of G. However, to simplify this derivation and make it intuitive, we 

will not focus on the derivation of the left inverse matrix of G. Instead, we will study 

the convergence of each sampling phase of e(n) individually. 

 

3.2.1: Convergence analysis of each phase 

M MIF DFx x’

 

Figure. 3.2 Combination of the interpolator and the decimator. 

 

Observing the path through the up-sampling and down-sampling block, a typical 

combination of the interpolator and the decimator can be plotted as shown in figure 
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3.2. In this figure, both the cut-off frequencies of the interpolation filter and the 

decimation filter are / Mπ . Such combination can be simplified by removing one of 

the low pass filters as we have known in the digital signal processing text book. The 

motivation of the following structure which help us to analyze the convergence of e(n) 

comes from this simplification. 

e, dim = 
y, dim =

M
 M

M

I.F

M

ep

d, dim = M

LMS

x

 

Figure. 3.3 A convergence analysis convenient structure. 

 

The structure in figure 3.3 neglects the decimation filter. In this simplified structure, 

the convolution matrix shown in (3.48) is now simplified to an identity matrix with 

dimension M, and (3.49) now can be written as  

( ) ( )  n n , 1 p M= ≤ ≤pe e .     (3.50) 

Hence, we can get 

( ) ( ) ( ) ( ) ( )

( )                     

2

M
2
p

p 1

E n E n n E n n

E e n .
=

⎡ ⎤ ⎡ ⎤ ⎡= = ⎤⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

⎡ ⎤= ⎣ ⎦∑

T T
p pe e e e e ⎦

   (3.51) 

Finally, substitute (3.46) into (3.51), the desired learning behavior can be written as: 
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( ) ( )

( )                     

M2 2
p

p 1

M M K 1
'

min, p i , p ii , p
p 1 p 1 i 0

E n E e n

k nξ λ

=

−

= = =

⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎢ ⎥⎣ ⎦

= +

∑

∑ ∑∑

e

.

M≤ ≤

    (3.52) 

 

The analysis of the simplified LMS can be obtained using the same way. Modifying 

the autocorrelation matrix Rp with 

( ) ( )  ˆ ˆ ˆE n n , 1 p⎡ ⎤= ⎣ ⎦
T T

p p pR X h h X ,    (3.53) 

we can get the convergence behavior of the simplified LMS by applying eigenvalues 

of  to the methods listed above. ˆ
pR

 

As we have mentioned before, one must notice that the performance of such a 

mismatched rate system without a decimation filter has a degraded performance due 

to the leakage of high frequency components. Hence the analysis of the structure 

without a decimation filter has a little difference to the structure with a decimation 

filter. However, given high SNR and no additional disturbance presented in high 

frequency, simulations in section 5.4 will demonstrate that the difference is not too 

much and the analysis introduced in this chapter is still practical in use for analyzing 

the mismatched rate reduced complexity structure. 

 

Eigenvalues of the autocorrelation matrix Rp will be used to evaluate the eigenvalue 

spread and will be taken as a convergence speed index of this reduced complexity 

structure. One may see the experiment result in section 5.5 that the larger eigenvalue 

spread of Rp implies a slower convergence of ( ) 2
E n⎡ ⎤
⎢ ⎥⎣ ⎦

e  with decimation phase p. 
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Chapter4 Effects introduced by non-ideal re-sampling blocks 

This chapter discusses the phenomenon of the performance difference when we 

choose different decimation phase p. The motivation to research the characteristics of 

all the decimation phases is from the derivation of convergence behavior. In practical 

use, it is enough to choose a “well-behaved” phase among these candidates. But the 

study of the other phases can provide us thorough information about how the finite 

length up/down sample filter affects the system performance. 

Different selection of p may produce different response of hp. Because it is correlated 

with the update equations listed in chapter 2, when we accidentally choose a phase 

that suffers from distortion, the performance will consequently degrade. In figure 4.1, 

if the input x is a WSS (wide-sense stationary) signal, the output x’ should be also a 

WSS signal after passing through the combined structure of M-fold interpolator and 

the M-fold decimator (We will prove this in section 4.1). However, some non-ideal 

effects of the intermediate low pass filter will distort this ideal all pass system. 

Cut-off freq:
π/M

xIF

M MLPFx x’

h

 
Figure 4.1 Combination of equal rate up and down sample blocks. 

 

In this chapter, we will focus on distortion introduced by such non-ideal filter in LMS 

algorithm. After quantifying such distortion, we will provide a method to avoid the 

performance degradation. 
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4.1: Properties of random signals through a multi-rate system 

Some basic conceptions are introduced when passing a random signal through a 

multi-rate system. We will show some statistical concepts about x’ in figure 4.1 given 

a WSS (Wide Sense Stationary) signal x. In this section, all WSS and CWSS 

processes are assumed to be zero mean. 

4.1.1: Preliminaries 

A. L-fold Interpolator 

Passing an input sequence x(n) into an L-fold interpolator results in 

( ) ( )/ , if  is an integer multiple of 
0,            otherwise.I

x n L n L
y n

⎧⎪= ⎨
⎪⎩

, 

whose z transform is 

( ) ( )L
IY z X z= .      (4.1) 

B. M-fold Decimator 

 Passing an input sequence x(n) into an M-fold decimator results in 

( ) ( )Dy n x nM= , 

 whose z transform is 

( ) ( )
1

1/ 2 /

0

1 . 
M

M k j
D M M

k
Y z X z W W e

M
π

−
−

=

= ∑ k M= .   (4.2) 

C. Cyclo-WSS Process 

Let ( ) ( ) ( )*,   xx n k E x n x n k⎡= ⎣R ⎤− ⎦  denote the autocorrelation function of x(n). 

The process is said to be (CWSS)L if 

( ) ( ) ,    ,  E x n E x n kL n k= + ∀⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , and 
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( ) ( ),  ,  ,  xx xxn k n L k n k= + ∀R R  ,  . 

D. Linear Periodically Time-Varying (LPTV) system 

A system is said to be LPTV with period L (denoted as (LPTV)L) if the output 

y(n) in response to input x(n) can be written as 

( ) ( ) ( ),  
k

y n h n k x n k
∞

=−∞

= −∑  

where the h( n, k ) is an LTI system with property 

( ) ( ),  ,  ,   h n k h n L k n k= + ∀ ,  . 

The LPTV system can be implemented as figure 4.2. 

x(n) H0(z)

H1(z)

HL(z)

y(n)
::

 

Figure 4.2: Implementation of an (LPTV)L system. 

 

Note: The output at time n is one of the L filters, its order is controlled by 

number (n mod L). 
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4.1.2: Properties of the signal passing through a multi-rate system 

x2x1

L MLPFx y

Cut-off freq:
π/max(L,M)

 

Figure 4.3: A general multi-rate filter. 

 

For each output node in figure 4.3, we outline three important properties. 

Property A: 

If we pass a WSS signal x(n) through an L-fold interpolator, the output x1(n) is 

CWSS with period L. 

Property B:   

If we pass a signal x1(n), (CWSS)L, through an (LPTV)L system, the output x2(n) 

is CWSS with period L. 

Property C: 

If we pass a signal x2(n), (CWSS)L, through an M-fold decimator, the output y(n) 

is CWSS with period K, where K = L / gcd(L, M). gcd{,} is the greatest common 

factor operator. 

 

In [3], the above properties have been proved and a theory is developed to make the 

output y(n) to be WSS in general multi-rate systems. 

Consider the multi-rate system in figure 4.1 in our case. From properties listed above, 

it is clear that for an equal up sampling and down sampling rate system, passing a 

wide-sense stationary signal x to the filter results in a wide-sense stationary signal x’. 
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4.2: Quantification of distortion 

In this section, we will first find out the source of distortion. Then the method to 

evaluate the power of the non-ideal effect is presented. Finally, a frequency domain 

representation for each node of the reduced complexity structure is derived to provide 

a theoretical analysis of distortion. This theoretical result will be used to compare with 

the simulation of the actual distortion signal. 

4.2.1: Source of distortion 

Based on the conclusion in section 4.1, the output of the combination of the equal 

up-sampling and down-sampling rate blocks should be WSS given a WSS input signal. 

That is, the combined effect should be an all pass filter in frequency domain, and a 

delta function in time domain. However, some combined effects may produce impulse 

responses such as appearance of two peaks or asymmetry and distort all-pass property. 

Because insertion of zeros (interpolation) has nothing to modify, it is easy to assert 

that the distortion comes from the intermediate low pass filter and the decimation 

process. Reference to figure 4.1 and set M = 2, we show a brief demonstration of how 

such non-ideal side lobes of the interpolation filter affects in frequency domain. 

 
Figure 4.4: Brief demo for non-ideal IF side lobes effect. M = 2. 
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For M = 2, figure 4.4 shows that the side lobes belonged to the image of 0.5π ~ π 

affects the frequency components in the neighborhood of 0.5π. Mapping to our system, 

the filtered output y plays the same role as xIF in this case. That is, we can see the 

distortion from the filtered output, or the direct identification result, e(n). 

Distortion of the filtered output means that the adaptive filter operating band is 

polluted by adjacent image. This implies that the system identification cannot 

perfectly match the response of the desired signal. Such distortion will reflect on the 

performance. In section 5.7, we will demonstrate this situation in the spectrum point 

of view between the distorted filtered signal and the desired signal. Besides, the 

eigenvalue spread will be shown to point out the performance degradation. It is 

expected that the adaptive filter suffered from distortion has a larger eigenvalue 

spread. 

 

4.2.2: Level of distortion 

Next, we present our method to evaluate the distortion power level. Integration shown 

in (4.3) will be used for our evaluation. 

( ) ( )
/ M

d y da
P

π
dω ω ω= Φ −Φ∫ .    (4.3) 

In (4.3), Φy(ω) denotes the power spectrum of the distorted filtered signal in the 

steady state , and Φd(ω) denotes the power spectrum of the corresponding desired 

response. Note that the only desired variation in (4.3) is the distortion power, so 

spectrum samples in our experiment are taken from the Fourier transform of the 

steady state in time domain where the noisy adaptation has a comparably smaller 

influence. 

From the previous section, we know that the distortion occurs in the neighborhood of 

 42



π/M. So the upper bound of the (4.3) is π/M for sure. What we have to do now is to 

decide the lower bound a. 

A distorted combined effect of hp is illustrated below. 

 

Figure 4.5: Frequency response of a distorted combined effect hp. 

We can see that this distorted response has decay at high frequencies. By setting a 

discrimination threshold, the distorted interval of hp is determined once the threshold 

is exceeded. We first set a default distorted portion for each rate M. The distortion 

portion defines a default distance between the upper bound and the lower bound of hp, 

the lower bound must not exceed the default interval to prevent a wrong estimation of 

the lower bound. 

Because of the fact that the frequency response is stretched M times wider after the 

M-fold decimation, we can determine the distortion interval at the filtered output is 

1/M of the estimating distortion interval of hp. Take figure 4.5 as an example. The 

estimated distortion interval of hp is approximately 0.15π, so the effective distortion 

interval of the filtered output is approximately 0.15π/M. In (4.3), the lower bound a is 

now set as 0.85π/M in this case. 

Notice that if there’s no distortion, a = π/M.  
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4.2.3: Frequency domain representation of the reduced complexity structure 

 

v

d

y
M

M

F(zM)

G(zM)

x, white
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Figure 4.6: Complete system model in our case.  

 

For the problem of echo cancellation, S(z) is replaced by the z-transform of the echo 

path. In figure 4.6, the echo path is modeled at the up-most branch, and the adaptive 

filter part is the other two branches bracketed with the dashed line. In our system, the 

echo is sampled at the Nyquist rate. So the echo path is operating in a bandwidth 2M 

times more narrow than the input signal and we up-sample the input signal to match 

this requirement. Here, A(zM) is an interpolation filter for channel output. 

Now we list each node in our system model in z-transform domain. Their 

transformations will be denoted in capital form. 

Use (4.1), the z-transform of the desired signal d can be represented as 

( ) ( ) ( ) ( )MD z A z S z X z= M       (4.4) 

and the filtered signal y can be represented as 
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( ) ( ) ( ) ( )M MY z F z W z X z= M .     (4.5) 

The z-transform of the error signal e is 

( ) ( ) ( )E z D z Y z= − .      (4.6) 

In section 5.5, we will use equation (4.6) to be our theoretical comparison. 

 

In equation (4.5), we can see that we interpolate the filtered signal to match the 

desired signal in number. A signal after interpolation has images of the compressed 

version of the original signal distributed periodically in the high frequency domain. If 

the interpolation low-pass filter is not ideal, the frequency components beyond the 

cut-off frequency will not completely filter out. This will influence the performance 

because these partially suppressed images make the interpolated filtered signal unable   

perfectly fit the high frequency components of the desired signal. Such high 

frequency components can be considered as a smaller-level distortion (compared to 

the distortion in the neighborhood of π/M) in different mismatched rate systems. In 

section 5.5, spectrums of the filtered signals and the desired signal of different 

mismatched rates will be demonstrated. We will see that given different mismatched 

ratio M, different conditions of partially suppressed images will appear in the high 

frequency domain.  
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4.3: Filter design issue to avoid such degradation 

In section 4.2.1, we know that the distortion introduced by the interpolation filter and 

the different decimation phase is the source, except the noise, that will degrade the 

performance of the LMS. Because the relatively weak response of hp in the high 

frequency, the adaptive filter cannot perfectly match the desired response. On the 

other hand, the distorted hp in the update equation is just like the coloring filter that 

correlates the input random signal in the conventional LMS. In our knowledge of the 

adaptive filter theory, such correlation will enlarge the eigenvalue spread and cause 

the convergence slower. 

Since the combined response hp is determined once the intermediate low pass filter is 

set, we can evaluate its frequency response beforehand and choose a flat one to avoid 

such degradation caused by the imperfection design of filter. 

Note that the flat frequency response hp can be found not only by changing the 

intermediate filter, but also by checking all the decimation phases for their 

corresponding hp. In our simulations, even though there is a certain decimation phase 

that has larger distortion, there still exist other possible “well behaved” phases that 

have flat response of hp given the same intermediate filter. These “well behaved” 

phases will achieve better performance given the same parameters. If we evaluate the 

frequency responses hp of all the decimation phases, a good choice may be found 

among them. 

In section 5.5, given M and the “possibly distorted” filter coefficients, we will 

demonstrate the coexistence of different performance among each decimation phase. 

A measurement which represents their corresponding performance difference, called 

DESR, will also be shown. We shall introduce it in the next section. 
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4.3.1: Distortion to pure Error Signal Ratio (DESR) 

Finally, we remark a measurement of distortion. To quantify the performance 

difference between the “well behaved” phase and the distorted phase, we give a 

performance index, i.e., the Distortion to pure Error Signal Ratio (DESR). It is 

defined as follows. 

Suppose phase 1 suffers from distortion. Then the MSE ratio between phase 1 and the 

MMSE (DESR) is: 

E
DESR

E

⎡ ⎤⎣ ⎦≡
⎡ ⎤⎣ ⎦

2
1

2
o

e

e
.       (4.7) 

Because  provides the optimum solution for solving the system identification 

problem and the distortion is the only degradation of this performance difference, the 

distorted  can be written as 

2 E ⎡ ⎤⎣ ⎦oe

2
1E ⎡ ⎤⎣ ⎦e

2 2 =  + dE E E 2⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣1 oe e ⎦e .     (4.8) 

2
dE ⎡ ⎤⎣ ⎦e  represents the distortion power. 

Now DESR can be written as 

2 2
1

2 2
1dE E

DESR
E E

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= ≅ +
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦o o

e e

e e
.     (4.9) 

From (4.13), if the performance is scaled in dB, we can see that the distance between 

 and MMSE is the distortion power. 2
1 E ⎡ ⎤⎣ ⎦e
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Chapter5 Simulations 

In this chapter, promised simulations in the previous sections will be shown. Before 

entering this chapter, we shall give the environment specifications in our simulation.  

 

Environment settings: 

Channel: A 400 taps FIR with a low pass shape, cutoff frequency = π/M/2 (Divide by 

2 because we sample the channel at the Nyqusit rate). SNR = 150dB. 

Adaptive filter settings: 

 

Table 5.1:  LMS and RLS filter settings 

LMS parameters RLS parameters 

410 taps 410 taps 
μ= 0.002 λ= 0.98 

M=1 

IF order = 1 IF order = 1 
205 taps 205 taps 

μ= 0.0078 λ= 0.985 
M=2 

IF order = 55 IF order = 37 
105 taps 105 taps 

μ= 0.0313 λ= 0.975 
M=4 

IF order = 65 IF order = 45 

Both rates(M = 2, 4) use Kaiser low pass filter with minimum -133 dB side-lobe 

attenuation of the Fourier transform of the window. 

 

Note1: In our simulations, DF coefficients are set equal to the IF coefficients. 

Note2: It is equal to the conventional adaptive algorithm if M = 1. 

Note3: The performance index is the normalized mean square value of the vector 

e(n). We will rapidly run ten times to obtain an ensemble average. 

Note4: “Covariance windowing” is used for input data sequence if no specification. 
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5.1: Original adaptive algorithm V.S. its simplified version 

5.1.1: LMS algorithm 

 

Figure 5.1.1: MSE of original LMS VS simplified version, M = 2. 

 

Figure 5.1.2: MSE of original LMS VS simplified version, M = 4. 

 

We can see that the simplified version converges faster than the original one. As we 

 49



have mentioned in section 2.2.2.1, the simplified version of the LMS achieves such 

speed by assuming hp a delta function. 

5.1.2: RLS algorithm 

 

Figure 5.1.3: MSE of original RLS VS simplified version, M = 2. 

 

Figure 5.1.4: MSE of original RLS VS simplified version, M = 4. 

 

For RLS, the situation is reversed. The reason is simple. Because RLS’s fast 
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convergence speed results from exact system modeling in deterministic form, it is 

natural to see that the original RLS algorithm, which provides a more complete 

modeling, converges faster than the simplified version. 

5.2: RLS initializations. 

Section 5.2.1 will demonstrate the initialization in the beginning, and section 5.2.2 

will demonstrate the re-initialization problem. 

5.2.1: Pre-windowing V.S. RLS using covariance windowing 

Note1: Covariance windowing initializes the input data sequence with , 

where n is the latency time. 

( ) nph X

Note2: Notices that during the latency time, the sequence with initialization sets its 

error value as 1, and after 10 times ensemble average, the MSE during the 

latency becomes 0.1 = -10dB.  

 

Figure 5.2.1: RLS using pre-windowing VS covariance windowing, M = 1, n = 410. 
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Figure 5.2.2: RLS using pre-windowing VS covariance windowing, M = 2, n = 264. 

 

 

Figure 5.2.3: RLS using pre-windowing VS covariance windowing, M = 4, n = 137. 

 

We can see in simulations that pre-windowing works as well as the covariance 

windowing in the matched rate system. But in the mismatched rate systems we can 

see that the covariance windowing is better. The latency is paid of worthy even 

though its convergence is late coming result. 
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5.2.2: Re-initialization for computation-released pre-windowed RLS  

Note: RLS adapts 1 iteration and stop for several iterations. While stopping 

adaptation, one of the test sequence still keep on updating the latest input 

data with ( ) nhx , and the other test sequence does nothing but shifting the 

latest input data with zero. 

 

Figure 5.2.4: With VS Without re-initialization, M=1, stops 3 iterations. 

 

Figure 5.2.5: With VS Without re-initialization, M=2, stops 6 iterations. 
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Figure 5.2.6: With VS Without re-initialization, M=4, stops 12 iterations. 

 

We choose the number of stop iterations so that these experiments using 

re-initialization converge at about 1700 iterations for all M. The previous error record 

is kept during stop adaptation. This is why the granular-like curves appear these 

figures.  

Our simulations explore two things. One is the obvious degrading performance and of 

the MSE if we periodically stop adapting the filter. This is reasonable since we 

sacrifice the performance to release the computation high tide. The other thing is 

sequence with continuously update its input data has a stronger resistance against the 

periodical stagnant adaptation thanks to its forgetting property of past data. 

5.3: LMS V.S. RLS 

Note: MSE comparison of both of the algorithms presented. We can look for 

literature [5] the similar comparison between LMS and RLS for M = 1. 

Here, we provide the mismatched versions for M = 2, 4. 
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Figure 5.3.1: LMS VS RLS, M = 2. 

 

Figure 5.3.2: LMS VS RLS M = 4. 

 

As expected, RLS converges faster than the LMS using the same input sequence in 

the cost of larger computation.  

5.4: LMS performance comparison between structures with DF and without DF  

Note: For a clear demonstration, we averaged 20 samples for an averaged MSE. 
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Figure 5.4.1: LMS using structures with DF and without DF, M=2. 

 

Figure 5.4.2: LMS using structures with DF and without DF, M=4. 

Given high SNR and no additional disturbance presented in high frequency, the 

difference between the structure with a DF and without a DF is not significant. LMS 

convergence behavior of the analysis convenient structure presented in section 3.2.1 is 

now demonstrated to be similar to the actual reduced complexity structure. 
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5.5: LMS Different performance when sampling different phase 

Note: For a clear demonstration, we averaged 20 samples for an averaged MSE. 

 

Figure 5.5.1: LMS, MSE of all phases, M=2, MMSE=-115.7071 dB 

 

Figure 5.5.2: LMS, MSE of all phases, M=4, MMSE= -109.2926 dB 

In these two plots, the distorted phase is phase 2 for M = 2 and phase 3 for M = 4. 

Their convergence is influenced by the non-ideal intermediate filter as we mentioned 

in chapter 4. The other phases are well behaved. In figure 5.5.2, we can see that the 
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“well behaved” phases converge almost together.  

In the following simulations, we will show their corresponding power spectrums of 

the filtered signal of each phase and the desired signal. 

 

Figure 5.5.3: Demo of distortion in power spectrum, M=2 

 

Figure 5.5.4: Demo of distortion in power spectrum, M=4 

Notice the phase 2 in figure 5.5.3 and phase 3 in figure 5.5.4, the maximum distortion 

can be seen from the peaks appear in the neighborhood of frequency 0.5π and 0.25π in 

these two plots. Rest of the distortions in the high frequency components is the result 
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of the partially suppressed images that we have mentioned in section 4.2.3. 

Next, we draw out the spectrum of the error vector signals for each phase and the 

comparison theoretical curve. Note that the theoretical curve is a result that substitutes 

the tap-weights with the Wiener filter coefficients implicitly in equation (4.6). 

 

Figure 5.5.5: Theoretical distortion VS simulated distortion, M=2. 

 

Figure 5.5.6: Theoretical distortion VS simulated distortion, M=4. 

We can see that even substitute with the optimum tap-weights, phase 2 in figure 5.5.5 

(phase 3 in figure 5.5.6) still suffers from distortion. 
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Some characteristics of the distortion phenomenon are summarized in table 5.2 and 

table 5.3. 

Maximum distortion occurs on phase  2 

Estimated distortion effective interval 0.40625π ~ 0.5π 

Estimated distortion power of distorted phase -80.5991 dB 

DESR 35.1080 dB 

MMSE -115.7071 dB 

Table 5.2:  Features of distortion, M = 2. 

 

Maximum distortion occurs on phase  3 

Estimated distortion effective interval 0.17188π ~ 0.25π 

Estimated distortion power of distorted phase -84.6417 dB 

DESR 26.5561 dB 

MMSE -109.2926 dB 

Table 5.3:  Features of distortion, M = 4. 

 

The second row in table 5.2 and 5.3 is the estimated distortion effective interval in the 

neighborhood of π/M using the methods presented in section 4.2. With this result, the 

distortion power is calculated and listed in the third row. DESR using the estimated 

distortion power in these two cases is shown in the fourth row. On the other hand, 

DESR can be seen from the steady state MSE difference between the distorted phase 

and the MMSE shown in figure 5.5.1 and 5.5.2. Finally, the predicted minimum MSE 

values are listed in the last rows. 
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In table 5.4 and 5.5, we show that the distorted phase has a larger eigenvalue spread 

and a larger distortion power relative to the others. Their corresponding slower 

convergence is demonstrated in figure 5.7.1 and 5.7.2. 

 

 Phase 1 Phase 2 

Eigenvalue spread 43 1408 

Distortion power (dB) -102.7427 -80.5991 

Table 5.4:  Eigenvalue pread table, M = 2. 

 

 Phase 1 Phase 2 Phase 3 Phase 4 

Eigenvalue spread 12 20 942 20 

Distortion power (dB) -100.5926 -99.6247 -82.7365 -98.8549 

Table 5.5:  Eigenvalue spread table, M = 4. 
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Conclusion 

The reduced complexity adaptive filter is designed based on minimizing , no 

matter in its statistical property (LMS) or in exact value (RLS), it all operates at a 

lower rate. In this paper, it is shown that the complexity of the reduced complexity 

system is similar to that of the conventional adaptive algorithm and the complexity 

will not grow proportional to the quadratic value of the mismatched rate. 

( ) 2
pe n

The LMS convergence behavior for this mismatched rate reduced complexity model 

is presented. For this system, several issues such as the colored effect hp introduced 

by imperfection of the intermediate filter and the RLS initialization problems have 

also been discussed. Such problems were addressed in our simulations and we have 

provided a possible solution for them. On the other hand, the simulations are 

conducted to illustrate these two adaptive algorithms in their original version and 

simplified version. A comparison between LMS and RLS is also presented. 
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Appendix A: Matrix differentiation conventions 

Given a matrix  and an n by 1 column vector R [ ]T  1 2 nx x x=x L , the conventions 

can be written as: 

( )∂
=

∂
TRx R

x        (a1) 

( ) .∂
=

∂
Tx R R

x
      (a2) 

Using (a1), (a2) and the chain rule, quantities in [] are considered constant, we have: 

( ) ( ) [ ]( ) [ ] (∂ ∂ ∂⎡ ⎤ ⎡ ⎤= + = + =⎣ ⎦ ⎣ ⎦∂ ∂ ∂
TT T T T Tx Rx x R x x Rx x R Rx R + R x

x x x )  (a3) 

( )If  is symmetric, ∂ =
∂

TR x R
x

x 2Rx      (a4) 

 

Appendix B: Matrix inversion lemma 

Suppose B and D are invertible matrix, then: 

( ) ( )-1 -1T -1 -1 -1 T -1 TB + CDC = B - B C D + C B C C B-1    (a5) 
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