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Abstract—Due to limitations on transmission power of wireless devices, areas with sparse nodes are decisive to some extreme

properties of network topology. In this paper, we assume wireless ad hoc and sensor networks are represented by uniform point

processes or Poisson point processes. Asymptotic analyses based on minimum scan statistics are given for some crucial network

properties, including coverage of wireless sensor networks, connectivity of wireless ad hoc networks, the largest edge length of

geometric structures, and local-minimum-free geographic routing protocols. We derive explicit formulas of minimum scan statistics. By

taking the transmission radius as a major parameter, our results are applied to various network problems. This work offers a unified

approach to solve various problems and reveals the evolution of network topology. In addition, boundary effects are thoroughly handled.

Index Terms—Wireless ad hoc networks, wireless sensor networks, minimum scan statistics, random deployment, Poisson point

processes, uniform point processes, coverage, connectivity, grid routing, greedy forward routing, Gabriel graphs, relative

neighborhood graphs.

Ç

1 INTRODUCTION

IN homogeneous wireless ad hoc networks, all wireless
devices have the same transmission radius r, and two

nodes have a link between them if they are apart from each
other no more than r. A communication session is
established either through a single-hop radio transmission
if the communication parties are within each other’s
transmission range, or through relaying by intermediate
devices otherwise. The induced network topology is called
r-disk graphs, or unit disk graphs (UDGs) if r is scaled to 1.
An r-disk graph over a vertex set V is denoted by GrðV Þ.
Because of no need for fixed infrastructures, wireless ad hoc
networks can be flexibly deployed at low cost for various
missions such as decision making in the battlefield,
emergency disaster relief, and environmental monitoring.
In many applications, such as wireless sensor networks, a
large number of devices need to be deployed in harsh
environments. As a result, deterministic deployment
usually is not feasible, and random deployment is the only
viable solution. Hence, it is natural to model wireless
networks by r-disk graphs over random point sets, and
asymptotic analyses are interesting to the research commu-
nity [1], [2], [3], [4], [5].

In wireless communication systems, receivers can de-
code one signal at a time, so simultaneously arriving signals
are interfered and may cause transmission failure at the
receiver. Due to short transmission ranges of radio

frequency signals, interferences are from nearby nodes.
Therefore, for a receiver, nearby nodes are not only
potential message senders but also interference sources.
Therefore, the number of nodes in one’s vicinity is an
important topological parameter in a network. In this paper,
we introduce an analytical tool called minimum scan
statistics that provide an overall lower bound of a network
for the number of nodes in one’s vicinity.

Let V be a finite point set in a bounded region A, and
C be a convex compact set.1 Let #ð�Þ be the cardinality
function. We say C0 is a copy of C, denoted by C0 ffi C, if
C0 is obtained from C by reflecting, rotating, and/or
shifting. The minimum scan statistic of V with respect to
scanning set C is the least number of points in V covered
by a copy of C, i.e., minC0ffiC #ðV \ C0Þ. However, without
further constraints, since the copy of C can be placed
outside of A, the minimum scan statistic is always 0. To
prevent meaninglessness and for applying to various
applications, we may have several variations depending
on supplementary constraints, e.g.

1. C0 must be fully contained in A.
2. C0 must have at least half of its area contained in A.
3. C must be a disk, and the center of C0 must be in A.
4. A has a boundary-free topology such as a sphere or a

square with toroidal metrics.

In this paper, we will derive asymptotics for variations 1, 2,
and 3. Note that variation 1 was the case studied by Auer
and Hornik [6], and variation 4 has similar asymptotics of
variation 1.

In literature, most works on scan statistics studied the
largest number of points covered by scanning sets. To
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1. A set is convex if for any two points u, v in this set, the segment uv is
also contained in it. A set is compact if it is bounded and close.
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distinguish our work in this paper from the past results, we
called traditional ones maximum scan statistics. In [6], the
maximum and minimum scan statistics of a d-dimensional
Poisson point process over ½0; T �d were studies, and asymp-
totic upper bounds and lower bounds with scan sets of
volume oðTdÞ as T !1 were given. With “good” scanning
sets, the upper and lower bounds in the Erd}os-Rényi
regime where the average number of nodes covered by
scanning sets is with the order of �ðlnT Þ are asymptotically
tight. Note that in [6], the copy of scanning sets must be
fully contained in ½0; T �d. In [7], instead of ordinary
geometric aspects, coverage was defined by means of
Lebesgue integrable 0-1 functions, and it was proved that
the probability distribution of chromatic numbers of random
geometric graphs focuses on two consecutive integer
numbers. For more applications of scan statistics, readers
can refer to [8].

Let ID be a unit-area square or disk centered at the
origin, and X1; X2; . . . be independent and uniformly
distributed random points on ID. Let PoðnÞ be a Poisson
random variable with parameter n, independent of
fX1; X2; . . .g. Given a positive integer n, the point process
fX1; X2; . . . ; Xng is referred to as the uniform n-point process
and is denoted by Xn. Given a positive number n, the point
process fX1; X2; . . . ; XPoðnÞg is referred to as the Poisson
point process with mean n and is denoted by Pn. In the
following, Vn is shorthand for Pn and Xn. In this paper, we
assume that a wireless ad hoc and sensor network is
composed of homogeneous wireless devices represented by
Pn or Xn. Let rn be the transmission radius or sensing
radius given by n�r2

n ¼ ð� þ oð1ÞÞ lnn for some constant �.
The induced network topology is an rn-disk graph over Vn.
If � is fixed, rn decreases as n goes up. We remark that
although rn is scaled with respect to the parameter n, all
results in this paper can be scaled back to a standard unit
disk model, like the one used in [5], without too much effort
by applying the technique used in [9]. In addition, the
simplest method to interpret the model is by reading n�r2

n

as the average number of neighbors and � as a tunable
parameter for node densities.

In wireless ad hoc and sensor networks, many critical
properties are related to the node density of sparse regions.
Minimum scan statistics in some sense are correspondents
of the minimum node density. In this work, three variations
of minimum scan statistics will be studied, and asymptotics
in the Erd}os-Rényi regime will be derived. Those results
will be applied to various network problems, including
coverage of wireless sensor networks, connectivity of
wireless ad hoc networks, the largest edge length of
geometric structures, and local-minimum-free geographic
greedy routing.

Connectivity is one of the most extensively studied

properties in graph theory and also an essential require-

ment of wireless networks. For a given constant c, Dette and

Henze [10] showed that the probability of G ffiffiffiffiffiffiffi
lnnþc
n�

p ðXnÞ
containing no isolated nodes converges to the Gumbel

function expð�e�cÞ, and Penrose [11] further proved that

without isolated nodes, G ffiffiffiffiffiffiffi
lnnþc
n�

p ðVnÞ is almost surely con-

nected. In unreliable wireless networks, where nodes may

fail independently with the same probability p, Wan et al.

[3], [12], [13] reported that the probability of the event that

G ffiffiffiffiffiffiffi
lnnþc
pn�

p ðXnÞ is connected converges to expð�pe�cÞ. The k-

connectivity problems were studied in [2] and [4]. Let rn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnnþð2k�1Þ lnn lnþ�n

�n

q
for k � 1 and �n ¼ oðln lnnÞ. Then,

GrnðVnÞ is almost surely ðkþ 1Þ-connected if �n !1, and

almost surely not ðkþ 1Þ-connected if �n ! �1.

Coverage is a QoS metrics of wireless sensor networks.

In [5], a sufficient condition and a necessary condition for

k-coverage of randomly deployed wireless sensor networks

were derived to provide upper bounds for sensor network

lifetime. In [14], based on the techniques developed in [5],

it was proved that if the sensing radius is given by

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnnþð2kþ1Þ ln lnnþ�n

�n

q
with �n ¼ oðln lnnÞ for k � 0, then

the sensor field is almost surely ðkþ 1Þ-covered if �n !1,

and almost surely not ðkþ 1Þ-covered if �n ! �1.
In topology control of wireless ad hoc networks,

geometric structures, such as Gabriel graphs (GGs), relative
neighborhood graphs (RNGs), Yao’s graphs, and so forth,
are fundamental tools for link management and transmis-
sion power (or transmission radius) setting. The largest
edge length of geometric structures is a good reference to
the maximal transmission radius and, therefore, is an
important parameter for setting the maximal transmission
power in the hardware design stage. For a given geometric
structure, the largest edge length is called the critical
transmission radius for this structure.

Geographic greedy routing protocols are interesting due
to their advantages in distributed and localized implemen-
tation, but a major drawback is the existence of local
minima that may trap packets and cause deliverability
problems. To solve local minimum problems, besides
applying complicated remedy mechanisms to release
packets from local minima, we can significantly reduce or
even eliminate local minima by increasing the transmission
radius. However, to prevent energy waste and signal
interferences, a small transmission radius is preferred. The
smallest transmission radius for no existence of local
minima in the network is called the critical transmission
radius for geographic greedy routing.

In this paper, we derive several explicit asymptotic
formulas of minimum scan statistics in the Erd}os-Rényi
regime with respect to various boundary conditions and
then apply these results to many network problems. Our
major contributions include the following:

. Give an asymptotic formula of sensing radii for
�ðlnnÞ-coverage.

. Give an asymptotic formula of transmission radii for
�ðlnnÞ-connectivity.

. Give a threshold of the longest Gabriel graph edge.

. Give a threshold of the longest RNG edge.

. Give a threshold of transmission radii for local-
minimum-free greedy forward routing.
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. Give a threshold of the grid size for local-minimum-
free grid routing.

The rest of this paper is organized as follows: In Section 2,
we define the notations used in this paper and give a useful
probabilistic lemma. In Section 3, we give asymptotics of
minimum scan statistics. In Section 4, minimum scan
statistics are applied to several problems raised in wireless
ad hoc and sensor networks. Our conclusions are provided
in Section 5. Some complicated mathematical proofs are left
in the Appendix.

2 PRELIMINARIES AND TERMINOLOGIES

In what follows, the disk of radius r centered at x is denoted
by Bðx; rÞ. For a, b 2 IR2 and A, B � IR2, aþ b denotes the
addition of two vectors, and Aþ b ¼ faþ b : 8a 2 Ag. kxk is
the euclidean norm of a point x 2 IR2. jAj is shorthand for
the 2D area of a measurable set A � IR2. If A is a convex
compact set, mcA denotes the mass center of A. In addition,
for a positive real number c, we use cA to denote the set
fmcA þ cðx�mcAÞ : x 2 Ag. The diameter of a set A,
denoted as diamðAÞ, is the supreme of the distance between
any two points in the set, i.e., diamðAÞ ¼ supx;y2A kx� yk.
The symbols O, �, �, o, and 	 are defined in Table 1 and
always refer to the limit n!1. An event is said to be

asymptotic almost sure (a.a.s.) if it occurs with a probability

converging to one as n!1. RV is an acronym of random

variable. Table 1 lists notations used in this paper.
Let � be the function over ð0;1Þ defined by

�ð�Þ ¼ 1� �þ � ln�. A straightforward calculation yields

�0ð�Þ ¼ ln� and �00ð�Þ ¼ 1=�. Thus, � is strictly convex and

has the unique minimum zero at � ¼ 1 (see Fig. 1). Let ��1
� :

½0; 1Þ ! ð0; 1� be the inverse of the restriction of � to (0, 1].

We are interested in the equation � ¼ ��1
� ð1=�Þ, and the

graph of � ¼ ��1
� ð1=�Þ is depicted in Fig. 2. Define a

function L over ð0;1Þ by

Lð�Þ ¼ ���1
� ð1=�Þ; if � > 1;

0; otherwise:

�

L is a monotonic increasing function of �. The curve of Lð�Þ
is illustrated in Fig. 3.

The following lemma is related to the minimum of a

collection of Poisson RVs.

Lemma 1. Assume that limn!1
�n
lnn ¼ � for some constant � > 0.

Let Y1; Y2; . . . ; YIn be In Poisson RVs with means �n:

1. I f In ¼ oðn
ffiffiffiffiffiffiffiffi
lnn
p

Þ, t h e n f o r a n y �0 2 ð0; �Þ,
mini¼1;...;In Yi � Lð�0Þ lnn a.a.s.

2. I f In ¼ Oð
ffiffiffiffiffiffi
n

lnn

p
Þ, t h e n f o r a n y �0 2 ð0; �Þ,

mini¼1;...;In Yi � 1
2Lð2�0Þ lnn a.a.s.

3. If Y1; Y2; . . . ; YIn are independent and In ¼ �ð nlnnÞ,
then for any �0 2 ð�;1Þ, mini¼1;...;In Yi 
 Lð�0Þ lnn
a.a.s.

4. If Y1; Y2; . . . ; YIn are independent and In ¼ �ð
ffiffiffiffiffiffi
n

lnn

p
Þ,

then for any �0 2 ð�;1Þ, mini¼1;...;In Yi 
 1
2Lð2�0Þ lnn

a.a.s.

Proof. A proof is given in Appendix A. tu
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Notations

Fig. 1. �ð�Þ ¼ 1þ � ln�� �.

Fig. 2. The curve is of � ¼ ��1
� ð1=�Þ, and � ¼ 1 is the asymptotics as

� !1.

Fig. 3. The curve is of Lð�Þ.



3 MINIMUM SCAN STATISTICS

In what follows, Cn denotes a collection of convex compact

sets, and there exist constants � and c0 such that for any

Cn 2 Cn, njCnj ¼ ð� þ oð1ÞÞ lnn and diamðCnÞ 
 c0

ffiffiffiffiffiffiffiffiffi
jCnj

p
.

According to the isodiametric inequality [23], [24], [25], we

have jCnj 
 1
4�ðdiamðCnÞÞ

2. Hence, diamðCnÞ ¼ �ð
ffiffiffiffiffiffiffiffiffi
jCnj

p
Þ ¼

�ð
ffiffiffiffiffiffi
lnn
n

q
Þ. In this paper, there are three variations of

minimum scan statistics depending on additional con-

straints on scanning sets to be studied.
First, we consider the case in which each copy of Cn is

fully contained in ID. Let

Sm1ðV ;CÞ ¼ min
C0ffiC;C0�ID

#ðV \ C0Þ; and

Sm1ðVn;CnÞ ¼ min
Cn2Cn

Sm1ðVn; CnÞ:

We have the following theorem.

Theorem 2. For the asymptotics of Sm1ðVn;CnÞ, it is almost
sure that

Pr
Sm1ðVn;CnÞ

lnn
	 Lð�Þ

� �
! 1:

Furthermore, if � < 1, we almost surely have

Pr Sm1ðVn;CnÞ ¼ 0½ � ! 1:

Note that Sm1 is the case studied by Auer and Hornik [6],
and Theorem 2 is consistent with the results in [6]. We also
remark that if toroidal metrics is applied, we can have the
same asymptotics even if C0 is allowed not to be contained
in ID. So, the asymptotics can be applied to network models
using toroidal metrics. In grid routing, the square deploy-
ment region is tessellated into equal-size square cells. To
eliminate local minima, we set the grid set large enough
such that all cells are nonempty. In Section 4.3, Theorem 2
will be applied to find the critical grid size.

Next, we consider the case in which each copy of Cn is
with at least one half of its area contained in ID. Let

Sm2ðV ;CÞ ¼ min
C0ffiC;jC0\IDj�1

2jC0 j
#ðV \ C0Þ; and

Sm2ðVn;CnÞ ¼ min
Cn2Cn

Sm2ðVn; CnÞ:

We have the following theorem.

Theorem 3. For the asymptotics of Sm2ðVn;CnÞ, it is almost
sure that

Pr
Sm2ðVn;CnÞ

lnn
	 1

2
Lð�Þ

� �
! 1:

Furthermore, if � < 1, we almost surely have

Pr Sm2ðVn;CnÞ ¼ 0½ � ! 1:

In GGs and RNGs, each edge involves two nodes and
there exists an empty region related to this edge. In
Section 4.2, to find the largest edge length, we find the
maximal size of a corresponding empty region instead by
applying Theorem 3. Similarly, a local minimum in greedy

forward routing is associated with an empty lens area. In
Section 4.3, Theorem 3 will be applied to find the critical
transmission radius for local-minimum-free greedy forward
routing.

Last, we consider the case in which Cn is a collection of
disks and each copy of scanning disks has its center in ID.
Without loss of generality, we may assume that the center of
Cn 2 Cn is at the origin. For such a disk C, let

Sm3ðV ;CÞ ¼ min
a2ID

# V \ ðC þ aÞð Þ;

and

Sm3ðVn;CnÞ ¼ min
Cn2Cn

Sm3ðVn; CnÞ:

We have the following theorem.

Theorem 4. For the asymptotics of Sm3ðVn;CnÞ, we have

1. If ID is a unit-area square, it is almost sure that

Pr
Sm3ðVn;CnÞ

lnn
	 min

1

2
Lð�Þ; 1

4
�

� �� �
! 1:

2. If ID is a unit-area disk, it is almost sure that

Pr
Sm3ðVn;CnÞ

lnn
	 1

2
Lð�Þ

� �
! 1:

3. For any � < 1, we almost surely have

Pr Sm3ðVn;CnÞ ¼ 0½ � ! 1:

The degree of a node is the number of other nodes in the
r-disk centered at this node, and the coverage of a point is
the number of nodes in the r-disk centered at this point.
Both concepts are related to a disk with its center in the
deployment region, so we apply Theorem 4 to both
problems. Details will be given in Section 4.

To avoid falling in complicated mathematical reasoning,
we leave proofs of Theorems 2, 3, and 4 in Appendix C. In the
following section, various applications of minimum scan
statistics will be discussed. Once again, we emphasize that if
the rn-disk graph model is scaled back to the UDG model,
n�r2

n can be read as the average number of neighbors, and �
somehow is proportional to the node density.

4 TOPOLOGY EVOLUTION OF WIRELESS AD HOC

AND SENSOR NETWORKS

Minimum scan statistics have a wide range of applications
in the research of wireless ad hoc and sensor networks. For
example, coverage of wireless sensor networks can be
approximated by minimum scan statistics. A sensor system
is said to k-cover the deployment region if every point in the
deployment region can be monitored by at least k sensors.
Here, k is an application-dependent QoS requirement. For
instance, in an object tracking system applying triangulation
methods, at least three sensors are needed to decide the
location of an object. Thus, 3-coverage is a requirement of
such a system. Assume each sensor can monitor the area
within distance r, i.e., an object at x can be detected by
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sensor u if x is in Bðu; rÞ. If V denote the set of sensors,

we have

coverage ¼ min
x2ID

# u 2 V : x 2 Bðu; rÞf gð Þ

¼ min
x2ID

# u 2 V : u 2 Bðx; rÞf gð Þ

¼Sm3 V ;Bðo; rÞð Þ:

Hence, under this sensing model, coverage and the minimum

scan statistic in some sense are the same, and we can use

Theorem 4 to approximate the coverage of sensor networks.

Especially, if � > 1, ID is a.a.s. �ðlnnÞ-covered, and if � < 1,

there a.a.s. exists uncovered area. Hence, � ¼ 1 is the

threshold for sensing coverage. Note that although the

boundary effects are not explicitly considered here, they are

implicitly handled by the definition of Sm3.

A graph property is called monotone increasing if all

supergraphs of a graph with these properties also have

these properties as well. Assume rn ¼ ð� þ oð1ÞÞ
ffiffiffiffiffiffi
lnn
�n

q
for

some constant � > 0. A constant � is the threshold of a

monotone-increasing property Q if GrnðVnÞ a.a.s. has Q for

any � > � and GrnðVnÞ a.a.s. does not have Q for any � < �.

In the rest of this section, based on minimum scan statistics,

we will point out the thresholds of several important

topological properties in wireless networks. For conveni-

ence, let �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð23�

ffiffi
3
p

2�Þ
q

� 1:6 in the following discussion.

4.1 The Minimum Degree and Connectivity

The minimum degree of a graph G, denoted by 	ðGÞ, is the

minimum nodal degree over all nodes. In r-disk graphs, the

degree of node u is the number of nodes in Bðu; rÞ minus 1.

Hence,

	 GrnðVnÞð Þ ¼ min
u2Vn

degðuÞ

¼ min
u2Vn

# Vn \Bðu; rnÞð Þ � 1

�Sm3 Vn; Bðo; rnÞð Þ � 1:

If we can further prove that 	ðGrnðVnÞÞ is asymptotically

upper bounded by Sm3ðVn; Bðo; ð1þ "ÞrnÞÞ for any given

" > 0, then 	ðGrnðVnÞÞ can be approximated by

Sm3ðVn; Bðo; rÞÞ.
First, consider � � 1. By Theorem 4, for a given " > 0,

there a.a.s. exists a ð1þ "Þrn-disk with center in ID covering

Sm3ðVn; Bðo; ð1þ "ÞrnÞÞ nodes. Draw a concentric "rn-disk

of this ð1þ "Þrn-disk. The number of nodes in the "rn-disk is

a binomial RV, and it is a.a.s. that at least one node is in the

"rn-disk. For those nodes in the "rn-disk, their nodal

degrees are less than the number of nodes in the

ð1þ "Þrn-disk, i.e., Sm3ðVn; Bðo; ð1þ "ÞrnÞÞ. So, for any � �
1 and " > 0, it is a.a.s. that

	 GrnðVnÞð Þ 
 Sm3 Vn; B o; ð1þ "Þrnð Þð Þ:

Now, consider � < 1. According to [10, Theorem 1.2] and

[15, Theorem 9], it is a.a.s. that 	ðGrnðVnÞÞ ¼ 0. Hence, we

have the following theorem.

Theorem 5. Assume rn ¼ ð� þ oð1ÞÞ
ffiffiffiffiffiffi
lnn
�n

q
for some constant

� > 0. We have

Pr
	 GrnðVnÞð Þ

lnn
	 Sm3 Vn; Bðo; rnÞð Þ

lnn

� �
! 1:

It is known that a random geometric graph is a.a.s. k-
connected if its minimum degree is k [2]. Therefore, the
connectivity of wireless networks can also be estimated by Sm3.
In addition, if � > 1, GrnðVnÞ is a.a.s. �ðlnnÞ-connected; and
if � < 1, GrnðVnÞ is a.a.s. disconnected. Therefore, � ¼ 1 is the
threshold for connectivity.

4.2 The Longest Edges of Geometric Structures

Geometric structures such as euclidean minimal spanning
trees, RNGs [16], GGs [17], Yao’s graphs, and Delauney
triangulations are widely used in topology control of
wireless ad hoc networks [18], [19], [20]. The largest edge
lengths of these structures are good references to the
configuration of the maximal transmission radius.

4.2.1 Gabriel Graphs

Two nodes u, v have a Gabriel edge between them

whenever the disk with segment uv as a diameter contains

no other nodes. In addition, since u, v is in ID, the disk has at

least half of its area in ID. Let 
GGðV Þ denote the largest edge

length of the GG over V . According to Theorem 3, a disk

with diameter larger than ð1þ "Þ2
ffiffiffiffiffiffi
lnn
�n

q
for some positive

constant " almost surely contains some nodes. This implies


GGðPnÞ 
 ð1þ "Þ2
ffiffiffiffiffiffiffiffi
lnn

�n

r
:

It was further proved in [21] that for any constant " > 0,

lim
n!1

Pr 1� " 
 
GGðPnÞ

2
ffiffiffiffiffiffi
lnn
�n

q 
 1þ "

2
64

3
75 ¼ 1:

So, � ¼ 2 is the threshold of the longest GG edge.

4.2.2 Relative Neighborhood Graphs

If u and v are two nodes, let Luv denote the lens of

Bðu; ku� vkÞ \Bðv; ku� vkÞ. The segment uv is called the

waist ofLuv. We have jLuvj ¼ �ðku�vk�0
Þ2. In RNGs, two nodesu,

v have an edge between them if and only if there are no other

nodes in Luv. Let 
RNGðV Þ denote the largest edge length of

the RNG over V . According to Theorem 3, any lens whose

waist length is larger than ð1þ "Þ�0

ffiffiffiffiffiffi
lnn
�n

q
for some positive

constant " a.a.s. is not empty. This implies


RNGðPnÞ 
 ð1þ "Þ�0

ffiffiffiffiffiffiffiffi
lnn

�n

r
:

Furthermore, the following theorem can be proved.

Theorem 6. For any constant " > 0, we have

lim
n!1

Pr 1� " 
 
RNGðPnÞ

�0

ffiffiffiffiffiffi
lnn
�n

q 
 1þ "

2
64

3
75 ¼ 1:

So, � ¼ �0 is the threshold of the longest RNG edge.

YI: A UNIFIED ANALYTIC FRAMEWORK BASED ON MINIMUM SCAN STATISTICS FOR WIRELESS AD HOC AND SENSOR NETWORKS 1237



4.3 Local-Minimum-Free Geographic Greedy
Routing

Geographic greedy routing protocols such as greedy
forward routing and grid routing are widely used in
wireless ad hoc and sensor networks. However, being
greedy algorithms, those routing protocols are suffered
from the local minimum problem.

4.3.1 Greedy Forward Routing

In greedy forward routing, each node discards a packet if
none of its neighbors is closer to the destination of the
packet than itself, or otherwise forward the packet to the
neighbor closest to the destination. Packets are discarded at
local minima, and thus deliverability is not guaranteed. To
remove local minima, all nodes should have sufficiently
large transmission radii. Let 
GFRðV Þ denote the smallest
transmission radius such that there do not exist local
minima in the network. 
GFRðV Þ is called the critical
transmission radius for (local-minimum-free) greedy for-
ward routing.

Let transmission radius rn ¼ ð� þ oð1ÞÞ
ffiffiffiffiffiffi
lnn
�n

q
for some

� > 0. For any pair of nodes u and v, assume u has packets

for v. If ku� vk 
 rn, of course, packets can be transmitted

from u to v. If ku� vk > rn, let w denote the intersection

point of the circle of radius rn centered at u and the segment

uv. Since jLuwj ¼ �ðku�wk�0
Þ2 ¼ ð ��0

þ oð1ÞÞ lnn
n , according to

Theorem 3, there a.a.s. exist nodes in Luw. Since nodes in

Luw are neighbors of u and closer to v than u, u is not a local

minimum with respect to v. Therefore, there do not exist

local minima in the network. In other words,


GFRðPnÞ 
 ð1þ "Þ�0

ffiffiffiffiffiffiffiffi
lnn

�n

r
:

It was further proved in [22] that

lim
n!1

Pr 1� " < 
GFR Pnð Þ

�0

ffiffiffiffiffiffi
lnn
�n

q 
 1þ "

2
64

3
75 ¼ 1:

So, � ¼ �0 is the threshold of the critical transmission radius
for greedy forward routing.

4.3.2 Grid Routing

In grid routing, the plane is tessellated into equal-size
square cells. Two cells are called neighboring cells if they
share a common edge. For a source-destination pair, the cell
containing the source node is called the source cell, and the
cell containing the destination node is called the destination
cell. In addition, the routing distance is defined as the
Manhattan distance between the source and destination
cells. A packet is directly transmitted from the source node
to the destination node if they are in the same cell;
otherwise, the packet is relayed by a node in neighboring
cells that are closer to the destination cell. Let l denote the
size (edge length) of a cell. Then,

ffiffiffi
5
p

l is the transmission
radius such that two nodes in neighboring cells can
communicate with each other.

A node is a local minimum (with respect to a given
destination node) if there do not exist neighbors in
neighboring cells that are closer to the destination cell. If
the transmission radius is at least

ffiffiffi
5
p

l and every cell contains

at least one node, the network is local-minimum-free. Let
Nn ¼ d1�

ffiffiffiffiffiffi
n

lnn

p
e for some constant � and ln ¼ 1

Nn
. Tessellate the

deployment region ID into N2
n square cells with length ln.

According to Theorem 2, if � > 1, every cell contains at least
one node. Hence, if rn �

ffiffiffi
5
p

ln, the network is a.a.s. local-
minimum-free. We have the following theorem.

Theorem 7. Let ln ¼ ð� þ oð1ÞÞ
ffiffiffiffiffiffi
lnn
n

q
for some � > 0 and

rn ¼
ffiffiffi
5
p

ln. If � > 1, the network is a.a.s. local-minimum-free.

4.4 Evolution of Wireless Ad Hoc Networks

For a set of homogeneous wireless devices, by setting
transmission radii large enough, the underlying network
topology can have desired properties. However, the maximal
transmission radius is specified by the hardware. Hence,
threshold information is important in the design of wireless
systems in order to fully utilize hardware limitations. In this
section, we have obtained the thresholds of several network
properties. By lining up those thresholds in increasing
order, we can see the evolution of network topology. Let
�Q denote the threshold for property Q. Currently, we
have �Con ¼ �Cov ¼ 1, �RNG ¼ �GFR ¼ �0 � 1:6, and �GG ¼ 2.

Although �Con ¼ �Cov, for a connected wireless sensor

network, the sensing radius is usually set to two times of the

transmission radius in order to guarantee the coverage.

Similarly, although �RNG ¼ �GFR, there exist some inherent

differences between the longest RNG edge problem and the

local-minimum-free GFR problem. Actually, for the same set

of nodes, the critical transmission radius for RNG is no more

than the critical transmission radius for GFR. Those differ-

ences cannot be distinguished in the resolution of order lnn.

As a future work, it is worth to study those problems under a

finer resolution. Especially, we are interested in the transition

at each threshold. For example, for properties Q, we

may consider the radius given in the form of rn ¼ �Q
ffiffiffiffiffiffiffiffiffiffi
lnnþ�
n�

q
or even rn ¼ �Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnnþc ln lnnþ�

n�

q
.

5 CONCLUSIONS AND FUTURE WORKS

In this paper, an analytic tool called minimum scan statistics
is introduced. Corresponding to various boundary condi-
tions, three almost sure asymptotics of minimum scan
statistics are derived. These results can be applied to several
problems raised in the research of wireless ad hoc and
sensor networks, including coverage of wireless sensor
systems, connectivity of wireless ad hoc networks, local-
minimum-free geographic greedy routing, and the largest
edge length of geometric structures. In most previous works,
analyses only focused on some particular critical points of
transmission radii. On the contrary, our results reveal full
line evolution of network topology in the resolution of
�ðlnnÞ average number of neighbors. Moreover, instead of
applying techniques like toroidal metrics to avoid boundary
effects, we explicitly and carefully handle boundary effects.
This helps us to find fundamental differences between
deployments over disk regions and square regions.

Although minimum scan statistics provide a big picture
of network topology evolution, more works are needed in
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the future. First, the works given in this paper are in the

resolution of �ðlnnÞ, but as pointed out in Section 4.4, it is

necessary to study related problems in finer resolutions.

Second, disk models are idealized but not realistic. We

should relax our assumptions and consider more general-

ized channel models. Third, the works given in this paper

are purely analytical. We ought to consider related issues

from application perspectives. The impact of imprecise

location information should also be carefully evaluated.

APPENDIX A

THE MINIMUM OF A COLLECTION OF POISSON RVs

This section is dedicated to the proof of Lemma 1. For any

positive integer n, the factorial of n, n! ¼ 1 � 2 � � �n, is

estimated by Sterling’s formula

n! 	 ð2�nÞ
1
2nne�n: ð1Þ

Since

Pr Poð�Þ ¼ k� 1½ �
Pr Poð�Þ ¼ k½ � ¼

�k�1

ðk�1Þ! e
��

�k

k! e
��
¼ k

�
;

for any � 2 ð0; 1Þ, as �!1, the lower tail distribution of a

Poisson RV can be given by

Pr Poð�Þ 
 ��½ � ¼
X0

k¼��
Pr Poð�Þ ¼ k½ �

¼
X��
k¼0

k! ��
k

� 	
�k

Pr Poð�Þ ¼ ��½ �

	
X��
k¼0

ð��Þk

�k
Pr Poð�Þ ¼ ��½ �

	 1

1� �Pr Poð�Þ ¼ ��½ �:

ð2Þ

We further have the following lemma. Remind that

functions � and ��1
� have been defined in Section 2.

Lemma 8. For any � 2 ð0; 1Þ, as �!1,

Pr Poð�Þ 
 ��½ � 	 1ffiffiffiffiffiffi
2�
p 1ffiffiffi

�
p ð1� �Þ

1ffiffiffi
�
p e���ð�Þ:

Proof. From (2) and then applying (1), we have

Pr Poð�Þ 
 ��½ � 	 1

1� �
���

ð��Þ! e
��

	 1

1� �
���ffiffiffiffiffiffiffiffiffiffiffi

2���
p

ð��Þ��e���
e��

¼ 1

1� �
1ffiffiffiffiffiffiffiffiffiffiffi

2���
p

���
e��þ��

¼ 1

1� �
1ffiffiffiffiffiffiffiffiffiffiffi

2���
p e��þ����� ln�

¼ 1ffiffiffiffiffiffi
2�
p 1ffiffiffi

�
p ð1� �Þ

1ffiffiffi
�
p e��ð1��þ� ln�Þ

¼ 1ffiffiffiffiffiffi
2�
p 1ffiffiffi

�
p ð1� �Þ

1ffiffiffi
�
p e���ð�Þ:

Thus, the lemma is proved. tu

The next lemma gives a.a.s. bounds for the minimum of a
collection of Poisson RVs.

Lemma 9. Assume that limn!1
�n
lnn ¼ � for some � > 0. Let

Y1; Y2; . . . ; YIn be In Poisson RVs with means �n:

1. I f In ¼ oðn
ffiffiffiffiffiffiffiffi
lnn
p

Þ and � > 1, t hen fo r any
0 < � < ��1

� ð1=�Þ, mini¼1;...;In Yi > ��n a.a.s.
2. I f In ¼ Oð

ffiffiffiffiffiffi
n

lnn

p
Þ a n d � > 1

2 , t h e n f o r a n y

0 < � < ��1
� ð 1

2�Þ, mini¼1;...;In Yi > ��n a.a.s.
3. If Y1; Y2; . . . ; YIn are independent and In ¼ �ð nlnnÞ,

then for any � such that 1) ��1
� ð1=�Þ < � < 1 if

� > 1, 2) 0 < � < 1 if � ¼ 1, or 3) � ¼ 0 if � < 1, it
is a.a.s. that mini¼1;...;In Yi 
 ��n.

4. If Y1; Y2; . . . ; YIn are independent and In ¼ �ð
ffiffiffiffiffiffi
n

lnn

p
Þ,

then for any � such that 1) ��1
� ð 1

2�Þ < � < 1 if � > 1
2 ,

2) 0 < � < 1 if � ¼ 1
2 , or 3) � ¼ 0 if � < 1

2 , it is a.a.s.

that mini¼1;...;In Yi 
 ��n.

Proof. First of all, we conduct two inequalities. Let Y be a
Poisson RV with mean �n, Xi be the indicator of the
event Yi 
 ��n, and X ¼ X1 þ � � � þXIn . Then, Xi is a
Bernoulli RV with probability Pr½Yi 
 ��n�, and
minIni¼1 Yi 
 ��n if and only if X � 1. Thus,

Pr min
In

i¼1
Yi 
 ��n

� �
¼ Pr½X � 1� 
 E½X�

¼
XIn
i¼1

E½Xi� ¼ In Pr½Y 
 ��n�:
ð3Þ

In addition, by Lemma 8,

In Pr½Y 
 ��n� 	 In
1ffiffiffiffiffiffi
2�
p 1ffiffiffi

�
p ð1� �Þ

1ffiffiffiffiffi
�n
p e��n�ð�Þ

	 1ffiffiffiffiffiffiffiffiffiffiffi
2���
p

ð1� �Þ
Inffiffiffiffiffiffiffiffi

lnn
p

n�ð�n= lnnÞ�ð�Þ
:

ð4Þ

Assume that In ¼ oðn
ffiffiffiffiffiffiffiffi
lnn
p

Þ and 0 < � < ��1
� ð1=�Þ.

From (3) and (4),

Pr min
In

i¼1
Yi 
 ��n

� �
	<

1ffiffiffiffiffiffiffiffiffiffiffi
2���
p

ð1� �Þ
In

n
ffiffiffiffiffiffiffiffi
lnn
p n1�ð�n= lnnÞ�ð�Þ:

Since � is decreasing over (0, 1] and 0 < � < ��1
� ð1=�Þ,

we have �ð�Þ > 1=� and

1� ð�n= lnnÞ�ð�Þ ! 1� ��ð�Þ < 0:

Thus,

Pr min
In

i¼1
Yi 
 ��n

� �
¼ oð1Þ:

So, Lemma 9 (condition 1) is proved.
Similarly, if In ¼ Oð

ffiffiffiffiffiffi
n

lnn

p
Þ and 0 < � < ��1

� ð 1
2�Þ, we

have

Pr min
In

i¼1
Yi 
 ��n

� �
	<

1ffiffiffiffiffiffiffiffiffiffiffi
2���
p

ð1� �Þ
Inffiffiffiffiffiffiffiffiffiffiffiffi
n lnn
p n1=2�ð�n= lnnÞ�ð�Þ;

and

1=2� ð�n= lnnÞ�ð�Þ ! 1=2� ��ð�Þ < 0:
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Thus,

Pr min
In

i¼1
Yi 
 ��n

� �
¼ oð1Þ:

So, Lemma 9 (condition 2) is proved.
Now, assume Yi’s are independent. Then,

Pr min
In

i¼1
Yi 
 ��n

� �
¼ 1� Pr min

In

i¼1
Yi > ��n

� �

¼ 1�
YIn
i¼1

Pr½Yi > ��n�

¼ 1�
YIn
i¼1

1� Pr½Yi 
 ��n�ð Þ

¼ 1� 1� Pr½Y 
 ��n�ð ÞIn

� 1� e�Pr½Y
��n�

 �In

¼ 1� e�In Pr½Y
��n�:

If In ¼ �ð nlnnÞ, by (4),

In Pr½Y 
 ��n� 	
1ffiffiffiffiffiffiffiffiffiffiffi

2���
p

ð1� �Þ
In

n
ffiffiffiffiffiffiffiffi
lnn
p n1�ð�n= lnnÞ�ð�Þ:

For any � such that either 1) ��1
� ð1=�Þ < � < 1 if � > 1

or 2) 0 < � < 1 if � ¼ 1, since 1� ð�n= lnnÞ�ð�Þ !
1� ��ð�Þ > 0, we have

In Pr½Y � ��� ! 1:

In addition, if � < 1 and � ¼ 0,

In Pr½Y 
 ��� ¼ In Pr½Y ¼ 0�

¼�
n

lnn


 �
e�� lnn !1:

So,

Pr min
In

i¼1
Yi 
 ��n

� �
! 1:

Thus, Lemma 9 (condition 3) is proved.
Assume Yi’s are independent and In ¼ �ð

ffiffiffiffiffiffi
n

lnn

p
Þ.

Similarly, for any � such that 1) ��1
� ð 1

2�Þ < � < 1 if
� > 1

2 , 2) 0 < � < 1 if � ¼ 1
2 , or 3) � ¼ 0 if � < 1

2 , we have

In Pr½Y 
 ��n� ! 1;

and

Pr min
In

i¼1
Yi 
 ��n

� �
� 1� e�In Pr½Y
��n� ! 1:

So, Lemma 9 (condition 4) is proved. tu
Based on Lemma 9, we give the proof of Lemma 1.

Proof of Lemma 1. Consider the first case in which
In ¼ oðn

ffiffiffiffiffiffiffiffi
lnn
p

Þ. If �0 > 1, let � ¼ ��1
� ð1=�0Þ. Then,

� < ��1
� ð1=�Þ. From Lemma 9 (condition 1), it is

a.a.s. that

min
In

i¼1
Yi > ��n ¼��1

� ð1=�0Þ� lnn

>��1
� ð1=�0Þ�0 lnn ¼ Lð�0Þ lnn:

If 0 < �0 
 1, Lð�0Þ ¼ 0. Obviously, minIni¼1 Yi � Lð�0Þ lnn.

So, Lemma 1 (condition 1) is proved.
Next, consider the second case in which In ¼ Oð

ffiffiffiffiffiffi
n

lnn

p
Þ.

If �0 > 1
2 , let � ¼ ��1

� ð 1
2�0Þ. Then, � < ��1

� ð 1
2�Þ. From

Lemma 9 (condition 2), it is a.a.s. that

min
In

i¼1
Yi > ��n ¼��1

�
1

2�0

� �
� lnn

>
1

2
��1
�

1

2�0

� �
2�0ð Þ lnn ¼ 1

2
Lð2�0Þ lnn:

I f 0 < �0 
 1
2 , Lð2�0Þ ¼ 0. O b v i o u s l y , minIni¼1 Yi �

1
2Lð2�0Þ lnn. So, Lemma 1 (condition 2) is proved.

Now, consider the third case in which Y1; Y2; . . . ; YIn are
independent and In ¼ �ð nlnnÞ. If � > 1, let � ¼ ��1

� ð1=�0Þ.
We have 1 > � > ��1

� ð1=�Þ. From Lemma 9 (condition 3), it
is a.a.s. that

min
In

i¼1
Yi 
 ��n ¼��1

� ð1=�0Þ� lnn

<��1
� ð1=�0Þ�0 lnn ¼ Lð�0Þ lnn:

If � ¼ 1, let � ¼ ��1
� ð1=�0Þ. We have 1 > � > 0. From

Lemma 9 (condition 3), it is a.a.s. that

min
In

i¼1
Yi 
 ��n ¼��1

� ð1=�0Þ� lnn

<��1
� ð1=�0Þ�0 lnn ¼ Lð�0Þ lnn:

If � < 1, let � ¼ 0. From Lemma 9 (condition 3), it is

a.a.s. that

min
In

i¼1
Yi ¼ 0 
 Lð�0Þ lnn:

So, Lemma 1 (condition 3) is proved.
Finally, consider the last case in which Y1; Y2; . . . ; YIn

are independent and In ¼ �ð
ffiffiffiffiffiffi
n

lnn

p
Þ. Similarly, if � � 1

2 , let
� ¼ ��1

� ð 1
2�0Þ; and if � < 1

2 , let � ¼ 0. No matter which one,
from Lemma 9 (condition 4), it is a.a.s. that

min
In

i¼1
Yi 


1

2
Lð2�0Þ lnn:

So, Lemma 1 (condition 4) is proved. tu

APPENDIX B

GEOMETRIC PRELIMINARIES

To prove Theorems 2, 3, and 4, we need more geometric

techniques.

B.1 Partition of Deployment Regions

If ID is a unit-area square, it is partitioned into IDrð0Þ, IDrð1Þ,
and IDrð2Þ according to r. IDrð0Þ consists of all points in ID

apart from @ID by at least r, IDrð1Þ consists of all points in ID

apart from some side of ID by less than r and from all other

sides by at least r, and IDrð2Þ consists of the rest points in ID

(see Fig. 4).
If ID is a unit-area disk, it is partitioned into IDrð0Þ and

IDrð1Þ according to r. IDrð0Þ ¼ Bðo; 1ffiffi
�
p � rÞ is a disk

consisting of all points in ID apart from @ID by at least r,
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and IDrð1Þ ¼ ID n IDrð0Þ is an annulus centered at o with
radii 1ffiffi

�
p � r and 1ffiffi

�
p (see Fig. 5).

B.2 Isodiametric Inequalities

Assume C � IR2 is a convex compact set. The r-
neighborhood of C, denoted as Cr, is the union of all r-disks

with centers in C, i.e., Cr ¼
S
x2C Bðx; rÞ. We use C�r to

denote the set of points of C that are apart from @C by at
least r and use periðCÞ to denote the perimeter of C.
According to the isodiametric inequality [23], [24], [25], the

disk of diameter d has the largest area 1
4�d

2 over all
measurable sets with diameter d and also has the longest
perimeter �d over all convex compact sets with diameter d.

Lemma 10. Suppose that C � IR2 is a convex compact set with

diameter at most d. We have

jCt � Cj < �dtþ �t2 and jC�tj � jCj � �dt:

Proof. We will explicitly prove the inequalities for C being a
polygon. If C is a convex compact set, the lemma can be
proved by applying the fact that C can be approximated
by a sequence of polygons contained in C. Thus, we

assume C is a polygon.
First, we prove jCt � Cj < �dtþ �t2. At each vertex of

C, draw two perpendicular lines to the edges of C. The
area Ct � C is divided into disjoint rectangles and sectors
(see Fig. 6). All rectangles are with the same width t, and
the sum of their length is equal to the perimeter of C. All
sectors (marked by x in Fig. 6) are with radius t, and
since the angle of each sector is supplementary to its
interior angle, the sum of their angles is equal to 2�. Let l
denote the perimeter of C, then jCt � Cj ¼ ltþ �t2. For

diamðCÞ 
 d, we have l < �d [25]. So, the inequality
follows.

Now, we prove jC�tj � jCj � �dt. For each edge of C,
draw a rectangle by it with width t toward the inner of C.
Since C � C�t is fully covered by these rectangles, we
have jC�tj � jCj � periðCÞt. For all compact sets with
diameter d, we have periðCÞ < �d. Thus, jC�rj � jCj �
�dt is proved. tu

B.3 Tessellations

A "-tessellation divides the plane by vertical and horizontal
lines into a grid in which each grid cell has width ". Without
loss of generality, we assume the origin is a corner of some
cells. In a tessellation, a polyquadrate is a collection of cells
intersecting with a convex compact set. For example, in
Fig. 7, the shaded cells form a polyquadrate induced by a
polygon. The horizontal span of a polyquadrate is the
horizontal distance measured in the number of cells from
the left to the right. The vertical span of a polyquadrate is
defined similarly but in the vertical direction. If the
diameter of a polygon is d, the span of the corresponding
polyquadrate in a "-tessellation is at most dd"e þ 1.

Lemma 11. Let S be a region composed of m cells. For a positive
constant integer � , the number of polyquadrates with span at
most � and intersecting with S is �ðmÞ.

Proof. For a specified cell, since � is a constant, the number
of polyquadrates that contain the cell and have span at
most � is also a constant (depending on �). For each cell
in S, the number of polyquadrates that contain the cell
and have span at most � is �ð1Þ. Since there are m cells in
S, the total number of polyquadrates with span at most �
and intersecting with S is �ðmÞ. tu
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Fig. 4. Partition of the unit-area square ID.

Fig. 5. Partition of the unit-area disk ID.

Fig. 6. Ct � C is the shaded area, composed of rectangles and sectors.

Fig. 7. The cells intersecting with the polygon form a polyquadrate.



APPENDIX C

PROOFS OF THEOREMS 2, 3, AND 4

First, we focus only on Poisson point processes. So, in
Appendices C.1, C.2, and C.3, all lemmas are on Pn.
Then, applying a de-Poissonization technique given in
Appendix C.4, we can extend results to uniform point
processes.

C.1 Proof of Theorem 2

Lemma 12. For any constant �0 2 ð�;1Þ, it is almost sure that

Pr Sm1ðPn;CnÞ 
 Lð�0Þ lnn½ � ! 1:

Especially, if � < 1, we almost surely have

Pr Sm1ðVn;CnÞ ¼ 0½ � ! 1:

Proof. For any Cn 2 Cn, let In be the number of copies of

Cn that can be packed into ID, and Yi denote the number

of nodes in the ith copy of Cn. Then, Y1; Y2; . . . ; YIn
are i.i.d. Poisson RVs with rate � lnn, and Sm1ðVn;CnÞ 

min1
i
In Yi. We can tile �ð nlnnÞ squares with edge length

c0

ffiffiffiffiffiffiffiffiffi
jCnj

p
in ID and then place one copy of Cn in each

square. These copies of Cn are pairwise disjoint. Thus,

In ¼ �ð nlnnÞ. By Lemma 1 (condition 3), we have

Sm1ðPn;CnÞ 
 min
1
i
In

Yi 
 Lð�0Þ lnn:

Note that if � < 1, we may choose a �0 2 ð�; 1Þ. Since
Lð�0Þ ¼ 0, Sm1ðPn;CnÞ ¼ 0 is a.a.s. implied. Thus, the
lemma is proved. tu

Lemma 13. For any constant 0 < �0 < �, it is almost sure that

Pr Sm1ðPn;CnÞ � Lð�0Þ lnn½ � ! 1:

Proof. Let rn be the inferior over any Cn 2 Cn of the

(smallest) distance from the mass center of Cn to @Cn.

First of all, we prove that rn ¼ �ð
ffiffiffiffiffiffi
lnn
n

q
Þ. Let a denote the

mass center of Cn and b be a point in @Cn such that

ka� bk ¼ rn. Draw two lines l1 and l2 that are perpendi-

cular to ab and through a and b, respectively. Since a is

the mass center and Cn is convex, a half of Cn is between

l1 and l2. Draw two more lines l3 and l4 parallel with ab

such that l3 and l4 intersect with @Cn and Cn is between l3

and l4. Let cn denote the distance between l3 and l4. The

rectangle bounded by l1, l2, l3, and l4 contains one half of

Cn, s o rn � cn ¼ �ðlnnn Þ. S i n c e diamðCnÞ ¼ �ð
ffiffiffiffiffiffi
lnn
n

q
Þ,

we have cn ¼ Oð
ffiffiffiffiffiffi
lnn
n

q
Þ. This implies rn ¼ �ð

ffiffiffiffiffiffi
lnn
n

q
Þ. In

addition, rn 
 diamðCnÞ. Therefore, rn ¼ �ð
ffiffiffiffiffiffi
lnn
n

q
Þ is true.

Let "n ¼ 1ffiffi
2
p ð1�

ffiffiffi
�0

�

q
Þrn, and Mn ¼ ð1="nÞ2. Since �0 and �

are fixed, we have "n ¼ �ð
ffiffiffiffiffiffi
lnn
n

q
Þ, and Mn ¼ �ð nlnnÞ.

Divide ID by a "n-tessellation. The distance between any

two points in a cell is at most
ffiffiffi
2
p

"n. We claim that any copy

of Cn that is fully contained in ID must contain a

polyquadrate that is with span at most �ð1Þ and with area

at least ð�0 þ oð1ÞÞ lnn
n . LetA be a copy ofCn fully contained

in ID, and P be the maximal polyquadrate contained inA.

P contains
ffiffiffi
�0

�

q
A since the (smallest) distance between @A

and @
ffiffiffi
�0

�

q
A is at least ð1�

ffiffiffi
�0

�

q
Þrn ¼

ffiffiffi
2
p

"n. Thus,

jP j �

ffiffiffiffiffi
�0

�

s
A

�����
����� ¼ �

0

�
jCnj ¼ �0 þ oð1Þð Þ lnn

n
;

and the span of P is at most m ¼ ddiamðCnÞ"n
e þ 1 ¼ �ð1Þ,

asymptotically depending only on �, �0, and c0. In
addition, if Y is the number of nodes in P , Y is a Poisson
RV with rate at least ð�0 þ oð1ÞÞ lnn. So, our claim is true.
Now, consider all polyquadrates that are contained in ID
with span at most m and area at least ð�0 þ oð1ÞÞ lnn

n . Let
In denote the number of those polyquadrates, and Yi
denote the number of nodes in the ith polyquadrate.
Then, we have Sm1ðPn;CnÞ � minIni¼1 Yi. In addition,
from Lemma 11, In ¼ �ðMnÞ ¼ �ð nlnnÞ. Then, applying
Lemma 1 (condition 1), we a.a.s. have

Sm1ðPn;CnÞ � Lð�0Þ lnn:

Thus, the lemma is proved. tu
Theorem 2 is proved by Lemmas 12 and 13 and the de-

Poissonization technique given in Appendix C.4.

C.2 Proof of Theorem 3

Lemma 14. For any constant �0 2 ð�;1Þ, we have

Pr Sm2ðPn;CnÞ 

1

2
Lð�0Þ lnn

� �
! 1:

Especially, if � < 1, it is almost sure that

Pr Sm2ðPn;CnÞ ¼ 0½ � ! 1:

Proof. For any Cn 2 Cn, place pairwise disjoint copies of Cn

along the boundary of ID such that each of them has

exactly one half area in ID. Let In be the number of copies

of Cn, and Yi denote the number of nodes in the ith copy.

Then, Y1; Y2; . . . ; YIn are i.i.d. Poisson RVs with rate

ð12� þ oð1ÞÞ lnn. Since diamðCnÞ ¼ �ð
ffiffiffiffiffiffi
lnn
n

q
Þ for any

Cn 2 Cn, we may have In ¼ �ð
ffiffiffiffiffiffi
n

lnn

p
Þ. From Lemma 1

(condition 4), we have

Sm2ðPn;CnÞ 
 min
1
i
In

Yi 

1

2
Lð�0Þ lnn:

Furthermore, if � < 1, we may choose a �0 2 ð�; 1Þ, and
then Sm2ðPn;CnÞ ¼ 0 is a.a.s. implied. So, the lemma is
proved. tu

Lemma 15. For any constant 0 < �0 < �, we have

Pr Sm2ðPn;CnÞ >
1

2
Lð�0Þ lnn

� �
! 1:
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Proof. We will apply a similar argument used in the proof of

Lemma 13. Let rn be the inferior of the (smallest) distance

from the mass center of Cn to @Cn over all Cn 2 Cn, and

"n ¼ 1
2
ffiffi
2
p ð1�

ffiffiffi
�0

�

q
Þrn. W e h a v e rn ¼ �ð

ffiffiffiffiffiffi
lnn
n

q
Þ a n d

"n ¼ �ð
ffiffiffiffiffiffi
lnn
n

q
Þ. Divide ID by a "n-tessellation. Obviously,

the distance between any two points in a cell is at mostffiffiffi
2
p

"n. Consider the collection of polyquadrates each of

which is the maximal one contained in the intersection of

ID and a copy of Cn with at least half area in ID. Let In

denote the number of those polyquadrates, and Yi denote

the number of nodes in the ith polyquadrate. Then,

Sm2ðPn;CnÞ � min
1
i
In

Yi:

Y1; Y2; . . . ; YIn are categorized into two groups. First, we

consider polyquadrates that are contained in copies of Cn
fully contained in ID. All these polyquadrates are with

span at most m ¼ ddiamðCnÞ"n
e þ 1 ¼ �ð1Þ and with area at

least ð�0 þ oð1ÞÞ lnn
n . Let I0;n denote the number of

polyquadrates, and Y0;i denote the number of nodes in

the ith polyquadrate. All Y0;i’s are Poisson RVs with

rate at least ð�0 þ oð1ÞÞ lnn. From Lemma 11,

I0;n ¼ �ð 1
"2
n
Þ ¼ �ð nlnnÞ. Applying Lemma 1 (condition 1),

it is a.a.s. that

min
I0;n

i¼1
Y0;i � Lð�0Þ lnn:

Next, we consider polyquadrates that are contained in

copies of Cn not fully contained but with at least half

area in ID. All these polyquadrates are with span at

most m ¼ ddiamðCnÞ"n
e þ 1 ¼ �ð1Þ and with area at least

ð12�0 þ oð1ÞÞ lnn
n . Let I1;n denote the number of polyqua-

drates, and Y1;i denote the number of nodes in the ith

polyquadrate. All Y1;i’s are Poisson RVs with rate at least

ð12�0 þ oð1ÞÞ lnn. From Lemma 11, I1;n ¼ �ð 1
"n
Þ ¼ �ð

ffiffiffiffiffiffi
n

lnn

p
Þ.

Applying Lemma 1 (condition 2), it is a.a.s. that

min
I1;n

i¼1
Y1;i �

1

2
Lð�0Þ lnn:

Thus, we have

Sm2ðPn; CnÞ � min min
I0;n

i¼1
Y0;i;min

I1;n

i¼1
Y1;i

� �

� 1

2
Lð�0Þ lnn;

and the lemma is proved. tu
Theorem 3 is proved by Lemmas 14 and 15 and the de-

Poissonization argument.

C.3 Proof of Theorem 4

Remind that here Cn is a collection of disks whose centers

are at the origin.

Lemma 16. For any constant �0 2 ð�;1Þ, if ID is a square, we

a.a.s. have

Pr Sm3ðPn;CnÞ 
 min
1

2
Lð�0Þ; 1

4
�0

� �
lnn

� �
! 1;

if ID is a disk, we a.a.s. have

Pr Sm3 Pn;Cnð Þ 
 1

2
Lð�0Þ lnn

� �
! 1:

Especially, if � < 1, it is almost sure that

Pr Sm3ðPn;CnÞ ¼ 0½ � ! 1:

Proof. For any Cn 2 Cn, place pairwise disjoint copies of Cn
with centers in @ID. Let In be the number of copies of Cn
and Yi denote the number of nodes in the ith copy. Then,
Y1; Y2; . . . ; YIn are i.i.d. Poisson RVs with rate at most
ð12� þ oð1ÞÞ lnn, and we may have In ¼ �ð

ffiffiffiffiffiffi
n

lnn

p
Þ. From

Lemma 1 (condition 4), we have

Sm3ðPn;CnÞ 
 min
1
i
In

Yi 

1

2
Lð�0Þ lnn:

In addition, if ID is a square, we consider the copy of Cn
with its center at ð12 ; 1

2Þ, a vertex of ID. Let Y denote the
number of nodes in the intersection of the disk and ID.
We have Y ¼ Poð14� lnnÞ, and

Sm3ðPn;CnÞ 
 Y 

1

4
�0 lnn:

Therefore, the lemma is proved. tu

Lemma 17. For any constant 0 < �0 < �, if ID is a square, we
almost surely have

Pr Sm3ðPn;CnÞ � min
1

2
Lð�0Þ; 1

4
�0

� �
lnn

� �
! 1;

if ID is a disk, we almost surely have

Pr Sm3ðPn;CnÞ �
1

2
Lð�0Þ lnn

� �
! 1:

Proof. Choose a �1 2 ð�0; �Þ. Let r and r0 be given by n�r2 ¼
� lnn and n�r02 ¼ �1 lnn, respectively. Let Mn ¼

ffiffi
2
p

r�r0 and
"n ¼ 1=Mn. Divide ID by a "n-tessellation, and then for
each cell, draw a r0-disk with its center in the intersection
of this cell and ID. Since the distance between any two
points in a cell is at most

ffiffiffi
2
p

"n ¼ r� r0, any r-disk with
center in ID must contain at least one of these r0-disks. Let
In denote the number of these r0-disks, and Yi denote the
number of nodes in the ith r0-disk. Then,

Sm3ðPn;CnÞ � min
1
i
In

Yi:

If ID is a square, we partition Y1; Y2; . . . ; YIn into three
groups. First, we consider cells contained in IDð0Þ, and let
N0 denote the number of cells. For these cells, we have
Yi ¼ Poð�1 lnnÞ and

N0 	
1� 2r
r�r0ffiffi

2
p

 !2

¼
ffiffiffi
2
p
ð1� 2rÞ
r 1�r0

r

� 	
 !2

¼ �
n

lnn


 �
:
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From Lemma 1 (condition 1), it is a.a.s. that

min
1
i
N0

Yi � Lð�0Þ lnn:

Next, we consider cells intersecting with IDð1Þ but not
with IDð2Þ, and let N1 denote the number of cells. For
these cells, we have Yi � Poð12 �1 lnnÞ and

N1 	
rð1� 2rÞ

r�r0ffiffi
2
p


 �2
¼ 2ð1� 2rÞ
r 1� r0

r

� 	2
¼ �

ffiffiffiffiffiffiffiffi
n

lnn

r� �
:

From Lemma 1 (condition 2), it is a.a.s. that

min
1
i
N1

Yi �
1

2
Lð�0Þ lnn:

Last, we consider cells intersecting with IDð2Þ, and let N2

denote the number of cells. For these cells, we have Yi �
Poð14�1 lnnÞ and

N2 <
r

"
þ 1


 �2
<

ffiffiffi
2
p
þ ðr� r0Þ
1� r0

r

þ 1

 !2

¼ �ð1Þ:

Then, it is a.a.s. that

min
1
i
N2

Yi �
1

4
�0 lnn:

So, if ID is a square, the lemma is proved.
If ID is a disk, we separate Y1; Y2; . . . ; YIn into two

groups. First, we consider cells contained in IDð0Þ, and
let N0 denote the number of cells. For these cells, we
have Yi ¼ Poð�1 lnnÞ and N0 ¼ �ð nlnnÞ. From Lemma 1
(condition 1), it is a.a.s. that

min
1
i
N0

Yi � Lð�0Þ lnn:

Next, we consider cells not fully contained in IDð0Þ,
and let N1 denote the number of cells. For these cells,
we have Yi � Poðð12�1 þ oð1ÞÞ lnnÞ and N1 ¼ �ð

ffiffiffiffiffiffi
n

lnn

p
Þ.

From Lemma 1 (condition 2),

min
1
i
N1

Yi �
1

2
Lð�0Þ lnn:

So, if ID is a disk, the lemma is proved. tu
Theorem 4 is proved by Lemmas 16 and 17 and the de-

Poissonization argument.

C.4 De-Poissonization

By Chebyshev inequality, it is almost sure that Poðn� n3
4Þ 


n 
 Poðnþ n3
4Þ. Thus, an instance of P

n�n
3
4

may be generated

by Xn followed by removing n� Poðn� n3
4Þ points, and an

instance ofP
nþn

3
4

may be generated byXn followed by adding

Poðnþ n3
4Þ � n random points. So, it is almost sure that

Sm P
n�n

3
4
; Cn


 �

 SmðXn; CnÞ 
 Sm P

nþn
3
4
; Cn


 �
:

For jCnj ¼ ð� þ oð1ÞÞ lnn
n , we have

n� n3
4


 �
jCnj

ln n� n3
4

� 	 	 nþ n3
4


 �
jCnj

ln nþ n3
4

� 	 	 n Cnj j
lnn

¼ � þ oð1Þ;

and

Sm P
n�n

3
4
; Cn


 �
	 Sm P

nþn
3
4
; Cn


 �
	 SmðPn; CnÞ:

Therefore,

SmðPn; CnÞ 	 SmðXn; CnÞ:
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