MR AAS SR 2 B 2 R
A2 LA AR DR 7

An Improved LDPC Code Structure and Its VLSI
Decoder Realization
FoyoA L ARE
By ek B

PE A R4 e B -

KRR B LB S

T

4

FUTERT R

cig 1 2 H 7

An Improved LDPC Code Structure and Its VLSI

Decoder Realization

R E

YR mEA B4

Student : Yuan-Jih Chu

Advisor : Sau-Gee Chen

A R

T TETAR LT

AThesis
Submitted to Institute-of Electronics
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in

Electronics Engineering

July 2005
Hsinchu, Taiwan, Republic of China

PEARAY e -0

RS D R iRt 2 8 RS
Bz YURMWTRT R
£ 4R% BEE A B

b3 M R B A (LDPC)arinm 3 F4&iTw B (Shannon) &°211 2 fi45
R PG MAFRAE DEPE B R E R FR Lt e A2 P o A

A 4§ & (difference family) st K- AT R H B &8 51 o
BH L AE B MAT SRR e Ml 2 GRS B ARt b b AR L AT R
(VLSI) 530 o gt b > A fh Benk 3t > AP * 300 T (7 (semi-parallel) =»
AL ATERL 100K - B L 34~ LR 5 960 =7 ~ A IR
s 10 bR M RAHBRABEBE 2018 mEAAET > L EBELF

Fh &) 3TOMHz ~ & 4 5 80 § B BABF ~) 427 F 5 550mW o

An Improved LDPC Code Structure
and Its VLSI Decoder Realization

Student: Yuan-Jih Chu Advisor: Dr. Sau-Gee Chen

Department of Electronics Engineering &
Institute of Electronics

National Chiao Tung University

ABSTRACT

In recent years, low-density parity-check (LDPC) codes have attracted a lot of
attention due to the near Shannon limit coding gain when iteratively decoded. In this
thesis, we construct a new structure of irregular LDPC codes based on using the
difference families. The resulting codes can be encoded with low complexity and are
suitable for the VLSI implementation of their decoder. With the semi-parallel
architecture and a parallel factor of 10, an irregular LDPC decoder has been
implemented, of which the code rate is 3/4, the code length is 960 bits, and the
maximum number of decoding iterations is 10, respectively. The irregular LDPC
decoder can achieve a data decoding throughput of up to 370Mbps, an area of 800k

gate counts, and a power consumption of 550mW using the UMC 0.18 um ASIC

process technology.

o B S A

Ahwme R A RFRERE MEAR LS E 5 kahE o $ K

1
E"j’j}f\‘q N o
D=3

e R AR R AR I S
2]

N

H Rafd 28 E N2 FEHESYREFFRERM @
oI REIDRFELY A RS
P AadkE s 4%

A F
EFE N ipEE AR
ErEA AT LR o Ry &R
nip LN ipEF s EFdrchw oo
Bt o WA A L
E e

B F b BEaf
A SR
e

\ ’%ﬁ
L AFZ P A gEflae 8 ¥

PEPSIY:
X g § o0 F)
R gL

Contents

B B R s I
ABSTRACT ettt bbbttt b e bbb I
ACKNOWLEDGEMENT ...ttt I
CONTENTS . .ttt bbbttt et bbbttt neenes IV
LIST OF TABLES ...ttt bbb VI
LIST OF FIGUREScoiiiiiiiiie et VI
Chapter 1 INTrOAUCTION.c..iiii it 1
Chapter 2 Low-Density Parity-Check Code..........ccocoiiiiiniiiiiiiiie e 3
2.1 Fundamental Concept of LDPC COUEcccveveiveiiieieieere e 3
2.2 C00E CONSIIUCTION ...ttt ettt 7
P20 B8 = oo To |1 3T OSSR 10
D Tt Lo |1 o TSR 17
2.4.1 Decoding Procedure in ONeIErationcccocveverieeieerrsieseesesee e 18

2.4.2 Iterative DeCOUdING PrOCEUUIE, s vt cviosi e veereerreerieereesseesseaseesseessesseeseessens 23

2.4.3 Efficient Check Node COMPUEALION i..cvitrvevveeveerieeieseecieerie e sie e see e 25

Chapter 3 A New Structure-for LowrDensity Parity-Check Code Using the

Difference Family ... i it 33

3.1 The Difference Familyccooeiiiii e 33

3.2 The Proposed Structure 0f LDPC COd€.......ccceiveviveiieiieieeie e 35

Chapter 4 SIMUlation RESUILSc.ooiiiiiieie e 39

4.1 Floating-Point SIMUIALIONScceiiiieiieie e 42

4.2 Fixed-Point SIMUIALIONS.coviiiiiiiiiisiiiieee e 46

4.2.1 Quantization of Initially Received Signal...........cccccovvviviveiieieeiece, 46

4.2.2 Quantization of r_ and ¢, ..o, 50

4.2.3 Summary of Fixed-Point Simulation Resultscccoceveiieiivervenene. 54

Chapter 5 VLSI Implementation of LDPC Decoderccoovevenieiiiieiennieenne 56

5.1 Semi-parallel Decoder Architecture for the Proposed LDPC Codes............... 56
5.2 Architectures of the Check Node Function Unit and the Variable Node

FUNCLION UNIT .ot 59

Chapter 6 CONCIUSIONoviiiiieieeee e

References.......

Autobiography

List of Tables

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 2.5

Table 2.6

Table 4.1

Table 4.2

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Efficient computation step of p, = —;/‘1(— ET A+ C)sT 14
Efficient computation step of pj =T “(AS” +Bp,) coevverveerrerernnns 14
Summary of Richardson’s encoding procedure.c.ccccoevevveriereeenne. 14
Summary of the sum-product algorithm...........ccccooeviiiiinniiee, 29
Summary of the min-sum based algorithm............cccccvevevieiececeenen. 30
Summary of the min-sum algorithm ..., 31

Polynomials of each of the circulant matrices of the proposed irregular
LDPC COUBS ...ttt et nae s 40
Polynomials of each of the circulant matrices of the quasi-cyclic
irregular LDPC COURS vi-....vvevee st ceeeeniesiee et siee et 41
Area, speed, latency and power. consumption of the reformulated
CNFUs and VNFUs architectures for the sum-product algorithm70
Area, speed, latency and power.consumption of the re-mapped CNFUs
and VNFUs architectures for the sum-product algorithm.................... 70
Area, speed, latency and power consumption of the CNFUs and
VNFUs architectures for the min-sum based algorithm 71
Summary of comparison the area, speed and power consumption of the

different CNFUs and CNFUs architectures for the sum-product

algorithm and the min-sum based algorithmc..ccccccovveiveiennnen. 71
Summary of the proposed LDPC decoderc.cccceevvviiieiiciiieeninnnn, 74
Comparison of LDPC deCOdersccccovevviieiierieiie e 74
Basic MCS set of TGNSyNC proposalcccccveeereeieniinnieniesieneens 75

VI

List of Figures

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5 (a)

Figure 2.5 (b)

Figure 2.6

Figure 2.7

Figure 2.8

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Example of a (8, 4, 2)-regular LDPC code and its corresponding
Tanner graph. There are 8 variable nodes (v;) and 4 check nodes (c;)...4
Example of a low-density parity-check code matrix where (n, j, k) =
(20, 3, 4) covoeeeeeeeeeeeeeeeeee ettt 7
Example of a rate-1/2 quasi-cyclic code from two circulant matrices,
where a,(X) =1+ X and a,(X) =1+ X* +X* oo, 10
The parity-check matrix in an approximate lower triangular form......12
Example of a rate-1/2 quasi-cyclic code. (a) Parity-check matrix with
two circulants, where a,(x) =1+x and a,(x) =1+x*+x*...cc...... 17

Example of a rate-1/2 quasi-cyclic code. (b) Corresponding generator

matrix in systematiC form e, ol 17
Notations for iterative decoding procedure............ccccceveviveveeiieieennnnn 24
Serial configuration for computing check node update..............c......... 26
Parallel configuration for'ecoamputing check node update 28

Floating-point simulations of various parity-check matrix structures in
AWGN channel, code length=720, code rate=2/3, maximum
iteration=10, using the sum-product algorithm............ccccccocenirinnnnnnn. 43
Floating-point simulations of various parity-check matrix structures in
AWGN channel, code length=960, code rate=3/4, maximum
iteration=10, using the sum-product algorithm...........c...ccceevvevnrinnnne, 43
Floating-point simulations of various parity-check matrix structures in
AWGN channel, code length=1200, code rate=4/5, maximum
iteration=10, using the sum-product algorithm............cccccocerirvnnnnnnn. 44

Floating-point simulations of the proposed parity-check matrix

VI

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

structure, under the three decoding algorithm in AWGN channel, code
length=720, code rate=2/3, maximum iteration=10.........c....c.ceevrenn..n 44
Floating-point simulations of the proposed parity-check matrix
structure, under the three decoding algorithm in AWGN channel, code
length=960, code rate=3/4, maximum iteration=10..........c..cccccerrrrnr.. 45
Floating-point simulations of the proposed parity-check matrix
structure, under the three decoding algorithm in AWGN channel, code
length=1200, code rate=4/5, maximum iteration=10..........c...cceevrne. 45
Three different fixed-point simulation results of the proposed
parity-check matrix structure, based on the sum-product decoding
algorithm in AWGN channel, code length=720, code rate=2/3,
maximum iteration=20 ...l 47
Three different= fixed-point ..sSimulation results of the proposed
parity-check matrix structure,-based on the min-sum based decoding
algorithm in AWGN: - channel, “code length=720, code rate=2/3,
Maximum Iteration=>10...........c.ccccuriiriiiiiierei s 48
Three different fixed-point simulation results of the proposed
parity-check matrix structure, based on the sum-product decoding
algorithm in AWGN channel, code length=960, code rate=3/4,
Maximum iteration=>10...........c.ccccuriiriiiiiierr e 48
Three different fixed-point simulation results of the proposed
parity-check matrix structure, based on the min-sum based decoding
algorithm in AWGN channel, code length=960, code rate=3/4,
Maximum iteration=10...........c.ccccuriiriiiiiierir s 49
Three different fixed-point simulation results of the proposed

parity-check matrix structure, based on the sum-product decoding

VIl

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Figure 4.17

algorithm in AWGN channel, code length=1200, code

MaxXimum HEratioN=210.........ccotveeeeee e

Three different fixed-point simulation results of the
parity-check matrix structure, based on the min-sum based

algorithm in AWGN channel, code length=1200, code

MaXiMUM TEEIAtION=10

Two different fixed-point simulation results of the
parity-check matrix structure, based on the sum-product

algorithm in AWGN channel, code length=720, code

MaXiMUM TEIAtION=10

Two different fixed-point simulation results of the
parity-check matrix:structure, based on the min-sum based

algorithm in AWGN channel, code length=720, code

MaXiMUM TEraAtION=10. . rsrrrrsnse e darsennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns

Two different fixed-point.simulation results of the
parity-check matrix structure, based on the sum-product

algorithm in AWGN channel, code length=960, code

MaXIMUM TEEIAtION=10 e

Two different fixed-point simulation results of the
parity-check matrix structure, based on the min-sum based

algorithm in AWGN channel, code length=960, code

MaXiMUM TEIAtION=10 e

Two different fixed-point simulation results of the
parity-check matrix structure, based on the sum-product

algorithm in AWGN channel, code length=1200, code

MaXIMUM TEEIAtION=10

rate=4/5,

proposed
decoding

rate=4/5,

proposed
decoding

rate=2/3,

proposed
decoding

rate=2/3,

proposed
decoding

rate=3/4,

proposed
decoding

rate=3/4,

proposed
decoding

rate=4/5,

Figure 4.18

Figure 4.19

Figure 4.20

Figure 4.21

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Two different fixed-point simulation results of the proposed
parity-check matrix structure, based on the min-sum based decoding
algorithm in AWGN channel, code length=1200, code rate=4/5,
MaxXimum iteratioN=10.........cccccerirriiiiirieriee s 53
Floating-point vs. fixed-point simulation results of the proposed
parity-check matrix structure for the sum-product and min-sum based
algorithm in AWGN channel, code length=720, code rate=2/3,
Maximum iteratioN=10..........cccccerirriiiiiiie s 54
Floating-point vs. fixed-point simulation results of the proposed
parity-check matrix structure for the sum-product and min-sum based
algorithm in AWGN channel, code length=960, code rate=3/4,
maximum iteration=A0...............ciili i 55
Floating-point vs. .fixed-point. simulation results of the proposed
parity-check matrix structure-for.the sum-product and min-sum based
algorithm in AWGN channel; code length=1200, code rate=4/5,
Maximum iteratioN=10..........cccccerirriiiiirie s 55

Semi-parallel decoder for the proposed irregular LDPC code structure

of rate 3/4, and code length 960............cccevveiiiiiieiic e 57
Illustration of overlapped decoding procedurecccocevererernnnne 59
Function plot of ¢(x) = —In[tanh[gj] .. 60

Architecture of check node function unit for the sum-product algorithm

Architecture of a 4-input variable node function unit for the
SuM-product algorithm ... 61

Reformulated architecture of check node function unit for the

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

sumM-product algorithm ... 63
Reformulated architecture of a 4-input variable node function unit for
the sum-product algorithm........ccccooeiiiii 63

Re-mapped architecture performing both check node update and

variable node update operations for the sum-product algorithm 65
Function plot of g(X) = IN(L+ &™) oo 66
Function plot of h(X) =IN(€* —1) ceoeviiiiiceeeeeeec e, 67

Architecture of check node function unit for the min-sum based
AlGOITTNM L. 68
Architecture of a 4-input variable node function unit for the min-sum

based algorithmooermmmee e 68

Xl

Chapter 1

Introduction

With the continuous growth of wireless communication technology, people have
eventually become addicted to wireless products such as mobile phones and wireless
LAN due to the convenience and enjoyment it has brought to our lives. However, the
resources of the wireless frequency spectra are limited and valuable. The
improvement of transmission efficiency:for wireless communication has therefore
become the focus of research in communication systems. The use of error correction
codes is one of the main solutions to raising. the transmission efficiency. Among
various error correction codes, one called low-density parity-check code (LDPC)
should be especially taken into account. LDPC codes were first presented by Gallager
[1] in 1962 and have received great attention recently due to, its near Shannon limit
coding gain when iterative decoded [2]. LDPC codes are currently widely considered
a serious competitor to the turbo codes. The main advantages of LDPC codes over
turbo codes are that LDPC decoders are known to require an order of magnitude less
arithmetic computations, and the decoding algorithm for LDPC codes is parallelizable
and can potentially be accomplished at significantly greater speeds. The disadvantage
of the LDPC codes is the high complexity required in encoding. Recently, several
efficient encoding approaches have been proposed [3,4,5]. In [5], it introduced an

approach that used difference families to construct irregular quasi-cyclic codes free of

4-cycles while reducing the encoding complexity to become linear to the code length.
However, the performance was not as good as expected. The aim of this thesis is to
construct a new structure of LDPC codes that improves the performance while using
the concept of the difference families, and contact VLSI design of the corresponding
decoder.

This thesis is organized as follows. In chapter 2, basic concept of the LDPC
codes including the code construction, encoding and decoding will be introduced.
Chapter 3 will propose a new structure of LDPC codes by using difference families.
In chapter 4, the simulation results for the LDPC codec will be discussed in chapter 2
and chapter 3 will be shown. Chapter 5 will discuss the VLSI implementation of the
LDPC decoder. In the end of this thesis, brief conclusions will be presented in chapter

6.

Chapter 2

Low-Density Parity-Check Code

In this chapter, an introduction to low-density parity-check code will be given,
including the fundamental concepts of LDPC code, code construction, encoding and

decoding mechanism.

2.1 Fundamental Concept of LDRPC Code

Abinary LDPC code is a binary-linear-block code that can be defined by a sparse
binary mxn parity-check matrix. A sparse matrix is a matrix where only a small
fraction of its entries are ones. Non-binary LDPC codes over GF(q) are discussed in
[6]. Hereafter, binary LDPC codes will be called LDPC codes for short.

Forany mxn parity-check matrix H, it defines a (n, j, k)-regular LDPC code if
every column vector of H has the same weight j and every row vector of H has the
same weight k. Here the weight of a vector is the number of ones in the vector. By
counting the ones in H, it follows that nx j=mxk. Hence if m<n, then j<Kk.
Suppose the parity-check matrix has full rank, the code rate of H is
r=(n-m)/n=(k-j)/k=1-j/k. If not all the columns or all the rows of the
parity-check matrix H have the same number of ones, an LDPC code is said to be

irregular.

As suggested by Tanner [7], an LDPC code can be represented as a bipartite
graph. An LDPC code corresponds to a unique bipartite graph and a bipartite graph
also corresponds to a unique LDPC code. In a bipartite graph, one type of nodes,
called the variable nodes, correspond to the symbols in a codeword. The other type of
nodes, called the check nodes, correspond to the set of parity check equations. If the
parity-check matrix H were an mxn matrix, it would have m check nodes and n
variable nodes. A variable node v; is connected to a check node c; by an edge, denoted
as (vj, ¢;), if and only if the entry h;; of H is one. A cycle in a graph of nodes and edges
is defined as a sequence of connected edges which starts from a node and ends at the
same node, and satisfies the condition that no node (except the initial and final node)
appears more than once. The number of edges on a cycle is called the length of the
cycle. The length of the shortest cyele in a graphis.called the girth of the graph.

Regular LDPC codes are those where all nodes-of the same type have the same
degree. The degree of a node 4s the -number-of edges connected to that node. For

example, Figure2.1 shows a (8, 4, 2)-regular LDPC code and its corresponding

1 01 001 0 1 O
Ly |1 0010101
/01100110
0101 100 1]
c, c, Cy C,
check nodes
variable nodes
v, v, VeV, Ve Vg oV, Vg

Figure 2.1 Example of a (8, 4, 2)-regular LDPC code and its corresponding Tanner

graph. There are 8 variable nodes (v;) and 4 check nodes (c;).

4

Tanner graph. In this example, all the variable nodes have a degree of 2 and all the
check nodes have a degree of 4. The edges (c1, V3), (V3, C3), (C3, V7), and (v, 1) depict
a cycle in the Tanner graph. Since this turns out to be the shortest cycle, the girth of
this graph is 4. Irregular LDPC codes were introduced in [8] and [9]. For such codes,
the degrees of each set of nodes are chosen according to some distribution.

A polynomial y(x) of the form

y(x) =D yx™ (2.1)

i>2
is a degree distribution if »(x) has nonnegative coefficients and y(1) =1. Given a

degree distribution pair (A1,p) to form a sequence of code ensembles C"(4,p),

where n is the length of the code and where
d,)
A00= DX
i=2

LOES IS

specify the variable and check node degree distributions. More precisely, 4, and p,

(2.2)

represent the fraction of edges emanating from variable and check nodes of degree i

respectively; d,and d, are denoted as the maximum variable and check node
degree. Assume that the code has n variable nodes. The number of variable nodes of

degree i isthen

Al A
ST I)L(x)dx

j=2

(2.3)

(j A()dx = jz;tx' “dx = 2/1 X—| -3 ’1']

i=2 |

and so the total number of edges emanating from all variable nodes E is equal to

/N n
E=)|n—" == (2.4)
Zz Lﬂ(x)dx joz(x)dx

Similarly, assuming that the code has m check nodes, E can also be expressed
as

m

E=———
jo (X)dx

(2.5)

Since the number of edges emanating from all variable nodes is equal to that

emanating from all check nodes, we have

n m
[adx [p(odx &0
0 Op
Hence
1
p(x)dx
= nJ.Ol— 2.7)
jo A(x)dx
Assuming that H has full rank, the rate 0f LDPC.codes in the ensemble is
[2000
A £
r(4, p) =T o (2.8)

n jol p(X)dx

Further more, the average degree] of a variable node and average degree k of a

check node are

(2.9)

2.2 Code Construction

Gallager’s method [1]

Define an (n, j, k) parity-check matrix as a matrix of n columns that has j ones in
each column, k ones in each row, and zeros elsewhere. In follows from this definition
than an (n, j, k) parity-check matrix has nj/k rows and thus a rate r>1—j/k. In
order to construct an ensemble of (n, j, k) matrices, consider first the special (n, j, k)

matrix in Figure 2.2, for which n, j and k will be 20, 3 and 4, respectively.

11110000O0O0O0O0O0OO0OO0OO0OOOODPO
00001111 000000O0O0O0O0O0TGO0
0oo0o0oo00OOOOGC2L;1+1.2:.00 0 0O O0O0O0OTO
0 000O0O0OOOGCODOOCOTT11O0O0O0TGO0
ooo0oo00O0O0OOGCO0,0000-00001111
1000100010000 212-000000O00O0
01000100O0¢02000O0O0O011O0O0GO0
001 0001O0O0O0OO0OO0OO01O0OO0OO0O1IO0TG O
000100O0O0OO0OO0O1O0OO0O0O1O0OO0OO0OT1IO
0000O0OO0O1O0O0OO0O1O0O0OO0OLI1IO0OGO0TG 0?1
10000100O0OO0OO0D1ITO0O0OO0OO0OO0OT11IO0OD0
01 00001O0O0OO0O1O0O0OO0OO0OI1IO0O0OTO0OTP®O
001 000O0O1O0O0OO0OO0O1ITO0O0OO0ODO0ODO0OTI1IO
0 00100O0O0O1O0O0OO0OO0O1IO0O0OI1IO0TO0TP®O
0 0001000O0O1O0O0OO0OO0O1O0O0OO0OTUO0?11

Figure 2.2 Example of a low-density parity-check code matrix where (n, j, k) = (20, 3,
4)

This matrix is divided into j sub-matrices, each containing a single 1 in each
column. The first of these sub-matrices contains all its 1’s in descending order which

is, the i row contains 1’s in columns (i —1)k +1 to ik. The other sub-matrices are

merely column permutations of the first. We define the ensemble of (n, j, k) codes as
the ensemble resulting from random permutations of the columns of each of the
bottom (j—1) sub-matrices of a matrix such as in Figure 2.2 with equal probability
assigned to each permutation. This definition is somewhat arbitrary and is made for
mathematical convenience. In fact such an ensemble does not include all (n, j, k)
codes as just defined. Also, at least (j—1) rows in each matrix of the ensemble are
linearly dependent. This simply means that the codes have a slightly higher

information rate than the matrix indicates.

MacKay’s method [10]

A computer-generated code was introduced by MacKay [10]. The parity-check
matrix is randomly generated. First, the parameters n, m, j, and k are chosen to
conform an (n, m, j, k)-regular LDPC code: where: n, j and k are the same as in
Gallager’s code and m is the number:of the-parity-check equations in H. Then, 1’s are
randomly generated into j different-positions.of the first column. The second column
is generated in the same way, but checks are made to insure that no two columns have
a 1 in the same position more than twice. This constraint is to avoid a 4-cycle to
appear in the Tanner graph, which will cause the performance to drop by about 0.5dB.
An avoidance of 4-cycles in a parity-check matrix is therefore required. The next few
columns are generated sequentially and checks for 4-cycles must be performed on
each generation. In this procedure, the number of 1’s in each row must be recorded,

and if any row already has k 1’s, the next column generating will not select that row.

Construction by Quasi-Cyclic Code [5]

A code is quasi-cyclic if, for any cyclic shift of a codeword by | places, the
resulting word is also a codeword. A cyclic code is a quasi-cyclic code with | =1.
Consider the binary quasi-cyclic codes described by a parity-check matrix

H=[A.A,..A] (2.10)
where A, A,,..A are binary vxv circulant matrices. The algebra of (vxv)
binary circulant matrices is isomorphic to the algebra of polynomials modulo x' -1

over GF(2). A circulant matrix A is completely characterized by the polynomial
a(x) =a, +a,X+a,x> +...+a,,x"" (2.11)

where the coefficients are from the first row of A, and a code C with parity-check
matrix of the form (2.10) can .be completely characterized by the polynomials
a,(x),a,(x),..,a,(x). Figure2.3(a) shows an-example of a rate-1/2 quasi-cyclic code
where a,(x)=1+x and a,(x)=1+x*+x".Figure2.3(b) shows the corresponding
Tanner graph representation. For this.example we can see the edges (ci, Ve), (Vs, Ca),
(C4, Vs), (vs, C1) depict a 4-cycle in this graph which is to be avoided for performance
consideration. The method for avoiding 4-cycle condition will be discussed in the

next chapter.

1100010101
0110011010
H={0 011001101
0001110110
1000 10 1 0 1 1]

(a) A parity-check matrix with two circulant matrices

check nodes

variable nodes

(b) Tanner graph representation

Figure2.3 Example of a rate-1/2 quasi-cyclic code from two circulant matrices, where

a,(x)=1+x and a,(x)=1+x*+x*

2.3 Encoding

Since LDPC code is a linear.block code, it-.can be encoded by the conventional
method. However, using conventional method will introduce an encoding complexity
proportional to the quadratic of the:code length. The high encoding cost of LDPC
codes becomes a major drawback when _compared to the turbo codes which has a
linear encoding complexity with time. In this section, we will introduce some

improved methods.

Conventional method

Let u=[uy,u,,U,,..,u,,] be arow vector of message bits with length k and
¢ =[c,,c,,C,,...,C,,] be a codeword with length n. Let G with dimension kxn be
the generating matrix of this code. It can be derived that

c=uG. (2.12)
If H is the parity-check matrix of this code with dimension rxn where r=n-Kk.

Then

10

Hc' =0" =cH'™ =0
=UuGH' =0 (2.13)
—=GH™ =0

Suppose a sparse parity-check matrix H with full rank is constructed. Gaussian

elimination and column reordering can be used to derive an equivalent parity-check

matrix in the systematic form H = [P|Ir]. Thus equation (2.13) can be solved

systematic
to get the generating matrix in systematic form as

G

systematic

=[1,[P"1. (2.14)
Finally, the generating matrix G can be obtained by doing the reverse column

reordering to the G

systematic *

Forcing H to have lower triangular form [4]

In [4] it was suggested to“force the parity=check matrix to be in the lower
triangular form. Under this restriction, it guarantees a linear time encoding complexity,
but, in general, it also results in some loss of performance.

Richardson’s method [3]

Figure 2.4 shows how to bring the parity-check matrix into an approximate lower

triangular form using row and column permutations. Note that since this

11

N-M g M-g

M

Figure 2.4 The parity-check matrix in an approximate lower triangular form
transformation was accomplished solely by permutations, the matrix is still sparse.

More precisely, assume that the matrix is written in the form

(2 8T 2.15
_(CDE] (@15)

where A is (m—g)x(n—-m), B is._(m—-g)xg, T is (m-g)x(m-g), C is
gx(n—-m),Dis gxg,andEis gx(m=g). Further, all these matrices are sparse

and T is lower triangular with ones along the diagonal. Multiplying this matrix from

the left by
I 0
2.16
(— ET™ J (2.16)
can result in
A B T
.)) (2.17)
-ET"A+C —-ET'B+D 0

Let x=(s, p,, p,) denote the codeword of this parity-check matrix where s is
the message bits with length (m—-n), p, and p, combin ed are the parity bits, p,
has length g, and p, has length (m-g). The constrained equation Hx' =0'

splits naturally into two equations, namely
As'" +Bp, +Tp; =0 (2.18)

and

(-ET*A+Ck" +(-ET*B+D)p! =0. (2.19)
Define y =—ET 'B+ D and assume for the moment that » is nonsingular. Then

12

from equation (2.19) we conclude that

p; =—y {(-ET*A+Ck". (2.20)
Hence, once the gx(n—m) matrix —7‘1(— ET A+ C)sT has been pre-computed,
the determination of p, can be accomplished with a time complexity of
O(g x(n—m)) simply by performing a multiplication with this (generically dense)
matriX. This complexity can be further reduced as shown in Table 2.1. Rather than
pre-computing —;/‘1(— ET‘1A+C)3T and then multiplying with s™, p, can be
determined by breaking the computation into several smaller steps, each of which is
computationally efficient. To this end, we first determine As', which has complexity
of O(n), since A is sparse. Next, we multiply the result by T . Since
T[As"]=y" is equivalent to the system [As']=Ty' , this can also be
accomplished in O(n) time with by back-substitution, because T is lower
triangular and sparse. The remaining steps are fairly straightforward. It follows that
the overall complexity of determining-p,-is-O(n+¢*). In a similar manner, noting
from equation (2.18) that p;'==T '(As"+Bp/), we can accomplish the
determination of p, in time complexity of O(n) as shown step by step in Table
2.2.

A summary of this efficient encoding procedure is given in Table 2.3. It entails
two steps, the preprocessing step and the actual encoding step. In the preprocessing
step, we first perform row and column permutations to bring the parity-check matrix
into the approximate lower triangular form with as small a gap g as possible. In actual
encoding then entails the steps listed in Table 2.1 and 2.2. The overall encoding

complexity is O(n+g?), where g is the gap of the approximate triangulation.

13

Table 2.1 Efficient computation step of p, = —y‘l(— ET 'A+ C)sT

Operation Comment Complexity
As’ Multiplication by sparse matrix o(n)
T[As"] TYAs]=y" <[As']=Ty' o(n)
—E[T*As"] Multiplication by sparse matrix o(n)

Cs' Multiplication by sparse matrix o(n)

[-ET *As"]+[Cs"] Addition o(n)

— 7y [-ET'As" +Cs'] Multiplication by dense gxg matrix o(g 2)

Table 2.2 Efficient computation step of p, =-T *(As’ +Bp,)

Operation Comment Complexity
As’ Multiplication by sparse matrix o(n)
Bp, Multiplication by sparse matrix o(n)
[AsT1+[Bp,] Addition o(n)
~T[As" +Bp;] | -T[As" +Bpjl=yli= [As" +Bp/1=Ty" | O(n)

Table 2.3 Summary of Richardson’s encoding procedure It entails two steps: A

processing step and the actual encoding step

Preprocessing: Input: Non-singular parity-check matrix H. Output: An equivalent

)) A BT » _
parity-check matrix of the form cC D E such that —ET "B+D is
non-singular.

1. [Triangulation] Perform row and column permutations to bring the

parity-check matrix H into the approximate lower triangular form

A BT
H=
[CDEJ

with as small a gap g as possible.

14

2. [Check] Check that —ET "B+ D is non-singular, performing further

column permutations if necessary to ensure this property.

| OyA B T)_ A B T
ET* I\C D E) (-ET?A+C —-ET?'B+D 0

A B T
Encoding: Input: Parity-check matrix of the form [C b Ej such that

—ET'B+D is non-singular and a vector s denote the message bits has length
(m—n). Output: The vector x=(s, p,, p,) Where p, haslength g and p, has
length (m—g), such that Hx" =0".

1. Determine p, asshown in Table 2.1.

2. Determine p, asshown in Table 2.2.

Quasi-cyclic code [5]

As a review of quasi-cyclic code .in section 2.2, the quasi-cyclic code can be
described by a parity-check matrix \H =[A,, A,...A/] and each of a circulant matrix

A; is completely characterized by the polynomial a(x) =a, +a,X+..+a,x""

with coefficients from its first row. A code C with parity-check matrix H can be
completely characterized by the polynomials a,(x),a,(x),...,a,(x) . As for the
encoding, if one of the circulant matrices is invertible (say A,) the generator matrix

for the code can be constructed in the following systematic form

(ATA)T
G = Iv(l—l) (AlilAZ)T (2.21)
(ATAL)T

resulting in a quasi-cyclic code of length vl and dimension v(lI —1). Encoding can

be achieved with linear complexity using a v(l —1) -stage shift register. Regarding the

15

algebraic computation, the polynomial transpose is defined as
a(x)’ =niaix”“, x" =1. (2.22)
i—0
For a binary [n, k] code, length n=vl and dimension k =v(l —1), the k-bit message
[ig.i,,....i, ;] is described by the polynomial i(x)=i, +iX+..+i,,x“" and the
codeword for this message is c¢(x) =[i(x),x* p(x)], where p(x) is given by
P09 = 301,00 @3 #2, 00) 223

I;(x) is the polynomial representation of the information bits i, to i, ,, where

() =+ X+ o+ iy X (2.24)
and polynomial multiplication (*) ismod x' —1.

As an example, consider a rate=1/2 quasi-cyclic code with v=5, | =2, first
circulant is described by a,(x)=1+Xx -and the second circulant is described by
a,(x) =1+ x> +x*, which is invertible and

a;" (X)=x + x5+ x*. (2.25)

The generator matrix contains a 5x5 identity matrix and the 5x5 matrix
described by the polynomial

(@' (x)*a,(x))" =@+x*)" =1+x°. (2.26)

Figure 2.5 shows the example parity-check matrix and the corresponding generator

matrix.

16

1100010101
0110011010
H={0 011001101
0001110110
1000 10 1 0 1 1]

(a) A parity-check matrix with two circulants

1000010010
0100001001
G={0 010010100
0001001010
0000 10 01 0 1]

(b)The corresponding generator matrix in systematic form
Figure 2.5 Example of a rate-1/2 quasi-cyclic code. (a) Parity-check matrix with two
circulants, where a, (x) =1+ x and.«a3(x)=1s x> + x*. (b) Corresponding generator

matrix in systematic form.

2.4 Decoding [11]

There are several decoding algorithm for LDPC codes. All of them are iterative
decoding. Messages between variable nodes and check nodes are exchanged back and
forth. The decoder expects that error will be corrected progressively by using this
iterative message-passing algorithm. At present, there are three types of iterative

decoding algorithms applied to LDPC codes in general.
B Sum-product algorithms, also known as message passing algorithm.
B Min-sum based algorithms.

B Min-sum algorithms.

17

2.4.1 Decoding Procedure in One Iteration

Now we make a description of the message passing algorithm in one iteration.
Here is a simple example of irregular LDPC code. The parity check matrix is shown

below.
1 1 0 0%
1 0 1 1S

X2 X X X,

If the received codeword sequence isX, thenwe canuse HX' = 0T to try whether

the received codeword sequence is a codeword, i.e.,

T T 11 0 0fx, 0
101 1|x,| |0

L X4 (2.27)

EquationS, : x; © X, =0
Equation S, i x @ X, ® x,=0

where “@® ” denotes the modulo-2“addition.

The message passing algorithm uses Tanner graph for decoding procedure, which

is shown below.

S, S, check node
%\. variable node
X, X, X; X,

For x, estimation:

Stepl: Suppose p, and p, are the priori-probability of x,, where
P, + P, =1, we can use EquationS, (x, © x, =0) to estimate the post-probability

of x, as follows:

18

S

A\

Xl XZ
(Pos Py)

P(X1 =0) = P(Xz =0) = Po

P(x, =1)=P(x, =1) = p,. (2.28)

In the same way, suppose g, and q, are the priori-probability of x,, where
g, +d,=1 and r, and r, are the priori-probability of x, where r,+r, =1, we
can use EquationS,that (x, ® x, ® x, =0) to estimate the post-probability of x,,

using the following equation:
P(x, =0)=P(x; ® x, =0)
=P(x;, =0)P(x, =0) + P(Xx; =D)P(x, =1) =q,r, +q,1;
(2.29)
P(x, =1)=P(x; ® x, =1)
=P(x; =1)P(x, =0) + P(x; =0)P(x, =1) =q,r, +q,";

A8

(qO’ql) (r(']lrl)
Step2: Based on Equation S, and [Equation S,, we can estimate the final

post-probability of x,, by using:

P(x, =0) oc P(S, =0and x, =0)P(S, =0and x, =0) = p,q,

P(x, =1) oc P(S, =0and x, =1)P(S, =0and x, =1) = p,q, (2.30)
S; S,
(Po. pll)/:/ °
/(% a,)
Xy

where p,=p,, P, =P, Go =G,F, +0,r, and g, =q,r, +d,r,. It can be summed
up that if a check node S; is connected by three variable nodes x;, x; and X,

and if the priori-probability of the variable nodes x; and x; are (q,,q,) and

19

(ry,r;) , respectively, we can use the check Equation S, to estimate the
post-probability of x, in stepl which is
CHK(qo’qll lo rl) :(qoro +0.h, 0,0 + %rl)- (2-31)

Similarly, if a variable node X, is connected by two check nodes that are S, and
S;,and if the message of the S; and S; are collected from stepl are (py, p,) and

(d,.0,), respectively, we can estimate the final post-probability of X, as

VAR(psypi,qa,q;){ ot P J (2.32)
Podo + P18y Polo + P10y
Since the summation of the priori-probability on any variable node x, is one, in

other words p, + p, =1, we can transform the priori-probability to a single-value

function. Let L(p,,p;)=In— P =InA,_then equations (2.31) and (2.32) can be

1

rewritten as

CHK (L, L,) = CHK(L, ® L,) = In 1A%
+ 4,
l+ehe” e 2 +e 2
=1In TN =1In = .
e +e e 2 4o 7 (2.33)
= In(cosh(=——=2 L+ 2)) In(cosh(——% L - 2))
-1 1 LZ
= 2tanh ™ (tanh(—=:) x tanh(—%))
2 2
VAR(L,,L,) =In(4.4,)=InA4 +InA, =L, +L,. (2.34)

Equations (2.33) and (2.34) are computation in Log-Likelihood Ratio (LLR) form.
This transform can reduce the number of parameters, and equation (2.34)
VAR(L,,L,) only needs an addition operation rather than multiplication.

Furthermore, equation (2.33) can be further reformulated to different manners.

20

There are

CHK(L, ®L,)= 2tanhl(tanh(%) X tanh(%))

(2.35)
= sign(L,)sign(L,)#((|L,[) + #(L))
where
H(X) = —|n[tanh[ﬁj] - |n[ex +1J and G((x)) = X, (2.36)
2 e’ -1
and
CHK(L, ®L,) = In(cosh(—*—= L+ 2)) In(cosh(==——2% L 2))
L+ 2|_|L1—L2|+|n1+e‘L“L2‘
T2 T2 e
[Li+Ly]
= sign(L,) xsign(L,) x min(L,}|L,[) + In % (2.37)
~ sign(ly) x sign(L,) xmin(|L, |,|L,) - (2.38)

When the check node computation is in the form of equation (2.35), we call it the
sum-product algorithm. Similarly, when the-check node computation is in the form of

equation (2.37), we call it the min-sum ‘based algorithm, and the fourth term

1 —|Ly+L,| _)) _
In% in equation (2.37) is called the correction factor. Last of all, when the
+e '

check node computation is the form of equation (2.38), or in other words an
approximate form, we call it the min-sum algorithm.

The above discussion of check node computation is only about a check node
connected by two or three variable nodes. Now, we will discuss the case when the
number of variable nodes are more than three, and then discuss the general form.

Consider a check node S, connected by four variable nodes x,,x,, X, and
X,. The priori-probability of variable nodes x,, x, and x, are (p,,p;).
(9,9,) and (r,,r;)) . We can use the check Equation S, that is,

X, @ X, ®X; ®x, =0 toestimate the post-probability of x,, namely,

21

P(x, =0)=P(x; ® X, ® X, =0) =P(x, =0)P(x, =0)P(x; =0) +
P(x, =1)P(x, =1)P(x, =0) + P(x, =0)P(x, =1)P(x, =1) +
P(x, =DP(x, =0)P(x; =1) = pyQ,ly + Py0,1, + Podily + P10o1
P(x, =) =P(x, ®x, ®x, =1)=P(x, =1)P(x, =1)P(x, =1) +
P(x, =1)P(x, =0)P(x, =0) + P(x, =0)P(x, =1)P(x, =0) +
P(x, =0)P(x, =0)P(x; =1) = p,q,1, + P;doly + Po0ily + Podols

(2.39)
Sl

AN

X, X, X, X,
(Po» P1) (dg.0;) (rp.1y)

Then, one can transform equation (2.39) to a LLRform, and obtain

CHK(L, ®L, ®L,)=In Pololot P10t £ 1P Gilp+P Gl In A g + A+ A, + A,
1 2 3) = =

P.0, M PGk £Poifo + Polol 1+ A4, + A A5 + AsAy

1+eheb L
3
LAl AL L. L L. 1+ L L, +e
_pnfieeter ve 4t e’ +e
1+eheb +eMeh +elel 1+ehet Lok
el +eb
_ 1+eXeL3_I e? +e ?
=1In eX 4 gbs =1In x—Lg x-Lg
e’ +e ?

= In(cosh(x+ L B — In[cosh(x= L D
2 2
=2 tanhl(tanh(ﬁj tanh(ﬁﬁ (2.40)
2 2

1+ehe® Ler L eleb

L.

where x=1In - - -
gt e gt e

. From equation (2.33), it can be seen that

X =CHK(L, ©L,). Equation (2.40) can be computed in a recursive manner such that

CHK(L, @ L, ®L,) =CHK(CHK(L, ® L,)®L,). The general form for check node

22

computation can be derived as
CHK(L,®L,®...®L,) = CHK(CHK (..CHK(CHK(L, ® L,)®L,)..)®L,).
(2.41)
Similarly, consider that a variable node x, connected by three check nodes S,,S,
and S,, and the message collected by S,, S, and S, are (p,,p,), (d,,09,) and
(ry, 1), respectively. The final post-probabilities of the variable node x, are
P(x, =0)=P(S, =0and x, =0)P(S, =0and x, =0)P(S; =0and x, =0) = p,q,r,

P(x, =1) =P(S;, =0and x, =1)P(S, =0and x, =1)P(S; =0and x, =1) = p,q,r,.

S, S,(d.a) S, (2.42)
(p0’ pl) (rO, rl)
NIPZ
Xl

Then, one can transform equation (2.38) into a LLR form, and obtain

VAR(L,,L,,L,) =In(44,) =12 £In A, +In A, =L, +L, +L,. (2.43)
So equation (2.43) can also be' cemputed 1n a recursive manner such that
VAR(L,,L,,L;) =VAR(VAR(L,,L,),L;), and the general form to the variable node
computation can be derived as

VAR(L,,L,....L,) =VAR(VAR...(VAR(VAR(L,,L,), L,)..),L,) . (2.44)

2.4.2 Iterative Decoding Procedure [12]

The discussion in section 2.4.1 is about the decoding procedure in one iteration.
Now, we consider the actual decoding procedure. It means that there will involve
many iterations for a decoding process. First, let us describe some notations for the
iterative decoding procedure in Figure 2.6. M(l) denotes the set of check nodes that

are connected to the variable node 1, i.e., positions of “1”s in the 1™ column of the

23

parity-check matrix. L(m) denotes the set of variable nodes that participate in the

m™ parity-check equation, i.e., the positions of “1”s in the m™ row of the

Ith

parity-check matrix. L(m)\Il represents the set L(m) excluding the variable

node and M (I)\m represents the set M(l) excluding the m™ check node. i m

denotes the

Variable node index I=
L(3) L(3)\1

M @)
£ 1) 0 0 1 1
x
g 01 0 110
o 110 0 00 0
o)
= /111 000
7
g mau® 00 10 1
G v 00,10 1 0 1 0

Figure 2.6 Notations foriterative decoding procedure

probability message that variable node | sends to check node m. r_, denotes the

m,l
probability message that the m™“check node gathers for the 1™ variable node. The

probability message of ¢, and r , are computation in LLR domain. The iterative

decoding procedure is shown below.
1. Initialization

Let

B P(Y||X| =0) _i
TRy ot &)

be the log likelihood ratio of a variable node, where P(a|b) specifies that given b is

transmitted, the probability that the receiver received a, where o’ is the noise

variance. For every position (m,l) suchthat H_, =1, q,, isinitialized as

Oy = Ly (2.46)

24

2. Message passing

Stepl (message passing from check nodes to variable nodes): Each check node

m gathers all the incoming message q,,,’s, and update the message on the variable

node | based on the messages from all other variable nodes connected to the check

node m.

i =CHK &,). (2.47)

I'eL(m)\I
Step2 (message passing from variable nodes to check nodes): Each variable node

| passes its probability message to all the check nodes that are connected to it.

dny =VAR(VAR (r,) L)=L+ >, (2.48)
m'eM (1)\m m'eM (1)\m

Step3 (decoding): For each variable node |, messages from all the check nodes

that are connected to the variable node'" |-“are summed up.

o =VAR(VAR (i) L) s Lyt Dt (2.49)

meM (1)

Hard decision is made on q,, and thefesulting decoded input vector X is checked

against the parity-check matrix H-. Iif.HX'=0, the decoder stops and output X.

Otherwise it repeats steps 1-3 until it reaches the specified maximum iteration loops.

2.4.3 Efficient Check Node Computation

According to equation (2.41), the check node update computation can be

implemented in a serial configuration. Consider a particular check node m with |

connections from variable nodes. The incoming messages are then ¢, ,,0;, ;-1 0py -
The goal is to compute the outgoing messages I, ,,r, ,,....I,,, . Let us define two sets

of auxiliary binary random variables f, =q,, f,=1@&q,,,

25

f,=1,®0,, fi=f,®&q,, and b =q,, by =D @y o

b, =b, ®q,,. We can obtain CHK(f,), CHK(f,), ..., CHK(f,) and CHK(b,),
CHK(b,), ..., CHK(b,) in a recursive manner based on the knowledge of
Qs G2 Oy - Using the parity-check node constraint (q,,, ©4,,®..©q,,)=0,

the outgoing message from check node m can be simply expressed as

i = CHK(fi, ©Db;,), 1=23,.,1 -1,
. = CHK(b,), (2.50)
oy = CHK(f,).

The total computational load consists of the forward recursive computation of
CHK(f,), the backward recursive computation of CHK(b;), and the final pair-wise
part in equation (2.50), which amounts t0:.3(I —1) core operation of the type
CHK(a®b) per check node. Clearly,: the. above procedure is exactly the
forward-backward algorithm, zas shown in_Figure 2.7. The serial nature of
computations makes a latency of O(l) units of-time in computing a check node

update.

@ gm3 / ‘b.‘\‘
Ty 9 25
ml w2 EPN] \ /(tg,;
D ¥ 0
gm.l
~ \
’/
0 1

Figure 2.7 Serial configuration for computing check node update

An efficient implementation for computing check node update is introduced by

26

[13]. A simple parallel configuration that enables fast check node update is described

|
here. First, an auxiliary binary random variable S, = Z@ q,,; is defined. Then, S
i=1

can be computed using the parallel configuration shown in Figure 2.8. The
computation at each check node in the parallel configuration is CHK(a®b). The
latency in computing the S, is of order O(logl), resulting in a speed-up factor of

O[d, /log(l)] compared to the serial configuration. Having obtained S, the

outgoing message i=12,..,1, can be computed in an efficient way. Consider

CHK (S,)) = CHK (Y. ©q,,,) = CHK (4., ® Y @,)

i=1 j=1, j#i

— In - . (2.51)

|
Since the term CHK(Z@ dn) 1N equation ' (2.51) is exactly equivalent to the

j=L j#i

outgoing message r,; from check node-m to all the variable nodes i, where

ie(@2,..,1), equation (2.51) becomes

1+ erm,i+qm,i
CHK(S,)=In—. (2.52)
m.i m.i
e™ +e™
Then, r,; can be obtained by reformulating equation (2.52) as
eCHK(Sm) — l:_ ermViJr:m’i :> erm‘l'*'CHK(Sm) + eqm‘|+CHK(Sm) — 1+ erm,i+qm‘|
e m, + e m,1
— g (eqm’i _eCHK(Sm)) _ eqmvi+CHK(Sm) _1
:> erin B eqm‘|+CHK(Sm) _l B eQm‘|+CHK(Sm) _l
eqm,i _ eCHK(Sm) (eQm,i*CHK(Sm) _1) % eCHK(Sm)
Um,i +CHK(S,)
mi € -1 _chkes,)
e =——>——xe "
o Ini~CHKGn) ¢
pOnitCHK(S,) _ ¢
j— rmyi =IHW—CHK(SM) (253)

27

Lastly, let’s define

r,; =CHK(S, Tq,,) where i=12,.,1. (2.54)
It can be seen that for each ie{l2,..,I}, the message r,; can be computed
simultaneously by a parallel implementation of the new core computation

CHK(Sm@qm’i) as shown in Figure 2.8. Clearly, only | -1 core computation of

type CHK(a®b) and | core computation of type CHK(a o b) are necessary for

a particular check node update in this parallel configuration.

D ;

3
b

= ~
-

- - -
. - ™~

E2 :

&
s

Figure 2.8 Parallel configuration for computing check node update

In the end of this section, we synthesize the contents discussed in sections 2.4.1,
2.4.2 and 2.4.3, and give a summary to the sum-product algorithm, min-sum based

algorithm and min-sum algorithm in Table 2.4, Table 2.5 and Table 2.6, respectively.

28

Table 2.4 Summary of the sum-product algorithm

1. Initialization:

For 1<1<n

P X, =0
M: izy,,where o ? is the noise variance
P(Y||X| =1) o

For every |,m such that H , =1
Uny = Ly
2. Message passing:

L, =1In

Stepl: Message passing from check nodes to variable nodes. For each I,m,

compute

f =CHK (@,,)=CHK X &d,,)

I'eL(m)\I I'eL(m)\I

=5ign(d,) [T si90(0n1) x BB YA) = 2 (s]

I'eL(m) I'eL(m)

where ¢(x) = —|n[tanh(§jj i |n(ex +1J and ¢(4(x)) = x.

e’ -1
Step2: Message passing from. variable nades to check nodes. For each I,m,

compute

Omy =VAR(VAR (r.). L) =L+ Zrm',l

m'eM (m meM ()\m

Step3: Decoding

For eachl,
=VAR(VAR(r.),L) =L, + r
q, (mEM(I)(m,I) D) | me%‘,(l)m
Forl<l|<n,

X, =0if q, >0,% =1if q, <0

29

If (HX" =0,then Xis the estimated codeword |,
or the number of iteration exceeds a predetermi ned threshold
= the algorithm stops
else
= returnto stepl

Table 2.5 Summary of the min-sum based algorithm

1. Initialization:
For 1<1<n
P(Y||X| =0) _ 2
P(y||xl =1)
For every |, m such that H , =1
Om, = L,
2. Message passing:

L, =1In —Y,,where o ?is the noise variance

Stepl: Message passing fromcheck nodes to variable nodes. First, compute

CHK(Sm) = CHK (®qm,l')

I'eL(m)
= CHK(...CHK(CHK(g,, © a5) ® (CHK(q,,; ©4,,4))---)

= CHK(CHK(...CHK(CHK(qul ® qmvz) @® qmys)...) Dq,, ")
1+ e‘“b‘
where CHK (a @ b) = sign(a)sign(b) x Min(al,|b]) + In o

Then, for each |,m, compute
i +CHK(Sn) 4

“In ey~ CHK(S,)

ml g dn1~CHK (Sn)
Step2: Message passing from variable nodes to check nodes. For each I,m,

compute
Jn; =VAR(VAR (r..),L)=L, + Zrm,

m'eM (\m m'eM (1)\m

30

Step3: Decoding

For each |,
q VAR(VAR(D)=L+ >,
meM (1) meM (1)
Forl<l<n,

X, =0if g, >0, X, =1if g, <0

If (HX" =0, then X is the estimated codeword,
or the number of iteration exceeds a predetermined threshold)
— the algorithm stops
else
= return to stepl

Table 2.6 Summary of the min-sum algorithm

1. Initialization:
For 1<1<n
P(y[¥i = 00,02

—5 ¥, Where o ? is the noise variance
Py |x =)

L,=1In
For every |, m such that H =1
Uny = Ly

2. Message passing:
Stepl: Message passing from check nodes to variable nodes. First, compute

CHK(S,,) = CHK (@q,,,) = TT sign(dn,) = MIN{a,,[}

I"eL (m) eL(m)
Then, for each |,m, compute
i +CHK(Sn) 4

:In—l—CHK(Sm)

m.l g dn1~CHK(Sn) _
Step2: Message passing from variable nodes to check nodes. For each I,m,

compute
Omi =VAR(VAR (r,), L) =L+ Dr,,

m'eM (D\m m'eM (I)\m

31

Step3: Decoding
For each |,
q, ZVAR(mﬁ)(rmy,), L) =L+ D.r,

meM (1)

Forl<l<n,
X =0if q,>0, % =1if g, <0

If (HX" =0, then X is the estimated codeword,
or the number of iteration exceeds a predetermined threshold)
= the algorithm stops
else
= return to stepl

32

Chapter 3

A New Structure for Low-Density
Parity-Check Code Using the Difference

Family

In this chapter, we will partition the discussion into two sections. In section 3.1,
an introduction to the difference family and the construction of an irregular
quasi-cyclic code based on this concept-will be discussed. In section 3.2, we will
propose a new structure of the low-density parity-check code, and expecting the new

structure to bring performance improvement.

3.1 The Difference Family

In [5], a concept using the difference family to construct an irregular quasi-cyclic
code with a Tanner graph free of 4-cycle was introduced. A difference family is an

arrangement of a group of v elements, such as Z,, into not necessarily disjoint

subsets of equal size which meet certain difference requirements. More precisely:

Definition 1: The t y-element subsets of the group Z,, D,,D,,..., D, with

D, ={d;,.d;,,....,d; .} form a (v,y,4) difference family if the difference

33

(di,—d;,)modv, (i=12..,txy=12..7Xx=y) give each nonzero element of
Z, exactly A4 times.

For example, the subsets D, ={1,2,5}, D, ={1,3,9} of Z,, form a (13,3,1)
difference family with differences

From D;: 2-1=1, 1-2=12, 5-1=4,

1-5=9, 5-2=3, 2-5=10
From D,: 3-1=2, 1-3=11, 9-1=8,
1-9=5, 9-3=6, 3-9=7.

In this work where the difference families with 4 =1 allows the design of
codes free of 4-cycles. For an irregular quasi-cyclic code, define the column weight
distribution of a length vl rate 1—(1/1) code as the vector W =[w,,W,,...,w,],

where w; is the column weight of the; columns in the j™ circulant. Denote that

W, IS the maximum column weight of the parity-check matrix H

Weo, = max{w,, w,,..,w, }. (3.2)
To construct an irregular quasi-cyclic code with length vl and rate |—(1/1), so that
its parity-check matrix H =[a,(x),a,(X),...,a,(x)] has a weight distribution

W =[w,w,,.,w], | sets D,D,,.,D, of a (v,y1) difference family with

¥ 2 Wy, and a;(x) can be defined using w; of the elements of D; as
dj, dj, djwi
a;(X)=x"" X X (3.2)

To ensure that the code can be encoded, x"—1 must be divisible by at least one of

the a;(x).

For a regular code, all of the elements in each set are included in each circulant,
while for an irregular code the choice of which elements in the set to use is arbitrary.

The row weight, o, of the parity-check matrix is constant, and given by

34

p= lelwi : (3.3
To demonstrate that the quasi-cyclic codes are free of 4-cycles we need a well
known result of the difference families.
Lemma 3.1 [5]: A pair of elements from Z_ occur together exactly A times in the
set of translates of every setina (v,y,A4) difference family.
Lemma 3.2: The codes of construction by using difference families have Tanner

graphs free of 4-cycles.

Proof: Follows from the choice of A =1. First consider the regular case. Each column

of H =[a(x),a,(x),...a (x)] is a translate of one of the sets D; in the difference

family. To show that there can be no 4-cycles in H, we need to show that no two
columns of H can have a nonzero entry in-the,same two rows, which is equivalent

to requiring that two elements of Z, can.occur together in at most one of all the

translates of the sets in the difference family. Since’two elements occur together in

exactly A translates, we need only. choose A =1"to avoid 4-cycles. The argument

follows naturally in the irregular construction. Since only w; of the elements in a

given set of the difference family will be taken, removing elements from the set of

translates will keep it free of 4-cycles.

3.2 The Proposed Structure of LDPC Code

According to section 3.1, we can use difference family to construct an irregular
quasi-cyclic code free of 4-cycles. In the following section we will describe the
construction we wish to propose for LDPC codes using these difference families.

Below is our proposed structure of the parity-check matrix H,

35

H{Ai A A 0] (3.4)
B, B, .. B, B,

where A, A,,...,A,B,,B,,..,and B, are all vxv circulant matrices. The code

length is vl and the code rate is (1—%). We can use the difference families to

determine the polynomials of each of the circulant matrix a;(x) and b;(x), where

1e{l,2,...,1-13 and je{l2,...,1}, just as the quasi-cyclic code. In order to avoid
any 4-cycles in the new structure of the parity-check matrix, we provide a new

difference family to solve this problem. First, construct two (v,y,1) difference
families Family A and Family B and combine the two families to form a new

difference Family C which are needed to add the following two constraints.
Constraint 1: The differences,‘[(a;, —a;jgmod v] and [(b;, —b;)mod V],

where 1=12,...,1-1x,y=12..,%X#Y, give each-element, can not be the same.
Constraint 2: The differences [(a;;=aj;)mod v] and [(b;, —b;)mod V],

where i,] =12,..,1-1i# j;x,y=L12;.,y, give each element, can not be the same.

More precisely, if a parity-check matrix is 4-cycles free, it represents that no two

columns of H can have a nonzero entry in the same two rows. Suppose the new
circulant matrix is C, =[A,,B,]" where ie{L2,..,1}. Constraint 1 is added to avoid

the case where any two columns of C, have a nonzero entry in the same two rows.

Constraint 2 is added to avoid the case where a column of C,, ie{L2,...,1} and
another column of C;, je{l2,.,1}, i#] have a nonzero entry in the same rows.

For example, the subsets from the difference Family A are A ={3,7} and
A, ={1,6}, and the subsets from the difference Family B are B, ={1,7}, B, ={2,3}
and B, ={4,6} of Z,, which form a new (13,2,1) difference family C. The

differences from Constraint 1:

36

From A: 3-7=9, 7-3=4 From B,: 1-7=7, 7-1=6
From A,: 1-6=8, 6-1=5 From B,: 2-3=12, 3-2=1.
The differences from Constraint 2:
From A and A,: 3-1=2, 3-6=10, 7-1=6, 7-6=1
From B, and B,: 1-2=12, 1-3=11, 7-2=5, 7-3=4.
Regarding the encoding for the new structure, suppose that two of the circulant
matrices A, and B, are invertible, we can derive two generator matrices in the
following systematic forms
(AZA)T
Crms = | loas AT 6] (35)
(AALL)
and

(B 'B,)"

(Bi1B,)"

G = Iv(l~l) = [Iv(l—l)GZ]' (3.6)

2 systematic '
(B\"B,,)"

Let c=[d, p,, p,] denote the codeword of the proposed parity-check matrix where d
is the message bits with length v(I —2), and p, and p, combined are the parity
bits, each having the same length v. The encoding procedure is partitioned into two
steps.
Encoding Stepl: We can use the generator matrix G, to get the parity bits p,. That
IS

p, =d xG,. (3.7)
Then, combine the parity bits p, with the message bits d to form an intermediate
codeword ¢’ where c¢'=[d, p,].

Encoding Step2: The last parity bits p, can be derived from the generator matrix

37

G, and the intermediate codeword c’. That is

p, =c'xG,. (3.8)
In fact, the encoding procedure for the proposed structure is very similar to the
quasi-cyclic code discussed in section 2.3. The parity bits p, can be generated with
linear complexity by using a shift register of size v(I —2) while encoding of the
random codes is via matrix multiplication. For example, encoding of the Encoding
Stepl requires ve, binary operations, «, isone less than the column weight of G,,
while matrix multiplication requires v[2v(l —2) —1] binary operations. Similarly, the
parity bits p, can also be obtained by using a shift register of size v(l —1) that
needs v, binary operations to complete the computation, where «, is one less
than the column weight of G,. Since the encoding complexities of Encoding Stepl
and Encoding Step2 are linear functions of to the code length, so is the total encoding
complexity of the proposed structure which can be implemented by shift register and

some combinatory logic.

38

Chapter 4

Simulation Results

In the beginning of this chapter, we will make a comparison of error correction
performances by using some different structures of parity-check matrices such as
irregular quasi-cyclic code, randomly constructed code and the proposed structure
irregular code. Then, we will make a comparison of error correction performances by
using some different decoding algorithms such ,as sum-product algorithm, min-sum
based algorithm and min-sum algorithm. dn:the end; we will furthermore analyze the
finite-precision effects on the decoding.performance, and decide proper finite word
lengths of variables considering tradeoffs between-the performance and the hardware
cost.

Before proceed to the following simulation, some parameters should be
described here:

1: The polynomials of each of the circulant matrices of the proposed LDPC code
structure are shown in Table 3.1. Three proposed structures of irregular LDPC codes
have been constructed. When the rate is 2/3 and code length is 720 with degree

distribution W=[4, 4, 4, 4, 5, 3], the parity-check matrix is of the form

BS BG B7 BS BQ B10
where A, Aq,..., Ay, B;,Bs,...,Bg and By, are 120x120 circulant matrices. When

the rate is 3/4 and code length is 960 with degree distribution W=[4, 4, 4, 4, 4, 4,5, 3],

39

the parity-check matrix is of the form

H{Ae A A A A A A 0} (4.2)
B, B, B, B

BS B4 BS 6 7 8 9 BlO
where A;, A,,...,Ay,B;,B,,...,By and B, are 120x120 circulant matrices. When

the rate is 4/5 and code length is 1200 with degree distribution W=[4, 4, 4, 4, 4, 4, 4, 4,

5, 3], the parity-check matrix is of the form

H:|:A1 A A AL A A A A A O:| 4.3)
B B, B

Bl B2 BS B4 BS 6 B7 8 9 BlO

where A, A,,...A,B,B,,...By and B,, are 120x120 circulant matrices.

Table 4.1 Polynomials of each of the circulant matrices of the proposed LDPC code

structure
a,(x) |x20 1 x%7 by (x) %2 + x>0
a,(x) |k 4 <28 B5(X) x33 1 x4
ag(x) x84+ % by (X) x32 4 x93
a,(x) |x" +x% b, (X) x84 x31
as(x) [x3 +x1 by (X) x4 x%
ag (%) |xtl 413 bs (X) x20 4 x31
a;(x) |xt+x’ b, (X) x* o xt3
ag(X) |x%+x°+x3* |bs(X) 3+ x!
8 (X) 1410 430 by (X) x*3

b (X) 14+ x20 4 x¥0

2: The polynomials of each of the circulant matrices of the irregular quasi-cyclic

codes are shown in Table 3.2. Three quasi-cyclic irregular LDPC codes have been

40

constructed. When the rate is 2/3 and code length is 720 with degree distribution
W=[4, 5, 3], the parity-check matrix is of the form
H=[A, A A] (4.4)
where A,, A, and A, are 240x 240 circulant matrices. When the rate is 3/4 and
code length is 960 with degree distribution W=[4, 4, 5, 3], the parity-check matrix is
of the form
H=[A, A A, A] (4.5)
where A,, A, A, and A, are 240x 240 circulant matrices. When a rate 4/5, code
length is 1200 with degree distribution W=[4, 4, 4, 5, 3], the parity-check matrix is of
the form
H=[A A A A A] (4.6)

where A, A,,A;, A, and A, are:+ 240 x 240 “circulant matrices.

Table 4.2 Polynomials of each-of the circulant-matrices of the quasi-cyclic irregular

LDPC codes
a, (x) 14x3 +x2 x®
a, (X) X34 x B B 10t
a; (x) x+x2F 4 x27 4 x5
a, (x) x2 +x8 1t 18 38

a5 (X) 1+ x10 4 x30

3: The randomly constructed codes are derived from [14] and [15], and they have
a regular column weight of four with similar parameters. This means that for a rate of
2/3 and code length of 720 with a random structure, the column weight is four and the

averaged row weight is twelve. Similarly, for a rate of 3/4 and code length of 960 with

4

a random structure, the column weight is four and the average row weight is sixteen.
Finally, for a rate of 4/5 and code length of 1200 with a random structure, the column
weight is four and the average row weight is twenty.

4. For the decoding algorithm, we adopt the sum-product algorithm, min-sum
based algorithm and min-sum algorithm. The maximum iteration loops=10.

5: We use the AWGN channel and BPSK modulation method as our test

environment.

4.1 Floating-Point Simulations

Figures 4.1-4.3 show the errar-correction performance for different structures of
the parity-check matrix that use-the.sum-product algerithm for iterative decoding. We
can see that in Figures 4.1-4.3, using-the-proposed structures of the parity-check
matrix, the decoding performance ‘is the. best;;compared to the irregular quasi-cyclic
codes and randomly constructed codes. Figures 4.4-4.6 show the error correction
performance for different decoding algorithms such as the sum-product algorithm, the
min-sum based algorithm and the min-sum algorithm. In the simulations and figures
the proposed parity-check matrix structures assume some different code lengths and
code rates. We can see that in Figures 4.4-4.6, the decoding performances are almost
the same for the sum-product and the min-sum based algorithms combined with
iterative decoding. As shown, the min-sum algorithm has the worst performance of all
the compared algorithms. This is due to the fact that the min-sum algorithm in the
check node update is an approximate form and using the approximation will cause a

performance penalty of about 0.5dB.

42

Code rate: 2/3

10" ‘ : ‘ :
—+— Random structure
Irregular quasi-cyclic
—+— Proposed structure
1071
10°}
o
L
i)
10°h
10°L
10° | | | | | | | | |
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

SNR

Figure 4.1 Floating-point simulations of various parity-check matrix structures in
AWGN channel, code length=720; code rate=2/3, maximum iteration=10, using the

sum-product algorithm

Code rate: 3/4

10 T T T T
—+— Random structure
K Irregular quasi-cyclic
—— Proposed structure
107}
10°F
e
]
o
10°h
10°}
10'6 L L L L L L L L L
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
SNR

Figure 4.2 Floating-point simulations of various parity-check matrix structures in
AWGN channel, code length=960, code rate=3/4, maximum iteration=10, using the

sum-product algorithm

43

Code rate: 4/5

10" ‘ : ‘ :
—+— Random structure
4 Irregular quasi-cyclic
—+— Proposed structure
107}
F 10°
i)
107
10° | | | | | | | | |
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

SNR

Figure 4.3 Floating-point simulations of various structure parity-check matrix
structures in AWGN channel,.*code length=1200, code rate=4/5, maximum
iteration=10, using the sum-product.algorithm

Code rate: 2/3

-1
10 T T T T
K —+— sum-product algorithm
min-sum based algorithm |]
s —— min-sum algorithm
2 T
10° 1 Q.
\\
~
10°4
o
i}
0
1071
10-5 = ~ |
~~ 7
.
10'6 L L L L L L L L L
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

SNR

Figure 4.4 Floating-point simulations of the proposed parity-check matrix structure,
under the three decoding algorithm in AWGN channel, code length=720, code

rate=2/3, maximum iteration=10

44

Code rate: 3/4

10-1 T T T T T T
T —+— sum-product algorithm
P~ min-sum based algorithm |]
—#— min-sum algorithm
10°}F ‘
10°F
14
i}
i)
10
10°}]
S|
10'5 L L L L L L L L L
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

SNR

Figure 4.5 Floating-point simulations of the proposed parity-check matrix structure,
under the three decoding algorithm in AWGN. channel, code length=960, code
rate=3/4, maximum iteration=10

Code rate: 4/5

10 . : : :
% —+— sum-product algorithm
e S min-sum based algorithm |]
TS = —+— min-sum algorithm
=R
1071
& 10°
o
1071
10° | | | | | | | | |
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Figure 4.6 Floating-point simulations of the proposed parity-check matrix structure,
under the three decoding algorithm in AWGN channel, code length=1200, code

rate=4/5, maximum iteration=10

45

4.2 Fixed-Point Simulations

In this section, we furthermore analyze the finite-word-length performance of the
proposed LDPC codes. Possible tradeoff between hardware complexity and decoding
performance will be discussed. It is shown that the performance degradation from the

infinite precision is negligible if 6 bits are used for the initially received signal and 6

bits for the extrinsic messages r,,, and q,,.

4.2.1 Quantization of Initially Received Signal

We first consider the quantization: of ‘the initially received signal. Since a
receiving buffer is needed for storing the received signal, quantization of the initially
received signal significantly affects the total decoder complexity. A long word length
not only increases the hardware overhead for the buffers, but also causes a large
amount of hardware for the iterative decoding computation, while a short word length
may result in very poor performance. Let [t: f] denote the quantization scheme in
which a total of t bits are used, of which f bits are used for the fractional part of
the value. Various quantization schemes for the initially received signal such as [5:2],
[6:2] and [7:3] are investigated here. It should be noted that if we use the min-sum
based algorithm for iterative decoding, the quantized initially received signal can not
be 0, because when the quantized signal is 0, the results of the check node update
operation will also be 0 and will thus lose the ability of error correction. So if we
adopt the min-sum based algorithm as the iterative decoding algorithm, we will

restrict the quantized signal to a specified minimum value when the initially received

46

signal is close to 0. That means when we use the quantization schemes such as [5:2]
and [6:2], the minimum quantized values will be +0.25, and when the quantization
scheme is [7:3], the minimum quantized values will be +0.125. Figures 4.7-4.12
show the decoding performances of using these three different quantization schemes
and various code lengths. It can be seen that the difference between [6:2] and [7:3]
quantization schemes is quite small and the [5:2] is far away (by more than 0.2dB)

from [6:2] and [7:3] schemes. Thus [6:2] scheme is the best choice.

Code rate: 2/3
10

—— [5:2]

BER

10'6 L L L L L L L L L

SNR

Figure 4.7 Three different fixed-point simulation results of the proposed parity-check
matrix structure, based on the sum-product decoding algorithm in AWGN channel,

code length=720, code rate=2/3, maximum iteration=10

47

) Code rate: 2/3
10°

— 52

BER

10 ! ! ! ! ! ! ! ! !

SNR

Figure 4.8 Three different fixed-point simulation results of the proposed parity-check
matrix structure, based on the min=sum based decoding algorithm in AWGN channel,

code length=720, code rate=2/3; maximum iteration=10

Code rate: 3/4

10

—— [5:2]

BER

SNR

Figure 4.9 Three different fixed-point simulation results of the proposed parity-check
matrix structure, based on the sum-product decoding algorithm in AWGN channel,

code length=960, code rate=3/4, maximum iteration=10

48

) Code rate: 3/4
10°

— 52

BER

10 ! ! ! ! ! ! ! ! !

SNR

Figure 4.10 Three different fixed-point simulation results of the proposed parity-check
matrix structure, based on the min=sum based decoding algorithm in AWGN channel,

code length=960, code rate=3/4;: maximum iteration=10

Code rate: 4/5

—— [5:2]

BER

SNR

Figure 4.11 Three different fixed-point simulation results of the proposed parity-check
matrix structure, based on the sum-product decoding algorithm in AWGN channel,

code length=1200, code rate=4/5, maximum iteration=10

49

) Code rate: 4/5
10°

— 52

BER

10" ! ! ! ! ! ! ! ! !

SNR

Figure 4.12 Three different fixed-point simulation results of the proposed parity-check
matrix structure, based on the min=sum based decoding algorithm in AWGN channel,

code length=1200, code rate=4/5, maximum: iteration=10

4.2.2 Quantization of r_ “and.q-

We know that the whole decoding process mainly consists of iteratively

exchanging and updating the extrinsic messages r,, and ¢, ,, performed by the
check node update operations and the variable node update operations, respectively.
Therefore, quantization of r, , and q,, is also critical for hardware implementation.
Various quantization schemes for the extrinsic messages r,,, and q,, such as [6:2]

and [7:3] have been examined in this work. In turns out that there is almost no
difference in the decoding performance for the [6:2] and [7:3] quantization schemes.
Simulation results for these schemes to with various code lengths are shown in

Figures 4.13-4.18. Thus we suggest that the [6:2] scheme to be the best choice.

50

) Code rate: 2/3
10°

T i
62
[7:3]
—_
1020 ~_]
>k
3 \\
10°} N E
NN]
o AN
& o .
4 N
10 '+ *\\ E
\\\\
\\\\\
10°} S A
10° | | | | | | | | |
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
SNR

Figure 4.13 Two different fixed-point simulation results of the proposed parity-check
matrix structure, based on the sum-product deceding algorithm in AWGN channel,

code length=720, code rate=2/3; maximum iteration=10

Code rate: 2/3

10

T T
—— [6:2]
[7:3]
<
-2 N
10 . -
A]
™
N
N
N
N
\u\
& 0%k AN |
o \
101 \\ J
]
N

1
N

10'5 L L L L L L L L L
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

SNR

Figure 4.14 Two different fixed-point simulation results of the proposed parity-check
matrix structure, based on the min-sum based decoding algorithm in AWGN channel,

code length=720, code rate=2/3, maximum iteration=10

51

) Code rate: 3/4
10°

10°L T~ 4

BER

10 N 1

10°}

10 ! ! ! ! ! ! ! ! !

SNR

Figure 4.15 Two different fixed-point simulation results of the proposed parity-check
matrix structure, based on the sum-product deceding algorithm in AWGN channel,

code length=960, code rate=3/4;: maximum iteration=10

Code rate: 3/4

10

T T
—— [6:2]
i [7:3]
-2 = -
10"+ + E
\\\
RN
N
\‘\\
3 ~
10 - 4
N 3
Ny]
x \
]
o \
0%t \ 3
10°L .
10'6 L L L L L L L L L
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
SNR

Figure 4.16 Two different fixed-point simulation results of the proposed parity-check
matrix structure, based on the min-sum based decoding algorithm in AWGN channel,

code length=960, code rate=3/4, maximum iteration=10

52

) Code rate: 4/5
10°

T i
62
b [7:3]
—+
—
107} T E
\ 4
.
S
.
N
~
o -3 \
w 10 " \ -
@]
107} \ 4
10° | | | | | | | | |
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

SNR

Figure 4.17 Two different fixed-point simulation results of the proposed parity-check
matrix structure, based on the sum-product deceding algorithm in AWGN channel,

code length=1200, code rate=4/5, maximum: iteration=10

; Code rate: 4/5
10 T T T T T T T T T

T (62 |]
[7:31 |1
2 ® A

10 N E
h 10 \\ 1
o]
10" \ i

10'5 L L L L L L L L L
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

SNR

Figure 4.18 Two different fixed-point simulation results of the proposed parity-check
matrix structure, based on the min-sum based decoding algorithm in AWGN channel,

code length=1200, code rate=4/5, maximum iteration=10

53

4.2.3 Summary of Fixed-Point Simulation Results

Floating-point and fixed-point simulation results are shown in Figures 4.19-4.21,

including the bit-error-rate (BER) and signal-to-noise ratio (SNR). The quantization
scheme [6:2] are for both the initially received signal and the extrinsic messages r,,,
and ¢, . It can be seen that, for cases with code lengths 720, 960 and 1200, the total

quantization loss compared with the floating-point case is about 0.1dB when using the
sum-product algorithm as the decoding algorithm, and the loss compared with the

fixed-point case is about 0.2dB when using the min-sum based algorithm.

Code rate: 2/3

10"
T T T T T
—t+— Fixed-point [6 2] for sum-product algorithm
Floating-point for sum-product algorithm]
- —+— Fixed-point [6 2] for min-sum based algorithm |
= —— Floating-point for min-sum based algorithm
107}
10°+
o
w
]
107k
10°}
1076 1 1 1 1 1 1 1 1 1
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

SNR

Figure 4.19 Floating-point vs. fixed-point simulation results of the proposed
parity-check matrix structure for the sum-product and min-sum based algorithm in

AWGN channel, code length=720, code rate=2/3, maximum iteration=10

54

Code rate: 3/4

10 T T T T T
A —+— Fixed-point [6 2] for sum-product algorithm
Floating-point for sum-product algorithm]
K —+— Fixed-point [6 2] for min-sum based algorithm |
) —<— Floating-point for min-sum based algorithm
1071
10°L
o
L
o
10"
10°L
10°
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
SNR

Figure 4.20 Floating-point vs. fixed-point simulation results of the proposed
parity-check matrix structure for.the sum-product and min-sum based algorithm in

AWGN channel, code length=960,.code rate=3/4, maximum iteration=10

Code rate: 4/5

10° T T T T T
—t+— Fixed-point [6:2] for sum-product algorithm
[= Floating-point for sum-product algorithm]
—— —+— Fixed-point [6:2] for min-sum based algorithm |]
—— Floating-point for min-sum based algorithm
107}
& 10°L
o
10"
1075 1 1 1 1 1 1 1 1 1
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
SNR

Figure 4.21 Floating-point vs. fixed-point simulation results of the proposed
parity-check matrix structure for the sum-product and min-sum based algorithm in

AWGN channel, code length=1200, code rate=4/5, maximum iteration=10

55

Chapter 5

VLSI Implementation of LDPC Decoder

In this chapter, we will implementation an irregular LDPC decoder of rate 3/4,
and code length 960. The parity-check matrix of this code was discussed in the last

chapter and is adopted as our proposed structure.

5.1 Semi-parallel Decoder Architecture for the Proposed LDPC
Codes

This architecture includes twia 16-input CNFUs (Check node function unit), six

4-input VNFUs (Variable node function unit), one 3-input VNFU, one 5-input VNFU

and 32 extrinsic message register-sets R,,,R,,,....,Ry5,Rg,..s Ry g With each

register-set R containing 120 symbols, where each symbol is represented by 6 bits.
Figure 5.1 shows the block diagram of this decoder. The input signals are retrieved
from L registers and x registers store the hard decisions of the soft outputs from
VNFU. Consequently, the decoding process could be carried out as follows:
1. Initialization

Flush the received initial signals to both the L registers and the corresponding
extrinsic message register-sets R. The data is stored serially in the L registers and

the extrinsic message register-sets R.

56

¥

CNFU | |RyyisptRan| [Fazi ptad Fasyp®as Farpeelas| [PasmpRad [a] Fam [fag Fad Fagy fag

: - ||R R R R R R R I R i R b
CNFU | %81l || Fe2| Baa BA| | B3 Bé| [Pz7 Bg| | By B0 B11| [FB19 Wt Eld [B13

h i S ¥ k. J Ak ¥ A s A ¥ ¥ A J ___ ¥ ‘—| k. ¥

57

— VNFU [« —{ VNFU |&q — VNFU (& —{ VNFU [— VNFU — VNFU — VNFU — VNFU

Figure 5.1 Semi-parallel decoder for the proposed irregular LDPC code structure of
rate 3/4, and code length 960

2 Message passing

Stepl (message passing form check nodes to variable nodes): In each subsequent
iteration, the update variable-to-check messages are simultaneously read from all the
extrinsic message register-sets R by all the CNFUSs, the positions of each of the
update variable-to-check message can be selected by a multiplexer, and the control
signal can be controlled by a simple counter. After the CNFU computation, the
updated check-to-variable messages are stored back to the same positions, and this
stored back operation can be controlled by a de-multiplexer, while the control signal
to the de-multiplexer can also be controlled by a simple counter.

Step2 (messages passing from variable nodes to check nodes): Similarly, in the
same iteration, the updated check-to-variable messages are simultaneously read from
all the extrinsic message register-sets R Dby all the VNFUs. After the VNFU
computation, the updated variable-to-check messages are stored back to the extrinsic
message register-sets R and the hard-decisions of the soft output made from each of
the VNFU are at the same time stored in.registers: x .

Step3 (decoding): At the end of each of the decoding iterations, the PCFU
(Parity-check function unit) starts to check all the parity-check equations. The
iterative process will be terminated when either one codeword X satisfying HX=0"
is found, or the pre-assigned maximum number of iterations is reached.

Stepl and Step3 of each decoding iteration are executed in overlap. In other
words, when we are executing step3 of the i" iteration, stepl of the i+ 1-iteration
is being computed simultaneously. Figure 5.2 shows the snap shot of the overlapped
operations. This procedure can reduce the cycles of each decoding iteration and can

increase the data throughput of the whole decoding procedure.

58

TIME

Steploni®iteration | Step2 oni® iteration | Step3oni® iteration

Steploni +1™ iteration Stepd oni+1% iteration Stepiont +1™ iteration

Steploni+2% iteration

Figure 5.2 Illustration of overlapped decoding procedure

5.2 Architectures of the Check Node Function Unit and the Variable

Node Function Unit

In this section, we will discuss the architecture of the check node function unit
and the variable node function unit for the sum-product algorithm and the min-sum
based algorithm respectively. After, this discussion, we will conclude that using the
sum-product algorithm is better:than the :min-sum based algorithm in terms of VLSI
implementation. In the end of this section, we will select the architecture of the
sum-product algorithm as our check node function unit and variable node function
unit and give a summary to the whole LDPC decoder.

For now, let’s review the sum-product algorithm. The check-to-variable message

r

m,l

for the check node m and wvariable node | wusing the incoming

variable-to-check messages ¢,,, is computed by CNFU as follows.

o = SiG0(A,) [T SigN(A) x BB D Jamy) — 6

I'eL(m) I'eL(m)

where L(m) denotes the set of variable nodes connected to the check node m. The
function ¢(x) :—In(tanh(gjj can be implemented with look-up-table (LUT)
operations. Figure 5.3 shows the curve of function ¢(x). On the other hand, the

variable-to-check message q,,, forthe check node m and variable node | using

59

=)

Figure 5.3 Function plot of ¢(x) = _In(tanh(gn

the incoming check-to-variable messages Tt and received initialized signal L, is

computed by VNFU,

0 =VAR(VAR (T L) = L D, (52)

meM (1)

Uy = =Ty (5.3)

where M (l) is the set of check nodes connected to variable node | and L, = % Y.
(o)

According to the above algorithm, the CNFU and VNFU can be implemented as

illustrated in Figure 5.4 and Figure 5.5 respectively.

60

5 N —] 5
Ui LUT y <P > vz 6 r
5 > . — .
Un.2 LUT S Na LUT 3 :W Mo
o = TR SR AT .
n3 LUT - LT | >z |6 -
, 4
5 T — o | 5
U, 5 » - b Y— ; 5
e — LuT 3 > LUT | M osMas by Ty
, A
5 B —T B 5
One —2—— > LUT S LUT 4»764. [
5 S Jﬁ = 5
O,z LUT ; LUT fl:|sm-2's 6y Tz
h) > . — 5
Uns LUT {P » LUT ——— [sm2s | bos s

ol — 5
Ung —2 > LUt LK D | o Svizs 6oy Loy

5 > — 5

a] 3 P S

im0 LUT ; LUT SM2s | —Bep Ty
5] — 5

A1 > LUT LuT >

L f 'Y SM2s |—0e s Ty
5

Uiz > LuT S o L LUT e I N
5 N —N B)

Omis 7 LUT S LUT M2 b

q s N g —T N

m4 LUT 3 LUT SM2s | —L8<> 1,
5 T Y — D] 3

Umas LUT ANV LUT >l SM-2's % Fnas

: [] i o] s
Unie — > LUT LUT vz L6 Fote

'Q"l,!r

'?2;

‘5'3,3

Figure 5.5 Architecture of a 4-input variable node function unit for the sum-product

algorithm

61

It is worth noting that the data format transformation block, either from
sign-magnitude (SM) to two’s complement (2’s) format or vice versa, exists in both
types of functional units. The major advantage of using the sign-magnitude format for
LUT operations is that each LUT size can be reduced by half by making use of the
symmetry properties of the ¢(x) function. As we can see in Figure 5.4 and Figure
5.5, CNFUs are more complicated than VNFUs. Two LUT operations are involved in
the critical path of each CNFU. [16] introduced a method to re-distribute the
computation load between CNFUs and VNFUSs. In this method, it moves one LUT
operation to the critical path of every VNFU. The sum-product algorithm could be

equivalently reformulated as below for CNFUSs,

Fr = SI90(A) [T S100(0n)% (@ Y|t = B0]) (5.4)
I'eL(m) I'eL(m)
and for VNFUSs,
q :VAR(VAI(?)(I’M), L) = L5 +sign(r,,) x ¢(Zrml) (5.5)
meM (I ' ! mem (1) !
qm,l = ql e Sign(rm,l)x¢(rm,l) ' (56)

where all the notations remain the same as before. As a result, their corresponding

architectures are depicted in Figure 5.6 and Figure 5.7 respectively.

62

6 s 3 | | =T 5
2'5-8M = LUT
ana—2— s | [oor —3— . >
a 8 . > Lo | | =D SR
"2 25-8M [LUT | ~— P > Fua
Tz O oy 5 . - N 5
m, 2's-8M LUT EN | % .
6 2 Lot | e | x = 5
qmﬁf——| 25-SM [LUT | & P > 7.
g P o 5 N | X — 5
Mﬁ—,r;ll 2's-8M [LLT I B3 ’ s
& _ 5 1 — 5
P —2 »| 25-SM LT | |[@ P
p— 5
In7—S5<—] 25-SM = > LuT II 3 rr\ ; .
G ‘
[g 5] | — 3 .
fp—— Ps-SM | > LUT | ! : C,H Frs
4] e - e L kN f— 3
e 2'5-SM | = LUT I | £ r\;r’] >
5] N 5
Do, 2'5-8M LUT P -
- LM Y ¥ T e
6 e 3 Tor 1 —Ty 5
w1 2's-8M LUT I T */ > Tmn
iy
Fmn— B ol sgM ['@Q N | " N ey p
| Y
Tty — 25-SM > Lt | ; { > e
O b —
Fmgs 6 g-QN = » | — 5
" 2's-SM LUT | | % o
(N .
Frmas — e o5SM 3 »[Lot | f —F =
™ -1
4
Fmis —So o posM =2 Lot} i =P Sr Fs
- —»
i
1 & |—
D L
D
D
i)

=111

e

Figure 5.6 Reformulated architecture of check node function unit for the sum-product

algorithm
el _
o | , Stania]
L L= 1
- T = M2s | V2 PN
- 7;4 LUT }7;5‘ sM-2s | ? o
Jan | F
3 3 | i 6 g
5 e il
ry —— LT htd sm2s | Nan > 92
s AN Y
L L7
5 o LS I SO e, @y
£y 1 { LT | —* SN2 p I
b
5 5 ey = 6 ey
s 7;4 LU SM-2s | P,

Figure 5.7 Reformulated architecture of a 4-input variable node function unit for the

sum-product algorithm

63

The major benefit of the reformulated architecture is that the computation complexity
is more equally shared amongst the CNFUs and VNFUSs, resulting to a more balanced
computation delay between the two. Besides, the dashed lines indicate possible
positions for inserting pipeline stages and can further reduce the critical paths on both
the CNFUs and VNFUSs. Since we know that in each decoding iteration both check
node update operation and variable node update operation have to be performed one
after another. This leads to merely 50% hardware utilization efficiency (HUE) of the
CNFUs and VNFUSs, because all the VNFUs are idle when CNFUSs are busy during
the check node update and vice versa during the variable node update. To improve the
HUE of CNFUs and VNFUSs, [16] also introduced a re-mapped architecture that
combines the CNFUs and VNFUSs into the same hardware by making use of similarity
between the CNFUs and VNFUs:-and get a smaller area design. The re-mapped
architecture is shown in Figure 5.8..In Figure.5.8, there are a total of 32 inputs and 32
outputs denoted as In, and Out, wrespectively where 1<s<32. The re-mapped
architecture performs CNFU operations.when-the control signal is *0’, thus the inputs
are variable-to-check messages and the outputs are check-to-variable messages. On
the other hand, when the control signal switches to ‘1’, VNFU operations are
performed, where the inputs are check-to-variable messages and the outputs are
variable-to-check messages. Therefore, this architecture can perform both the check
node update operations and the variable node update operations on the same piece of
hardware, which will always be busy during every iteration and thus increasing the
HUE to 100%. Last of all, the dashed lines in Figure 5.8 represent the possible

positions for inserting the pipeline stages.

64

| |
I | —_— R
1 | — T
i | i
I I — L _—
‘l\ I
. | 5 [T
I 1 [1 = -cp
| s | —
I L | —r
| =
| 1 |
| | — — e e
1 | '>—;|-)
I | L —]
L] | I = m}) .
| |
=1
! | -
| | =
1 T %
F r*
I l . ——lkj T3
1 * I —b
| | =1
1 | D -
13 | :T‘/
1 | = o
| 'y I Ny %
N + | ;1)
3 I 1 =F o
1 | T
I : |
I
I
> = } e
! =
I Y N S
k 1%
L S
* | = .
T =
! ==t
/] T __
I r_r"\ _r*.-j
T e
— —an
[=—1
| — Ty
I [%
| — -
| 5
I
I 1 4.I/j —ocF -
¥ T) — ;i\ =
[—
= }
| el o o
|
| —
L j o 3
3
] =d
1 Ty
|

Figure 5.8 Re-mapped architecture performing both check node update and variable

node update operations for the sum-product algorithm

65

Regarding architectures of CNFUs and VNFUSs for the min-sum based algorithm,

as already reviewed in the beginning, for the check node update operation, the

CHK(S,,) is first computed where

CHK(Sm):CVI_(II‘)<(®qm,I’) 67
= CHK(...CHK(CHK(q,,, ®4,,) ® (CHK(@,s ©G0)))

and

|a+b|
CHK (a @ b) = sign(a)sign(b) x Min(al,|b]) + '”—i :a_b . (5.8)

= sign(a)sign(b) x Min(|a],|b) + g(a+b) — g(a—b)
Then, for each of the check-to-variable message r,,, can be computed as

r,, =CHK(S,q,,)

@O *CHK (S0
=In= gy oK G, (5)

=h(q,, + CHK(S;)) (g, ~CHK(S,))) -CHK(S,)

The functions g(x):ln(1+e""‘) and h(x)=1n

ex—ﬂ can be implemented with

look-up-table (LUT) operations. Figure 5.9 and Figure 5.10 show the curves of the

g-function and h-function, respectively.

In(L+ eg‘x‘)

g(x)

Figure 5.9 Function plot of g(x) =In(1+ e“x‘)

66

(<2}
T

=IneX -1
=

h(x)

A
T

xX O

Figure 5.10 Function plot of h(x) =In(e* —1)

For the variable node update operation, each of the variable-to-check message g,

can be computed as

q :VAR(r}]/eﬁﬁ)(rm,l)- L= L zrm,l (5.10)

meM (1)

and
Ouir=Qr —Mogs (5.11)

The corresponding architectures of the CNFUs and VNFUs for the min-sum based

algorithm are shown in Figure 5.11 and Figure 5.12 respectively.

67

Tm10
Tl
Dmiz
D13
D14

mls
16

(ol Nl (=20 Kool

(=) (=) (= (o)

(=)

(=)

(= =) N O

(=}

DD DD D DD

G & & &

i

il E - £+ —19- 43| T

D

“ompare
W] 15

.ompare

with -3.75

Out

(T
%

Figure 5.11 Architecture of check node function unit for the min-sum based algorithm

2]
[+)
G Wa 6
y =
s
5
& T 6
™ vy
b r -~
i
N) =
& —~ A
Ny
w
P Y
N 1
& -1 6
LA

rincap)

717

ey

q3j

247

Figure 5.12 Architecture of a 4-input variable node function unit for the min-sum

based algorithm

68

It should be noted that in Figure 5.11, the input range of the look-up-table for the

h-function (LUT-h) is merely from —-3.75-to-3.75. The reason is that for the

h-function where h(x) =

ex—ﬂ,when X is larger than 3.75, h(x) equalsto x or

h(x)=x; and when x is smaller than -3.75, the h(x) will equal to 0. This

characteristic of the h-function can be clearly seen in Figure 5.10. So we can first

compare the values (inl+in2) and (inl1—in2), where inl and in2 are the inputs

of the core operation CHK(in2 @inl), to the values 3.75 and -3.75 respectively.

Then, the compared results are used to form the control signals of a 3-to-1 multiplexer
as shown in Figure 5.11 and determine the output signal of the 3-to-1 multiplexer.
This shortening operation can reduce the number of entries of LUT-h to 32. Similarly,
the dashed lines represent the possible positions for inserting the pipeline stages in
Figure 5.11.

To compare the area, speed, latency,‘and power consumption of the architectures
discussed in this section, we describe both architectures in VHDL, and afterwards
simulate and synthesize it using the tools Synopsis™ and PrimePower . The
process technology is UMC 0.18 gm process. Table 5.1 and Table 5.2 list the results
of the reformulated and remapped architectures of CNFUs and VNFUs for the
sum-product algorithm respectively. Table 5.3 lists the results for the architectures of
CNFUs and VNFUSs, based on the min-sum based algorithm. Furthermore, we give a
summary on the comparisons of the different architectures in Table 5.4. It can be seen
in Table 5.4 that the area and average power consumption of the architectures of
CNFUs and VNFUs for the min-sum based algorithm are the worst when compared to
the reformulated and remapped architecture of CNFUs and VNFUs on the
sum-product algorithm. The reformulated and the remapped architecture of CNFUs

and VNFUs for the sum-product algorithm are both tradeoffs between area and power

69

consumption. However, when comparing the reformulated architecture to the
remapped architecture of CNFUs and VNFUSs for the sum-product algorithm, the area
of the remapped architecture is reduced by 20%; but the average power consumption
of the remapped architecture is exceeded by 48%. We therefore select the
reformulated architecture of CNFUs and VNFUs for the sum-product algorithm as the

CNFUs and VNFUSs in our decoder design.

Table 5.1 Area, speed, latency and power consumption of the reformulated CNFUs

and VNFUs architectures for the sum-product algorithm

16 input 3 input 4 input 5 input
CNFU VNFU VNFU VNFU
Area 5k 1.14k 1.6k 1.77k
(gate count)
Speed (MHz) 200 200 200 200
Latency(Cycles) 2 2 2 2
Power 9.87 3.10 3.82 4.48
consumption
(mW)

Table 5.2 Area, speed, latency and power consumption of the re-mapped CNFUs and

VNFUs architectures for the sum-product algorithm

32 input remapped hardware performing both CNFUs and VNFUs

operations

Area 18k

(gate count)

70

Check node update operation

Variable node update operation

Speed (MHz) 200 200
Latency(Cycles) 3 3
Power 30.82 43.74

consumption

(mW)

Table 5.3 Area, speed, latency and power consumption of the CNFUs and VNFUs

architecture for the min-sum base algorithm

16 input 3 input 4 input 5 input
CNFU VNRU VNFU VNFU
Area 22k 0.74k 1.07k 1.61k
(gate count)
Speed (MHz) 200 200 200 200
Latency(Cycles) 5 1 1 1
Power 23.2 2.23 3.53 4.33
consumption
(mW)

Table 5.4 Summary of comparison the area, speed and power consumption of the

different CNFUs and CNFUs architectures for the sum-product algorithm and the

min-sum based algorithm

Sum-product algorithm

Min-sum based algorithm

Reformulated set

Conventional set

Remapped set

71

Area 5k+1.14k+1.6k*6+1.77k 18k 22k+0.74k+1.07k*6+1.61k
(gate count) =22.51k =52.77k
Relative 100% 80% 234%
area
Speed 200 200 200
(MHz)
Total power 9.87*2 30.82 23.2*2
consumption =19.74 =46.4
for check
node update
operation
(mW)
Total power 3.10+3.82*6+4.48 43.74 2.33+3.53*%6+4.33
consumption =30.5 =27.74
for variable
node update
operation
(mW)
Average (19.74+30.5)/2 (30.82+43.74)/12 (46.4+27.74)/2
Power =25.12 =37.28 =37.07
consumption
(mW)
Relative 100% 148% 147%
average

power

72

consumption

Having discussed the architecture of the CNFUs and VNFUSs, we can further use
the characteristics of the LDPC decoding, that is, it is inherently parallelizable and
chooses a parallel factor of 10. That means that we can compute 20 rows
simultaneously during the check node update operation, and 80 columns
simultaneously during the variable node update operation as well. Now we set the
number of the input bits of the whole decoder to 240 bits, which means that we can
input 40 symbols in one clock cycle. Regarding a 960-symbol frame, it will take 24
cycles to complete the input operation. The number of the output bits is 10, so it will
take 72 cycles to output the estimated..data bits X . Besides, we compute 20
parity-check equations in one cycle andyit will take 12 cycles to finish all of the
parity-check equations. Since the maximum iteration-of the decoding procedure is 10
and the parallel factor is also 10, the total-amount of cycles needed to complete the
decoding procedure is 24+10*(12+2)*2+12+72 =388 cycles. According to
our initial synthesis results, the clock frequency is 200MHz, thus the data decoding
throughput is 200*[960* (3/4)]/388 ~ 370 Mbps. Regarding the power consumption
of the whole decoder, by using the technique of gated clock, the VNFUSs can be turned
off when the CNFUSs are busy during check node updates and vice versa during the
variable node updates, one can reduce the total power consumption. Last of all, we
give a summary of the whole decoder in Table 5.5. It is obvious that using gated clock
can reduce 28% of the power consumption when compared to the case of without

gated clock.

73

Table 5.5 Summary of the proposed LDPC decoder

Proposed LDPC decoder | Proposed LDPC decoder
without gated clock with gated clock
Area 800k 800k
(gate count)
Speed 200 200
(MH2z)
Data throughput 370 370
(Mbps)
Power consumption 770 550
(mW)
Relative power 100% 72%
consumption

According to the proposed irregular"LDPC decoder, these results can be
compared to other designs which are list in Table 5.6. As we can see in Table 5.6,
using the semi-parallel architecture can make a more flexible design in hardware

implementation.

Table 5.6 Comparison of LDPC decoders

Proposed LDPC [18] [17]
decoder
Code length 960 8088 1024
Code rate 3/4 1/2 1/2
Quantization bits 6 6 4

74

Architecture |Semi-parallel with[Semi-parallel with| Fully parallel
parallel factor 10 | parallel factor 24
Process 0.18 0.11 0.16
Technology (1 m)
Clock rate (MHz) 200 212 64
Power (mW) 550 690
Area (gate count) 800k 742k 1750k
Throughput 370 188 500
(Mbps)

Regarding the application of the proposed irregular LDPC decoder, it can be
applied to the WLAN IEEE 802.41n standard: Table 5.6 shows the basic modulation
coding scheme (MCS) set of TGnSync [19] propasal.clt can be seen obviously that the

decoder can support the data throughput-requirement with all of the modulation

method, when the transmission bandwidth’is 20MHz and the code rate is 3/4.

Table 5.8 Basic MCS set of TGnSync proposal

Data Rates* 20 MHz Data Rates* 40 MHz
(Mbps) (Mbps)
Modulation | Code Rate (1,2,3,4 spatial streams) | (1,2,3,4 spatial streams)
BPSK 1/2 6,12, 18, 24 6%, 13.5, 27, 45.5, 54
QPSK 1/2 12, 24, 36, 48 27,54, 81, 108
QPSK 3/4 18, 35, 54, 72 40.5, 81, 121.5, 162
16 QAM 1/2 24,48, 72, 96 54,108, 162, 216
16 QAM 3/4 36, 72, 108, 144 81, 162, 243, 324
64 QAM 2/3 48, 96, 144, 192 108, 216, 324, 432
64 QAM 3/4 54,108, 162, 216 121.5, 243, 364.5, 486
64 QAM 7/8 63, 126, 189, 252 141.7, 283.5, 425.2, 567
64 QAM 7/8 with Y2 GI* | 70, 140, 210, 280 157.5, 315, 472.5, 630

75

Chapter 6

Conclusion

From this work, we summarize that using the proposed structure of the LDPC
codes can further improve the error correction performance when compared to the
irregular quasi-cyclic codes. However, it is not expected that the proposed structure of
the LDPC codes will outperform randomly. constructed optimized irregular codes. The
proposed structure of the LDPC: codes has-the advantage of a reduced encoding
complexity and is suited for the:VVLLSI implementation of the decoder.

Various quantization schemes for the-received data and extrinsic message for the
sum-product algorithm and the min-sum ‘based algorithm of the irregular LDPC
decoder were investigated and the optimal choice considering the tradeoff between the
hardware complexity and the performance were discussed in this thesis. The overall
fixed-point simulations show that the quantization scheme we have developed for the
sum-product algorithm and min-sum based algorithm of the irregular LDPC decoder
are effective in approximating the floating-point implementation and that using the
sum-product algorithm is better than the min-sum based algorithm of the irregular
LDPC decoder by about 0.1dB.

With the semi-parallel architecture and a parallel factor of 10, an irregular LDPC
decoder has been implemented, of which the code rate is 3/4, the code length is 960

bits, and the maximum number of decoding iterations is 10, respectively. The irregular

76

LDPC decoder can achieve the data decoding throughput of up to 370Mbps and the
area is 800k gate counts using the UMC 0.18 xm ASIC process technology. Regarding
the power consumption of the irregular LDPC decoder, by using the technique of
gated clock one can reduce 28% of the total power consumption down to 550 mW.
The irregular LDPC decoder can support the data throughput requirement of the
WLAN IEEE 802.11n standard when the transmission bandwidth is 20MHz and the
code rate is 3/4. We believe that if we extend the parity-check matrix structure to code
length 1920 and code rate 7/8, by increasing the parallel factor, we can implement a
good LDPC decoder which can support the data throughput requirement with all of

the different data rates.

77

References

[1] R. G. Gallager, “Low-density parity-check codes,” Cambridge, MA: MIT Press,

1963.

[2] D. J. C. Mackay and R. M. Neal, “Near Shannon limit performance of low density

parity check codes,” Electron. Lett., Vol. 32, pp. 1645-1646, Aug. 1996.

[3] T. J. Richardson and R. L. Urbabke, “Efficient encoding of low-density
parity-check codes,” IEEE Trans. Inform. Theory, Vol. 47, pp. 638-656, Feb.

2001.

[4] D. J. C. Mackay, S. T. Wilson, and M. C. Davey, “Comparison of constructions of
irregular gallager codes,”” IEEE Trans. Comm., Vol. 47, pp. 1449-1454, Oct.

1999.

[5] S. J. Johnson and S. R. Weller;-**A family of-irregular LDPC codes with low

encoding complexity,” IEEE Comm. Lett., Vol. 7, pp. 79-81, Feb. 2003.

[6] M. C. Davey and D. J. C. Mackay, “Low-density parity-check codes over GF(q),”

IEEE Comm. Lett., Vol. 2, pp. 165-167, Jun. 1998.

[7] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform.

Theory, Vol. 27, pp. 533-547, Sep. 1981.

[8] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann,
“Practical loss-resilient codes,” IEEE Trans. Inform. Theory, Vol. 47, pp. 569-584,

Feb. 2001.

[9] T. J. Richardson, M. A. Shokrollashi, and R. L. Urbanke, “Design of

capacity-approaching irregular low-density parity-check codes,” IEEE Trans.

78

Inform. Theory, Vol. 47, pp. 619-637, Feb. 2001.

[10] D. J. C. Mackay, “Good error-correcting codes based on very sparse matrices,”

IEEE Trans. Inform. Theory, Vol. 45, pp. 399-431, Mar. 1999.

[11] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inform. Theory, Vol. 47, pp. 498-519, Feb.

2001.

[12] H. Futaki and T. Ohtuski, “Low-density parity-check (LDPC) coded OFDM

systems,” IEEE VTS, Vol. 1, pp. 82-86, Fall. 2001.

[13] X. Y. Hu, E. Eleftheriou, D. M. Arnold, and A. Dholakia, “Efficient
implementation of the sum-product algorithm for decoding LDPC codes,” IEEE

GLOBECOM’01, Vol. 02, pp:1036-1036E; Nov. 2001.

[14] I. V. Kozintsev. Software for low-density parity=check codes. [Online] Available

at: http://www.kozintsev.net/soft.html.

[15] A. Nayagam. Software for low-density parity-check codes. [Online] Available at:

http://arun-10.tripod.com/ldpc/ldpc.html.

[16] Z. Wang, Y. Chen, and K. K. Parhi, “Area efficient decoding of quasi-cyclic low

density parity check codes,” IEEE ICASSP’04, Vol. 5, pp. 49-52, May. 2004.

[17] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2
low-density parity-check code decoder,” IEEE J. Solid-State Circuits, Vol. 37, pp.

404-412, Mar. 2002.

[18] Y. Chen and D. Hocevar, “A FPGA and ASIC implementation of rate 1/2,
8088-b irregular low density parity check decoder,” IEEE GLOBECOM’03, Vol.

3, pp. 113-117, Dec. 2003.

79

[19]TGnSync, “TGnSync Proposal,” [Online] Available at:

http://www.tgnsync.org/home.

80

FABo1981 #8721 pdid gad £ -20032p WA EXFT
W1E (BE T r AU AT IFT ALl g
L EAELEN ARBE R EEAIE L h D S MR ARAH B

LRI RS LR R

81

