

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

低密度對偶檢查碼結構之改進以及其解碼器之

超大型積體電路實現

An Improved LDPC Code Structure and Its VLSI

Decoder Realization

研 究 生：朱元志

指導教授：陳紹基 博士

中 華 民 國 九 十 四 年 七 月

低密度對偶檢查碼結構之改進以及其解碼器之超大型

積體電路實現

An Improved LDPC Code Structure and Its VLSI

Decoder Realization

研 究 生：朱元志 Student：Yuan-Jih Chu

指導教授：陳紹基 博士 Advisor：Sau-Gee Chen

國 立 交 通 大 學

電子工程學系 電子研究所所碩士班

碩 士 論 文

A Thesis

Submitted to Institute of Electronics

College of Electrical Engineering and Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Electronics Engineering

July 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年七月

 I

低密度對偶檢查碼結構之改進以及其解碼

器之超大型積體電路實現

學生：朱元志 指導教授：陳紹基 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

由於低密度對偶檢查碼 (LDPC) 的編碼增益接近向農 (Shannon) 極限以及解碼

程序上擁有低複雜度的特性，所以在近年來受到廣泛的討論。本文中，我們利用

差分集合 (difference family) 的概念來建構一種新的低密度對偶檢查碼結構，此

結構在編碼上擁有低複雜度的特性，以及在解碼器的設計上易於超大型積體電路

(VLSI) 實現。此外，在解碼器的設計上，我們使用部分平行 (semi-parallel) 的

架構並使其平行度為 10，設計一個碼率為 3/4、長度為 960 位元、最大循環解碼

次數為 10 的非規則低密度對偶檢查碼解碼器，在 0.18 mµ 製程下，此解碼器之資

料流為每秒 370MHz、面積為 80 萬個邏輯閘、消耗功率為 550mW。

 II

An Improved LDPC Code Structure
and Its VLSI Decoder Realization

 Student: Yuan-Jih Chu Advisor: Dr. Sau-Gee Chen

Department of Electronics Engineering &

Institute of Electronics

National Chiao Tung University

ABSTRACT

In recent years, low-density parity-check (LDPC) codes have attracted a lot of

attention due to the near Shannon limit coding gain when iteratively decoded. In this

thesis, we construct a new structure of irregular LDPC codes based on using the

difference families. The resulting codes can be encoded with low complexity and are

suitable for the VLSI implementation of their decoder. With the semi-parallel

architecture and a parallel factor of 10, an irregular LDPC decoder has been

implemented, of which the code rate is 3/4, the code length is 960 bits, and the

maximum number of decoding iterations is 10, respectively. The irregular LDPC

decoder can achieve a data decoding throughput of up to 370Mbps, an area of 800k

gate counts, and a power consumption of 550mW using the UMC 0.18 mµ ASIC

process technology.

 III

誌 謝

 本篇論文的完成承蒙指導教授 陳紹基博士兩年多來的悉心指導教

誨，讓我能夠確立研究的方向，給予我多方面的協助，在此至上由衷

的感激。

 其次，感謝曲健全學長以及廖彥欽學姊無私地提供協助，使我受益

良多。謝謝實驗室的同學世民、觀易、佳旻、偉廷以及承穎，謝謝你

們在課業及生活上給予我許多的幫助。還有實驗室的學弟妹們,謝謝

你們帶給我們許多美好的回憶。

 最後，感謝我的家人在背後支持與鼓勵我，還有在天上的爸爸，因

為有你的支持及栽培，我才能順利的完成學業，謹致上無限的敬意與

感激。

 IV

Contents
中文摘要..Ⅰ
ABSTRACT ...Ⅱ

ACKNOWLEDGEMENT ...Ⅲ
CONTENTS...Ⅳ
LIST OF TABLES ...Ⅵ
LIST OF FIGURES ...Ⅶ

Chapter 1 Introduction..1

Chapter 2 Low-Density Parity-Check Code..3

2.1 Fundamental Concept of LDPC Code ...3
2.2 Code Construction ...7
2.3 Encoding ..10
2.4 Decoding ..17

2.4.1 Decoding Procedure in One Iteration ...18
2.4.2 Iterative Decoding Procedure ...23
2.4.3 Efficient Check Node Computation..25

Chapter 3 A New Structure for Low-Density Parity-Check Code Using the

Difference Family...33
3.1 The Difference Family ...33
3.2 The Proposed Structure of LDPC Code...35

Chapter 4 Simulation Results ...39

4.1 Floating-Point Simulations ..42
4.2 Fixed-Point Simulations...46

4.2.1 Quantization of Initially Received Signal...46

4.2.2 Quantization of lmr , and lmq , ...50

4.2.3 Summary of Fixed-Point Simulation Results ...54

Chapter 5 VLSI Implementation of LDPC Decoder ..56

5.1 Semi-parallel Decoder Architecture for the Proposed LDPC Codes56
5.2 Architectures of the Check Node Function Unit and the Variable Node

Function Unit ...59

 V

Chapter 6 Conclusion ..76

References ...78

Autobiography..81

 VI

List of Tables

Table 2.1 Efficient computation step of () TT sCAETp +−−= −− 11
1 γ14

Table 2.2 Efficient computation step of)(1
1

2
TTT BpAsTp +−= −14

Table 2.3 Summary of Richardson’s encoding procedure.14

Table 2.4 Summary of the sum-product algorithm..29

Table 2.5 Summary of the min-sum based algorithm..30

Table 2.6 Summary of the min-sum algorithm..31

Table 4.1 Polynomials of each of the circulant matrices of the proposed irregular

LDPC codes ...40

Table 4.2 Polynomials of each of the circulant matrices of the quasi-cyclic

irregular LDPC codes ..41

Table 5.1 Area, speed, latency and power consumption of the reformulated

CNFUs and VNFUs architectures for the sum-product algorithm70

Table 5.2 Area, speed, latency and power consumption of the re-mapped CNFUs

and VNFUs architectures for the sum-product algorithm....................70

Table 5.3 Area, speed, latency and power consumption of the CNFUs and

VNFUs architectures for the min-sum based algorithm71

Table 5.4 Summary of comparison the area, speed and power consumption of the

different CNFUs and CNFUs architectures for the sum-product

algorithm and the min-sum based algorithm71

Table 5.5 Summary of the proposed LDPC decoder ...74

Table 5.6 Comparison of LDPC decoders ...74

Table 5.7 Basic MCS set of TGnSync proposal ..75

 VII

List of Figures
Figure 2.1 Example of a (8, 4, 2)-regular LDPC code and its corresponding

Tanner graph. There are 8 variable nodes (vi) and 4 check nodes (ci).. .4

Figure 2.2 Example of a low-density parity-check code matrix where (n, j, k) =

(20, 3, 4)...7

Figure 2.3 Example of a rate-1/2 quasi-cyclic code from two circulant matrices,

where xxa += 1)(1 and 42
2 1)(xxxa ++=10

Figure 2.4 The parity-check matrix in an approximate lower triangular form......12

Figure 2.5 (a) Example of a rate-1/2 quasi-cyclic code. (a) Parity-check matrix with

two circulants, where xxa += 1)(1 and 42
2 1)(xxxa ++=17

Figure 2.5 (b) Example of a rate-1/2 quasi-cyclic code. (b) Corresponding generator

matrix in systematic form ..17

Figure 2.6 Notations for iterative decoding procedure..24

Figure 2.7 Serial configuration for computing check node update26

Figure 2.8 Parallel configuration for computing check node update28

Figure 4.1 Floating-point simulations of various parity-check matrix structures in

AWGN channel, code length=720, code rate=2/3, maximum

iteration=10, using the sum-product algorithm....................................43

Figure 4.2 Floating-point simulations of various parity-check matrix structures in

AWGN channel, code length=960, code rate=3/4, maximum

iteration=10, using the sum-product algorithm....................................43

Figure 4.3 Floating-point simulations of various parity-check matrix structures in

AWGN channel, code length=1200, code rate=4/5, maximum

iteration=10, using the sum-product algorithm....................................44

Figure 4.4 Floating-point simulations of the proposed parity-check matrix

 VIII

structure, under the three decoding algorithm in AWGN channel, code

length=720, code rate=2/3, maximum iteration=10.............................44

Figure 4.5 Floating-point simulations of the proposed parity-check matrix

structure, under the three decoding algorithm in AWGN channel, code

length=960, code rate=3/4, maximum iteration=10.............................45

Figure 4.6 Floating-point simulations of the proposed parity-check matrix

structure, under the three decoding algorithm in AWGN channel, code

length=1200, code rate=4/5, maximum iteration=10...........................45

Figure 4.7 Three different fixed-point simulation results of the proposed

parity-check matrix structure, based on the sum-product decoding

algorithm in AWGN channel, code length=720, code rate=2/3,

maximum iteration=10...47

Figure 4.8 Three different fixed-point simulation results of the proposed

parity-check matrix structure, based on the min-sum based decoding

algorithm in AWGN channel, code length=720, code rate=2/3,

maximum iteration=10...48

Figure 4.9 Three different fixed-point simulation results of the proposed

parity-check matrix structure, based on the sum-product decoding

algorithm in AWGN channel, code length=960, code rate=3/4,

maximum iteration=10...48

Figure 4.10 Three different fixed-point simulation results of the proposed

parity-check matrix structure, based on the min-sum based decoding

algorithm in AWGN channel, code length=960, code rate=3/4,

maximum iteration=10...49

Figure 4.11 Three different fixed-point simulation results of the proposed

parity-check matrix structure, based on the sum-product decoding

 IX

algorithm in AWGN channel, code length=1200, code rate=4/5,

maximum iteration=10...49

Figure 4.12 Three different fixed-point simulation results of the proposed

parity-check matrix structure, based on the min-sum based decoding

algorithm in AWGN channel, code length=1200, code rate=4/5,

maximum iteration=10...50

Figure 4.13 Two different fixed-point simulation results of the proposed

parity-check matrix structure, based on the sum-product decoding

algorithm in AWGN channel, code length=720, code rate=2/3,

maximum iteration=10...51

Figure 4.14 Two different fixed-point simulation results of the proposed

parity-check matrix structure, based on the min-sum based decoding

algorithm in AWGN channel, code length=720, code rate=2/3,

maximum iteration=10...51

Figure 4.15 Two different fixed-point simulation results of the proposed

parity-check matrix structure, based on the sum-product decoding

algorithm in AWGN channel, code length=960, code rate=3/4,

maximum iteration=10...52

Figure 4.16 Two different fixed-point simulation results of the proposed

parity-check matrix structure, based on the min-sum based decoding

algorithm in AWGN channel, code length=960, code rate=3/4,

maximum iteration=10...52

Figure 4.17 Two different fixed-point simulation results of the proposed

parity-check matrix structure, based on the sum-product decoding

algorithm in AWGN channel, code length=1200, code rate=4/5,

maximum iteration=10...53

 X

Figure 4.18 Two different fixed-point simulation results of the proposed

parity-check matrix structure, based on the min-sum based decoding

algorithm in AWGN channel, code length=1200, code rate=4/5,

maximum iteration=10...53

Figure 4.19 Floating-point vs. fixed-point simulation results of the proposed

parity-check matrix structure for the sum-product and min-sum based

algorithm in AWGN channel, code length=720, code rate=2/3,

maximum iteration=10...54

Figure 4.20 Floating-point vs. fixed-point simulation results of the proposed

parity-check matrix structure for the sum-product and min-sum based

algorithm in AWGN channel, code length=960, code rate=3/4,

maximum iteration=10...55

Figure 4.21 Floating-point vs. fixed-point simulation results of the proposed

parity-check matrix structure for the sum-product and min-sum based

algorithm in AWGN channel, code length=1200, code rate=4/5,

maximum iteration=10...55

Figure 5.1 Semi-parallel decoder for the proposed irregular LDPC code structure

of rate 3/4, and code length 960...57

Figure 5.2 Illustration of overlapped decoding procedure59

Figure 5.3 Function plot of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

2
tanhln)(xxφ ..60

Figure 5.4 Architecture of check node function unit for the sum-product algorithm

..61

Figure 5.5 Architecture of a 4-input variable node function unit for the

sum-product algorithm...61

Figure 5.6 Reformulated architecture of check node function unit for the

 XI

sum-product algorithm...63

Figure 5.7 Reformulated architecture of a 4-input variable node function unit for

the sum-product algorithm...63

Figure 5.8 Re-mapped architecture performing both check node update and

variable node update operations for the sum-product algorithm65

Figure 5.9 Function plot of)1ln()(xexg −+= ..66

Figure 5.10 Function plot of)1ln()(−= xexh ...67

Figure 5.11 Architecture of check node function unit for the min-sum based

algorithm..68

Figure 5.12 Architecture of a 4-input variable node function unit for the min-sum

based algorithm..68

 1

Chapter 1

Introduction

 With the continuous growth of wireless communication technology, people have

eventually become addicted to wireless products such as mobile phones and wireless

LAN due to the convenience and enjoyment it has brought to our lives. However, the

resources of the wireless frequency spectra are limited and valuable. The

improvement of transmission efficiency for wireless communication has therefore

become the focus of research in communication systems. The use of error correction

codes is one of the main solutions to raising the transmission efficiency. Among

various error correction codes, one called low-density parity-check code (LDPC)

should be especially taken into account. LDPC codes were first presented by Gallager

[1] in 1962 and have received great attention recently due to, its near Shannon limit

coding gain when iterative decoded [2]. LDPC codes are currently widely considered

a serious competitor to the turbo codes. The main advantages of LDPC codes over

turbo codes are that LDPC decoders are known to require an order of magnitude less

arithmetic computations, and the decoding algorithm for LDPC codes is parallelizable

and can potentially be accomplished at significantly greater speeds. The disadvantage

of the LDPC codes is the high complexity required in encoding. Recently, several

efficient encoding approaches have been proposed [3,4,5]. In [5], it introduced an

approach that used difference families to construct irregular quasi-cyclic codes free of

 2

4-cycles while reducing the encoding complexity to become linear to the code length.

However, the performance was not as good as expected. The aim of this thesis is to

construct a new structure of LDPC codes that improves the performance while using

the concept of the difference families, and contact VLSI design of the corresponding

decoder.

 This thesis is organized as follows. In chapter 2, basic concept of the LDPC

codes including the code construction, encoding and decoding will be introduced.

Chapter 3 will propose a new structure of LDPC codes by using difference families.

In chapter 4, the simulation results for the LDPC codec will be discussed in chapter 2

and chapter 3 will be shown. Chapter 5 will discuss the VLSI implementation of the

LDPC decoder. In the end of this thesis, brief conclusions will be presented in chapter

6.

 3

Chapter 2

Low-Density Parity-Check Code

In this chapter, an introduction to low-density parity-check code will be given,

including the fundamental concepts of LDPC code, code construction, encoding and

decoding mechanism.

2.1 Fundamental Concept of LDPC Code

A binary LDPC code is a binary linear block code that can be defined by a sparse

binary nm× parity-check matrix. A sparse matrix is a matrix where only a small

fraction of its entries are ones. Non-binary LDPC codes over GF(q) are discussed in

[6]. Hereafter, binary LDPC codes will be called LDPC codes for short.

For any nm× parity-check matrix H, it defines a (n, j, k)-regular LDPC code if

every column vector of H has the same weight j and every row vector of H has the

same weight k. Here the weight of a vector is the number of ones in the vector. By

counting the ones in H, it follows that kmjn ×=× . Hence if nm < , then kj < .

Suppose the parity-check matrix has full rank, the code rate of H is

kjkjknmnr /1/)(/)(−=−=−= . If not all the columns or all the rows of the

parity-check matrix H have the same number of ones, an LDPC code is said to be

irregular.

 4

As suggested by Tanner [7], an LDPC code can be represented as a bipartite

graph. An LDPC code corresponds to a unique bipartite graph and a bipartite graph

also corresponds to a unique LDPC code. In a bipartite graph, one type of nodes,

called the variable nodes, correspond to the symbols in a codeword. The other type of

nodes, called the check nodes, correspond to the set of parity check equations. If the

parity-check matrix H were an nm× matrix, it would have m check nodes and n

variable nodes. A variable node vi is connected to a check node cj by an edge, denoted

as (vi, cj), if and only if the entry hi,j of H is one. A cycle in a graph of nodes and edges

is defined as a sequence of connected edges which starts from a node and ends at the

same node, and satisfies the condition that no node (except the initial and final node)

appears more than once. The number of edges on a cycle is called the length of the

cycle. The length of the shortest cycle in a graph is called the girth of the graph.

Regular LDPC codes are those where all nodes of the same type have the same

degree. The degree of a node is the number of edges connected to that node. For

example, Figure2.1 shows a (8, 4, 2)-regular LDPC code and its corresponding

3c1c 2c 4c

1v 2v 5v 6v 7v 8v3v 4v

nodescheck

nodesvariable

3c1c 2c 4c

1v 2v 5v 6v 7v 8v3v 4v

nodescheck

nodesvariable

Figure 2.1 Example of a (8, 4, 2)-regular LDPC code and its corresponding Tanner

graph. There are 8 variable nodes (vi) and 4 check nodes (ci).

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

10011010
01100110
10101001
01010101

H

 5

Tanner graph. In this example, all the variable nodes have a degree of 2 and all the

check nodes have a degree of 4. The edges (c1, v3), (v3, c3), (c3, v7), and (v7, c1) depict

a cycle in the Tanner graph. Since this turns out to be the shortest cycle, the girth of

this graph is 4. Irregular LDPC codes were introduced in [8] and [9]. For such codes,

the degrees of each set of nodes are chosen according to some distribution.

A polynomial)(xγ of the form

 ∑
≥

−=
2

1)(
i

i
i xx γγ (2.1)

is a degree distribution if)(xγ has nonnegative coefficients and 1)1(=γ . Given a

degree distribution pair),(ρλ to form a sequence of code ensembles),(ρλnC ,

where n is the length of the code and where

∑

∑

=

−

=

−

=

=

v

v

d

i

i
i

d

i

i
i

xx

xx

2

1

2

1

)(

)(

ρρ

λλ
 (2.2)

specify the variable and check node degree distributions. More precisely, iλ and iρ

represent the fraction of edges emanating from variable and check nodes of degree i

respectively; vd and cd are denoted as the maximum variable and check node

degree. Assume that the code has n variable nodes. The number of variable nodes of

degree i is then

∫∑

=

≥

1

02
)(

/
/

/

dxx

i
n

j
i

n i

j
j

i

λ

λ
λ
λ

 (2.3)

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
===∫ ∫ ∑ ∑∑

= ==

−1

0

1

0
2 22

1

0

1 |)(
v vvd

i

d

i

i
d

i

i

i
i

i ii
xdxxdxx λλλλ

and so the total number of edges emanating from all variable nodes E is equal to

 6

∫

∑
∫

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅=

≥
1

0
2

1

0
)()(

/

dxx

ni
dxx

i
nE

i

i

λλ

λ
 (2.4)

 Similarly, assuming that the code has m check nodes, E can also be expressed

as

∫

= 1

0
)(dxx

mE
ρ

 (2.5)

 Since the number of edges emanating from all variable nodes is equal to that

emanating from all check nodes, we have

∫∫

== 1

0

1

0
)()(dxx

m

dxx

nE
ρλ

 (2.6)

Hence

∫
∫= 1

0

1

0

)(

)(

dxx

dxx
nm

λ

ρ
 (2.7)

Assuming that H has full rank, the rate of LDPC codes in the ensemble is

∫
∫−=

−
=
∆

1

0

1

0

)(

)(
1),(

dxx

dxx

n
mnr

ρ

λ
ρλ (2.8)

Further more, the average degree j of a variable node and average degree k of a

check node are

∫∑

===

=

1

0
2

)(

1

/

1

dxxjn
Ej

vd

j
j

λλ

 (2.9)

∫∑

===

=

1

0
2

)(

1

/

1

dxxjm
Ek

cd

j
j

ρρ

 7

2.2 Code Construction

Gallager’s method [1]

Define an (n, j, k) parity-check matrix as a matrix of n columns that has j ones in

each column, k ones in each row, and zeros elsewhere. In follows from this definition

than an (n, j, k) parity-check matrix has knj / rows and thus a rate kjr /1−≥ . In

order to construct an ensemble of (n, j, k) matrices, consider first the special (n, j, k)

matrix in Figure 2.2, for which n, j and k will be 20, 3 and 4, respectively.

10000100001000010000
00010010000100001000
01000001000010000100
00001000010001000010
00100000100000100001
10001000100010000000
01000100010000001000
00100010000001000100
00010000001000100010
00000001000100010001
11110000000000000000
00001111000000000000
00000000111100000000
00000000000011110000
00000000000000001111

Figure 2.2 Example of a low-density parity-check code matrix where (n, j, k) = (20, 3,

4)

This matrix is divided into j sub-matrices, each containing a single 1 in each

column. The first of these sub-matrices contains all its 1’s in descending order which

is, the ith row contains 1’s in columns 1)1(+− ki to ik . The other sub-matrices are

 8

merely column permutations of the first. We define the ensemble of (n, j, k) codes as

the ensemble resulting from random permutations of the columns of each of the

bottom)1(−j sub-matrices of a matrix such as in Figure 2.2 with equal probability

assigned to each permutation. This definition is somewhat arbitrary and is made for

mathematical convenience. In fact such an ensemble does not include all (n, j, k)

codes as just defined. Also, at least)1(−j rows in each matrix of the ensemble are

linearly dependent. This simply means that the codes have a slightly higher

information rate than the matrix indicates.

MacKay’s method [10]

A computer-generated code was introduced by MacKay [10]. The parity-check

matrix is randomly generated. First, the parameters n, m, j, and k are chosen to

conform an (n, m, j, k)-regular LDPC code where n, j and k are the same as in

Gallager’s code and m is the number of the parity-check equations in H. Then, 1’s are

randomly generated into j different positions of the first column. The second column

is generated in the same way, but checks are made to insure that no two columns have

a 1 in the same position more than twice. This constraint is to avoid a 4-cycle to

appear in the Tanner graph, which will cause the performance to drop by about 0.5dB.

An avoidance of 4-cycles in a parity-check matrix is therefore required. The next few

columns are generated sequentially and checks for 4-cycles must be performed on

each generation. In this procedure, the number of 1’s in each row must be recorded,

and if any row already has k 1’s, the next column generating will not select that row.

 9

Construction by Quasi-Cyclic Code [5]

A code is quasi-cyclic if, for any cyclic shift of a codeword by l places, the

resulting word is also a codeword. A cyclic code is a quasi-cyclic code with 1=l .

Consider the binary quasi-cyclic codes described by a parity-check matrix

],...,[21 lAAAH = (2.10)

where lAAA ,..., 21 are binary vv× circulant matrices. The algebra of ()vv×

binary circulant matrices is isomorphic to the algebra of polynomials modulo 1−vx

over GF(2). A circulant matrix A is completely characterized by the polynomial

 1
1

2
210)(−

−++++= v
v xaxaxaaxa (2.11)

where the coefficients are from the first row of A , and a code C with parity-check

matrix of the form (2.10) can be completely characterized by the polynomials

)(),...,(),(21 xaxaxa l . Figure2.3(a) shows an example of a rate-1/2 quasi-cyclic code

where xxa += 1)(1 and 42
2 1)(xxxa ++= . Figure2.3(b) shows the corresponding

Tanner graph representation. For this example we can see the edges (c1, v6), (v6, c4),

(c4, v8), (v8, c1) depict a 4-cycle in this graph which is to be avoided for performance

consideration. The method for avoiding 4-cycle condition will be discussed in the

next chapter.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11010
01101
10110
01011
10101

10001
11000
01100
00110
00011

H

(a) A parity-check matrix with two circulant matrices

 10

3c1c 2c 4c

1v 2v 5v 6v 7v 8v3v 4v

nodescheck

nodesvariable

5c

9v 10v

3c1c 2c 4c

1v 2v 5v 6v 7v 8v3v 4v

nodescheck

nodesvariable

5c

9v 10v

(b) Tanner graph representation

Figure2.3 Example of a rate-1/2 quasi-cyclic code from two circulant matrices, where

xxa += 1)(1 and 42
2 1)(xxxa ++=

2.3 Encoding

 Since LDPC code is a linear block code, it can be encoded by the conventional

method. However, using conventional method will introduce an encoding complexity

proportional to the quadratic of the code length. The high encoding cost of LDPC

codes becomes a major drawback when compared to the turbo codes which has a

linear encoding complexity with time. In this section, we will introduce some

improved methods.

Conventional method

 Let],...,,,[1210 −= kuuuuu be a row vector of message bits with length k and

],...,,,[1210 −= nccccc be a codeword with length n. Let G with dimension nk × be

the generating matrix of this code. It can be derived that

 uGc = . (2.12)

If H is the parity-check matrix of this code with dimension nr × where knr −= .

Then

 11

0
0

0 0

=⇒

=⇒

=⇒=

T

T

TTT

GH
uGH
cHHc

 (2.13)

Suppose a sparse parity-check matrix H with full rank is constructed. Gaussian

elimination and column reordering can be used to derive an equivalent parity-check

matrix in the systematic form][rsystematic IPH = . Thus equation (2.13) can be solved

to get the generating matrix in systematic form as

][T
ksystematic PIG = . (2.14)

Finally, the generating matrix G can be obtained by doing the reverse column

reordering to the systematicG .

Forcing H to have lower triangular form [4]

 In [4] it was suggested to force the parity-check matrix to be in the lower

triangular form. Under this restriction, it guarantees a linear time encoding complexity,

but, in general, it also results in some loss of performance.

Richardson’s method [3]

Figure 2.4 shows how to bring the parity-check matrix into an approximate lower

triangular form using row and column permutations. Note that since this

 12

Figure 2.4 The parity-check matrix in an approximate lower triangular form

transformation was accomplished solely by permutations, the matrix is still sparse.

More precisely, assume that the matrix is written in the form

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

EDC
TBA

H (2.15)

where A is)()(mngm −×− , B is ggm ×−)(, T is)()(gmgm −×− , C is

)(mng −× , D is gg × , and E is)(gmg −× . Further, all these matrices are sparse

and T is lower triangular with ones along the diagonal. Multiplying this matrix from

the left by

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− − IET

I
1

0
 (2.16)

can result in

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+− −− 011 DBETCAET

TBA
. (2.17)

 Let),,(21 ppsx = denote the codeword of this parity-check matrix where s is

the message bits with length)(nm − , 1p and 2p combin ed are the parity bits, 1p

has length g , and 2p has length)(gm − . The constrained equation TTHx 0=

splits naturally into two equations, namely

 021 =++ TTT TpBpAs (2.18)

and

 () () 01
11 =+−++− −− TT pDBETsCAET . (2.19)

Define DBET +−= −1γ and assume for the moment that γ is nonsingular. Then

 13

from equation (2.19) we conclude that

 () TT sCAETp +−−= −− 11
1 γ . (2.20)

Hence, once the)(mng −× matrix () TsCAET +−− −− 11γ has been pre-computed,

the determination of 1p can be accomplished with a time complexity of

))((mng −×Ο simply by performing a multiplication with this (generically dense)

matrix. This complexity can be further reduced as shown in Table 2.1. Rather than

pre-computing () TsCAET +−− −− 11γ and then multiplying with Ts , 1p can be

determined by breaking the computation into several smaller steps, each of which is

computationally efficient. To this end, we first determine TAs , which has complexity

of)(nΟ , since A is sparse. Next, we multiply the result by 1−T . Since

TT yAsT =−][1 is equivalent to the system TT TyAs =][, this can also be

accomplished in)(nΟ time with by back-substitution, because T is lower

triangular and sparse. The remaining steps are fairly straightforward. It follows that

the overall complexity of determining 1p is).(2gn +Ο In a similar manner, noting

from equation (2.18) that)(1
1

2
TTT BpAsTp +−= − , we can accomplish the

determination of 2p in time complexity of)(nΟ as shown step by step in Table

2.2.

 A summary of this efficient encoding procedure is given in Table 2.3. It entails

two steps, the preprocessing step and the actual encoding step. In the preprocessing

step, we first perform row and column permutations to bring the parity-check matrix

into the approximate lower triangular form with as small a gap g as possible. In actual

encoding then entails the steps listed in Table 2.1 and 2.2. The overall encoding

complexity is)(2gn +Ο , where g is the gap of the approximate triangulation.

 14

Table 2.1 Efficient computation step of () TT sCAETp +−−= −− 11
1 γ

Operation Comment Complexity

TAs

][1 TAsT −

][1 TAsTE −−

TCs

][][1 TT CsAsET +− −

][11 TT CsAsET +−− −−γ

Multiplication by sparse matrix

TTTT TyAsyAsT =⇔=−][][1

Multiplication by sparse matrix

Multiplication by sparse matrix

Addition

Multiplication by dense gg × matrix

()nΟ

()nΟ

()nΟ

()nΟ

()nΟ

()2gΟ

Table 2.2 Efficient computation step of)(1
1

2
TTT BpAsTp +−= −

Operation Comment Complexity

TAs

TBp1

][][1
TT BpAs +

][1
1 TT BpAsT +− −

Multiplication by sparse matrix

Multiplication by sparse matrix

Addition

TTTTTT TyBpAsyBpAsT =+−⇔=+− −][][11
1

()nΟ

()nΟ

()nΟ

()nΟ

Table 2.3 Summary of Richardson’s encoding procedure It entails two steps: A

processing step and the actual encoding step

Preprocessing: Input: Non-singular parity-check matrix H. Output: An equivalent

parity-check matrix of the form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
EDC
TBA

 such that DBET +− −1 is

non-singular.

1. [Triangulation] Perform row and column permutations to bring the

parity-check matrix H into the approximate lower triangular form

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

EDC
TBA

H

 with as small a gap g as possible.

 15

2. [Check] Check that DBET +− −1 is non-singular, performing further

column permutations if necessary to ensure this property.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−− 0

0
111 DBETCAET

TBA
EDC
TBA

IET
I

Encoding: Input: Parity-check matrix of the form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
EDC
TBA

 such that

DBET +− −1 is non-singular and a vector s denote the message bits has length

)(nm − . Output: The vector),,(21 ppsx = where 1p has length g and 2p has

length)(gm − , such that TTHx 0= .

1. Determine 1p as shown in Table 2.1.

2. Determine 2p as shown in Table 2.2.

Quasi-cyclic code [5]

 As a review of quasi-cyclic code in section 2.2, the quasi-cyclic code can be

described by a parity-check matrix],...,[21 lAAAH = and each of a circulant matrix

jA is completely characterized by the polynomial 1
110)(−
−+++= v

v xaxaaxa

with coefficients from its first row. A code C with parity-check matrix H can be

completely characterized by the polynomials)(),...,(),(21 xaxaxa l . As for the

encoding, if one of the circulant matrices is invertible (say lA) the generator matrix

for the code can be constructed in the following systematic form

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−
−

−

−

−

T
ll

T
l

T
l

lv

AA

AA
AA

IG

)(
...

)(
)(

1
1

2
1

1
1

)1((2.21)

resulting in a quasi-cyclic code of length vl and dimension)1(−lv . Encoding can

be achieved with linear complexity using a)1(−lv -stage shift register. Regarding the

 16

algebraic computation, the polynomial transpose is defined as

 ∑
−

=

−=
1

0

,)(
n

i

in
i

T xaxa 1=nx . (2.22)

For a binary [n, k] code, length vln = and dimension)1(−= lvk , the k-bit message

[]110 ,...,, −kiii is described by the polynomial 1
110 ...)(−
−+++= k

k xixiixi and the

codeword for this message is)](),([)(xpxxixc k= , where)(xp is given by

 ,))()(()()(
1

1

1∑
−

=

− ∗∗=
l

j

T
jlj xaxaxixp (2.23)

)(xi j is the polynomial representation of the information bits)1(−jvi to 1−vji , where

 1
11)1()1(...)(−
−+−− +++= v

vjjvjvj xixiixi (2.24)

and polynomial multiplication)(∗ is mod 1−vx .

 As an example, consider a rate-1/2 quasi-cyclic code with 5=v , 2=l , first

circulant is described by xxa += 1)(1 and the second circulant is described by

42
2 1)(xxxa ++= , which is invertible and

 421
2)(xxxxa ++=− . (2.25)

The generator matrix contains a 55× identity matrix and the 55× matrix

described by the polynomial

 32
1

1
2 1)1())()((xxxaxa TT +=+=∗− . (2.26)

Figure 2.5 shows the example parity-check matrix and the corresponding generator

matrix.

 17

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11010
01101
10110
01011
10101

10001
11000
01100
00110
00011

H

(a) A parity-check matrix with two circulants

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10100
01010
00101
10010
01001

10000
01000
00100
00010
00001

G

(b)The corresponding generator matrix in systematic form

Figure 2.5 Example of a rate-1/2 quasi-cyclic code. (a) Parity-check matrix with two

circulants, where xxa += 1)(1 and 42
2 1)(xxxa ++= . (b) Corresponding generator

matrix in systematic form.

2.4 Decoding [11]

 There are several decoding algorithm for LDPC codes. All of them are iterative

decoding. Messages between variable nodes and check nodes are exchanged back and

forth. The decoder expects that error will be corrected progressively by using this

iterative message-passing algorithm. At present, there are three types of iterative

decoding algorithms applied to LDPC codes in general.

 Sum-product algorithms, also known as message passing algorithm.

 Min-sum based algorithms.

 Min-sum algorithms.

 18

2.4.1 Decoding Procedure in One Iteration

Now we make a description of the message passing algorithm in one iteration.

Here is a simple example of irregular LDPC code. The parity check matrix is shown

below.

If the received codeword sequence is xv , then we can use TTxH 0=v to try whether

the received codeword sequence is a codeword, i.e.,

 (2.27)

where “⊕ ” denotes the modulo-2 addition.

The message passing algorithm uses Tanner graph for decoding procedure, which

is shown below.

For 1x estimation:

Step1: Suppose 0p and 1p are the priori-probability of ,2x where

110 =+ pp , we can use Equation 1S)0(21 =⊕ xx to estimate the post-probability

of 1x as follows:

⎥
⎦

⎤
⎢
⎣

⎡
=

1101
0011

H
2S

1x 4x3x2x

1S

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
⇒=

0
0

1101
0011

4

3

2

1

x
x
x
x

OHx TT

1S 2S

1x 4x3x2x

nodecheck

nodevariable

0 :
0 :

4312

211

=⊕⊕
=⊕

xxxSEquation
xxSEquation

⇒

 19

 021)0()0(pxPxP ====

 121)1()1(pxPxP ==== . (2.28)

In the same way, suppose 0q and 1q are the priori-probability of 3x , where

110 =+ qq and 0r and 1r are the priori-probability of 4x where 110 =+ rr , we

can use Equation 2S that)0(431 =⊕⊕ xxx to estimate the post-probability of 1x ,

using the following equation:

11004343

431

)1()1()0()0(
)0()0(

rqrqxPxPxPxP
xxPxP

+===+===
=⊕==

 (2.29)

10014343

431

)1()0()0()1(
)1()1(

rqrqxPxPxPxP
xxPxP

+===+===
=⊕==

Step2: Based on Equation 1S and Equation 2S , we can estimate the final

post-probability of 1x , by using:

 '
0

'
012111)0 and 0()0 and 0()0(qpxSPxSPxP =====∝=

 '
1

'
112111)1 and 0()1 and 0()1(qpxSPxSPxP =====∝= (2.30)

where 0
'
0 pp = , 1

'
1 pp = , 1100

'
0 rqrqq += and 1001

'
1 rqrqq += . It can be summed

up that if a check node iS is connected by three variable nodes ix , jx and kx ,

and if the priori-probability of the variable nodes ix and jx are),(10 qq and

2x1x
),(10 pp

1S

1x 3x 4x
),(10 qq

2S

),(10 rr

1x

1S 2S
),('

1
'
0 pp

),('
1

'
0 qq

 20

),(10 rr , respectively, we can use the check Equation iS to estimate the

post-probability of kx in step1 which is

),(),,,(100111001010 rqrqrqrqrrqqCHK ++= . (2.31)

Similarly, if a variable node ix is connected by two check nodes that are iS and

jS , and if the message of the iS and jS are collected from step1 are),('
1

'
0 pp and

),('
1

'
0 qq , respectively, we can estimate the final post-probability of ix as

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++
= '

1
'
1

'
0

'
0

'
1

'
1

'
1

'
1

'
0

'
0

'
0

'
0'

1
'
0

'
1

'
0 ,),,,(

qpqp
qp

qpqp
qp

qqppVAR . (2.32)

Since the summation of the priori-probability on any variable node kx is one, in

other words 110 =+ pp , we can transform the priori-probability to a single-value

function. Let λlnln),(
1

1 ==
p
p

ppL o
o , then equations (2.31) and (2.32) can be

rewritten as

))
2

tanh()
2

(tanh(tanh2

))
2

ln(cosh())
2

ln(cosh(

ln1ln

1
ln)(),(

211

2121

22

22

21

21
2121

2121

2121

21

21

LL

LLLL
ee

ee
ee
ee

LLCHKLLCHK

LLLL

LLLL

LL

LL

×=

−
−

+
=

+

+
=

+
+

=

+
+

=⊕=

−

−
−

−

++
−

λλ
λλ

 (2.33)

 21212121 lnln)ln(),(LLLLVAR +=+== λλλλ . (2.34)

Equations (2.33) and (2.34) are computation in Log-Likelihood Ratio (LLR) form.

This transform can reduce the number of parameters, and equation (2.34)

),(21 LLVAR only needs an addition operation rather than multiplication.

 Furthermore, equation (2.33) can be further reformulated to different manners.

 21

There are

))()(()()(

))
2

tanh()
2

(tanh(tanh2)(

2121

211
21

LLLsignLsign

LLLLCHK

φφφ +=

×=⊕ −

 (2.35)

where

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

1
1ln

2
tanhln)(x

x

e
exxφ and xx =))((φφ , (2.36)

and

21

21

1
1ln

22

))
2

ln(cosh())
2

ln(cosh()(

2121

2121
21

LL

LL

e
eLLLL

LLLL
LLCHK

−−

+−

+

+
+

−
−

+
=

−
−

+
=⊕

21

21

1
1ln),min()sign(L)sign(L 2121 LL

LL

e
eLL

−−

+−

+

+
+××= (2.37)

),min()()(2121 LLLsignLsign ××≈ . (2.38)

When the check node computation is in the form of equation (2.35), we call it the

sum-product algorithm. Similarly, when the check node computation is in the form of

equation (2.37), we call it the min-sum based algorithm, and the fourth term

21

21

1
1ln LL

LL

e
e

−−

+−

+
+ in equation (2.37) is called the correction factor. Last of all, when the

check node computation is the form of equation (2.38), or in other words an

approximate form, we call it the min-sum algorithm.

 The above discussion of check node computation is only about a check node

connected by two or three variable nodes. Now, we will discuss the case when the

number of variable nodes are more than three, and then discuss the general form.

 Consider a check node 1S connected by four variable nodes 1x , 2x , 3x and

.4x The priori-probability of variable nodes 1x , 2x and 3x are),(10 pp ,

),(10 qq and),(10 rr . We can use the check Equation ,1S that is,

04321 =⊕⊕⊕ xxxx to estimate the post-probability of 4x , namely,

 22

+=====⊕⊕==)0()0()0()0()0(3213214 xPxPxPxxxPxP

+===+===)1()1()0()0()1()1(321321 xPxPxPxPxPxP

 101110011000321)1()0()1(rqprqprqprqpxPxPxP +++====

+=====⊕⊕==)1()1()1()1()1(3213214 xPxPxPxxxPxP

 +===+===)0()1()0()0()0()1(321321 xPxPxPxPxPxP

 100010001111321)1()0()0(rqprqprqprqpxPxPxP +++====

 (2.39)

Then, one can transform equation (2.39) to a LLR form, and obtain

100010001111

101110011000
321 ln)(

rqprqprqprqp
rqprqprqprqp

LLLCHK
+++
+++

=⊕⊕
133221

321321

1
ln

λλλλλλ
λλλλλλ

+++
+++

=

3

21

21

3

21

21

1221

32121

1

11
ln

1
ln

L
LL

LL

L
LL

LL

LLLLLL

LLLLLL

e
ee
ee

e
ee
ee

eeeeee
eeeeee

ee

e

+
+

+

+⎥
⎦

⎤
⎢
⎣

⎡
+

+
+

=
+++
+++

=

22

22

33

33

3

3

ln1ln LxLx

LxLx

Lx

Lx

ee

ee
ee
ee

−
−

−

+
−

+

+

+
=

+
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +

=
2

coshln
2

coshln 33 LxLx

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛= −

2
tanh

2
tanhtanh2 31 Lx (2.40)

where
21

21

21

21 11ln LL

LL
x

LL

LL

ee
eee

ee
eex

+
+

=⇒
+

+
= . From equation (2.33), it can be seen that

)(21 LLCHKx ⊕= . Equation (2.40) can be computed in a recursive manner such that

))(()(321321 LLLCHKCHKLLLCHK ⊕⊕=⊕⊕ . The general form for check node

),(10 qq),(10 rr
1x 3x 4x

1S

2x
),(10 pp

 23

computation can be derived as

))...))(((...()...(32121 ll LLLLCHKCHKCHKCHKLLLCHK ⊕⊕⊕=⊕⊕⊕ .

 (2.41)

Similarly, consider that a variable node 1x connected by three check nodes 1S , 2S

and 3S , and the message collected by 1S , 2S and 3S are),(10 pp ,),(10 qq and

),(10 rr , respectively. The final post-probabilities of the variable node 1x are

0001312111)0 0()0 0()0 0()0(rqpxandSPxandSPxandSPxP =========

1111312111)1 0()1 0()1 0()1(rqpxandSPxandSPxandSPxP ========= .

 (2.42)

Then, one can transform equation (2.38) into a LLR form, and obtain

 321321321321 lnlnln)ln(),,(LLLLLLVAR ++=++== λλλλλλ . (2.43)

So equation (2.43) can also be computed in a recursive manner such that

)),,((),,(321321 LLLVARVARLLLVAR = , and the general form to the variable node

computation can be derived as

))...),),,((...((),...,,(32121 ll LLLLVARVARVARVARLLLVAR = . (2.44)

2.4.2 Iterative Decoding Procedure [12]

The discussion in section 2.4.1 is about the decoding procedure in one iteration.

Now, we consider the actual decoding procedure. It means that there will involve

many iterations for a decoding process. First, let us describe some notations for the

iterative decoding procedure in Figure 2.6.)(lM denotes the set of check nodes that

are connected to the variable node l , i.e., positions of “1”s in the thl column of the

1x

1S 2S
),(10 pp

),(10 qq 3S
),(10 rr

 24

parity-check matrix.)(mL denotes the set of variable nodes that participate in the

thm parity-check equation, i.e., the positions of “1”s in the thm row of the

parity-check matrix. lmL \)(represents the set)(mL excluding the thl variable

node and mlM \)(represents the set)(lM excluding the thm check node. mlq ,

denotes the

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

01010100
10101000
00000111
00011001
01100010
11000001

1\)3(L)3(L
)1(M

1\)1(M

lindex nodeVariable

m
in

de
x

no

de
Ch

ec
k

Figure 2.6 Notations for iterative decoding procedure

probability message that variable node l sends to check node m . lmr , denotes the

probability message that the thm check node gathers for the thl variable node. The

probability message of mlq , and lmr , are computation in LLR domain. The iterative

decoding procedure is shown below.

1. Initialization

Let

 l
ll

ll
l y

xyP
xyP

L 2

2
)1(
)0(

ln
σ

=
=

=
= (2.45)

be the log likelihood ratio of a variable node, where)(baP specifies that given b is

transmitted, the probability that the receiver received a, where 2σ is the noise

variance. For every position),(lm such that 1, =lmH , lmq , is initialized as

 llm Lq =, . (2.46)

 25

2. Message passing

 Step1 (message passing from check nodes to variable nodes): Each check node

m gathers all the incoming message lmq , ’s, and update the message on the variable

node l based on the messages from all other variable nodes connected to the check

node m .

)('
'

,
\)(

, lm
lmLl

lm qr CHK ∑⊕=
∈

. (2.47)

 Step2 (message passing from variable nodes to check nodes): Each variable node

l passes its probability message to all the check nodes that are connected to it.

 . (2.48)

 Step3 (decoding): For each variable node l , messages from all the check nodes

that are connected to the variable node l are summed up.

 ∑
∈

∈
+==

)(
,,)(

)),((
lMm

lmlllmlMml rLLrVARVARq . (2.49)

Hard decision is made on lq , and the resulting decoded input vector x̂ is checked

against the parity-check matrix H . If 0ˆ =TxH , the decoder stops and output x̂ .

Otherwise it repeats steps 1-3 until it reaches the specified maximum iteration loops.

2.4.3 Efficient Check Node Computation

 According to equation (2.41), the check node update computation can be

implemented in a serial configuration. Consider a particular check node m with l

connections from variable nodes. The incoming messages are then lmmm qqq ,2,1, ,...,, .

The goal is to compute the outgoing messages lmmm rrr ,2,1, ,...,, . Let us define two sets

of auxiliary binary random variables ,1,1 mqf = ,2,12 mqff ⊕=

∑
∈∈

+==
mlMm

lmlllmmlMmlm rLLrVARVARq
\)('

,','\)(',)),((

 26

,3,23 mqff ⊕= … , ,,1 lmll qff ⊕= − and ,,lml qb = 1,1 −− ⊕= lmll qbb ,…,

1,21 mqbb ⊕= . We can obtain)(1fCHK ,)(2fCHK , …,)(lfCHK and)(1bCHK ,

)(2bCHK , …,)(lbCHK in a recursive manner based on the knowledge of

lmmm qqq ,2,1, ,...,, . Using the parity-check node constraint 0)...(,2,1, =⊕⊕⊕ lmmm qqq ,

the outgoing message from check node m can be simply expressed as

).(

),(
,1,...,3,2),(

1,

21,

11,

−

+−

=

=

−=⊕=

llm

m

iiim

fCHKr
bCHKr

libfCHKr
 (2.50)

The total computational load consists of the forward recursive computation of

)(ifCHK , the backward recursive computation of)(ibCHK , and the final pair-wise

part in equation (2.50), which amounts to)1(3 −l core operation of the type

)(baCHK ⊕ per check node. Clearly, the above procedure is exactly the

forward-backward algorithm, as shown in Figure 2.7. The serial nature of

computations makes a latency of)(lO units of time in computing a check node

update.

Figure 2.7 Serial configuration for computing check node update

An efficient implementation for computing check node update is introduced by

 27

[13]. A simple parallel configuration that enables fast check node update is described

here. First, an auxiliary binary random variable ∑
=

⊕=
l

i
imm qS

1
, is defined. Then, mS

can be computed using the parallel configuration shown in Figure 2.8. The

computation at each check node in the parallel configuration is)(baCHK ⊕ . The

latency in computing the mS is of order) (log lO , resulting in a speed-up factor of

])log([ldO c compared to the serial configuration. Having obtained mS , the

outgoing message
,, imr

 li ,...,2,1= , can be computed in an efficient way. Consider

)()()(
,1

,,
1

, ∑∑
≠==

⊕⊕=⊕=
l

ijj
jmim

l

i
imm qqCHKqCHKSCHK

m,l

l

i,jj
m,j

m,l
l

i,jj
m,j

q
)qCHK(

q)qCHK(

ee

e

+

+
=

∑ ⊕

+∑ ⊕

≠=

≠=

1

11ln . (2.51)

Since the term)(
,1

,∑
≠=

⊕
l

ijj
jmqCHK in equation (2.51) is exactly equivalent to the

outgoing message imr , from check node m to all the variable nodes ,i where

),...,2,1(li∈ , equation (2.51) becomes

imim

imim

qr

qr

m ee
eSCHK

,,

,,1ln)(
+

+
=

+

. (2.52)

Then, imr , can be obtained by reformulating equation (2.52) as

)(
)(

)(
r

)()(

)(

)(

)(
r

)()(r

)()()(

1
1e

)1(
11e

1)(e

11

,

,
im,

,

,

,

,
im,

,,im,

,,,,

,,

,,

m

mim

mim

mmim

mim

mim

mim

mimmim

imimmimmim

imim

imim

m

SCHK
SCHKq

SCHKq

SCHKSCHKq

SCHKq

SCHKq

SCHKq

SCHKqSCHKq

qrSCHKqSCHKr
qr

qr
SCHK

e
e
e

ee
e

ee
e

eee

eee
ee

ee

−
−

+

−

++

+

+++
+

×
−
−

=⇒

×−
−

=
−

−
=⇒

−=−⇒

+=+⇒
+

+
=

)(
1
1ln)(

)(

, ,

,

MSCHKq

SCHKq

im SCHK
e
er

mim

mim

−
−
−

=⇒ −

+

. (2.53)

 28

Lastly, let’s define

 mim SCHKr (, = imq ,), where li ,...,2,1= . (2.54)

It can be seen that for each },...,2,1{ li∈ , the message imr , can be computed

simultaneously by a parallel implementation of the new core computation

mSCHK (imq ,) as shown in Figure 2.8. Clearly, only 1−l core computation of

type)(baCHK ⊕ and l core computation of type aCHK ()b are necessary for

a particular check node update in this parallel configuration.

Figure 2.8 Parallel configuration for computing check node update

In the end of this section, we synthesize the contents discussed in sections 2.4.1,

2.4.2 and 2.4.3, and give a summary to the sum-product algorithm, min-sum based

algorithm and min-sum algorithm in Table 2.4, Table 2.5 and Table 2.6, respectively.

 29

Table 2.4 Summary of the sum-product algorithm

1. Initialization:

2. Message passing:

 Step1: Message passing from check nodes to variable nodes. For each ml, ,

compute

)()(()()(,
)()(

,,, lm
mLl mLl

lmlmlm qqqsignqsign ∏ ∑
∈′ ∈′

′′ −×= φφφ

 where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

1
1ln

2
tanhln)(x

x

e
exxφ and xx =))((φφ .

 Step2: Message passing from variable nodes to check nodes. For each ml, ,

compute

 .

Step3: Decoding

llm

lm

l
ll

ll
l

Lq
HthatsuchmleveryFor

y
xyP
xyP

L

nlFor

=

=

=
=
=

=

≤≤

,

,

2
2

1 ,

 variancenoise theis where,2
)1(
)0(

ln

1

σ
σ

)()('
'

'
'

,
\)(

,
\)(

, lm
lmLl

lm
lmLl

lm qqr CHKCHK ∑⊕==
∈∈

0 1ˆ ,0 0ˆ
,1

)),((
 ,

)(
,,)(

<=>=
≤≤

+== ∑
∈∈

llll

lMm
lmlllmlMml

qifxqifx
nlFor

rLLrVARVARq
leachFor

∑
∈∈

+==
mlMm

lmlllmmlMmlm rLLrVARVARq
\)('

,','\)(',)),((

 30

1

 , ˆ ,0ˆ(

stepreturn to
else

stopsalgorithmthe
thresholdnedpredetermiaexceedsiterationofnumbertheor

codewordestimatedtheisxthenxHIf T

⇒

⇒

=

Table 2.5 Summary of the min-sum based algorithm

1. Initialization:

2. Message passing:

 Step1: Message passing from check nodes to variable nodes. First, compute

))...))(((...(

)()(

,3,2,1,

4321

,
)(

lmmmm

m,m,m,m,

lm
mLl

m

qqqqCHKCHKCHKCHK
))...)q(CHK(q)q(CHK(qCHK(...CHK

qSCHK CHK

′

′
∈′

⊕⊕⊕=

⊕⊕⊕=

⊕=

 where
ba

ba

e
ebaMinbsignasignbaCHK

−

+

+

+
+×=⊕

1
1ln),()()()(

 Then, for each ml, , compute

)(
1
1ln)(

)(

, ,

,

mSCHKq

SCHKq

lm SCHK
e
er

mlm

mlm

−
−
−

= −

+

 Step2: Message passing from variable nodes to check nodes. For each ml, ,

compute

llm

lm

l
ll

ll
l

Lq
HthatsuchmleveryFor

y
xyP
xyP

L

nlFor

=

=

=
=
=

=

≤≤

,

,

2
2

1 ,

 variancenoise theis where,2
)1(
)0(

ln

1

σ
σ

∑
∈∈

+==
mlMm

lmlllmmlMmlm rLLrVARVARq
\)('

,','\)(',)),((

 31

Step3: Decoding

Table 2.6 Summary of the min-sum algorithm

1. Initialization:

2. Message passing:

 Step1: Message passing from check nodes to variable nodes. First, compute

Then, for each ml, , compute

)(
1
1ln)(

)(

, ,

,

mSCHKq

SCHKq

lm SCHK
e
er

mlm

mlm

−
−
−

= −

+

 Step2: Message passing from variable nodes to check nodes. For each ml, ,

compute

1

)
,ˆ,0ˆ

01ˆ,00ˆ
,1

)),((
,

)(
,,)(

stepreturn to
else

stopsalgorithmthe
thresholdnedpredetermiaexceedsiterationofnumbertheor

codewordestimatedtheisxthenxHIf

qifxqifx
nlFor

rLLrVARVARq
leachFor

T

llll

lMm
lmlllmlMml

⇒

⇒

=

<=>=
≤≤

+== ∑
∈∈

 (

 variancenoise theis where,2
)1(
)0(

ln

1

2
2 σ

σ l
ll

ll
l y

xyP
xyP

L

nlFor

=
=
=

=

≤≤

llm

lm

Lq
HthatsuchmleveryFor

=

=

,

,

1 ,

}{)()()(,
)()(,,)(lm

mLl mLllmlmmLlm qMINqsignqCHKSCHK ′
∈′

∈′
′′

∈′ ∏ ×=⊕=

∑
∈∈

+==
mlMm

lmlllmmlMmlm rLLrVARVARq
\)('

,','\)(',)),((

 32

 Step3: Decoding

1

)
,ˆ,0ˆ

01ˆ,00ˆ
,1

)),((
,

)(
,,)(

stepreturn to
else

stopsalgorithmthe
thresholdnedpredetermiaexceedsiterationofnumbertheor

codewordestimatedtheisxthenxHIf

qifxqifx
nlFor

rLLrVARVARq
leachFor

T

llll

lMm
lmlllmlMml

⇒

⇒

=

<=>=
≤≤

+== ∑
∈∈

 (

 33

Chapter 3

A New Structure for Low-Density

Parity-Check Code Using the Difference

Family

In this chapter, we will partition the discussion into two sections. In section 3.1,

an introduction to the difference family and the construction of an irregular

quasi-cyclic code based on this concept will be discussed. In section 3.2, we will

propose a new structure of the low-density parity-check code, and expecting the new

structure to bring performance improvement.

3.1 The Difference Family

In [5], a concept using the difference family to construct an irregular quasi-cyclic

code with a Tanner graph free of 4-cycle was introduced. A difference family is an

arrangement of a group of v elements, such as vZ , into not necessarily disjoint

subsets of equal size which meet certain difference requirements. More precisely:

Definition 1: The t γ -element subsets of the group vZ , tDDD ,...,, 21 with

},...,,{ ,2,1, γiiii dddD = form a),,(λγv difference family if the difference

 34

vdd yixi mod)(,, − ,) , ..., 2, ,1, ; ,...,2 ,1(yxyxti ≠== γ give each nonzero element of

vZ exactly λ times.

For example, the subsets }5 2, ,1{1 =D , }9 3, ,1{2 =D of 13Z form a (13,3,1)

difference family with differences

 From 1D : 112 =− , 1221 =− , 415 =− ,

 951 =− , 325 =− , 1052 =−
 From 2D : 213 =− , 1131 =− , 819 =− ,
 591 =− , 639 =− , 793 =− .

In this work where the difference families with 1=λ allows the design of

codes free of 4-cycles. For an irregular quasi-cyclic code, define the column weight

distribution of a length vl rate)/1(ll − code as the vector],...,,[21 lwwwW = ,

where jw is the column weight of the columns in the thj circulant. Denote that

maxw is the maximum column weight of the parity-check matrix H

 },...,,max{ 21max lwwww = . (3.1)

To construct an irregular quasi-cyclic code with length vl and rate)/1(ll − , so that

its parity-check matrix)](),...,(),([21 xaxaxaH l= has a weight distribution

],...,,[21 lwwwW = , l sets lDDD ,...,, 21 of a)1,,(γv difference family with

maxw≥γ , and)(xa j can be defined using jw of the elements of jD as

 jwjjj ddd
j xxxxa ,2,1, ...)(+++= . (3.2)

To ensure that the code can be encoded, 1−vx must be divisible by at least one of

the)(xa j .

 For a regular code, all of the elements in each set are included in each circulant,

while for an irregular code the choice of which elements in the set to use is arbitrary.

The row weight, ρ , of the parity-check matrix is constant, and given by

 35

 ∑
=

=
l

i
iw

1

ρ . (3.3)

 To demonstrate that the quasi-cyclic codes are free of 4-cycles we need a well

known result of the difference families.

Lemma 3.1 [5]: A pair of elements from vZ occur together exactly λ times in the

set of translates of every set in a),,(λγv difference family.

Lemma 3.2: The codes of construction by using difference families have Tanner

graphs free of 4-cycles.

Proof: Follows from the choice of 1=λ . First consider the regular case. Each column

of)](),...,(),([21 xaxaxaH l= is a translate of one of the sets jD in the difference

family. To show that there can be no 4-cycles in H , we need to show that no two

columns of H can have a nonzero entry in the same two rows, which is equivalent

to requiring that two elements of vZ can occur together in at most one of all the

translates of the sets in the difference family. Since two elements occur together in

exactly λ translates, we need only choose 1=λ to avoid 4-cycles. The argument

follows naturally in the irregular construction. Since only jw of the elements in a

given set of the difference family will be taken, removing elements from the set of

translates will keep it free of 4-cycles.

3.2 The Proposed Structure of LDPC Code

According to section 3.1, we can use difference family to construct an irregular

quasi-cyclic code free of 4-cycles. In the following section we will describe the

construction we wish to propose for LDPC codes using these difference families.

Below is our proposed structure of the parity-check matrix H,

 36

 ⎥
⎦

⎤
⎢
⎣

⎡
=

−

−

ll

l

BBBB
AAA

H
121

121

...
0...

. (3.4)

where ll BBBAAA and ,...,,,,...,, 21121 − are all vv× circulant matrices. The code

length is vl and the code rate is (
l
21−). We can use the difference families to

determine the polynomials of each of the circulant matrix),(and)(xbxa ji where

}1,...,2,1{ −∈ li and },...,2,1{ lj∈ , just as the quasi-cyclic code. In order to avoid

any 4-cycles in the new structure of the parity-check matrix, we provide a new

difference family to solve this problem. First, construct two)1,,(γv difference

families Family A and Family B and combine the two families to form a new

difference Family C which are needed to add the following two constraints.

Constraint 1: The differences [(yixi aa ,, −)mod v] and [(yixi bb ,, −)mod v],

where yxyxli ≠=−= ,,...,2,1, ;1,...,2,1 γ , give each element, can not be the same.

Constraint 2: The differences [(yjxi aa ,, −)mod v] and [(yjxi bb ,, −)mod v],

where , ,...,2,1, ;,1,...,2,1, γ=≠−= yxjilji give each element, can not be the same.

More precisely, if a parity-check matrix is 4-cycles free, it represents that no two

columns of H can have a nonzero entry in the same two rows. Suppose the new

circulant matrix is T
iii BAC],[= where },...,2,1{ li∈ . Constraint 1 is added to avoid

the case where any two columns of iC have a nonzero entry in the same two rows.

Constraint 2 is added to avoid the case where a column of iC , },...,2,1{ li∈ and

another column of jC , },...,2,1{ lj∈ , ji ≠ have a nonzero entry in the same rows.

For example, the subsets from the difference Family A are }7,3{1 =A and

}6,1{2 =A , and the subsets from the difference Family B are }7,1{1 =B , }3,2{2 =B

and }6,4{3 =B of 13Z , which form a new (13,2,1) difference family C. The

differences from Constraint 1:

 37

 From 1A : 973 =− , 437 =− From 1B : 771 =− , 617 =−

 From 2A : 861 =− , 516 =− From 2B : 1232 =− , 123 =− .

The differences from Constraint 2:

 From 1A and 2A : 213 =− , 1063 =− , 617 =− , 167 =−

 From 1B and 2B : 1221 =− , 1131 =− , 527 =− , 437 =− .

 Regarding the encoding for the new structure, suppose that two of the circulant

matrices 1−lA and lB are invertible, we can derive two generator matrices in the

following systematic forms

 []1)2(

2
1
1

2
1
1

1
1
1

)2(1

)(
...

)(
)(

GI

AA

AA
AA

IG lv

T
ll

T
l

T
l

lvsystematic −

−
−
−

−
−

−
−

− =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

= (3.5)

and

 []2)1(

1
1

2
1

1
1

)1(2

)(
...

)(
)(

GI

BB

BB
BB

IG lv

T
ll

T
l

T
l

lvsystematic −

−
−

−

−

− =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

= . (3.6)

Let],,[21 ppdc = denote the codeword of the proposed parity-check matrix where d

is the message bits with length)2(−lv , and 1p and 2p combined are the parity

bits, each having the same length v . The encoding procedure is partitioned into two

steps.

Encoding Step1: We can use the generator matrix 1G to get the parity bits 1p . That

is

 11 Gdp ×= . (3.7)

Then, combine the parity bits 1p with the message bits d to form an intermediate

codeword c′ where],[1pdc =′ .

Encoding Step2: The last parity bits 2p can be derived from the generator matrix

 38

2G and the intermediate codeword c′ . That is

 22 Gcp ×′= . (3.8)

In fact, the encoding procedure for the proposed structure is very similar to the

quasi-cyclic code discussed in section 2.3. The parity bits 1p can be generated with

linear complexity by using a shift register of size)2(−lv while encoding of the

random codes is via matrix multiplication. For example, encoding of the Encoding

Step1 requires 1αv binary operations, 1α is one less than the column weight of 1G ,

while matrix multiplication requires]1)2(2[−−lvv binary operations. Similarly, the

parity bits 2p can also be obtained by using a shift register of size)1(−lv that

needs 2αv binary operations to complete the computation, where 2α is one less

than the column weight of 2G . Since the encoding complexities of Encoding Step1

and Encoding Step2 are linear functions of to the code length, so is the total encoding

complexity of the proposed structure which can be implemented by shift register and

some combinatory logic.

 39

Chapter 4

Simulation Results

In the beginning of this chapter, we will make a comparison of error correction

performances by using some different structures of parity-check matrices such as

irregular quasi-cyclic code, randomly constructed code and the proposed structure

irregular code. Then, we will make a comparison of error correction performances by

using some different decoding algorithms such as sum-product algorithm, min-sum

based algorithm and min-sum algorithm. In the end, we will furthermore analyze the

finite-precision effects on the decoding performance, and decide proper finite word

lengths of variables considering tradeoffs between the performance and the hardware

cost.

 Before proceed to the following simulation, some parameters should be

described here:

 1: The polynomials of each of the circulant matrices of the proposed LDPC code

structure are shown in Table 3.1. Three proposed structures of irregular LDPC codes

have been constructed. When the rate is 2/3 and code length is 720 with degree

distribution W=[4, 4, 4, 4, 5, 3], the parity-check matrix is of the form

 ⎥
⎦

⎤
⎢
⎣

⎡
=

1098765

98765 0
BBBBBB

AAAAA
H (4.1)

where 965965 ,...,,,,...,, BBBAAA and 10B are 120120 × circulant matrices. When

the rate is 3/4 and code length is 960 with degree distribution W=[4, 4, 4, 4, 4, 4, 5, 3],

 40

the parity-check matrix is of the form

 ⎥
⎦

⎤
⎢
⎣

⎡
=

109876543

9876543 0
BBBBBBBB

AAAAAAA
H (4.2)

where 943943 ,...,,,,...,, BBBAAA and 10B are 120120 × circulant matrices. When

the rate is 4/5 and code length is 1200 with degree distribution W=[4, 4, 4, 4, 4, 4, 4, 4,

5, 3], the parity-check matrix is of the form

 ⎥
⎦

⎤
⎢
⎣

⎡
=

10987654321

987654321 0
BBBBBBBBBB

AAAAAAAAA
H (4.3)

where 921921 ,...,,,,...,, BBBAAA and 10B are 120120 × circulant matrices.

Table 4.1 Polynomials of each of the circulant matrices of the proposed LDPC code

structure

)(1 xa 3720 xx +)(1 xb 562 xx +

)(2 xa 1611 xx +)(2 xb 4633 xx +

)(3 xa 216 xx +)(3 xb 5335 xx +

)(4 xa 207 xx +)(4 xb 316 xx +

)(5 xa 143 xx +)(5 xb 247 xx +

)(6 xa 1311 xx +)(6 xb 3120 xx +

)(7 xa 71 xx +)(7 xb 134 xx +

)(8 xa 3452 xxx ++)(8 xb 73 xx +

)(9 xa 30101 xx ++)(9 xb 43x

)(10 xb 30101 xx ++

2: The polynomials of each of the circulant matrices of the irregular quasi-cyclic

codes are shown in Table 3.2. Three quasi-cyclic irregular LDPC codes have been

 41

constructed. When the rate is 2/3 and code length is 720 with degree distribution

W=[4, 5, 3], the parity-check matrix is of the form

 []543 AAAH = (4.4)

where 43 , AA and 5A are 240240× circulant matrices. When the rate is 3/4 and

code length is 960 with degree distribution W=[4, 4, 5, 3], the parity-check matrix is

of the form

 []5432 AAAAH = (4.5)

where 432 ,, AAA and 5A are 240240× circulant matrices. When a rate 4/5, code

length is 1200 with degree distribution W=[4, 4, 4, 5, 3], the parity-check matrix is of

the form

 []54321 AAAAAH = (4.6)

where 4321 ,,, AAAA and 5A are 240240× circulant matrices.

Table 4.2 Polynomials of each of the circulant matrices of the quasi-cyclic irregular

LDPC codes

)(1 xa 452131 xxx +++

)(2 xa 10184433 xxxx +++

)(3 xa 655751 xxxx +++

)(4 xa 33181162 xxxxx ++++

)(5 xa 30101 xx ++

 3: The randomly constructed codes are derived from [14] and [15], and they have

a regular column weight of four with similar parameters. This means that for a rate of

2/3 and code length of 720 with a random structure, the column weight is four and the

averaged row weight is twelve. Similarly, for a rate of 3/4 and code length of 960 with

 42

a random structure, the column weight is four and the average row weight is sixteen.

Finally, for a rate of 4/5 and code length of 1200 with a random structure, the column

weight is four and the average row weight is twenty.

 4: For the decoding algorithm, we adopt the sum-product algorithm, min-sum

based algorithm and min-sum algorithm. The maximum iteration loops 10= .

 5: We use the AWGN channel and BPSK modulation method as our test

environment.

4.1 Floating-Point Simulations

Figures 4.1-4.3 show the error correction performance for different structures of

the parity-check matrix that use the sum-product algorithm for iterative decoding. We

can see that in Figures 4.1-4.3, using the proposed structures of the parity-check

matrix, the decoding performance is the best, compared to the irregular quasi-cyclic

codes and randomly constructed codes. Figures 4.4-4.6 show the error correction

performance for different decoding algorithms such as the sum-product algorithm, the

min-sum based algorithm and the min-sum algorithm. In the simulations and figures

the proposed parity-check matrix structures assume some different code lengths and

code rates. We can see that in Figures 4.4-4.6, the decoding performances are almost

the same for the sum-product and the min-sum based algorithms combined with

iterative decoding. As shown, the min-sum algorithm has the worst performance of all

the compared algorithms. This is due to the fact that the min-sum algorithm in the

check node update is an approximate form and using the approximation will cause a

performance penalty of about 0.5dB.

 43

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-6

10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 2/3

Random structure
Irregular quasi-cyclic
Proposed structure

Figure 4.1 Floating-point simulations of various parity-check matrix structures in

AWGN channel, code length=720, code rate=2/3, maximum iteration=10, using the

sum-product algorithm

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-6

10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 3/4

Random structure
Irregular quasi-cyclic
Proposed structure

Figure 4.2 Floating-point simulations of various parity-check matrix structures in

AWGN channel, code length=960, code rate=3/4, maximum iteration=10, using the

sum-product algorithm

 44

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 4/5

Random structure
Irregular quasi-cyclic
Proposed structure

Figure 4.3 Floating-point simulations of various structure parity-check matrix

structures in AWGN channel, code length=1200, code rate=4/5, maximum

iteration=10, using the sum-product algorithm

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-6

10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 2/3

sum-product algorithm
min-sum based algorithm
min-sum algorithm

Figure 4.4 Floating-point simulations of the proposed parity-check matrix structure,

under the three decoding algorithm in AWGN channel, code length=720, code

rate=2/3, maximum iteration=10

 45

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR

B
E

R

Code rate: 3/4

sum-product algorithm
min-sum based algorithm
min-sum algorithm

Figure 4.5 Floating-point simulations of the proposed parity-check matrix structure,

under the three decoding algorithm in AWGN channel, code length=960, code

rate=3/4, maximum iteration=10

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 4/5

sum-product algorithm
min-sum based algorithm
min-sum algorithm

Figure 4.6 Floating-point simulations of the proposed parity-check matrix structure,

under the three decoding algorithm in AWGN channel, code length=1200, code

rate=4/5, maximum iteration=10

 46

4.2 Fixed-Point Simulations

 In this section, we furthermore analyze the finite-word-length performance of the

proposed LDPC codes. Possible tradeoff between hardware complexity and decoding

performance will be discussed. It is shown that the performance degradation from the

infinite precision is negligible if 6 bits are used for the initially received signal and 6

bits for the extrinsic messages lmr , and lmq , .

4.2.1 Quantization of Initially Received Signal

We first consider the quantization of the initially received signal. Since a

receiving buffer is needed for storing the received signal, quantization of the initially

received signal significantly affects the total decoder complexity. A long word length

not only increases the hardware overhead for the buffers, but also causes a large

amount of hardware for the iterative decoding computation, while a short word length

may result in very poor performance. Let]:[ft denote the quantization scheme in

which a total of t bits are used, of which f bits are used for the fractional part of

the value. Various quantization schemes for the initially received signal such as [5:2],

[6:2] and [7:3] are investigated here. It should be noted that if we use the min-sum

based algorithm for iterative decoding, the quantized initially received signal can not

be 0, because when the quantized signal is 0, the results of the check node update

operation will also be 0 and will thus lose the ability of error correction. So if we

adopt the min-sum based algorithm as the iterative decoding algorithm, we will

restrict the quantized signal to a specified minimum value when the initially received

 47

signal is close to 0. That means when we use the quantization schemes such as [5:2]

and [6:2], the minimum quantized values will be 25.0± , and when the quantization

scheme is [7:3], the minimum quantized values will be 125.0± . Figures 4.7-4.12

show the decoding performances of using these three different quantization schemes

and various code lengths. It can be seen that the difference between [6:2] and [7:3]

quantization schemes is quite small and the [5:2] is far away (by more than 0.2dB)

from [6:2] and [7:3] schemes. Thus [6:2] scheme is the best choice.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-6

10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 2/3

[5:2]
[6:2]
[7:3]

Figure 4.7 Three different fixed-point simulation results of the proposed parity-check

matrix structure, based on the sum-product decoding algorithm in AWGN channel,

code length=720, code rate=2/3, maximum iteration=10

 48

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-6

10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 2/3

[5:2]
[6:2]
[7:3]

Figure 4.8 Three different fixed-point simulation results of the proposed parity-check

matrix structure, based on the min-sum based decoding algorithm in AWGN channel,

code length=720, code rate=2/3, maximum iteration=10

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-6

10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 3/4

[5:2]
[6:2]
[7:3]

Figure 4.9 Three different fixed-point simulation results of the proposed parity-check

matrix structure, based on the sum-product decoding algorithm in AWGN channel,

code length=960, code rate=3/4, maximum iteration=10

 49

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-6

10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 3/4

[5:2]
[6:2]
[7:3]

Figure 4.10 Three different fixed-point simulation results of the proposed parity-check

matrix structure, based on the min-sum based decoding algorithm in AWGN channel,

code length=960, code rate=3/4, maximum iteration=10

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 4/5

[5:2]
[6:2]
[7:3]

Figure 4.11 Three different fixed-point simulation results of the proposed parity-check

matrix structure, based on the sum-product decoding algorithm in AWGN channel,

code length=1200, code rate=4/5, maximum iteration=10

 50

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 4/5

[5:2]
[6:2]
[7:3]

Figure 4.12 Three different fixed-point simulation results of the proposed parity-check

matrix structure, based on the min-sum based decoding algorithm in AWGN channel,

code length=1200, code rate=4/5, maximum iteration=10

4.2.2 Quantization of lmr , and lmq ,

 We know that the whole decoding process mainly consists of iteratively

exchanging and updating the extrinsic messages lmr , and lmq , , performed by the

check node update operations and the variable node update operations, respectively.

Therefore, quantization of lmr , and lmq , is also critical for hardware implementation.

Various quantization schemes for the extrinsic messages lmr , and lmq , such as [6:2]

and [7:3] have been examined in this work. In turns out that there is almost no

difference in the decoding performance for the [6:2] and [7:3] quantization schemes.

Simulation results for these schemes to with various code lengths are shown in

Figures 4.13-4.18. Thus we suggest that the [6:2] scheme to be the best choice.

 51

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-6

10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 2/3

[6:2]
[7:3]

Figure 4.13 Two different fixed-point simulation results of the proposed parity-check

matrix structure, based on the sum-product decoding algorithm in AWGN channel,

code length=720, code rate=2/3, maximum iteration=10

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 2/3

[6:2]
[7:3]

Figure 4.14 Two different fixed-point simulation results of the proposed parity-check

matrix structure, based on the min-sum based decoding algorithm in AWGN channel,

code length=720, code rate=2/3, maximum iteration=10

 52

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-6

10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 3/4

[6:2]
[7:3]

Figure 4.15 Two different fixed-point simulation results of the proposed parity-check

matrix structure, based on the sum-product decoding algorithm in AWGN channel,

code length=960, code rate=3/4, maximum iteration=10

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-6

10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 3/4

[6:2]
[7:3]

Figure 4.16 Two different fixed-point simulation results of the proposed parity-check

matrix structure, based on the min-sum based decoding algorithm in AWGN channel,

code length=960, code rate=3/4, maximum iteration=10

 53

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 4/5

[6:2]
[7:3]

Figure 4.17 Two different fixed-point simulation results of the proposed parity-check

matrix structure, based on the sum-product decoding algorithm in AWGN channel,

code length=1200, code rate=4/5, maximum iteration=10

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 4/5

[6:2]
[7:3]

Figure 4.18 Two different fixed-point simulation results of the proposed parity-check

matrix structure, based on the min-sum based decoding algorithm in AWGN channel,

code length=1200, code rate=4/5, maximum iteration=10

 54

4.2.3 Summary of Fixed-Point Simulation Results

 Floating-point and fixed-point simulation results are shown in Figures 4.19-4.21,

including the bit-error-rate (BER) and signal-to-noise ratio (SNR). The quantization

scheme [6:2] are for both the initially received signal and the extrinsic messages lmr ,

and lmq , . It can be seen that, for cases with code lengths 720, 960 and 1200, the total

quantization loss compared with the floating-point case is about 0.1dB when using the

sum-product algorithm as the decoding algorithm, and the loss compared with the

fixed-point case is about 0.2dB when using the min-sum based algorithm.

Figure 4.19 Floating-point vs. fixed-point simulation results of the proposed

parity-check matrix structure for the sum-product and min-sum based algorithm in

AWGN channel, code length=720, code rate=2/3, maximum iteration=10

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-6

10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 2/3

Fixed-point [6 2] for sum-product algorithm
Floating-point for sum-product algorithm
Fixed-point [6 2] for min-sum based algorithm
Floating-point for min-sum based algorithm

 55

Figure 4.20 Floating-point vs. fixed-point simulation results of the proposed

parity-check matrix structure for the sum-product and min-sum based algorithm in

AWGN channel, code length=960, code rate=3/4, maximum iteration=10

Figure 4.21 Floating-point vs. fixed-point simulation results of the proposed

parity-check matrix structure for the sum-product and min-sum based algorithm in

AWGN channel, code length=1200, code rate=4/5, maximum iteration=10

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 4/5

Fixed-point [6:2] for sum-product algorithm
Floating-point for sum-product algorithm
Fixed-point [6:2] for min-sum based algorithm
Floating-point for min-sum based algorithm

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-6

10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 3/4

Fixed-point [6 2] for sum-product algorithm
Floating-point for sum-product algorithm
Fixed-point [6 2] for min-sum based algorithm
Floating-point for min-sum based algorithm

 56

Chapter 5

VLSI Implementation of LDPC Decoder

In this chapter, we will implementation an irregular LDPC decoder of rate 3/4,

and code length 960. The parity-check matrix of this code was discussed in the last

chapter and is adopted as our proposed structure.

5.1 Semi-parallel Decoder Architecture for the Proposed LDPC

Codes

This architecture includes two 16-input CNFUs (Check node function unit), six

4-input VNFUs (Variable node function unit), one 3-input VNFU, one 5-input VNFU

and 32 extrinsic message register-sets 16,1,16,2,1, ,...,,,...,, BBAAA RRRRR with each

register-set R containing 120 symbols, where each symbol is represented by 6 bits.

Figure 5.1 shows the block diagram of this decoder. The input signals are retrieved

from L registers and x registers store the hard decisions of the soft outputs from

VNFU. Consequently, the decoding process could be carried out as follows:

1. Initialization

Flush the received initial signals to both the L registers and the corresponding

extrinsic message register-sets R . The data is stored serially in the L registers and

the extrinsic message register-sets R .

 57

Figure 5.1 Semi-parallel decoder for the proposed irregular LDPC code structure of

rate 3/4, and code length 960

 58

2 Message passing

Step1 (message passing form check nodes to variable nodes): In each subsequent

iteration, the update variable-to-check messages are simultaneously read from all the

extrinsic message register-sets R by all the CNFUs, the positions of each of the

update variable-to-check message can be selected by a multiplexer, and the control

signal can be controlled by a simple counter. After the CNFU computation, the

updated check-to-variable messages are stored back to the same positions, and this

stored back operation can be controlled by a de-multiplexer, while the control signal

to the de-multiplexer can also be controlled by a simple counter.

Step2 (messages passing from variable nodes to check nodes): Similarly, in the

same iteration, the updated check-to-variable messages are simultaneously read from

all the extrinsic message register-sets R by all the VNFUs. After the VNFU

computation, the updated variable-to-check messages are stored back to the extrinsic

message register-sets R and the hard decisions of the soft output made from each of

the VNFU are at the same time stored in registers x .

Step3 (decoding): At the end of each of the decoding iterations, the PCFU

(Parity-check function unit) starts to check all the parity-check equations. The

iterative process will be terminated when either one codeword x̂ satisfying TxH 0ˆ =

is found, or the pre-assigned maximum number of iterations is reached.

Step1 and Step3 of each decoding iteration are executed in overlap. In other

words, when we are executing step3 of the thi iteration, step1 of the 1+i -iteration

is being computed simultaneously. Figure 5.2 shows the snap shot of the overlapped

operations. This procedure can reduce the cycles of each decoding iteration and can

increase the data throughput of the whole decoding procedure.

 59

Figure 5.2 Illustration of overlapped decoding procedure

5.2 Architectures of the Check Node Function Unit and the Variable

Node Function Unit

In this section, we will discuss the architecture of the check node function unit

and the variable node function unit for the sum-product algorithm and the min-sum

based algorithm respectively. After this discussion, we will conclude that using the

sum-product algorithm is better than the min-sum based algorithm in terms of VLSI

implementation. In the end of this section, we will select the architecture of the

sum-product algorithm as our check node function unit and variable node function

unit and give a summary to the whole LDPC decoder.

 For now, let’s review the sum-product algorithm. The check-to-variable message

lmr , for the check node m and variable node l using the incoming

variable-to-check messages lmq , is computed by CNFU as follows.

)()(()()(,
)()(

,,,, lm
mLl mLl

lmlmlmlm qqqsignqsignr ∏ ∑
∈′ ∈′

′′ −×= φφφ . (5.1)

where)(mL denotes the set of variable nodes connected to the check node m . The

function ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

2
tanhln)(xxφ can be implemented with look-up-table (LUT)

operations. Figure 5.3 shows the curve of function)(xφ . On the other hand, the

variable-to-check message lmq , for the check node m and variable node l using

 60

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

x

⎟⎟ ⎠⎞
⎜⎜ ⎝⎛

⎟ ⎠⎞
⎜ ⎝⎛

−
=

2
ta

nh
ln

)
(

x
x

φ

Figure 5.3 Function plot of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

2
tanhln)(xxφ

the incoming check-to-variable messages lmr , and received initialized signal lL is

computed by VNFU,

∑
∈

∈
+==

)(
,,)(

)),((
lMm

lmlllmlMml rLLrVARVARq (5.2)

 lmllm rqq ,, −= (5.3)

where)(lM is the set of check nodes connected to variable node l and ll yL 2

2
σ

= .

According to the above algorithm, the CNFU and VNFU can be implemented as

illustrated in Figure 5.4 and Figure 5.5 respectively.

 61

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

1,mq

2,mq

3,mq

4,mq

5,mq

6,mq

7,mq

8,mq

9,mq

10,mq

11,mq

12,mq

13,mq

14,mq

15,mq

16,mq

1,mr

2,mr

3,mr

4,mr

5,mr

6,mr

7,mr

8,mr

9,mr

10,mr

11,mr

12,mr

13,mr

14,mr

15,mr

16,mr

6LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

SM-2's

SM-2's

SM-2's

SM-2's

SM-2's

SM-2's

SM-2's

SM-2's

SM-2's

SM-2's

SM-2's

SM-2's

SM-2's

SM-2's

SM-2's

SM-2's

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

Figure 5.4 Architecture of check node function unit for the sum-product algorithm

Figure 5.5 Architecture of a 4-input variable node function unit for the sum-product

algorithm

 62

 It is worth noting that the data format transformation block, either from

sign-magnitude (SM) to two’s complement (2’s) format or vice versa, exists in both

types of functional units. The major advantage of using the sign-magnitude format for

LUT operations is that each LUT size can be reduced by half by making use of the

symmetry properties of the)(xφ function. As we can see in Figure 5.4 and Figure

5.5, CNFUs are more complicated than VNFUs. Two LUT operations are involved in

the critical path of each CNFU. [16] introduced a method to re-distribute the

computation load between CNFUs and VNFUs. In this method, it moves one LUT

operation to the critical path of every VNFU. The sum-product algorithm could be

equivalently reformulated as below for CNFUs,

)()()()(,
)()(

,,,, lm
mLl mLl

lmlmlmlm qqqsignqsignr ∏ ∑
∈′ ∈′

′′ −×= φφ (5.4)

and for VNFUs,

)()()),((
)(

,,,)(∑
∈

∈
×+==

lMm
lmlmlllmlMml rrsignLLrVARVARq φ (5.5)

)()(,,, lmlmllm rrsignqq φ×−= . (5.6)

where all the notations remain the same as before. As a result, their corresponding

architectures are depicted in Figure 5.6 and Figure 5.7 respectively.

 63

Figure 5.6 Reformulated architecture of check node function unit for the sum-product

algorithm

Figure 5.7 Reformulated architecture of a 4-input variable node function unit for the

sum-product algorithm

 64

The major benefit of the reformulated architecture is that the computation complexity

is more equally shared amongst the CNFUs and VNFUs, resulting to a more balanced

computation delay between the two. Besides, the dashed lines indicate possible

positions for inserting pipeline stages and can further reduce the critical paths on both

the CNFUs and VNFUs. Since we know that in each decoding iteration both check

node update operation and variable node update operation have to be performed one

after another. This leads to merely 50% hardware utilization efficiency (HUE) of the

CNFUs and VNFUs, because all the VNFUs are idle when CNFUs are busy during

the check node update and vice versa during the variable node update. To improve the

HUE of CNFUs and VNFUs, [16] also introduced a re-mapped architecture that

combines the CNFUs and VNFUs into the same hardware by making use of similarity

between the CNFUs and VNFUs and get a smaller area design. The re-mapped

architecture is shown in Figure 5.8. In Figure 5.8, there are a total of 32 inputs and 32

outputs denoted as sIn and sOut respectively where 321 ≤≤ s . The re-mapped

architecture performs CNFU operations when the control signal is ‘0’, thus the inputs

are variable-to-check messages and the outputs are check-to-variable messages. On

the other hand, when the control signal switches to ‘1’, VNFU operations are

performed, where the inputs are check-to-variable messages and the outputs are

variable-to-check messages. Therefore, this architecture can perform both the check

node update operations and the variable node update operations on the same piece of

hardware, which will always be busy during every iteration and thus increasing the

HUE to 100%. Last of all, the dashed lines in Figure 5.8 represent the possible

positions for inserting the pipeline stages.

 65

Figure 5.8 Re-mapped architecture performing both check node update and variable

node update operations for the sum-product algorithm

 66

 Regarding architectures of CNFUs and VNFUs for the min-sum based algorithm,

as already reviewed in the beginning, for the check node update operation, the

)(mSCHK is first computed where

))...)q(CHK(q)q(CHK(qCHK(...CHK

)()(

m,4m,3m,2m,1

,
)(

⊕⊕⊕=

⊕= ′
∈′

lm
mLl

m qSCHK CHK
 (5.7)

and

)()(),()()(

1
1ln),()()()(

bagbagbaMinbsignasign
e
ebaMinbsignasignbaCHK

ba

ba

−−++×=
+

+
+×=⊕

−

+

. (5.8)

Then, for each of the check-to-variable message lmr , can be computed as

mlm SCHKr (, = lmq ,)

)())(())((

)(
1
1ln

,,

)(

)(

,

,

mmlmmlm

mSCHKq

SCHKq

SCHKSCHKqhSCHKqh

SCHK
e
e

mlm

mlm

−−−+=

−
−
−

= −

+

 (5.9)

The functions)1ln()(xexg −+= and 1ln)(−= xexh can be implemented with

look-up-table (LUT) operations. Figure 5.9 and Figure 5.10 show the curves of the

g-function and h-function, respectively.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

)
1

ln
(

)
(

x
e

x
g

−
+

=

x

Figure 5.9 Function plot of)1ln()(xexg −+=

 67

-8 -6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

8

x

1
ln

)
(

−
=

x e
x

h

Figure 5.10 Function plot of)1ln()(−= xexh

For the variable node update operation, each of the variable-to-check message lmq ,

can be computed as

∑
∈

∈
+==

)(
,,)(

)),((
lMm

lmlllmlMml rLLrVARVARq (5.10)

and

lmllm rqq ,, −= . (5.11)

The corresponding architectures of the CNFUs and VNFUs for the min-sum based

algorithm are shown in Figure 5.11 and Figure 5.12 respectively.

 68

Figure 5.11 Architecture of check node function unit for the min-sum based algorithm

Figure 5.12 Architecture of a 4-input variable node function unit for the min-sum

based algorithm

 69

It should be noted that in Figure 5.11, the input range of the look-up-table for the

h-function (LUT-h) is merely from 75.3− -to- 75.3 . The reason is that for the

h-function where 1)(−= xexh , when x is larger than 3.75,)(xh equals to x or

xxh =)(; and when x is smaller than -3.75, the)(xh will equal to 0. This

characteristic of the h-function can be clearly seen in Figure 5.10. So we can first

compare the values)21(inin + and)21(inin − , where 1in and 2in are the inputs

of the core operation 2(inCHK in1), to the values 3.75 and -3.75 respectively.

Then, the compared results are used to form the control signals of a 3-to-1 multiplexer

as shown in Figure 5.11 and determine the output signal of the 3-to-1 multiplexer.

This shortening operation can reduce the number of entries of LUT-h to 32. Similarly,

the dashed lines represent the possible positions for inserting the pipeline stages in

Figure 5.11.

 To compare the area, speed, latency, and power consumption of the architectures

discussed in this section, we describe both architectures in VHDL, and afterwards

simulate and synthesize it using the tools TMSynopsis and imePowerPr . The

process technology is UMC 0.18 mµ process. Table 5.1 and Table 5.2 list the results

of the reformulated and remapped architectures of CNFUs and VNFUs for the

sum-product algorithm respectively. Table 5.3 lists the results for the architectures of

CNFUs and VNFUs, based on the min-sum based algorithm. Furthermore, we give a

summary on the comparisons of the different architectures in Table 5.4. It can be seen

in Table 5.4 that the area and average power consumption of the architectures of

CNFUs and VNFUs for the min-sum based algorithm are the worst when compared to

the reformulated and remapped architecture of CNFUs and VNFUs on the

sum-product algorithm. The reformulated and the remapped architecture of CNFUs

and VNFUs for the sum-product algorithm are both tradeoffs between area and power

 70

consumption. However, when comparing the reformulated architecture to the

remapped architecture of CNFUs and VNFUs for the sum-product algorithm, the area

of the remapped architecture is reduced by 20%; but the average power consumption

of the remapped architecture is exceeded by 48%. We therefore select the

reformulated architecture of CNFUs and VNFUs for the sum-product algorithm as the

CNFUs and VNFUs in our decoder design.

Table 5.1 Area, speed, latency and power consumption of the reformulated CNFUs

and VNFUs architectures for the sum-product algorithm

 16 input

CNFU

3 input

VNFU

4 input

VNFU

5 input

VNFU

Area

(gate count)

5k 1.14k 1.6k 1.77k

Speed (MHz) 200 200 200 200

Latency(Cycles) 2 2 2 2

Power

consumption

(mW)

9.87 3.10 3.82 4.48

Table 5.2 Area, speed, latency and power consumption of the re-mapped CNFUs and

VNFUs architectures for the sum-product algorithm

 32 input remapped hardware performing both CNFUs and VNFUs

operations

Area

(gate count)

18k

 71

Check node update operation Variable node update operation

Speed (MHz) 200 200

Latency(Cycles) 3 3

Power

consumption

(mW)

30.82 43.74

Table 5.3 Area, speed, latency and power consumption of the CNFUs and VNFUs

architecture for the min-sum base algorithm

 16 input

CNFU

3 input

VNFU

4 input

VNFU

5 input

VNFU

Area

(gate count)

22k 0.74k 1.07k 1.61k

Speed (MHz) 200 200 200 200

Latency(Cycles) 5 1 1 1

Power

consumption

(mW)

23.2 2.23 3.53 4.33

Table 5.4 Summary of comparison the area, speed and power consumption of the

different CNFUs and CNFUs architectures for the sum-product algorithm and the

min-sum based algorithm

 Sum-product algorithm Min-sum based algorithm

 Reformulated set Remapped set Conventional set

 72

Area

(gate count)

5k+1.14k+1.6k*6+1.77k

=22.51k

18k 22k+0.74k+1.07k*6+1.61k

=52.77k

Relative

area

100% 80% 234%

Speed

(MHz)

200 200 200

Total power

consumption

for check

node update

operation

(mW)

9.87*2

=19.74

30.82 23.2*2

=46.4

Total power

consumption

for variable

node update

operation

(mW)

3.10+3.82*6+4.48

=30.5

43.74 2.33+3.53*6+4.33

=27.74

Average

Power

consumption

(mW)

(19.74+30.5)/2

=25.12

(30.82+43.74)/2

=37.28

(46.4+27.74)/2

=37.07

Relative

average

power

100% 148% 147%

 73

consumption

 Having discussed the architecture of the CNFUs and VNFUs, we can further use

the characteristics of the LDPC decoding, that is, it is inherently parallelizable and

chooses a parallel factor of 10. That means that we can compute 20 rows

simultaneously during the check node update operation, and 80 columns

simultaneously during the variable node update operation as well. Now we set the

number of the input bits of the whole decoder to 240 bits, which means that we can

input 40 symbols in one clock cycle. Regarding a 960-symbol frame, it will take 24

cycles to complete the input operation. The number of the output bits is 10, so it will

take 72 cycles to output the estimated data bits x̂ . Besides, we compute 20

parity-check equations in one cycle and it will take 12 cycles to finish all of the

parity-check equations. Since the maximum iteration of the decoding procedure is 10

and the parallel factor is also 10, the total amount of cycles needed to complete the

decoding procedure is 38872122*)212(*1024 =++++ cycles. According to

our initial synthesis results, the clock frequency is 200MHz, thus the data decoding

throughput is 370388/)]4/3(*960[*200 ≈ Mbps. Regarding the power consumption

of the whole decoder, by using the technique of gated clock, the VNFUs can be turned

off when the CNFUs are busy during check node updates and vice versa during the

variable node updates, one can reduce the total power consumption. Last of all, we

give a summary of the whole decoder in Table 5.5. It is obvious that using gated clock

can reduce 28% of the power consumption when compared to the case of without

gated clock.

 74

Table 5.5 Summary of the proposed LDPC decoder

 Proposed LDPC decoder

without gated clock

Proposed LDPC decoder

with gated clock

Area

(gate count)

800k 800k

Speed

(MHz)

200 200

Data throughput

(Mbps)

370 370

Power consumption

(mW)

770 550

Relative power

consumption

100% 72%

 According to the proposed irregular LDPC decoder, these results can be

compared to other designs which are list in Table 5.6. As we can see in Table 5.6,

using the semi-parallel architecture can make a more flexible design in hardware

implementation.

Table 5.6 Comparison of LDPC decoders

 Proposed LDPC

decoder

[18] [17]

Code length 960 8088 1024

Code rate 3/4 1/2 1/2

Quantization bits 6 6 4

 75

Architecture Semi-parallel with

parallel factor 10

Semi-parallel with

parallel factor 24

Fully parallel

Process

Technology (μm)

0.18 0.11 0.16

Clock rate (MHz) 200 212 64

Power (mW) 550 690

Area (gate count) 800k 742k 1750k

Throughput

(Mbps)

370 188 500

 Regarding the application of the proposed irregular LDPC decoder, it can be

applied to the WLAN IEEE 802.11n standard. Table 5.6 shows the basic modulation

coding scheme (MCS) set of TGnSync [19] proposal. It can be seen obviously that the

decoder can support the data throughput requirement with all of the modulation

method, when the transmission bandwidth is 20MHz and the code rate is 3/4.

Table 5.8 Basic MCS set of TGnSync proposal

Modulation Code Rate

Data Rates* 20 MHz
(Mbps)
(1,2,3,4 spatial streams)

Data Rates* 40 MHz
(Mbps)
(1,2,3,4 spatial streams)

BPSK 1/2 6, 12, 18, 24 6‡, 13.5, 27, 45.5, 54
QPSK 1/2 12, 24, 36, 48 27, 54, 81, 108
QPSK 3/4 18, 35, 54, 72 40.5, 81, 121.5, 162
16 QAM 1/2 24, 48, 72, 96 54, 108, 162, 216
16 QAM 3/4 36, 72, 108, 144 81, 162, 243, 324
64 QAM 2/3 48, 96, 144, 192 108, 216, 324, 432
64 QAM 3/4 54, 108, 162, 216 121.5, 243, 364.5, 486
64 QAM 7/8 63, 126, 189, 252 141.7, 283.5, 425.2, 567
64 QAM 7/8 with ½ GI* 70, 140, 210, 280 157.5, 315, 472.5, 630

 76

Chapter 6

Conclusion

 From this work, we summarize that using the proposed structure of the LDPC

codes can further improve the error correction performance when compared to the

irregular quasi-cyclic codes. However, it is not expected that the proposed structure of

the LDPC codes will outperform randomly constructed optimized irregular codes. The

proposed structure of the LDPC codes has the advantage of a reduced encoding

complexity and is suited for the VLSI implementation of the decoder.

 Various quantization schemes for the received data and extrinsic message for the

sum-product algorithm and the min-sum based algorithm of the irregular LDPC

decoder were investigated and the optimal choice considering the tradeoff between the

hardware complexity and the performance were discussed in this thesis. The overall

fixed-point simulations show that the quantization scheme we have developed for the

sum-product algorithm and min-sum based algorithm of the irregular LDPC decoder

are effective in approximating the floating-point implementation and that using the

sum-product algorithm is better than the min-sum based algorithm of the irregular

LDPC decoder by about 0.1dB.

With the semi-parallel architecture and a parallel factor of 10, an irregular LDPC

decoder has been implemented, of which the code rate is 3/4, the code length is 960

bits, and the maximum number of decoding iterations is 10, respectively. The irregular

 77

LDPC decoder can achieve the data decoding throughput of up to 370Mbps and the

area is 800k gate counts using the UMC 0.18 mµ ASIC process technology. Regarding

the power consumption of the irregular LDPC decoder, by using the technique of

gated clock one can reduce 28% of the total power consumption down to 550 mW.

 The irregular LDPC decoder can support the data throughput requirement of the

WLAN IEEE 802.11n standard when the transmission bandwidth is 20MHz and the

code rate is 3/4. We believe that if we extend the parity-check matrix structure to code

length 1920 and code rate 7/8, by increasing the parallel factor, we can implement a

good LDPC decoder which can support the data throughput requirement with all of

the different data rates.

 78

References

[1] R. G. Gallager, “Low-density parity-check codes,” Cambridge, MA: MIT Press,

1963.

[2] D. J. C. Mackay and R. M. Neal, “Near Shannon limit performance of low density

parity check codes,” Electron. Lett., Vol. 32, pp. 1645-1646, Aug. 1996.

[3] T. J. Richardson and R. L. Urbabke, “Efficient encoding of low-density

parity-check codes,” IEEE Trans. Inform. Theory, Vol. 47, pp. 638-656, Feb.

2001.

[4] D. J. C. Mackay, S. T. Wilson, and M. C. Davey, “Comparison of constructions of

irregular gallager codes,’’ IEEE Trans. Comm., Vol. 47, pp. 1449-1454, Oct.

1999.

[5] S. J. Johnson and S. R. Weller, “A family of irregular LDPC codes with low

encoding complexity,” IEEE Comm. Lett., Vol. 7, pp. 79-81, Feb. 2003.

[6] M. C. Davey and D. J. C. Mackay, “Low-density parity-check codes over GF(q),”

IEEE Comm. Lett., Vol. 2, pp. 165-167, Jun. 1998.

[7] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform.

Theory, Vol. 27, pp. 533-547, Sep. 1981.

[8] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann,

“Practical loss-resilient codes,” IEEE Trans. Inform. Theory, Vol. 47, pp. 569-584,

Feb. 2001.

[9] T. J. Richardson, M. A. Shokrollashi, and R. L. Urbanke, “Design of

capacity-approaching irregular low-density parity-check codes,” IEEE Trans.

 79

Inform. Theory, Vol. 47, pp. 619-637, Feb. 2001.

[10] D. J. C. Mackay, “Good error-correcting codes based on very sparse matrices,”

IEEE Trans. Inform. Theory, Vol. 45, pp. 399-431, Mar. 1999.

[11] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the

sum-product algorithm,” IEEE Trans. Inform. Theory, Vol. 47, pp. 498-519, Feb.

2001.

[12] H. Futaki and T. Ohtuski, “Low-density parity-check (LDPC) coded OFDM

systems,” IEEE VTS, Vol. 1, pp. 82-86, Fall. 2001.

[13] X. Y. Hu, E. Eleftheriou, D. M. Arnold, and A. Dholakia, “Efficient

implementation of the sum-product algorithm for decoding LDPC codes,” IEEE

GLOBECOM’01, Vol. 02, pp. 1036-1036E, Nov. 2001.

[14] I. V. Kozintsev. Software for low-density parity-check codes. [Online] Available

at: http://www.kozintsev.net/soft.html.

[15] A. Nayagam. Software for low-density parity-check codes. [Online] Available at:

http://arun-10.tripod.com/ldpc/ldpc.html.

[16] Z. Wang, Y. Chen, and K. K. Parhi, “Area efficient decoding of quasi-cyclic low

density parity check codes,” IEEE ICASSP’04, Vol. 5, pp. 49-52, May. 2004.

[17] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2

low-density parity-check code decoder,” IEEE J. Solid-State Circuits, Vol. 37, pp.

404-412, Mar. 2002.

[18] Y. Chen and D. Hocevar, “A FPGA and ASIC implementation of rate 1/2,

8088-b irregular low density parity check decoder,” IEEE GLOBECOM’03, Vol.

3, pp. 113-117, Dec. 2003.

 80

[19]TGnSync, “TGnSync Proposal,” [Online] Available at:

http://www.tgnsync.org/home.

 81

自 傳

朱元志，1981 年 8 月 1 日出生，高雄市人。2003 年自國立東華大學電

機工程學系畢業，隨即進入國立交通大學電子研究所攻讀碩士學位。

研究興趣為通訊系統與數位信號處理，碩士論文題目為低密度對偶檢

查碼結構之改進以及其解碼器之超大型積體電路實現。

