
 

國 立 交 通 大 學 

 

電子工程學系 電子研究所碩士班 

 

碩 士 論 文 

 

 

低密度對偶檢查碼結構之改進以及其解碼器之

超大型積體電路實現 

 

An Improved LDPC Code Structure and Its VLSI 

Decoder Realization 

 

 

研 究 生：朱元志 

指導教授：陳紹基 博士 

 

中 華 民 國 九 十 四 年 七 月



低密度對偶檢查碼結構之改進以及其解碼器之超大型

積體電路實現 

An Improved LDPC Code Structure and Its VLSI 

Decoder Realization 

 

研 究 生：朱元志               Student：Yuan-Jih Chu 

指導教授：陳紹基 博士          Advisor：Sau-Gee Chen 

 

國 立 交 通 大 學 

電子工程學系 電子研究所所碩士班 

碩 士 論 文 

A Thesis 

Submitted to Institute of Electronics 

College of Electrical Engineering and Computer Science 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of 

Master of Science  

in 

Electronics Engineering 

 
July 2005 

Hsinchu, Taiwan, Republic of China 

中華民國九十四年七月



 I

低密度對偶檢查碼結構之改進以及其解碼

器之超大型積體電路實現 

學生：朱元志    指導教授：陳紹基 博士 

 

國立交通大學 

 

電子工程學系 電子研究所碩士班 

 
 

摘    要 

由於低密度對偶檢查碼 (LDPC) 的編碼增益接近向農 (Shannon) 極限以及解碼

程序上擁有低複雜度的特性，所以在近年來受到廣泛的討論。本文中，我們利用

差分集合 (difference family) 的概念來建構一種新的低密度對偶檢查碼結構，此

結構在編碼上擁有低複雜度的特性，以及在解碼器的設計上易於超大型積體電路 

(VLSI) 實現。此外，在解碼器的設計上，我們使用部分平行 (semi-parallel) 的

架構並使其平行度為 10，設計一個碼率為 3/4、長度為 960 位元、最大循環解碼

次數為 10 的非規則低密度對偶檢查碼解碼器，在 0.18 mµ 製程下，此解碼器之資

料流為每秒 370MHz、面積為 80 萬個邏輯閘、消耗功率為 550mW。 
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ABSTRACT 

In recent years, low-density parity-check (LDPC) codes have attracted a lot of 

attention due to the near Shannon limit coding gain when iteratively decoded. In this 

thesis, we construct a new structure of irregular LDPC codes based on using the 

difference families. The resulting codes can be encoded with low complexity and are 

suitable for the VLSI implementation of their decoder. With the semi-parallel 

architecture and a parallel factor of 10, an irregular LDPC decoder has been 

implemented, of which the code rate is 3/4, the code length is 960 bits, and the 

maximum number of decoding iterations is 10, respectively. The irregular LDPC 

decoder can achieve a data decoding throughput of up to 370Mbps, an area of 800k 

gate counts, and a power consumption of 550mW using the UMC 0.18 mµ ASIC 

process technology.  
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Chapter 1 

Introduction 

 

 

 With the continuous growth of wireless communication technology, people have 

eventually become addicted to wireless products such as mobile phones and wireless 

LAN due to the convenience and enjoyment it has brought to our lives. However, the 

resources of the wireless frequency spectra are limited and valuable. The 

improvement of transmission efficiency for wireless communication has therefore 

become the focus of research in communication systems. The use of error correction 

codes is one of the main solutions to raising the transmission efficiency. Among 

various error correction codes, one called low-density parity-check code (LDPC) 

should be especially taken into account. LDPC codes were first presented by Gallager 

[1] in 1962 and have received great attention recently due to, its near Shannon limit 

coding gain when iterative decoded [2]. LDPC codes are currently widely considered 

a serious competitor to the turbo codes. The main advantages of LDPC codes over 

turbo codes are that LDPC decoders are known to require an order of magnitude less 

arithmetic computations, and the decoding algorithm for LDPC codes is parallelizable 

and can potentially be accomplished at significantly greater speeds. The disadvantage 

of the LDPC codes is the high complexity required in encoding. Recently, several 

efficient encoding approaches have been proposed [3,4,5]. In [5], it introduced an 

approach that used difference families to construct irregular quasi-cyclic codes free of 
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4-cycles while reducing the encoding complexity to become linear to the code length. 

However, the performance was not as good as expected. The aim of this thesis is to 

construct a new structure of LDPC codes that improves the performance while using 

the concept of the difference families, and contact VLSI design of the corresponding 

decoder. 

    This thesis is organized as follows. In chapter 2, basic concept of the LDPC 

codes including the code construction, encoding and decoding will be introduced. 

Chapter 3 will propose a new structure of LDPC codes by using difference families. 

In chapter 4, the simulation results for the LDPC codec will be discussed in chapter 2 

and chapter 3 will be shown. Chapter 5 will discuss the VLSI implementation of the 

LDPC decoder. In the end of this thesis, brief conclusions will be presented in chapter 

6.  
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Chapter 2 

Low-Density Parity-Check Code 

 

In this chapter, an introduction to low-density parity-check code will be given, 

including the fundamental concepts of LDPC code, code construction, encoding and 

decoding mechanism. 

 

2.1 Fundamental Concept of LDPC Code 

 

A binary LDPC code is a binary linear block code that can be defined by a sparse 

binary nm×  parity-check matrix. A sparse matrix is a matrix where only a small 

fraction of its entries are ones. Non-binary LDPC codes over GF(q) are discussed in 

[6]. Hereafter, binary LDPC codes will be called LDPC codes for short. 

For any nm×  parity-check matrix H, it defines a (n, j, k)-regular LDPC code if 

every column vector of H has the same weight j and every row vector of H has the 

same weight k. Here the weight of a vector is the number of ones in the vector. By 

counting the ones in H, it follows that kmjn ×=× . Hence if nm < , then kj < . 

Suppose the parity-check matrix has full rank, the code rate of H is 

kjkjknmnr /1/)(/)( −=−=−= . If not all the columns or all the rows of the 

parity-check matrix H have the same number of ones, an LDPC code is said to be 

irregular. 
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As suggested by Tanner [7], an LDPC code can be represented as a bipartite 

graph. An LDPC code corresponds to a unique bipartite graph and a bipartite graph 

also corresponds to a unique LDPC code. In a bipartite graph, one type of nodes, 

called the variable nodes, correspond to the symbols in a codeword. The other type of 

nodes, called the check nodes, correspond to the set of parity check equations. If the 

parity-check matrix H were an nm×  matrix, it would have m check nodes and n 

variable nodes. A variable node vi is connected to a check node cj by an edge, denoted 

as (vi, cj), if and only if the entry hi,j of H is one. A cycle in a graph of nodes and edges 

is defined as a sequence of connected edges which starts from a node and ends at the 

same node, and satisfies the condition that no node (except the initial and final node) 

appears more than once. The number of edges on a cycle is called the length of the 

cycle. The length of the shortest cycle in a graph is called the girth of the graph. 

Regular LDPC codes are those where all nodes of the same type have the same 

degree. The degree of a node is the number of edges connected to that node. For 

example, Figure2.1 shows a (8, 4, 2)-regular LDPC code and its corresponding 

 

 

 

 

 

3c1c 2c 4c

1v 2v 5v 6v 7v 8v3v 4v

nodescheck  

nodesvariable  

3c1c 2c 4c

1v 2v 5v 6v 7v 8v3v 4v

nodescheck  

nodesvariable  
 

Figure 2.1 Example of a (8, 4, 2)-regular LDPC code and its corresponding Tanner 

graph.  There are 8 variable nodes (vi) and 4 check nodes (ci). 
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Tanner graph. In this example, all the variable nodes have a degree of 2 and all the 

check nodes have a degree of 4. The edges (c1, v3), (v3, c3), (c3, v7), and (v7, c1) depict 

a cycle in the Tanner graph. Since this turns out to be the shortest cycle, the girth of 

this graph is 4. Irregular LDPC codes were introduced in [8] and [9]. For such codes, 

the degrees of each set of nodes are chosen according to some distribution.   

A polynomial )(xγ  of the form  

 ∑
≥

−=
2

1)(
i

i
i xx γγ  (2.1) 

is a degree distribution if )(xγ  has nonnegative coefficients and 1)1( =γ .  Given a 

degree distribution pair ),( ρλ  to form a sequence of code ensembles ),( ρλnC , 

where n is the length of the code and where 
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specify the variable and check node degree distributions. More precisely, iλ  and iρ  

represent the fraction of edges emanating from variable and check nodes of degree i  

respectively; vd and cd  are denoted as the maximum variable and check node 

degree. Assume that the code has n variable nodes. The number of variable nodes of 

degree i  is then 
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    Similarly, assuming that the code has m  check nodes, E can also be expressed 

as 

 
∫

= 1

0
)( dxx
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 (2.5) 

    Since the number of edges emanating from all variable nodes is equal to that 

emanating from all check nodes, we have 
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Assuming that H has full rank, the rate of LDPC codes in the ensemble is 
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Further more, the average degree j  of a variable node and average degree k  of a 

check node are 
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2.2 Code Construction  
 

Gallager’s method [1] 

 

Define an (n, j, k) parity-check matrix as a matrix of n columns that has j ones in 

each column, k ones in each row, and zeros elsewhere. In follows from this definition 

than an (n, j, k) parity-check matrix has knj /  rows and thus a rate kjr /1−≥ . In 

order to construct an ensemble of (n, j, k) matrices, consider first the special (n, j, k) 

matrix in Figure 2.2, for which n, j and k will be 20, 3 and 4, respectively. 

 
 

10000100001000010000
00010010000100001000
01000001000010000100
00001000010001000010
00100000100000100001
10001000100010000000
01000100010000001000
00100010000001000100
00010000001000100010
00000001000100010001
11110000000000000000
00001111000000000000
00000000111100000000
00000000000011110000
00000000000000001111

 

Figure 2.2 Example of a low-density parity-check code matrix where (n, j, k) = (20, 3, 

4) 

This matrix is divided into j sub-matrices, each containing a single 1 in each 

column. The first of these sub-matrices contains all its 1’s in descending order which 

is, the ith row contains 1’s in columns 1)1( +− ki  to ik . The other sub-matrices are 



 8

merely column permutations of the first. We define the ensemble of (n, j, k) codes as 

the ensemble resulting from random permutations of the columns of each of the 

bottom )1( −j  sub-matrices of a matrix such as in Figure 2.2 with equal probability 

assigned to each permutation. This definition is somewhat arbitrary and is made for 

mathematical convenience. In fact such an ensemble does not include all (n, j, k) 

codes as just defined. Also, at least )1( −j  rows in each matrix of the ensemble are 

linearly dependent. This simply means that the codes have a slightly higher 

information rate than the matrix indicates. 

 
MacKay’s method [10] 
 

A computer-generated code was introduced by MacKay [10]. The parity-check 

matrix is randomly generated. First, the parameters n, m, j, and k are chosen to 

conform an (n, m, j, k)-regular LDPC code where n, j and k are the same as in 

Gallager’s code and m is the number of the parity-check equations in H. Then, 1’s are 

randomly generated into j different positions of the first column. The second column 

is generated in the same way, but checks are made to insure that no two columns have 

a 1 in the same position more than twice. This constraint is to avoid a 4-cycle to 

appear in the Tanner graph, which will cause the performance to drop by about 0.5dB.  

An avoidance of 4-cycles in a parity-check matrix is therefore required. The next few 

columns are generated sequentially and checks for 4-cycles must be performed on 

each generation. In this procedure, the number of 1’s in each row must be recorded, 

and if any row already has k 1’s, the next column generating will not select that row. 
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Construction by Quasi-Cyclic Code [5] 

 

A code is quasi-cyclic if, for any cyclic shift of a codeword by l  places, the 

resulting word is also a codeword. A cyclic code is a quasi-cyclic code with 1=l .  

Consider the binary quasi-cyclic codes described by a parity-check matrix 

 ],...,[ 21 lAAAH =  (2.10) 

where lAAA ,..., 21  are binary vv×  circulant matrices. The algebra of ( )vv×  

binary circulant matrices is isomorphic to the algebra of polynomials modulo 1−vx  

over GF(2). A circulant matrix A  is completely characterized by the polynomial  

 1
1

2
210 ....)( −

−++++= v
v xaxaxaaxa  (2.11) 

where the coefficients are from the first row of A , and a code C with parity-check 

matrix of the form (2.10) can be completely characterized by the polynomials 

)(),...,(),( 21 xaxaxa l .  Figure2.3(a) shows an example of a rate-1/2 quasi-cyclic code 

where xxa += 1)(1  and 42
2 1)( xxxa ++= . Figure2.3(b) shows the corresponding 

Tanner graph representation.  For this example we can see the edges (c1, v6), (v6, c4), 

(c4, v8), (v8, c1) depict a 4-cycle in this graph which is to be avoided for performance 

consideration. The method for avoiding 4-cycle condition will be discussed in the 

next chapter. 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11010
01101
10110
01011
10101

10001
11000
01100
00110
00011

H  

(a) A parity-check matrix with two circulant matrices 
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3c1c 2c 4c

1v 2v 5v 6v 7v 8v3v 4v

nodescheck 

nodesvariable  

5c

9v 10v

3c1c 2c 4c

1v 2v 5v 6v 7v 8v3v 4v

nodescheck 

nodesvariable  

5c

9v 10v
 

(b) Tanner graph representation 

Figure2.3 Example of a rate-1/2 quasi-cyclic code from two circulant matrices, where 

xxa += 1)(1  and 42
2 1)( xxxa ++=  

 

2.3 Encoding 

 

    Since LDPC code is a linear block code, it can be encoded by the conventional 

method. However, using conventional method will introduce an encoding complexity 

proportional to the quadratic of the code length. The high encoding cost of LDPC 

codes becomes a major drawback when compared to the turbo codes which has a 

linear encoding complexity with time. In this section, we will introduce some 

improved methods. 

 

Conventional method 

 

    Let ],...,,,[ 1210 −= kuuuuu  be a row vector of message bits with length k and 

],...,,,[ 1210 −= nccccc  be a codeword with length n. Let G with dimension nk ×  be 

the generating matrix of this code. It can be derived that 

 uGc = . (2.12) 

If H is the parity-check matrix of this code with dimension nr ×  where knr −= . 

Then 
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0               
0                

0 0

=⇒

=⇒

=⇒=

T

T

TTT

GH
uGH
cHHc

 (2.13) 

Suppose a sparse parity-check matrix H with full rank is constructed. Gaussian 

elimination and column reordering can be used to derive an equivalent parity-check 

matrix in the systematic form ][ rsystematic IPH = . Thus equation (2.13) can be solved 

to get the generating matrix in systematic form as  

 ][ T
ksystematic PIG = . (2.14) 

Finally, the generating matrix G can be obtained by doing the reverse column 

reordering to the systematicG . 

 

Forcing H to have lower triangular form [4] 

 

    In [4] it was suggested to force the parity-check matrix to be in the lower 

triangular form. Under this restriction, it guarantees a linear time encoding complexity, 

but, in general, it also results in some loss of performance. 

 

Richardson’s method [3] 

 

Figure 2.4 shows how to bring the parity-check matrix into an approximate lower 

triangular form using row and column permutations. Note that since this  
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Figure 2.4 The parity-check matrix in an approximate lower triangular form 

transformation was accomplished solely by permutations, the matrix is still sparse.  

More precisely, assume that the matrix is written in the form 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

EDC
TBA

H  (2.15) 

where A is )()( mngm −×− , B is ggm ×− )( , T is )()( gmgm −×− , C is 

)( mng −× , D is gg × , and E is )( gmg −× . Further, all these matrices are sparse 

and T is lower triangular with ones along the diagonal. Multiplying this matrix from 

the left by 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− − IET

I
1

0
 (2.16) 

can result in 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+− −− 011 DBETCAET

TBA
. (2.17) 

    Let ),,( 21 ppsx =  denote the codeword of this parity-check matrix where s  is 

the message bits with length )( nm − , 1p  and 2p  combin ed are the parity bits, 1p  

has length g , and 2p  has length )( gm − . The constrained equation TTHx 0=  

splits naturally into two equations, namely 

 021 =++ TTT TpBpAs  (2.18) 

and 

 ( ) ( ) 01
11 =+−++− −− TT pDBETsCAET . (2.19) 

Define DBET +−= −1γ  and assume for the moment that γ  is nonsingular. Then 
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from equation (2.19) we conclude that 

 ( ) TT sCAETp +−−= −− 11
1 γ . (2.20) 

Hence, once the )( mng −×  matrix ( ) TsCAET +−− −− 11γ  has been pre-computed, 

the determination of 1p  can be accomplished with a time complexity of 

))(( mng −×Ο  simply by performing a multiplication with this (generically dense) 

matrix. This complexity can be further reduced as shown in Table 2.1. Rather than 

pre-computing ( ) TsCAET +−− −− 11γ  and then multiplying with Ts , 1p  can be 

determined by breaking the computation into several smaller steps, each of which is 

computationally efficient. To this end, we first determine TAs , which has complexity 

of )(nΟ , since A  is sparse. Next, we multiply the result by 1−T . Since 

TT yAsT =− ][1  is equivalent to the system TT TyAs =][ , this can also be 

accomplished in )(nΟ  time with by back-substitution, because T  is lower 

triangular and sparse. The remaining steps are fairly straightforward. It follows that 

the overall complexity of determining 1p  is ).( 2gn +Ο  In a similar manner, noting 

from equation (2.18) that )( 1
1

2
TTT BpAsTp +−= − , we can accomplish the 

determination of 2p  in time complexity of )(nΟ  as shown step by step in Table 

2.2. 

    A summary of this efficient encoding procedure is given in Table 2.3. It entails 

two steps, the preprocessing step and the actual encoding step. In the preprocessing 

step, we first perform row and column permutations to bring the parity-check matrix 

into the approximate lower triangular form with as small a gap g as possible. In actual 

encoding then entails the steps listed in Table 2.1 and 2.2. The overall encoding 

complexity is )( 2gn +Ο , where g is the gap of the approximate triangulation. 
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Table 2.1 Efficient computation step of ( ) TT sCAETp +−−= −− 11
1 γ  

Operation Comment Complexity 

TAs  

][1 TAsT −  

][ 1 TAsTE −−  

TCs  

][][ 1 TT CsAsET +− −  

][ 11 TT CsAsET +−− −−γ  

Multiplication by sparse matrix 

TTTT TyAsyAsT =⇔=− ][][1  

Multiplication by sparse matrix 

Multiplication by sparse matrix 

Addition 

Multiplication by dense gg ×  matrix

( )nΟ  

( )nΟ  

( )nΟ  

( )nΟ  

( )nΟ  

( )2gΟ  

 

Table 2.2 Efficient computation step of )( 1
1

2
TTT BpAsTp +−= −  

Operation Comment Complexity 

TAs  

TBp1  

][][ 1
TT BpAs +  

][ 1
1 TT BpAsT +− −  

Multiplication by sparse matrix 

Multiplication by sparse matrix 

Addition 

TTTTTT TyBpAsyBpAsT =+−⇔=+− − ][][ 11
1  

( )nΟ  

( )nΟ  

( )nΟ  

( )nΟ  

 

Table 2.3 Summary of Richardson’s encoding procedure It entails two steps: A 

processing step and the actual encoding step 

Preprocessing: Input: Non-singular parity-check matrix H. Output: An equivalent 

parity-check matrix of the form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
EDC
TBA

 such that DBET +− −1  is 

non-singular. 

1. [Triangulation] Perform row and column permutations to bring the 

parity-check matrix H into the approximate lower triangular form 

                       ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

EDC
TBA

H  

   with as small a gap g as possible. 
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2. [Check] Check that DBET +− −1  is non-singular, performing further 

column permutations if necessary to ensure this property. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−− 0

0
111 DBETCAET

TBA
EDC
TBA

IET
I

 

Encoding: Input: Parity-check matrix of the form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
EDC
TBA

 such that 

DBET +− −1  is non-singular and a vector s denote the message bits has length 

)( nm − . Output: The vector ),,( 21 ppsx =  where 1p  has length g  and 2p  has 

length )( gm − , such that TTHx 0= . 

1. Determine 1p  as shown in Table 2.1. 

2. Determine 2p  as shown in Table 2.2. 

 

Quasi-cyclic code [5] 

 

    As a review of quasi-cyclic code in section 2.2, the quasi-cyclic code can be 

described by a parity-check matrix ],...,[ 21 lAAAH =  and each of a circulant matrix 

jA  is completely characterized by the polynomial 1
110 ....)( −
−+++= v

v xaxaaxa  

with coefficients from its first row. A code C with parity-check matrix H can be 

completely characterized by the polynomials )(),...,(),( 21 xaxaxa l . As for the 

encoding, if one of the circulant matrices is invertible (say lA ) the generator matrix 

for the code can be constructed in the following systematic form 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−
−

−

−

−

T
ll

T
l

T
l

lv

AA

AA
AA

IG

)(
...

)(
)(

1
1

2
1

1
1

)1(  (2.21) 

resulting in a quasi-cyclic code of length vl  and dimension )1( −lv . Encoding can 

be achieved with linear complexity using a )1( −lv -stage shift register. Regarding the 
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algebraic computation, the polynomial transpose is defined as  

 ∑
−

=

−=
1

0

,)(
n

i

in
i

T xaxa  1=nx . (2.22) 

For a binary [n, k] code, length vln =  and dimension )1( −= lvk , the k-bit message 

[ ]110 ,...,, −kiii  is described by the polynomial 1
110 ...)( −
−+++= k

k xixiixi  and the 

codeword for this message is )](),([)( xpxxixc k= , where )(xp  is given by  

 ,))()(()()(
1

1

1∑
−

=

− ∗∗=
l

j

T
jlj xaxaxixp  (2.23) 

)(xi j  is the polynomial representation of the information bits )1( −jvi  to 1−vji , where 

 1
11)1()1( ...)( −
−+−− +++= v

vjjvjvj xixiixi  (2.24) 

and polynomial multiplication )(∗  is mod 1−vx . 

    As an example, consider a rate-1/2 quasi-cyclic code with 5=v , 2=l , first 

circulant is described by xxa += 1)(1  and the second circulant is described by 

42
2 1)( xxxa ++= , which is invertible and 

 421
2 )( xxxxa ++=− . (2.25) 

The generator matrix contains a 55×  identity matrix and the 55×  matrix 

described by the polynomial 

 32
1

1
2 1)1())()(( xxxaxa TT +=+=∗− . (2.26) 

Figure 2.5 shows the example parity-check matrix and the corresponding generator 

matrix. 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11010
01101
10110
01011
10101

10001
11000
01100
00110
00011

H  

(a) A parity-check matrix with two circulants 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10100
01010
00101
10010
01001

10000
01000
00100
00010
00001

G  

(b)The corresponding generator matrix in systematic form 

Figure 2.5 Example of a rate-1/2 quasi-cyclic code. (a) Parity-check matrix with two 

circulants, where xxa += 1)(1  and 42
2 1)( xxxa ++= . (b) Corresponding generator 

matrix in systematic form. 

 

2.4 Decoding [11] 

 

    There are several decoding algorithm for LDPC codes. All of them are iterative 

decoding. Messages between variable nodes and check nodes are exchanged back and 

forth. The decoder expects that error will be corrected progressively by using this 

iterative message-passing algorithm. At present, there are three types of iterative 

decoding algorithms applied to LDPC codes in general. 

 Sum-product algorithms, also known as message passing algorithm. 

 Min-sum based algorithms. 

 Min-sum algorithms. 
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2.4.1 Decoding Procedure in One Iteration 

Now we make a description of the message passing algorithm in one iteration. 

Here is a simple example of irregular LDPC code. The parity check matrix is shown 

below.  

 

 

If the received codeword sequence is xv , then we can use TTxH 0=v  to try whether 

the received codeword sequence is a codeword, i.e., 

 

                                                                 

  (2.27) 

 

 

where “⊕ ” denotes the modulo-2 addition. 

The message passing algorithm uses Tanner graph for decoding procedure, which 

is shown below. 

 

 

 

For 1x  estimation: 

Step1: Suppose 0p  and 1p  are the priori-probability of ,2x  where 

110 =+ pp , we can use Equation 1S  )0( 21 =⊕ xx  to estimate the post-probability 

of 1x  as follows: 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

1101
0011

H
2S

1x 4x3x2x

1S

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
⇒=

0
0

1101
0011

4

3

2

1

x
x
x
x

OHx TT

1S 2S

1x 4x3x2x

nodecheck  

nodevariable  

0 : 
0 : 

4312

211

=⊕⊕
=⊕

xxxSEquation
xxSEquation

⇒
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 021 )0()0( pxPxP ====  

 121 )1()1( pxPxP ==== . (2.28) 

 

In the same way, suppose 0q  and 1q  are the priori-probability of 3x , where 

110 =+ qq  and 0r  and 1r  are the priori-probability of 4x  where 110 =+ rr , we 

can use Equation 2S that )0( 431 =⊕⊕ xxx  to estimate the post-probability of 1x , 

using the following equation: 

 
11004343

431

)1()1()0()0(
)0()0(

rqrqxPxPxPxP
xxPxP

+===+===
=⊕==

                            

 (2.29) 

 
10014343

431

)1()0()0()1(
)1()1(

rqrqxPxPxPxP
xxPxP

+===+===
=⊕==

 

 

 

 

Step2: Based on Equation 1S  and Equation 2S , we can estimate the final 

post-probability of 1x , by using: 

 '
0

'
012111 )0 and 0()0 and 0()0( qpxSPxSPxP =====∝=  

 '
1

'
112111 )1 and 0()1 and 0()1( qpxSPxSPxP =====∝=  (2.30) 

 

 

 

where 0
'
0 pp = , 1

'
1 pp = , 1100

'
0 rqrqq +=  and 1001

'
1 rqrqq += . It can be summed 

up that if a check node iS  is connected by three variable nodes ix , jx  and kx , 

and if the priori-probability of the variable nodes ix  and jx  are ),( 10 qq  and 

2x1x
),( 10 pp

1S

1x 3x 4x
),( 10 qq

2S

),( 10 rr

1x

1S 2S
),( '

1
'
0 pp

),( '
1

'
0 qq
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),( 10 rr , respectively, we can use the check Equation iS  to estimate the 

post-probability of kx  in step1 which is  

 ),(),,,( 100111001010 rqrqrqrqrrqqCHK ++= . (2.31) 

Similarly, if a variable node ix  is connected by two check nodes that are iS  and 

jS , and if the message of the iS  and jS  are collected from step1 are ),( '
1

'
0 pp  and 

),( '
1

'
0 qq , respectively, we can estimate the final post-probability of ix  as 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++
= '

1
'
1

'
0

'
0

'
1

'
1

'
1

'
1

'
0

'
0

'
0

'
0'

1
'
0

'
1

'
0 ,),,,(

qpqp
qp

qpqp
qp

qqppVAR . (2.32) 

Since the summation of the priori-probability on any variable node kx  is one, in 

other words 110 =+ pp , we can transform the priori-probability to a single-value 

function. Let λlnln),(
1

1 ==
p
p

ppL o
o , then equations (2.31) and (2.32) can be 

rewritten as 

 

 

))
2

tanh()
2

(tanh(tanh2                     

))
2

ln(cosh())
2

ln(cosh(                     

ln1ln                     

1
ln)(),(

211

2121

22

22

21

21
2121

2121

2121

21

21

LL

LLLL
ee

ee
ee
ee

LLCHKLLCHK

LLLL

LLLL

LL

LL

×=

−
−

+
=

+

+
=

+
+

=

+
+

=⊕=

−

−
−

−

++
−

λλ
λλ

 (2.33) 

 21212121 lnln)ln(),( LLLLVAR +=+== λλλλ . (2.34) 

Equations (2.33) and (2.34) are computation in Log-Likelihood Ratio (LLR) form. 

This transform can reduce the number of parameters, and equation (2.34) 

),( 21 LLVAR  only needs an addition operation rather than multiplication. 

    Furthermore, equation (2.33) can be further reformulated to different manners. 
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There are   

 
))()(()()(                          

))
2

tanh()
2

(tanh(tanh2)(

2121

211
21

LLLsignLsign

LLLLCHK

φφφ +=

×=⊕ −

 (2.35) 

where 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

1
1ln

2
tanhln)( x

x

e
exxφ  and xx =))((φφ , (2.36) 

and 

21

21

1
1ln

22
                         

))
2

ln(cosh())
2

ln(cosh()(

2121

2121
21

LL

LL

e
eLLLL

LLLL
LLCHK

−−

+−

+

+
+

−
−

+
=

−
−

+
=⊕

 

          
21

21

1
1ln),min()sign(L)sign(L 2121 LL

LL

e
eLL

−−

+−

+

+
+××=   (2.37) 

          ),min()()( 2121 LLLsignLsign ××≈ .              (2.38) 

When the check node computation is in the form of equation (2.35), we call it the 

sum-product algorithm. Similarly, when the check node computation is in the form of 

equation (2.37), we call it the min-sum based algorithm, and the fourth term 

21

21

1
1ln LL

LL

e
e

−−

+−

+
+  in equation (2.37) is called the correction factor. Last of all, when the 

check node computation is the form of equation (2.38), or in other words an 

approximate form, we call it the min-sum algorithm. 

    The above discussion of check node computation is only about a check node 

connected by two or three variable nodes. Now, we will discuss the case when the 

number of variable nodes are more than three, and then discuss the general form. 

    Consider a check node 1S  connected by four variable nodes 1x , 2x , 3x  and 

.4x  The priori-probability of variable nodes 1x , 2x  and 3x  are ),( 10 pp , 

),( 10 qq  and ),( 10 rr . We can use the check Equation ,1S  that is, 

04321 =⊕⊕⊕ xxxx  to estimate the post-probability of 4x , namely, 
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+=====⊕⊕== )0()0()0()0()0( 3213214 xPxPxPxxxPxP    

+===+=== )1()1()0()0()1()1( 321321 xPxPxPxPxPxP      

             101110011000321 )1()0()1( rqprqprqprqpxPxPxP +++====         

+=====⊕⊕== )1()1()1()1()1( 3213214 xPxPxPxxxPxP  

             +===+=== )0()1()0()0()0()1( 321321 xPxPxPxPxPxP  

             100010001111321 )1()0()0( rqprqprqprqpxPxPxP +++====  

                                                                 (2.39) 

 

 

 

 

Then, one can transform equation (2.39) to a LLR form, and obtain 

100010001111

101110011000
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⎠
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⎛

⎟
⎠
⎞

⎜
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2
tanh

2
tanhtanh2 31 Lx                       (2.40) 

where 
21

21

21

21 11ln LL

LL
x

LL

LL

ee
eee

ee
eex

+
+

=⇒
+

+
= . From equation (2.33), it can be seen that 

)( 21 LLCHKx ⊕= . Equation (2.40) can be computed in a recursive manner such that 

))(()( 321321 LLLCHKCHKLLLCHK ⊕⊕=⊕⊕ . The general form for check node 

),( 10 qq ),( 10 rr
1x 3x 4x

1S

2x
),( 10 pp
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computation can be derived as  

))...))(((...()...( 32121 ll LLLLCHKCHKCHKCHKLLLCHK ⊕⊕⊕=⊕⊕⊕ . 

                                                                 (2.41) 

Similarly, consider that a variable node 1x  connected by three check nodes 1S , 2S  

and 3S , and the message collected by 1S , 2S  and 3S  are ),( 10 pp , ),( 10 qq  and 

),( 10 rr , respectively. The final post-probabilities of the variable node 1x  are 

0001312111 )0  0()0  0()0  0()0( rqpxandSPxandSPxandSPxP =========  

1111312111 )1  0()1  0()1  0()1( rqpxandSPxandSPxandSPxP ========= . 

                                                                 (2.42) 

 

 

 

Then, one can transform equation (2.38) into a LLR form, and obtain 

 321321321321 lnlnln)ln(),,( LLLLLLVAR ++=++== λλλλλλ . (2.43) 

So equation (2.43) can also be computed in a recursive manner such that 

)),,((),,( 321321 LLLVARVARLLLVAR = , and the general form to the variable node 

computation can be derived as  

 ))...),),,((...((),...,,( 32121 ll LLLLVARVARVARVARLLLVAR = . (2.44) 

 

2.4.2 Iterative Decoding Procedure [12] 

 

The discussion in section 2.4.1 is about the decoding procedure in one iteration. 

Now, we consider the actual decoding procedure. It means that there will involve 

many iterations for a decoding process. First, let us describe some notations for the 

iterative decoding procedure in Figure 2.6. )(lM  denotes the set of check nodes that 

are connected to the variable node l , i.e., positions of “1”s in the thl  column of the 

1x

1S 2S
),( 10 pp

),( 10 qq 3S
),( 10 rr
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parity-check matrix. )(mL  denotes the set of variable nodes that participate in the 

thm  parity-check equation, i.e., the positions of “1”s in the thm  row of the 

parity-check matrix. lmL \)(  represents the set )(mL  excluding the thl  variable 

node and mlM \)(  represents the set )(lM  excluding the thm  check node. mlq ,  

denotes the  
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Figure 2.6 Notations for iterative decoding procedure 

probability message that variable node l  sends to check node m . lmr ,  denotes the 

probability message that the thm  check node gathers for the thl  variable node. The 

probability message of mlq ,  and lmr ,  are computation in LLR domain. The iterative 

decoding procedure is shown below. 

1. Initialization 

Let  

 l
ll

ll
l y

xyP
xyP

L 2

2
)1(
)0(

ln
σ

=
=

=
=  (2.45) 

be the log likelihood ratio of a variable node, where )( baP  specifies that given b is 

transmitted, the probability that the receiver received a, where 2σ  is the noise 

variance. For every position ),( lm  such that 1, =lmH , lmq ,  is initialized as 

 llm Lq =, . (2.46) 
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2. Message passing 

    Step1 (message passing from check nodes to variable nodes): Each check node 

m  gathers all the incoming message lmq , ’s, and update the message on the variable 

node l  based on the messages from all other variable nodes connected to the check 

node m . 

 )( '
'

,
\)(

, lm
lmLl

lm qr CHK ∑⊕=
∈

. (2.47) 

    Step2 (message passing from variable nodes to check nodes): Each variable node 

l  passes its probability message to all the check nodes that are connected to it. 

                                                   . (2.48) 

    Step3 (decoding): For each variable node l , messages from all the check nodes 

that are connected to the variable node l  are summed up. 

 ∑
∈

∈
+==

)(
,,)(

)),(( 
lMm

lmlllmlMml rLLrVARVARq . (2.49) 

Hard decision is made on lq , and the resulting decoded input vector x̂  is checked 

against the parity-check matrix H . If 0ˆ =TxH , the decoder stops and output x̂ . 

Otherwise it repeats steps 1-3 until it reaches the specified maximum iteration loops. 

 

2.4.3 Efficient Check Node Computation 

 

    According to equation (2.41), the check node update computation can be 

implemented in a serial configuration. Consider a particular check node m  with l  

connections from variable nodes. The incoming messages are then lmmm qqq ,2,1, ,...,, . 

The goal is to compute the outgoing messages lmmm rrr ,2,1, ,...,, . Let us define two sets 

of auxiliary binary random variables ,1,1 mqf = ,2,12 mqff ⊕=  

∑
∈∈

+==
mlMm

lmlllmmlMmlm rLLrVARVARq
\)('

,','\)(', )),(( 
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,3,23 mqff ⊕= … , ,,1 lmll qff ⊕= − and ,,lml qb =  1,1 −− ⊕= lmll qbb ,…, 

1,21 mqbb ⊕= . We can obtain )( 1fCHK , )( 2fCHK , …, )( lfCHK  and )( 1bCHK , 

)( 2bCHK , …, )( lbCHK  in a recursive manner based on the knowledge of 

lmmm qqq ,2,1, ,...,, . Using the parity-check node constraint 0)...( ,2,1, =⊕⊕⊕ lmmm qqq , 

the outgoing message from check node m  can be simply expressed as  

 
).(

),(
,1,...,3,2  ),(

1,

21,

11,

−

+−

=

=

−=⊕=

llm

m

iiim

fCHKr
bCHKr

libfCHKr
 (2.50) 

The total computational load consists of the forward recursive computation of 

)( ifCHK , the backward recursive computation of )( ibCHK , and the final pair-wise 

part in equation (2.50), which amounts to )1(3 −l  core operation of the type 

)( baCHK ⊕  per check node. Clearly, the above procedure is exactly the 

forward-backward algorithm, as shown in Figure 2.7. The serial nature of 

computations makes a latency of )(lO  units of time in computing a check node 

update. 

 

 

Figure 2.7 Serial configuration for computing check node update 

An efficient implementation for computing check node update is introduced by 
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[13]. A simple parallel configuration that enables fast check node update is described 

here. First, an auxiliary binary random variable ∑
=

⊕=
l

i
imm qS

1
, is defined. Then, mS  

can be computed using the parallel configuration shown in Figure 2.8. The 

computation at each check node in the parallel configuration is )( baCHK ⊕ . The 

latency in computing the mS  is of order ) (log lO , resulting in a speed-up factor of 

])log([ ldO c  compared to the serial configuration. Having obtained mS , the 

outgoing message 
,, imr

 li ,...,2,1= , can be computed in an efficient way. Consider  

   )()()(
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Since the term )(
,1

,∑
≠=

⊕
l

ijj
jmqCHK  in equation (2.51) is exactly equivalent to the 

outgoing message imr ,  from check node m  to all the variable nodes ,i  where 

),...,2,1( li∈ , equation (2.51) becomes 
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Then, imr ,  can be obtained by reformulating equation (2.52) as 
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Lastly, let’s define  

 mim SCHKr (, = imq , ), where li ,...,2,1= . (2.54) 

It can be seen that for each },...,2,1{ li∈ , the message imr ,  can be computed 

simultaneously by a parallel implementation of the new core computation 

mSCHK ( imq , ) as shown in Figure 2.8. Clearly, only 1−l  core computation of 

type )( baCHK ⊕  and l  core computation of type aCHK ( )b  are necessary for 

a particular check node update in this parallel configuration. 

 

 

Figure 2.8 Parallel configuration for computing check node update 

In the end of this section, we synthesize the contents discussed in sections 2.4.1, 

2.4.2 and 2.4.3, and give a summary to the sum-product algorithm, min-sum based 

algorithm and min-sum algorithm in Table 2.4, Table 2.5 and Table 2.6, respectively. 
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Table 2.4 Summary of the sum-product algorithm 

1. Initialization: 

              

 

 

2. Message passing: 

    Step1: Message passing from check nodes to variable nodes. For each ml, , 

compute 
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    Step2: Message passing from variable nodes to check nodes. For each ml, , 

compute 
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Step3: Decoding 
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Table 2.5 Summary of the min-sum based algorithm 

1. Initialization: 

              

 

 

2. Message passing: 

    Step1: Message passing from check nodes to variable nodes. First, compute  
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    Step2: Message passing from variable nodes to check nodes. For each ml, , 

compute 
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Step3: Decoding 

       

 

 

 

 

 

 

 

 

 

Table 2.6 Summary of the min-sum algorithm 

1. Initialization: 

              

                  

 

 

2. Message passing: 

    Step1: Message passing from check nodes to variable nodes. First, compute  
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    Step2: Message passing from variable nodes to check nodes. For each ml, , 

compute 
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    Step3: Decoding 
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Chapter 3 

A New Structure for Low-Density 

Parity-Check Code Using the Difference 

Family 

 

In this chapter, we will partition the discussion into two sections. In section 3.1, 

an introduction to the difference family and the construction of an irregular 

quasi-cyclic code based on this concept will be discussed. In section 3.2, we will 

propose a new structure of the low-density parity-check code, and expecting the new 

structure to bring performance improvement. 

 

3.1 The Difference Family 
 

In [5], a concept using the difference family to construct an irregular quasi-cyclic 

code with a Tanner graph free of 4-cycle was introduced. A difference family is an 

arrangement of a group of v  elements, such as vZ , into not necessarily disjoint 

subsets of equal size which meet certain difference requirements. More precisely: 

Definition 1: The t  γ -element subsets of the group vZ , tDDD ,...,, 21  with 

},...,,{ ,2,1, γiiii dddD =  form a ),,( λγv  difference family if the difference 
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vdd yixi mod)( ,, − , ) , ..., 2, ,1, ; ,...,2 ,1( yxyxti ≠== γ  give each nonzero element of 

vZ  exactly λ  times. 

For example, the subsets }5 2, ,1{1 =D , }9 3, ,1{2 =D  of 13Z  form a (13,3,1) 

difference family with differences 

             From 1D : 112 =− , 1221 =− , 415 =− ,  

                           951 =− , 325 =− , 1052 =−  
                 From 2D : 213 =− , 1131 =− , 819 =− , 
                           591 =− , 639 =− , 793 =− . 

In this work where the difference families with 1=λ  allows the design of 

codes free of 4-cycles. For an irregular quasi-cyclic code, define the column weight 

distribution of a length vl  rate )/1( ll −  code as the vector ],...,,[ 21 lwwwW = , 

where jw  is the column weight of the columns in the thj  circulant. Denote that 

maxw  is the maximum column weight of the parity-check matrix H  

 },...,,max{ 21max lwwww = . (3.1) 

To construct an irregular quasi-cyclic code with length vl  and rate )/1( ll − , so that 

its parity-check matrix )](),...,(),([ 21 xaxaxaH l=  has a weight distribution 

],...,,[ 21 lwwwW = , l  sets lDDD ,...,, 21  of a )1,,( γv  difference family with 

maxw≥γ , and )(xa j  can be defined using jw  of the elements of jD  as  

 jwjjj ddd
j xxxxa ,2,1, ...)( +++= . (3.2) 

To ensure that the code can be encoded, 1−vx  must be divisible by at least one of 

the )(xa j . 

    For a regular code, all of the elements in each set are included in each circulant, 

while for an irregular code the choice of which elements in the set to use is arbitrary.  

The row weight, ρ , of the parity-check matrix is constant, and given by  
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i
iw

1

ρ . (3.3) 

    To demonstrate that the quasi-cyclic codes are free of 4-cycles we need a well 

known result of the difference families. 

Lemma 3.1 [5]: A pair of elements from vZ  occur together exactly λ  times in the 

set of translates of every set in a ),,( λγv  difference family. 

Lemma 3.2: The codes of construction by using difference families have Tanner 

graphs free of 4-cycles. 

Proof: Follows from the choice of 1=λ . First consider the regular case. Each column 

of )](),...,(),([ 21 xaxaxaH l=  is a translate of one of the sets jD  in the difference 

family. To show that there can be no 4-cycles in H , we need to show that no two 

columns of H  can have a nonzero entry in the same two rows, which is equivalent 

to requiring that two elements of vZ  can occur together in at most one of all the 

translates of the sets in the difference family. Since two elements occur together in 

exactly λ  translates, we need only choose 1=λ  to avoid 4-cycles. The argument 

follows naturally in the irregular construction. Since only jw  of the elements in a 

given set of the difference family will be taken, removing elements from the set of 

translates will keep it free of 4-cycles. 

 

3.2 The Proposed Structure of LDPC Code 

 

According to section 3.1, we can use difference family to construct an irregular 

quasi-cyclic code free of 4-cycles. In the following section we will describe the 

construction we wish to propose for LDPC codes using these difference families. 

Below is our proposed structure of the parity-check matrix H, 
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 ⎥
⎦

⎤
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=

−

−

ll
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BBBB
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H
121

121

...
0...

. (3.4) 

where ll BBBAAA  and ,...,,,,...,, 21121 −  are all vv×  circulant matrices. The code 

length is vl  and the code rate is (
l
21− ). We can use the difference families to 

determine the polynomials of each of the circulant matrix ),(  and  )( xbxa ji  where 

}1,...,2,1{ −∈ li  and },...,2,1{ lj∈ , just as the quasi-cyclic code. In order to avoid 

any 4-cycles in the new structure of the parity-check matrix, we provide a new 

difference family to solve this problem. First, construct two )1,,( γv  difference 

families Family A and Family B and combine the two families to form a new 

difference Family C which are needed to add the following two constraints.  

Constraint 1: The differences [( yixi aa ,, − )mod v ] and [( yixi bb ,, − )mod v ], 

where yxyxli ≠=−=  ,,...,2,1, ;1,...,2,1 γ , give each element, can not be the same.  

Constraint 2: The differences [( yjxi aa ,, − )mod v ] and [( yjxi bb ,, − )mod v ], 

where , ,...,2,1, ;,1,...,2,1, γ=≠−= yxjilji  give each element, can not be the same.  

More precisely, if a parity-check matrix is 4-cycles free, it represents that no two 

columns of H can have a nonzero entry in the same two rows. Suppose the new 

circulant matrix is T
iii BAC ],[=  where },...,2,1{ li∈ . Constraint 1 is added to avoid 

the case where any two columns of iC  have a nonzero entry in the same two rows. 

Constraint 2 is added to avoid the case where a column of iC , },...,2,1{ li∈  and 

another column of jC , },...,2,1{ lj∈ , ji ≠  have a nonzero entry in the same rows. 

For example, the subsets from the difference Family A are }7,3{1 =A  and 

}6,1{2 =A , and the subsets from the difference Family B are }7,1{1 =B , }3,2{2 =B  

and }6,4{3 =B  of 13Z , which form a new (13,2,1) difference family C. The 

differences from Constraint 1: 
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         From 1A : 973 =− , 437 =−  From 1B : 771 =− , 617 =−  

         From 2A : 861 =− , 516 =−  From 2B : 1232 =− , 123 =− . 

The differences from Constraint 2: 

         From 1A  and 2A : 213 =− , 1063 =− , 617 =− , 167 =−  

         From 1B  and 2B : 1221 =− , 1131 =− , 527 =− , 437 =− . 

    Regarding the encoding for the new structure, suppose that two of the circulant 

matrices 1−lA  and lB  are invertible, we can derive two generator matrices in the 

following systematic forms 
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Let ],,[ 21 ppdc =  denote the codeword of the proposed parity-check matrix where d 

is the message bits with length )2( −lv , and 1p  and 2p  combined are the parity 

bits, each having the same length v . The encoding procedure is partitioned into two 

steps. 

Encoding Step1: We can use the generator matrix 1G  to get the parity bits 1p . That 

is  

 11 Gdp ×= . (3.7) 

Then, combine the parity bits 1p  with the message bits d to form an intermediate 

codeword c′  where ],[ 1pdc =′ .    

Encoding Step2: The last parity bits 2p  can be derived from the generator matrix 
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2G  and the intermediate codeword c′ . That is  

 22 Gcp ×′= . (3.8) 

In fact, the encoding procedure for the proposed structure is very similar to the 

quasi-cyclic code discussed in section 2.3. The parity bits 1p  can be generated with 

linear complexity by using a shift register of size )2( −lv  while encoding of the 

random codes is via matrix multiplication. For example, encoding of the Encoding 

Step1 requires 1αv  binary operations, 1α  is one less than the column weight of 1G , 

while matrix multiplication requires ]1)2(2[ −−lvv  binary operations. Similarly, the 

parity bits 2p  can also be obtained by using a shift register of size )1( −lv  that 

needs 2αv  binary operations to complete the computation, where 2α  is one less 

than the column weight of 2G . Since the encoding complexities of Encoding Step1 

and Encoding Step2 are linear functions of to the code length, so is the total encoding 

complexity of the proposed structure which can be implemented by shift register and 

some combinatory logic. 
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Chapter 4 

Simulation Results 

 

In the beginning of this chapter, we will make a comparison of error correction 

performances by using some different structures of parity-check matrices such as 

irregular quasi-cyclic code, randomly constructed code and the proposed structure 

irregular code. Then, we will make a comparison of error correction performances by 

using some different decoding algorithms such as sum-product algorithm, min-sum 

based algorithm and min-sum algorithm. In the end, we will furthermore analyze the 

finite-precision effects on the decoding performance, and decide proper finite word 

lengths of variables considering tradeoffs between the performance and the hardware 

cost. 

    Before proceed to the following simulation, some parameters should be 

described here: 

    1: The polynomials of each of the circulant matrices of the proposed LDPC code 

structure are shown in Table 3.1. Three proposed structures of irregular LDPC codes 

have been constructed. When the rate is 2/3 and code length is 720 with degree 

distribution W=[4, 4, 4, 4, 5, 3], the parity-check matrix is of the form  

 ⎥
⎦

⎤
⎢
⎣

⎡
=

1098765

98765 0
BBBBBB

AAAAA
H  (4.1) 

where 965965 ,...,,,,...,, BBBAAA  and 10B  are 120120 ×  circulant matrices. When 

the rate is 3/4 and code length is 960 with degree distribution W=[4, 4, 4, 4, 4, 4, 5, 3], 
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the parity-check matrix is of the form  

 ⎥
⎦

⎤
⎢
⎣

⎡
=

109876543

9876543 0
BBBBBBBB

AAAAAAA
H  (4.2) 

where 943943 ,...,,,,...,, BBBAAA  and 10B  are 120120 ×  circulant matrices. When 

the rate is 4/5 and code length is 1200 with degree distribution W=[4, 4, 4, 4, 4, 4, 4, 4, 

5, 3], the parity-check matrix is of the form 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

10987654321

987654321 0
BBBBBBBBBB

AAAAAAAAA
H  (4.3) 

where 921921 ,...,,,,...,, BBBAAA  and 10B  are 120120 ×  circulant matrices. 

 

Table 4.1 Polynomials of each of the circulant matrices of the proposed LDPC code 

structure 

)(1 xa  3720 xx +  )(1 xb  562 xx +  

)(2 xa  1611 xx +  )(2 xb  4633 xx +  

)(3 xa  216 xx +  )(3 xb  5335 xx +  

)(4 xa  207 xx +  )(4 xb  316 xx +  

)(5 xa  143 xx +  )(5 xb  247 xx +  

)(6 xa  1311 xx +  )(6 xb  3120 xx +  

)(7 xa  71 xx +  )(7 xb  134 xx +  

)(8 xa  3452 xxx ++  )(8 xb  73 xx +  

)(9 xa  30101 xx ++  )(9 xb  43x  

    )(10 xb  30101 xx ++  

 

2: The polynomials of each of the circulant matrices of the irregular quasi-cyclic 

codes are shown in Table 3.2. Three quasi-cyclic irregular LDPC codes have been 
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constructed. When the rate is 2/3 and code length is 720 with degree distribution 

W=[4, 5, 3], the parity-check matrix is of the form 

 [ ]543 AAAH =  (4.4) 

where 43 , AA  and 5A  are 240240×  circulant matrices. When the rate is 3/4 and 

code length is 960 with degree distribution W=[4, 4, 5, 3], the parity-check matrix is 

of the form  

 [ ]5432 AAAAH =  (4.5) 

where 432 ,, AAA  and 5A  are 240240×  circulant matrices. When a rate 4/5, code 

length is 1200 with degree distribution W=[4, 4, 4, 5, 3], the parity-check matrix is of 

the form  

 [ ]54321 AAAAAH =  (4.6) 

where 4321 ,,, AAAA  and 5A  are 240240×  circulant matrices. 

 

Table 4.2 Polynomials of each of the circulant matrices of the quasi-cyclic irregular 

LDPC codes 

)(1 xa  452131 xxx +++  

)(2 xa  10184433 xxxx +++  

)(3 xa  655751 xxxx +++  

)(4 xa  33181162 xxxxx ++++  

)(5 xa  30101 xx ++  

 

    3: The randomly constructed codes are derived from [14] and [15], and they have 

a regular column weight of four with similar parameters. This means that for a rate of 

2/3 and code length of 720 with a random structure, the column weight is four and the 

averaged row weight is twelve. Similarly, for a rate of 3/4 and code length of 960 with 
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a random structure, the column weight is four and the average row weight is sixteen. 

Finally, for a rate of 4/5 and code length of 1200 with a random structure, the column 

weight is four and the average row weight is twenty. 

    4: For the decoding algorithm, we adopt the sum-product algorithm, min-sum 

based algorithm and min-sum algorithm. The maximum iteration loops 10= . 

    5: We use the AWGN channel and BPSK modulation method as our test 

environment.  

 

 

4.1 Floating-Point Simulations 
 

Figures 4.1-4.3 show the error correction performance for different structures of 

the parity-check matrix that use the sum-product algorithm for iterative decoding. We 

can see that in Figures 4.1-4.3, using the proposed structures of the parity-check 

matrix, the decoding performance is the best, compared to the irregular quasi-cyclic 

codes and randomly constructed codes. Figures 4.4-4.6 show the error correction 

performance for different decoding algorithms such as the sum-product algorithm, the 

min-sum based algorithm and the min-sum algorithm. In the simulations and figures 

the proposed parity-check matrix structures assume some different code lengths and 

code rates. We can see that in Figures 4.4-4.6, the decoding performances are almost 

the same for the sum-product and the min-sum based algorithms combined with 

iterative decoding. As shown, the min-sum algorithm has the worst performance of all 

the compared algorithms. This is due to the fact that the min-sum algorithm in the 

check node update is an approximate form and using the approximation will cause a 

performance penalty of about 0.5dB.  
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Figure 4.1 Floating-point simulations of various parity-check matrix structures in 

AWGN channel, code length=720, code rate=2/3, maximum iteration=10, using the 

sum-product algorithm 
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Figure 4.2 Floating-point simulations of various parity-check matrix structures in 

AWGN channel, code length=960, code rate=3/4, maximum iteration=10, using the 

sum-product algorithm 
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Figure 4.3 Floating-point simulations of various structure parity-check matrix 

structures in AWGN channel, code length=1200, code rate=4/5, maximum 

iteration=10, using the sum-product algorithm 
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Figure 4.4 Floating-point simulations of the proposed parity-check matrix structure, 

under the three decoding algorithm in AWGN channel, code length=720, code 

rate=2/3, maximum iteration=10 
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Figure 4.5 Floating-point simulations of the proposed parity-check matrix structure, 

under the three decoding algorithm in AWGN channel, code length=960, code 

rate=3/4, maximum iteration=10 
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Figure 4.6 Floating-point simulations of the proposed parity-check matrix structure, 

under the three decoding algorithm in AWGN channel, code length=1200, code 

rate=4/5, maximum iteration=10 
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4.2 Fixed-Point Simulations 

 

    In this section, we furthermore analyze the finite-word-length performance of the 

proposed LDPC codes. Possible tradeoff between hardware complexity and decoding 

performance will be discussed. It is shown that the performance degradation from the 

infinite precision is negligible if 6 bits are used for the initially received signal and 6 

bits for the extrinsic messages lmr ,  and lmq , . 

 

4.2.1 Quantization of Initially Received Signal 

     

We first consider the quantization of the initially received signal. Since a 

receiving buffer is needed for storing the received signal, quantization of the initially 

received signal significantly affects the total decoder complexity. A long word length 

not only increases the hardware overhead for the buffers, but also causes a large 

amount of hardware for the iterative decoding computation, while a short word length 

may result in very poor performance. Let ]:[ ft  denote the quantization scheme in 

which a total of t  bits are used, of which f  bits are used for the fractional part of 

the value. Various quantization schemes for the initially received signal such as [5:2], 

[6:2] and [7:3] are investigated here. It should be noted that if we use the min-sum 

based algorithm for iterative decoding, the quantized initially received signal can not 

be 0, because when the quantized signal is 0, the results of the check node update 

operation will also be 0 and will thus lose the ability of error correction. So if we 

adopt the min-sum based algorithm as the iterative decoding algorithm, we will 

restrict the quantized signal to a specified minimum value when the initially received 
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signal is close to 0. That means when we use the quantization schemes such as [5:2] 

and [6:2], the minimum quantized values will be 25.0± , and when the quantization 

scheme is [7:3], the minimum quantized values will be 125.0± . Figures 4.7-4.12 

show the decoding performances of using these three different quantization schemes 

and various code lengths. It can be seen that the difference between [6:2] and [7:3] 

quantization schemes is quite small and the [5:2] is far away (by more than 0.2dB) 

from [6:2] and [7:3] schemes. Thus [6:2] scheme is the best choice. 
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Figure 4.7 Three different fixed-point simulation results of the proposed parity-check 

matrix structure, based on the sum-product decoding algorithm in AWGN channel, 

code length=720, code rate=2/3, maximum iteration=10 



 48

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10-6

10-5

10-4

10-3

10-2

10-1

SNR

B
E

R

Code rate: 2/3

[5:2]
[6:2]
[7:3]

 

Figure 4.8 Three different fixed-point simulation results of the proposed parity-check 

matrix structure, based on the min-sum based decoding algorithm in AWGN channel, 

code length=720, code rate=2/3, maximum iteration=10 
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Figure 4.9 Three different fixed-point simulation results of the proposed parity-check 

matrix structure, based on the sum-product decoding algorithm in AWGN channel, 

code length=960, code rate=3/4, maximum iteration=10 
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Figure 4.10 Three different fixed-point simulation results of the proposed parity-check 

matrix structure, based on the min-sum based decoding algorithm in AWGN channel, 

code length=960, code rate=3/4, maximum iteration=10 
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Figure 4.11 Three different fixed-point simulation results of the proposed parity-check 

matrix structure, based on the sum-product decoding algorithm in AWGN channel, 

code length=1200, code rate=4/5, maximum iteration=10 
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Figure 4.12 Three different fixed-point simulation results of the proposed parity-check 

matrix structure, based on the min-sum based decoding algorithm in AWGN channel, 

code length=1200, code rate=4/5, maximum iteration=10 

 

4.2.2 Quantization of lmr ,  and lmq ,  

    We know that the whole decoding process mainly consists of iteratively 

exchanging and updating the extrinsic messages lmr ,  and lmq , , performed by the 

check node update operations and the variable node update operations, respectively. 

Therefore, quantization of lmr ,  and lmq ,  is also critical for hardware implementation. 

Various quantization schemes for the extrinsic messages lmr ,  and lmq ,  such as [6:2] 

and [7:3] have been examined in this work. In turns out that there is almost no 

difference in the decoding performance for the [6:2] and [7:3] quantization schemes. 

Simulation results for these schemes to with various code lengths are shown in 

Figures 4.13-4.18. Thus we suggest that the [6:2] scheme to be the best choice. 
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Figure 4.13 Two different fixed-point simulation results of the proposed parity-check 

matrix structure, based on the sum-product decoding algorithm in AWGN channel, 

code length=720, code rate=2/3, maximum iteration=10 
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Figure 4.14 Two different fixed-point simulation results of the proposed parity-check 

matrix structure, based on the min-sum based decoding algorithm in AWGN channel, 

code length=720, code rate=2/3, maximum iteration=10 
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Figure 4.15 Two different fixed-point simulation results of the proposed parity-check 

matrix structure, based on the sum-product decoding algorithm in AWGN channel, 

code length=960, code rate=3/4, maximum iteration=10 
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Figure 4.16 Two different fixed-point simulation results of the proposed parity-check 

matrix structure, based on the min-sum based decoding algorithm in AWGN channel, 

code length=960, code rate=3/4, maximum iteration=10 
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Figure 4.17 Two different fixed-point simulation results of the proposed parity-check 

matrix structure, based on the sum-product decoding algorithm in AWGN channel, 

code length=1200, code rate=4/5, maximum iteration=10 
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Figure 4.18 Two different fixed-point simulation results of the proposed parity-check 

matrix structure, based on the min-sum based decoding algorithm in AWGN channel, 

code length=1200, code rate=4/5, maximum iteration=10 
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4.2.3 Summary of Fixed-Point Simulation Results 

 

    Floating-point and fixed-point simulation results are shown in Figures 4.19-4.21, 

including the bit-error-rate (BER) and signal-to-noise ratio (SNR). The quantization 

scheme [6:2] are for both the initially received signal and the extrinsic messages lmr ,  

and lmq , . It can be seen that, for cases with code lengths 720, 960 and 1200, the total 

quantization loss compared with the floating-point case is about 0.1dB when using the 

sum-product algorithm as the decoding algorithm, and the loss compared with the 

fixed-point case is about 0.2dB when using the min-sum based algorithm. 

 

 

Figure 4.19 Floating-point vs. fixed-point simulation results of the proposed 

parity-check matrix structure for the sum-product and min-sum based algorithm in 

AWGN channel, code length=720, code rate=2/3, maximum iteration=10 
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Figure 4.20 Floating-point vs. fixed-point simulation results of the proposed 

parity-check matrix structure for the sum-product and min-sum based algorithm in 

AWGN channel, code length=960, code rate=3/4, maximum iteration=10 

 

Figure 4.21 Floating-point vs. fixed-point simulation results of the proposed 

parity-check matrix structure for the sum-product and min-sum based algorithm in 

AWGN channel, code length=1200, code rate=4/5, maximum iteration=10 
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Chapter 5 

VLSI Implementation of LDPC Decoder 

 

In this chapter, we will implementation an irregular LDPC decoder of rate 3/4, 

and code length 960. The parity-check matrix of this code was discussed in the last 

chapter and is adopted as our proposed structure. 

 

5.1 Semi-parallel Decoder Architecture for the Proposed LDPC 

Codes 

 

This architecture includes two 16-input CNFUs (Check node function unit), six 

4-input VNFUs (Variable node function unit), one 3-input VNFU, one 5-input VNFU 

and 32 extrinsic message register-sets 16,1,16,2,1, ,...,,,...,, BBAAA RRRRR  with each 

register-set R  containing 120 symbols, where each symbol is represented by 6 bits. 

Figure 5.1 shows the block diagram of this decoder. The input signals are retrieved 

from L  registers and x  registers store the hard decisions of the soft outputs from 

VNFU. Consequently, the decoding process could be carried out as follows: 

1. Initialization 

Flush the received initial signals to both the L  registers and the corresponding 

extrinsic message register-sets R . The data is stored serially in the L  registers and 

the extrinsic message register-sets R .  
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Figure 5.1 Semi-parallel decoder for the proposed irregular LDPC code structure of 

rate 3/4, and code length 960 
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2 Message passing 

Step1 (message passing form check nodes to variable nodes): In each subsequent 

iteration, the update variable-to-check messages are simultaneously read from all the 

extrinsic message register-sets R  by all the CNFUs, the positions of each of the 

update variable-to-check message can be selected by a multiplexer, and the control 

signal can be controlled by a simple counter. After the CNFU computation, the 

updated check-to-variable messages are stored back to the same positions, and this 

stored back operation can be controlled by a de-multiplexer, while the control signal 

to the de-multiplexer can also be controlled by a simple counter. 

Step2 (messages passing from variable nodes to check nodes): Similarly, in the 

same iteration, the updated check-to-variable messages are simultaneously read from 

all the extrinsic message register-sets R  by all the VNFUs. After the VNFU 

computation, the updated variable-to-check messages are stored back to the extrinsic 

message register-sets R  and the hard decisions of the soft output made from each of 

the VNFU are at the same time stored in registers x . 

Step3 (decoding): At the end of each of the decoding iterations, the PCFU 

(Parity-check function unit) starts to check all the parity-check equations. The 

iterative process will be terminated when either one codeword x̂  satisfying TxH 0ˆ =  

is found, or the pre-assigned maximum number of iterations is reached. 

Step1 and Step3 of each decoding iteration are executed in overlap. In other 

words, when we are executing step3 of the thi  iteration, step1 of the 1+i -iteration 

is being computed simultaneously. Figure 5.2 shows the snap shot of the overlapped 

operations. This procedure can reduce the cycles of each decoding iteration and can 

increase the data throughput of the whole decoding procedure. 
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Figure 5.2 Illustration of overlapped decoding procedure 

     

5.2 Architectures of the Check Node Function Unit and the Variable 

Node Function Unit 
 

In this section, we will discuss the architecture of the check node function unit 

and the variable node function unit for the sum-product algorithm and the min-sum 

based algorithm respectively. After this discussion, we will conclude that using the 

sum-product algorithm is better than the min-sum based algorithm in terms of VLSI 

implementation. In the end of this section, we will select the architecture of the 

sum-product algorithm as our check node function unit and variable node function 

unit and give a summary to the whole LDPC decoder. 

    For now, let’s review the sum-product algorithm. The check-to-variable message 

lmr ,  for the check node m  and variable node l  using the incoming 

variable-to-check messages lmq ,  is computed by CNFU as follows. 

         )()(()()( ,
)( )(

,,,, lm
mLl mLl

lmlmlmlm qqqsignqsignr ∏ ∑
∈′ ∈′

′′ −×= φφφ .        (5.1) 

where )(mL  denotes the set of variable nodes connected to the check node m . The 

function ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

2
tanhln)( xxφ  can be implemented with look-up-table (LUT) 

operations. Figure 5.3 shows the curve of function )(xφ . On the other hand, the 

variable-to-check message lmq ,  for the check node m  and variable node l  using  
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Figure 5.3 Function plot of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

2
tanhln)( xxφ  

the incoming check-to-variable messages lmr ,  and received initialized signal lL  is 

computed by VNFU, 

∑
∈

∈
+==

)(
,,)(

)),(( 
lMm

lmlllmlMml rLLrVARVARq                (5.2) 

                            lmllm rqq ,, −=                          (5.3) 

where )(lM  is the set of check nodes connected to variable node l  and ll yL 2

2
σ

= . 

According to the above algorithm, the CNFU and VNFU can be implemented as 

illustrated in Figure 5.4 and Figure 5.5 respectively.  
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Figure 5.4 Architecture of check node function unit for the sum-product algorithm 

 

Figure 5.5 Architecture of a 4-input variable node function unit for the sum-product 

algorithm 
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    It is worth noting that the data format transformation block, either from 

sign-magnitude (SM) to two’s complement (2’s) format or vice versa, exists in both 

types of functional units. The major advantage of using the sign-magnitude format for 

LUT operations is that each LUT size can be reduced by half by making use of the 

symmetry properties of the )(xφ  function. As we can see in Figure 5.4 and Figure 

5.5, CNFUs are more complicated than VNFUs. Two LUT operations are involved in 

the critical path of each CNFU. [16] introduced a method to re-distribute the 

computation load between CNFUs and VNFUs. In this method, it moves one LUT 

operation to the critical path of every VNFU. The sum-product algorithm could be 

equivalently reformulated as below for CNFUs, 

)()()()( ,
)( )(

,,,, lm
mLl mLl

lmlmlmlm qqqsignqsignr ∏ ∑
∈′ ∈′

′′ −×= φφ          (5.4) 

and for VNFUs, 

)()()),(( 
)(

,,,)( ∑
∈

∈
×+==

lMm
lmlmlllmlMml rrsignLLrVARVARq φ         (5.5) 

                       )()( ,,, lmlmllm rrsignqq φ×−= .                  (5.6) 

where all the notations remain the same as before. As a result, their corresponding 

architectures are depicted in Figure 5.6 and Figure 5.7 respectively. 
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Figure 5.6 Reformulated architecture of check node function unit for the sum-product 

algorithm 

 

Figure 5.7 Reformulated architecture of a 4-input variable node function unit for the 

sum-product algorithm 
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The major benefit of the reformulated architecture is that the computation complexity 

is more equally shared amongst the CNFUs and VNFUs, resulting to a more balanced 

computation delay between the two. Besides, the dashed lines indicate possible 

positions for inserting pipeline stages and can further reduce the critical paths on both 

the CNFUs and VNFUs. Since we know that in each decoding iteration both check 

node update operation and variable node update operation have to be performed one 

after another. This leads to merely 50% hardware utilization efficiency (HUE) of the 

CNFUs and VNFUs, because all the VNFUs are idle when CNFUs are busy during 

the check node update and vice versa during the variable node update. To improve the 

HUE of CNFUs and VNFUs, [16] also introduced a re-mapped architecture that 

combines the CNFUs and VNFUs into the same hardware by making use of similarity 

between the CNFUs and VNFUs and get a smaller area design. The re-mapped 

architecture is shown in Figure 5.8. In Figure 5.8, there are a total of 32 inputs and 32 

outputs denoted as sIn  and sOut  respectively where 321 ≤≤ s . The re-mapped 

architecture performs CNFU operations when the control signal is ‘0’, thus the inputs 

are variable-to-check messages and the outputs are check-to-variable messages. On 

the other hand, when the control signal switches to ‘1’, VNFU operations are 

performed, where the inputs are check-to-variable messages and the outputs are 

variable-to-check messages. Therefore, this architecture can perform both the check 

node update operations and the variable node update operations on the same piece of 

hardware, which will always be busy during every iteration and thus increasing the 

HUE to 100%. Last of all, the dashed lines in Figure 5.8 represent the possible 

positions for inserting the pipeline stages. 
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Figure 5.8 Re-mapped architecture performing both check node update and variable 

node update operations for the sum-product algorithm 
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    Regarding architectures of CNFUs and VNFUs for the min-sum based algorithm, 

as already reviewed in the beginning, for the check node update operation, the 

)( mSCHK  is first computed where 

))...)q(CHK(q)q(CHK(qCHK(...CHK                 

)()(

m,4m,3m,2m,1

,
)(

⊕⊕⊕=

⊕= ′
∈′

lm
mLl

m qSCHK CHK
  (5.7) 

and 
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Then, for each of the check-to-variable message lmr ,  can be computed as  

mlm SCHKr (, = lmq , )      
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     (5.9) 

The functions )1ln()( xexg −+=  and 1ln)( −= xexh  can be implemented with 

look-up-table (LUT) operations. Figure 5.9 and Figure 5.10 show the curves of the 

g-function and h-function, respectively. 
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Figure 5.9 Function plot of )1ln()( xexg −+=  
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Figure 5.10 Function plot of )1ln()( −= xexh  

For the variable node update operation, each of the variable-to-check message lmq ,  

can be computed as  

∑
∈

∈
+==

)(
,,)(

)),(( 
lMm

lmlllmlMml rLLrVARVARq                (5.10) 

and 

lmllm rqq ,, −= .                         (5.11) 

The corresponding architectures of the CNFUs and VNFUs for the min-sum based 

algorithm are shown in Figure 5.11 and Figure 5.12 respectively. 
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Figure 5.11 Architecture of check node function unit for the min-sum based algorithm 

 

Figure 5.12 Architecture of a 4-input variable node function unit for the min-sum 

based algorithm 
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It should be noted that in Figure 5.11, the input range of the look-up-table for the 

h-function (LUT-h) is merely from 75.3− -to- 75.3 . The reason is that for the 

h-function where 1)( −= xexh , when x  is larger than 3.75, )(xh  equals to x  or 

xxh =)( ; and when x  is smaller than -3.75, the )(xh  will equal to 0. This 

characteristic of the h-function can be clearly seen in Figure 5.10. So we can first 

compare the values )21( inin +  and )21( inin − , where 1in  and 2in  are the inputs 

of the core operation 2(inCHK in1), to the values 3.75 and -3.75 respectively. 

Then, the compared results are used to form the control signals of a 3-to-1 multiplexer 

as shown in Figure 5.11 and determine the output signal of the 3-to-1 multiplexer. 

This shortening operation can reduce the number of entries of LUT-h to 32. Similarly, 

the dashed lines represent the possible positions for inserting the pipeline stages in 

Figure 5.11. 

    To compare the area, speed, latency, and power consumption of the architectures 

discussed in this section, we describe both architectures in VHDL, and afterwards 

simulate and synthesize it using the tools TMSynopsis  and imePowerPr . The 

process technology is UMC 0.18 mµ  process. Table 5.1 and Table 5.2 list the results 

of the reformulated and remapped architectures of CNFUs and VNFUs for the 

sum-product algorithm respectively. Table 5.3 lists the results for the architectures of 

CNFUs and VNFUs, based on the min-sum based algorithm. Furthermore, we give a 

summary on the comparisons of the different architectures in Table 5.4. It can be seen 

in Table 5.4 that the area and average power consumption of the architectures of 

CNFUs and VNFUs for the min-sum based algorithm are the worst when compared to 

the reformulated and remapped architecture of CNFUs and VNFUs on the 

sum-product algorithm. The reformulated and the remapped architecture of CNFUs 

and VNFUs for the sum-product algorithm are both tradeoffs between area and power 
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consumption. However, when comparing the reformulated architecture to the 

remapped architecture of CNFUs and VNFUs for the sum-product algorithm, the area 

of the remapped architecture is reduced by 20%; but the average power consumption 

of the remapped architecture is exceeded by 48%. We therefore select the 

reformulated architecture of CNFUs and VNFUs for the sum-product algorithm as the 

CNFUs and VNFUs in our decoder design. 

 

Table 5.1 Area, speed, latency and power consumption of the reformulated CNFUs 

and VNFUs architectures for the sum-product algorithm 

 16 input 

CNFU 

3 input  

VNFU 

4 input  

VNFU 

5 input  

VNFU 

Area 

(gate count) 

5k 1.14k 1.6k 1.77k 

Speed (MHz) 200 200 200 200 

Latency(Cycles) 2 2 2 2 

Power 

consumption 

(mW) 

9.87 3.10 3.82 4.48 

 

Table 5.2 Area, speed, latency and power consumption of the re-mapped CNFUs and 

VNFUs architectures for the sum-product algorithm 

 32 input remapped hardware performing both CNFUs and VNFUs 

operations 

Area 

(gate count) 

18k 
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Check node update operation Variable node update operation 

Speed (MHz) 200 200 

Latency(Cycles) 3 3 

Power 

consumption 

(mW) 

30.82 43.74 

 

Table 5.3 Area, speed, latency and power consumption of the CNFUs and VNFUs 

architecture for the min-sum base algorithm 

 16 input 

CNFU 

3 input  

VNFU 

4 input  

VNFU 

5 input  

VNFU 

Area 

(gate count) 

22k 0.74k 1.07k 1.61k 

Speed (MHz) 200 200 200 200 

Latency(Cycles) 5 1 1 1 

Power 

consumption 

(mW) 

23.2 2.23 3.53 4.33 

 

Table 5.4 Summary of comparison the area, speed and power consumption of the 

different CNFUs and CNFUs architectures for the sum-product algorithm and the 

min-sum based algorithm 

 Sum-product algorithm Min-sum based algorithm

 Reformulated set Remapped set Conventional set 
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Area  

(gate count) 

5k+1.14k+1.6k*6+1.77k

=22.51k 

18k 22k+0.74k+1.07k*6+1.61k

=52.77k 

Relative 

area 

100% 80% 234% 

Speed 

(MHz) 

200 200 200 

Total power 

consumption 

for check 

node update 

operation 

(mW) 

9.87*2 

=19.74 

30.82 23.2*2 

=46.4 

Total power 

consumption 

for variable 

node update 

operation 

(mW) 

3.10+3.82*6+4.48 

=30.5 

43.74 2.33+3.53*6+4.33 

=27.74 

Average 

Power 

consumption 

(mW) 

(19.74+30.5)/2 

=25.12 

(30.82+43.74)/2

=37.28 

(46.4+27.74)/2 

=37.07 

Relative 

average 

power 

100% 148% 147% 
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consumption 

 

    Having discussed the architecture of the CNFUs and VNFUs, we can further use 

the characteristics of the LDPC decoding, that is, it is inherently parallelizable and 

chooses a parallel factor of 10. That means that we can compute 20 rows 

simultaneously during the check node update operation, and 80 columns 

simultaneously during the variable node update operation as well. Now we set the 

number of the input bits of the whole decoder to 240 bits, which means that we can 

input 40 symbols in one clock cycle. Regarding a 960-symbol frame, it will take 24 

cycles to complete the input operation. The number of the output bits is 10, so it will 

take 72 cycles to output the estimated data bits x̂ . Besides, we compute 20 

parity-check equations in one cycle and it will take 12 cycles to finish all of the 

parity-check equations. Since the maximum iteration of the decoding procedure is 10 

and the parallel factor is also 10, the total amount of cycles needed to complete the 

decoding procedure is 38872122*)212(*1024 =++++  cycles.  According to 

our initial synthesis results, the clock frequency is 200MHz, thus the data decoding 

throughput is 370388/)]4/3(*960[*200 ≈ Mbps. Regarding the power consumption 

of the whole decoder, by using the technique of gated clock, the VNFUs can be turned 

off when the CNFUs are busy during check node updates and vice versa during the 

variable node updates, one can reduce the total power consumption. Last of all, we 

give a summary of the whole decoder in Table 5.5. It is obvious that using gated clock 

can reduce 28% of the power consumption when compared to the case of without 

gated clock.  
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Table 5.5 Summary of the proposed LDPC decoder 

 Proposed LDPC decoder 

without gated clock 

Proposed LDPC decoder 

with gated clock 

Area 

(gate count) 

800k 800k 

Speed 

(MHz) 

200 200 

Data throughput 

(Mbps) 

370 370 

Power consumption 

(mW) 

770 550 

Relative power 

consumption 

100% 72% 

 

    According to the proposed irregular LDPC decoder, these results can be 

compared to other designs which are list in Table 5.6. As we can see in Table 5.6, 

using the semi-parallel architecture can make a more flexible design in hardware 

implementation. 

 

Table 5.6 Comparison of LDPC decoders 

 Proposed LDPC 

decoder 

[18] [17] 

Code length 960 8088 1024 

Code rate 3/4 1/2 1/2 

Quantization bits 6 6 4 
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Architecture Semi-parallel with 

parallel factor 10

Semi-parallel with 

parallel factor 24

Fully parallel 

Process 

Technology (μm) 

0.18 0.11 0.16 

Clock rate (MHz) 200 212 64 

Power (mW) 550  690 

Area (gate count) 800k 742k 1750k 

Throughput 

(Mbps) 

370 188 500 

 

    Regarding the application of the proposed irregular LDPC decoder, it can be 

applied to the WLAN IEEE 802.11n standard. Table 5.6 shows the basic modulation 

coding scheme (MCS) set of TGnSync [19] proposal. It can be seen obviously that the 

decoder can support the data throughput requirement with all of the modulation 

method, when the transmission bandwidth is 20MHz and the code rate is 3/4. 

 
Table 5.8 Basic MCS set of TGnSync proposal 

Modulation Code Rate 

Data Rates* 20 MHz 
(Mbps) 
(1,2,3,4 spatial streams)

Data Rates* 40 MHz 
(Mbps) 
(1,2,3,4 spatial streams) 

BPSK 1/2 6, 12, 18, 24 6‡, 13.5, 27, 45.5, 54 
QPSK 1/2 12, 24, 36, 48 27, 54, 81, 108 
QPSK 3/4 18, 35, 54, 72 40.5, 81, 121.5, 162 
16 QAM 1/2 24, 48, 72, 96 54, 108, 162, 216 
16 QAM 3/4 36, 72, 108, 144 81, 162, 243, 324 
64 QAM 2/3 48, 96, 144, 192 108, 216, 324, 432 
64 QAM 3/4 54, 108, 162, 216 121.5, 243, 364.5, 486 
64 QAM 7/8 63, 126, 189, 252 141.7, 283.5, 425.2, 567 
64 QAM 7/8 with ½ GI* 70, 140, 210, 280 157.5, 315, 472.5, 630 
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Chapter 6 

Conclusion 

 

 

 From this work, we summarize that using the proposed structure of the LDPC 

codes can further improve the error correction performance when compared to the 

irregular quasi-cyclic codes. However, it is not expected that the proposed structure of 

the LDPC codes will outperform randomly constructed optimized irregular codes. The 

proposed structure of the LDPC codes has the advantage of a reduced encoding 

complexity and is suited for the VLSI implementation of the decoder.   

    Various quantization schemes for the received data and extrinsic message for the 

sum-product algorithm and the min-sum based algorithm of the irregular LDPC 

decoder were investigated and the optimal choice considering the tradeoff between the 

hardware complexity and the performance were discussed in this thesis. The overall 

fixed-point simulations show that the quantization scheme we have developed for the 

sum-product algorithm and min-sum based algorithm of the irregular LDPC decoder 

are effective in approximating the floating-point implementation and that using the 

sum-product algorithm is better than the min-sum based algorithm of the irregular 

LDPC decoder by about 0.1dB.  

With the semi-parallel architecture and a parallel factor of 10, an irregular LDPC 

decoder has been implemented, of which the code rate is 3/4, the code length is 960 

bits, and the maximum number of decoding iterations is 10, respectively. The irregular 
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LDPC decoder can achieve the data decoding throughput of up to 370Mbps and the 

area is 800k gate counts using the UMC 0.18 mµ ASIC process technology. Regarding 

the power consumption of the irregular LDPC decoder, by using the technique of 

gated clock one can reduce 28% of the total power consumption down to 550 mW.  

    The irregular LDPC decoder can support the data throughput requirement of the 

WLAN IEEE 802.11n standard when the transmission bandwidth is 20MHz and the 

code rate is 3/4. We believe that if we extend the parity-check matrix structure to code 

length 1920 and code rate 7/8, by increasing the parallel factor, we can implement a 

good LDPC decoder which can support the data throughput requirement with all of 

the different data rates. 
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