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Applying Particle Swarm Optimization to Parameter
Estimation of the Nonlinear Muskingum Model

Hone-Jay Chu1 and Liang-Cheng Chang2

Abstract: The Muskingum model is the most widely used method for flood routing in hydrologic engineering. However, the application
of the model still suffers from a lack of an efficient method for parameter estimation. Particle swarm optimization �PSO� is applied to the
parameter estimation for the nonlinear Muskingum model. PSO does not need any initial guess of each parameter and thus avoids the
subjective estimation usually found in traditional estimation methods and reduces the likelihood of finding a local optimum of the
parameter values. Simulation results indicate that the proposed scheme can improve the accuracy of the Muskingum model for flood
routing. A case study is presented to demonstrate that the proposed scheme is an alternative way to estimate the parameters of the
Muskingum model.
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Introduction

Among the many models used for flood routing, the Muskingum
method is the most widely used owing to its simplicity. The
Muskingum flood routing model was developed by the U.S. Army
Corps of Engineers for the Muskingum Conservancy District
Flood-Control Project over six decades ago. The following conti-
nuity and nonlinear storage equations are commonly used in the
Muskingum model �Gill 1978; Tung 1985; Yoon and Padmanab-
han 1993; Mohan 1997; Kim et al. 2001; Geem 2006; Al-
Humoud and Esen 2006�

dSt

dt
= It − Ot �1�

St = K�XIt + �1 − X�Ot�m �2�

where St, It, and Ot denote the instantaneous amounts of storage,
inflow, and outflow, respectively, at time t; K=storage-time con-
stant for the river reach, which has a value reasonably close to the
flow travel time through the river reach; X=a weighting factor
usually varying between 0 and 0.5 for reservoir storage, and be-
tween 0 and 0.3 for stream channels; and m=an exponent for
considering the effects of nonlinearity. However, the calibration
for finding the optimal value of the three parameters K, X, and m
can be complicated.

Over the last two decades, many optimization techniques, in-
cluding Broyden-Fletcher-Goldfarb-Shanno method, genetic algo-

1Postdoctoral Fellow, Dept. of Bioenvironmental Systems Engineer-
ing, National Taiwan Univ., Taipei, Taiwan 10617, Republic of China
�corresponding author�. E-mail: honjaychu@gmail.com

2Professor, Dept. of Civil Engineering, National Chiao Tung Univ.,
1001 Ta Hsueh Road, Hsinchu, Taiwan 30050, Republic of China.

Note. This manuscript was submitted on March 13, 2008; approved
on January 13, 2009; published online on February 18, 2009. Discussion
period open until February 1, 2010; separate discussions must be submit-
ted for individual papers. This technical note is part of the Journal of
Hydrologic Engineering, Vol. 14, No. 9, September 1, 2009. ©ASCE,

ISSN 1084-0699/2009/9-1024–1027/$25.00.

1024 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / SEPTEMBER

J. Hydrol. Eng. 2009.1
rithm �GA�, and harmony search �HS�, etc., have been applied to
identify the three parameters �Gill 1978; Tung 1985; Yoon and
Padmanabhan 1993; Mohan 1997; Kim et al. 2001; Geem 2006�.
Gill �1978� used a least-squares method �LSM� to find the values
of the three parameters in the nonlinear Muskingum model. Tung
�1985� proposed parameter estimation using the Hook-Jeeves
�HJ� pattern search in conjunction with linear regression �LR�, the
conjugate gradient �CG�, and Davidon-Fletcher-Powell �DFP�
techniques. The performance of the methods was compared with
Gill’s procedure and �HJ+CG� and �HJ+DFP� were found to
yield better solutions. Yoon and Padmanabhan �1993� discussed
several methods for estimating the parameters. The linear model
may be inappropriate when the nonlinear relationship between the
storage and discharge exists in most actual river systems. The
suggested method for the nonlinear routing model is an iterative
procedure and involves the nonlinear least-squares regression
�NONLR�. Mohan �1997� pointed out all of the foregoing meth-
ods do not guarantee the global optimal, and they may be trapped
at a local optimum. He used GA to estimate the parameters in the
model. The results showed that the estimation by GA was better
than by the previous methods and did not require the initial guess
to be close to the optimum. Kim et al. �2001� applied the HS to
the same problem. Their results showed HS estimation was better
than GA and also did not require that the initial guess were close
to the optimum.

In this study, the parameter estimation for the nonlinear Musk-
ingum model is performed using the particle swarm optimization
�PSO� technique. The results are then compared to those obtained
using the previous described techniques.

Routing Procedure of the Nonlinear Muskingum
Model

By rearranging Eq. �2�, the rate of the outflow can be expressed as

Ot = � 1

1 − X
��St

K
�1/m

− � X

1 − X
�It �3�

Combining Eq. �3� and the continuity Eq. �1�, the state equation

can be obtained as
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�St

�t
= − � 1

1 − X
��St

K
�1/m

+ � 1

1 − X
�It �4�

St+1 = St + �St �5�

Ot+1 = � 1

1 − X
��St+1

K
�1/m

− � X

1 − X
�Īt+1,

where Īt+1 = �It+1 + It�/2 �6�

The routing procedure involves the following steps �Geem 2006�:

Step 1. Assume values for the three parameters, K, X, and m.

Step 2. Calculate storage �St� using Eq. �2�, where initial out-
flow is same as initial inflow.

Step 3. Calculate the time rate of change of storage volume
using Eq. �4�.

Step 4. Estimate the next accumulated storage using Eq. �5�.

Step 5. Calculate the next outflow using Eq. �6�. Īt+1 is ex-
pressed as average inflow �It+1+ It� /2. It replaces �It+1+ It� /2 when
the ratio of storage t and t+1 is over 2.

Step 6. Repeat Steps 2–5.

PSO

PSO is a stochastic optimization technique developed by
Kennedy and Eberhart �1995�, inspired by social behavior of bird
flocking or fish schooling �Clerc and Kennedy 2002�. PSO pro-
vides a population-based search procedure in which individuals
called particles change their position with time. In the past several
years, PSO has been successfully applied including hydrological
modeling. For example, Chau �2004� used a PSO model adopted
to train perceptrons. The perceptron is a type of artificial neural
network which the inputs are fed directly to the outputs via the
weighted connections. The optimal weightings are determined by
PSO in training process. The approach is demonstrated to be fea-
sible and effective by predicting real-time water levels in the
Shing Mun River of Hong Kong with different lead times on the
basis of the upstream gauging stations or stage/time history at the
specific station. Chau �2005� also presented the application of a
split-step PSO model for training perceptrons to forecast real-time
algal bloom dynamics in Tolo Harbour of Hong Kong. In this
study, parameter estimation for the nonlinear Muskingum model
using the PSO is developed.

In a PSO system, particles fly around in a multidimensional
search space. During flight, each particle adjusts its position ac-
cording to its own experience, and according to the experience of
a neighboring particle, making use of the best position encoun-
tered by itself and its neighbor. PSO shares many similarities with
evolutionary computation techniques such as GA �Clerc and
Kennedy 2002; Boeringer and Werner 2004; Robinson and
Rahmat-Samii 2004�. The system is initialized with a population
of random solutions and searches for optima by updating genera-
tions. However, unlike GA, PSO has no evolution operators such
as crossover and mutation. The PSO algorithm can be expressed
as follows: At kth iteration, a current ith particle position in the

k
multidimensional search space which represents �Yi �. A current

JOURNAL OF

J. Hydrol. Eng. 2009.1
velocity �Vi
k� controls its fly speed and direction. The velocity

each particle updates along each dimension toward local and glo-
bal best positions in Eq. �7�, and the position update in Eq. �8�
that are given by

Vi
k+1 = Vi

k + c1r1�Pi
k − Yi

k� + c2r2�Pg
k − Yi

k� �7�

Yi
k+1 = Yi

k + Vi
k+1 �8�

where Pi=best previous position of particle �also known as pbest�;
Pg=global best position among all the particles �also known as
gbest�; c1 and c2=constants known as acceleration coefficients
which control how far a particle will move in a single iteration;
and r1 and r2=elements from two uniform random numbers in the
range �0, 1�.

Eqs. �9� and �10� update the local bests �Pi� and the global best
�Pg�

Pi = �Pi:f�Yi� � f�Pi�
Yi:f�Yi� � f�Pi�

� �9�

Pg = min�f�Pi��, i = 1,2, . . . ,M �10�

where f =the objective function and M =the total number of par-
ticles.

Application

Outflow hydrographs along with routed flows can be obtained
using the proposed nonlinear Muskingum model. To investigate
the performance of PSO, a typical problem is used as an example.
PSO for the estimating of the parameters in the nonlinear Musk-
ingum model was applied to an example which was first proposed
by Wilson �1974�. The ranges of three parameters in the nonlinear
Muskingum model are K=0.01–0.20, X=0.2–0.3, and m
=1.5–2.5. The objective function of PSO is to minimize the sum
of the squared deviations �SSQs� between the computed and ob-
served outflows

Minimize SSQ = 	
t=1

n

�Ot − Ôt�2 �11�

where Ôt denotes the computed outflow at time t. In this PSO
algorithm, a population of 100 individuals is used. The maximum
number of iterations in the program is 100. The values of the
acceleration constants �c1 and c2� are both set to 1.0.

Fig. 1 shows a comparison of the performances of the different
parameter estimation procedures. Columns 1–3 of Table 1 are the
actual data �Wilson 1974�; columns 4–9 show the routed flow
data obtained by using the Muskingum model. Column 4 uses the
LSM �Gill 1978�; Column 5 uses the HJ+DFP �Tung 1985�; Col-
umn 6 uses NONLR �Yoon and Padmanabhan 1993�; Column 7
uses GA �Mohan 1997�; Column 8 uses HS �Kim et al. 2001�;
Column 9 uses PSO programs to estimate the parameters which
are then used to determine the routed flows.

Finally, the new method �PSO� and the five conventional
methods are compared using the SSQ and sum of absolute devia-
tions �SADs� between the computed and observed outflows pre-
sented in Table 2. The results show that the SSQ is attained using
PSO. It has been demonstrated that PSO gets better results than
other methods except HS. Fig. 2 shows the sensitivity of SSQ and
SAD to the PSO parameters �c1 and c2�.These parameters range

from 0.2 to 2. The finding implies clearly that the value of SSQ is
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the minimum for the example studied when c1=1 and c2=1.
Thus, the PSO yielded good SSQ and SAD over a wide range of
c1 and c2 values.

Conclusions

The newly developed heuristic algorithm, PSO, is applied to the
parameter estimation problem of the nonlinear Muskingum
model. While possessing similar capabilities to the GA, the par-
ticle swarm model is much simpler to implement. The proposed

Table 1. Inflow and Outflow Hydrographs for the Example and the
Results of Various Parameter Estimation Methods

Time
�h�

Inflow
�cms.�

Observed
outflow
�cms.�

Computed outflow
�cms.�

LSM HJ+DFP NONLR GA HS PSO

0 22 22 22.0 22.0 22.0 22.0 22.0 22.0

6 23 21 22.0 22.0 22.6 22.0 22.0 22.0

12 35 21 22.8 22.4 23.0 22.4 22.4 22.6

18 71 26 29.6 26.7 24.2 26.3 26.6 28.1

24 103 34 39.1 34.8 33.2 34.2 34.4 32.2

30 111 44 47.6 44.7 47.1 44.2 44.1 45.0

36 109 55 58.0 56.9 56.8 56.9 56.8 57.0

42 100 66 67.1 67.7 66.2 68.2 68.1 67.5

48 86 75 74.8 76.3 75.0 77.1 77.1 75.9

54 71 82 80.4 82.2 80.7 83.2 83.3 81.2

60 59 85 83.2 84.7 83.5 85.7 85.9 85.6

66 47 84 82.8 83.5 84.3 84.2 84.5 84.2

72 39 80 80.1 79.8 79.9 80.2 80.6 79.6

78 32 73 74.5 73.3 74.3 73.3 73.7 73.3

84 28 64 67.2 65.5 65.3 65.0 65.4 65.0

90 24 54 58.1 56.5 55.9 55.8 56.0 56.2

96 22 44 48.1 47.5 45.1 46.7 46.7 46.5

102 21 36 37.6 38.7 35.4 38.0 37.8 37.3

108 20 30 28.2 31.4 28.7 30.9 30.9 29.7

114 19 25 21.9 25.9 24.3 25.7 25.3 24.3

120 19 22 19.1 22.1 20.9 22.1 21.8 20.6

126 18 19 19.0 20.2 20.4 20.2 20.0 19.6

Fig. 1. Inflow and outflow hydrographs for the example problem
computed with parameters obtained from selected estimation meth-
ods
1026 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / SEPTEMBER
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approach is compared with the other optimization methods for an
example case from the literature. PSO has the advantage that it
does not require assumption of the initial values of the model
parameters. The results demonstrate that PSO can achieve a high
degree of accuracy to estimate the three parameters and this re-
sults in accurate predictions of outflow. Consequently, the model
also shows robustness in forecasting outflow. With the PSO
method, no derivative is required, and the semibiological evolu-
tion will approach the nearly global optimum solution. PSO ap-
pears to offer good applicability in the hydrology field and further
applications should be explored.
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