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In this paper, we propose amultivariate t regressionmodel with its mean and scale covariance
modeled jointly for the analysis of longitudinal data. A modified Cholesky decomposition is
adopted to factorize the dependence structure in terms of unconstrained autoregressive and
scale innovation parameters. We present three distinct representations of the log-likelihood
function of the model and study the associated properties. A computationally efficient Fisher
scoring algorithm is developed for carrying outmaximum likelihood estimation. The technique
for the prediction of future responses in this context is also investigated. The implementation
of the proposed methodology is illustrated through two real-life examples and extensive sim-
ulation studies.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the method of joint modeling of mean and covariance on the general linear model with multivariate normal
errors, called the normal joint modeling model (NJMM) hereafter, was heuristically introduced by Pourahmadi (1999, 2000).
The key advantages of such normal-error models include the convenience in statistical interpretation and computational ease in
parameter estimation. Yet it still exists several weaknesses. For instance, the assumption of normality for the error terms may
be questionable in many practical situations when atypical points exist or the underlying data exhibit thick tails. A number of
authors in the literaturehaveused amore thick-taileddistribution, like themultivariate t distribution, in place of normal for robust
estimation of general linear models (Zellner, 1976; Lange et al., 1989; He et al., 2004). Robust estimation for linear mixed models
using the multivariate t distribution has been studied by Welsh and Richardson (1997) and Pinheiro et al. (2001), among others.

Specifically, a p-dimensional random vector Y is said to follow a multivariate t distribution with degrees of freedom (df) �,
mean vector � and scale covariance matrix R if its probability density function is

f (Y|�,R, �) =
�
(

� + p
2

)

�
( �
2

)
(��)p/2

|R|−1/2

(
1 + (Y − �)TR−1(Y − �)

�

)−(�+p)/2

.

We shall use the notation Y ∼ Tp(�,R, �) to denote that Y follows the above distribution. The multivariate t distribution has
attracted considerable attention over the past 20–30 years. It has been applied in a wide variety of research fields, see Kotz and
Nadarajah (2004) and the references therein.
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In this paper, we extend Pourahmadi's approach of joint mean–covariance parameterization to general linear models with
the error term distributed according to a multivariate t distribution, also called the t joint modeling model (TJMM), as a robust
approach to the analysis of longitudinal data.

Suppose that the repeated measurements of a continuous random variable are observed over time on each of m subjects. Let
Yi = (Yi1, . . . ,Yini )

T be the response vector for the ith subject measured at time points ti = (ti1, . . . , tini )
T, which are allowed unevenly

spaced, and let the associate covariates Xi = [xi1 . . . xip] be an ni × p full rank design matrix.
The TJMM is defined as

Yi ∼ Tni (�i,Ri, �) (i = 1, . . . ,m), (1)

where �i = (�i1, . . . ,�ini )
T = Xib is the mean response vector for subject i. Moreover, to ensure positive definiteness of Ri = [�ij],

we reparameterize it via the modified Cholesky decomposition as

LiRiL
T
i = Di, (2)

whereDi=diag{�2
1, . . . ,�

2
ni } andLi=[�jk] is a unit lower triangularmatrixwith the (j, k)th entrybeing−�jk. Obviously,R

−1
i =LTi D

−1
i Li.

The parameters �jk and �2
j in Li and Di are referred to as the autoregressive parameters and scale innovation variances of Ri,

respectively. Note that such decomposition in (2) is unique and has several nice features. For a detailed discussion on the
modified Cholesky decomposition, interested readers are referred to Pourahmadi (2001, Section 3.5).

Statistical interpretations for such reparameterization include (a) the below-diagonal entries of Li are the negatives of the
autoregressive parameters, namely −�jk, in

Ŷij = �ij +
j−1∑
k=1

�jk(Yik − �ik),

which is the linear least-squares predictor of Yij based on its predecessors; (b) the diagonal entries of Di are the scale innovation
variances �2

j = c−1
� var(Yij − Ŷij), where c� = �/(� − 2).

To make the dimension of unconstrained parameters �jk and log�2
j more parsimonious, we model them using covariates in

the spirit of Pourahmadi (1999), namely, for j = 1, . . . ,ni and k = 1, . . . , j − 1,

�jk = zTjkc, log�2
j = wT

j k, (3)

where zjk andwj are d× 1 and q× 1 covariate vectors, which can usually be determined in terms of polynomial of measurement
time tij's with degrees of d − 1 and q − 1, respectively, and c and k are d × 1 and q × 1 vectors of unknown parameters. Note that
c and k are assumed to be common for all Ri's for exhibiting the same covariance structure. In other words, Ri depends on i only
through its dimension ni × ni.

The rest of the paper is organized as follows. In the next section, we present three distinct representations of the log-
likelihood function of TJMM and describe a Fisher scoring algorithm for the implementation of ML estimation. Section 3 is
devoted to addressing the prediction issue. For illustration purposes, two real examples are presented in Section 4 and extensive
simulation results are reported in Section 5. Finally, some concluding remarks are briefly summarized in Section 6, and the
technical derivations are sketched in Appendices.

2. Computational aspects of parameter estimation

2.1. The log-likelihood function

For notational convenience, let ri =Yi −Xib={rij}nij=1, �i(b, c,k)= rTi R
−1
i ri and n=∑m

i=1 ni be the total number of observations.
Denote by a = (b, c,k, �) the population model parameters vector, where b = (	1, . . . ,	p), c = (
1, . . . , 
d), k = (�1, . . . ,�q). Given
independent observations Y= (Y1, . . . ,Ym), the log-likelihood function of a corresponding to TJMM can bewritten in three distinct
representations as follows:

�(a|Y) =
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i=1

log�
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2

)
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�
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ij
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log�
(
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TD−1
i (ri−Zic)

�

)
, (4)
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where r̂i = {r̂ij}nij=1 = {∑j−1
k=1rikz

T
jkc}

ni
j=1 is the predictor of rij based on its predecessors ri,j−1, . . . , ri,1, �ij = �−1

j (rij − r̂ij) and Zi is an
ni × d matrix defined by

Zi = [z(i, 1) · · · z(i,ni)]
T, z(i, j) =

j−1∑
k=1

rikzjk.

Following Pourahmadi (1999), it can readily be seen that Liri = ri − r̂i. Some useful properties concerning this consequence
are summarized in the following proposition:

Proposition 1. With notations �ij and �i(b, c,k) as defined in the previous paragraph, we have

(a) �ij = �−1
j (rij − r̂ij) ∼ t(�) for j = 1, . . . ,ni.

(b) n−1
i �i(b, c,k) = n−1

i

∑ni
j=1 �2

ij ∼ F(ni, �).

(c) B = (1 + �−1∑ni
j=1 �2

ij)
−1 ∼ Beta(�/2,ni/2).

The proof follows directly from the properties of the t distribution (see, e.g., Nadarajah and Kotz, 2005) and hence is omitted.

2.2. The scoring algorithm for maximum likelihood estimation

In light of (4), there is no closed-form solution available for the ML estimates and certain numerical techniques such as the
iterative Newton–Raphson or Fisher scoring algorithms are used instead in order to find optimal parameter estimates. Explicit
expressions of the score vector and the Fisher information required for the developed Fisher scoring algorithm are shown in this
subsection. Taking the first derivative of (4) with respect to a= (b, c,k, �), a (p+ d+ q+ 1)× 1 vector, leads to the score vector sa.
Expressions for the elements of sa are

sb =
m∑
i=1


iXT
i R

−1
i ri, sc =

m∑
i=1


iZT
i D

−1
i (ri − Zic),

sk = −1
2

m∑
i=1

ni∑
j=1

wj +
1
2

m∑
i=1

⎛
⎝
i

ni∑
j=1

�2
ijwj

⎞
⎠ ,

s� = 1
2

m∑
i=1

{
�
(

� + ni
2

)
− �

( �
2

)
− ni

�
− log

(
1 + �i(b,k, c)

�

)
+ 
i

�
�i(b,k, c)

}
, (5)

where


i =
� + ni

� + �i(b,k, c)
(6)

and �(x) = (d/dx) log�(x) is the digamma function.
Computation of the Hessian matrix Haa, obtained by the second derivative of (4) with respect to a, is given in Appendix A. To

obtain the elements of the Fisher information matrix

Iaa = −E(Haa) = −E

(
�2

�(a|Y)
�a�aT

)
, (7)

we summarize the necessary formulae for calculating the expectations of (A.1)–(A.10), the elements of Hessian matrix, in the
following proposition.

Proposition 2. For the multivariate t model (1) with reparameterization (3), the following holds:

(a) E
(

1
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)
= 1

� + ni
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i
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(f) E(
iZT
i D

−1
i Zi) =

ni∑
j=1

�−2
j jjRij

T
j , (g) E(
iz(i, j)rij) =

j−1∑
k=1

�kjzjk,

(h) E(
iZT
i D

−1
i Wi) =

ni∑
j=1

�−2
j

⎛
⎝ j−1∑

k=1

�kjzjkw
T
j − jjRij

TcwT
j

⎞
⎠ ,

where jj = [zj1 · · · zj,j−1 0 · · · 0] is a d × ni matrix and

Wi = [w1(ri1 − cTz(i, 1)) · · · wni (rini − cTz(i,ni))]T. (8)

The detailed proof is sketched in Appendix B. Applying Proposition 2, the exact expressions for the elements of (7) are
given by

Ibb =
m∑
i=1

� + ni
� + ni + 2

XT
i R

−1
i Xi, Ibc = 0p×d, Ibk = 0p×q, Ib� = 0p×1,

Icc =
m∑
i=1

� + ni
� + ni + 2

⎧⎨
⎩

ni∑
j=1

�−2
j

⎛
⎝ j−1∑
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j−1∑
�=1

�k�zjkz
T
j�

⎞
⎠
⎫⎬
⎭ ,
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� + ni + 2

⎧⎨
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{
�
( �
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)
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(
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− 2ni(� + ni + 4)

�(� + ni)(� + ni + 2)
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,

where �(x) = (d2/dx2) log�(x) stands for the trigamma function.
Let h= (c,k, �) denote the set of parameters excluding regression coefficients b, so that a= (b,h). Owing to the fact that Ibh=0,

the Fisher information matrix (7) has a block-diagonal form

Iaa =
[
Ibb 0

0 Ihh

]
where Ihh =

⎡
⎢⎢⎣
Icc Ick 0

IT
ck

Ikk Ik�

0 IT
k� I��

⎤
⎥⎥⎦ . (9)

Furthermore, with regard to Ic� = 0, this implies the ML estimates of c and � are asymptotically uncorrelated.
Thus one can proceed the scoring method to calculate the ML estimates of parameters through the following steps:
Step 1: Choose a starting value â(0) = (b̂(0), ĉ(0), k̂(0), �̂(0)) and form the scale covariance matrix R̂(0)

i = [�̂(0)
ij ] using the modified

Cholesky decomposition for i = 1, . . . ,m.
Step 2: With the current estimates b̂(h) and ĥ(h) = (ĉ(h), k̂(h), �̂(h))at the hth iteration, update the value ĥ(h) using the scoring

procedure

ĥ
(h+1) = ĥ(h) + Î(h)−1

hh
ŝ(h)
h

,

where ŝ(h)
h

= (ŝ(h)c , ŝ(h)
k

, ŝ(h)� ) and Î(h)
hh

are sc, sk and s� in (5) and Ihh in (9) evaluated at â(h) = (b̂(h), ĥ(h)). The scale covariance matrix
can be computed by

R̂
(h+1)−1
i = Li(ĉ

(h+1))TD−1
i (k̂

(h+1)
)Li(ĉ

(h+1)).
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Step 3: The value of b̂
(h+1)

can be obtained by a generalized-least-squares step as

b̂
(h+1) =

⎛
⎝ m∑

i=1


̂(h+1)
i XT

i R̂
(h+1)−1
i Xi

⎞
⎠

−1⎛
⎝ m∑

i=1


̂(h+1)
i XT

i R̂
(h+1)−1
i Yi

⎞
⎠ ,

where 
̂(h+1)
i is 
i in (6) with b, c, k and � replaced by b̂

(h)
, ĉ(h+1), k̂

(h+1)
and �̂(h+1), respectively.

Iterative optimization algorithm such as the scoring method must select good starting values â(0). For the starting values of
b, c and k, a convenient choice is to use the ML estimates obtained by fitting the unbalanced joint mean–covariance normal
regression model as described in Pan and MacKenzie (2003). As for �, it is general to use a relative large starting value, say
�̂(0) = 50, which corresponds to an initial assumption of near-normality for the error terms. The iterations are repeated until a
suitable convergence rule is satisfied, e.g., ‖â(h+1) − â(h)‖/‖â(h)‖is smaller than the specified tolerance.

After convergence of successive iterations, the converged solutions are the ML estimates, denoted by â = (b̂, k̂, ĉ, �̂). Under
suitable regularity conditions (Zacks, 1971), the ML estimator â is asymptotically normally distributed. Because of Ibh = 0 and

Ic� = 0, it follows immediately that b̂ and ĥ = (ĉ, k̂, �̂) as well as ĉ and �̂ are asymptotically independent. In other words, the
asymptotic confidence regions and hypothesis tests for the regression coefficients b as well as the variance components h can be
obtained by assuming that the ML estimators b̂ and ĥ have approximate Np(b,Vb) and Nd+q+1(h,Vh) distributions, respectively.
In practice, the asymptotic covariance matrix Vb and Vh are unknown and they can be empirically estimated by substituting ML
estimates into I−1

bb
and I−1

hh
, respectively.

3. Prediction

In this sectionwe are interested in deriving the computing formulae for predicting the future values ofYi, say the ith individual,
which is one of them individuals under consideration. Let ỹi be a future g×1 vector of measurements of Yi. We further assume Yi
and ỹi jointly follows an (ni +g)-variate t distribution. Let x̃i be a g×pmatrix of prediction regressors corresponding to ỹi. That is,
E(ỹi)= x̃ib. Let z̃jk and w̃j, respectively, denote a d×1 and a q×1 vector such that�jk = z̃Tjkc, and log�2

j =w̃T
j k for j=ni +1, . . . ,ni +g

and k = 1, . . . , j − 1.
In the above setting, we then have[

Yi
ỹi

]
∼ Tni+g(X∗

i b,R
∗
i , �)

with X∗
i = (XT

i , x̃
T
i )

T andR∗−1
i =L∗T

i D∗−1
i L∗

i , where L∗
i is an (ni +g)× (ni +g) lower triangular matrix with −�jk at the (j, k)th position,

k< j, j = 1, . . . ,ni + g, and D∗
i is a diagonal matrix with �2

j as its diagonal entry, i.e.,

L∗
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−zT21c 1 0

...
...

. . .
−zTni ,1c . . . −zTni ni−1c 1

−z̃Tni+1,1c
. . . . . . −z̃Tni+1,ni

c 1
...

. . . . . . . . .
. . .

. . .

−z̃Tni+g,1c
... . . . . . . −z̃Tni+g,ni+g−1c1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

D∗
i = diag{wT

1k, . . . ,w
T
nik, w̃

T
ni+1k, . . . , w̃

T
ni+gk}.

Let R∗
i be partitioned conformably with the dimension of Y∗

i = (YT
i , ỹ

T
i )

T. Therefore, we have

R∗
i =

[
R11 R12
R21 R22

]
. (10)

Here we suppress the subscript i of the partitionedmatrices in (10) for notational convenience. Note thatR11 =Ri andR21 =RT
12.

Making use of the conditional property concerning the multivariate t distribution, we have

ỹi|Yi,a ∼ Tg

(
�2·1,

� + �i(b, c,k)
� + ni

R22·1, � + ni

)
, (11)

where �2·1 = E(yi|Yi,a) and R22·1 =R22 −R21R
−1
11R12.
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From (11), the minimummean-squared error (MSE) predictor of ỹ is

ˆ̃yi(a) = �2·1 = x̃ib+R21R
−1
11 (Yi − Xib). (12)

Consequently, the MSE covariance matrix for the predictor (12) is determined by

E( ˆ̃yi(a) − ỹi)( ˆ̃yi(a) − ỹi)
T = E(cov(ỹi|Yi))

= E
(

� + �i(b, c,k)
� + ni − 2

R22·1
)

= �
� − 2

R22·1. (13)

Typically, the predicted value of ỹi can be treated by substituting the ML estimate â into (12), leading to ˆ̃y = ˆ̃y(â). Meanwhile,
it should be noted that the variance estimate of (13) does not account for errors due to estimation of unknown a and hence it
will underestimate the actual variance for smaller sample sizes.

4. Numerical illustrations

4.1. The tumor growth data

We apply the results developed in Sections 2 and 3 to the in vivo growth of lung tumor for the control group of 22 xenografted
nudemice, which is originally reported by Ryggard and Spang-Thomsen (1997) and subsequently analyzed by Demidenko (2004,
Chapter 10). This longitudinal study is to investigate the tumor growth rates for the immune-deficient nude mice with human
tumor xenografts implanted after 14 days, defined as the baseline (day 0).

Fig. 1 depicts the logarithm of tumor growth volumes over an unequally spaced 28-day period for the 22 mice together with
the associated sample regressograms for the generalized autoregressive parameters and sample innovation variances. The profile
plot in Fig. 1(a) reveals that the mean level exhibits a linear growth trend over time. The design matrix for the mean response for
the 22 mice takes the form

Xi = [1 k], 1 = (1, 1, . . . , 1)T, k = (0, 1, 2.5, 3.5, 4.5, 6, 7, 8, 10, 11.5, 13, 14)T, i = 1, . . . , 22.
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Fig. 1. (a) Trajectories of tumor growths for 22 xenografted nude mice; (b) sample generalized autoregressive parameters; (c) sample log-innovation variances.
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Table 1
Comparison of �̂max, number of parameters, and BIC values for some Poly(d, q) choices of NJMM and TJMM.

(d, q) �max Number of parameters BIC

NJMM TJMM NJMM TJMM NJMM TJMM

(2,5) −25.1867 −15.9188 11 12 3.8352 3.1332
(2,6) −24.7836 −15.1324 12 13 3.9391 3.2022
(3,3) −23.0706 −13.3374 10 11 3.5023 2.7580
(3,4) −23.0593 −13.3187 11 12 3.6418 2.8968
(3,5)b −8.9331 −1.3094 12 13 2.4981 1.9456
(3,6) −8.9254 −1.3092 13 14 2.6379 2.0860
(4,3) −22.9333 −12.9712 11 12 3.6304 2.8652
(4,4) −22.9260 −12.9443 12 13 3.7702 3.0033
(4,5)a −6.0243 1.7060 13 14 2.3742 1.8119
(4,6) −6.0180 1.7060 14 15 2.5141 1.9524
(5,3) −22.9331 −12.9345 12 13 3.7709 3.0024
(5,4) −22.9257 −12.9066 13 14 3.9107 3.1404
(5,5) −6.0200 1.7065 14 15 2.5143 1.9524
(5,6) −6.0102 1.7065 15 16 2.6539 2.0929

aPoly(4,5) is the best model.
bPoly(3,5) is the second-best model.

Table 2
Parameter estimates for the best two Poly(d, q) choices of NJMM and TJMM.

Poly(4,5) Poly(3,5)

NJMM TJMM NJMM TJMM

MLE SE MLE SE MLE SE MLE SE

	̂0 5.2960 0.1071 5.3535 0.1062 5.2575 0.0944 5.3145 0.0917
	̂1 0.1628 0.0071 0.1617 0.0066 0.1628 0.0073 0.1615 0.0067


̂0 1.5646 0.1626 1.5787 0.1720 1.1649 0.0827 1.1745 0.0882

̂1 −1.0816 0.1806 −1.0928 0.1899 −0.6121 0.0637 −0.6170 0.0678

̂2 0.2555 0.0594 0.2587 0.0622 0.0970 0.0127 0.0975 0.0135

̂3 −0.0248 0.0075 −0.0253 0.0078 −0.0047 0.0007 −0.0047 0.0008

̂4 0.0009 0.0003 0.0009 0.0003 – – – –

�̂0 6.8278 1.3174 6.0870 1.3882 6.1052 1.3174 5.3054 1.3880
�̂1 −11.3551 1.7462 −10.5501 1.8328 −10.2234 1.7462 −9.3982 1.8326
�̂2 4.7445 0.7534 4.4029 0.7908 4.2148 0.7534 3.8697 0.7907
�̂3 −0.8808 0.1402 −0.8241 0.1472 −0.7779 0.1402 −0.7199 0.1471
�̂4 0.0737 0.0117 0.0695 0.0123 0.0649 0.0117 0.0606 0.0123
�̂5 −0.0023 0.0004 −0.0022 0.0004 −0.0020 0.0004 −0.0019 0.0004

�̂ – – 7.6832 3.4450 – – 7.7313 3.4756

Furthermore, Figs. 1(b) and (c) suggest both �jk's and log�2
j 's could be well suited to polynomial functions in lags of degree

greater than or equal to three. As in Pourahmadi (2000),we use the Poly(d, q) as a shorthand for imposing twodistinct polynomials
of lagged times j−k and jwith degrees d and q for�jk and log�2

j , respectively. Specifically, the covariates zjk andwj are chosen as

zjk = (1, (j − k), (j − k)2, . . . , (j − k)d)T,

wj = (1, j, j2, . . . , jq)T, j = 1 . . . , 12; k = 1, . . . , j − 1.

To identify the optimal degrees of (d, q), we use the BIC-based model selection criterion. The best pair is said to be (d∗, q∗) =
argmin(d,q) {BIC(d, q)} with d and q lying within the range 0 to n∗, where n∗ = max1� i�m ni,

BIC(d, q) = − 2
m

�̂max(d, q) + p + d + q + 3
m

log(m),

and �̂max(d, q) is the maximized log-likelihood with respect to Poly(d, q).
For comparison purposes, we fit the tumor data by using NJMM and TJMM under various possible choices of Poly(d, q). A

stopping criterion used for the scoring algorithm was performed to terminate iterations when ‖â(h+1) − â(h)‖/‖â(h)‖<10−8 has
met. The values of �max, together with the corresponding number of parameters and BIC values for selected pairs (d, q) with better
fittings are listed in Table 1. Judging from the BIC values, Poly(4, 5) and Poly(3, 5) are the best two choices for both NJMM and
TJMM. Table 2 shows the ML estimates and the associated standard errors for the best two fitting NJMM and TJMM. As seen in
the table, it is noteworthy that the estimates of the df for the two fitted TJMM are somewhat small, reflecting the presence of
longer-than-normal errors.
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Fig. 2. Healy plot when either (a) an NJMM-Poly(4,5) model or (b) a TJMM-Poly(4,5) model is fitted to the tumor growth data.

We consider diagnostics to assess the validity of the underlying assumptions for the error term. For NJMM, a formal measure
for judging the joint normality of residuals is the Mahalanobis-like distance �i(b̂, ĉ, k̂), which has an asymptotic chi-square
distributionwith ni df. Checking the normality can be achieved by constructing Healy's (1968) plot (or the chi-square plot), which
is a well-known diagnostic tool widely used in the context of multivariate normal theory.

As for TJMM, it is known from Proposition 1(b) that n−1
i �i(b̂, ĉ, k̂) follows the F distribution with ni and � df. To assess the

fitness of TJMM, one can construct another Healy-type plot (or the Snedecor-F plot) by plotting the ordered F statistics against
the quantiles of F(ni, �) distribution for nominal values (i − 0.5)/m, i = 1, . . . ,m. To compare NJMM and TJMM fits with graphical
diagnostics, one can examine whether the corresponding Healy's plot resembles a straight line through the origin having unit
slope. In other words, the scatter curve with serious departure from the 45◦ line indicates a poor fitting of the model.

Fig. 2 displays Healy's plots for Poly(4,5) of NJMM and TJMM. A comparison of these two plots indicates the tmodel tracks the
identity line more closely than the normal counterpart, revealing a substantial improvement provided by the use of multivariate
t distribution. Note that Healy's plots for Poly(3,5) of NJMM and TJMM are similar and thus are not shown in the present paper.

One essential characteristic of longitudinal data is that measurements within each experimental unit are collected repeatedly
over time, so they typically exhibit serial correlations. Therefore, the predictive accuracy of future observations (Rao, 1987) can
be treated as an alternative measure of fitness of the data. Now, we are interested in comparing the predictive performance of
the proposed TJMMwith that of t linear mixed models (TLMM), a generalization of Laird andWare's (1982) linear mixed models
with the random effects and within-subject errors distributed as a multivariate t distribution. We conduct a preliminary analysis
to select appropriate TLMM for the tumor growth curve data. Results suggest that TLMM with random intercepts and slopes
plus AR(1) dependence (�̂ = 9.06, BIC = 2.84), denoted by TLMM-RIS-AR(1), is the most preferred choice among some selected
normal/tmixedmodels. The prediction approach for TLMMwith autoregressive dependencewas described in Lin and Lee (2006).

For ease of comparison, we use the pseudo-cross-validation approach to assess the relative predictive performance of TJMM-
Poly(4,5) and TLMM-RIS-AR(1). This approach of comparing forecasts with the corresponding actual values is in spirit to holdout
cross-validation of Stone (1974) and predictive sample reuse of Geisser (1975). The technique proceeds as follows: (i) holdout the
last q measurements on the ith participant; (ii) compute ML estimates using the remaining data as the sample; (iii) prediction
of the q true measurements yi = (yi,12−q+1, . . . , yi,12)

T, denoted by ˆ̃yi = ( ˆ̃yi,12−q+1, . . . , ˆ̃yi,12)T, is made by using formula (12). The
procedure is repeated acrossm subjects.

As a measure of predictive accuracies we consider the empirical mean squared forecast error (MSFE), defined as

MSFE = 1
mq

m∑
i=1

( ˆ̃yi − yi)
T( ˆ̃yi − yi).

The prediction results for the first six step-ahead forecasts are shown in Table 3. It appears that the predictive performance of
the TJMM predictor is substantially better than that of TLMM with relative improvement percentages (RIPs) ranging from 12.3%
to 24.2%.

4.2. The orthodontic growth data

This example, originally analyzed by Potthoff and Roy (1964), studied the dental growth of distances (in millimeters) from
the center of the pituitary to the pterygomaxillary fissure measured repeatedly at 8, 10, 12, and 14 years for 11 girls and 16 boys.
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Table 3
Comparison of predictive accuracies in terms of MSFE for two robust t models.

Model q step-ahead forecasts

q = 1 q = 2 q = 3 q = 4 q = 5 q = 6

TLMM 0.0372 0.1181 0.1021 0.1213 0.1158 0.1112
TJMM 0.0313 0.0971 0.0774 0.0991 0.0982 0.0975
RIP (%) 16.1 17.8 24.2 18.3 15.2 12.3

RIP means the relative improvement percentage (rate of MSFE improvement) of the TJMM predictor over the TLMM predictor.

Table 4
Parameter estimates of the Poly(1,1) model for the orthodontic growth data.

Parameter NJMM TJMM

MLE SE MLE SE

	̂0 16.0707 0.9829 16.5863 0.6851
�̂0 1.3198 1.5398 0.9819 0.9689
	̂1 0.8122 0.0839 0.7713 0.0601
�̂1 −0.3341 0.1314 −0.2999 0.0850

̂0 0.7337 0.1653 1.0051 0.1243

̂1 −0.2188 0.0890 −0.3551 0.0679
�̂0 1.8898 0.3333 1.5295 0.2853
�̂1 −0.3145 0.1217 −0.3612 0.0947
�̂ – – 5.5165 2.0384

�̂max −212.8414 −205.4788
BIC 16.7426 16.3193

Pinheiro et al. (2001) applied TLMM to this data set and investigated the robustness of the t distribution via simulations. As in
the preceding subsection, we compare the ML results under NJMM and TJMM for this example. Similar to Pinheiro et al. (2001),
we also illustrate the robustness of the proposed model by using a single contamination on this data set to see the influence for
the estimated parameters.

Assuming a linear growth function for describing the mean response, we have

�ij = 	0 + �0Ii(F) + (	1 + �1Ii(F))ti, i = 1, . . . , 27, j = 1, . . . , 4,

where �ij = E(Yij) is the mean orthodontic distance for the ith subject at age tj; 	0 and 	1 denote the intercept and the slope for
boys, respectively; �0 and �1 denote the difference in intercept and slope between girls and boys, respectively, and Ii(F) is an
indicator variable for the female.

Since there are only four measurements for each boy and each girl, we assume a parsimonious Poly(1,1) model for describing
the dependence structure. The corresponding ML estimates along with standard errors, �̂max and BIC under the normal and t
settings are shown in Table 4. In the table, there is strong evidence that the residuals exhibit a leptokurtic distribution (�̂ = 5.52).
Furthermore, the t model has a smaller BIC value and all the standard errors of parameter estimates under the t model are much
smaller than the corresponding normal model. From the above studies, it definitely indicates that the fitting results of TJMM are
significantly superior to those obtained by using the NJMM in this example.

To further see the robustness of TJMM estimates against perturbation, it can be done by (a) adding a contaminated value �
to a single observation yij, denoted by yij(�) = yij + �; (b) re-estimating the parameters twice under the Poly(1,1) assumption of
NJMM and TJMM; (c) computing the relative change in the estimates, i.e., �̂(�)/�̂−1. Here �̂ denotes one of the original estimates
in Table 4 and �̂(�) the corresponding estimate for the contaminated data. In the orthodontic growth example, we illustrate
such procedure by adding a contaminated value to the last observation (age = 14 years) of the first girl with various � between
−20 and 20mm by increments of 2mm. Fig. 3 displays the percentage changes in ML estimates under both models for different
contaminations �. It is readily seen that the parameter estimates made by NJMM are highly affected by a single outlier, whereas
the influence for TJMM is limited in a short range. This suggests TJMM provides a favorable way for achieving robust statistical
inference.

5. Simulation studies

We first undertook a simulation study to examine the performance and flexibility of the proposed TJMM approach. The two
main objectives of the study are: (1)when data are simulated fromnormal distribution,whether the proposedmodelwill be over-
fitted? (2) when data are simulated from the t distribution, how bad can the normal models behave? For the sake of convenience,
the true parameters are chosen tomimic the tumor data fittedwith TJMM-Poly(3,3), except that the df is specified at two different
settings. The ML estimates of parameters, treated as true parameters, are b̂ = (5.27, 0.16)T, ĉ = (1.12,−0.58, 0.09,−0.0043)T and
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Fig. 3. Percentage of change in the ML estimates under the normal and t joint modeling models with varying contamination � of a single measurement.

k̂ = (−0.4,−1.37, 0.18,−0.007)T. For the values of df's used in the study, we take a low value (� = 4) for yielding a heavy-tailed
distribution and a high value (� = 50) for approaching to normality. Note that the simulated longitudinal data are `unbalanced'
in the sense of unevenly spaced measurement times, although each subject has the same number of observations. We also note
that if the df is set too high, say far more than 50, the estimate of df is hardly to converge and tends to infinity.

To examine the finite sample properties, the evaluated sample size ranges from small (m = 25) to relatively large (m = 100).
Simulations were run with a total of 500 replications for each combination of � and m and each simulated data set was fitted
under TJMM and NJMM scenarios. The detailed numerical results, including the average ML estimates for the fixed effects
(	0,	1), the autoregressive parameters (
0, 
1, 
2, 
3) and the scale innovation variances (�0,�1,�2,�3), the average of maximized
log-likelihood values �max, the average of associated BIC values and the median estimates for the df, together with their standard
errors in parentheses, are summarized in Table 5. Following Taylor and Verbyla (2004), due to the strong skewness of their Monte
Carlo ML estimates, the median value was chosen as an appropriate estimator for � in the table.

When the data are generated near normality (� = 50), both models produce similar estimates and standard errors, although
the TJMM is slightly over-fitted because of large standard errors of �'s and slightly smaller BIC. Overall, we may say both models
are equally better. When the data are generated from the t distribution with heavy tails (� = 4), the TJMM leads to significantly
smaller biases and standard errors as well as the BIC than those made by NJMM, reflecting its superiority for outlier resistance.
Table 5 also suggests the bias and standard errors can be decreased as the sample size increases, confirming the consistence of
estimators.

With the same data sets generated from the setting � = 4, we conduct a second simulation study to compare the modeling
adequacy and prediction ability between TJMM and TLMM. The primary goal of this study is to investigate how much the TLMM
will miss if the scale covariance depends on covariates, i.e., Ri has a non-stationary dependence structure. Table 6 displays the
comparisons of average MSFEs for the first six step-ahead forecasts and the associated BIC values based on the 500 generated
samples and each of the sample sizes m = 25, 100. As anticipated, the numerical results indicate the TJMM produces substantial
gains in prediction accuracy as well as modeling adequacy.

6. Concluding remarks

We present a robust approach to the analysis of longitudinal data with the mean and the scale covariance modeled jointly
in a framework of multivariate t errors. In particular, the reparameterization scheme in (2) suggests a flexible way of modeling
the variance components as a function of covariates, making the model to be more parsimonious than the arbitrary covariance
structure. We develop an explicit procedure for ML estimation based on the scoring method, which can be easily performed
by practitioners. Numerical results illustrated in Section 4 indicate that the proposed TJMM is suitable for these two real-life
applications and yields better performance on the prediction of future values. The simulation results suggest the proposed TJMM
is a promising technique for longitudinal data with nonstationary dependence structure. As a note in passing, the situation in



T.-I. Lin, Y.-J. Wang / Journal of Statistical Planning and Inference 139 (2009) 3013 -- 3026 3023

Table 5
Simulation results: average estimates for b, c,k, �max and BIC and median estimates for � based on 500 replications. Values within parentheses are empirical
standard errors.

Parameter True value m = 25 m = 100

� = 4 � = 50 � = 4 � = 50

TJMM NJMM TJMM NJMM TJMM NJMM TJMM NJMM

	0 5.27 5.2701 5.2732 5.2802 5.2721 5.2700 5.2674 5.2720 5.2696
(0.0841) (0.1786) (0.0788) (0.0892) (0.0497) (0.0841) (0.0372) (0.0375)

	1 0.16 0.1601 0.1602 0.1598 0.1599 0.1601 0.1601 0.1600 0.1599
(0.0070) (0.0089) (0.0065) (0.0071) (0.0035) (0.0044) (0.0033) (0.0033)


0 1.12 1.0984 1.0820 1.1038 1.0956 1.1141 1.1067 1.1184 1.1154
(0.1134) (0.1566) (0.1049) (0.1095) (0.0543) (0.0851) (0.0483) (0.0517)


1 −0.58 −0.5649 −0.5540 −0.5705 −0.5640 −0.5760 −0.5702 −0.5797 −0.5766
(0.0887) (0.1227) (0.0832) (0.0852) (0.0423) (0.0665) (0.0377) (0.0401)


2 0.09 0.0872 0.0852 0.0884 0.0872 0.0892 0.0881 0.0901 0.0894
(0.0181) (0.0250) (0.0171) (0.0173) (0.0086) (0.0135) (0.0077) (0.0081)


3 −0.0043 −0.0042 −0.0040 −0.0042 −0.0042 −0.0043 −0.0042 −0.0043 −0.0043
(0.0011) (0.0015) (0.0010) (0.0010) (0.0005) (0.0008) (0.0005) (0.0005)

�0 −0.4 −0.4175 0.1527 −0.3997 −0.3981 −0.4032 −0.2801 −0.4024 −0.3801
(0.5387) (0.7327) (0.4802) (0.4516) (0.2501) (0.4531) (0.2332) (0.2285)

�1 −1.37 −1.3636 −1.3525 −1.4005 −1.3776 −1.3666 −1.3741 −1.3713 −1.3643
(0.3400) (0.4620) (0.3101) (0.3069) (0.1505) (0.2427) (0.1487) (0.1443)

�2 0.18 0.1797 0.1786 0.1858 0.1831 0.1800 0.1809 0.1805 0.1796
(0.0598) (0.0814) (0.0546) (0.0553) (0.0262) (0.0418) (0.0261) (0.0255)

�3 −0.007 −0.0071 −0.0072 −0.0073 −0.0072 −0.0070 −0.0071 −0.0070 −0.0070
(0.0030) (0.0041) (0.0028) (0.0028) (0.0013) (0.0021) (0.0013) (0.0013)

� 4.31 – 39.52 – 4.09 – 49.62 –
(2.25) – (45.33) – (0.77) – (38.38) –

�max −14.27 −45.78 39.13 39.87 −73.93 −237.84 138.29 141.18
(28.56) (41.73) (14.17) (14.32) (58.27) (117.55) (26.60) (27.85)

BIC 2.56 4.95 −1.71 −2.39 1.98 5.22 −2.26 −2.62
(2.28) (3.34) (1.15) (1.13) (1.16) (2.35) (0.53) (0.56)

Table 6
Comparison of predictive accuracies in terms of MSFE and the BIC values for two robust t models.

m Model q step-ahead forecasts BIC

q = 1 q = 2 q = 3 q = 4 q = 5 q = 6

TLMM 0.1042 0.1208 0.1345 0.1472 0.1582 0.1631 3.76
(0.0611) (0.0608) (0.0661) (0.0626) (0.0710) (0.0711) (2.33)

25 TJMM 0.0920 0.1098 0.1225 0.1338 0.1411 0.1426 2.56
(0.0583) (0.0598) (0.0619) (0.0659) (0.0705) (0.0646) (2.28)

RIP (%) 11.7 9.1 8.9 9.1 10.8 12.5 31.9

TLMM 0.1068 0.1285 0.1437 0.1556 0.1652 0.1724 3.43
(0.0400) (0.0405) (0.0413) (0.0437) (0.0464) (0.0511) (1.17)

100 TJMM 0.0961 0.1182 0.1322 0.1408 0.1477 0.1522 1.98
(0.0363) (0.0394) (0.0405) (0.0382) (0.0408) (0.0487) (1.16)

RIP (%) 10.1 8.1 8.0 9.5 10.6 11.7 42.3

The relative improvement percentage (RIP) is measured by (TLMM − TJMM)/TLMM × 100%. (Replications = 500).

which subjects containing intermittent missing values can be easily handled via the EM-type algorithms (Dempster et al., 1977;
Meng and Dyk, 1997).

Some possibilities for the future research along this line are as follows. One possible extension is to apply the joint
mean–covariance modeling approach to other non-normal random errors such as the skew normal distribution (Azzalini and
Dalla Valle, 1996; Azzalini and Capitaino, 1999) and the skew t distribution (Jones and Faddy, 2003; Azzalini and Capitaino, 2003).
With the development of rapid computational techniques and low-cost computer powers, another worthwhile task is to develop
a fully Bayesian inference for gaining more reliable inferences via the Markov chain Monte Carlo method.
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Appendix A. Elements of the Hessian matrix
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where Wi is defined in (8), Id is the identity matrix of order d and ⊗ is the Kronecker product. Note that �D−1
i /��k =

diag{wT
1ek�

−2
1 , . . . ,wT

niek�
−2
ni } with ek being a q × 1 binary vector whose kth element is one and is zero elsewhere; �Li/�
k is

a lower triangular matrix whose (j, k)th entry is zTjse
∗
k, for j = 2, . . . ,ni and s = 1, . . . , (i − 1), where e∗

k is a d × 1 binary vector with
the kth element being one and zero elsewhere.

Appendix B. Proof of Proposition 2

(a) By Proposition 1(c), we have

E
(

1
� + �i(b, c,k)

)
= E

(
B
�

)
= 1

� + ni
.

(b) Since 
i = (ni + �)/(� + �i(b, c,k)) = ((ni + �)/�)B, we have

E
(


i
� + �i(b, c,k)

)
= � + ni

�2
E(B2) = � + 2

�(� + ni + 2)
.
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(c) Denote by tp(ri|�,R, �) the density of Tp(�,R, �). Note that ri ∼ Tni (0,Ri, �), we then have

E(
2i rir
T
i ) = (� + ni)

2

�2

∫
rir

T
i

�
(

� + ni
2

)
|Ri|−1/2

�
( �
2

)
(��)ni/2

(
1 + rTi R

−1
i ri
�

)−((�+4)+ni)/2

dri

= (� + ni)
2

�2

�
(

� + ni
2

)
|Ri|−1/2

�
( �
2

)
(��)ni/2

� + 2
2

�
2
�
( �
2

)
(�(� + 4))ni/2

� + ni + 2
2

� + ni
2

�
(

� + ni
2

)(
� + 4

�

)ni/2

|Ri|−1/2

×
∫

rir
T
i tni

(
ri|0,

�
� + 4

Ri, � + 4
)

dri

= (� + ni)
(� + ni + 2)

Ri.

(d) Define Li = [�i1 �i2 · · · �ini ]
T. Since Liri = (ri − r̂i), it implies that (rij − r̂ij) = �

T
ijri. We then have

E

⎛
⎝
i

ni∑
j=1

�2
ijwjw

T
j

⎞
⎠ = E

⎧⎨
⎩
i

ni∑
j=1

�−2
j wjr

T
i �ij�

T
ijriw

T
j

⎫⎬
⎭

=
ni∑
j=1

�−2
j wjE(
irTi �ij�

T
ijri)w

T
j

=
ni∑
j=1

�−2
j wj(tr(�ij�

T
ijRi))w

T
j

=
ni∑
j=1

wjw
T
j ,

where the last equality follows directly from tr(�ij�
T
ijRi) = �

T
ijRi�ij = �2

j .
(e) The result follows directly from the fact of

E

(
�2

log f (Yi)

�k�kT

)
= − 1

2

⎧⎨
⎩E

⎛
⎝
i

ni∑
j=1

�2
ijwjw

T
j

⎞
⎠− 1

� + ni
E

⎛
⎝
2i

⎛
⎝ ni∑

j=1

�2
ijwj

⎞
⎠
⎛
⎝ ni∑

j=1

�2
ijw

T
j

⎞
⎠
⎞
⎠
⎫⎬
⎭

= − E

(
� log f (Yi)

�k
� log f (Yi)

�kT

)

= 1
4

⎛
⎝ ni∑

j=1

wj

⎞
⎠
⎛
⎝ ni∑

j=1

wT
j

⎞
⎠− 1

4
E

⎛
⎝
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ijwj

⎞
⎠
⎛
⎝ ni∑

j=1
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ijw

T
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(f) Since z(i, j) = ∑j−1
k=1 rikzjk = jjri, the following trivially holds:

ZT
i D

−1
i Zi =

ni∑
j=1

�−2
j z(i, j)zT(i, j) =

ni∑
j=1

�−2
j jjrir

T
i j

T
j .

Therefore,

E(
iZT
i D

−1
i Zi) = E

⎛
⎝
i

ni∑
j=1

�−2
j jjrir

T
i j

T
j

⎞
⎠ =

ni∑
j=1

�−2
j jjRij

T
j .

(g) Since E(
irirTi ) = Ri, it is straightforward to show that

E(
iz(i, j)rij) = E

⎛
⎝
i

j−1∑
k=1

rikzjkrij

⎞
⎠ =

j−1∑
k=1

E(
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j−1∑
k=1

�kjzjk.
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(h) Since ZT
i D

−1
i Wi = ∑ni

j=1 �−2
j z(i, j)rijwT

j −∑ni
j=1 �−2

j z(i, j)zT(i, j)cwT
j , it suffices to verify that

E(
iZT
i D

−1
i Wi) =

ni∑
j=1

�−2
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