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以物件為基礎之MPEG-4視訊之多點視訊會議

接收端 

 

研究生：簡志凱          指導教授：林大衛教授 

 

國立交通大學 電子工程系 電子研究所碩士班 

 

摘要 

 
 在本篇論文中，我們設計並實現一個在個人電腦上的視訊影像接收端。未來

將利用此系統來提供多點視訊會議的服務。 

    建立此系統必需整合網路、影像解碼、聲音解碼、以及同步與合成單元。首

先，我們透過及時傳輸規約（RTP）協定方式與系統發送端連線並接收影像和聲
音資料。由不同發送端所接收到的視訊資料將經由各自的 MPEG-4 影像解碼器
進行解碼。聲音資料則經由 MPEG-4 音訊解碼器進行解碼。當我們得到解碼後
的影像資料，同步與合成單元將會控制各個解碼器使影像同步並合成新的影像。

最後將合成影像顯示在螢幕上。 

    在整體圖形應用及控制介面的實現上，我們採用了Microsoft Windows SDK
來建構整個介面。在 AMD 2.1-GHz CPU及 512-MB RAM的個人電腦上，當只
有一人連接到此接收端上時，系統的執行速度是每秒約可顯示 12張影像。若有
兩人時，則是每秒約 6張。如果增加到三人時，系統的執行速度將降到每秒 3.5
張。 
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A Multipoint Videoconference Receiver for 

MPEG-4 Object-based Video 

 

Student: Chih-Kai Chien          Advisor: Dr. David W. Lin 

Department of Electronics Engineering & Institute of Electronics 
National Chiao Tung University 

Abstract 

We consider the design and implementation of the videoconference receiver on a 

personal computer (PC). The intended application is PC-based multipoint 

videoconference system. 

To implement this system, we need to integrate network, video decoder, audio 

decoder, and the unit of the synchronization and composition. First, through RTP 

(Real-time Transport Protocol) the receiver can be connected to the different 

transmitters and receive the video and audio streams at the same time. Next, the video 

streams from different transmitters would be decoded by MPEG-4 visual decoders 

and the audio streams would decoded by MPEG-4 AAC decoder. After decoding the 

video stream, the unit of the synchronization and composition controls the each visual 

decoder to make these decoders synchronously and composes these video streams. 

Finally, the composite video would be display on the desktop. 

In real-time PC-based software implementation of the receiver, we employ a 

graphical user interface established using the Windows SDK. With an AMD 2.1-GHz 

CPU and 512-MB RAM, the current un-optimized implementation yields a speed of 

about 12 frames per second and for CIF (352x288) video when only one user connects 
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to the receiver. In the presence of two users, the processing time is about 6 frames per 

second. If we increase to three client user, the processing time goes down to 3.5 

frames per second. 
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Chapter 1

Introduction

We consider the design and implementation of multi-point videoconference system on a

personal computer (PC). Figure 1.1 shows the overall system structure. The transmitter

captures video and audio in real-time. Then it encodes and sends out the encoded video

and audio. The receiver would receive video and audio streams from different transmit-

ters, decode them, compose the decoded signals into one stream, and display the compos-

ite signal on the desktop. In this thesis, we consider the design and implementation of

the receiver. It consists of four parts: Real-time transport protocol (RTP) network inter-

face, visual object decoder, audio object decoder, and synchronization and composition,

as shown in Fig. 1.2.

The RTP provides end-to-end delivery services for data with real-time characteristics

which is suitable for our live application. We use the jrtplib 3.1.0 software [15] developed

at the Expertise Centre for Digital Media (EDM) to realize the RTP network interface.

The video and audio data streams each has it own RTP session. The RTP packetizing and

the insertion of header time information as per the RTP standard mechanisms is handled

by the server. The visual and audio object decoders are based on MPEG-4 standard. The

MPEG-4 standard is originally intended for very high compression coding of audio-visual

information at very low bit-rate to help us decrease the bandwidth requirement of the

network. To achieve the multi-point conferencing capability, we use the multi-threading

technique to manage the video and the audio decoders. The multi-threading technique

could make the operating system handle each user’s own decoders almost simultaneously.

1



Figure 1.1: Overall videoconference system.

Figure 1.2: Block diagram of the videoconference receiver.
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However, the synchronization among the multi-threads becomes an important problem.

We add some control mechanism to resolve this issue. Finally we compose the video

objects from different transmitters and display the result, with each video object placed

at a user-specified position on the desktop. The audio would also be decoded, composed,

and played in this system.

This thesis is organized as follows. Chapter 2 is an overview of the MPEG-4 standard.

Chapter 3 describes the RTP technology. Chapter 4 discusses the detail of the receiver’s

architecture for multi-point videoconference. The experimental results of the receiver are

described in Chapter 5. Finally, Chapter 6 contains the conclusion.
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Chapter 2

Overview of the MPEG-4 Standard

MPEG-4 is an ISO standard (ISO/IEC international standard 14496) developed by MPEG

(Moving Picture Experts Group), the committee that also developed the Emmy Award

winning standards known as MPEG-1 and MPEG-2. These standards made interactive

video on CD-ROM, DVD and Digital Television possible. The first version of MPEG-4

was finalized in October 1998 and became an International Standard in the first months

of 1999. The fully backward compatible extensions under the title of MPEG-4 Version 2

were frozen at the end of 1999, to acquire the formal International Standard Status early

in 2000 [2].

MPEG-4 defines the deployment of non-proprietary multimedia content independently

of platform or transmission medium. It has relied on and taken from a number of existing

technologies while at the same time adding a number of innovative tools and concepts.

It is also more than just another highly efficient standard for delivering video and audio

sequences. It integrates a number of key technologies into a solid and uniform platform

by avoiding the use of proprietary and non inter-working formats, while promoting and

delivering user interactivity to the wider consumer market, beyond the desktop computer

[2].

MPEG-4 builds on the proven success of three fields [2]:

• digital television,

• interactive graphics applications (synthetic content), and
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• interactive multimedia (World Wide Web, distribution of and access to content).

2.1 Organization of the MPEG-4 Standard

The MPEG-4 standard addresses the generic coding of audio-visual objects, as illustrated

in Fig. 2.1. It consists of the following basic parts. The following description of the

different parts are mainly taken from [1] and [2]:

1. ISO/IEC 14496-1: Systems

The MPEG-4 Systems specification defines architecture and tools to create audio-

visual scenes from individual objects. A major tool for MPEG-4 systems is scene

description. The MPEG-4 scene description, a totally new component in the MPEG

specifications, is based on VRML (virtual reality modeling language) and specifies

the spatial-temporal composition of objects in a scene. The scene description is

at the core of the systems specification, and allows easy creation of compelling

audio-visual content.

2. ISO/IEC 14496-2: Visual

The MPEG-4 visual specification defines the main video codec. It consists of nat-

ural, arbitrary shape and synthetic video coding.

For natural video coding, the main video coding tools are still texture coding, simi-

larly to MPEG-1 and MPEG-2. For intra coding, the MPEG-4 visual specification

uses DCT, IDCT, intra prediction, quantization and de-quantization to reduce spa-

tial redundancy. For inter coding, the MPEG-4 visual specification uses motion

estimation and motion compensation to reduce temporal redundancy. In visual cod-

ing, the major difference from MPEG-1 and MPEG-2 is object coding. In MPEG-4,

each picture is considered as consisting of objects, since some MPEG-4 functional-

ities require access not only to entire pictures but also to objects.

For synthetic video coding, in MPEG-4, mesh-based representation is useful. MPEG-

4 includes a tool for triangular mesh-based representation of general objects.
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Figure 2.1: A high level view of an MPEG-4 terminal (from[5]).

3. ISO/IEC 14496-3: Audio

ISO/IEC 14496-3 (MPEG-4 Audio) is a standard that integrates many different

types of audio coding: natural sound with synthetic sound, low bit-rate delivery

with high-quality delivery, speech with music, complex sound tracks with simple

ones, and traditional content with interactive and virtual-reality content. MPEG-

4, unlike previous audio standards created by ISO/IEC and other groups, does not

target at a single application such as real-time telephony or high-quality audio com-

pression. MPEG-4 Audio is a rather generic standard that applies to applications

requiring the use of advanced sound compression, synthesis, manipulation, or play-

back. The subparts specify state-of-the-art coding tools in several domains. How-

ever, MPEG-4 Audio is more than just the sum of its parts. As the tools described

are integrated with the rest of the MPEG-4 standard, new possibilities for object-

based audio coding, interactive presentation, dynamic sound tracks, and other sorts

6



of new media, are enabled.

4. ISO/IEC 14496-4: Conformance Testing

This part of ISO/IEC 14496 specifies how tests can be designed to verify whether

bitstreams and decoders meet requirements specified in parts 1, 2, and 3 of ISO/IEC

14496. In this part of ISO/IEC 14496, encoders are not addressed specifically. An

encoder may be said to be an ISO/IEC 14496 encoder if it generates bitstreams

compliant with the syntactic and semantic bitstreams requirements specified in parts

1, 2 and 3 of ISO/IEC 14496.

5. ISO/IEC 14496-5: Reference Software

Reference software is normative in the sense that any conforming implementation

of the software, taking the same conforming bitstreams, using the same output file

format, will output the same file. Complying ISO/IEC 14496 implementations are

not expected to follow the algorithms or the programming techniques used by the

reference software. Although the decoding software is considered normative, it

should not add anything to the technical description included in parts 1, 2, 3 and 6

of ISO/IEC 14496.

6. ISO/IEC 14496-6: DMIF

DMIF, or Delivery Multi-media Integration Framework, is an interface between

the application and the transport, which enables the MPEG-4 application developer

to stop worrying about the transport. A single application can run on different

transport layers when supported by the right DMIF instantiation.

MPEG-4 DMIF supports the following functionalities:

• A transparent MPEG-4 DMIF-application interface irrespective of whether

the peer is a remote interactive peer, broadcast or local storage media.

• Control of the establishment of FlexMux channels.

• Use of homogeneous networks between interactive peers: IP, ATM, mobile,

PSTN, Narrowband ISDN.
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• Support for mobile networks, developed together with ITU-T.

• User commands with acknowledgment messages.

• Management of MPEG-4 Sync Layer information.

However, the available software has not been developed well. Interest in DMIF has

waned in recent MPEG activities and the DMIF software has suffered a mainte-

nance problem [9].

2.2 MPEG-4 Visual Overview

Contents in this section are mainly taken from [3].

The target of MPEG-4 video is providing standardized core technologies allowing ef-

ficient storage, transmission and manipulation of video data in multimedia environments.

It provides technologies to view, access and manipulate objects rather than pixels, with

great error robustness at a large range of bit-rates. In order to achieve this broad goal,

video activities in MPEG-4 aim at providing solutions in the form of tools and algo-

rithms enabling functionalities such as efficient compression, object scalability, spatial

and temporal scalability, error resilience, and fine granularity scalability. The standard-

ized MPEG-4 video provides a toolbox containing tools and algorithms bringing solutions

to the above mentioned functionalities and more.

2.2.1 Structure of MPEG-4 Video Data

An input video sequence can be defined as a sequence of related snapshots or pictures,

separated in time. Many of MPEG-4 functionalities require access not only to entire

sequence of pictures, but to an entire object, and further, not only to individual pictures,

but also to temporal instances of these objects within a picture.

The concept of Video Objects (VOs) and their temporal instances, Video Object Planes

(VOPs) is central to MPEG-4 video. A VOP can be fully described by a set of luminance

and chrominance values and shape representation. Figure 2.2 shows the decomposition

of a picture into a number of separate VOPs.
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Figure 2.2: Segmentation of a picture into VOPs (from [5]).

Each VO is encoded separately and multiplexed to form a bitstream that users can

access and manipulate. The encoder sends, together with VOs, information about scene

composition to indicate where and when VOPs of a VO are to be displayed. Figure 2.3

shows the organization of coded MPEG-4 Video in a top-down hierarchical structure.

• VideoSession (VS): A Video session is the highest syntactic structure of the coded

visual bitstream and simply consists of an ordered collection of video objects. The

complete MPEG-4 scene which may contain any 2-D or 3-D natural or synthetic

objects.

• VideoObject (VO): A Video object (2D + time) represents a complete scene or a

portion of a scene with a semantic. In the simplest case this can be a rectangular

frame, or it can be an arbitrarily shaped object corresponding to a physical object

or background of the scene.

• VideoObjectLayer (VOL): Each video object can be encoded in scalable (multi-

layer) or non-scalable form (single layer), depending on the application, represented

by VOL. The VOL provides support for scalable coding. A video object can be

9



Figure 2.3: Structure of coded video data (from [7]).

I−frame I−frameB−frame P−frameP−frame

Figure 2.4: Types of VOP (from [8]).
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encoded using spatial or temporal scalability, going from coarse to fine resolution.

• GroupOfVideoObjectPlanes (GOV): Group of video object planes are optional en-

tities. The GOV groups together video object planes. GOVs can provide points

in the bitstream where video object planes are encoded independently from each

other, and can thus provide random access points into the bitstream.

• VideoObjectPlane (VOP): A VOP is a time sample of a video object. Figure 2.4

shows three of the four types of VOP that use different coding methods.

1. An Intra-coded (I) VOP is coded using information only from itself.

2. A Predictive-coded (P) VOP is a VOP which is coded using motion compensated

prediction from a past reference VOP.

3. A Bidirectionally predictive-coded (B) VOP is a VOP which is coded using motion

compensated prediction from a past and/or future reference VOP(s).

4. A Sprite (S) VOP is a VOP for a sprite object or a VOP which is coded using

prediction based on global motion compensation from a past reference VOP.

The macroblock (MB) is a basic coding structure constructing VOP. In the MPEG-

4 standard, a macroblock contains a section of the luminance component and the sub-

sampled chrominance components in 4:2:0 format. In this format, there are 4 luminance

blocks and 2 chrominance blocks in a macroblock. The luminance and chrominance

samples are positioned as shown in Fig. 2.5.

2.3 MPEG-4 Video Decoding

Contents in this section are mainly taken from [5], [6] and [7]

Figure 2.6 is a diagram of the video decoding process without any scalability feature.

The diagram is simplified for clarity. The same decoding scheme is applied when de-

coding all the VOPs of a session. The decoder is mainly composed of three parts: shape

decoder, motion decoder and texture decoder. The reconstructed VOP is obtained by
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Figure 2.5: Positions of luminance and chrominance samples in 4:2:0 data (from [3]).
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Figure 2.6: Detailed structure of the video decoder (from [3]).

combining the decoded shape, texture and motion information. With the exception of the

inverse discrete cosine transform (IDCT), it is defined such that all decoders shall produce

numerically identical results. Any decoding process that produces identical results to the

process described here complies with ISO/IEC 14496-2.

2.3.1 Shape Decoding

The ability to represent arbitrary shapes is an important capability of the MPEG-4 video

standard. In general, shape representation can be either implicit (based on chroma-key

and texture coding) or explicit (based on shape information from texture coding). Im-

plicit shape representation offers less encoding flexibility. However, it can result in quite

usable shapes while being relatively simple and computationally inexpensive. Explicit

shape representation is more complex and expensive but offers flexible encoding and bet-

13



Figure 2.7: A VOP in a bounding box (from [7]).

ter quality shapes. Therefore explicit shape representation was chosen in MPEG-4 video.

For each VO given as a sequence of VOPs of arbitrary shapes, the corresponding se-

quence of alpha planes is known (generated via segmentation or via chroma-key). Binary

alpha planes are encoded by modified context-based binary arithmetic encoding (CAE)

and gray scale alpha planes are encoded by motion compensated DCT similar to texture

coding. For the binary alpha plane, an extended rectangular bounding box enclose the

shape to be coded. The bounded alpha plane is partitioned into blocks of 16× 16 samples

called alpha blocks. In fact, each alpha block is co-located with each texture macroblock.

It is important to minimize the number of alpha blocks in the bounding box for efficient

coding. The pixels on the boundaries or inside the object are assigned a value of 255 and

are considered opaque while the other pixels are assigned a value of 0 and considered

transparent. Figure 2.7 shows an example of an arbitrary shape VOP with bounding box

and the 16 × 16 block structure.
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Binary shape decoding

Binary shape coding is based on a block-based representation. The basic coding meth-

ods are CAE and block-based motion compensation. The primary data structure used is

denoted as the binary alpha block (BAB). Each BAB can be coded in intra mode or in

inter mode. In intra mode, no explicit prediction is performed. In the inter mode, shape

information is differenced with respect to the prediction obtained using a motion vector.

The motion vector is coded differentially and included in the bitstream. Therefore each

BAB can be assigned a mode from among the following choices:

1. The block is all transparent. In this case no coding is necessary. Texture information

is not coded for such blocks either.

2. The block is all opaque. Again, shape coding is not necessary for such blocks, but

texture information needs to be coded.

3. The block is coded using IntraCAE without use of past information.

4. Motion vector difference (MVD) is zero but the block is not updated.

5. MVD is non-zero, but the block is not updated.

6. MVD is zero and the block is updated. InterCAE is used for coding the block

update.

7. MVD is non-zero, and the block is coded by InterCAE.

CAE encoding is used to code each binary pixel of the BAB. Prior to coding the first

pixel, the arithmetic encoder is initialized. Each binary pixel is then encoded in raster

order. The process for encoding a given pixel is as follows:

1. Compute a context number.

2. Index a probability table using the context number.

3. Use the indexed probability to drive an arithmetic encoder.
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Figure 2.8: Pixel templates used for (a) intra and (b) inter context determination of a BAB.

Pixel to be coded is marked with “?”. (From [3])

When the final pixel has been processed, the arithmetic code is terminated. Figure 2.8

shows the computation of the contexts for INTRA and INTER modes.

The decoding of binary alpha block follows the inverse sequence of operations expect

for encoder specific tasks such as motion estimation, subsampling factor determination,

mode decision, etc.

Gray scale shape decoding

The gray scale shape coding has a structure similar to that of binary shape with the dif-

ference that each pixel can take on a range of values (usually 0 to 255) representing the

degree of the transparency of that pixel. The gray scale shape corresponds to the no-

tion of alpha plane used in computer graphics, in which 0 corresponds to a completely

transparent pixel and 255 to a completely opaque pixel. Intermediate values of the pixel

correspond to intermediate degrees of transparencies of that pixel.

Gray level alpha plane is encoded as its support function and the alpha values on the

support. The support function is encoded by binary shape coding as described previously

and the alpha values are encoded using a block based motion compensated DCT similar

to that of texture coding. Figure 2.9 shows the block diagram of gray shape coding.

2.3.2 Motion Coder

The motion coder consists of a motion estimator, motion compensator, previous/next

VOPs store and motion vector predictor and coder. The motion coding is necessary only
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Figure 2.9: Gray shape coding (from [3]).

for P-VOP and B-VOP to reduce temporal redundancy. For P-VOP, motion estimator

computes motion vectors using the current VOP and temporally previous reconstructed

VOP from the previous reconstructed VOP store. In case of B-VOP, motion estimator

computes motion vectors using the current VOP and temporally previous reconstructed

VOP from the previous reconstructed VOP store, as well as the current VOP and tempo-

rally next VOP from the next constructed VOP store. The motion compensator uses these

MVs to compute motion compensated prediction using the reference VOP which is the

temporally previous reconstructed version of the same VOP. The MV predictor and coder

generates prediction for the MV to be coded. Furthermore, a special padding technique is

required for the reference VOP.

However, MPEG-4 video also supports an H.263 based mode for motion compensa-

tion, referred to as the direct mode. In direct mode, the MV in a B-VOP is obtained by

scaling of the P-VOP MV, and further correcting it by a small MV. In addition, MPEG-4

supports efficient coding of interlaced video. It combines the macroblock based frame/field

motion compensation of MPEG-2 with the normal motion compensation of MPEG-4.
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It allows motion compensation of arbitrary shaped VOPs of interlaced video whereas

MPEG-2 only supports rectangular pictures of intelaced video.

2.3.3 Texture Decoding

The texture information of a video object plane is presented in the luminance Y and two

chrominance components Cb and Cr of the video signal. The texture coder codes the

signal forming macroblocks within a VOP. Two types of macroblocks exist, those that

lie inside the VOP and those that lie on the boundary of the VOP. The blocks that lie

inside the VOP are coded using DCT like that used in H.263 but optimized in MPEG-4.

The blocks that lie on the VOP boundary are first padded and then coded similiar to the

blocks that lie inside the VOP. The general operations in the texture encoder are: DCT on

original or prediction error blocks, quantization of 8×8 block DCT coefficients, scanning

of quantized coefficients and variable length coding of quantized coefficients.

Similar to MPEG-1/2 and H.263, the block DCT codes blocks of size 8 × 8 samples

with the difference that since VOP shapes can be arbitrary, the blocks on the VOP bound-

ary require padding prior to texture coding. The encoder does forward transform before

quantization and inverse transform after inverse quantization in the loop to obtain recon-

structed image for the next temporal frame. MPEG-4 video supports two techniques of

quantization. One refers to as the H.263 quantization method, and the orther is MPEG

quantization method. Figure 2.10 shows the quantizer characteristics in H.263. It has

uniform quantization for intra DC coefficients and nearly uniform quantization with dead

zone for the inter DC and all AC coefficients. The step size Q can be changed in incre-

ment of 2 from 2 to 62 depending on rate controllor. In the MPEG quantization method,

all coefficients are quantized by the uniform quantizer with different step size Q. The step

size Q is decided by quantizer matrix and the default quantizer matrix is defined as shown

in Fig. 2.11. This matrix can be modified by the rate controllor.

After quantization, the DC coefficients of intra blocks are coded by intra prediction

as shown in Fig. 2.12. The intra prediction is a new operation in the MPEG-4 standard

to reduce the spatial redundancy between 8 × 8 blocks. For instance, the DC coefficient

of block X is predicted from the DC coefficient of blocks A, B and C. Not only the
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Figure 2.10: Quantizers in H.263. (a) Intra DC coefficients only. (b) Inter DC and all AC

coefficients (from [8]).

Figure 2.11: Default quantization matrix Q (from [3]).
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Figure 2.12: Prediction of DC coefficients of blocks in an intra macroblock (from [3]).
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Figure 2.13: Prediction of AC coefficients of blocks in an intra macroblock (from [3]).
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Figure 2.14: Scans for 8 × 8 block (from [3]).

DC coefficients of intra blocks are predicted and coded differentially, so are some of the

AC coefficients. The AC prediction depends on DC prediction and is given in Fig 2.13.

The AC coefficients in the first row or in the first column are predicted with three previous

decoded AC coefficients. The predicted DC and AC coefficients as well as the unpredicted

AC coefficients of DCT blocks in intra macroblacks are scanned by one of three scans:

alternate-horizontal, alternate-vertical, and zigzag. These processes are shown in Fig.

2.14 and they change the the two dimensional image to one dimensional image. The actual

scan used depends on the coefficient predictions used. For example, if AC prediction is

disabled, all blocks in that macroblock are zigzag-scanned. If DC prediction is enabled

and DC prediction is selected from the vertically adjacent block, alternate-horizontal scan

is used. Likewise, if AC prediction is enabled and DC prediction is selected from the

horizontally adjacent block, alternate-vertical scan is used.

After the scan, the coefficients usually become a data sequence with many zeros at

the end. This situation is good for run-length coding. A three dimensional variable length

code (VLC) is used to encode the DCT events of intra blocks. An event is a combination

of three items: last, run and level. The “last” means a last non-zero coefficients indication.

The “run” indicates number of zero coefficients preceding the current nonzero coefficient.

The “level” is the amplitude of the quantized coefficient. In inter blocks, the scanned

coefficients using the zigzag scan are also coded by three dimensional VLC table like intra

VLC but with code entries optimized for inter statistics. The decoding process follows
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Figure 2.15: Structure of the texture decoder (from [3]).

the inverse sequence of the encoder and is described in Fig. 2.15.

2.4 MPEG-4 Audio Overview

Contents in this section are taken from [10] and [11].

MPEG-4 is based on the notion that the audio part of the audiovisual scene presented

at the receiver is composed of one or more so-called audio objects. Different audio com-

pression tools (codecs) are available to enable an efficiently coded representation of the

audio objects in a scene. Natural audio objects, such as recorded speech and music,

can be coded at bitrates typically ranging from 2 kb/s (for narrowband speech) to 64

kb/s/ch (for CD quality music) using parametric speech coding (HVXC), CELP-based

speech coding, parametric audio coding (HILN) or transform-based general audio coding

(AAC, TwinVQ). The natural audio and speech coding tools support bitrate scalability,

also known as embedded coding. In addition, the parametric coding tools also provide

speed and pitch change functionality in the decoder. Synthetic audio objects can be rep-

resented using a Text-To-Speech Interface (TTSI) or the Structured Audio (SA) synthesis

tools. Other uses of the SA tools are adding effects, like reverberation, and mixing differ-

ent audio objects to compose the final “audio scene” that is presented to the listener.

Figure 2.16 shows the block diagram of a complete MPEG-4 Audio decoder. It in-

cludes the decoding tools for the audio objects defined in Part 3 (Audio) of the MPEG-4
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Figure 2.16: Block diagram of a complete MPEG-4 audio decoder (from [11]).

Standard as well as bitstream demultiplexing and scene composition defined in the Sys-

tems part.

The information needed to decode an audio object at the decoder is conveyed by means

of a so-called elementary stream (ES), as shown in Fig. 2.17. In case of bitrate scalable

configurations, a base-layer ES and one or more enhancement-layers ES(s) are used. The

initial ES Descriptor contains an AudioSpecifcConfig element, which carries the audio

object type (AOT) and further information required to instantiate the required audio de-

coder. Using the ES ID, the ES Descriptor points to the stream of the actual compressed

audio data, which is a sequence of so-called access units (AU), i.e., decodable bitstream

frames. A common audio object type is AAC LC, which indicates that MPEG-4 Ad-

vanced Audio Coding (AAC) in its low-complexity (LC) version is used. This is the

primary general audio coder in MPEG-4, which is a compatible extension of the MPEG-2

AAC transform-based audio coder.
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Figure 2.17: MPEG-4 elementary stream conveying an audio object (from [11]).

2.5 Profiles and Levels

Contents in this section are mainly taken from [3] and [10].

Although there are many tools in the MPEG-4 standard, not every MPEG-4 decoder

will have to implement all of them. Similar to MPEG-2, profiles and levels are defined

as sub-sets of the entire bitstreams syntax of all the tools. The purpose of defining con-

formance points in the form of profiles and levels is to facilitate interchange of bitstreams

among different applications.

There are eight profiles defined in the visual part of MPEG-4 standard: simple, core,

main, simple scalable, animated & mesh, basic animated texture, still scalable texture

profile, and simple face. The detailed definitions are given in Fig 2.18. The simple profile

of MPEG-4 is very similar to the coding method in H.263. The difference is that the

simple profile has error resilience but does not have B-frame coding. The simple scalable

profile is the same as simple profile, but with the rectangular scalability added. The

core profile is the profile with all tools of the simple profile, temporal scalability, B-

VOP coding and binary shape coding. The main profile is the profile with all tools in core
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profile, gray shape coding, interlace and sprite coding. The other profiles are for particular

purposes, such as 2D dynamic mesh coding and facial animation coding.

MPEG-4 Audio provides several profiles to allow the optimal use of MPEG-4 in dif-

ferent applications. At the same time the number of profiles is kept as low as possible in

order to maintain maximum interoperability. There are four profiles:

• The Speech Audio Profile provides a parametric speech coder, a CELP speech coder

and a Text-To-Speech interface.

• The Synthesis Audio Profile provides the capability to generate sound and speech

at very low bitrate.

• The Scalable Audio Profile, a superset of the Speech Profile, is suitable for scalable

coding of speech and music and for different transmission methods, such as Internet

and Digital Broadcasting.

• The Main Audio Profile is a rich superset of the three previous profiles (scalable,

speech, synthesis) containing tools for both natural and synthetic audio.

In our implement, the visual object decoder is the Microsoft MPEG-4 Visual Ref-

erence Software ([12]). Figure 2.19 indicates which tools are supported in this reference

software. The functionalities defined by the reference software conforms to main and sim-

ple scalable profiles of MPEG-4. System layer and 3D/SNHC part are not included. For

our application, we make use of the binary shape object coding of the reference software,

belonging to main profile of MPEG-4. The audio object decoder is the Freeware Advance

Audio Decoder (FAAD2) which include HE, LC, MAIN and LTP profile, MPEG-2 and

MPEG-4 AAC decoder. We only use the MAIN profile for our audio streams.
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Figure 2.18: Video profiles and tools defined in MPEG-4 (from [3]).
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Figure 2.19: Functionalities of the Microsoft MPEG-4 Video Reference Software (from

[12]).
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Chapter 3

Overview of the RTP

3.1 Introduction

Originally, we intended to use the DMIF to implement the network interface in our sys-

tem. Unfortunately, the available DMIF software [20] is very difficult to use. Moreover

interest in DMIF has waned in recent MPEG activities and the DMIF software has suf-

fered a maintenance problem. Therefore we decide to use RTP (Real-time Transport

Protocol) for our network interface.

The RTP provides end-to-end delivery services for data with real-time characteristics,

such as interactive audio and video. These services include payload type identification,

sequence numbering, timestamping and delivery monitoring. Applications typically run

RTP on top of UDP to make use of its multiplexing and checksum services; both protocols

contribute parts of the transport protocol functionality. RTP supports data transfer to

multiple destinations using multicast distribution if provided by the underlying network.

RTP itself does not provide any mechanism to ensure timely delivery or provide other

quality-of-service guarantees, but relies on lower-layer services to do so. It does not

guarantee delivery or prevent out-of-order delivery, nor does it assume that the underlying

network is reliable and delivers packets in sequence. The sequence numbers included in

RTP allow the receiver to reconstruct the sender’s packet sequence, but sequence numbers

might also be used to determine the proper location of a packet, for example in video

decoding, without necessarily decoding packets in sequence. Although RTP is primarily
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designed to satisfy the needs of multiparticipant multimedia conferences, it is not limited

to that particular application. Other applications may also find RTP applicable. The

following text in this chapter is mainly taken from [13] and [14].

3.2 Definitions Used in the RTP

• RTP payload: The data transported by RTP in a packet, for example audio samples

or compressed video data.

• RTP packet: A data packet consisting of the fixed RTP header, a possibly empty

list of contributing sources, and the payload data. Some underlying protocols may

require an encapsulation of the RTP packet to be defined. Typically one packet of

the underlying protocol contains a single RTP packet, but several RTP packets may

be contained if permitted by the encapsulation method.

• RTCP packet: A control packet consisting of a fixed header part similar to that of

RTP data packets, followed by structured elements that vary depending upon the

RTCP packet type. Typically, multiple RTCP packets are sent together as a com-

pound RTCP packet in a single packet of the underlying protocol; this is enabled by

the length field in the fixed header of each RTCP packet.

• RTP session: The association among a set of participants communicating with RTP.

For each participant, the session is defined by a particular pair of destination trans-

port addresses. The destination transport address pair may be common for all par-

ticipants, as in the case of IP multicast, or may be different for each, as in the case

of individual unicast network addresses plus a common port pair. In a multimedia

session, each medium is carried in a separate RTP session with its own RTCP pack-

ets. The multiple RTP sessions are distinguished by different port number pairs

and/or different multicast addresses.

• Synchronization source (SSRC): The source of a stream of RTP packets, identified

by a 32-bit numeric SSRC identifier carried in the RTP header so as not to be de-

pendent upon the network address. All packets from a synchronization source form
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part of the same timing and sequence number space, so a receiver groups packets by

synchronization source for playback. Examples of synchronization sources include

the sender of a stream of packets derived from a signal source such as a microphone

or a camera, or an RTP mixer. A synchronization source may change its data for-

mat, e.g., audio encoding, over time. The SSRC identifier is a randomly chosen

value meant to be globally unique within a particular RTP session. A participant

need not use the same SSRC identifier for all the RTP sessions in a multimedia ses-

sion; the binding of the SSRC identifiers is provided through RTCP. If a participant

generates multiple streams in one RTP session, for example from separate video

cameras, each must be identified as a different SSRC.

• Contributing source (CSRC): A source of a stream of RTP packets that has con-

tributed to the combined stream produced by an RTP mixer. The mixer inserts a

list of the SSRC identifiers of the sources that contributed to the generation of a

particular packet into the RTP header of that packet. This list is called the CSRC

list. An example application is audio conferencing where a mixer indicates all the

talkers whose speech was combined to produce the outgoing packet, allowing the

receiver to indicate the current talker, even though all the audio packets contain the

same SSRC identifier.

• Mixer: An intermediate system that receives RTP packets from one or more sources,

possibly changes the data format, combines the packets in some manner and then

forwards a new RTP packet. Since the timing among multiple input sources will

not generally be synchronized, the mixer will make timing adjustments among the

streams and generate its own timing for the combined stream. Thus, all data packets

originating from a mixer will be identified as having the mixer as their synchroniza-

tion source.

• Translator: An intermediate system that forwards RTP packets with their synchro-

nization source identifier intact. Examples of translators include devices that con-

vert encodings without mixing, replicators from multicast to unicast, and applica-

tion level filters in firewalls.
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Figure 3.1: Format of the RTP header (from [13]).

• Monitor: An application that receives RTCP packets sent by participants in an RTP

session, in particular the reception reports, and estimates the current quality of ser-

vice for distribution monitoring, fault diagnosis and long-term statistics. The mon-

itor function is likely to be built into the applications participating in the session,

but may also be a separate application that does not otherwise participate and does

not send or receive the RTP data packets. These are called third party monitors.

• Non-RTP means: Protocols and mechanisms that may be needed in addition to RTP

to provide a usable service. In particular, for multimedia conferences, a conference

control application may distribute multicast addresses and keys for encryption, ne-

gotiate the encryption algorithm to be used, and define dynamic mappings between

RTP payload type values and the payload formats they represent for formats that do

not have a predefined payload type value. For simple applications, electronic mail

or a conference database may also be used.

3.3 RTP Data Transfer Protocol

Figure 3.1 shows the format of RTP header. The first twelve octets are present in every

RTP packet, while the list of CSRC identifiers is present only when inserted by a mixer.

These fields have the following meaning:

• Version (V): This field identifies the version of RTP.

• Padding (P): If the padding bit is set, the packet contains one or more additional

padding octets at the end which are not part of the payload. The last octet of the
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Figure 3.2: The RTP header extension (from [13]).

padding contains a count of how many padding octets should be ignored. Padding

may be needed by some encryption algorithms with fixed block sizes or for carrying

several RTP packets in a lower-layer protocol data unit.

• Extension (X): An extension mechanism provides to allow individual implemen-

tations to experiment with new payload-format-independent functions that require

additional information to be carried in the RTP data packet header. If the X bit

in the RTP header is one, a variable-length header extension shown in Fig. 3.2

is appended to the RTP header, following the CSRC list if present. The header

extension contains a 16-bit length field that counts the number of 32-bit words in

the extension, excluding the four-octet extension header. To allow multiple inter-

operating implementations to each experiment independently with different header

extensions, or to allow a particular implementation to experiment with more than

one type of header extension, the first 16 bits of the header extension are left open

for distinguishing identifiers or parameters.

• CSRC count (CC): The CSRC count contains the number of CSRC identifiers that

follow the fixed header.

• Marker (M): The interpretation of the marker is defined by a profile. It is intended to

allow significant events such as frame boundaries to be marked in the packet stream.

A profile may define additional marker bits or specify that there is no marker bit by

changing the number of bits in the payload type field.

• Payload type (PT): This field identifies the format of the RTP payload and deter-
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mines its interpretation by the application. A profile specifies a default static map-

ping of payload type codes to payload formats. Additional payload type codes may

be defined dynamically through non-RTP means. An initial set of default mappings

for audio and video is specified in the companion profile Internet-Draft draft-ietf-

avt-profile. An RTP sender emits a single RTP payload type at any given time; this

field is not intended for multiplexing separate media streams.

• Sequence number: The sequence number increments by one for each RTP data

packet sent, and may be used by the receiver to detect packet loss and to restore

packet sequence. The initial value of the sequence number is random (unpre-

dictable) to make known-plaintext attacks on encryption more difficult, even if the

source itself does not encrypt, because the packets may flow through a translator

that does.

• Timestamp: The timestamp reflects the sampling instant of the first octet in the RTP

data packet. The sampling instant must be derived from a clock that increments

monotonically and linearly in time to allow synchronization and jitter calculations.

The resolution of the clock must be sufficient for the desired synchronization accu-

racy and for measuring packet arrival jitter. The clock frequency is dependent on

the format of data carried as payload and is specified statically in the profile or pay-

load format specification that defines the format, or may be specified dynamically

for payload formats defined through non-RTP means. If RTP packets are generated

periodically, the nominal sampling instant as determined from the sampling clock

is to be used, not a reading of the system clock.

• SSRC: The SSRC field identifies the synchronization source. This identifier is cho-

sen randomly, with the intent that no two synchronization sources within the same

RTP session will have the same SSRC identifier. Although the probability of mul-

tiple sources choosing the same identifier is low, all RTP implementations must be

prepared to detect and resolve collisions.

• CSRC list: The CSRC list identifies the contributing sources for the payload con-

tained in this packet. The number of identifiers is given by the CC field. If there are
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more than 15 contributing sources, only 15 may be identified. CSRC identifiers are

inserted by mixers, using the SSRC identifiers of contributing sources. For exam-

ple, for audio packets the SSRC identifiers of all sources that were mixed together

to create a packet are listed, allowing correct talker indication at the receiver.

3.4 RTCP: RTP Control Protocol

The RTP control protocol (RTCP) is based on the periodic transmission of control packets

to all participants in the session, using the same distribution mechanism as the data pack-

ets. The underlying protocol must provide multiplexing of the data and control packets,

for example using separate port numbers with UDP. RTCP performs four functions:

1. The primary function is to provide feedback on the quality of the data distribution.

This is an integral part of the RTP’s role as a transport protocol and is related to the

flow and congestion control functions of other transport protocols. The feedback

may be directly useful for control of adaptive encodings, but experiments with IP

multicasting have shown that it is also critical to get feedback from the receivers

to diagnose faults in the distribution. With a distribution mechanism like IP mul-

ticast, it is also possible for an entity such as a network service provider who is

not otherwise involved in the session to receive the feedback information and act

as a third-party monitor to diagnose network problems. This feedback function is

performed by the RTCP sender and receiver reports.

2. RTCP carries a persistent transport-level identifier for an RTP source called the

canonical name or CNAME. Since the SSRC identifier may change if a conflict is

discovered or a program is restarted, receivers require the CNAME to keep track

of each participant. Receivers also require the CNAME to associate multiple data

streams from a given participant in a set of related RTP sessions, for example to

synchronize audio and video.

3. The first two functions require that all participants send RTCP packets, and there-

fore the rate must be controlled in order to scale up to a large number of participants

34



for RTP. By having each participant send its control packets to all the others, each

can independently observe the number of participants. This number is used to cal-

culate the rate at which the packets are sent.

4. A fourth, optional function is to convey minimal session control information, for

example participant identification to be displayed in the user interface. This is most

likely to be useful in “loosely controlled” sessions where participants enter and

leave without membership control or parameter negotiation. RTCP serves as a con-

venient channel to reach all the participants, but it is not necessarily expected to

support all the control communication requirements of an application. Sometimes

a higher-level session control protocol may be needed.

Functions 1-3 are mandatory when RTP is used in the IP multicast environment, and

are recommended for all environments. RTP application designers are advised to avoid

mechanisms that can only work in unicast mode and will not scale to larger numbers.

3.5 RTP Translators and Mixers

A RTP translator/mixer connects two or more transport-level “clouds.” Typically, each

cloud is defined by a common network and transport protocol, multicast address or pair of

unicast addresses, and transport level destination port. Network-level protocol translators,

such as IP version 4 to IP version 6, may be present within a cloud invisibly to RTP. One

system may serve as a translator or mixer for a number of RTP sessions, but each is

considered a logically separate entity.

In order to avoid creating a loop when a translator or mixer is installed, the following

rules must be observed:

• Each of the clouds connected by translators and mixers participating in one RTP

session either must be distinct from all the others in at least one of these parameters

(protocol, address, port), or must be isolated at the network level from the others.

• A derivative of the first rule is that there must not be multiple translators or mixers
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Figure 3.3: Sample RTP network with end systems, mixers and translators (from [13]).

connected in parallel unless by some arrangement they partition the set of sources

to be forwarded.

Similarly, all RTP end systems that can communicate through one or more RTP translators

or mixers share the same SSRC space, that is, the SSRC identifiers must be unique among

all these end systems. There may be many varieties of translators and mixers designed

for different purposes and applications. For some applications, it may be acceptable for a

mixer not to identify sources in the CSRC list. However, this introduces the danger that

loops involving those sources could not be detected.

A collection of mixers and translators is shown in Fig. 3.3 to illustrate their effect on

SSRC and CSRC identifiers. In the figure, end systems are shown as rectangles (named

E), translators as triangles (named T) and mixers as ovals (named M). The notation “M1:

48(1,17)” designates a packet originating at mixer M1, identified with M1’s (random)

SSRC value of 48 and two CSRC identifiers, 1 and 17, copied from the SSRC identifiers

of packets from E1 and E2.
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3.6 Security

Lower layer protocols may eventually provide all the security services that may be desired

for applications of RTP, including authentication, integrity, and confidentiality. These

services have recently been specified for IP. Since the need for a confidentiality service is

well established in the initial audio and video applications that are expected to use RTP,

a confidentiality service is defined for use with RTP and RTCP until lower layer services

are available. The overhead on the protocol for this service is low, so the penalty will be

minimal if this service is obsoleted by lower layer services in the future.

Alternatively, other services, other implementations of services and other algorithms

may be defined for RTP in the future if warranted. A profile may specify which services

and algorithms should be offered by applications, and may provide guidance as to their

appropriate use.

Confidentiality means that only the intended receivers can decode the received pack-

ets; for others, the packet contains no useful information. Confidentiality of the content is

achieved by encryption. When encryption of RTP or RTCP is desired, all the octets that

will be encapsulated for transmission in a single lower-layer packet are encrypted as a

unit. For RTCP, a 32-bit random number is prepended to the unit before encryption to de-

ter known plaintext attacks. For RTP, no prefix is required because the sequence number

and timestamp fields are initialized with random offsets.

The default encryption algorithm is the data encryption standard (DES) algorithm

in cipher block chaining (CBC) mode, except that padding to a multiple of 8 octets is

indicated for the P bit. Implementations that support encryption should always support

the DES algorithm in CBC mode as the default to maximize interoperability. This method

is chosen because it has been demonstrated to be easy and practical to use in experimental

audio and video tools in operation on the Internet. Other encryption algorithms may be

specified dynamically for a session by non-RTP means.
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3.7 JRTPLIB

The jrtplib software [15] developed at the Expertise Centre for Digital Media (EDM) is

an object-oriented library written in C++ to help developers using RTP. The latest version

of the library is 3.1.0 (October 2004) and the program is totally free. The 3.x.x series is

a complete rewrite of the library and is meant to be compliant with RFC 3550 [14]. The

library makes it possible for the user to send and receive data using RTP, without worrying

about SSRC collisions, scheduling and transmitting RTCP data, etc. The user only needs

to provide the library with the payload data to be sent and the library gives the user access

to incoming RTP and RTCP data.

The RTPSession class in this library produces the necessary functions for sending

RTP data and handles the RTCP part internally. In addition, the code which is specific

for the underlying protocol by which RTP packets are transported, is bundled in a class

which inherits its interface from a class called RTPTransmitter. This makes it easy for

different underlying protocols to be supported. There is support for UDP over IPv4 and

UDP over IPv6 in the latest version. For applications such as a mixer or translator using

the RTPSession class will not be a good solution. Other components can be used for this

purpose: a transmission component, an SSRC table, an RTCP scheduler, etc. Using these,

it should be much easier to build all kinds of applications.

We use the RTPSession class to receive data and use the TransmissionParams class to

handle the transmission component of the UDP-over-IPv4. The RTPPacket class would

get the data from the RTPSession class. The three major classes make it easy to establish

the RTP network interface for our application.
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Chapter 4

Integration of the MPEG-4 Video and

Audio Decoders with RTP

4.1 Introduction

The MPEG-4 video and audio standards and the RTP protocol have been introduced

above. Now we discuss how we integrate the decoders and play the decoded video and

audio streams on PC, with the decoder input fed by a RTP receiver. Recall Fig. 1.2

which shows the structure of the receiver. The visual object decoder is from the Mi-

crosoft MPEG-4 Video Reference Software [12] which is a public source for encoding

and decoding video stream using the MPEG-4 compression format. The encoder of this

reference software has been optimized previously [8] but the decoder is not. The audio

object decoder is the Freeware Audio Decoder (FAAD2) [16] written by M. Bakker. The

jrtplib 3.1.0 software [15] is used to establish the RTP network interface.

There are two modes of application programming in Windows OS [18]: Console mode

which uses the file I/O and GUI (Graphical User Interface) mode. The GUI mode is

suitable for our application and it can be implemented using the Windows SDK (Software

Development Kit) which is developed by Microsoft for high-level computer languages for

ease of implementation in the GUI mode. The GUI mode can make the use of our system

easy.
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4.2 System Overview

Figure 4.1 shows the flow of our program. The GUI block creates the window and the

user can input the different ports and the different positions of the different clients through

the GUI. After getting these pieces of information, the GUI would create a number of

decoder threads and get the information indicating which decoder is working currently.

This information help the synchronization block to decide which one can handle the other

decoders. For instance, if only the first decoder and the third decoder are working now, the

third decoder would handle the the first decoder. At the same time, the visual decoders and

the audio decoders begin to decode the data received through the RTP network interface.

The next step is to compose the video and the audio. Finally the composite video would

be displayed on the window created by the GUI and the composite audio played.

4.3 RTP Network Interface

To use RTP, first we have to create an RTPSession object. The default setting of the

RTPSession class is such that the UDP-over-IPv4 transmission component will be used

unless specified otherwise. In order to actually create the session, we must call the Cre-

ate member function which takes two arguments. The first one is RTPSessionParams

and specifies the general options for the session. One parameter of this class must be

set explicitly. This parameter is the timestamp unit of the data and can be calculated by

dividing a certain time interval (in seconds) by the number of sampling rate. Another

argument of the Create member function is RTPTransmissionParams which describes the

parameters for the transmission component. There can be serveral transmission compo-

nents, so we choose RTPUDPv4TransmissionParams class which inherits RTPTransmis-

sionParams for the UDP over IPv4 component. In addition, we must set our portbase to

create the channels. Since each transmitter sends two streams (video and audio), we create

two channels to receive video and audio streams. First we set a special port which is the

same as the transmitter setting selected by the user and this special port is used for video.

For audio, we add 100 to this special port number. Then we set the timestamp parameter

to be 1 section per second for the video stream and set another timestamp parameter to be
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Figure 4.1: The flow diagram of the receiver.
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Figure 4.2: Related code of the RTPSession. (a) For video. (b) For audio.

1 section per 4 seconds for the audio stream. The related code is shown in the Fig. 4.2.

After creating the sessions successfully, we add a main loop shown in Fig. 4.3. There

are two functions called StartRTP and ResetRTP and related code is shown in Fig. 4.4. We

can control the main loop through the two functions. For instance, if StartRTP function is

called, the main loop is enabled. Then RTP network interface begins to receive the data.

If ResetRTP function is called, the main loop is disabled that the RTP network interface

stops. Then we can input new ports or new positions through the GUI. In this main loop,

information about participants in the session, packet retrieval, etc., has to be done between

calls to the RTPSession member functions BeginDataAccess and EndDataAccess. This

ensures that the background thread does not try to change the same data that we are

trying to access. Then we iterate over the participants using the GotoFirstSourceWithData

and GotoNextSourceWithData member functions. Packets from the currently selected

participant can be retrieved using the GetNextPacket member function which returns a

pointer to an instance of the RTPPacket class. If the packet information is obtained with

success, we can use the member functions of the RTPPacket class to receive the RTP

payload and write the stream of payload into a temporary file. In this library, the network

interface would lose the first two packets and receive the third packet successfully.
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Figure 4.3: Related code of the RTPClient. (a) For video. (b) For audio.
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Figure 4.4: Related code of the control functions of the RTP.

4.4 Video Decoding and Composition

4.4.1 Video decoding

Firstly, we use VTune to track the Microsoft reference decoder and the complexity analy-

sis is shown in Fig. 4.5. As we can see, the major complexity rests in the dumpWith-

Mask function since the function writes decoded data pixel by pixel into the buffer. The

other major parts are functions doing motion compensation and prediction. Besides, the

calculation of the binary shape form and DCT transform are also the more computation-

intensive portions of the decoder. Although the decoder is fast enough to decode the video

data in real time, if the number of decoders increases, the performance of the system will

degrade.

In order to integrate the video decoder into our system, we modify the original pro-

gram into a function called MPEG4VDecoder and give it two parameters. The first para-

meter is the handle of the window created by us. This handle can give the decoder some

information to control the window and display the video stream. The second parameter is

the index of the thread.

Another major function is dumpFrame function. This function writes the video stream

which has been decoded by MPEG-4 decoder into a YUV file. Figure 4.6 shows the decla-
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Figure 4.5: Complexity breakdown of the original decoder.

Figure 4.6: The declaration of the two main functions.
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Figure 4.7: Positions of the luminance and chrominance samples in 4:4:4 format (from

[3]).

ration of the two main functions. Firstly, ModifiedYdump or ModifiedYdumpWithMask

member functions saves the luminance component into the tmpY buffer. ModifiedDump

or ModifiedDumpWithMask member function saves the two chrominance components

into tmpU and tmpV buffers. Since MPEG-4 standard use 4:2:0 format, we change this

format to 4:4:4 format for display purpose. Figure 4.7 shows the position of the luminance

and chrominance components in 4:4:4 format. To change the format, the ModifiedDump

or ModifiedDumpWithMask member functions up-sample the U and V components and

Fig. 4.8 shows the modified code.

After getting the luminance and chrominance components, we calculate the RGB val-

ues of each pixel and save these values into the rgbValue buffers. There are two possible

situations before display of the rgbValue. The first is that only one rgbValue buffer is not

empty. The other is that more than one decoder work at the same time and it would be dis-

cussed in the next subsection. The first situation means that only one user connects to the

system and we just display this video stream. The ShowImageN function can implement
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Figure 4.8: Code for up-sampling of chrominance components.

Figure 4.9: Related code of showing one video stream.
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Figure 4.10: Relation between the two decoders in time domain.

this case as shown in Fig. 4.9. As we can see, the GetDC function gets the device con-

text that defines a set of graphic objects and their associated attributes from the window

handle. Then index parameter helps us to judge which thread is working and to play this

video stream. The SetPixelV function provided by the Windows SDK library displays the

RGB value pixel by pixel. When we do not need the device context anymore, it has to be

released.

4.4.2 Synchronization and Composition

Now we discuss how to deal with the situation where there are two video inputs and two

decoders work at the same time. In this situation, synchronization is an important problem

since the two decoders may receive the data at different times. The solution is that the first

decoder waits until the second decoder is ready. Figure 4.10 shows the relation between

the two decoders and Fig. 4.11 shows the waiting function. As we can see, the Index

parameter indicate which decoder, “0” means the first decoder and “1” means the second

decoder. The two decoders would be sequentially created and the Ctrl0 for first decoder

and Ctrl1 for second decoder would also be set to “TRUE.” The first decoder finishes

decoding the first frame earlier than the second decoder and waits for some time. When

the second decoder also finishes, it will send a message “Run” and display the two images

in the meantime. The first decoder would break the waiting loop and continue to decode

the next frame after getting the message.
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Figure 4.11: Related code for waiting the other decoder to finish.

Figure 4.12: Different compositions of the two images. (a) Case 0, no overlap. (b) Case 1,

with overlap. (c) Case 2, with overlap. (d) Case 3, with overlap. (e) Case 4, with overlap.
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Figure 4.13: Code to decide the five composition situations.

The last step is to compose the two images decoded by the two decoders. There are

relative spatial relations between the images as shown in Fig. 4.12. Case 0 is where

there is no overlap between the two images. Cases 1–4 are where there are some overlap.

Figure 4.13 shows how the ImageShow function decides the five composition cases and

Fig. 4.14 shows an example of the code included by the ImageShow function to display

the composed images. We declare six kinds of the variables to determine the five cases.

The AbsPosX variable decides that the image decoded by the second decoder is to the left

or the right side of the image decoded by the first decoder. The AbsPosY variable decides

that the image decoded by the second decoder is higher or lower than the image decoded

by the first decoder. The last four variables help us to judge that the two images overlap or

not. If there is some overlap between the two images, we replace the first image data with

zero value by the second image data in the overlap zone. It means there is no object on the

position of the first image data and can be replaced by the second data. Then the function

displays the first image data completely whole displays the second image excluding the

overlapping part.
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Figure 4.14: An example of the code to display the composed image.

In the previous paragraph, we only consider the case of two videos. Now we allow

three or four users. Figure 4.15 shows the diagram explaining the method. As we can

see, the images decoded by the first decoder and the second decoder are composed and

padded to become a new composite stream. The images decoded by the third decoder

and the fourth decoder would also be composed the same way. The two new composite

images would be composed and padded again. Each composition employs the method for

two users described in the previous paragraph and shown in Fig. 4.12. Furthermore, we

add a new step called padding and Fig. 4.16 shows the related code. Since the original

composite image would not become a frame with the form of a box, the padding process

is needed to make the new composite image into the form of a box. We also make the two

new composite images have the same size. In addition, the image in the node of the left

side would cover the image in the node of the right side but the decoder in the node of the

right side would control the decoder in the node of the left side. For instance, if the images

decoded by the third decoder and the fourth decoder overlap, the overlapped region of the

image decoded by the fourth decoder would be covered with the image decoded by the

third decoder. However, the third decoder must wait until the fourth decoder decodes a

frame completely. This means that the fourth decoder can control the other three decoders

51



Figure 4.15: Video composition for three or four users.

and the relation among the four decoders is shown in Fig. 4.17. Finally the completely

composed image would be displayed on the desktop.

We observed that the SetPixelV function is very slow and the time consumed by the

SetPixelV function is about 70% of all time. Hence, we must reduce the use of the SetPix-

elV function. The method is to record the pixels of the last video object and only update

the pixels of the current video object and the last video object. The PreBiV buffer could

record the object’s pixels of the preceding frame. The original code is shown in Fig. 4.18

and the modified code is shown in Fig. 4.19.

If more than four client users connect the receiver, we just create more threads for all

decoders and repeat the padding and composition process. When we repeat these process

one time, the system can deal with the data from two client users. For reason of execution

speed, we only allow four client users presently.
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Figure 4.16: A part of the related code of the padding process.

Figure 4.17: Relation among the four decoders in time domain.
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Figure 4.18: A part of the code of the display process without reducing the use of the

SetPixelV function.

Figure 4.19: A part of the code of the display process which reduces the use of the Set-

PixelV function.
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Figure 4.20: WAV file format (from [9]).

4.5 Audio Decoding and Composition

4.5.1 WAV Format [17]

WAV format is a common format used in audio systems. The Media Control Interface

(MCI), a high level open interface, provides two ways to play the audio data. The two

methods would play the audio data through the WAV file. Therefore we introduce the

WAV format as shown in Fig. 4.20.

• ChunkID: Contains the letters “RIFF” in ASCII form.

• ChunkSize: 36+Subchunk2Size, or more precisely: 4+(8+Subchunk1Size)+

(8 + Subchunk2Size). This is the size of the rest of the chunk following this

number and the size of the entire file in the bytes minus 8 bytes for the two field not

included in these counts: ChunkID and ChunkSize.

• Format: Contains the letters “WAVE” in ASCII form. The “WAVE” format consists
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of two subchunks: “fmt” and “data.” The “fmt” subchunk describes the sound data’s

format.

• Subchunk1ID: Contains the letters “fmt” in the ASCII form.

• Subchunk1Size: 16 for pulse code modulation (PCM). This is the size of the rest of

the subchunk which follows this number.

• AudioFormat: PCM = 1 (i.e. Linear quantization). Values other than 1 indicate

some form of compression.

• NumChannels: Mono = 1, Stereo = 2, etc.

• SampleRate: 8000, 44100, etc.

• ByteRate: ByteRate = SampleRate × NumChannels × BitsPerSample/8.

• BlockAlign: BlockAlign = NumChannels × BitsPerSample/8.

• BitsPerSample: 8 bits = 8, 16 bits = 16, etc. The “data” subchunk contains the size

of the data and the actual sound.

• Subchunk2ID: Contains the letters “data” in ASCII form.

• Subchunk2Size: Subchunk2Size = NumSample×NumChannels×BitsPerSample/8.

• Data: The actual sound data.

4.5.2 Audio Player

Figure 4.21 shows the declaration of audio MCI class. Figure 4.22 shows the opening of

the audio data and Fig. 4.23 shows the playing of the audio data.

The most important MCI function is mciSenCommand. The prototype of mciSend-

Command is “MCIERROR mciSendCommand (MCIDEVICEID IDDEVICE, UINT uMsg,

DWORD fdwCommand, DWORD PTR dwParam).” The following paragraph are mainly

taken from [19].
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Figure 4.21: Related code of the audio declaration.

The first parameter, IDDevice, is the device identifier of the MCI device that is to

receive the command message. The second parameter, uMsg, is the command message.

The third parameter, fdwCommand, is the flag of the command message. The last pa-

rameter, dwParam, is a pointer to a structure that contain parameters for the command

message. This function would return zero if successful or an error otherwise. The low-

order word of the returned DWORD value contains the error return value. If the error is

device-specific, the high-order word of the return value is the driver identifier; otherwise,

the high-order word is zero.

After FAAD2 audio decoder decodes the audio stream received from the RTP network

interface, it would be saved as a temporal audio file with WAV format. As we can see,

we use the pointer, MCI OPEN PARMS, to set the device opening the audio WAV file.

The pointer, MCI PLAY PARMS, lets the mciSendCommand function send a message

to device to play the audio file. Then the program would wait for four seconds and the

device would play in the time. Finally, the pointer, MCI GENERIC PARMS, would stop

and close the device.

For audio composition, we directly add the decoded audio streams from different de-

coders but the effect is not good. The voice of the one decoder may become the noise for

the another decoder. In addition, the overflow value also influence the tone quality. Hence

we now only allow the audio stream from the first user. There may be a better method to

solve this problem.
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Figure 4.22: Related code for audio data opening.

Figure 4.23: Related code for audio playing.
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Chapter 5

Experimental Results

In the last chapter, we discussed our system how to compose multiple videos and audios

and display the result on the desktop. In this chapter, we present some experimental results

on the speed and outcome in different situations. The test sequence is brea cif.cmp file

which is a commonly used video example with binary shape information.

Figure 5.1 shows that the speed of the original decoder software with different number

of users. The initial values in all case are almost the same because the program starts the

decoder sequentially. If only one video decoder is present, the frame rate can get up

to 53 fps (frames per second). If two decoders are at work, the frame rate would go

down to 29 fps. The frame rate is 19 fps for three decoders and 14 fps for four decoders.

The decreasing rate is not proportion to the number of the video decoders. This may be

because the hardware and the operating system are more efficient when there are multiple

decoder threads.

Since we need the 4:4:4 format, we must pad the data and calculate the RGB values.

As shown in Fig. 5.2, the frame rate decreases by about 5–10 fps if we add the padding

function. The efficiency is shown in Fig. 5.3 and it decreases by about 20% compared

with the original decoder.

Then, we must compose these videos and display the composite video. Figure 5.4

shows four composition cases and Fig. 5.5 shows the execution performance. According

to our observation the frame rates are down to 5 fps in the situation with only one decoder

and 2.5 fps in the situation with the two decoders. The decoder becomes too slow. This is
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Figure 5.1: Performance of the original decoder.

Figure 5.2: Performance of decoder with padding.
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Figure 5.3: Relative efficiency.

Figure 5.4: Four composition situations.
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Figure 5.5: Performance of the decoder with composition and display.

because the SetPixelV function used to display the video on the desktop is a slow function.

We can see the decoding without display took down at the case with only composition

and without SetpixelV function. The frame rate can be up to 18 fps and the SetPixelV

function dominates the efficiency of the decoder. Figure 5.6 shows that the execution

time for image display is about 70% of the overall time.

In order to decrease the effect of the SetPixelV function, we reduce the number of the

SetPixelV function calls. The result is shown in Fig. 5.7. As we can see, we increase the

frame rate into 12 fps and 6 fps in the two situations. The efficiency compared with the

previous case without reducing the number of the SetPixelV function increases by about

140%. However, according to the Fig. 5.3, the efficiency compared with the original

system still decreases by about 72%.

Finally, we add the audio decoder into our system. Figure 5.8 shows the effect with

the audio decoder with different numbers of video decoder. We can see that the frame

rates decrease about 1 fps compared with the system with only video decoders reducing

SetPixelV function calls. This means that the effect of the audio decoder is small, almost

negligible.
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Figure 5.6: Time analysis of the decoder.

Figure 5.7: Performance of the decoder after reducing the SetPixelV function.
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Figure 5.8: Performance after adding audio decoder.
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Chapter 6

Conclusion and Future Work

We developed and implemented the receiver for multi-point video conference on personal

computer. The system combined three public programs: JRTPlib, Microsoft MPEG-4

video software, and FAAD2. The relative simulations in previous chapters showed the

system allowed four client users and displayed them on the special position of the desktop.

Furthermore the four video could be overlapped and the other user’s video would be cover

with the previous user’s video in this system. The speed of the system was about 6 fps for

two client users and 3.5 fps for three client users.

For quality improvement we can do some improvements for the main project in the

future.

1. Compose audio streams.

In the multi-point system, the users may speak at the same time. At this situation,

we may get a lot of audio streams in the meantime but the system only play one

audio stream. Hence we could combine these audio streams become one stream to

resolve this problem.

2. Design more module for visual composition.

We only provide moving the video object to any position of the desktop. We can

also provide more functions as rotation, scale, etc.. The user can use these func-

tions to embellish the desktop. Maybe we also can add some virtual objects on the

desktop.
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3. More optimization.

The current processing time is not fast enough and a better optimization is need to

improve the efficiency. We may focus on the SetPixelV function or modifying the

MPEG-4 decoder.
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