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Abstract

OFDM (orthogonal frequency division multiplexing) technique has drawn much
interest recently for its robustness in the mobile transmission environment and its high
transmission data rate. IEEE 802.16a is a wireless local and metropolitan area networks
standard which is based on OFDMAu(orthogonal frequency division multiple access)
technique.

This work considers two main subjects: of the downlink channel estimation under the
specifications of IEEE 802.16a;the interpolation schemes and the DSP implementation.

We use LS estimator for estimations of-pilot carriers because of its low computational
complexity. We study the linear, the second-order interpolations in frequency domain and
the LMS adaptation algorithm, the two-D interpolation in time domain. We did the
simulation on both static and Rayleigh fading channels. Combination of linear interpolation
and 2-D interpolation are chosen to be implemented on DSP board for its low
computational complexity.

Our implementation is software-based, employing Texas Instruments’ TMS320C6416
digital signal processor (DSP) housed on Innovative Integration’s Quixote cPCI card. For
the fixed-point DSP operation environment, floating-point operation is absolutely
time-consuming. There are three ways to accelerate the DSP execution speed: changing
data type, code style optimization, and using intrinsic functions. Changing data type means
we replace the original floating-point operation with 32-bit fixed-point operation and then
16-bit fixed-point operation at last. Code style optimization is to modify the time-wasting
parts of code, such as spared if-else instruction. Intrinsic functions are special functions that
map directly to C64x instructions, to optimize our C code performance. The execution
cycles of each function is improved a lot after optimized although compared with the
theoretical execution cycles, the efficiency is 49% at most. At least, we reach the 0.52
multiples of real time needed per symbol in linear interpolation.
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Chapter 1

Introduction

1.1 Brief Introduction to IEEE 802.16a [1], [2]

In recent years, orthogonal frequency division multiplexing (OFDM) modulation
technique has drawn much attention for its ability to deal with frequency-selective
fading in high-speed wireless communication., The IEEE 802.16 standard committee
has developed a group of standards for wireless mefropolitan area networks (MANS).
Project 802.16a is one of them. The object of'this present study is the OFDMA-

based interface option of this project, namely WirelessMAN-OFDMA.

The IEEE 802.16-2001 specifies the air interface of fixed (stationary) point-
to-multipoint broadband wireless access systems providing multiple services. The
medium access control layer is capable of supporting multiple physical layer speci-
fications optimized for the frequency bands of application. This standard includes

a particular physical layer specification applicable to systems operating between 10

and 66 GHz.

The IEEE 802.16a amends IEEE 802.16-2001 by enhancing the medium access
control layer and providing additional physical layer specifications in support of

broadband wireless access at frequencies from 2 to 11 GHz.

For the reason that our project started in year 2002, we have followed the specifi-



cation of these two standards above. However, the IEEE 802.16 standard committee
has completed a new version of the standard in year 2004, namely ITEEE 802.16-2004.
This standard specifies the air interface of fixed broadband wireless access (BWA)
systems supporting multimedia services. The medium access control layer (MAC)
supports a primarily point-to-multipoint architecture, with an optional mesh topol-
ogy. The MAC is structured to support multiple physical layer (PHY) specifications,
each suited to a particular operational environment. For operational frequencies of
10-66 GHz, the PHY is based on single-carrier modulation. For frequencies below
11 GHz, where propagation without a direct line of sight must be accommodated,
three alternatives are provided, using OFDM, OFDMA, and single carrier modula-

tion techniques.

Since pilot allocations are key tothe study reported in this thesis, we summarize
the difference between these two versions:about the carrier allocations. Table 1.1
shows the pilot allocation of IEEE 802.16-2004. Thé variable set of pilots embedded

within the symbol of each segment.obeys the following rule:
PilotsLocation = VariableSet#z + 6 - (FUSC_SymbolNumber mod 2) (1.1)

where FUSC_SymbolNumber counts the FUSC (full uasage of subchannels) symbols
used in the transmission starting from 0. The arrangement is slightly different from
the specification in the IEEE 802.16a-2003 (see also Fig.2.3). We have four kinds

of variable location pilot arrangements in 802.16a but there are only two kinds in

IEEE 802.16-2004.

As to the frame structure, the IEEE 802.16-2004 also made modification to it.
From Fig. 1.1(a) we can see that in IEEE 802.16-2004, each frame begins with
a preamble followed by a downlink transmission period and an uplink transmission
period. This is quite different from the frame structure in IEEE 802.16a-2003, shown

in Fig. 1.1(b), where preamble is used only in the uplink subframe.
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Table 1.1: Carrier Allocation in the OFDMA DL (from [1])

Parameter Value Comments

Number of DC Subcarriers 1 Index 1024

Number of Guard Subcarriers. Left 173

Number of Guard Subcarriers. Right 172

Number of Used Subcarniers ( ¥, ) 1703 Number of all subcarmiers used within a symbeol.
mcluding all possible allocated pilots and the DC
carrier.

Pilots

VariableSet #0 24 0,72.144.216.288.360,432.504,576.648.720.792.864,
936.1008.1080.1152.1274,1296.1368.1440.1512 1584,
1656.48.120,192.264.336.408 480.552.624.696.768.
840.912.984.1056.1128.1200,1272.1344.1416.1488,
1560.1632,24.96.168,240,312,384.456.,528.600.672,
744.816.888,960.1032, 1104.1176.1248.1320.1392,
1464.1536,1608,1680

ConstantSet 70 4 39.645.1017.1407.330.726.1155.,1461.351.855.1185,
1545

VariableSet #1 24 36,108.180.252,324 396.468,540.612, 684,756,828,
900.972.1044.1116.1188,1260.1332.1404.1476.1548.
1620.1692.12.84.156,228.300,372.444.516.588.660,
732.804.876.5948.1020.1092.1164,1236.1308.1380.
1452.1524,1596.1668.60.132.204 276,348 420,492,
564.636..708.780.852.924.996.1068.1140,1212,1284.
1356.1428,1500,1572.1644

ConstantSet #1 4 261.651.1143.1419.342.849.1158.1530.522.918.1206,
1701

Number of data subcarriers 1534

Number of data subcarriers per subchannel | 48

Number of Subchannels 32

PermutationBase 3,18.2, 8,16, 10, 1115, 26:22.6.9, 27, 20, 25, 1,29;
7.21.5.28,31,23,17.4.24. 0. 13, 12,19, 14. 30

1.2 Motivation of This Thesis

In high data rate transmission, the imperfectness of channels, e.g., multipaths, causes
more severe trouble than in low-rate transmission in demodulation. The result of
data transmission over such a channel is that each received symbol is affected some-
what by adjacent symbols, thereby bringing about a common form of interference
referred to as inter-symbol-interference (ISI). Inter-symbol-interference is a major
source which degrades performance in the reconstructed data at receiver. In single
carrier transmission, we usually employ an time domain adaptive equalizer to solve

this problem. If the channel has very long impulse response compared with symbol

4



duration, time domain equalizer may fail to handle ISI. However, in OFDM sys-
tem, ISI can be easily eliminated by inserting cyclic prefix which is longer than the

maximum delay spread, at the expense of some loss in capacity.

In uncoded OFDM, we only need a frequency domain equalizer with one tap
at the receiver for each subcarrier. The purpose of channel estimation is to obtain
the channel response at each subcarrier. Then, we can easily obtain the equalizer
coefficient, the inverse of the channel gain. In channel coded OFDM, such as that
in IEEE 802.16a OFDMA, equalization is not needed, but the estimated channel
response is directly useful in channel decoding. Hence in this thesis, we will in-
vestigate channel estimation methods that can be employed to the IEEE 802.16a

downlink transmission.

1.3 Organization of This Thesis

The contents of this thesis are as follows. In ¢hapter 2, we give some specifications of
the IEEE 802.16a OFDMA downlink system and introduce the channel estimation
approaches. In chapter 3, we describe the implementation platform, which con-
sists of Texas Instruments’ TMS320C6416 digital signal processor(DSP) on a ¢PCI
board Quixote made by Innovative Integration. Then, in chapter 4, we discuss the
performance of the proposed channel estimation method as well as its DSP imple-
mentation. At last, we will give the conclusion and potential future work in chapter

5.



Chapter 2

Channel Estimation for IEEE
802.16a OFDMA Downlink

Transmission

For wideband mobile communication systems, the radio channel is usually frequency
selective and time variant. Therefore, our estimation schemes combine frequency
domain estimation with time ‘domain processing.- In this thesis, our algorithms
for channel estimation in OFDM.system are intiinately related to pilot sub-carrier

arrangement.

2.1 Introduction to the IEEE 802.16a TDD OFDMA
System

The IEEE standard 802.16a specifies the WirelessMAN air interface for wireless
metropolitan area networks. There are several system modes in 802.16a: SCa
(single-carrier modulation), OFDM (orthogonal frequency-division multiplexing) and
OFDMA (orthogonal frequency-division multiple access). It also supports two du-
plex types: TDD (time division duplex) and FDD (frequency division duplex). We

consider the TDD OFDMA option. Most contents in this section are taken from [2].



Figure 2.1: Time structure of OFDMA symbol (from [2]).

2.1.1 Generic OFDMA Symbol Description

2.1.1.1 Time Domain Description

An OFDM symbol contains the useful symbol'part and the cyclic prefix (CP) part.
The useful symbol time is referred to as 1. The CP is a copy of the last Tj, pus of
the useful symbol period. The two together are referred to as the symbol time 7.
The ratio of CP time to useful time (T}, /7},) that should be supported includes 1/32,
1/16, 1/8 and 1/4. In this thesis, the CP time to useful time ratio is set to 1/8. The

time domain OFDMA symbol structure is shown in Fig. 2.1.
2.1.1.2 Frequency Domain Description

In frequency domain, we have 3 carrier types:

e Data carriers — for data transmission.
e Pilot carriers — for various estimation purposes.

e Null carriers — no transmission at all, for guard bands and DC carrier. (The
purpose of the guard bands is to enable the signal to naturally decay and

create the FFT “brick wall” shaping.)



In the OFDMA mode, active carriers are devided into subsets of carriers, and each
subset is termed a subchannel. In the downlink (DL), a subchannel may be intended
for different groups of receivers; similarly, a transmitter may be assigned one or more
subchannels in the uplink (UL), so serveral transmitters may transmit in parallel.
The symbol structure in frequency domain will be shown in detail in the following

section.

2.1.2 Primitive Parameters

Four primitive parameters characterize the OFDMA symbol:

e BIW. This is the nominal channel bandwidth. And it equals 10 MHz in our

system simulation.

(Fs/BW). This is the ratio of “sampling.frequency” to the nominal channel
bandwidth. This value isiset tol 8/7

(T,/Tp). This is the ratio of GP_time o “useful” time. We use 1/8 in our

system.

Nppr. This is the number of points in the FFT. The OFDMA PHY defines

this value to be 2048.

2.1.3 Derived Parameters

The following parameters are defined in terms of the primitive parameters.

o [, = (F;/BW)-BW = sampling frequency. The value equals 10 x 8/7 = 11.42
MHz.

e ANf =F,/Nppp = carrier spacing = 5.57617 KHz.

e T, =1/Af = useful time = 179.33 pus.
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o T, =(1,/Tp) - T, = CP time = 22.4 ps.
o T, =T, +T, = OFDM symbol time = 201.9 ps.

e 1/F,= sample time = 87.5657 ns.

2.1.4 Downlink Carrier Allocation

Since we focus on downlink pilot-symbol-aided channel estimation in this thesis, it

is necessary to understand what the allocation of carriers is.
2.1.4.1 Pilot Allocation

The carriers allocation in a DL OFDM symbol is shown in Fig. 2.2. Null carriers
are allocated in the left and right sides as wellas at DC. The pilot and data carriers
are termed useful carriers since they transmit useful information. The pilot tones
are allocated first, and the remainder of the used Qérriers are divided into 32 sub-

channels, and then the data cartiers are allocated - within each subchannel.

32 datacarriers (no pilots in the group)

Al ! NI A A A
Guard band Cld o DC carrier 1 A || Guard band
< | : ! : ‘ ! : | »
Groupl Group?2 Group48
The 1702 used carriers = 1536 data carriers + 166 pilot carriers
? pilot f subchannel 1 ‘ subchannel 2

Figure 2.2: Ilustration of carrier usage in OFDMA DL (from [3]).



The pilot carriers include fixed-location pilots and variable-location pilots. The
carrier indices of fixed-location pilots never change. The carrier indices of the
variable-location pilots vary according to the formula varLocPilot;, = 3L + 12P,
where var LocPiloty is the carrier index of a variable-location pilot, L is the symbol
index that cycles through the values 0,2,1,3 periodically every 4-symbol period, and

P, ={0,1,2,.....,141}. The pilot carriers allocation map is shown in Fig. 2.3.

carrier index
I

LTI o e D]]]IU]]
:|4

L2 !IIIHII|H|||I|||I|H|H|||II|||H D]]]E]J
0 ) 18 30

( N oot -1

2L !IIIIH|H|||||I||IH|H||||I|I|IH---m]]]]]]]
0 3 13 27

symbol

ndex

+ o [T
0 |I

-

2 N -1
IER RS !llll\ll LR TTTTLL o @ e MI!
| |
0 Q9 21 N e =1
nid L0 !llll\ll\lll LLLETTELERTTTLLEL) o e M]J
| |
v 0 12 24 L |
time N
Allocation Kev: I:I Variable Location Pilot I Fixed-location Pilot I:llﬁl;u;l

Figure 2.3: Pilot allocation in the OFDMA DL (from [2]).
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2.1.4.2 Data Carrier Allocation

After inserting the pilots, the remaining space is for the useful carriers from the data
subchannels. To allocate data subchannels, we partition the remaining carriers into
groups of contiguous carriers. Each subchannel consists of one carrier from each of
these groups respectively. The number of carriers in a subchannel is therefore equal
to the number of groups, and it is denoted Ngypearriers- The number of carrier groups
is equal to the number of channels, and it is denoted Ngyupchannes- 1he total number

of data carriers is thus equal to Ngypcarriers X Nsubchannels-

The exact partitioning into subchannels is according to the following equation

called a permutation formula:

C&T’?“Z‘ET(TL, 3) = (Nsubchannels) -n+ {pS [and(Nsubchannels)]

+[Dcell . cezl[(n e 1)/Nsubchannels]}(mod(Nsubchannezs)) (21>

where:

e carrier(n,s) = carrier index of carrier n in subchannel s.

e s = index number of a subchannel, from the set [0, - -+, Ngubchanners — 1]-
e n = carrier-in-subchannel index from the set [0, - - -, Nsubcarriers — 1]-

® Noubchannels = number of subchannels.

e ps[j] = the series obtained by rotating { PermutationBaseg}, which is given

in the Table 2.1, cyclically to the left s times.
e ceil] | = ceiling function which rounds its argument up to the next integer.

e [D.; = a positive integer assigned by the MAC to identify this particular

base-station cell.

® X, od(k) = the remainder of the quotient X /k, which is at most k — 1.
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Table 2.1: Carrier Allocation in the OFDMA DL (from [2])

Parameter Value
Number of de carriers 1
Number of guard carriers, left 173
Number of guard carriers, right 172
N, yeq - Number of used carriers 1702
Total number of carriers 2048
NiarLocPilots 142
Number of fixed-location pilots 32
Number of variable-location pilots which 8
coineide with fixed-location pilots
Total number of pilots? 166
Number of data carriers 1536
N ubehannels 32
Niubcarriers 48
Number of data carriers per subchannel 48
BasicFixedLocationPilots 10,39, 261, 330, 342, 351, 522, 636, 645, 651, 708, 726,
756, 792, 849, 855, 918, 1017, 1143, 1155, 1158, 1185,
1206, 1260, 1407, 1419,1428, 1461, 1530,1545, 1572,
1701}
{PermutationBase} {3, 18,2, 8. 16, 10, 11, 15, 26, 22, 6, 9, 27, 20, 25, 1, 29,
7,21,5.28,31,23,17,4, 24,0, 13,12, 19, 14, 30}

Variable Location Pilots which coineide with Fixed-location Pilots are counted only once in this value.

The numerical parameters are given in Table 2.1.

2.1.5 Data Modulation and Pilot Modulation

2.1.5.1 Data Modulation

The data modulation schemes in 802.16a are shown in Fig. 2.4. The data bits are
entered serially to the constellation mapper. Gray-mapped QPSK and 16-QAM

must be supported, whereas the support of 64-QAM is optional.
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Figure 2.4: QPSK, 16-QAM and 64-QAM constellations (from [2]).

2.1.5.2 Pilot Modulation

Pilot carriers are inserted into each data butst in order to constitute the symbol and
they are modulated according te theit ¢arrier-locations within the OFDMA symbol.
A PRBS (pseudo-random binary sequence) génerator is used to produce a sequence
wy where k corresponds to the carrier index. The value of the pilot modulation
on carrier k is then derived from wy. The polynomial for the PRBS generator is

XM 4+ X% +1, as shown in Fig. 2.5.

Symbols in the TDD OFDMA system DL transmission can be separated into two
different types. The first three symbols are preamble symbols, and other symbols are
normal symbols. The initialization vector of the PRBS in the DL normal symbols
is [11111111111], while the initialization vector of the PRBS in the DL preamble
symbol is [01010101010]. The PRBS shall be initialized so that its first output bit
coincides with the first usable carrier. A new value shall be generated by the PRBS

on every usable carrier. Each pilot shall be transmitted with a boosting of 2.5 dB
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Figure 2.5: Pseudo random binary sequence (PRBS) generator for pilot modulation
(from [2]).

over the average power of each data tone. The pilot carriers shall be modulated as

Re {ey} = g(% L4k T {ex} = 0. (2.2)

2.2 DL Channel Estimation Methods

Interpolation plays an significant role in pilot-symbol-aided channel estimation. Our
interpolation schemes work in both frequency and the time domains. Linear and
second-order interpolation are applied in the frequency domain, while 2-D interpo-
lation and LMS (least mean square adaptation) optimize their performance in the

time domain.

2.2.1 Pilot-Symbol-Aided Channel Estimation

Channel estimators usually need some kind of pilot information as a point of ref-
erence. A fading channel requires constant tracking, so pilot information has to be
transmitted more or less continuously. Decision-directed channel estimation can also
be used. But even in these types of schemes, pilot information has to be transmitted

regularly to mitigate error propagation [4].
In general, the fading channel can be viewed as a two-dimensional (2-D) signal
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(time and frequency), which is sampled at pilot positions and the channel coefficients

between pilots may be estimated by interpolation.

Based on a priori known data, we can estimate the channel information on pilot
carriers roughly by the least-square (LS) or the minimum mean square error (MMSE)

estimator. An LS estimator minimizes the following squared error [5]:
1Y — HysX| | (2:3)

where Y is the received signal and X is a priori known pilots, both in the frequency

domain and both being N x 1 vectors where N is the OFDM FFT size. H,s is an

N x N matrix whose values are 0 except at pilot locations m; where: = 0,--- | N,—1:
Hopoomo 0 0 0
0 Hpy o, 0 0
I:ILS - O O Hmz,m2 O (24)
0 0 0 e 0
0 0 = 0 - . H,

Np—hHmNp_l

Therefore, (2.3) can be rewritten as
[V (m) — Hpg(m)X (m)]?, for all m = m,. (2.5)

Then the estimate of pilot signals, based on one observed OFDM symbol, is given

by
Y(m)  X(m)H(m)+ N(m)

Histm) = 36 = = X(m)

= H(m) + % (2.6)

where N(m) is the complex white Gaussian noise on subcarrier m. We collect

Hps(m) into I:Ip,Ls, an N, x 1 vector where N, is the total number of pilots, as

~

H,1s = [Hprs(0) Hyrs(1) -+ Hyrs(N, — 1)]*

= XY, (2.7)
— [ Yp(0) Yp(1) Yp(Np—1) ]T
Xp(0)? Xp(1)7 " 777 Xp(Np—1)1 7

where X, and Y, are the collections of the transmitted and the received signal

on the pilot subcarriers respectively. The LS estimate of H,, based on one OFDM
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symbol only is susceptible to Gaussian noise, and thus an estimator better than the

LS estimator is preferable.

The minimum mean-square error (MMSE) estimate has been shown to be better
than the LS estimate for channel estimation in OFDM systems, but the major
drawback of the MMSE estimate is its high complexity. A low-rank approximation
results in a linear minimum mean squared error (LMMSE) estimator that uses the
frequency-domain correlation of the channel [6]. The mathematical representation

for the LMMSE estimator of pilot signals is

A~

-1
Hp,lmmse = RHpHp,LS RH

P,LsHp,LSHp’LS

= RHPHP<RHPHP + Oi(Xpr)_l)_l:[:Ip’LS (28)

where H, g is the least-square estinite!@fsH, in (2.7), 02 is the variance of the

Gaussian white noise, and the covariance matrices are defined by

RHpHp,LS s E{HPHgLS}v (29)
RHp,LSHp,LS E{HP,LSHgLS}a (2'1())
Ry,n, = E{HH}. (2.11)

Note that there is a matrix inverse involved in the MMSE estimator, which must
be calculated every time, and the computation of matrix inversion requires O(N?)
arithmetic operations [7]. We also need to use the statistical properties of the
unknown channel. Therefore, we use the LS estimator which requires only O(N,)
operations instead of the LMMSE due to the concerns of complexity and unknown

information.

2.2.2 Frequency Domain Interpolation Methods

2.2.2.1 Linear Interpolation

Linear interpolation is a commonly used method of interpolation. It does the inter-

polation simply with two known data, and interpolates those unknown data between
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them. It is given by [§]

Ho(K) = Ho(m 4 1) = (Hy(m + 1) = Hym)) T + Hy(m)  (212)

where H,(k),k =0,1,---, N,, are the channel frequency responses at pilot subcar-
riers, L is the distance between the two given data, that is, the pilot sub-carriers

spacing, and 0 < [ < L.
2.2.2.2 Second-Order Interpolation

Theoretically, using higher-order polynomial interpolation may fit the channel re-
sponse better than linear interpolation [9]. However, the computational complexity
grows as the order is increased. Here we consider the second order polynomial inter-
polation, and it has also been called*Gaussian second order estimation. It is given
as a solution to the second order polynomialswith respect to I/L by using three
reference signal points. The interpolation is obtained using three successive pilot

subcarriers signal as follows [10};

H.(k) = H.(m+1)

= cH,(m—1)+4 coHy(m)+ c_1Hy(m + 1) (2.13)

where

The notations are the same as they are in linear interpolation.
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Figure 2.6: Illustration of 2D interpolation.

2.2.3 Time Domain Improvement Methods

As Table 2.1 shows, we can only use 166:pilots in one symbol to interpolate the
channel in the frequency domain. It is-not sufficient because the pilot spacings are
too wide in our system. Since thé ¢hannel doesnet change abruptly over time, here

we propose two methods to improve the performance.
2.2.3.1 Two-Dimensional Interpolation [11]

Recall the downlink variable pilot allocation in IEEE 802.16a in Fig. 2.3. The

equation of the allocation formula is
var LocPilot, = 3L + 12P; (2.14)

where:

e varLocPilot, = carrier index of a variable-location pilot.
e L €0, ---,31is a function of the symbol index, modulo 4.

o Py e {07 L2 7NvarLocPilots - 1}
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Because the positions of the variable location pilots vary with a period of four
symbols, we could make use of the four sets of pilot locations to help channel esti-

mation. The maximum number of pilot locations that we can use is

(NvarLocPilots - NCOincidentPilots) X 4+ NfixLocPilots = (142 - 8) x 4+ 32 = 568

(2.15)

where Neoonincident Pilots 18 the number of the variable location pilots which are coin-
cident with the fixed location pilots. For example, we can use extrapolation in the
time domain to estimate the channel frequency response at the pilot locations of
other symbols. It should work the best when transmitting through a static channel.

The method is illustrated in Fig. 2.6.
One possible way of interpolation (extrapolation) is
Nisrs 8 BCE =500 317 4(f)

)+ 5h75(f)

. - (2.16)
HRE(f) + 3h76(f)
+3R25(f) + 3R (f)
where h” 2(f),n=0,1,--- 7, are the channel frequency responses at pilot carriers

in the nth previous symbol. We can use interpolations again in the frequency do-
main after obtaining h2P~¢**%~P(f). Since the equivalent number of pilots becomes

568/166 = 3.421 times that of the original case, better estimation is expected.

However, there are seven extra registers needed to store the channel frequency
response at pilot carriers. Except for the hardware concern, a fast fading channel
might seriously affect the accuracy of the extrapolations in the time domain, be-
cause we need to use the information from the seven previous symbols. Thus, an

alternative is use less previous symbols, say only 3 or 2. Then the extrapolation
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formula becomes

and

respectively.

1.2D—extrap—
h pP—p

3sets

BQDfe:ctrapfp
2sets

(f) = LhB(f) + SR7,(f)

(f) = 3hB(f) + 1h24(f)

(2.17)

(2.18)

When dealing with fading channels, we consider replacing the formulas above

with oD entran ~
h’4setsex o p(f) — h%))(f)
2l F= 1h7s(f)
+I,(f) = 3h7(f)
FIRE (A R (f)
4"'"-3 a7 )
Rons P (f) = RE(f)
+ER () = $h5(f)
+30P,(f) — P4 (f),
and oD entran ~
hZSetsex o p(f) = hg(f)
HERP L (F) = LRP (),
where we emphasize the weighting of Bﬁ( f) n = —1,—2,—3 nearier

(2.19)

(2.20)

(2.21)

to R2(f) in

a linear fashion, because when time variation of the channel is not overly fast,

the channel coefficients can be modelled to a first-order approximation as varying

linearly with time in a short-enough time span.
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Figure 2.7: Adaptive channel estimation using the LMS algorithm

2.2.3.2 Least Mean Square (LMS) Adaptation [12], [14]

The LMS algorithm is the most widely used adaptive filtering algorithm in prac-
tice for its simplicity. Meanwhile, it is stable and robust against different channel

conditions.

The LMS channel estimation process:is:illustrated in Fig. 2.7, where X (f) is the
input signal sent into the channel, H( f).is ¢hannel frequency response, and Y'(f) is
the channel output. The following equations-apply to our work where H7},,4(f) is

the estimated channel response at the nth symbol.

e Filtering by channel:

y(n) = h(n) x x(n), (2.22)
Y(f) =H(f) - X(f). (2.23)
e Estimated error:
e(f) = Xaftendecz‘sion(f) - X(f)? (224)
S Y(f)
X(f) ., (2.25)
e Cost function:
E(f) = e(f) = Kagreraecision(f) — X(f)I”. (2.26)
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e Channel frequency response adaptation:

H7 /s (f) = Hips(f) + pe"(HX(f), (2.27)

where p is the step size which affects the speed of convergence. With a larger
step size, the estimated channel converges more quickly to the real channel

response. However, if it is too big, then it may lead to a unstable condition.

To minimize the error shown in (2.24), we try to minimize the expected value
of (2.26). For this, we can tune the estimated channel weights adaptively. In our
simulation, we use the interpolated channel estimation Zzlfmerp( f) as H?,,4(f) and
H?,,s(f) is obtained by (2.27) when n > 0. Following the algorithm, only the first
symbol’s pilot information is used ingthe whele flow, thus the pilot information in
other symbols is wasted. So we try te combine the interpolated channel and the
H? ,,s(n) which is the estimated channel by using EMS algorithm when n > 0. The

combination is given by

N a'HgMS(f)+(1—a)'ﬁglte'rp<f)u n >0,
;Lwdified LMS(f) = B (2-28)
Hﬁzterp<f>7 n= 07
where H7,,5(f) is the channel estimated by the LMS adaptation algorithm and
H?

interp

(f) is the channel estimated by interpolation. The « and the (1 — «) are the

weighting factors for H? ,,«(f) and H?

interp

(f), respectively. Therefore, f]ﬁwdiﬁed vs(f)
is the combination of these two kinds of estimation outcomes and may be more cor-
rect. Then, we use [:IrTrLLodified wvs(f) in place of H},,4(f) in the right-hand side of

(2.27) to calculate the estimated channel response for the next symbol.
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Chapter 3

DSP Introduction

DSP implementation is the final goal of our work. The DSP platform that we use
is the Quixote board produced by Innovation Integration. The DSP on the board
is TMS320C6416 made by Texas Instruments. In this chapter, we introduce the

architectures of the Quixote board and the DSP chip.

3.1 Introduction to TMS320€6416 DSP [16]

3.1.1 TMS320C6416 Features

The TMS320C64x DSPs are the highest-performance fixed-point DSP generation
of the TMS320C6000 DSP devices with a performance of up to 6000 million in-
structions per second (MIPS) and an efficient C compiler. The TMS320C64x de-
vice is based on the second-generation high-performance, very-long-instruction-word
(VLIW) architecture developed by Texas Instruments (TI). The C6416 device has
two high-performance embedded coprocessors, Viterbi Decoder Coprocessor (VCP)
and Turbo Decoder Coprocessor (TCP) that significantly speed up channel-decoding

operations on-chip. But they do not apply to the work reported in this thesis.

The C64x core CPU consists of 64 general-purpose 32-bits registers and 8 func-

tion units. These 8 function units contain:
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e Two multipliers.

e Six ALUs.

Features of C6000 devices include :

e Advanced VLIW CPU with eight functional units, including two multipliers

and six arithmetic units:

— Executes up to eight instructions per cycle.

— Allows designers to develop highly effective RISC-like code for fast devel-

opment time.

e Instruction packing:

— Gives code size equivalence for eight, instructions executed serially or in

parallel.

— Reduces code size, program fetches, and power consumption.

Conditional execution of all instructions:

— Reduces costly branching.

— Increases parallelism for higher sustained performance.

Efficient code execution on independent functional units:

— Efficient C compiler on DSP benchmark suite.

— Assembly optimizer for fast development and improved parallelization.

8/16/32-bit data support, providing efficient memory support for a variety of

applications.

40-bit arithmetic options add extra precision for applications requiring it.

24



Saturation and normalization provide support for key arithmetic operations.

Field manipulation and instruction extract, set, clear, and bit counting support

common operation found in control and data manipulation applications.

The additional features of C64x include:

Each multiplier can perform two 16x16 bits or four 8 x8 bits multiplies every

clock cycle.
Quad 8-bit and dual 16-bit instruction set extensions with data flow support.

Support for non-aligned 32-bit (word) and 64-bit (double word) memory ac-

cesses.

Special communication-spéeific instructions have been added to address com-

mon operations in error-correeting eodes.

Bit count and rotate hardware extends support for bit-level algorithms.

3.1.2 Central Processing Unit

The block diagram of the C6416 DSP is shown in Fig. 3.1. The DSP contains:

Program fetch unit.

Instruction dispatch unit.

Instruction decode unit.

Two data paths, each with four functional units.

64 32-bit registers.

Control registers.
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Figure 3.1: Block diagram of the TMS320C6416 DSP [16].

e Control logic.

e Test, emulation, and intetrupt logic:

The TMS320C64x DSP pipeline provides flexibility to simplify programming and
improve performance. The pipeline can dispatch eight parallel instructions every

cycle. These two factors provide this flexibility:

e Control of the pipeline is simplified by eliminating pipeline interlocks.

e Increased pipelining eliminates traditional architectural bottlenecks in pro-
gram fetch, data access, and multiply operations. This provides single cycle

throughput.

3.1.2.1 Pipeline

The pipeline phases are divided into three stages as shown in Fig. 3.2:

e Fetch has 4 phases:
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4— Fetch ——— b4 Decode 44— Execute —p

PG PS | FW | PR | DP | DC| ET1 E2 E3 | E4 | E5

Figure 3.2: Pipeline phases of TMS320C6416 DSP [16].

— PG (program address generate): The address of the fetch packet is de-

termined.

— PS (program address send): The address of the fetch packet is sent to

memory.

— PW (program access ready wait): A program memory access is per-

formed.
— PR (program fetch packet receive): The fatch packet is at the CPU
boundary.
e Decode has two phases:
— DP (instruction dispatch): The next execute packet in the fetch packet is
determined and sent to the appropriate functional units to be decoded.

— DC (instruction decode): Instructions are decoded in functional units.
e Execute has five phases:

— E1: Execute 1.
— E2: Execute 2.
— E3: Execute 3.
— E4: Execute 4.

— E5: Execute 5.
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The pipeline operation of the C62x/C64x instructions can be categorized into seven
instruction types. Six of these are shown in Table 3.1, which gives a mapping of
operations occurring in each execution phase for the different instruction types. The

delay slots associated with each instruction type are listed in the bottom row.

The execution of instructions can be defined in terms of delay slots. A delay slot
is a CPU cycle that occurs after the first execution phase (E1) of an instruction.
Results from instructions with delay slots are not available until the end of the last
delay slot. For example, a multiply instruction has one delay slot, which means
that one CPU cycle elapses before the results of the multiply are available for use
by a subsequent instruction. However, results are available from other instructions
finishing execution during the same CPU cycle in which the multiply is in a delay

slot.

Table 3.1: Execution Stage Length Description for Each Instruction Type [16]

Instruction Type

16 X 16 Single Cé4x
. Multiply/ Multiply
Single Cyel St Load B h
T e C64x .M Unit = Extensions o Ll
Non-Multiply
Execution E1 Compute Read operands Compute  Reads oper- Compute Target-
phases result and start address ands and address code
and write to  computations start com- in PGT
register putations
E2 Compute result  Send ad- Send ad-
and write to dress and dress to
register datato memory
memory
E3 Access Access
memory memory
E4 Write results  Send data
to register back to CPU
ES Write data
into register
Delay 0 1 ot 3 41 51

slots
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3.1.2.2 Functional Units

The eight functional units in the C6000 data paths can be divided into two groups of
four; each functional unit in one data path is almost identical to the corresponding
unit in the other data path. The functional units are described in Table 3.2. Besides
being able to perform 32-bit operations, the C64x also contains many 8-bit to 16-bit
extensions to the instruction set. For example, the MPYU4 instruction performs
four 8 x8 unsigned multiplies with a single instruction on an .M unit. The ADD4

instruction performs four 8-bit additions with a single instruction on an .L unit.

The data line in the CPU supports 32-bit operands, long (40-bit) and double
word (64-bit) operands. Each functional unit has its own 32-bit write port into a
general-purpose register file (listed in#ig.'8:3). All units ending in 1 (for example,
L1) write to register file A, and all unifsending in 2 write to register file B. Each
functional unit has two 32-bit:read ports.for source operands srcl and src2. Four
units (.L1, .12, .S1, and .S2) have an @xtrar8zbit-wide port for 40-bit long writes,
as well as an 8-bit input for 40-bit long reads. Because each unit has its own 32-bit
write port, when performing 32-bit operations all eight units can be used in parallel

every cycle.

3.1.3 Memory Architecture

The C64x has a 32-bit, byte-addressable address space. Internal (on-chip) memory
is organized in separate data and program spaces. When off-chip memory is used,
these spaces are unified on most devices to a single memory space via the external
memory interface (EMIF). The C64x has two 64-bit internal ports to access internal
data memory have and a single internal port to access internal program memory;,

with an instruction-fetch width of 256 bits.

A variety of memory options are available for the C6000 platform. In our system,
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Table 3.2: Functional Units and Operations Performed [16]

Function Unit

\ Operations

L unit (.L1, .L2)

32/40-bit arithmetic and compare operations
32-bit logical operations

Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations

Dual 16-bit min/max operations

Quad 8-bit min/max operations

.S unit (.S1, .S2)

32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations

Branches

Constant generation

Register transfers to/from ¢eontrol register file (.S2 only)
Byte shifts

Data packing/unpacking

Dual 16-bit compare-operations

Quad 8-bit compare operations

Dual 16-bit shift-operations

Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations

M unit (.M1, .M2)

16 x 16 multiply operations

16 x 32 multiply operations

Quad 8 x 8 multiply operations

Dual 16 x 16 multiply operations

Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operation
Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rotation

Galois Field Multiply

D unit (.D1, .D2)

32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset (.D2 only)
Load and store double words with 5-bit constant

Load and store non-aligned words and double words

5-bit constant generation

32-bit logical operations
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the memory types we can use are:

On-chip RAM, up to 875 MB.

e Program cache.

32-bit external memory interface supports SDRAM, SBSRAM, SRAM, and

other asynchronous memories.

Two-level caches [20]. Level 1 cache is split into program (L1P) and data
(L1D) cache. Each L1 cache is 16 KB. Level 2 memory is configurable and
can be split into L2 SRAM (addressable on-chip memory) and L2 cache for
caching external memory locations. The size of L2 is 1 MB. External memory
can be several MB large. The @ceess titne. depends on the memory technology
used but is typically around 100 to.133 MHz. In our system, the external
memory usable by DSP is a"32 MB-SDRAM.

3.2 Introduction tothe Quixote cPCI Board [15]

The Quixote is one of Innovative Integration’s Velocia-family baseboard for applica-
tions requiring speed and processing power. Quixote features a processing core built
around Texas Instruments’ fixed-point TMS320C6416 and Xilinx Virtex2 with 32
MB of DSP RAM and 2 MB of FPGA computation RAM (optional). The T1 C6416
DSP operating at 600 MHz offers a processing power of 4800 MIPS. The analog 10
features of the board include dual channels of 105 MHz A/D and D/A (2 in, 2 out).

A block diagram of Quixote board is shown in Fig. 3.4.

The Quixote card has a 32 MB SDRAM for use by the DSP. When used with the
advanced cache controller on the 'C6416, the SDRAM provides a large, fast external
memory pool for DSP data and code. The Quixote has a serial EEPROM for storing

data such as board identification, calibration coefficients, and other data that needs
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Figure 3.4: Block diagram of Quixote [15].

to be stored permanently on the card. This memory is 16K bits in size. Functions

for using the serial EEPROM are included in the Pismo Toolset that allow the

software application programmer to easily write and read from the memory without

controlling the low-level interface.

The Caliente subsystem handles the details of interacting with the baseboard

in streaming mode. There are 3 ways for data transmission between host PC and

DSP: data streaming, block mode data streams and message packet 1/0.
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Data Streaming. To address high-bandwidth data transfer applications, Quixote
is capable of continuous transmission and reception of data via the PCI bus, using
a mechanism called streaming. When streaming, the target DSP, which must be
running a downloaded DSP application, transfers data between target DSP memory
and host PC memory automatically with no host intervention. Streaming input is
independent of streaming output. It is possible to acquire data from any number and
mix of input devices at a programmed rate. Simultaneously, data may be streamed
out to a variety of output devices at a different programmed rate. Data flow is fully

controlled by use of device drivers called from within the DSP target application.

During data streaming on baseboards, data flows between peripherals and a ded-
icated, onboard, digital signal processor (DSP) while simultaneously flowing data
between the DSP and the host application software. The dedicated DSP can ex-
tensively process data as it travels between peripherals and the host application.

Fig. 3.5 illustrates the data streaming operation.

DSP Baseboard

Peripheral I/O

- Y,
(Analog, Digital)] ™ %gé}
Ly
Hardware g S,
05
S

PCI Bus to
Application

Figure 3.5: Block diagram of DSP streaming mode [15].

Block Mode Data Streams. An alternate data flow paradigm is supported

for non-channelized peripherals. This mode is referred to as block mode stream-
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ing. In block mode, the splitter/merger features of Caliente are bypassed, and raw,
binary data in peripheral-specific format is consumed and supplied by the applica-
tion program. Devices that produce data that can be channelized may elect to use
block mode because of its higher inherent efficiency. For very high rate applica-
tions, any processing done to each point may result in a reduction in the maximum
data rate that can be achieved. Since block mode does no implicit processing on a

point-by-point basis, the fastest data rates are achievable using this mode.

Message Packet I/0. In many applications, there is a need for additional,
low bandwidth channels in addition to a high rate data stream. Velocia baseboards
feature a means to support the asynchronous interchange of low-bandwidth data in
conjunction with high-bandwidth streaming mode I1/O. Messages packets consist of
a command code and channel number plus up+to 14 additional 32-bit parametric
data values. Messages may be=asynchromously transmitted and received from any
number of distinct channels by any number of threads running on both the target
DSP and the host PC. Message transtérs have no'deleterious effect on data streaming
and consume virtually none of the bandwidth of the DSP, so they may be freely used

even in conjunction with full rate data streaming.

In our implementations, we use block mode data streams the most and also use
message packet 1/0 [24]. TheVirtex2 FPGA includes 18 x18 hardware multipliers
and contains up to 12 digital clock managers, each providing 256 subdivisions of
phase shifting and frequency synthesis capabilities to deliver flexibility in managing
both on-chip and off-chip clock domains and synchronization. On-chip memory
blocks in the Virtex-II fabric provide convenient high-speed memory elements for
FIFOs, dual-port RAM and local processing memory that are invaluable in efficient

logic design.

35



3.3 Introduction to the Code Composer Studio
Development Tools[17], [18]

TT supports a useful GUI development tool set to DSP users for developing and
debugging their projects: the Code Composer Studio (CCS). The CCS development
tools are a key element of the DSP software and development tools from Texas In-
struments. The fully integrated development environment includes real-time analy-
sis capabilities, easy to use debugger, C/C++ compiler, assembler, linker, editor,
visual project manager, simulators, XDS560 and XDS510 emulation drivers and

DSP/BIOS support.

Some of CCS’s fully integrated host tools include:

e Simulators for full devices, . €PU only.and €PU plus memory for optimal per-

formance.

e Integrated visual project manager with-souree control interface, multi-project

support and the ability to handle thousands of project files.

e Source code debugger common interface for both simulator and emulator tar-

gets:

C/C++/assembly language support.
— Simple breakpoints.
— Advanced watch window.

— Symbol browser.
e DSP/BIOS host tooling support (configure, real-time analysis and debug).
e Data transfer for real time data exchange between host and target.

e Profiler to analyze code performance.
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CCS also delivers foundation software consisting of:

e DSP/BIOS kernel for the TMS320C6000 DSPs.

— Pre-emptive multi-threading.
— Interthread communication.

— Interrupt handling.
e TMS320 DSP Algorithm Standard to enable software reuse.

e Chip Support Libraries (CSL) to simplify device configuration. CSL provides

C-program functions to configure and control on-chip peripherals.

TT also supports some optimized* DSP functions for the TMS320C64x devices:
the TMS320C64x digital signal précessor-library «( DSPLIB). This source code li-
brary includes C-callable functions (ANSI-C language compatible) for general sig-
nal processing mathematical and veetor funetions [19]. The routines included in the

DSP library are organized as follows:

e Adaptive filtering.

Correlation.

o FFT.

Filtering and convolution.

e Math.

Matrix functions.

Miscellaneous.
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3.4 Code Optimization Methods [21]

The recommended code development flow involves utilizing the C6000 code gener-
ation tools to aid in optimization rather than forcing the programmer to code by
hand in assembly. These advantages allow the compiler to do all the laborious work
of instruction selection, parallelizing, pipelining, and register allocation. These fea-
tures simplify the maintenance of the code, as everything resides in a C framework

that is simple to maintain, support, and upgrade.

The recommended code development flow for the C6000 involves the phases
described in Fig. 3.6. The tutorial section of the Programmer’s Guide [21] focuses on
phases 1 and phase 2, and the Guide also instructs the programmer about the tuning
stage of phase 3. What is learned is‘the importance of giving the compiler enough
information to fully maximize its potential. -Anadded advantage is that this compiler
provides direct feedback on the.entire program’s high MIPS areas (loops). Based on
this feedback, there are some simple steps the programmer can take to pass complete
and better information to the compiler to maximize the compiler performance. The
following items list the goal for each phase in the software development flow shown

in Fig. 3.6.

e Developing C code (phase 1) without any knowledge of the C6000. Use the
C6000 profiling tools to identify any inefficient areas that we might have in

the C code. To improve the performance of the code, proceed to phase 2.

e Use techniques described in [21] to improve the C code. Use the C6000 profiling
tools to check its performance. If the code is still not as efficient as we would

like it to be, proceed to phase 3.

e Extract the time-critical areas from the C code and rewrite the code in linear

assembly. We can use the assembly optimizer to optimize this code.
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Figure 3.6: Code development flow for TT C6000 DSP [21].
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TT provides high performance C program optimization tools, and they do not
suggest the programmer to code by hand in assembly. In this thesis, the development
flow is stopped at phase 2. We do not optimize the code by writing linear assembly.
Coding the program in high level language keeps the flexibility of porting to other

platforms.

3.4.1 Compiler Optimization Options [17], [18]

The compiler supports several options to optimize the code. The compiler options
can be used to optimize code size or execution performance. Qur primary concern in
this work is the execution performance. Hence we do not care very much about the
code size. The easiest way to invoke optimization is to use the cl6x shell program,
specifying the -on option on the el6x command line, where n denotes the level of

optimization (0, 1, 2, 3) which eontrols the type and degree of optimization:

e -00.

— Performs control-flow-graph simplification.

Allocates variables to registers.

— Performs loop rotation.

— Eliminates unused code.

— Simplifies expressions and statements.

— Expands calls to functions declared inline.
e -0l. Performs all -00 optimization, and:

— Performs local copy/constant propagation.
— Removes unused assignments.

— Eliminates local common expressions.
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e -02. Performs all -0l optimizations, and:

— Performs software pipelining.

— Performs loop optimizations.

— Eliminates global common subexpressions.

— Eliminates global unused assignments.

— Converts array references in loops to incremented pointer form.

— Performs loop unrolling.

e -03. Performs all -02 optimizations, and:

— Removes all functions that are never called.
— Simplifies functions with retusn.values:that are never used.
— Inline calls to small“unctions.

— Reorders function déelarations-so-that the attributes of called functions

are known when the caller is optimized.

— Propagates arguments into function bodies when all calls pass the same

value in the same argument position.

— Identifies file-level variable characteristics.

The -02 is the default if -o is set without an optimization level.

The program-level optimization can be specified by using the -pm option with the
-03 option. With program-level optimization, all of the source files are compiled into
one intermediate file called a module. The module moves through the optimization
and code generation passes of the compiler. Because the compiler can see the entire
program, it performs several optimizations that are rarely applied during file-level

optimization:
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e If a particular argument in a function always has the same value, the com-
piler replaces the argument with the value and passes the value instead of the

argument.

e If a return value of a function is never used, the compiler deletes the return

code in the function.

e If a function is not called directly or indirectly, the compiler removes the

function.

When program-level optimization is selected in Code Composer Studio, options that
have been selected to be file-specific are ignored. The program level optimization is

the highest level optimization option. We use this option to optimize our code.

3.4.2 Using Intrinsics

The C6000 compiler provides intrinsicsyspecial functions that map directly to C64x
instructions, to optimize our C code. performance. All instructions that are not
easily expressed in C code are supported as intrinsics. Intrinsics are specified with a
leading underscore (_) and are accessed by calling them as we call a function. A table
of TMS320C6000 C/C++ compiler intrinsics can be found in [21]. The intrinsics

used in our program are introduced in chapter 4.
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Chapter 4

Simulation and DSP
Implementation

Our work and results can be separated into two parts. The first part concerns the
performance of each channel estimationapprdach, such as symbol error rate (SER),
mean square error (MSE), etc. <The second paxt ¢oncerns the DSP implementation

which emphasizes the execution efficiency:

4.1 Comparison Between:2-D Interpolation and
LMS Adaptive Methods

Fig. 4.1 illustrates the block diagram of the simulated system. We assume perfect
synchronization and omit it in the simulation. After channel estimation, we get
MSE between the real channel response and the estimated one. Also, the SER can

be calculated after de-mapping, i.e., de-QAM.
The channel estimation contains several steps:
e Channel response estimation at each pilot location.

e Interpolation for the whole channel response using the estimated values at

pilot locations, which may include use of the LMS alogorithm.

e Estimating the transmitted signal using a divider.
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Figure 4.2: Channel estimation steps.

These steps are illustrated in Fig: 4.2.

4.1.1 Simulation Results for AWGN Channel

Before considering multipath channels, we do simulation with an AWGN channel,
which means we transmit the data through a one-path channel with A[0] = 1, and
then add AWGN to it. The theoretical symbol error rate with Gaussian noise power
Ny for M-ary QAM can be obtained by [23]

1 SN L,

Po=4(1— )Q( m)

(4.1)

where N = log, M and for 64-QAM we have N = 6 with M = 64 here. The
Ey is E,/6 and the E is normalized to be 1 in our simulation. If we substitute
E[|X; — X;|?] for Ny, we can get a theoretical symbol error rate. The result is
shown in Figs. 4.3 and 4.4, where we call (2.16) formula 1 and (2.19) formula 2 and

linear interpolation is used. The modulation scheme is 64QAM. We can see that the
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theoretical SERs are closed to the simulated onés whatever the formula we use. We
also see that formula 1 works better thanformula 2. We calculate the ratio between

the coefficients of formula 1 and formula 2 this way:

= 0.2286 4.2
ERNEEENE o

and the simulated ratio is listed in Table 4.1. We can find that those simulated

ratios are closed to 0.2286.

4.1.2 Simulation Results for Static Multipath Channel

We employ the ATTC (Advanced Television Technology Center) and the Grande
Alliance DTV Laboratory’s ensemble E mode channel response, assuming the chan-
nel is static. The response is given in Table 4.2. The phase in time domain is /4.

The amplitude and phase response of this channel response are shown in Fig. 4.5.
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Table 4.1: MSE Ratio Between Formula 1 and Formula 2 for AWGN Channel

[ [ 15 [ 175 | 20 | 225 | 25 | 275 |
Tl [10.24055 | 0.23916 | 0.23756 | 0.23776 | 0.23769 | 0.23417
formula 2
[ Z ] 30 [ 325 | 3 [ 315 [ 40 |
T [10.23407 | 0.22929 | 0.22764 | 0.22158 | 0.21259
formula 2

Table 4.2: Channel Impulse Response

] Tap \ Delay (OFDM Samples) \ Average Power \ Average Power (in dB) ‘

1 0 1 0
2 2 0.3162 -5
3 17 0.1995 -7
4 36 0.1296 -8.87
3 I0) 0.1 -10
6 137 0.1 -10

4.1.2.1 Two-Dimensional Interpolation

In this section, we will do comparison between the two interpolation schemes pro-
posed in chapter 2. We use different sets in these two formulas, which means different

amount of previous symbols’ information will be employed.

To verify the correspondence between the simulation results and the theory, we
calculate the average | X; — X;|? on subcarrier 1 (see Fig.2.7; note that subcarrier
indexes run from 0 to 1701) and subcarrier 1700 by simulating 1000 symbols. The
theoretical symbol error is taken by following (4.1). Fig. 4.17 shows the MSE of
|X; — X;| on the subcarrier 1 where we use formula 1 and linear interpolation.
Fig. 4.7 gives the MSE and SER on the subcarrier 1. The theoretical values are
calculated with Ny = | X; — X;|2 in (4.1) whether in low SNR or high SNR. We find
that the theoretical results are closed to the simulated ones, and we conclude the
simulation results seen correct. Figs. 4.9 shows the MSE of |XZ — X;|, MSE, SER of

the carrier 1700. It responses similar results.
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linear interpolation on static channel by using 1st formula
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Figure 4.6: MSE. of |Xj=<X,| én subcarrier 1.

Fig. 4.10 shows the outcomes: of formula”l with both linear and 2nd-order in-
terpolations. Obviously, if we usé mere-sets of pilot information, we get better
performance. The MSE and SER of 2nd-order interpolation method decrease faster
than the linear one for /Ny > 22.5 dB. The SER of 4 sets interpolation decreases
to zero because we have only run 1000 symbols. Thus, it proves that 2-D interpola-
tion is useful in the static channel condition. On the whole, the difference between
these two interpolation methods is small but the 2nd-order interpolation is of more
complexity than the linear one. Formula 2 yields results with many similar proper-
ties, which are given in Fig. 4.11.

We now compare the performance between formula 1 and formula 2. We can find
that formula 1 works better than formula 2 in Fig. 4.12; here the linear interpolation
is used. This is because we weight the 2 pilot-symbol information equally in formula

1 and it is reasonable doing so in a static channel. In formula 2, we emphasize the
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linear interpolation on static channel by using 1st formula
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using formula 1 with linear interpolation in the frequency domain respectively.
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linear interpalation on static channel by using 1st formula

10 r
1 —% Linear & 2 sets [
—— Linear & 3 sets H
—&— Linear & 4 sets [
-2
10 -
o
o
3 P
a7
£z
55
Bhe
E L}
=
(=]
-3
10
10t i i i i
15 20 %5 30 a5 40
ESJINEl

Figure 4.8: MSE of | X}~ X;['on subcarrier 1700.

pilot-symbol information closer o the present symbol. Objectively, it may not be
effective in estimating a static channel response because sometimes the information
of the symbols which are away from the present symbol may be more correct due
to the different AWGN. We also calculate the MSE ratio between formula 1 and
formula 2 in Table 4.3 and find the simulated ratios are closed to 0.2286 at low ﬁ—;
The same comparison is given in Fig. 4.13 with 2nd-order interpolation. Both these
two figure shows that formula 1 causes the SER drops to zero by 2.5 dB earlier than
formula 2 with 4 sets of pilot symbols employed. The reason for the zero-dropping

is also that we have only run 1000 symbols.
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Comparison between linear and 2nd-order interpolation on static channel by using 1st farmula
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Figure 4.10: The (a) MSE and (b) SER of the 2-D interpolation using formula 1
with linear and 2nd-order interpolation in the frequency domain respectively.
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Comparison between linear and 2nd-order interpolation on static channel by using 2nd formula
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Figure 4.11: The (a) MSE and (b) SER of the 2-D interpolation using formula 2
with linear and 2nd-order interpolation in the frequency domain respectively.
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r Compatison between 1st and 2nd formulas on static channel by using linear interpolation
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Figure 4.12: The (a) MSE and (b) SER of using formula 1 and 2 in the 2-D inter-
polation respectively with linear interpolation in the frequency domain.
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Figure 4.13: The (a) MSE and (b) SER of using formula 1 and 2 in the 2-D inter-

polation respectively with 2nd-order interpolation in the frequency domain.
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Table 4.3: MSE Ratio Between Formula 1 and Formula 2 for Multipath Channel

[ E ] 15 | 175 | 20 [ 225 | 25 [ 275 |
Trepterme L [0.26065 | 0.26941 | 0.28589 | 0.3106 | 0.35563 | 0.41757
formula 2
- ] 30 [ 325 [ 3 | 375 | 40 |

No

M rormute 110 50178 | 0.60782 | 0.71261 | 0.80499 | 0.87676
formula 2

4.1.2.2 LMS Adaptive Algorithm

In this section we combine the LMS adaptation with linear interpolation. The step-

size parameter p of the LMS algorithm obeys [12], [13]

O<pu< (4.3)

2
3tr[R]’
where tr[R] is the sum of the powers of the signal samples at the filter tap inputs,
which are the powers of the chainel impuilse response taps in our case. Since tr[R] =
14 0.3162 4 0.1995 + 0.1296 +0.1 + 0.1:= 1.1766, we choose p to be 0.1 and 0.01.
Recall the adaptive equation I:Ip,LMg(n +1) = I:Ip7LMS(n) + pe(n)*X(n), where
X(n) is obtained by dividing the received signal by the estimated channel response
ie., X(n):% This essentially assumes that our decision is correct. We
also compare the different weights o for the LMS filter output and the interpolated
data. The results are shown in Figs. 4.14 and 4.15. The MSE in Fig. 4.15 is the
error we want to minimize in this algorithm. From these simulation results, we get
steady convergence if we set = 0.1 and o = 0.5. However, when compared with

2-D interpolation, the outcome of LMS adaptive algorithm is not sufficient for our

requirements.

4.1.3 Multipath Rayleigh Fading Channel Simulations

We simulate block type Rayleigh fading in our work. The Rayleigh fading is simu-

lated as in [22], which is an improved Jakes’ model and the below equations are its
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Figure 4.14: The (a) MSE and (b) SER for different weighting and different step-size
parameters in LMS adaptive method.
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Figure 4.15: MSE between X and Xa fter-decision 10T different weighting and different

step-size parameters in LMS adaptive method.

mathematical expressions.

R(t) = Re(t) + jRs(t),

M
2

R.(t) = — Z cos(thy) - cos(wgt - cos a, + @),

M n=1

5 M
R,(t) = — Z sin(v,) - cos(wgt - cos a, + @),

M n=1

where
2mn — 0
an:%7 n=1,2--,M,

with 6, ¢, and 1, being statistically independent and uniformly distributed over

[—m, ) for all n, and M = 8 in our simulation.
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The Rayleigh fading channel is created following the equation:

hn] = > Riln] x aidln — di];  H(f) = FFT{h[n]} (4.8)

i=1
where k is the total path number, «; is the static power of the ith path, R;[n] is
the Rayleigh parameter calculated by (4.4), and the d; is the delay spread of the
1th path. Because we simulate channel transmission in the frerquency domain as
Y(f)=X(f) x H(f) + N(f), therefore we have to transform h[n] to the frequency
domain. In Rayleigh channel simulation, the R;[n] varies every symbol, thus we
need to do the FFT computation every symbol. To reduce the complexity and the

computation time, we simplify (4.8) into:

Base;(f) = FET{a;0[n — d;]}, (4.9)

k

H(fy= > Riln] x Base;(f). (4.10)

=1l

Then, we compute FFT only 6-times at'the first, and the latter channel frequency
response can be obtained by thé/linear summizing the products of the Rayleigh
parameters and the Base;(f). Compared with (4.8), we have to compute FFT for
one time per symbol, but now only 6 times in total because we have Base;(f) ,1 =

1---6. It does save a lot of time.

The Doppler shift is given by [23]
v
fo=—"-f.-cosb (4.11)
c

where v is the velocity of vehicles km/hr, ¢ is the velocity of light, and 6 is the
angle between the direction of v and line-of-sight of transmitter and receiver. The

simulation parameters are listed below:

o f.=2 GHz.

o I'="T,=2019u s.
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Table 4.4: Relation Between Speed and Maximum Doppler Shift

| Speed (km/hr) | Max. Doppler Shift (Hz) | fi75 |
27 20 0.01
54 100 0.02

Table 4.4 shows the relation between some simulation parameters. Here we only
present the result of using in 2-D interpolation since its performance is much better
than that of LMS adaptive algorithm, as seen in the previous discussion. Besides,
for a Rayleigh fading channel, it would be useful emphasizing the estimated channel
information at pilots in symbols which are closer to the present one. For this reason,

we decide to do multipath fading channel estimation with formula 2.

First we do simulation on one-path Rayleigh fading channel with linear interpo-
lation and formula 2. The resultg:are givemwin'Figs. 4.16, where the theoretical curve
is obtained using the MSE of |X; = X;| in (411), &s we did in the cases of static one-
path and multipath channels. The reason-why:the simulated SER is much different

from the theoretical one may be that the MSE of |Xz — X;| cannot be seemed as Nj.

Now we turn to the multipath Rayleigh fading channel. To verify our the correc-
tion of oue simulation, we only have comparison between the simulation results and
the theory. For subcarrier 1, the MSE and SER are shown in Figs. 4.17 and 4.18.
The other verification for subcarrier 1700 are shown in Figs. 4.19 and 4.20. We can
see that there is much different between the simulated results and the theoretical
ones. The reason for this may be that the \XZ — X;|? cannot replace the Ny in the
(4.1) as a AWGN in the multipath Rayleigh fading channel. Then, we do other
comparison in Figs. 4.21 and 4.22. We can observe that 2nd-order interpolation
still performs better than the linear one with f;7° = 0.01 as before. But it loses
its superiority with f;7" = 0.02. Both MSE and SER do not decease smoothly as

Es/Ny increases, because the 6-tap multipath Rayleigh fading channel is hard to
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Figure 4.17: MSE of | X; — X;| ofi subcartier 1 for multipath Rayleigh fading channel.

deal with. Among all, interpolating with 4 sets of pilot-symbol information is the
most effective method. However, it costs the most memory and complexity at the

same time.

4.2 DSP Implementation

According to the results in the previous sections, we have a conclusion. For per-
formance and complexity reasons, it would be better combining 2-D interpolation
in time domain with linear interpolation in frequency domain. Although linear in-

terpolation is not as good as 2nd-order one, it is of smaller code size and lower

complexity.
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Figure 4.18: The (a) MSE and (b) SER;pf carrier 1 with 2-D interpolation using
formula 2 with linear interpolation in the frequency domain respectively. V = 27

km/h, fdT = 0.01.
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Figure 4.19: MSE of |)A(Z — X;|Jon subearrier 1700 for multipath Rayleigh fading
channel.

4.2.1 Introduction to Program Structure

Fig. 4.23 shows program structure of the implemented system, where the key func-

tion in channel estimation is Linear-Interp; other are in supporting role.

Function Modulation(QPSK, 16-QAM, 64-QAM) maps binary data to the con-

stellation points. We only show the original code for QPSK in Fig. 4.24 for example.

Function Complex_Mul is a multiplier which computes complex multiplication to

simulate channel effects. The original code is shown in Fig. 4.25.
We add AWGN in the main function instead of an individual function.

The operation in the block Pilot Location is that received signal Y (f) is divided
by p=4/3 or —4/3 at pilot locations, i.e., the LS estimator. This function is for
convenience in simulation; in real system implementation it can be absorbed into

later block.
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Figure 4.20: The (a) MSE and (b) SER carrier 1700 with 2-D interpolation using for-
mula 2 with linear and 2nd-order interpolation in the frequency domain respectively.

V =27 km/h, fdT = 0.01.
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, Comparison between linear and 2nd-order interpolation on fading channel fdT=0.01 +=27 km/h
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Figure 4.21: The (a) MSE and (b) SER of the 2-D interpolation using formula 2 with
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Figure 4.23: Program structure for channel estimation.

Function Linear_Interp is the interpolation part which plays an important role

in the channel estimation scheme. The original code is shown in Fig. 4.26.

Function Complex_Div is an-equalizer where received signal is divided by the
estimated channel response and ci(k) is the'output.“The code is shown in Fig. 4.27.
This function is also for convenience off simmulation; in real implementation its

function can be absorbed in the demodulator and the decoder.

Function De_Modulation is the de-mapping function which outputs binary data
and the mapped data daftmdm-m in the constellation. The original code is shown

in Fig. 4.28.

4.2.2 Performance of the Original Program

We use -03 level optimization in all the following DSP simulations. Originally, we
develop the whole system with floating-point computation. Table 4.5 shows the
code size, the maximum, minimum, average execution cycles, and the multiples of
real-time needed, where multiples of real-time is the execution cycles divided by the
available DSP cycles. In our system, one symbol duration is 201.9 us and there are

2304 samples in a symbol. The clock frequency of the DSP is 600 MHz. Hence the
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#define amp p 0.707106781Z2
#define amp n -0.7071067812

vold encoding QPSK{int size,int *before coding,Complex *after coding)

|

int i,73:

1=0;
for{i=0;1i<size; 1=1+2)
{
if {before coding[i]==0)
after coding[j].i.full=anp p;
else
after coding[j].i.full=amp n;

if (before coding[i+1]==0)

after coding[j].r.full=amp p;
else

after coding([j].r.full=amp n:
I++; B B

Figure 4.24: FunctiontModuldtion (QPSK).

struct CCOMPLEX{ float r;
float 1;1};

vold COMPLEX_MUL(th type ,int size, COMPLEX *a, COMPLEX *b, COMPLEX *c)
{
int i;
for{i=0;i<size; i++)
{
cli].r=alil.r*b[i]l.r-ali]l.i*b[i].i;
c[i].1i=a(i].r*b[1].1+a[1].1*b[1].r;

Figure 4.25: Function Complex_Mul.

available execution cycles are 121140 in a symbol duration, averaging to 52.6 in a

sample duration.
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woid Linear Interp{int size, COMPLEX *hefore interp, COMPLEX *after interp)

{
int index &, index b=0,1i,k,1=1;
COMPLEY a,b;
b.r=0:
b.i=0;
for(i=0;i<size;i++)
i
if((hefore interp[i].r!=0]|| (before interp[i].i!=0]]
{
after interp[i]=hkefore_ interp[i]:
index a=index h;
index_b=i;
a=h;
b=before_interp[i]:
if (index a==index h)
{
}
else
{
for (k=index a+l:k<index b:k++]
1
after interpl[k].r=a.r+(b.r-a.r) *l/ (index b-index a):
after_interp[k].i=a.i+ib.i—a.ij*lfiindex_b—index_aj;
14++:

Figure 4.26: Function Linear_Interp.

4.2.3 Choice of the Fixed-Point Data Formats

4.2.3.1 32-bit Fixed-Point Operation

Since the C6416 is a fixed-point DSP, floating-point operations are time-consuming.
For this reason, employing fixed-point computation will be beneficial to the execu-
tion speed. Therefore, we modify the data type of all functions to 32-bit fixed-point
data type, i.e., int, in the beginning. To satisfy what is needed for synchronization
[24], we define the data format in our system as Q16.15. The Q16.15 format places
the sign bit in the leftmost bit, followed by 16 integer bits and then 15 bits fractional

bits (Table 4.6). This could support a large dynamic range for all data and is quite
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wold COMPLEX_DIV(int size,COMPLEX *a,COMPLEX *h,COMPLEX *o)
1

int 1i:

float templ:

COMPLEX Templ:

for{i=0;i<size;i++)

{
templ=b[i]l.r*b[i].r+b[i].i*b[i].1;
tempZ.r=alil.r*b[i].r+ali].1*b[1i].1;
tempZ.i=alil.i*b[i].r-b[i]l.1*a[i].r;
cli].r=tempZ.r/templ:
cli] .i=tempZ.i/templ:

}

Figure 4.27: Function Complex_Div.

vold decoding ¢PSK{int size,int *after decoding,CCMPLEX *before decoding)
{

int 1i,7;

i=0;
for(i=0;i<size;1=1+1)
{
if (before decoding[i].r.full>0;
after decoding[j+1]=0;
else
after decoding[j+1]=1;

if {(before decoding[i].i.full=0;
after decoding([]1=0;
else
after_decoding[j]=1;
j=3j+2;

Figure 4.28: Function De-modulation(QPSK).

sufficient. Table 4.7 shows the profile using 32-bit fixed-point operations.

It has improved very much for most functions except the Modulation functions.

This is because we add multiplication in these functions to translate the mapped

data from floating-point to fixed-point and not only mapping operation (Fig. 4.29).

Simple modification of this part should be able to reduce the amount of computation.

The reason why Complexr_Mul improves the most is that software pipelining is
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Table 4.5: Floating-Point Profile of 802.16a DL, Channel Estimation Function Blocks

Block Code Size | Max. Count | Min. Count | Avg. Count | Multiples
of Real
(Bytes) (Cycles) (Cycles) (Cycles) Time
Modulation (QPSK) 136 24,585 24,585 24,585 0.20
Modulation (16QAM) 332 74,933 73,947 74,391 0.61
Modulation (64QAM) 580 92,212 92,131 92,169 0.76
Complex_Mul 284 899,946 899,231 899,603 7.42
Linear_Interp 548 625,067 467,233 579,794 4.78
Complex_Div 404 1901,807 1,898,949 1,900,051 15.67
De_Modulation 2742 1,372,176 1,223,976 1,305,239 10.77
Table 4.6: Q16.15 Bit Fields
Bits | 31| 30 | 29 15| 14 110
Value | S | 115 | 114 10 | Q14 Q1 | QO

Table 4.7: Fixed-Point 32-Bit Operation Profile of 802.16a DL Channel Estimation

Function Blocks

Block Code Max. Min. Avg. Improvement | Multiples

size Count Count Count | Compared with | of Real

(Bytes) | (Cycles) | (Cycles) | (Cycles) Table 4.5 Time
Modulation (QPSK) 126 28,586 28,423 28,545 -16.27% 0.23
Modulation (16QAM) 302 85.549 85.549 | 85.549 -15.01% 0.70
Modulation (64QAM) 456 104,590 | 104,274 | 104,458 -13.33% 0.86
Complex_Mul 472 15,338 15,338 15,338 98.29% 0.12
Linear_Interp 632 504,921 | 398,510 | 441,423 23.87% 3.64
Complex_Div 556 554,340 | 551,557 | 552,807 70.89% 4.56
De_Modulation 1088 228,666 | 222,227 | 225,016 82.76% 1.85

performed in the function Complex_Mul which accelerates the execution speed a

lot compared to floating-point operations.

Fig. 4.30 gives the compile feedback

information that provides this information. The loop kernel is shown in Fig. 4.31.
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#define amp p 0.7071067812

#define amp n -0.7071067812

struct COMPLEX_FIXED{ int r;
int i}:

void encoding @QP3K{int size,int *before coding, COMPLEX FIXED *after coding})
{

int 1i,3;
0;
r

9=
for(i=0;i<size;i=1+2)
i

if {before coding[i]==0)
after coding[j].i=amp_ p*32768;
else
after coding[]j].i=amp n*327&8;

if (before coding[i+1]1==0;
after coding[j].r=amp \p*3Z7A8;
else
after coding([j].r=amp ¥22768;
J++; h B

Figure 4.29: Function Modulation(()PSK)tof 32-bit fixed-point operation.

4.2.3.2 16-Bit Fixed-Point Operation

However, we face a problem when optimizing the performance further by adding
intrinsic functions into these functions. Most intrinsic functions are specified for
the 16-bit data format, but very few for the 32-bit one. Later simulation results
will show that 16-bit fixed-point operations are enough to provide the performance
near that of floating-point computation. Therefore, we decided to change the data
type to 16-bit, i.e., short. Because the absolute value of the modulated signal
is not larger than 2, one or two bits are enough for the integer part. The data
after modulation function is set to Q1.14. Q1.14 format places the sign bit in the
leftmost followed by 1 integer bit, and the remainder 14 bits are fraction component
(Table 4.8). We can notice that the number of the integer decreases from 15 to
1 and this means the dynamic range supported by Q1.14 would not be sufficient
for functions in the follows. To solve this problem, we have to change the bit-field

in different functions according to their data values simulated in the floating-point

74



3OFTUWARE FIFELINE INFORMATICH

Loop source line

Loop opening brace source line
Loop closing brace source line
Known Minimuam Trip Count

FKnown Maximum Trip Count

Known Max Trip Count Factor
Loop Carried Dependency Bound (™
Tnpartitioned Eesource Bound
Partitioned Resource EBound(*)
Resource Partition:

L-side E-side

[m}

L units

3 units

I units

M units &
.%X cross paths 7
.T address paths &
Long read paths a
Long write paths a
Logical ops (.L3) 1
Addicion ops (.L3D) 5
Boundi(.L .5 .L3) 3
Boundi(.L .5 .I .L3 .L3D) 7

[.L or .5 unit)
[.L or .5 or .D unit)

[ TS - - o T e R | QY - e (R 1]

SJearching for software pipeline schedule at ...
ii = 9 SZehedule found with 3 iterations in parallel

Figure 4.30: Software pipeliningprinformation of 32-bit fixed-point Complex_Mul.

version. Then, we have different types of bit-field setting such as Q5.10, Q4.11, etc.
Fig. 4.32 shows the fixed-point data formats used in the simulation. The output
bit-field of Modulation X (k) is Q1.14. Since the channel gain is no higher than 8,
we set the bit-field of H(k) to Q3.12. Therefore, the output of Complez_Mul has
to be Q4.11 . After adding AWGN, the integer part is right shifted 1 bit and the
bit-field setting is Q5.10 (Y(k)) to prevent from overflow. Since p = £4/3 is of
Q1.14 format by our design, so Q5.10/Q1.14 (Y,(k)/p) outputs in Q4.11. In the
function Linear_Interp, all bit-field format is Q4.11. In the function Complez_Div,
Q5.10/Q4.11 (Y (k)/H(k)) outputs Q1.14, for the reason that absolute values of

de-modulation constellation points are no greater than 2.
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L3z: ; PIPED LOOF EEENEL

Lline 5
;29 | e[i] .r=FIXZED MUL(a[i].r,b[i].r)-FIXED MUL(a[i].i.B[
; | i1.1):
;30 | e[i].i=FIXED MUL(a[i].r,b[i].1)+FIXED MUL(a[i].i.B[
: | il .x):

ADD D2 BE5, B9, E9 ;o |30] <0,17>
|1 3HL .31 A%, 16,49 P29 <=0,17=
|1 NPYLH M1 AlG, AS, AS ;o |30] <0,17>
|1 3HR .32 BEle,1,E1d ;o129 <1,8=

3HL .32 B9, 16, B8 ;|30 <0,15=>
|1 ADD L1 AT, RS, A7 ;|29 <0,15=
|1 HPYU M1 AT, R16, A5 ;|30 <0,15=
|1 NPYLH CMEE L4,B16,EB7 ;o129 «1,9%
|1 SHE 81 BA,1,416 ;o |30] <1,9=
|1 LDw .01T1 A6 (4) ,A15 ;|29 <2,0>

ADD L2XE AL19,B6, B9 : |30] <0,19=
| ADD L1 L3, A8, A5 ;|30 <0,19=
| SHE .81 A7, 13, 47 ;|29 <0,19=
| SHE .82 B7,1,B6 ;|29 <1,10=
|1 LD .LaTa *+E4 (4) ,EB7 P29 <=2,1=
|1 LD .L1T1 FAE++(5) , A4 P29 <=2,1=

3UL L1 BS, A7, A7 ;|29 <0,20=
|| [ EO] BDEC = L3z, EO ;|32 <=0,20=
|1 3HER .31 Al13,1,415 ;o129 <1,11=
|1 NPYLH M2 E BEle, b4, ES P29 <=1,11=
|1 LDw .D1Tz2 A& (5),E6 P30 <2,2>

3HL .31 AS, 16, A4 ;|30 <0,21=
|1 HPYU JMEE L4, EB16, B9 ;o129 <€1,12=
|1 NPYLH M1 Ba, A15, A5 ;o129 <€1,12=
|1 IHE .32 BE5,1,E5 ;|30 <€1,12=
|1 LDw .01T1 *—AG (4) , A5 ;|30 <2,3=
|1 LDw .L2TZ *E4++(5) ,El6 ;|29 <2,3%

SHE .82 B9, 13,E6 ;|30 <0,28=
|1 ADD L1 A%, A4, 04 ;|30 <0,28=
|| ['aO] STW .01T1 A7, ®A1TH4+(8) : 29| <0,22=>
| SHE .81 AL, 1,48 ;|30 <€£1,13=
| MPYU CM1E L18,B6, A7 ;|29 <1,13=
| MPYLH MR E L13,B6,E8 ;|29 <1,13=

Figure 4.31: The loop kernel of Complex_Mul.

4.2.4 Code Improvement

4.2.4.1 Coding Style Improvement

In the beginning, we declare each complex number with real part and imaginary part

separately in the functions Modulation, Complex_Mul, Linear_Interp, Complex_Div
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Table 4.8: Q1.14 Bit Fields

AWGN

Q4.11{§\ 05.10
I

=

Bits | 15| 14 13 1 0
Value | S | QIO | Q14 Q1 | QO
. J1.14
Generate Binary Data = (QP%E???SEM, L | Complex_Mul
64QAM) X(k)H (k)
Dopier_aecision T Do rtotutatin | (k) Complex Div H (k) H,(k)
-4—— (QPSK, 16-QAM, |-—T Y (k) l——  Lincar_Interp <
) 64QAM) _—
Output Binary Data H( k)
01.14 04.11 04.11

Pilot Loacation
k)

r

(k)

Figure 4.32: Fixed-point data formats used:in DSP implementation.

Table 4.9: Different Ways of Variable Declaration, Where r Stands for Real Part

and i Stands for Imaginary Part
(a)Separate Declaration of Real and Imaginary Parts

| Array a[1702].r | a[1701].r | a[1700].r [ a[1699].r | ... [ a[l].r | a[0].r |
| Array a[1702].i | a[1701].i | a[1700].i [ a[1699].i | ... | a[1].i | a[O].i |
(b)Combination Placement of Real and Imaginary Parts
| Array a[1702+2] | a[1701%2+1] | a[1701%2] | a[1700x2+1] | ... | a[1] [ a[0] |
| Value | a[1701]i | a[1701]r | a[17001i | ... [ a[0]i | a[0].r |

and De-Modulation (Table 4.9(a)). This is time-wasting in regard to reading or writ-
ing memory. Hence, we combine both real and imaginary parts in one register (see
Table 4.9(b)). Real parts are located in the even array locations whereas imaginary
parts are located in the odd array locations. The previous codes can be found in

section 4.2.1 and the modified codes are shown in the next section. An exampe are

given in Fig. 4.33 for C code and Fig. 4.34 shows the resulting assembly code.
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Priginal
vold COMPLEX MUL (int type ,int size,COMPLEX FIXED *a,COMPLEX FIXED *h, COMPLEX FIXED *c)
{

int 1ir

for(i=0;i<size;i++)

{

©[i] -r.full=FIXED MUL(&[i] .r.full,b[i].r.full)-FIXED MUL(a[i].i.Tfull,b[i].i.full):
©[i] -i.full=FIXED MUL(a[i].r.full,b[i].i.full)+FIXED MUL (a[i].i.Tfull,b[i].r.full);

b
i

void COMPLEE MUL (int type ,int size,FIXED *a,FIXED *b, FIZED *o)
{

int 1ir

for(i=0;i<size;i++)

{

©[2%1]=FIXED MUL(a[2%i],b[2%1i])-FIZED MUL (a[2%i+1],b[2%i+1]];
c[2%i+1]=FIXED MUL{a[27%i],R[2%i+1])+FIXED MUL (a[27i+1],B[2%i]);

Figure 4.33: Example of different coding styles in C code.

4.2.4.2 Optimization by Using Intrinsic Functions [21]

Intrinsic functions are special funetions which help s accelerate the DSP execution

speed. We find several useful intrinsic functions which are suitable for our system.

e The amemd8 and _amemd8_const intrinsics tell the compiler to read the array
of shorts with double-word accesses. This causes LDDW and STDW instruc-
tions to be issued for the array accesses. The _lo() and _hi() intrinsics break
apart a 64-bit double into its lower and upper 32-bit halves. Each of these
halves contain two 16-bit values packed in a 32-bit word. To store the re-
sults, the _itod() intrinsics assemble 32-bit words back into 64-bit doubles to

be stored. Figs. 4.35 and 4.36 show these processes graphically.

e The _dotpn2 and _dotpn2 intrinsic performs real and imaginary portions of
complex multiply respectively. The operation is given in Fig. 4.37. We use

these functions mostly in the multiply and the divide functions.

e _add2: 32 bits adder.
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; 25 | int i;

Sy N
SV 20, 24,
= 6, 24,
Sy i, 24,
Sy 3, 24,
= 24,
IC
ZEROD D1
|1 MVE 32
| AND Dz
M D1
| M LL1E
|1 3UE D2
| IET .31
| ity LL2E
I MVC =

32, COMPLEX FIXED

17, 32, _COMPLEX FIXED
17, 32, COMPLEX FIXED
4, 32, _COMPLEX FIXED
4, 32, COMPLEX FIXED
4, 32, COMPLEX FIXED

17,

C3R,B17

L3
Ox6ab,EB6
-2,B17,EE

16,017
B4, L6

E6,1,E0

L3, 0xf, Oxt, 10
L4, E4

ES,CSE

17, 3z
17, 3z
3z

olan]

P24

; init prolog collapse predicate

; interrupts off

MVE i
| MVE 32
| AND Dz

SUE LDl
| MVE .31
I SUE LL1x
| SUE D2x
[ SUE L2
| MV .82

Oxz, A0
Ox6a6,B6
-2,B14,BE

L6,G, A5
Ox1, a1
B4, 5, L3
4,5, B4
E6,1,E0
ES,CSE

; init prolog collapse predicate
!} 84|

; init prolog collapse predicate

; interrupts off

Figure 4.34: Result of different coding styles in complied assembly code.
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—FY 16 bits |‘—

| an | e | e | aw | oam | a | oapy | oap |
)Li Bjils 4J|
ol e //LoDwW
yd r
IEEREEE R EEREE) .
register pair
I‘i 32 bits 4’| I‘i 32 bits 4"|
_hi() intrinsic // // // / _lo() intrinsic
I af3] ‘ a2 I | a[1] ‘ a[0] |
a_hi a_lo

Figure 4.35: Array access in vector sum by LDDW [21].

c hi clo
\ \intrinswc/ /
A A / /
\ A\ (
Iﬂ— 32 bits —P| r‘— 32 bits —'|
I c[3] | c[2] | | c] | )] |
S R Y
~ = Y
h 3 A
I‘i 64 bits ﬂ

| em | aw | cm [ am | e | o | an | oo |

4'1 16 bits L‘*

Figure 4.36: Array access in vector sum by STDW [21].

Some code using intrinsic functions is shown in Figs. 4.38 and 4.39 and note that
we have added “vec” before the function names to distinguish them from the func-
tions before. Both the functions Compler_Mul and Complex_Div use intrinsic func-

tions _amemd8, _amemd8_const, _dotpn2, and _dotpn2. We use _.add2 when adding

4.2.5 Final Version of Fixed-Point 16-Bit Operation

Finally, we check the whole functions to see if there is any optimization could be

done to our code. Then, we modify the Linear_Interp function in Fig. 4.40 to Fig.
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f— 16 bit —— 16 bit — [ Rea | mognay o= packnza.a)

a| areal |a_imagiary | 32-itregister
b I b_real | b_imaginary I 32-bit register
I a_real * b_real I | a_imaginary * b_imaginary
J T L 3201 —
/ I a_imaginary * b_real a_real * b_imaginary
C 3_1'33! ' D_;'ea] = a_imag . b__:mag I = _da[pn?[’hl a) E a_lmag * b_real + a_real " b_imag ¢ =_dotp2 (b, _packi2{a, a))
r- 32bi1
. 32 bit . '

Figure 4.37: Tlustration of the _dotp2 and the _dotpn2 intrinsics [21].

4.41. This is a kind of coding style improvement. ‘

The software pipelining is éemployed-to the modified part in Linear_Interp (Fig.
4.43) and the loop kernel is shown in Fig. 4;42. We have better performance in our
simulation after this modification which is shown in Table 4.10. From the results,
we can find that the original interpolation loop takes much more time but much less

after we modified the code style.

Code refinement enhances our performance. Some of these functions reach the
real time requirement and some almost reach it. This is because the division in
Complex_Div is time-consuming and it costs many more cycles to execute it than

multiplications.
4.2.5.1 Execution Efficiency

Our DSP can execute 6 additions and 2 multiplications in one cycles. We have 4
multiplications and 2 additions per sample in function Compler_Mul, and 8 complex

multiplications, 4 additions, 2 division per sample in Complex_Div. Each division
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void vec COMPLEX MUL({FIXED *restrict a, FIXED *restrict b,FIXED *restrict c, int len)
{
int i;
unsigned a3 a2, al al; /* Packed 16-bit values */
unsigned b3_b2, bl b0; /* Packed 16-bit values */
int c3,c2, cl,cld; /* Separate 16-bit results */
unsigned c3 c2, cl cO; /* Packed 16-bit values */
for (i =0; 1 < len; i += 4)
{
/% Load two complex numbers from the al[] array. */
/* The complex values loaded are represented as "a3 + a2 * 37 */
f* and fal + al * 3. That iz, the real components are a? */
/* and al, and the imaginary components are a2z and al. */

a3_az = hi{ amemdB const{salil));
al all = lo{ amemdB const{sal[il)};

/* Load two complex numbers from the b[] array. */

b3 bz = hi{ amemdB const{sb[il});
bl b0 _lo{ amemd8 const{ab[i]});

/* Perform the complex multiplies using dotp2/ dotpnZ. */

= dotpnZ { packlhZ (b3 b2,b3 bZ), packlhZ{ a3 aZ,a3 aZ})»>15; 1 =/
cZ = dotpZ (b3 bZ, packlhZ{al aZ, a3 aZ)}>»>15; /* Imaginary */
cl = dotpnZ{ packlhZ{bkl b0,bl b0}, packlhZ({al al,al_al)}>>15; /* Real */
=_dotpZ (bl b0, packlhZ{al a0, al a0};>>15; /* Imaginary *

/* Pack the 16-bit results from the upper halwves of the */
/% 3Z-bit results into 3Z2-bit words. */

c3 cZ = packZ(cZ, c3);

cl cl = packZ{cl, cl):

/* Store the results. */
_amemdB (&c[i]) = itod{c3 _cZ, cl cl};

Figure 4.38: Function vec_Complex_Mul.

needs 22 cycles in the complied code for 32 bits operation and 21 cycles for 16-bit
operation. Therefore, we need a minimum cycles max{4/2,2/6}x1702=3404 cycles
per symbol in Compler-Mul and (2x22/2+max{8/2,4/6})x1702=44252 per symbol
for 32-bit operation, and 1702 and 39146 cycles for 16-bit operation, respectively. We
compare the actual execution cycles taken by the compiled code with the minimum
cycles needed and calculate the efficiency, where the efficiency is defined as:

Minimum Cycles Needed

Efficiency = (4.12)

Practical Execution Cycles’

which can show how much improvement is achieved after our optimization.
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vold wec COMPLEX DIV(int len, FIXED *a,FIXED *h,
{

FIXED *<)

int 1i;
unsigned a3_aZ, al_al; /* Packed 1é-bit values */
unsigned b3 _bZ, bl b0; /* Packed 1é-hit values */
unsigned <3 _<Z, <l <0; /* Zeparate lé-hit results */
FIXED c0,cl,d0,dl,d2,d3,el,el,e2,eld;

/% Packed lé-bit walues */

for (1 = 0; 1 < len; i += 4)
{
ad_aZ = _hi(_ amemd8 const{&ali]));
al_al = _lo(_amemdﬂ_const(&a[i]));
/* Load two complex numbers from the b[] array. */
b3_bhZ = hi{_amemdf8 const(&h[i]));
bl b0 = loi amemd8 const(&h[i]));
/* 4 f8ie pits FHBMERTTE WEE </
=0=_dotpZ (b1 _h0,bl h0)>>15;
21= daotpZ (b3_bZ,b3_h2)=>15;
/* 4 816 hits 2HAENMENRST T BEE */
di= dotpZibl bl,al al)>»13;//real
dl= dotpni {_packlhZ (bl b0,bl k0),al al)>>13;//image
d2= dotpZ (b3_b2,a3 aZ)==13;//real
d3= dotpni {_packlhZ (b3 bZ,b3 hi),ad aZ)>>13;//image
i1f(=0==0) if(zl1==0)
{ {
1f(d0=0) 1f(dz=0)
e0=0x7FFF; e2=0xVFFF;
else else
e0=0xE8000; eZ=0xB8000;
1f(d1>0) 1f(d3>0)
el1=0x7FFF; e3d=0x7FFF;
else else
=e1=0xB8000; e3=0xB8000;
1 1
else else

el={ (FIZXED DOUBLE)d0<<13)/=0;
21=({ (FIXED DOUBLE)dl<<13)/=0;
}

21 =0 = packZiel, e0);

_amemd8 (&= [1]) = _ditodi{ed _cZ, <l <0);

{
eZ=( (FIZXED DOUBLE)dZ<<13)/=l;
3= ( (FIXED DOUBLE)d3<<13)/=l;
}

23 o2 = packZ(ed, eZj);

Figure 4.39: Function vec_Complex_Div.

We can see from Tables 4.11 and 4.12 list the efficiency of Complex_Mul and

Complex_Div. We get a good performance after all the code improvements done to

16-bits fixed-point operation. Fig. 4.44 is the software pipelining information for

Complex_Mul with 16-bits fixed-point operation. The maximum trip count is 851

which is half the value of 32-bit fixed-point operation (see Fig. 4.30).

For Complex_Div, we can find that the efficiency is small and this is because

there are a lot of load or store operations in this function (Fig. 4.39). Besides, we
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voild Linear Interpiint size,FIXED *hefore_interp, FIXED *after interp)
{
int index_a,index_b=0,1i,k,1=1;
FIXED a[2],b[2]={0}:
for(i=0:i<size;i++)
i
if{ (hefore_interp[2¥i] !=0) || (hefore_interp[2¥i+1] !=0})
{
after_interp[z*i]=before_interp[Z*i]:
after_interp[Z*i+l]=kefore_interp[Z*i+1]:
index_a=index_b;
index_h=i:
a[0]=k[0];
ali]= H
=hefore_interp[2#*i]:
b[l]=hefore_interp[a*i+1]:
if (index_s==index_hb)

for (k=index_s+1;k<index h;k++)

after interp[2*k]=a[0]+(b[0]-a[0]) / (index b-index =) *1:
after_interp[2*k+1]=a[l1]+(b[1]-a[1])/ (index b-index_a) *1:
1++;

Figure 4.40:5Original interpolation loop.

if(index_at=index_b)

1
for{k=index_a+1;k<index_b;k++)
{
after_interp[2=k]=a[@8]+(b[B8]-a[8])*1/{index_b-index_a);
after_interp[2=k+1]=a[1]+{b[1]-a[1]}*1/{index_b-index_a);
1++;
b
1=1;
b

Figure 4.41: Final version of the interpolation loop.

have if-else operations in this function for preventing the dividing by zero situation.
Therefore, software pipelining cannot be done to accelerate the execution speed

when codes contain a “control code.” At least, adding intrinsic functions improves

the performance compared with 32-bit fixed-point operation.

We use 567 x4 divisions and 567 x4 multiplications and 567 x 8 additions per sym-

bol in Linear_Interp. Therefore, the minimum cycles are 26082 for 32-bit fixed-point
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ADD Dz B&,B16,EB16 ;o181 (P <0,3>

|| MFY M2 B7,E4,B16 ;|81 (P <1,1=
;'ﬂ"ﬂ‘ _________________________________________________________ *
L4z2: ; FIFPED LOOF EEENEL

.line 30

;81 | after interp[2*k]=a[0]+(b[0]-a[0])/ (index b-index a) *1:
;82 | after interpl2*k+ll=a[l]l+(k[1]-a[1]})/ (index b-index a) *1:
P83 | 1+

BE9,B17,EB17
.D2T2  B16, *++BG (4]
HPY . ES,E4,E17
Lz 1,B4,E4

[ &oj . L4z, A0

:o|82] <0,4>
: |81] <0, 4>
:o182] <1l,2> *
;o 183] <1l,2> *
: |85 <z,0%

STH .D2T2  B17,*+B3(2) : |82] <0,5%
I ADD .52 E&,B16,E16 ;o181 <1,3%
I HPY . E7,B4,E16 ;o181 <2,1>

Figure 4.42: Loop kernel of medified assembly code in Linear_Interp.

SOFTWARE FIPELINE INFORMATICON
Loop source line
Loop opening brace source
Loop closing brace source
Fnown Minimwn Trip Count
Enown Max Trip Count Factol
Loop Carried Dependency Bougdi*)
Unpartitioned Resource EBound
Partitioned Fesource Bound(*)
Resource Partition:

bA-zide E-=ide

g .L units 5

; .3 units 1

; I units u]

g .M units a

: .X cross paths u]

; .T addres=s paths N

; Long read paths u] a

= Long write paths u] a

g Logical ops (.L3) a a [.L or .3 unitc)
; Addition ops (.L3D) u} & {.L or .3 or .D unitc)
; Bound(.L .3 .L3) 1 ul

H Bound(.L .3 .D .L3 .L3D) 1 2R

g SGearching for software pipeline schedule at

; ii = Z 3chedule found with 3 iterations in parallel

Figure 4.43: Software pipelining information of the modified loop in Linear_Interp

operation and 24381 for 16-bit fixed-point operation. The efficiency of Linear_Interp

is listed in Table 4.13. We only reach 36.01 % efficiency and this is because there is
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Table 4.10: Fixed-Point 16-bit Operation with Coding Style Modified Profile of
802.16a DL Channel Estimation Function Blocks

Block Code Max. Min. Avg. Improvement | Multiples
size Count Count Count | Compared with | of Real
(Bytes) | (Cycles) | (Cycles) | (Cycles) Table4.7) Time
Modulation (QPSK) 124 27,775 | 27,775 27,775 2.69% 0.22
Modulation (16QAM) 296 70.637 | 69.429 | 73.802 13.73% 0.60
Modulation (64QAM) 396 101,585 | 101,082 | 101,308 3.02% 0.71
Complex_Mul 272 3,421 3,421 3,421 77.69% 0.02
Linear_Interp 332 81,713 47,689 67,705 84.66% 0.55
Complex_Div 428 163,108 | 162,793 | 162,960 70.57% 1.15
De_Modulation 1068 | 149,796 | 146,600 | 148,169 34.15% 1.05
Table 4.11:  Performance Comparison Between Different Data Types of
Complex_Mul
Block Execution Cycles | Minimum Cycles Needed | Efficiency
péer Symbot per Symbol
Complex_Mul (float) 899,231 3,404 0.37%
Complex_Mul (32-bits) 15,338 3,404 22.19%
Complex_Mul (16-bits) 33421 1,702 49.75%

Table 4.12: Performance Comparison Between Different Data Types of Complex_Div

Block Execution Cycles | Minimum Cycles Needed | Efficiency
per Symbol per Symbol
Complex_Div (float) 1,900,051 44,252 4.1%
Complex_Div (32-bits) 688,850 44,252 6.42%
Complex_Div (16-bits) 162,960 39,146 24.02%

also control code in this function. Coding style improvement would be useful for this.

Over all, it seems that the performance of our interpolation scheme is not efficient

enough for there are many divisions. However, it reach the real time requirement.
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AOFTWARE PIPELINE INFORMATION

Loop source line

Loop opening hrace source line
Loop <losing brace source line
Krnown Minimum Trip Count
Enown Maximum Trip Count
Enown Max Trip Count Factor
Loop Carried Dependency Bound (™
Unpartitioned Resource Bound
Partitioned Besource Bound(*)
Resource Fartition:

A-zide E-=ide

.L units 0

.8 units 2

.D units 2

LM ounits 2

X oross paths 4

.T address paths Z

Long read paths 0

Long write paths 0

Logizal ops {.LE) : (.L or .8 unit)
Addition ops (.LaD) 0 1 (.L or .3 or .D unit)
Bound({.L .8 .L&) 3 3

Bound({(.L .3 .D .L& .L3D) z 3

Searching for scoftware pipeline schedule at ...
11 = 4 gchedule found with 4 iterations in parallel

Figure 4.44: Software pipelining information.of 16-bits fixed-point of Complex_Mul.

Table 4.13:  Performance Comparison Between Different Data Types of

Linear_Interp

Block Execution Cycles | Minimum Cycles Needed | Efficiency
per Symbol per Symbol
Linear_Interp (float) 467,233 12,852 2.75%
Linear_Interp (32-bits) 441,423 26,082 5.9%
Linear_Interp (16-bits) 67,705 24,381 36.01%

4.2.6 Summary

We have done much work to accelerate the DSP execution speed such as changing

data type, code style refinement, and using intrinsics. Compared with theoretical

execution cycles, however, the performance is still not very good. The reason may

be that there is still bad coding-style in our programs which leads to lower down

the speed. At least, our interpolation scheme achieved the goal of 0.5 multiples of
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real time. It means we can finish interpolation of approximately two symbols in
one symbol period. The accuracy of fixed-point 16-bit operation is almost the same
with floating-point one although there is quantization error. Since we use Q1.14
format, the accuracy can reach 1/2' = 6.1 x 1075. Therefore, there is only little
difference between them. With correct analysis of dynamic range, we can avoid error
caused by calculation overflow or underflow. Fig. 4.45 gives the execution accuracy

comparison between floating-point and 16-bit fixed-point operations.
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Comparison between floating-point & fixed-paint calculation of 2D interpolation

—& floating-point
—— fixed-point

4 through fadding channel:fdT=0.01

()
Comparison between floating-paint & fixed-point calculation of 2D interpolation
thraugh fadding channel:fdT=0.01

Figure 4.45: (a) MSE and (b) SER comparison between floating-point and 16-bit
fixed-point operations with 2-D interpolation using formula 2 (4 sets) with linear
interpolation in the frequency domain. V' = 27 km/h, fdT = 0.01.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we developed channel estimation schemes for IEEE 802.16a OFDMA
downlink transmission. We proposed two kinds of interpolation methods in fre-
quency domain which were linear_interpolation and 2nd-order interpolation. Alter-
nately, we also applied 2-D interpolation and-LMS-adaptive algorithm in the time
domain. The combination of 2-D-interpolation-and linear interpolation would work
efficiently. Because the linear interpolation was of less complexity and its perfor-
mance on the whole was almost the same with the 2nd-order interpolation. The
2-D interpolation was more excellent than LMS adaptive algorithm in the time do-
main. To such pilot allocation in the IEEE 802.16a OFDMA downlink system, 2-D

interpolation would be a good choice.

As to DSP implementation, for the concern of fixed-point C64x DSP, we changed
the original floating-point operation to fixed-point 32-bit one. Although this did ac-
celerate a lot, there were still limitations in using intrinsics. Therefore, replacing
32-bit fixed-point operation with 16-bit fixed-point operation was a must. Thus,
we only had half the original number of bits. To make work correct, we had to be
careful with the calculation to prevent from data overflow or underflow. There were

three ways to accelerate the DSP execution speed: changing data types, coding style
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optimization, and using intrinsics. The total execution cycles of the channel esti-
mation scheme have been reduced from 425,630 cycles to 236,871 cycles during the
optimization [24]. The realtime rate also raised from 28.46% to 51.14.%. The final
result showed our fixed-point 16-bit version can work as well as the floating-point
version. It means the decision the bit-field is right enough for our simulation envi-
ronment. But with larger the dynamic range of data values, the bit-field must varies
at the same time. Besides, most of the functions reach the real time requirements
and the rest almost reach it. it shows that the whole system could finish the task

in time.

5.2 Future Work

We mentioned the execution cyeles of theswhole channel estimation scheme have
been reduced to 236,871 cycles. [There is-still distance from the real time. The
critical path may be the function Comples=Pwwsince executing divider is quite time-
consuming. To solve this problem . we may map the received data Y (k) directly to
de-64QAM. It means we need to combine the channel estimation output with the
de-64QAM block. Meanwhile, the complexity of the de-mapping must be increasing.
It is trade-off. However, it is supposed to be of less complexity than the original
one since the added operation in the de-mapping block is multiply. Beside, there

are other improvements could be done to accelerate the execution speed.

For the Rayleigh fading channel, we only simulated with fdT=0.01, 0.02. This
because the dynamic range of the real channel response varies beyond what we set
with the present situation when fdT is larger. Therefore, if we want to simulate with
lager fdT, we have to change the bit-field setting in the channel estimation scheme

at the same time such as 6.9, Q7.8, etc.
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