
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

IEEE 802.16a 分時雙工正交分頻多重進接下行導引訊號輔助式

通道估測之技術與數位訊號處理器軟體實現

IEEE 802.16a TDD OFDMA Downlink Pilot-Symbol-Aided

Channel Estimation: Techniques and DSP Software

Implementation

研 究 生：陳汝芩

指導教授：林大衛 博士

中 華 民 國 九 十 四 年 六 月

 IEEE 802.16a 分時雙工正交分頻多重進接下行導引訊號輔

助式通道估測之技術與數位訊號處理器軟體實現

IEEE 802.16a TDD OFDMA Downlink Pilot-Symbol-Aided

Channel Estimation: Techniques and DSP Software

Implementation

研究生: 陳汝芩 Student: Ruu-Ching Chen

指導教授: 林大衛 博士 Advisor: Dr. David W. Lin

國 立 交 通 大 學

 電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of Requirements

for the Degree of
Master of Science

in
Electronics Engineering

June 2005
Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

IEEE 802.16a 分時雙工正交分頻多重進接下行導引訊號輔助式

通道估測之技術與數位訊號處理器軟體實現

研究生：陳汝芩 指導教授：林大衛 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

正交分頻技術近來因為能在行動環境中穩定高速傳輸而廣受注目，IEEE 802.16a
即是一個基於正交分頻多重進接技術用於無線區域網路和大都會網路的標準。

本論文主要在討論 IEEE 802.16a 下行通道估測的方法以及數位訊號處理器軟體

實現。
我們使用最小平方差的估測器來估計在導訊上的通道頻率響應，因為硬體的計算

方便。而內插的方法我們則研究了線性內插、二次式內插。而在用時域的資料改善的

方法有下列兩種：二維內插法、以及最小平均平方差適應 (LMS adaptation）。我們的

在靜態以及瑞雷通道上模擬。結合線性內插和二維內插法，我們得到較好的表現，而

且運算複雜度也比較低，所以決定在數位訊號處理器軟體上實現。
我們將通道估測的技術以軟體實現在 Texas Instruments (TI) 公司製造型號為

TMS320C6416 的數位訊號處理器上（DSP）。此處理器的操作平台為 Innovative
Integration 公司製名為 Quixote 的 cPCI 卡。因為我們所使用的 DSP 是專為定點運算所

設計的，所以浮點數運算是很費時的。有三種方法可以加速運算速度：改變資料型態、

程式語法的改良及使用 intrinsic 程式。所謂的改變資料型態就是把一開始的浮點數運

算先改成 32-bit 的定點運算，再改成 16-bit 的定點運算。程式語法的改良則是把許多

耗時的指令做修正，如 if-else 的指令。Intrinsic 程式是一種直接對應到 C64x 指令集的

程式，可以改善我們 C 程式的表現。在依照上述步驟對原本浮點數運算的程式做改良

後，我們得到了很大的進步，雖然與理論上運算的複雜度相比，成效最高只到 49%。
不過在線性內插程式方面，我們至少達到了只需 0.52 個 symbol time 就能完成的速度。

 i

IEEE 802.16a TDD OFDMA Downlink Pilot-Symbol-Aided Channel
Estimation: Techniques and DSP Software Implementation

Student: Ruu-Ching Chen Advisor: Dr. David W. Lin

Department of Electronics Engineering

& Institute of Electronics
National Chiao Tung University

Abstract

OFDM (orthogonal frequency division multiplexing) technique has drawn much
interest recently for its robustness in the mobile transmission environment and its high
transmission data rate. IEEE 802.16a is a wireless local and metropolitan area networks
standard which is based on OFDMA (orthogonal frequency division multiple access)
technique.

This work considers two main subjects of the downlink channel estimation under the
specifications of IEEE 802.16a, the interpolation schemes and the DSP implementation.

We use LS estimator for estimations of pilot carriers because of its low computational
complexity. We study the linear, the second-order interpolations in frequency domain and
the LMS adaptation algorithm, the two-D interpolation in time domain. We did the
simulation on both static and Rayleigh fading channels. Combination of linear interpolation
and 2-D interpolation are chosen to be implemented on DSP board for its low
computational complexity.
 Our implementation is software-based, employing Texas Instruments’ TMS320C6416
digital signal processor (DSP) housed on Innovative Integration’s Quixote cPCI card. For
the fixed-point DSP operation environment, floating-point operation is absolutely
time-consuming. There are three ways to accelerate the DSP execution speed: changing
data type, code style optimization, and using intrinsic functions. Changing data type means
we replace the original floating-point operation with 32-bit fixed-point operation and then
16-bit fixed-point operation at last. Code style optimization is to modify the time-wasting
parts of code, such as spared if-else instruction. Intrinsic functions are special functions that
map directly to C64x instructions, to optimize our C code performance. The execution
cycles of each function is improved a lot after optimized although compared with the
theoretical execution cycles, the efficiency is 49% at most. At least, we reach the 0.52
multiples of real time needed per symbol in linear interpolation.

 ii

誌謝

要感謝的人太多，尤其是林老師，感謝他兩年多來對我的指導與包容，能當

老師的學生是我前世修來的福氣。

此外，感謝通訊電子與訊號處理實驗室所有的成員，包含各位師長、同學、

學長姐與學弟妹們。我要感謝吳俊榮學長、洪崑健學長指導與建議，還有昱昇、

志凱、景中、鎮宇、、等同學，謝謝他們在這兩年來對我的幫助及帶給我歡樂。

家人對我的支持、鼓勵是我研究路上一股強大的動力，對他們的感謝，是筆

墨難以形容的。

最後由衷感謝所有幫助關懷過我的人。

陳汝芩

民國九十四年七月 於新竹

 v

Contents

1 Introduction 1

1.1 Brief Introduction to IEEE 802.16a [1], [2] 1

1.2 Motivation of This Thesis . 4

1.3 Organization of This Thesis . 5

2 Channel Estimation for IEEE 802.16a OFDMA Downlink Trans-

mission 6

2.1 Introduction to the IEEE 802.16a TDD OFDMA System 6

2.1.1 Generic OFDMA Symbol Description 7

2.1.1.1 Time Domain Description 7

2.1.1.2 Frequency Domain Description 7

2.1.2 Primitive Parameters . 8

2.1.3 Derived Parameters . 8

2.1.4 Downlink Carrier Allocation 9

2.1.4.1 Pilot Allocation . 9

2.1.4.2 Data Carrier Allocation 11

2.1.5 Data Modulation and Pilot Modulation 12

2.1.5.1 Data Modulation 12

i

2.1.5.2 Pilot Modulation 13

2.2 DL Channel Estimation Methods . 14

2.2.1 Pilot-Symbol-Aided Channel Estimation 14

2.2.2 Frequency Domain Interpolation Methods 16

2.2.2.1 Linear Interpolation 16

2.2.2.2 Second-Order Interpolation 17

2.2.3 Time Domain Improvement Methods 18

2.2.3.1 Two-Dimensional Interpolation [11] 18

2.2.3.2 Least Mean Square (LMS) Adaptation [12], [14] . . . 21

3 DSP Introduction 23

3.1 Introduction to TMS320C6416 DSP [16] 23

3.1.1 TMS320C6416 Features . 23

3.1.2 Central Processing Unit . 25

3.1.2.1 Pipeline . 26

3.1.2.2 Functional Units . 29

3.1.3 Memory Architecture . 29

3.2 Introduction to the Quixote cPCI Board [15] 32

3.3 Introduction to the Code Composer Studio Development Tools[17], [18] 36

3.4 Code Optimization Methods [21] . 38

3.4.1 Compiler Optimization Options [17], [18] 40

3.4.2 Using Intrinsics . 42

4 Simulation and DSP Implementation 43

ii

4.1 Comparison Between 2-D Interpolation and LMS Adaptive Methods . 43

4.1.1 Simulation Results for AWGN Channel 44

4.1.2 Simulation Results for Static Multipath Channel 45

4.1.2.1 Two-Dimensional Interpolation 48

4.1.2.2 LMS Adaptive Algorithm 57

4.1.3 Multipath Rayleigh Fading Channel Simulations 57

4.2 DSP Implementation . 63

4.2.1 Introduction to Program Structure 65

4.2.2 Performance of the Original Program 69

4.2.3 Choice of the Fixed-Point Data Formats 71

4.2.3.1 32-bit Fixed-Point Operation 71

4.2.3.2 16-Bit Fixed-Point Operation 74

4.2.4 Code Improvement . 76

4.2.4.1 Coding Style Improvement 76

4.2.4.2 Optimization by Using Intrinsic Functions [21] 78

4.2.5 Final Version of Fixed-Point 16-Bit Operation 80

4.2.5.1 Execution Efficiency 81

4.2.6 Summary . 87

5 Conclusion and Future Work 90

5.1 Conclusion . 90

5.2 Future Work . 91

Bibliography 92

iii

List of Figures

1.1 (a) Frame structure in IEEE 802.16-2004 [1]. (b) Frame structure in

IEEE 802.16a-2003 [2]. 3

2.1 Time structure of OFDMA symbol (from [2]). 7

2.2 Illustration of carrier usage in OFDMA DL (from [3]). 9

2.3 Pilot allocation in the OFDMA DL (from [2]). 10

2.4 QPSK, 16-QAM and 64-QAM constellations (from [2]). 13

2.5 Pseudo random binary sequence (PRBS) generator for pilot modula-

tion (from [2]). 14

2.6 Illustration of 2D interpolation. 18

2.7 Adaptive channel estimation using the LMS algorithm 21

3.1 Block diagram of the TMS320C6416 DSP [16]. 26

3.2 Pipeline phases of TMS320C6416 DSP [16]. 27

3.3 TMS320C64x CPU data path [16]. 31

3.4 Block diagram of Quixote [15]. 33

3.5 Block diagram of DSP streaming mode [15]. 34

3.6 Code development flow for TI C6000 DSP [21]. 39

4.1 Block diagram of the simulated system. 44

iv

4.2 Channel estimation steps. 44

4.3 MSE of |X̂i −Xi| for AWGN channel. 45

4.4 The (a) MSE and (b) SER for AWGN channel simulation 46

4.5 (a)Amplitude response and (b) phase response of the channel given

in Table 4.2. 47

4.6 MSE of |X̂i −Xi| on subcarrier 1. 49

4.7 The (a) MSE and (b) SER on the subcarrier 1 of the 2-D interpolation

using formula 1 with linear interpolation in the frequency domain

respectively. 50

4.8 MSE of |X̂i −Xi| on subcarrier 1700. 51

4.9 The (a) MSE and (b) SER on the subcarrier 1700 of the 2-D inter-

polation using formula 1 with linear interpolation in the frequency

domain respectively. 52

4.10 The (a) MSE and (b) SER of the 2-D interpolation using formula

1 with linear and 2nd-order interpolation in the frequency domain

respectively. 53

4.11 The (a) MSE and (b) SER of the 2-D interpolation using formula

2 with linear and 2nd-order interpolation in the frequency domain

respectively. 54

4.12 The (a) MSE and (b) SER of using formula 1 and 2 in the 2-D inter-

polation respectively with linear interpolation in the frequency domain. 55

4.13 The (a) MSE and (b) SER of using formula 1 and 2 in the 2-D in-

terpolation respectively with 2nd-order interpolation in the frequency

domain. 56

v

4.14 The (a) MSE and (b) SER for different weighting and different step-

size parameters in LMS adaptive method. 58

4.15 MSE between X̂ and X̂after decision for different weighting and different

step-size parameters in LMS adaptive method. 59

4.16 The (a) MSE of |x̂i − xi|, MSE and (b) SER for one-path Rayleigh

fading channel, where V = 27 km/h, fdT = 0.01. 62

4.17 MSE of |X̂i−Xi| on subcarrier 1 for multipath Rayleigh fading channel. 63

4.18 The (a) MSE and (b) SER of carrier 1 with 2-D interpolation using

formula 2 with linear interpolation in the frequency domain respec-

tively. V = 27 km/h, fdT = 0.01. 64

4.19 MSE of |X̂i − Xi| on subcarrier 1700 for multipath Rayleigh fading

channel. 65

4.20 The (a) MSE and (b) SER carrier 1700 with 2-D interpolation using

formula 2 with linear and 2nd-order interpolation in the frequency

domain respectively. V = 27 km/h, fdT = 0.01. 66

4.21 The (a) MSE and (b) SER of the 2-D interpolation using formula

2 with linear and 2nd-order interpolation in the frequency domain

respectively. V = 27 km/h, fdT = 0.01. 67

4.22 The (a) MSE and (b) SER of the 2-D interpolation using formula

2 with linear and 2nd-order interpolation in the frequency domain

respectively. V = 54 km/h, fdT = 0.02. 68

4.23 Program structure for channel estimation. 69

4.24 Function Modulation (QPSK). 70

4.25 Function Complex Mul. 70

4.26 Function Linear Interp. 71

vi

4.27 Function Complex Div. 72

4.28 Function De-modulation(QPSK). 72

4.29 Function Modulation(QPSK) of 32-bit fixed-point operation. 74

4.30 Software pipelining information of 32-bit fixed-point Complex Mul . . 75

4.31 The loop kernel of Complex Mul . 76

4.32 Fixed-point data formats used in DSP implementation. 77

4.33 Example of different coding styles in C code. 78

4.34 Result of different coding styles in complied assembly code. 79

4.35 Array access in vector sum by LDDW [21]. 80

4.36 Array access in vector sum by STDW [21]. 80

4.37 Illustration of the dotp2 and the dotpn2 intrinsics [21]. 81

4.38 Function vec Complex Mul . 82

4.39 Function vec Complex Div . 83

4.40 Original interpolation loop. 84

4.41 Final version of the interpolation loop. 84

4.42 Loop kernel of modified assembly code in Linear Interp. 85

4.43 Software pipelining information of the modified loop in Linear Interp . 85

4.44 Software pipelining information of 16-bits fixed-point of Complex Mul . 87

4.45 (a) MSE and (b) SER comparison between floating-point and 16-bit

fixed-point operations with 2-D interpolation using formula 2 (4 sets)

with linear interpolation in the frequency domain. V = 27 km/h,

fdT = 0.01. 89

vii

List of Tables

1.1 Carrier Allocation in the OFDMA DL (from [1]) 4

2.1 Carrier Allocation in the OFDMA DL (from [2]) 12

3.1 Execution Stage Length Description for Each Instruction Type [16] . 28

3.2 Functional Units and Operations Performed [16] 30

4.1 MSE Ratio Between Formula 1 and Formula 2 for AWGN Channel . 48

4.2 Channel Impulse Response . 48

4.3 MSE Ratio Between Formula 1 and Formula 2 for Multipath Channel 57

4.4 Relation Between Speed and Maximum Doppler Shift 61

4.5 Floating-Point Profile of 802.16a DL Channel Estimation Function

Blocks . 73

4.6 Q16.15 Bit Fields . 73

4.7 Fixed-Point 32-Bit Operation Profile of 802.16a DL Channel Estima-

tion Function Blocks . 73

4.8 Q1.14 Bit Fields . 77

4.9 Different Ways of Variable Declaration, Where r Stands for Real Part

and i Stands for Imaginary Part . 77

viii

4.10 Fixed-Point 16-bit Operation with Coding Style Modified Profile of

802.16a DL Channel Estimation Function Blocks 86

4.11 Performance Comparison Between Different Data Types of Complex Mul

86

4.12 Performance Comparison Between Different Data Types of Complex Div

86

4.13 Performance Comparison Between Different Data Types of Linear Interp

87

ix

Chapter 1

Introduction

1.1 Brief Introduction to IEEE 802.16a [1], [2]

In recent years, orthogonal frequency division multiplexing (OFDM) modulation

technique has drawn much attention for its ability to deal with frequency-selective

fading in high-speed wireless communication. The IEEE 802.16 standard committee

has developed a group of standards for wireless metropolitan area networks (MANs).

Project 802.16a is one of them. The object of this present study is the OFDMA-

based interface option of this project, namely WirelessMAN-OFDMA.

The IEEE 802.16-2001 specifies the air interface of fixed (stationary) point-

to-multipoint broadband wireless access systems providing multiple services. The

medium access control layer is capable of supporting multiple physical layer speci-

fications optimized for the frequency bands of application. This standard includes

a particular physical layer specification applicable to systems operating between 10

and 66 GHz.

The IEEE 802.16a amends IEEE 802.16-2001 by enhancing the medium access

control layer and providing additional physical layer specifications in support of

broadband wireless access at frequencies from 2 to 11 GHz.

For the reason that our project started in year 2002, we have followed the specifi-

1

cation of these two standards above. However, the IEEE 802.16 standard committee

has completed a new version of the standard in year 2004, namely IEEE 802.16-2004.

This standard specifies the air interface of fixed broadband wireless access (BWA)

systems supporting multimedia services. The medium access control layer (MAC)

supports a primarily point-to-multipoint architecture, with an optional mesh topol-

ogy. The MAC is structured to support multiple physical layer (PHY) specifications,

each suited to a particular operational environment. For operational frequencies of

10–66 GHz, the PHY is based on single-carrier modulation. For frequencies below

11 GHz, where propagation without a direct line of sight must be accommodated,

three alternatives are provided, using OFDM, OFDMA, and single carrier modula-

tion techniques.

Since pilot allocations are key to the study reported in this thesis, we summarize

the difference between these two versions about the carrier allocations. Table 1.1

shows the pilot allocation of IEEE 802.16-2004. The variable set of pilots embedded

within the symbol of each segment obeys the following rule:

PilotsLocation = VariableSet#x + 6 · (FUSC SymbolNumber mod 2) (1.1)

where FUSC SymbolNumber counts the FUSC (full uasage of subchannels) symbols

used in the transmission starting from 0. The arrangement is slightly different from

the specification in the IEEE 802.16a-2003 (see also Fig.2.3). We have four kinds

of variable location pilot arrangements in 802.16a but there are only two kinds in

IEEE 802.16-2004.

As to the frame structure, the IEEE 802.16-2004 also made modification to it.

From Fig. 1.1(a) we can see that in IEEE 802.16-2004, each frame begins with

a preamble followed by a downlink transmission period and an uplink transmission

period. This is quite different from the frame structure in IEEE 802.16a-2003, shown

in Fig. 1.1(b), where preamble is used only in the uplink subframe.

2

(a)

(b)

Figure 1.1: (a) Frame structure in IEEE 802.16-2004 [1]. (b) Frame structure in
IEEE 802.16a-2003 [2].

3

Table 1.1: Carrier Allocation in the OFDMA DL (from [1])

1.2 Motivation of This Thesis

In high data rate transmission, the imperfectness of channels, e.g., multipaths, causes

more severe trouble than in low-rate transmission in demodulation. The result of

data transmission over such a channel is that each received symbol is affected some-

what by adjacent symbols, thereby bringing about a common form of interference

referred to as inter-symbol-interference (ISI). Inter-symbol-interference is a major

source which degrades performance in the reconstructed data at receiver. In single

carrier transmission, we usually employ an time domain adaptive equalizer to solve

this problem. If the channel has very long impulse response compared with symbol

4

duration, time domain equalizer may fail to handle ISI. However, in OFDM sys-

tem, ISI can be easily eliminated by inserting cyclic prefix which is longer than the

maximum delay spread, at the expense of some loss in capacity.

In uncoded OFDM, we only need a frequency domain equalizer with one tap

at the receiver for each subcarrier. The purpose of channel estimation is to obtain

the channel response at each subcarrier. Then, we can easily obtain the equalizer

coefficient, the inverse of the channel gain. In channel coded OFDM, such as that

in IEEE 802.16a OFDMA, equalization is not needed, but the estimated channel

response is directly useful in channel decoding. Hence in this thesis, we will in-

vestigate channel estimation methods that can be employed to the IEEE 802.16a

downlink transmission.

1.3 Organization of This Thesis

The contents of this thesis are as follows. In chapter 2, we give some specifications of

the IEEE 802.16a OFDMA downlink system and introduce the channel estimation

approaches. In chapter 3, we describe the implementation platform, which con-

sists of Texas Instruments’ TMS320C6416 digital signal processor(DSP) on a cPCI

board Quixote made by Innovative Integration. Then, in chapter 4, we discuss the

performance of the proposed channel estimation method as well as its DSP imple-

mentation. At last, we will give the conclusion and potential future work in chapter

5.

5

Chapter 2

Channel Estimation for IEEE
802.16a OFDMA Downlink
Transmission

For wideband mobile communication systems, the radio channel is usually frequency

selective and time variant. Therefore, our estimation schemes combine frequency

domain estimation with time domain processing. In this thesis, our algorithms

for channel estimation in OFDM system are intimately related to pilot sub-carrier

arrangement.

2.1 Introduction to the IEEE 802.16a TDD OFDMA

System

The IEEE standard 802.16a specifies the WirelessMAN air interface for wireless

metropolitan area networks. There are several system modes in 802.16a: SCa

(single-carrier modulation), OFDM (orthogonal frequency-division multiplexing) and

OFDMA (orthogonal frequency-division multiple access). It also supports two du-

plex types: TDD (time division duplex) and FDD (frequency division duplex). We

consider the TDD OFDMA option. Most contents in this section are taken from [2].

6

Figure 2.1: Time structure of OFDMA symbol (from [2]).

2.1.1 Generic OFDMA Symbol Description

2.1.1.1 Time Domain Description

An OFDM symbol contains the useful symbol part and the cyclic prefix (CP) part.

The useful symbol time is referred to as Tb. The CP is a copy of the last Tg µs of

the useful symbol period. The two together are referred to as the symbol time Ts.

The ratio of CP time to useful time (Tg/Tb) that should be supported includes 1/32,

1/16, 1/8 and 1/4. In this thesis, the CP time to useful time ratio is set to 1/8. The

time domain OFDMA symbol structure is shown in Fig. 2.1.

2.1.1.2 Frequency Domain Description

In frequency domain, we have 3 carrier types:

• Data carriers — for data transmission.

• Pilot carriers — for various estimation purposes.

• Null carriers — no transmission at all, for guard bands and DC carrier. (The

purpose of the guard bands is to enable the signal to naturally decay and

create the FFT “brick wall” shaping.)

7

In the OFDMA mode, active carriers are devided into subsets of carriers, and each

subset is termed a subchannel. In the downlink (DL), a subchannel may be intended

for different groups of receivers; similarly, a transmitter may be assigned one or more

subchannels in the uplink (UL), so serveral transmitters may transmit in parallel.

The symbol structure in frequency domain will be shown in detail in the following

section.

2.1.2 Primitive Parameters

Four primitive parameters characterize the OFDMA symbol:

• BW . This is the nominal channel bandwidth. And it equals 10 MHz in our

system simulation.

• (Fs/BW). This is the ratio of “sampling frequency” to the nominal channel

bandwidth. This value is set to 8/7.

• (Tg/Tb). This is the ratio of CP time to “useful” time. We use 1/8 in our

system.

• NFFT . This is the number of points in the FFT. The OFDMA PHY defines

this value to be 2048.

2.1.3 Derived Parameters

The following parameters are defined in terms of the primitive parameters.

• Fs = (Fs/BW) ·BW = sampling frequency. The value equals 10×8/7 = 11.42

MHz.

• 4f = Fs/NFFT = carrier spacing = 5.57617 KHz.

• Tb = 1/4f = useful time = 179.33 µs.

8

• Tg = (Tg/Tb) · Tb = CP time = 22.4 µs.

• Ts = Tb + Tg = OFDM symbol time = 201.9 µs.

• 1/Fs= sample time = 87.5657 ns.

2.1.4 Downlink Carrier Allocation

Since we focus on downlink pilot-symbol-aided channel estimation in this thesis, it

is necessary to understand what the allocation of carriers is.

2.1.4.1 Pilot Allocation

The carriers allocation in a DL OFDM symbol is shown in Fig. 2.2. Null carriers

are allocated in the left and right sides as well as at DC. The pilot and data carriers

are termed useful carriers since they transmit useful information. The pilot tones

are allocated first, and the remainder of the used carriers are divided into 32 sub-

channels, and then the data carriers are allocated within each subchannel.

Group 1 Group 2 Group48

The 1702 used carriers = 1536 data carriers + 166 pilot carriers

32 data carriers (no pilots in the group)

pilot subchannel 1 subchannel 2

Guard bandGuard band DC carrier

Figure 2.2: Illustration of carrier usage in OFDMA DL (from [3]).

9

The pilot carriers include fixed-location pilots and variable-location pilots. The

carrier indices of fixed-location pilots never change. The carrier indices of the

variable-location pilots vary according to the formula varLocP ilotk = 3L + 12Pk,

where varLocP ilotk is the carrier index of a variable-location pilot, L is the symbol

index that cycles through the values 0,2,1,3 periodically every 4-symbol period, and

Pk = {0, 1, 2,, 141}. The pilot carriers allocation map is shown in Fig. 2.3.

Figure 2.3: Pilot allocation in the OFDMA DL (from [2]).

10

2.1.4.2 Data Carrier Allocation

After inserting the pilots, the remaining space is for the useful carriers from the data

subchannels. To allocate data subchannels, we partition the remaining carriers into

groups of contiguous carriers. Each subchannel consists of one carrier from each of

these groups respectively. The number of carriers in a subchannel is therefore equal

to the number of groups, and it is denoted Nsubcarriers. The number of carrier groups

is equal to the number of channels, and it is denoted Nsubchannels. The total number

of data carriers is thus equal to Nsubcarriers ×Nsubchannels.

The exact partitioning into subchannels is according to the following equation

called a permutation formula:

carrier(n, s) = (Nsubchannels) · n + {ps[nmod(Nsubchannels)]

+IDcell · ceil[(n + 1)/Nsubchannels]}(mod(Nsubchannels)) (2.1)

where:

• carrier(n, s) = carrier index of carrier n in subchannel s.

• s = index number of a subchannel, from the set [0, · · · , Nsubchannels − 1].

• n = carrier-in-subchannel index from the set [0, · · · , Nsubcarriers − 1].

• Nsubchannels = number of subchannels.

• ps[j] = the series obtained by rotating {PermutationBase0}, which is given

in the Table 2.1, cyclically to the left s times.

• ceil[] = ceiling function which rounds its argument up to the next integer.

• IDcell = a positive integer assigned by the MAC to identify this particular

base-station cell.

• Xmod(k) = the remainder of the quotient X/k, which is at most k − 1.

11

Table 2.1: Carrier Allocation in the OFDMA DL (from [2])

The numerical parameters are given in Table 2.1.

2.1.5 Data Modulation and Pilot Modulation

2.1.5.1 Data Modulation

The data modulation schemes in 802.16a are shown in Fig. 2.4. The data bits are

entered serially to the constellation mapper. Gray-mapped QPSK and 16-QAM

must be supported, whereas the support of 64-QAM is optional.

12

Figure 2.4: QPSK, 16-QAM and 64-QAM constellations (from [2]).

2.1.5.2 Pilot Modulation

Pilot carriers are inserted into each data burst in order to constitute the symbol and

they are modulated according to their carrier locations within the OFDMA symbol.

A PRBS (pseudo-random binary sequence) generator is used to produce a sequence

wk where k corresponds to the carrier index. The value of the pilot modulation

on carrier k is then derived from wk. The polynomial for the PRBS generator is

X11 + X9 + 1, as shown in Fig. 2.5.

Symbols in the TDD OFDMA system DL transmission can be separated into two

different types. The first three symbols are preamble symbols, and other symbols are

normal symbols. The initialization vector of the PRBS in the DL normal symbols

is [11111111111], while the initialization vector of the PRBS in the DL preamble

symbol is [01010101010]. The PRBS shall be initialized so that its first output bit

coincides with the first usable carrier. A new value shall be generated by the PRBS

on every usable carrier. Each pilot shall be transmitted with a boosting of 2.5 dB

13

Figure 2.5: Pseudo random binary sequence (PRBS) generator for pilot modulation
(from [2]).

over the average power of each data tone. The pilot carriers shall be modulated as

Re {ck} =
8

3
(
1

2
− wk), Im {ck} = 0. (2.2)

2.2 DL Channel Estimation Methods

Interpolation plays an significant role in pilot-symbol-aided channel estimation. Our

interpolation schemes work in both frequency and the time domains. Linear and

second-order interpolation are applied in the frequency domain, while 2-D interpo-

lation and LMS (least mean square adaptation) optimize their performance in the

time domain.

2.2.1 Pilot-Symbol-Aided Channel Estimation

Channel estimators usually need some kind of pilot information as a point of ref-

erence. A fading channel requires constant tracking, so pilot information has to be

transmitted more or less continuously. Decision-directed channel estimation can also

be used. But even in these types of schemes, pilot information has to be transmitted

regularly to mitigate error propagation [4].

In general, the fading channel can be viewed as a two-dimensional (2-D) signal

14

(time and frequency), which is sampled at pilot positions and the channel coefficients

between pilots may be estimated by interpolation.

Based on a priori known data, we can estimate the channel information on pilot

carriers roughly by the least-square (LS) or the minimum mean square error (MMSE)

estimator. An LS estimator minimizes the following squared error [5]:

||Y − ĤLSX||2 (2.3)

where Y is the received signal and X is a priori known pilots, both in the frequency

domain and both being N × 1 vectors where N is the OFDM FFT size. ĤLS is an

N×N matrix whose values are 0 except at pilot locations mi where i = 0, · · · , Np−1:

ĤLS =

Hm0,m0 · · · 0 · · · 0 · · · 0
0 · · · Hm1,m1 · · · 0 · · · 0
0 · · · 0 · · · Hm2,m2 · · · 0
0 · · · 0 · · · 0 · · · 0
0 · · · 0 · · · 0 · · · HmNp−1,HmNp−1

. (2.4)

Therefore, (2.3) can be rewritten as

[Y (m)− ĤLS(m)X(m)]2, for all m = mi. (2.5)

Then the estimate of pilot signals, based on one observed OFDM symbol, is given

by

ĤLS(m) =
Y (m)

X(m)
=

X(m)H(m) + N(m)

X(m)
= H(m) +

N(m)

X(m)
(2.6)

where N(m) is the complex white Gaussian noise on subcarrier m. We collect

HLS(m) into Ĥp,LS, an Np × 1 vector where Np is the total number of pilots, as

Ĥp,LS = [Hp,LS(0) Hp,LS(1) · · ·Hp,LS(Np − 1)]T

= X−1
p Yp

= [Yp(0)

Xp(0)
, Yp(1)

Xp(1)
, . . . , Yp(Np−1)

Xp(Np−1)
]T ,

(2.7)

where Xp and Yp are the collections of the transmitted and the received signal

on the pilot subcarriers respectively. The LS estimate of Hp based on one OFDM

15

symbol only is susceptible to Gaussian noise, and thus an estimator better than the

LS estimator is preferable.

The minimum mean-square error (MMSE) estimate has been shown to be better

than the LS estimate for channel estimation in OFDM systems, but the major

drawback of the MMSE estimate is its high complexity. A low-rank approximation

results in a linear minimum mean squared error (LMMSE) estimator that uses the

frequency-domain correlation of the channel [6]. The mathematical representation

for the LMMSE estimator of pilot signals is

Ĥp,lmmse = RHpHp,LS
R−1

Hp,LSHp,LS
Ĥp,LS

= RHpHp(RHpHp + σ2
n(XpX

H
p)−1)−1Ĥp,LS (2.8)

where Ĥp,LS is the least-square estimate of Hp in (2.7), σ2
n is the variance of the

Gaussian white noise, and the covariance matrices are defined by

RHpHp,LS
= E{HpH

H
p,LS}, (2.9)

RHp,LSHp,LS
= E{Hp,LSH

H
p,LS}, (2.10)

RHpHp = E{HpH
H
p }. (2.11)

Note that there is a matrix inverse involved in the MMSE estimator, which must

be calculated every time, and the computation of matrix inversion requires O(N3
p)

arithmetic operations [7]. We also need to use the statistical properties of the

unknown channel. Therefore, we use the LS estimator which requires only O(Np)

operations instead of the LMMSE due to the concerns of complexity and unknown

information.

2.2.2 Frequency Domain Interpolation Methods

2.2.2.1 Linear Interpolation

Linear interpolation is a commonly used method of interpolation. It does the inter-

polation simply with two known data, and interpolates those unknown data between

16

them. It is given by [8]

He(k) = He(m + l) = (Hp(m + 1)−Hp(m))
l

L
+ Hp(m) (2.12)

where Hp(k), k = 0, 1, · · · , Np, are the channel frequency responses at pilot subcar-

riers, L is the distance between the two given data, that is, the pilot sub-carriers

spacing, and 0 ≤ l < L.

2.2.2.2 Second-Order Interpolation

Theoretically, using higher-order polynomial interpolation may fit the channel re-

sponse better than linear interpolation [9]. However, the computational complexity

grows as the order is increased. Here we consider the second order polynomial inter-

polation, and it has also been called Gaussian second order estimation. It is given

as a solution to the second order polynomial with respect to l/L by using three

reference signal points. The interpolation is obtained using three successive pilot

subcarriers signal as follows [10]:

He(k) = He(m + l)

= c1Hp(m− 1) + c0Hp(m) + c−1Hp(m + 1) (2.13)

where

c1 = α(α−1)
2

,

c0 = −(α− 1)(α + 1),

c−1 = α(α+1)
2

,

α = l
L
.

The notations are the same as they are in linear interpolation.

17

Figure 2.6: Illustration of 2D interpolation.

2.2.3 Time Domain Improvement Methods

As Table 2.1 shows, we can only use 166 pilots in one symbol to interpolate the

channel in the frequency domain. It is not sufficient because the pilot spacings are

too wide in our system. Since the channel does not change abruptly over time, here

we propose two methods to improve the performance.

2.2.3.1 Two-Dimensional Interpolation [11]

Recall the downlink variable pilot allocation in IEEE 802.16a in Fig. 2.3. The

equation of the allocation formula is

varLocP ilotk = 3L + 12Pk (2.14)

where:

• varLocP ilotk = carrier index of a variable-location pilot.

• L ∈ 0, · · · , 3 is a function of the symbol index, modulo 4.

• Pk ∈ {0, 1, 2, · · · , NvarLocP ilots − 1}.

18

Because the positions of the variable location pilots vary with a period of four

symbols, we could make use of the four sets of pilot locations to help channel esti-

mation. The maximum number of pilot locations that we can use is

(NvarLocP ilots −NCoincidentP ilots)× 4 + NfixLocP ilots = (142− 8)× 4 + 32 = 568

(2.15)

where NConincidentP ilots is the number of the variable location pilots which are coin-

cident with the fixed location pilots. For example, we can use extrapolation in the

time domain to estimate the channel frequency response at the pilot locations of

other symbols. It should work the best when transmitting through a static channel.

The method is illustrated in Fig. 2.6.

One possible way of interpolation (extrapolation) is

h̃2D−extrap−p
4sets (f) = 1

2
h̃p

0(f) + 1
2
h̃p
−4(f)

+1
2
h̃p
−1(f) + 1

2
h̃p
−5(f)

+1
2
h̃p
−2(f) + 1

2
h̃p
−6(f)

+1
2
h̃p
−3(f) + 1

2
h̃p
−7(f)

(2.16)

where h̃p
−n(f), n = 0, 1, · · · , 7, are the channel frequency responses at pilot carriers

in the nth previous symbol. We can use interpolations again in the frequency do-

main after obtaining h̃2D−extrap−p(f). Since the equivalent number of pilots becomes

568/166 = 3.421 times that of the original case, better estimation is expected.

However, there are seven extra registers needed to store the channel frequency

response at pilot carriers. Except for the hardware concern, a fast fading channel

might seriously affect the accuracy of the extrapolations in the time domain, be-

cause we need to use the information from the seven previous symbols. Thus, an

alternative is use less previous symbols, say only 3 or 2. Then the extrapolation

19

formula becomes
h̃2D−extrap−p

3sets (f) = 1
2
h̃p

0(f) + 1
2
h̃p
−4(f)

+1
2
h̃p
−1(f) + 1

2
h̃p
−5(f)

+1
2
h̃p
−2(f) + 1

2
h̃p
−6(f)

(2.17)

and
h̃2D−extrap−p

2sets (f) = 1
2
h̃p

0(f) + 1
2
h̃p
−4(f)

+1
2
h̃p
−1(f) + 1

2
h̃p
−5(f),

(2.18)

respectively.

When dealing with fading channels, we consider replacing the formulas above

with
h̃2D−extrap−p

4sets (f) = h̃p
0(f)

+5
4
h̃p
−1(f)− 1

4
h̃p
−5(f)

+3
2
h̃p
−2(f)− 1

2
h̃p
−6(f)

+7
4
h̃p
−3(f)− 3

4
h̃p
−7(f),

(2.19)

h̃2D−extrap−p
3sets (f) = h̃p

0(f)

+5
4
h̃p
−1(f)− 1

4
h̃p
−5(f)

+3
2
h̃p
−2(f)− 1

2
h̃p
−6(f),

(2.20)

and
h̃2D−extrap−p

2sets (f) = h̃p
0(f)

+5
4
h̃p
−1(f)− 1

4
h̃p
−5(f),

(2.21)

where we emphasize the weighting of h̃p
n(f) n = −1,−2,−3 nearier to h̃p

0(f) in

a linear fashion, because when time variation of the channel is not overly fast,

the channel coefficients can be modelled to a first-order approximation as varying

linearly with time in a short-enough time span.

20

Figure 2.7: Adaptive channel estimation using the LMS algorithm

2.2.3.2 Least Mean Square (LMS) Adaptation [12], [14]

The LMS algorithm is the most widely used adaptive filtering algorithm in prac-

tice for its simplicity. Meanwhile, it is stable and robust against different channel

conditions.

The LMS channel estimation process is illustrated in Fig. 2.7, where X(f) is the

input signal sent into the channel, H(f) is channel frequency response, and Y (f) is

the channel output. The following equations apply to our work where Hn
LMS(f) is

the estimated channel response at the nth symbol.

• Filtering by channel:

y(n) = h(n) ∗ x(n), (2.22)

Y(f) = H(f) ·X(f). (2.23)

• Estimated error:

e(f) = X̂after decision(f)− X̂(f), (2.24)

X̂(f) =
Y(f)

Hn
LMS(f)

. (2.25)

• Cost function:

ξ̂(f) = e2(f) = |X̂after decision(f)− X̂(f)|2. (2.26)

21

• Channel frequency response adaptation:

Hn+1
LMS(f) = Hn

LMS(f) + µe∗(f)X̂(f), (2.27)

where µ is the step size which affects the speed of convergence. With a larger

step size, the estimated channel converges more quickly to the real channel

response. However, if it is too big, then it may lead to a unstable condition.

To minimize the error shown in (2.24), we try to minimize the expected value

of (2.26). For this, we can tune the estimated channel weights adaptively. In our

simulation, we use the interpolated channel estimation H̃0
interp(f) as H0

LMS(f) and

Hn
LMS(f) is obtained by (2.27) when n > 0. Following the algorithm, only the first

symbol’s pilot information is used in the whole flow, thus the pilot information in

other symbols is wasted. So we try to combine the interpolated channel and the

Hn
LMS(n) which is the estimated channel by using LMS algorithm when n > 0. The

combination is given by

H̃n
modified LMS(f) =

α ·Hn
LMS(f) + (1− α) · H̃n

interp(f), n > 0,

H̃n
interp(f), n = 0,

(2.28)

where Hn
LMS(f) is the channel estimated by the LMS adaptation algorithm and

H̃n
interp(f) is the channel estimated by interpolation. The α and the (1− α) are the

weighting factors for Hn
LMS(f) and H̃n

interp(f), respectively. Therefore, H̃n
modified LMS(f)

is the combination of these two kinds of estimation outcomes and may be more cor-

rect. Then, we use H̃n
modified LMS(f) in place of Hn

LMS(f) in the right-hand side of

(2.27) to calculate the estimated channel response for the next symbol.

22

Chapter 3

DSP Introduction

DSP implementation is the final goal of our work. The DSP platform that we use

is the Quixote board produced by Innovation Integration. The DSP on the board

is TMS320C6416 made by Texas Instruments. In this chapter, we introduce the

architectures of the Quixote board and the DSP chip.

3.1 Introduction to TMS320C6416 DSP [16]

3.1.1 TMS320C6416 Features

The TMS320C64x DSPs are the highest-performance fixed-point DSP generation

of the TMS320C6000 DSP devices with a performance of up to 6000 million in-

structions per second (MIPS) and an efficient C compiler. The TMS320C64x de-

vice is based on the second-generation high-performance, very-long-instruction-word

(VLIW) architecture developed by Texas Instruments (TI). The C6416 device has

two high-performance embedded coprocessors, Viterbi Decoder Coprocessor (VCP)

and Turbo Decoder Coprocessor (TCP) that significantly speed up channel-decoding

operations on-chip. But they do not apply to the work reported in this thesis.

The C64x core CPU consists of 64 general-purpose 32-bits registers and 8 func-

tion units. These 8 function units contain:

23

• Two multipliers.

• Six ALUs.

Features of C6000 devices include :

• Advanced VLIW CPU with eight functional units, including two multipliers

and six arithmetic units:

– Executes up to eight instructions per cycle.

– Allows designers to develop highly effective RISC-like code for fast devel-

opment time.

• Instruction packing:

– Gives code size equivalence for eight instructions executed serially or in

parallel.

– Reduces code size, program fetches, and power consumption.

• Conditional execution of all instructions:

– Reduces costly branching.

– Increases parallelism for higher sustained performance.

• Efficient code execution on independent functional units:

– Efficient C compiler on DSP benchmark suite.

– Assembly optimizer for fast development and improved parallelization.

• 8/16/32-bit data support, providing efficient memory support for a variety of

applications.

• 40-bit arithmetic options add extra precision for applications requiring it.

24

• Saturation and normalization provide support for key arithmetic operations.

• Field manipulation and instruction extract, set, clear, and bit counting support

common operation found in control and data manipulation applications.

The additional features of C64x include:

• Each multiplier can perform two 16×16 bits or four 8×8 bits multiplies every

clock cycle.

• Quad 8-bit and dual 16-bit instruction set extensions with data flow support.

• Support for non-aligned 32-bit (word) and 64-bit (double word) memory ac-

cesses.

• Special communication-specific instructions have been added to address com-

mon operations in error-correcting codes.

• Bit count and rotate hardware extends support for bit-level algorithms.

3.1.2 Central Processing Unit

The block diagram of the C6416 DSP is shown in Fig. 3.1. The DSP contains:

• Program fetch unit.

• Instruction dispatch unit.

• Instruction decode unit.

• Two data paths, each with four functional units.

• 64 32-bit registers.

• Control registers.

25

Figure 3.1: Block diagram of the TMS320C6416 DSP [16].

• Control logic.

• Test, emulation, and interrupt logic.

The TMS320C64x DSP pipeline provides flexibility to simplify programming and

improve performance. The pipeline can dispatch eight parallel instructions every

cycle. These two factors provide this flexibility:

• Control of the pipeline is simplified by eliminating pipeline interlocks.

• Increased pipelining eliminates traditional architectural bottlenecks in pro-

gram fetch, data access, and multiply operations. This provides single cycle

throughput.

3.1.2.1 Pipeline

The pipeline phases are divided into three stages as shown in Fig. 3.2:

• Fetch has 4 phases:

26

Figure 3.2: Pipeline phases of TMS320C6416 DSP [16].

– PG (program address generate): The address of the fetch packet is de-

termined.

– PS (program address send): The address of the fetch packet is sent to

memory.

– PW (program access ready wait): A program memory access is per-

formed.

– PR (program fetch packet receive): The fatch packet is at the CPU

boundary.

• Decode has two phases:

– DP (instruction dispatch): The next execute packet in the fetch packet is

determined and sent to the appropriate functional units to be decoded.

– DC (instruction decode): Instructions are decoded in functional units.

• Execute has five phases:

– E1: Execute 1.

– E2: Execute 2.

– E3: Execute 3.

– E4: Execute 4.

– E5: Execute 5.

27

The pipeline operation of the C62x/C64x instructions can be categorized into seven

instruction types. Six of these are shown in Table 3.1, which gives a mapping of

operations occurring in each execution phase for the different instruction types. The

delay slots associated with each instruction type are listed in the bottom row.

The execution of instructions can be defined in terms of delay slots. A delay slot

is a CPU cycle that occurs after the first execution phase (E1) of an instruction.

Results from instructions with delay slots are not available until the end of the last

delay slot. For example, a multiply instruction has one delay slot, which means

that one CPU cycle elapses before the results of the multiply are available for use

by a subsequent instruction. However, results are available from other instructions

finishing execution during the same CPU cycle in which the multiply is in a delay

slot.

Table 3.1: Execution Stage Length Description for Each Instruction Type [16]

28

3.1.2.2 Functional Units

The eight functional units in the C6000 data paths can be divided into two groups of

four; each functional unit in one data path is almost identical to the corresponding

unit in the other data path. The functional units are described in Table 3.2. Besides

being able to perform 32-bit operations, the C64x also contains many 8-bit to 16-bit

extensions to the instruction set. For example, the MPYU4 instruction performs

four 8×8 unsigned multiplies with a single instruction on an .M unit. The ADD4

instruction performs four 8-bit additions with a single instruction on an .L unit.

The data line in the CPU supports 32-bit operands, long (40-bit) and double

word (64-bit) operands. Each functional unit has its own 32-bit write port into a

general-purpose register file (listed in Fig. 3.3). All units ending in 1 (for example,

.L1) write to register file A, and all units ending in 2 write to register file B. Each

functional unit has two 32-bit read ports for source operands src1 and src2. Four

units (.L1, .L2, .S1, and .S2) have an extra 8-bit-wide port for 40-bit long writes,

as well as an 8-bit input for 40-bit long reads. Because each unit has its own 32-bit

write port, when performing 32-bit operations all eight units can be used in parallel

every cycle.

3.1.3 Memory Architecture

The C64x has a 32-bit, byte-addressable address space. Internal (on-chip) memory

is organized in separate data and program spaces. When off-chip memory is used,

these spaces are unified on most devices to a single memory space via the external

memory interface (EMIF). The C64x has two 64-bit internal ports to access internal

data memory have and a single internal port to access internal program memory,

with an instruction-fetch width of 256 bits.

A variety of memory options are available for the C6000 platform. In our system,

29

Table 3.2: Functional Units and Operations Performed [16]

Function Unit Operations

.L unit (.L1, .L2) 32/40-bit arithmetic and compare operations
32-bit logical operations
Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts
Data packing/unpacking
5-bit constant generation
Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations
Dual 16-bit min/max operations
Quad 8-bit min/max operations

.S unit (.S1, .S2) 32-bit arithmetic operations
32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations
Branches
Constant generation
Register transfers to/from control register file (.S2 only)
Byte shifts
Data packing/unpacking
Dual 16-bit compare operations
Quad 8-bit compare operations
Dual 16-bit shift operations
Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations

.M unit (.M1, .M2) 16 x 16 multiply operations
16 x 32 multiply operations
Quad 8 x 8 multiply operations
Dual 16 x 16 multiply operations
Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operation
Bit expansion
Bit interleaving/de-interleaving
Variable shift operations
Rotation
Galois Field Multiply

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset
Loads and stores with 15-bit constant offset (.D2 only)
Load and store double words with 5-bit constant
Load and store non-aligned words and double words
5-bit constant generation
32-bit logical operations

30

Figure 3.3: TMS320C64x CPU data path [16].

31

the memory types we can use are:

• On-chip RAM, up to 875 MB.

• Program cache.

• 32-bit external memory interface supports SDRAM, SBSRAM, SRAM, and

other asynchronous memories.

• Two-level caches [20]. Level 1 cache is split into program (L1P) and data

(L1D) cache. Each L1 cache is 16 KB. Level 2 memory is configurable and

can be split into L2 SRAM (addressable on-chip memory) and L2 cache for

caching external memory locations. The size of L2 is 1 MB. External memory

can be several MB large. The access time depends on the memory technology

used but is typically around 100 to 133 MHz. In our system, the external

memory usable by DSP is a 32 MB SDRAM.

3.2 Introduction to the Quixote cPCI Board [15]

The Quixote is one of Innovative Integration’s Velocia-family baseboard for applica-

tions requiring speed and processing power. Quixote features a processing core built

around Texas Instruments’ fixed-point TMS320C6416 and Xilinx Virtex2 with 32

MB of DSP RAM and 2 MB of FPGA computation RAM (optional). The TI C6416

DSP operating at 600 MHz offers a processing power of 4800 MIPS. The analog IO

features of the board include dual channels of 105 MHz A/D and D/A (2 in, 2 out).

A block diagram of Quixote board is shown in Fig. 3.4.

The Quixote card has a 32 MB SDRAM for use by the DSP. When used with the

advanced cache controller on the ’C6416, the SDRAM provides a large, fast external

memory pool for DSP data and code. The Quixote has a serial EEPROM for storing

data such as board identification, calibration coefficients, and other data that needs

32

Figure 3.4: Block diagram of Quixote [15].

to be stored permanently on the card. This memory is 16K bits in size. Functions

for using the serial EEPROM are included in the Pismo Toolset that allow the

software application programmer to easily write and read from the memory without

controlling the low-level interface.

The Caliente subsystem handles the details of interacting with the baseboard

in streaming mode. There are 3 ways for data transmission between host PC and

DSP: data streaming, block mode data streams and message packet I/O.

33

Data Streaming. To address high-bandwidth data transfer applications, Quixote

is capable of continuous transmission and reception of data via the PCI bus, using

a mechanism called streaming. When streaming, the target DSP, which must be

running a downloaded DSP application, transfers data between target DSP memory

and host PC memory automatically with no host intervention. Streaming input is

independent of streaming output. It is possible to acquire data from any number and

mix of input devices at a programmed rate. Simultaneously, data may be streamed

out to a variety of output devices at a different programmed rate. Data flow is fully

controlled by use of device drivers called from within the DSP target application.

During data streaming on baseboards, data flows between peripherals and a ded-

icated, onboard, digital signal processor (DSP) while simultaneously flowing data

between the DSP and the host application software. The dedicated DSP can ex-

tensively process data as it travels between peripherals and the host application.

Fig. 3.5 illustrates the data streaming operation.

Figure 3.5: Block diagram of DSP streaming mode [15].

Block Mode Data Streams. An alternate data flow paradigm is supported

for non-channelized peripherals. This mode is referred to as block mode stream-

34

ing. In block mode, the splitter/merger features of Caliente are bypassed, and raw,

binary data in peripheral-specific format is consumed and supplied by the applica-

tion program. Devices that produce data that can be channelized may elect to use

block mode because of its higher inherent efficiency. For very high rate applica-

tions, any processing done to each point may result in a reduction in the maximum

data rate that can be achieved. Since block mode does no implicit processing on a

point-by-point basis, the fastest data rates are achievable using this mode.

Message Packet I/O. In many applications, there is a need for additional,

low bandwidth channels in addition to a high rate data stream. Velocia baseboards

feature a means to support the asynchronous interchange of low-bandwidth data in

conjunction with high-bandwidth streaming mode I/O. Messages packets consist of

a command code and channel number plus up to 14 additional 32-bit parametric

data values. Messages may be asynchronously transmitted and received from any

number of distinct channels by any number of threads running on both the target

DSP and the host PC. Message transfers have no deleterious effect on data streaming

and consume virtually none of the bandwidth of the DSP, so they may be freely used

even in conjunction with full rate data streaming.

In our implementations, we use block mode data streams the most and also use

message packet I/O [24]. TheVirtex2 FPGA includes 18×18 hardware multipliers

and contains up to 12 digital clock managers, each providing 256 subdivisions of

phase shifting and frequency synthesis capabilities to deliver flexibility in managing

both on-chip and off-chip clock domains and synchronization. On-chip memory

blocks in the Virtex-II fabric provide convenient high-speed memory elements for

FIFOs, dual-port RAM and local processing memory that are invaluable in efficient

logic design.

35

3.3 Introduction to the Code Composer Studio

Development Tools[17], [18]

TI supports a useful GUI development tool set to DSP users for developing and

debugging their projects: the Code Composer Studio (CCS). The CCS development

tools are a key element of the DSP software and development tools from Texas In-

struments. The fully integrated development environment includes real-time analy-

sis capabilities, easy to use debugger, C/C++ compiler, assembler, linker, editor,

visual project manager, simulators, XDS560 and XDS510 emulation drivers and

DSP/BIOS support.

Some of CCS’s fully integrated host tools include:

• Simulators for full devices, CPU only and CPU plus memory for optimal per-

formance.

• Integrated visual project manager with source control interface, multi-project

support and the ability to handle thousands of project files.

• Source code debugger common interface for both simulator and emulator tar-

gets:

– C/C++/assembly language support.

– Simple breakpoints.

– Advanced watch window.

– Symbol browser.

• DSP/BIOS host tooling support (configure, real-time analysis and debug).

• Data transfer for real time data exchange between host and target.

• Profiler to analyze code performance.

36

CCS also delivers foundation software consisting of:

• DSP/BIOS kernel for the TMS320C6000 DSPs.

– Pre-emptive multi-threading.

– Interthread communication.

– Interrupt handling.

• TMS320 DSP Algorithm Standard to enable software reuse.

• Chip Support Libraries (CSL) to simplify device configuration. CSL provides

C-program functions to configure and control on-chip peripherals.

TI also supports some optimized DSP functions for the TMS320C64x devices:

the TMS320C64x digital signal processor library (DSPLIB). This source code li-

brary includes C-callable functions (ANSI-C language compatible) for general sig-

nal processing mathematical and vector functions [19]. The routines included in the

DSP library are organized as follows:

• Adaptive filtering.

• Correlation.

• FFT.

• Filtering and convolution.

• Math.

• Matrix functions.

• Miscellaneous.

37

3.4 Code Optimization Methods [21]

The recommended code development flow involves utilizing the C6000 code gener-

ation tools to aid in optimization rather than forcing the programmer to code by

hand in assembly. These advantages allow the compiler to do all the laborious work

of instruction selection, parallelizing, pipelining, and register allocation. These fea-

tures simplify the maintenance of the code, as everything resides in a C framework

that is simple to maintain, support, and upgrade.

The recommended code development flow for the C6000 involves the phases

described in Fig. 3.6. The tutorial section of the Programmer’s Guide [21] focuses on

phases 1 and phase 2, and the Guide also instructs the programmer about the tuning

stage of phase 3. What is learned is the importance of giving the compiler enough

information to fully maximize its potential. An added advantage is that this compiler

provides direct feedback on the entire program’s high MIPS areas (loops). Based on

this feedback, there are some simple steps the programmer can take to pass complete

and better information to the compiler to maximize the compiler performance. The

following items list the goal for each phase in the software development flow shown

in Fig. 3.6.

• Developing C code (phase 1) without any knowledge of the C6000. Use the

C6000 profiling tools to identify any inefficient areas that we might have in

the C code. To improve the performance of the code, proceed to phase 2.

• Use techniques described in [21] to improve the C code. Use the C6000 profiling

tools to check its performance. If the code is still not as efficient as we would

like it to be, proceed to phase 3.

• Extract the time-critical areas from the C code and rewrite the code in linear

assembly. We can use the assembly optimizer to optimize this code.

38

Figure 3.6: Code development flow for TI C6000 DSP [21].

39

TI provides high performance C program optimization tools, and they do not

suggest the programmer to code by hand in assembly. In this thesis, the development

flow is stopped at phase 2. We do not optimize the code by writing linear assembly.

Coding the program in high level language keeps the flexibility of porting to other

platforms.

3.4.1 Compiler Optimization Options [17], [18]

The compiler supports several options to optimize the code. The compiler options

can be used to optimize code size or execution performance. Our primary concern in

this work is the execution performance. Hence we do not care very much about the

code size. The easiest way to invoke optimization is to use the cl6x shell program,

specifying the -on option on the cl6x command line, where n denotes the level of

optimization (0, 1, 2, 3) which controls the type and degree of optimization:

• -o0.

– Performs control-flow-graph simplification.

– Allocates variables to registers.

– Performs loop rotation.

– Eliminates unused code.

– Simplifies expressions and statements.

– Expands calls to functions declared inline.

• -o1. Performs all -o0 optimization, and:

– Performs local copy/constant propagation.

– Removes unused assignments.

– Eliminates local common expressions.

40

• -o2. Performs all -o1 optimizations, and:

– Performs software pipelining.

– Performs loop optimizations.

– Eliminates global common subexpressions.

– Eliminates global unused assignments.

– Converts array references in loops to incremented pointer form.

– Performs loop unrolling.

• -o3. Performs all -o2 optimizations, and:

– Removes all functions that are never called.

– Simplifies functions with return values that are never used.

– Inline calls to small functions.

– Reorders function declarations so that the attributes of called functions

are known when the caller is optimized.

– Propagates arguments into function bodies when all calls pass the same

value in the same argument position.

– Identifies file-level variable characteristics.

The -o2 is the default if -o is set without an optimization level.

The program-level optimization can be specified by using the -pm option with the

-o3 option. With program-level optimization, all of the source files are compiled into

one intermediate file called a module. The module moves through the optimization

and code generation passes of the compiler. Because the compiler can see the entire

program, it performs several optimizations that are rarely applied during file-level

optimization:

41

• If a particular argument in a function always has the same value, the com-

piler replaces the argument with the value and passes the value instead of the

argument.

• If a return value of a function is never used, the compiler deletes the return

code in the function.

• If a function is not called directly or indirectly, the compiler removes the

function.

When program-level optimization is selected in Code Composer Studio, options that

have been selected to be file-specific are ignored. The program level optimization is

the highest level optimization option. We use this option to optimize our code.

3.4.2 Using Intrinsics

The C6000 compiler provides intrinsics, special functions that map directly to C64x

instructions, to optimize our C code performance. All instructions that are not

easily expressed in C code are supported as intrinsics. Intrinsics are specified with a

leading underscore () and are accessed by calling them as we call a function. A table

of TMS320C6000 C/C++ compiler intrinsics can be found in [21]. The intrinsics

used in our program are introduced in chapter 4.

42

Chapter 4

Simulation and DSP
Implementation

Our work and results can be separated into two parts. The first part concerns the

performance of each channel estimation approach, such as symbol error rate (SER),

mean square error (MSE), etc. The second part concerns the DSP implementation

which emphasizes the execution efficiency.

4.1 Comparison Between 2-D Interpolation and

LMS Adaptive Methods

Fig. 4.1 illustrates the block diagram of the simulated system. We assume perfect

synchronization and omit it in the simulation. After channel estimation, we get

MSE between the real channel response and the estimated one. Also, the SER can

be calculated after de-mapping, i.e., de-QAM.

The channel estimation contains several steps:

• Channel response estimation at each pilot location.

• Interpolation for the whole channel response using the estimated values at

pilot locations, which may include use of the LMS alogorithm.

• Estimating the transmitted signal using a divider.

43

Figure 4.1: Block diagram of the simulated system.

Figure 4.2: Channel estimation steps.

These steps are illustrated in Fig. 4.2.

4.1.1 Simulation Results for AWGN Channel

Before considering multipath channels, we do simulation with an AWGN channel,

which means we transmit the data through a one-path channel with h[0] = 1, and

then add AWGN to it. The theoretical symbol error rate with Gaussian noise power

N0 for M -ary QAM can be obtained by [23]

Pe = 4(1− 1√
M

)Q(

√
3NEb

(M − 1)N0

) (4.1)

where N = log2 M and for 64-QAM we have N = 6 with M = 64 here. The

Eb is Es/6 and the Es is normalized to be 1 in our simulation. If we substitute

E[|X̂i − Xi|2] for N0, we can get a theoretical symbol error rate. The result is

shown in Figs. 4.3 and 4.4, where we call (2.16) formula 1 and (2.19) formula 2 and

linear interpolation is used. The modulation scheme is 64QAM. We can see that the

44

Figure 4.3: MSE of |X̂i −Xi| for AWGN channel.

theoretical SERs are closed to the simulated ones whatever the formula we use. We

also see that formula 1 works better than formula 2. We calculate the ratio between

the coefficients of formula 1 and formula 2 this way:

(1
2
)2 × 8

12 + (5
4
)2 + (1

4
)2 + (3

2
)2 + (1

2
)2 + (7

4
)2 + (3

4
)2

= 0.2286 (4.2)

and the simulated ratio is listed in Table 4.1. We can find that those simulated

ratios are closed to 0.2286.

4.1.2 Simulation Results for Static Multipath Channel

We employ the ATTC (Advanced Television Technology Center) and the Grande

Alliance DTV Laboratory’s ensemble E mode channel response, assuming the chan-

nel is static. The response is given in Table 4.2. The phase in time domain is π/4.

The amplitude and phase response of this channel response are shown in Fig. 4.5.

45

(a)

(b)

Figure 4.4: The (a) MSE and (b) SER for AWGN channel simulation

46

(a)

(b)

Figure 4.5: (a)Amplitude response and (b) phase response of the channel given in
Table 4.2.

47

Table 4.1: MSE Ratio Between Formula 1 and Formula 2 for AWGN Channel

Es

N0
15 17.5 20 22.5 25 27.5

MSEformula 1

MSEformula 2
0.24055 0.23916 0.23756 0.23776 0.23769 0.23417

Es

N0
30 32.5 35 37.5 40

MSEformula 1

MSEformula 2
0.23407 0.22929 0.22764 0.22158 0.21259

Table 4.2: Channel Impulse Response

Tap Delay (OFDM Samples) Average Power Average Power (in dB)

1 0 1 0
2 2 0.3162 -5
3 17 0.1995 -7
4 36 0.1296 -8.87
5 75 0.1 -10
6 137 0.1 -10

4.1.2.1 Two-Dimensional Interpolation

In this section, we will do comparison between the two interpolation schemes pro-

posed in chapter 2. We use different sets in these two formulas, which means different

amount of previous symbols’ information will be employed.

To verify the correspondence between the simulation results and the theory, we

calculate the average |X̂i − Xi|2 on subcarrier 1 (see Fig.2.7; note that subcarrier

indexes run from 0 to 1701) and subcarrier 1700 by simulating 1000 symbols. The

theoretical symbol error is taken by following (4.1). Fig. 4.17 shows the MSE of

|X̂i − Xi| on the subcarrier 1 where we use formula 1 and linear interpolation.

Fig. 4.7 gives the MSE and SER on the subcarrier 1. The theoretical values are

calculated with N0 = |X̂i −Xi|2 in (4.1) whether in low SNR or high SNR. We find

that the theoretical results are closed to the simulated ones, and we conclude the

simulation results seen correct. Figs. 4.9 shows the MSE of |X̂i−Xi|, MSE, SER of

the carrier 1700. It responses similar results.

48

Figure 4.6: MSE of |X̂i −Xi| on subcarrier 1.

Fig. 4.10 shows the outcomes of formula 1 with both linear and 2nd-order in-

terpolations. Obviously, if we use more sets of pilot information, we get better

performance. The MSE and SER of 2nd-order interpolation method decrease faster

than the linear one for Es/N0 > 22.5 dB. The SER of 4 sets interpolation decreases

to zero because we have only run 1000 symbols. Thus, it proves that 2-D interpola-

tion is useful in the static channel condition. On the whole, the difference between

these two interpolation methods is small but the 2nd-order interpolation is of more

complexity than the linear one. Formula 2 yields results with many similar proper-

ties, which are given in Fig. 4.11.

We now compare the performance between formula 1 and formula 2. We can find

that formula 1 works better than formula 2 in Fig. 4.12; here the linear interpolation

is used. This is because we weight the 2 pilot-symbol information equally in formula

1 and it is reasonable doing so in a static channel. In formula 2, we emphasize the

49

(a)

(b)

Figure 4.7: The (a) MSE and (b) SER on the subcarrier 1 of the 2-D interpolation
using formula 1 with linear interpolation in the frequency domain respectively.

50

Figure 4.8: MSE of |X̂i −Xi| on subcarrier 1700.

pilot-symbol information closer to the present symbol. Objectively, it may not be

effective in estimating a static channel response because sometimes the information

of the symbols which are away from the present symbol may be more correct due

to the different AWGN. We also calculate the MSE ratio between formula 1 and

formula 2 in Table 4.3 and find the simulated ratios are closed to 0.2286 at low Es

N0
.

The same comparison is given in Fig. 4.13 with 2nd-order interpolation. Both these

two figure shows that formula 1 causes the SER drops to zero by 2.5 dB earlier than

formula 2 with 4 sets of pilot symbols employed. The reason for the zero-dropping

is also that we have only run 1000 symbols.

51

(a)

(b)

Figure 4.9: The (a) MSE and (b) SER on the subcarrier 1700 of the 2-D interpolation
using formula 1 with linear interpolation in the frequency domain respectively.

52

(a)

(b)

Figure 4.10: The (a) MSE and (b) SER of the 2-D interpolation using formula 1
with linear and 2nd-order interpolation in the frequency domain respectively.

53

(a)

(b)

Figure 4.11: The (a) MSE and (b) SER of the 2-D interpolation using formula 2
with linear and 2nd-order interpolation in the frequency domain respectively.

54

(a)

(b)

Figure 4.12: The (a) MSE and (b) SER of using formula 1 and 2 in the 2-D inter-
polation respectively with linear interpolation in the frequency domain.

55

(a)

(b)

Figure 4.13: The (a) MSE and (b) SER of using formula 1 and 2 in the 2-D inter-
polation respectively with 2nd-order interpolation in the frequency domain.

56

Table 4.3: MSE Ratio Between Formula 1 and Formula 2 for Multipath Channel

Es

N0
15 17.5 20 22.5 25 27.5

MSEformula 1

MSEformula 2
0.26065 0.26941 0.28589 0.3106 0.35563 0.41757

Es

N0
30 32.5 35 37.5 40

MSEformula 1

MSEformula 2
0.50178 0.60782 0.71261 0.80499 0.87676

4.1.2.2 LMS Adaptive Algorithm

In this section we combine the LMS adaptation with linear interpolation. The step-

size parameter µ of the LMS algorithm obeys [12], [13]

0 < µ <
2

3tr[R]
, (4.3)

where tr[R] is the sum of the powers of the signal samples at the filter tap inputs,

which are the powers of the channel impulse response taps in our case. Since tr[R] =

1 + 0.3162 + 0.1995 + 0.1296 + 0.1 + 0.1 = 1.1766, we choose µ to be 0.1 and 0.01.

Recall the adaptive equation Ĥp,LMS(n + 1) = Ĥp,LMS(n) + µε(n)∗X(n), where

X(n) is obtained by dividing the received signal by the estimated channel response

i.e., X(n)= Y(n)

Ĥp,LMS(n)
. This essentially assumes that our decision is correct. We

also compare the different weights α for the LMS filter output and the interpolated

data. The results are shown in Figs. 4.14 and 4.15. The MSE in Fig. 4.15 is the

error we want to minimize in this algorithm. From these simulation results, we get

steady convergence if we set µ = 0.1 and α = 0.5. However, when compared with

2-D interpolation, the outcome of LMS adaptive algorithm is not sufficient for our

requirements.

4.1.3 Multipath Rayleigh Fading Channel Simulations

We simulate block type Rayleigh fading in our work. The Rayleigh fading is simu-

lated as in [22], which is an improved Jakes’ model and the below equations are its

57

(a)

(b)

Figure 4.14: The (a) MSE and (b) SER for different weighting and different step-size
parameters in LMS adaptive method.

58

Figure 4.15: MSE between X̂ and X̂after decision for different weighting and different
step-size parameters in LMS adaptive method.

mathematical expressions.

R(t) = Rc(t) + jRs(t), (4.4)

Rc(t) =
2√
M

M∑
n=1

cos(ψn) · cos(wdt · cos αn + φ), (4.5)

Rs(t) =
2√
M

M∑
n=1

sin(ψn) · cos(wdt · cos αn + φ), (4.6)

where

αn =
2πn− π + θ

4M
, n = 1, 2, · · · ,M, (4.7)

with θ, φ, and ψn being statistically independent and uniformly distributed over

[−π, π) for all n, and M = 8 in our simulation.

59

The Rayleigh fading channel is created following the equation:

h[n] =
k∑

i=1

Ri[n]× αiδ[n− di]; H(f) = FFT{h[n]} (4.8)

where k is the total path number, αi is the static power of the ith path, Ri[n] is

the Rayleigh parameter calculated by (4.4), and the di is the delay spread of the

ith path. Because we simulate channel transmission in the frerquency domain as

Y (f) = X(f)×H(f) + N(f), therefore we have to transform h[n] to the frequency

domain. In Rayleigh channel simulation, the Ri[n] varies every symbol, thus we

need to do the FFT computation every symbol. To reduce the complexity and the

computation time, we simplify (4.8) into:

Basei(f) = FFT{αiδ[n− di]}, (4.9)

H(f) =
k∑

i=1

Ri[n]×Basei(f). (4.10)

Then, we compute FFT only 6 times at the first, and the latter channel frequency

response can be obtained by the linear summizing the products of the Rayleigh

parameters and the Basei(f). Compared with (4.8), we have to compute FFT for

one time per symbol, but now only 6 times in total because we have Basei(f) , i =

1 · · · 6. It does save a lot of time.

The Doppler shift is given by [23]

fd =
v

c
· fc · cos θ (4.11)

where v is the velocity of vehicles km/hr, c is the velocity of light, and θ is the

angle between the direction of v and line-of-sight of transmitter and receiver. The

simulation parameters are listed below:

• fc = 2 GHz.

• T = Ts = 201.9µ s.

60

Table 4.4: Relation Between Speed and Maximum Doppler Shift

Speed (km/hr) Max. Doppler Shift (Hz) fdTs

27 50 0.01
54 100 0.02

Table 4.4 shows the relation between some simulation parameters. Here we only

present the result of using in 2-D interpolation since its performance is much better

than that of LMS adaptive algorithm, as seen in the previous discussion. Besides,

for a Rayleigh fading channel, it would be useful emphasizing the estimated channel

information at pilots in symbols which are closer to the present one. For this reason,

we decide to do multipath fading channel estimation with formula 2.

First we do simulation on one-path Rayleigh fading channel with linear interpo-

lation and formula 2. The results are given in Figs. 4.16, where the theoretical curve

is obtained using the MSE of |X̂i−Xi| in (4.1), as we did in the cases of static one-

path and multipath channels. The reason why the simulated SER is much different

from the theoretical one may be that the MSE of |X̂i−Xi| cannot be seemed as N0.

Now we turn to the multipath Rayleigh fading channel. To verify our the correc-

tion of oue simulation, we only have comparison between the simulation results and

the theory. For subcarrier 1, the MSE and SER are shown in Figs. 4.17 and 4.18.

The other verification for subcarrier 1700 are shown in Figs. 4.19 and 4.20. We can

see that there is much different between the simulated results and the theoretical

ones. The reason for this may be that the |X̂i −Xi|2 cannot replace the N0 in the

(4.1) as a AWGN in the multipath Rayleigh fading channel. Then, we do other

comparison in Figs. 4.21 and 4.22. We can observe that 2nd-order interpolation

still performs better than the linear one with fdT = 0.01 as before. But it loses

its superiority with fdT = 0.02. Both MSE and SER do not decease smoothly as

Es/N0 increases, because the 6-tap multipath Rayleigh fading channel is hard to

61

(a)

(b)

Figure 4.16: The (a) MSE of |x̂i − xi|, MSE and (b) SER for one-path Rayleigh
fading channel, where V = 27 km/h, fdT = 0.01.

62

Figure 4.17: MSE of |X̂i−Xi| on subcarrier 1 for multipath Rayleigh fading channel.

deal with. Among all, interpolating with 4 sets of pilot-symbol information is the

most effective method. However, it costs the most memory and complexity at the

same time.

4.2 DSP Implementation

According to the results in the previous sections, we have a conclusion. For per-

formance and complexity reasons, it would be better combining 2-D interpolation

in time domain with linear interpolation in frequency domain. Although linear in-

terpolation is not as good as 2nd-order one, it is of smaller code size and lower

complexity.

63

(a)

(b)

Figure 4.18: The (a) MSE and (b) SER of carrier 1 with 2-D interpolation using
formula 2 with linear interpolation in the frequency domain respectively. V = 27
km/h, fdT = 0.01.

64

Figure 4.19: MSE of |X̂i − Xi| on subcarrier 1700 for multipath Rayleigh fading
channel.

4.2.1 Introduction to Program Structure

Fig. 4.23 shows program structure of the implemented system, where the key func-

tion in channel estimation is Linear-Interp; other are in supporting role.

Function Modulation(QPSK, 16-QAM, 64-QAM) maps binary data to the con-

stellation points. We only show the original code for QPSK in Fig. 4.24 for example.

Function Complex Mul is a multiplier which computes complex multiplication to

simulate channel effects. The original code is shown in Fig. 4.25.

We add AWGN in the main function instead of an individual function.

The operation in the block Pilot Location is that received signal Y(f) is divided

by p=4/3 or −4/3 at pilot locations, i.e., the LS estimator. This function is for

convenience in simulation; in real system implementation it can be absorbed into

later block.

65

(a)

(b)

Figure 4.20: The (a) MSE and (b) SER carrier 1700 with 2-D interpolation using for-
mula 2 with linear and 2nd-order interpolation in the frequency domain respectively.
V = 27 km/h, fdT = 0.01.

66

(a)

(b)

Figure 4.21: The (a) MSE and (b) SER of the 2-D interpolation using formula 2 with
linear and 2nd-order interpolation in the frequency domain respectively. V = 27
km/h, fdT = 0.01. 67

(a)

(b)

Figure 4.22: The (a) MSE and (b) SER of the 2-D interpolation using formula 2 with
linear and 2nd-order interpolation in the frequency domain respectively. V = 54
km/h, fdT = 0.02. 68

Figure 4.23: Program structure for channel estimation.

Function Linear Interp is the interpolation part which plays an important role

in the channel estimation scheme. The original code is shown in Fig. 4.26.

Function Complex Div is an equalizer where received signal is divided by the

estimated channel response and d̂(k) is the output. The code is shown in Fig. 4.27.

This function is also for convenience of simmulation; in real implementation its

function can be absorbed in the demodulator and the decoder.

Function De Modulation is the de-mapping function which outputs binary data

and the mapped data d̂after decision in the constellation. The original code is shown

in Fig. 4.28.

4.2.2 Performance of the Original Program

We use -o3 level optimization in all the following DSP simulations. Originally, we

develop the whole system with floating-point computation. Table 4.5 shows the

code size, the maximum, minimum, average execution cycles, and the multiples of

real-time needed, where multiples of real-time is the execution cycles divided by the

available DSP cycles. In our system, one symbol duration is 201.9 µs and there are

2304 samples in a symbol. The clock frequency of the DSP is 600 MHz. Hence the

69

Figure 4.24: Function Modulation (QPSK).

Figure 4.25: Function Complex Mul.

available execution cycles are 121140 in a symbol duration, averaging to 52.6 in a

sample duration.

70

Figure 4.26: Function Linear Interp.

4.2.3 Choice of the Fixed-Point Data Formats

4.2.3.1 32-bit Fixed-Point Operation

Since the C6416 is a fixed-point DSP, floating-point operations are time-consuming.

For this reason, employing fixed-point computation will be beneficial to the execu-

tion speed. Therefore, we modify the data type of all functions to 32-bit fixed-point

data type, i.e., int, in the beginning. To satisfy what is needed for synchronization

[24], we define the data format in our system as Q16.15. The Q16.15 format places

the sign bit in the leftmost bit, followed by 16 integer bits and then 15 bits fractional

bits (Table 4.6). This could support a large dynamic range for all data and is quite

71

Figure 4.27: Function Complex Div.

Figure 4.28: Function De-modulation(QPSK).

sufficient. Table 4.7 shows the profile using 32-bit fixed-point operations.

It has improved very much for most functions except the Modulation functions.

This is because we add multiplication in these functions to translate the mapped

data from floating-point to fixed-point and not only mapping operation (Fig. 4.29).

Simple modification of this part should be able to reduce the amount of computation.

The reason why Complex Mul improves the most is that software pipelining is

72

Table 4.5: Floating-Point Profile of 802.16a DL Channel Estimation Function Blocks

Block Code Size Max. Count Min. Count Avg. Count Multiples
of Real

(Bytes) (Cycles) (Cycles) (Cycles) Time

Modulation (QPSK) 136 24,585 24,585 24,585 0.20
Modulation (16QAM) 332 74,933 73,947 74,391 0.61
Modulation (64QAM) 580 92,212 92,131 92,169 0.76

Complex Mul 284 899,946 899,231 899,603 7.42
Linear Interp 548 625,067 467,233 579,794 4.78
Complex Div 404 1901,807 1,898,949 1,900,051 15.67

De Modulation 2742 1,372,176 1,223,976 1,305,239 10.77

Table 4.6: Q16.15 Bit Fields

Bits 31 30 29 ... 15 14 ... 1 0
Value S I15 I14 ... I0 Q14 ... Q1 Q0

Table 4.7: Fixed-Point 32-Bit Operation Profile of 802.16a DL Channel Estimation
Function Blocks

Block Code Max. Min. Avg. Improvement Multiples
size Count Count Count Compared with of Real

(Bytes) (Cycles) (Cycles) (Cycles) Table 4.5 Time

Modulation (QPSK) 126 28,586 28,423 28,545 -16.27% 0.23
Modulation (16QAM) 302 85.549 85.549 85.549 -15.01% 0.70
Modulation (64QAM) 456 104,590 104,274 104,458 -13.33% 0.86

Complex Mul 472 15,338 15,338 15,338 98.29% 0.12
Linear Interp 632 504,921 398,510 441,423 23.87% 3.64
Complex Div 556 554,340 551,557 552,807 70.89% 4.56

De Modulation 1088 228,666 222,227 225,016 82.76% 1.85

performed in the function Complex Mul which accelerates the execution speed a

lot compared to floating-point operations. Fig. 4.30 gives the compile feedback

information that provides this information. The loop kernel is shown in Fig. 4.31.

73

Figure 4.29: Function Modulation(QPSK) of 32-bit fixed-point operation.

4.2.3.2 16-Bit Fixed-Point Operation

However, we face a problem when optimizing the performance further by adding

intrinsic functions into these functions. Most intrinsic functions are specified for

the 16-bit data format, but very few for the 32-bit one. Later simulation results

will show that 16-bit fixed-point operations are enough to provide the performance

near that of floating-point computation. Therefore, we decided to change the data

type to 16-bit, i.e., short. Because the absolute value of the modulated signal

is not larger than 2, one or two bits are enough for the integer part. The data

after modulation function is set to Q1.14. Q1.14 format places the sign bit in the

leftmost followed by 1 integer bit, and the remainder 14 bits are fraction component

(Table 4.8). We can notice that the number of the integer decreases from 15 to

1 and this means the dynamic range supported by Q1.14 would not be sufficient

for functions in the follows. To solve this problem, we have to change the bit-field

in different functions according to their data values simulated in the floating-point

74

Figure 4.30: Software pipelining information of 32-bit fixed-point Complex Mul .

version. Then, we have different types of bit-field setting such as Q5.10, Q4.11, etc.

Fig. 4.32 shows the fixed-point data formats used in the simulation. The output

bit-field of Modulation X(k) is Q1.14. Since the channel gain is no higher than 8,

we set the bit-field of H(k) to Q3.12. Therefore, the output of Complex Mul has

to be Q4.11 . After adding AWGN, the integer part is right shifted 1 bit and the

bit-field setting is Q5.10 (Y (k)) to prevent from overflow. Since p = ±4/3 is of

Q1.14 format by our design, so Q5.10/Q1.14 (Yp(k)/p) outputs in Q4.11. In the

function Linear Interp, all bit-field format is Q4.11. In the function Complex Div,

Q5.10/Q4.11 (Y (k)/Ĥ(k)) outputs Q1.14, for the reason that absolute values of

de-modulation constellation points are no greater than 2.

75

Figure 4.31: The loop kernel of Complex Mul .

4.2.4 Code Improvement

4.2.4.1 Coding Style Improvement

In the beginning, we declare each complex number with real part and imaginary part

separately in the functions Modulation, Complex Mul, Linear Interp, Complex Div

76

Table 4.8: Q1.14 Bit Fields

Bits 15 14 13 ... 1 0
Value S QI0 Q14 ... Q1 Q0

Figure 4.32: Fixed-point data formats used in DSP implementation.

Table 4.9: Different Ways of Variable Declaration, Where r Stands for Real Part
and i Stands for Imaginary Part

(a)Separate Declaration of Real and Imaginary Parts
Array a[1702].r a[1701].r a[1700].r a[1699].r ... a[1].r a[0].r

Array a[1702].i a[1701].i a[1700].i a[1699].i ... a[1].i a[0].i
(b)Combination Placement of Real and Imaginary Parts

Array a[1702∗2] a[1701∗2+1] a[1701∗2] a[1700∗2+1] ... a[1] a[0]

Value a[1701].i a[1701].r a[1700].i ... a[0].i a[0].r

and De-Modulation (Table 4.9(a)). This is time-wasting in regard to reading or writ-

ing memory. Hence, we combine both real and imaginary parts in one register (see

Table 4.9(b)). Real parts are located in the even array locations whereas imaginary

parts are located in the odd array locations. The previous codes can be found in

section 4.2.1 and the modified codes are shown in the next section. An exampe are

given in Fig. 4.33 for C code and Fig. 4.34 shows the resulting assembly code.

77

Figure 4.33: Example of different coding styles in C code.

4.2.4.2 Optimization by Using Intrinsic Functions [21]

Intrinsic functions are special functions which help us accelerate the DSP execution

speed. We find several useful intrinsic functions which are suitable for our system.

• The amemd8 and amemd8 const intrinsics tell the compiler to read the array

of shorts with double-word accesses. This causes LDDW and STDW instruc-

tions to be issued for the array accesses. The lo() and hi() intrinsics break

apart a 64-bit double into its lower and upper 32-bit halves. Each of these

halves contain two 16-bit values packed in a 32-bit word. To store the re-

sults, the itod() intrinsics assemble 32-bit words back into 64-bit doubles to

be stored. Figs. 4.35 and 4.36 show these processes graphically.

• The dotpn2 and dotpn2 intrinsic performs real and imaginary portions of

complex multiply respectively. The operation is given in Fig. 4.37. We use

these functions mostly in the multiply and the divide functions.

• add2: 32 bits adder.

78

Figure 4.34: Result of different coding styles in complied assembly code.

79

Figure 4.35: Array access in vector sum by LDDW [21].

Figure 4.36: Array access in vector sum by STDW [21].

Some code using intrinsic functions is shown in Figs. 4.38 and 4.39 and note that

we have added “vec” before the function names to distinguish them from the func-

tions before. Both the functions Complex Mul and Complex Div use intrinsic func-

tions amemd8, amemd8 const, dotpn2, and dotpn2. We use add2 when adding

AWGN.

4.2.5 Final Version of Fixed-Point 16-Bit Operation

Finally, we check the whole functions to see if there is any optimization could be

done to our code. Then, we modify the Linear Interp function in Fig. 4.40 to Fig.

80

Figure 4.37: Illustration of the dotp2 and the dotpn2 intrinsics [21].

4.41. This is a kind of coding style improvement.

The software pipelining is employed to the modified part in Linear Interp (Fig.

4.43) and the loop kernel is shown in Fig. 4.42. We have better performance in our

simulation after this modification which is shown in Table 4.10. From the results,

we can find that the original interpolation loop takes much more time but much less

after we modified the code style.

Code refinement enhances our performance. Some of these functions reach the

real time requirement and some almost reach it. This is because the division in

Complex Div is time-consuming and it costs many more cycles to execute it than

multiplications.

4.2.5.1 Execution Efficiency

Our DSP can execute 6 additions and 2 multiplications in one cycles. We have 4

multiplications and 2 additions per sample in function Complex Mul, and 8 complex

multiplications, 4 additions, 2 division per sample in Complex Div. Each division

81

Figure 4.38: Function vec Complex Mul .

needs 22 cycles in the complied code for 32 bits operation and 21 cycles for 16-bit

operation. Therefore, we need a minimum cycles max{4/2,2/6}×1702=3404 cycles

per symbol in Complex Mul and (2×22/2+max{8/2,4/6})×1702=44252 per symbol

for 32-bit operation, and 1702 and 39146 cycles for 16-bit operation, respectively. We

compare the actual execution cycles taken by the compiled code with the minimum

cycles needed and calculate the efficiency, where the efficiency is defined as:

Efficiency =
Minimum Cycles Needed

Practical Execution Cycles
, (4.12)

which can show how much improvement is achieved after our optimization.

82

Figure 4.39: Function vec Complex Div .

We can see from Tables 4.11 and 4.12 list the efficiency of Complex Mul and

Complex Div. We get a good performance after all the code improvements done to

16-bits fixed-point operation. Fig. 4.44 is the software pipelining information for

Complex Mul with 16-bits fixed-point operation. The maximum trip count is 851

which is half the value of 32-bit fixed-point operation (see Fig. 4.30).

For Complex Div, we can find that the efficiency is small and this is because

there are a lot of load or store operations in this function (Fig. 4.39). Besides, we

83

Figure 4.40: Original interpolation loop.

Figure 4.41: Final version of the interpolation loop.

have if-else operations in this function for preventing the dividing by zero situation.

Therefore, software pipelining cannot be done to accelerate the execution speed

when codes contain a “control code.” At least, adding intrinsic functions improves

the performance compared with 32-bit fixed-point operation.

We use 567×4 divisions and 567×4 multiplications and 567×8 additions per sym-

bol in Linear Interp. Therefore, the minimum cycles are 26082 for 32-bit fixed-point

84

Figure 4.42: Loop kernel of modified assembly code in Linear Interp.

Figure 4.43: Software pipelining information of the modified loop in Linear Interp
.

operation and 24381 for 16-bit fixed-point operation. The efficiency of Linear Interp

is listed in Table 4.13. We only reach 36.01 % efficiency and this is because there is

85

Table 4.10: Fixed-Point 16-bit Operation with Coding Style Modified Profile of
802.16a DL Channel Estimation Function Blocks

Block Code Max. Min. Avg. Improvement Multiples
size Count Count Count Compared with of Real

(Bytes) (Cycles) (Cycles) (Cycles) Table4.7) Time

Modulation (QPSK) 124 27,775 27,775 27,775 2.69% 0.22
Modulation (16QAM) 296 70.637 69.429 73.802 13.73% 0.60
Modulation (64QAM) 396 101,585 101,082 101,308 3.02% 0.71

Complex Mul 272 3,421 3,421 3,421 77.69% 0.02
Linear Interp 332 81,713 47,689 67,705 84.66% 0.55
Complex Div 428 163,108 162,793 162,960 70.57% 1.15

De Modulation 1068 149,796 146,600 148,169 34.15% 1.05

Table 4.11: Performance Comparison Between Different Data Types of
Complex Mul

Block Execution Cycles Minimum Cycles Needed Efficiency
per Symbol per Symbol

Complex Mul (float) 899,231 3,404 0.37%
Complex Mul (32-bits) 15,338 3,404 22.19%
Complex Mul (16-bits) 3,421 1,702 49.75%

Table 4.12: Performance Comparison Between Different Data Types of Complex Div

Block Execution Cycles Minimum Cycles Needed Efficiency
per Symbol per Symbol

Complex Div (float) 1,900,051 44,252 4.1%
Complex Div (32-bits) 688,850 44,252 6.42%
Complex Div (16-bits) 162,960 39,146 24.02%

also control code in this function. Coding style improvement would be useful for this.

Over all, it seems that the performance of our interpolation scheme is not efficient

enough for there are many divisions. However, it reach the real time requirement.

86

Figure 4.44: Software pipelining information of 16-bits fixed-point of Complex Mul .

Table 4.13: Performance Comparison Between Different Data Types of
Linear Interp

Block Execution Cycles Minimum Cycles Needed Efficiency
per Symbol per Symbol

Linear Interp (float) 467,233 12,852 2.75%
Linear Interp (32-bits) 441,423 26,082 5.9%
Linear Interp (16-bits) 67,705 24,381 36.01%

4.2.6 Summary

We have done much work to accelerate the DSP execution speed such as changing

data type, code style refinement, and using intrinsics. Compared with theoretical

execution cycles, however, the performance is still not very good. The reason may

be that there is still bad coding-style in our programs which leads to lower down

the speed. At least, our interpolation scheme achieved the goal of 0.5 multiples of

87

real time. It means we can finish interpolation of approximately two symbols in

one symbol period. The accuracy of fixed-point 16-bit operation is almost the same

with floating-point one although there is quantization error. Since we use Q1.14

format, the accuracy can reach 1/214 = 6.1 × 10−5. Therefore, there is only little

difference between them. With correct analysis of dynamic range, we can avoid error

caused by calculation overflow or underflow. Fig. 4.45 gives the execution accuracy

comparison between floating-point and 16-bit fixed-point operations.

88

(a)

(b)

Figure 4.45: (a) MSE and (b) SER comparison between floating-point and 16-bit
fixed-point operations with 2-D interpolation using formula 2 (4 sets) with linear
interpolation in the frequency domain. V = 27 km/h, fdT = 0.01.

89

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we developed channel estimation schemes for IEEE 802.16a OFDMA

downlink transmission. We proposed two kinds of interpolation methods in fre-

quency domain which were linear interpolation and 2nd-order interpolation. Alter-

nately, we also applied 2-D interpolation and LMS adaptive algorithm in the time

domain. The combination of 2-D interpolation and linear interpolation would work

efficiently. Because the linear interpolation was of less complexity and its perfor-

mance on the whole was almost the same with the 2nd-order interpolation. The

2-D interpolation was more excellent than LMS adaptive algorithm in the time do-

main. To such pilot allocation in the IEEE 802.16a OFDMA downlink system, 2-D

interpolation would be a good choice.

As to DSP implementation, for the concern of fixed-point C64x DSP, we changed

the original floating-point operation to fixed-point 32-bit one. Although this did ac-

celerate a lot, there were still limitations in using intrinsics. Therefore, replacing

32-bit fixed-point operation with 16-bit fixed-point operation was a must. Thus,

we only had half the original number of bits. To make work correct, we had to be

careful with the calculation to prevent from data overflow or underflow. There were

three ways to accelerate the DSP execution speed: changing data types, coding style

90

optimization, and using intrinsics. The total execution cycles of the channel esti-

mation scheme have been reduced from 425,630 cycles to 236,871 cycles during the

optimization [24]. The realtime rate also raised from 28.46% to 51.14.%. The final

result showed our fixed-point 16-bit version can work as well as the floating-point

version. It means the decision the bit-field is right enough for our simulation envi-

ronment. But with larger the dynamic range of data values, the bit-field must varies

at the same time. Besides, most of the functions reach the real time requirements

and the rest almost reach it. it shows that the whole system could finish the task

in time.

5.2 Future Work

We mentioned the execution cycles of the whole channel estimation scheme have

been reduced to 236,871 cycles. There is still distance from the real time. The

critical path may be the function Complex Div since executing divider is quite time-

consuming. To solve this problem, we may map the received data Y(k) directly to

de-64QAM. It means we need to combine the channel estimation output with the

de-64QAM block. Meanwhile, the complexity of the de-mapping must be increasing.

It is trade-off. However, it is supposed to be of less complexity than the original

one since the added operation in the de-mapping block is multiply. Beside, there

are other improvements could be done to accelerate the execution speed.

For the Rayleigh fading channel, we only simulated with fdT=0.01, 0.02. This

because the dynamic range of the real channel response varies beyond what we set

with the present situation when fdT is larger. Therefore, if we want to simulate with

lager fdT, we have to change the bit-field setting in the channel estimation scheme

at the same time such as Q6.9, Q7.8, etc.

91

Bibliography

[1] IEEE Std 802.16a-2004, IEEE Standard for Local and Metropolitan Area Net-

works — Part 16: Air Interface for Fixed Broadband Wireless Access Systems.

New York: IEEE, June 24, 2004.

[2] IEEE Std 802.16a-2003, IEEE Standard for Local and Metropolitan Area Net-

works — Part 16: Air Interface for Fixed Broadband Wireless Access Systems

— Amendment 2: Medium Access Control Modifications and Additional Phys-

ical Layer Specifications for 2–11GHz. New York: IEEE, April 1, 2003.

[3] M.-T. Lin, “Fixed and mobile wireless communication based on IEEE 802.16a

TDD OFDMA: transmission filtering and synchronization,” M.S. thesis, De-

partment of Electronics Engineering, National Chiao Tung University, Hsinchu,

Taiwan, R.O.C., June 2003.

[4] O. Edfors, M. Sandell, J. J. van de Beek, D. Landstrom, and F.

Sjoberg, “An introduction to orthogonal frequency-dicision multiplexing,”

http://courses.ece.uiuc.edu/ece459/spring02/ofdmtutorial.pdf.

[5] M.-H. Hsieh, “Synchronization and channel estimation techniques for OFDM

systems,” Ph.D. thesis, Department of Electronics Engineering, National Chiao

Tung University, Hsinchu, Taiwan, R.O.C., May 1998.

92

[6] O. Edfors, M. Sandell, J. J. van de Beek, S.K. Wilson, and P.O. Börjesson,

“OFDM channel estimation by singular value decomposition,” in IEEE 46th

Vehicular Technology Conference, Apr. 1996, pp. 923–927.

[7] C. K. Koc and G. Chen, “Authors’ reply [Computational complexity of matrix

inversion],” IEEE Trans. Aerospace Electronic Systems, vol. 30, no 4, p. 1115.

Oct. 1994.

[8] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation techniques

based on pilot arrangement in OFDM systems,” IEEE Trans. Broadcasting,

vol. 48, no. 3, pp. 223–229, Sep. 2002.

[9] M.-H. Hsieh and C.-H Wei, “Channel estimation for OFDM systems based

on comb-type pilot arrangement in frequency selective fading channels,” IEEE

Trans. Consumer Electron. vol. 44, no. 1, pp. 217–225, Feb. 1998.

[10] S. G. Kang, Y. M. Ha, and E. K. Joo, “A comparative investigation on chan-

nel estimation algorithms for OFDM in mobile communications,” IEEE Trans.

Broadcasting, vol. 49, no. 2, pp. 142–149, June 2003.

[11] I.-I. Chen, “Study and Techniques of IEEE 802.16a TDD OFDMA Downlink

Channel Estimation,” M.S. thesis, Department of Electronics Engineering, Na-

tional Chiao Tung University, Hsinchu, Taiwan, R.O.C., June 2004.

[12] B. Farhang-Boroujeny, Adaptive Filters: Theory and Applications. Wiley, 1998,

pp. 139–199.

[13] S. Haykin, Adaptive Filter Theory. Upper Saddle River, New Jersey: Prentice

Hall, 2002.

[14] H.-M. Hang, Adaptive Signal Processing. Course notes, Department of Elec-

tronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.,

Spring 2004.

93

[15] Innovative Integration, Quixote User’s Manual. Dec. 2003.

[16] Texas Instruments, TMS320C6000 CPU and Instruction Set. Literature num-

ber SPRU189F, Oct.2000.

[17] Texas Instruments, Code Composer Studio User’s Guide. Literature number

SPRU328B, Feb. 2000.

[18] Texas Instruments, TMS320C6000 Code Composer Studio Getting Started

Guide. Literature number SPRU509D, Aug. 2003.

[19] Texas Instruments, TMS320C64x DSP Library Programmer’s Reference. Liter-

ature number SPRU565B, Oct.2003.

[20] Texas Instruments, TMS320C6000 DSP Cache Users Guide. Literature number

SPRU656A, May.2003.

[21] Texas Instruments, TMS320C6000 Programmer’s Guide. Literature number

SPRU198G, Oct.2002.

[22] Y. R. Zheng and C. Xiao, “Simulation models with correct statistical properties

for Rayleigh fading channels,” IEEE Trans. Commun., vol. 51, no. 6, pp. 920–

928, June 2003.

[23] T. S. Rappaport, Wireless Communications Principles and Practice. Upper

Saddle River, New Jersey: Prentice Hall, 1996.

[24] Y.-S. Chen, “DSP software implementation and integration of IEEE 802.16a

TDD OFDMA downlink transceiver system,” M.S. thesis, Department of Elec-

tronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.,

June 2005.

94

作者簡歷

 陳汝芩，民國七十年十一月出生於桃園縣。民國九十二年六月畢業於國立交

通大學電子工程學系，並於同年九月進入國立交通大學電子研究所就讀，從事通

訊系統方面相關研究。民國九十四年六月取得碩士學位，碩士論文題目為『IEEE

802.16a 分時雙工正交分頻多重進接下行導引訊號輔助式通道估測之技術與數

位訊號處理器軟體實現』。研究範圍與興趣包括：通訊系統、信號處理等。

	Cover.pdf
	國立交通大學
	電子工程學系 電子研究所碩士班
	碩士論文
	研究生：陳汝芩
	指導教授：林大衛 博士
	中華民國九十四年六月

	Cover2.pdf
	A Thesis

