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Abstract 

The spatial smoothing technique is effective in decorrelating multiple coherent interferers for an adaptive beamformer. 
However, it requires a configuration with identical subarrays. This paper presents an interpolation scheme to synthesize 

multiple virtual subarrays allowing for the use of spatial smoothing from a real array of arbitrary geometry. After interpolation, 

the optimum spatially smoothed subarray beamformer is constructed. A dimension recovery transformation can then be 
implemented to calculate the weights of the full array which will retain the interference nulls of the subarray beamformer. 
The efficacy of the proposed scheme is assessed through simulation. @ 1997 Elsevier Science B.V. 

Zusammenfassung 

Allgemein stellt die Technik der raumlichen Gl&ung bei Verwendung eines adaptiven Beamformers ein effizientes Mittel 

dar, um mehrere koharente Stijrquellen zu dekorrelieren. Allerdings wird hierbei eine Sensoranordnung benotigt, die aus 
identischen Sensorgruppen besteht. Dieser Artikel stellt ein Interpolationsverfahren vor, mit dessen Hilfe mehrere virtuelle 

Sensorgruppen synthetisiert werden konnen, so dal.3 die raumliche Gl&ung such bei Sensorgruppen beliebiger Geometrie 
angewandt werden kann. Nach der Interpolation wird der optimale raumlich gegliittete Untergruppenbeamformer konstruiert. 
Anschliegend kann eine Dimensions-Riickgewinnungstransfonnation implementiert werden, um die Gewichtsfaktoren fiir 
die gesamte Sensorgruppe zu berechnen. Dabei bleiben die Nullstellen im Diagramm des Untergruppenbeamformers an den 
Stijrpositionen erhalten. Abschlieljend wird die Wirksamkeit des vorgestellten Verfahrens anhand von Simulationen beurteilt. 

@ 1997 Elsevier Science B.V. 

La technique de lissage spatial est efficace pour decorreler des signaux d’interference multiples coherents dans un formatteur 
de voie adaptatif. Toutefois, elle r&lame une configuration comprenant des sous-reseaux identiques. Cet article presente une 
methode d’interpolation pour synthetiser, a partir d’un reseau de geometric arbitraire, des sous-reseaux virtuels multiples 

permettant l’utilisation du lissage spatial. Apres interpolation, le formatteur de voie optimal du sous-reseau lisst spatialement 
est construit. Une transformation de recouvrement de dimension peut ensuite 8tre implant&e afin de calculer les pond&rations 
du reseau complet, qui conservera les zeros d’interference du formatteur de voie du sous-reseau. L’efficacite du schema 
propose est montree a I’aide de simulations. @ 1997 Elsevier Science B.V. 
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1. Introduction 

An adaptive beamformer performs spatial filtering 

by forming a beam in such a fashion that the desired 

signal can be received with a large gain, while un- 

desired interfering signals can be suppressed [6]. 
Conventional adaptive beamformers are found to be 

effective in suppressing strong interferers so long as 

the pointing error is negligible and the interferers are 

uncorrelated with the desired source. In the presence 

of pointing errors and/or correlated interferers, these 

beamformers exhibit degradation in performance in 
that the output signal-to-interference-plus-noise ratio 

(SINR) drops significantly. In some extreme cases, 

such as with large pointing errors or coherent inter- 
ference, the conventional beamformers break down 

as a result of desired signal cancellation. Remedies 

have been proposed to lessen the effect of desired 
signal cancellation [3,5, 111. In particular, the Duvall 

processor was suggested in Ref. [ 1 l] as a means of 

improving the robustness of an adaptive beamformer 
operating on an array with the ‘doublet’ structure, 

such as the uniform linear array (ULA). With the 

Duvall processor, the desired signal is first attenuated 
by using a subtractive preprocessor. The optimum 

weights are then calculated based on the preprocessed 

data. With this mode of operation, the beamformer 
will not cancel the desired signal, even in the pres- 

ence of pointing errors and coherent interference. We 
refer to this type of beamformers as the ‘suppressed- 

desired signal ’ (SD) beamformers. 
In spite of the success of dealing with pointing 

errors of moderate size and a single coherent inter- 
ferer, the Duvall beamformer still exhibits a certain 

degradation in the presence of large pointing errors 

or multiple coherent interferers [3,5,7]. With large 
pointing errors, the desired signal cannot be attenuated 
sufficiently such that a portion of its power will be 

eliminated by the beamformer. This problem can be 
lessened by using high order look direction constraints 
to broaden the effective region of desired signal atten- 
uation, or using some kind of algorithm to ‘track’ the 
desired source direction [3]. On the other hand, the 
difficulty incurred with multiple coherent interferers is 

a consequence of the fact that the relationship govem- 
ing the mutual cancellation of the interfering signals in 
the master beamformer is destroyed in the slave beam- 
former. A similar situation which is likely to happen 

in a mobile scenario is that the relative phases of the 

coherent multipath signals change so rapidly that an 

adaptive beamformer is unable to keep up an effective 

mutual cancellation of these interferers. To avoid such 

degradation, the spatial smoothing technique [8] can 

be employed as a means of decorrelating the interfer- 
ers before the optimum weights are obtained [4,7,8]. 

This ensures that the beamformer will suppress the in- 

terferers individually, instead of performing a mutual 

cancellation. However, working with spatial smooth- 

ing requires an array consisting of spatially shifted 

identical subarrays, which may not be attainable in 
practice. A question then arises as to whether an adap- 

tive beamformer can be implemented on an arbitrary 
array to handle multiple coherent interferers. In [lo], 
an interpolation technique was proposed for trans- 

forming an arbitrary array into a ULA such that spatial 

smoothing can be applied to estimate the directions of 
coherent sources. Detailed discussions on the interpo- 
lation procedure are given in Ref. [l]. It was shown 

that an interpolated array can perform almost as well 
as a real array for source localization [ 11. Similar re- 

sults can be expected for adaptive beamforming. 

This paper presents a beamforming scheme for 
combating multiple coherent interferers with an inter- 
polated array. The procedure consists of three steps. 

Firstly, spatially shifted identical virtual subarrays 
are synthesized from the same real array by linear 
interpolation [I]. Specifically, the interpolator is de- 

signed such that the interferers are transformed dis- 
tortionlessly onto the virtual subarrays, whereas the 

desired source is eliminated. The latter operation is 

similar to the subtractive preprocessing in the Duvall 
beamformer. Secondly, a spatially smoothed virtual 
subarray correlation matrix is formed, from which the 

optimum weight vector can be obtained to produce a 
null for each interferer. Finally, the subarray weight 
vector is converted back into a full aperture weight 
vector acting on the real array via a dimension re- 

covery transformation and post combining. Two dif- 
ferent combiners are suggested: the maximum output 
signal-to-noise ratio (SNR) combiner and the eigen- 

based combiner. The former is easier to implement, 
whereas the latter is more robust to pointing 
errors. The efficacy of the proposed beamformer 
is ascertained by several sets of numerical examples 
using the nonuniform linear array and circular 
array configurations. 
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2. Problem formulation where 

2.1. Notations A = wd), a@1 >, . . , +k)i, (2) 

and S = [s&s,, . . .,sK] T. The random scalars sd and 

Sk, k = I,..., K, represent the desired and interfer- 

ing signal samples received at the reference point of 

the array. The A4 x 1 vectors a(&) and a(&), k = 

1,. . . , K, are the direction vectors accounting for the 

gain and phase variations across the array due to the 

desired and interfering signals from direction & and 
ek, k = 1,. . . , K, respectively. Finally, the vector n is 

composed of the noise components present at the M 

elements. The noise is assumed to be spatially white 
with power IJ~ and uncorrelated with the desired and 

interfering signals. 

n x 1 zero vector 

Euclidean norm 

expectation 
desired source direction 

interfering source direction 

look direction 

noise power 
normalizing scalar 

primary interpolation region 

auxiliary interpolation region 
interpolation region associated with desired 

signal 
interpolation region associated with interfer- 

ence 
parameter controlling the relative emphasis 
between the interpolation performance over 

0 and 0, 

wavelength 

phase shift matrix associated with the ith 
subarray 

phase shift between the ith and reference 
subarrays for direction 6’ 
normalizing scalar 

normalizing scalar 

generalized eigenvalue 
deviation of interpolation region 

Superscripts 
T: transpose 

H: complex conjugate transpose 

2.2. Array model and beamforming 

The scenario considered herein involves a single 
desired source and K possibly mutually correlated in- 
terferers, all assumed to be narrowband with the same 

center frequency. These sources are in the far field of 
an array consisting of M elements. Adopting the com- 
plex envelop notation, the array data obtained at a cer- 

tain sampling instant can be put in the A4 x 1 vector 
form: 

(1) 

A beamformer is a linear combiner which trans- 

forms the array data vector into a scalar y via an M x 1 
complex weight vector W: 

y = W”X. (3) 

Associated with the beamformer constructed with w 
is the beam pattern defined by 

w(e) = wHu(e), (4) 

which describes the spatial response of the beam- 

former. The optimum beamformer which we will work 

with is constructed so as to minimize the output power 
subject to a unit response constraint in the look direc- 
tion e. : 

rn$r E { ly12> - wHRxxw 

subject to wHa(BO) = 1, (5) 

where R, is the A4 x M data correlation matrix. In- 

voking the spatial whiteness of n and using (1 ), we 
have 

R, = E {xx”} = AR&” + o,2ZM, (6) 

where R,, = E{ssH} is the source correlation matrix, 
and ZM is the A4 x M identity matrix. The linearly 

constrained minimum variance (LCMV) problem [9] 
in (5) has the solution 

W = yR$u(B& 

where y is a normalizing scalar. 

(7) 
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The optimum beamformer is known to perform 

poorly in the presence of pointing errors and/or co- 

herent interference. A subtractive preprocessor can 

lessen the problem incurred with pointing errors and a 
single coherent interferer, but cannot handle multiple 

coherent interferers. This prompts the development 
of a scheme to decor-relate the interferers before 

beamforming. For an array consisting of identical 

subarrays, the decorrelation can be done with spatial 

smoothing. When this is not the case, one must resort 
to the numerical approach, i.e., array interpolation, to 

reconfigure the array. 

structure modified in a tolerable fashion, This issue 
will be discussed shortly. 

The interpolation of virtual subarrays is performed 

in a linear fashion. That is, we use L transformation 
matrices 4, i = I,. . . , L, of size M, x M to transform 

the real array direction vector a(8) into the virtual 

subarray direction vectors Qt?), i = 1,. . . ,L, over a 
prescribed angular region 0 : 

zU(O) = hi(S), 8 E 0, i = 1,. . . ,L. (8) 

Usually the interpolation region consists of several 

subregions around the hypothesized source directions 

obtained from the preliminary localization. 

3. Formation of the interpolated arrays 3.2. Suppressed-desired signal (SD) interpolators 

This section describes the procedure for forming 

the interpolated array and discusses various issues on 
array interpolation. The procedure involves creating 

L spatially shifted identical virtual subarrays of M, 
elements from the real array. 

3.1. Interpolation of virtual subarrays 

As described earlier in Section 1, an effective way 

of avoiding desired signal cancellation due to point- 

ing errors is to remove the look direction signal before 
beamforming. The idea can be incorporated into the 

interpolation process by forcing the transformed di- 
rection vectors to be zero in the neighborhood of the 

look direction. That is, we define the modified trans- 
formation matrices Fi, i = 1,. . . ,L, such that 

There are two major considerations in designing 
the interpolated array. Firstly, both the configuration 

of the virtual subarrays and angular region for inter- 

polation need be determined beforehand. Secondly, 
the original signal-noise condition should be retained 

on the interpolated array so as to ensure a reliable 

beamforming performance. In general, the virtual sub- 
arrays should have a similar ‘shape’ to that of the real 

array, and should span an overall aperture comparable 
to that of the real array so as to keep the interpola- 
tion error small. On the other hand, the size of each 

virtual subarray should be large enough to provide a 
sufficient degree of freedom for interference nulling. 

Nevertheless, the number of subarrays need not be 
large as the improvement in spatial smoothing bene- 
fited by a large L will be likely offset by the increased 
interpolation errors and computational complexity. To 
determine the angular region for interpolation, prelim- 
inary estimates of the source directions are necessary. 
They can be obtained by using a nonadaptive beam- 
former to scan over the spatial spectrum and locate the 
peaks. In order that the signal-noise condition does not 
change dramatically after interpolation, the source sig- 
nals should be transformed distortionlessly and noise 

L ,**., 9 (9) 

where we split @ into 0 = @n U 01, with @o denoting 
the interpolation region associated with the desired 

source, and 01 the interpolation region associated with 

the interference. For brevity of notation, we rewrite 

(9) as 

f@(e) = ro(e)bi(e), 8 E 0, i = 1,. . . ,_& (10) 

where In(e) is the indicator function defined by 

(11) 

In general, the larger the angular region @o over 

which the zero forcing is performed, the more robust 
the beamformer will be against pointing errors. In the 
following development, we will work with Pi’s for 
beamforming and refer to them as the transformation 
matrices associated with SD type interpolator. The 
original form of I;:‘s will be employed later for the 
purpose of dimension recovery and will be referred to 
as the transformation matrices associated with regular 
type interpolator. 
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3.3. Solution of transformation matrices 

Eqs. (8) and (9) do not hold in general, but can be 
approximated by the least-squares (LS) problems: 

(12) 

and 

mjn 
s 

I( fin - Zn(0)6i(0)l12 de, 
I 0 

(13) 

respectively, whose solutions are easily seen to be 
given by 

s IS 1 
-1 

4 = bi(ejaH(e)de a(e de (14) 
0 B 

and 

J [J I 
-1 E = ZD(t?)bi(tQ2H(f3) de a(e)aH(e)de , 

0 8 

(15) 

respectively. These solutions may cause numerical 
problems if the interpolation region is small. In this 
case, the matrix [J,u(0)uH(O)dO]-l tends to be ill- 
conditioned, and the resulting transformation matrices 
in Eqs. (14) and (15) will have very large entries. 
This in turn results in an ‘enlarged’ virtual subarray 
noise correlation matrix as will be seen later in (35). 
As a result, the signal-noise condition will be dra- 
matically distorted, and the beamformer may fail to 
eliminate the interferers since they are no longer the 
dominant sources. 

The transformation matrices can be made better 
conditioned by augmenting 0 with an extra interpola- 
tion region 0~ covering a much wider angular range. 
This leads to the modified problems corresponding to 
Eqs. (12) and (13): 

mrin J )I &z(e) - Si(0)l(2 de 'Q 
+E J (Ii%(B) - bi(e)/12 de (16) QA 

and 

IT$II J Ilfia(e) - Z0(e)bi(Ql12 de I Q 

+E J 1) Es(e) - bi(e)l12 de, @A (17) 

where E is a parameter controlling the relative em- 
phasis between the interpolation performance over the 
primary (0) and auxiliary (@A) regions. Accordingly, 
the resulting solutions are given by 

F= [J bi(@uH(0) d6’ + E 
0 J bi(QaH(0) df3 P,-’ @A 1 (18) 

and 

j+ [J zD(tl)bi(0)aH(tl) de+& bi(0)aH(O) de pE_l, 
0 J @A 1 

(19) 

where 

p, = J a(e de + E J a(e de. (20) 8 @A 
3.4. Issues on interpolation process 

Augmenting the interpolation region with @A in 
Eqs. (18) and (19) will not only alleviate the ill- 
condition problem, but also improve the robustness of 
the transformation against errors in choosing the inter- 
polation region. Of course, the improvement depends 
on the value of E. In general, the larger E is, the more 
robust the transformation will be, but the interpola- 
tion performance over 0 will be poorer. The opposite 
is true for a small E. It appears that the selection of E 
is an empirical and scenario dependent task requiring 
some trial-and-errors. In our experience, we found that 
the configurations of the real array and virtual subar- 
rays are the dominant factors in the task. With the ar- 
ray configurations given, E can be determined as that 
yielding an interpolation error below some prespeci- 
fied threshold over 0, and sufficiently stable over @A. 
By performing the same trial for different combina- 
tions of 0 and @A, an empirical rule for choosing the 
best E value can be obtained. In fact, we have observed 
from simulations that the interpolation regions do not 
affect E much, as long as they are of moderately small 
size. 

As mentioned before, the primary interpolation 
region 0 must be determined beforehand by some 
kind of localization methods, such as spatial spectrum 
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search, to obtain coarse estimates of the source di- 

rections. There are other techniques which use initial 

estimates of source directions to overcome the draw- 

backs of conventional adaptive beamfoimers [3, 121. 

Compared to these techniques, the advantage of the 

proposed one working with interpolated arrays lies in 

its robustness against errors in the initial localization 

process, or small variations of the source scenario. 

This will be demonstrated shortly in the simulation 

section. In a nonstationary environment, it is neces- 

sary to keep track of the sources by performing the 
localization process periodically to update the interpo- 

lation region. In this case, the transformation matrices 

and weight vectors must be updated accordingly. 

3.5. Numerical examples 

We here give numerical examples demonstrating 

the efficacy of the above described schemes. For per- 
formance evaluation, we define the total and local rel- 

ative interpolation errors (TRIE and LRIE) as follows. 
For regular type: 

TNE = i 5 JGII Za(e) - Ne)I12 de 

L JJIWe)I12 do ’ i=l 

LRIE = _! & II Me> - Me)l12 

L 
i=I 

Ilbde>l12 ’ 

For SD type: 

i=2 JollW)l12 de 

L 
LRIE= ;c 

/I ga(e) - zn(e)bi(e)1i2 

i=l 
llh(~)l12 ’ 

In the first example, the array employed was a 
nonuniform linear array consisting of M = 24 iden- 

tical omnidirectional elements with the following 
interelement spacings: 

{0.282,0.281 x 1.050.281 x 1.052, 

x . . . ,0.28d x l.OP}, (21) 

where il is the wavelength. The above spacings were 
chosen so that the array had the same aperture as a 
24-element ULA with an interelement spacing of :A. 

d = 0.28 h 

r = 1.05 

d dr dr2 J 
Source 

e 

dr”-2 
@+++ . . . . . . a-----* 

12 3 M-l M 

I 2 
Sub&ray L 

MS 

Fig. 1. Geometry of real array and virtual subarrays in nonuniform 

linear array case. 

The array was interpolated into L = 8 virtual linear 

subarrays, each having M, elements equally spaced 

by in. As depicted in Fig. 1, these subarrays were 
uniformly placed within the aperture of the real array. 
Setting the reference point at the first element of the 

real array, the direction vectors associated with the 
real array and ith virtual subarrays are given by 

a(e) 

[ 

T 

jy sinU,ejy(l+r)sinU 
,lnd ,.(A/--11-1 

= 1,e (_I SI” 0 
>...> eJ, I? 

hi(e) = ,j(w)N-l)sinQ 

x [Le 
jx sin 0, ej2rr sin 0 

>.*.> 
ej(Ms-l)rrsinO T 1 ’ 

(22) 
where d = 0.281,, r = 1.05, and the angle variable 8 
is measured with respect to the broadside of the array. 
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The primary and auxiliary interpolation regions were 

chosen as 

0 = [-3”,3”] u [-45”,-35’1 U [20”,40”] , (23) 

with On = [-3”, 3”] and 

0‘4 = [-90”, -45”] u [-35”, -lo”] 

u [lo”, 20°] u [40”, 907. (24) 

Firstly, Figs. 2(a) and (b) show the TRIE value for the 

regular and SD interpolators, respectively, as a func- 

tion of M,, with E as a variable parameter. The TRIE is 
observed to be stable with respect to M,, and increase 

(4 

-50 0 50 

Theta (Degree) 

with E. This coincides with our observation regard- 

ing the weighting effect of E on the interpolation per- 
formance. Next, Figs. 2(c) and (d) show the LRIE 
as a function of 8 with A4, = 12, and E as a variable 

parameter. Comparing the interpolation error within 

the primary and auxiliary regions gives an indication 

as to how the trade-off of interpolation performance 

between the two regions is achieved with a suitable E. 

The interpolator with E = 0 exhibits excessively large 

errors over @A, which is incurred with the ill-condition 

problem. In this case, E = 10e4 gives an interpolation 
error on the order of 10P4, and should be an ade- 

quate choice for the scenario considered [9]. In fact, 

we found that selecting an E value less than lop4 did 

not give any noticeable improvement. 

W 
I I I 

2 .a... :e-10-l i 

I I I 
10 15 20 

MS 

Cd) 

-50 0 50 

meta (Degree) 

Fig. 2. (a), (b): Total relative interpolation error as a function of MS, with E as a variable parameter. M = 24, L = 8. (a) Regular type; 

(b) SD type. (c), (d): Local relative interpolation error as a function of 8, with E as a variable parameter. M=24, MS = 12 and L=S. 

(c) Regular type; (d) SD type. Linear array case. 
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subarray L subarrfly 2 

Fig. 3. Geometry of real array and virtual subarrays in the circular array case. 

The example was repeated with a 24-element cir- 
cular array with radius R. The elements, assumed all 
identical and omnidirectional, were equally spaced 
by in such that R M 1.911. The array was interpo- 
lated into L = 8 virtual circular subarrays, each hav- 
ing M, elements equally spaced by in. These virtual 
subarrays were placed uniformly on a circle within 
the aperture of the real array, as illustrated in Fig. 3. 
Setting the reference point at the center of the real 
array, the direction vectors associated with the real ar- 
ray and ith virtual subarrays are given by 

,j+% cOS(~-~)~~, 
(25) 

where R, = A/(4 sin(x/M,)) is the radius of the virtual 
subarrays. In this case, we assume that all the sources 

are confined on the array plane such that the eleva- 
tion angle is always zero, and 8 is the azimuth angle. 
The primary and auxiliary interpolation regions were 
chosen as 

0 = [-5”, 5”] U [-87.5’, -72.5’1 u [400,700], (26) 

with On = [-So, 5”] and 

OA = [-BOO, -87.5”] u [-72.5”, -2O”] 

u [20°,400] u [70°, 180”]. (27) 

Fig. 4 shows the TRIE and LRIE curves for both 
types of interpolators corresponding to Fig. 2. Again 
it4, = 12 was chosen for computing the LRIE. The 
same trend as in the previous case is observed regard- 
ing the interpolation performance with respect to E. We 
note that in contrast to the linear array case, E = 0 gives 
significantly better interpolation performance over 0 
than other values. However, this is achieved at the 
cost of excessively large errors over 0~. In this case, 
E = 1O-4 gives an interpolation error on the order of 
10e5, and should be a more than adequate choice for 
the scenario considered. 
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Fig. 4. (a), (b): Total relative interpolation error as a function of MS, with E as a variable parameter. M =24, L = 8. (a) Regular type; (b) 

SD type. (c), (d): Local relative interpolation error as a function of 8, with E as a variable parameter. M=24, MS = 12 and L= 8. (c) __ 
Regular type; (d) SD type. Circular array case. 

4. Construction of optimum beamformer 

This section describes the procedure for construct- 
ing the beamformer with interpolated subarrays. The 
procedure involves two stages: 
1. Obtain the optimum subarray weight vector based 

on spatially smoothed virtual subarray correlation 
matrix. 

2. Convert the optimum subarray weight vector back 
into a full aperture weight vector for the real array. 

4.1. Stage I. Optimum subarray beamformer 

If the interpolator works well, the real array will be 
mapped into L nearly identical virtual subarrays. On 

these subarrays we observe the transformed SD data 
according to Eqs. (1) and (9): 

fi=jiXFZBiis+z?l, i=l,..., L, 

where 

(28) 

Bi=[6i(e,),6i(e,),...,Si(e,)], i= l,...,L, (29) 

ands”=[st,Sz,..., ~1~. These data are called the SD 
data because they contain essentially no desired signal. 
Since the virtual subarrays are identical except for a 
spatial displacement, they are related through 

Bi=&@i, i= l,..., L, (30) 
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where & is associated with a ‘reference’ subarray (i.e., 

& = & if the ith subarray is chosen as the reference), 
and 

,&(fk) 
L _I 

(31) 

with &(0) being the phase shift between the ith and 
reference subarrays induced by a wavefront from di- 

rection 0. 

The optimum subarray beamforming weight vector, 

denoted as w,, is determined via the LCMV problem 
described in (5): 

min WFfiW, 
w, 

subject to wFb,(&) = 1, (32) 

where b,( (3) is the direction vector associated with the 

reference subarray, and d is the A4, x MS spatially 

smoothed virtual subarray correlation matrix given ac- 

cording to Eqs. (6), (28) and (30) by 

i=l i=l 

= B,I?,,~ + rs; Q, (33) 

where d,, =E{G*} is the SD source correlation ma- 

trix, and 

and 

Q&i; 

i= I 

(34) 

(35) 

represent the effective SD source correlation matrix 
and noise correlation matrix, respectively, observed 

on the spatially smoothed virtual subarray. It is the 

averaging operation in Eq. (34) that destroys the co- 
herence among the interferers. Problem (32), which 

is similar in structure to (5), has the solution 

ws = &‘b,(&), (36) 

where ys is a normalizing scalar. 

4.2. Stage 2. Dimension recovery for full array 
weight vector 

As long as the condition of degree of freedom is 

satisfied, the resulting ‘master’ subarray beamformer 
constructed with w, will produce a unit gain at 0s and 

a deep null in each of the K interference directions 

such that 

w;b,(8k)x0, k=l,..., K. (37) 

We refer to this virtual beamformer as the ‘interference 

cancellation’ (IC) beamformer. If the regular type in- 
terpolation is adequately performed in (8), we have 

k=O,l,..., K, i=l,..., L, (38) 

such that 

(~H%)H@O) x ejti~(&)w;b,(~O) =,j&(&), 

(I;Hws)Ha(&) x ej~@)w~bS(&) x 0, 

k=O,l,..., K, i=l,..., L. (39) 

This says that the set of weight vectors 

w, = ejbl(‘O) qH ws, i = 1, . . . , L, (40) 

acting on the real array will produce a unit gain at 

80 and nulls in each of the interference directions. In 
other words, the look direction gain and interference 
nulls has been translated to wi, i = 1,. . , L, on the real 
array. The reason for using 4’s here instead of E’s is 
thus evident since z cannot retain the look direction 
gain of ws. The ‘back transformation’ in (40) is similar 
in principle to the copying of weights from the master 
beamformer to the slave beamformer as described in 
Ref. [ 111. However, a distinctive feature in Eq. (40) 
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is that multiple slave beamforming weight vectors are 
available. 

The full array weight vectors wi, i = I,. . . ,L, can 

be regarded as a set of ‘basis’ vectors for the con- 

struction of the real array weight vector. A question 

now arises as to how the L basis vectors should be 

combined into a single weight vector. The problem 

may be described as finding an L x 1 combining 
coefficient vector g = [gi, 92,. . . , gLIT such that the 

combined weight vector 

L 

w= c giWj= Wg (41) 
i=l 

exhibits a certain optimality, where 

W=[w,,w2 )...) WL]. (42) 

The block diagram illustrating the synthesis and oper- 

ation of the beamformer is given in Fig. 5. Note that it 
is the combined weight vector w that acts on the real 

array data x to produce to beamformer output y. The 

following sections describe two types of combiners. 

4.2.1. Maximum output SNR (MSNR) combiner 
If the basis weight vectors cancel the inter- 

ference well, then the output due to the com- 

bined weight vector will contain essentially the 
desired signal and noise only. This is because 

that any linear combination of Wi, i = 1,. . ,L, 
will also cancel the interference. A reasonable cri- 

terion for choosing g in this case would be to 
maximize the output SNR of the resulting full 

array beamformer. This leads to the following 
problem: 

~{l&l12) gH@~(~d)~(~li)wg 
=-g- gHwHWg . 

(43) 

With the unknown t& replaced by the look direc- 
tion 60, we obtain the following equivalent prob- 
lem: 

m$n g”WHWg 

subject to g” WHa(&) = 1, (44) 

Array Data x 

Virtual Subarray 
Interpolator 

Spatial Smoothing & 
Weight Computation 

Back Transformation 

I___ 1 Corn? / 

Fig. 5. Block diagram of two-stage interpolated beamformer. 

which is again an LCMV problem whose solution is 

given by 

g= Ys( wH w)-’ WHQo), 

where again ys is a normalizing scalar. 

(45) 

It is interesting to note that the full array weight 

vector obtained by substituting Eq. (45) into (41), 

w = yy W( WH w-1 WHa(&), (46) 

can be interpreted algebraically as the orthogonal pro- 

jection of a(&) onto the range space of W. This 
makes sense since a(&) is the optimum weight vector 

which maximizes the beamformer output SNR under 
the quiescent (spatially white noise only) condition. 
On the other hand, the range space of W represents 
the ‘subspace of interference cancellation’. Projecting 
a(&) orthogonally onto the range space of W is tan- 
tamount to finding a vector lying in the subspace of 
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interference cancellation which is closest to the opti- 
mum quiescent weight vector. 

The inversion of WH W in (45) dictates that W 
cannot be ill-conditioned in order to avoid numerical 
problems. Making W well-conditioned is equivalent 
to making the vectors wi, i = 1,. . . ,L, well separated. 
This implies from (40) that the transformation matri- 
ces 4, i= 1,. . ., L, should be well separated as well. 
Since these matrices are directly related to the vir- 
tual subarray configuration, it is conceived that a set 
of spatially well separated virtual subarrays will give 
the desired W. This is another reason for restricting 
the subarray number L in addition to that mentioned 
earlier in Section 3.1. 

4.2.2. Eigen-based combiner 
The MSNR combiner inherently assumes that 80 

is accurate enough so that the real array pattern 
w(0) will exhibit a mainlobe pointed at the desired 
source. In the presence of a large pointing error, 
however, it cannot guarantee a satisfactory recep- 
tion of the desired signal due to the beam squint 
problem. This necessitates a technique with which 
the computation of weight vectors is independent 
of 00. In Ref. [2], a method based on the eigen- 
value decomposition (EVD) was proposed to extract 
the ‘signal subspace’ from a transformed corre- 
lation matrix with the interference removed. The 
signal subspace is represented by an eigenvector 
producing a large gain in the desired source dir- 
ection. We now demonstrate that the same technique 
can be readily applied to the combiner discussed 
herein. 

Consider the real array beamformer output as ex- 
pressed by 

(47) 

where we have used Eq. (6) and the fact that the inter- 
ference has been eliminated by W (i.e., WHa(&) M 
OL, k= l,..., K). With pointing errors present, the 
beamformer response g” WHa(&) is not known. In 
this case, the optimum beamformer can be determined 
as one that maximizes the signal-plus-noise-to-noise 
ratio (SNNR). In other words, the coefficient vector g 

is determined in accordance with 

(48) 

By maximizing the total output power with the noise 
power fixed, we have in fact forced the beamformer 
to produce a large gain for the desired signal. Let ui, 
i=l,... , L, be the generalized eigenvectors (GEV’s) 
satisfying 

WH R,x WUi = ti WH WUi, i = 1, . . . , L, (49) 

where 5,>(23 ... > tL, are the corresponding gen- 
eralized eigenvalues (Gev’s) arranged in descending 
order. The solution to (48) is given by g = ~1, the GEV 
associated with the largest Gev. By choosing w to be 

W==YgWW, (50) 

the beamformer will automatically produce a mainlobe 
peak near ed. 

It should be mentioned that the efficacy of the eigen- 
based combiner lies in that the interference has been 
suppressed sufficiently by the virtual subarray beam- 
former constructed with ws, and that the transforma- 
tion has successfully translated the interference nulls 
from w, to each of Wi’s. Otherwise, any residual inter- 
fering power left in WHRxx W will be likely stronger 
than the desired signal power and thus cause conf& 
sion in maximizing the SNNR by the leading GEV. 

5. Simulation results 

Computer simulations were conducted to ascertain 
the performance of the proposed two-stage interpo- 
lated beamformer. Specifically, the performance of 
the beamformer was examined against spatially white 
noise, pointing errors and deviations of interpolation 
region. For all cases, we assumed that the data cor- 
relation matrices involved in computing the optimum 
weight vectors were available, and did not concern 
ourselves with the problem of estimating them. 

5.1. Part 1. Linear array case 

In this case, the 24-element linear array and the as- 
sociated subarray configuration as described in Section 
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3.5 were employed. For all cases, the real array was 

interpolated into L = 8 uniform linear virtual subarrays 
of size MS = 12. The desired source was at & = O”, 

and K = 3 interferers were generated at (31 = - 40”, 

e2 = 28” and e3 = 33”. The source correlation matrix 
was set to be 

11 0 0 01 

R= I 0 1000 0 0 ss 0 0 100 100 

0 0 100 100 

I ’ (51) 

which means that the second and third interferers 

are coherent with the same power corresponding 
to a signal-to-interference ratio (SIR) of -20 dB, 

and the first interferer is uncorrelated with the other 

three sources with an SIR of -30 dB. As an 
evaluation index, we define the beamformer output 

SINR as 

SINRO = 

wdWWd2 
3 

kc 
R,,(i+ 1, k+ i)WHU(ei)aH(ek)W+a~WHW 

i=lk=l 

(52) 

The first set of examples evaluates the performance 
of the interpolated beamformer against white noise. 
In this case, the correct look direction 00 = 0” was 

used (no pointing error). The primary and auxiliary 
interpolation regions were the same as those given in 

Eqs. (23) and (24), respectively. Fig. 6(a) shows the. 

curves of SINb versus input SNR for different values 
of E obtained with the MSNR type of combiner. For 

comparison, we also include the maximum possible 
output SINR (A4 times the input SNR) obtained with 
the optimum quiescent beamformer. We find that the 

beamformer performs better as E decreases, and the 
trend is the same for all input SNR values. This is 

consistent with the result that a small E leads to a small 
interpolation error. The SIN& values obtained with 

E = 1O-4 are close to the optimum ones, indicating that 
the second stage combiner was effective in boosting up 
the output SNR. It is noteworthy that the beamformer 
remains reliable with an SNR as low as -10 dB. 
This confirms that the drop in beamforming gain due 

to the interpolation error is negligible as compared to 

the signal/interference level. As a demonstration, we 
show in Fig. 6(b) the beam pattern w(e) obtained with 

SNR = 10 dB and E = 10-4. The corresponding sub- 

array pattern w,(e) is also included for comparison. 
We observe that three deep nulls are located in the 

interference directions for both w(e) and w,(e), 

indicating that these nulls were successfully gene- 

rated by the subarray beamformer and then translated 

to the full array beamformer. It is noteworthy that 

the second and third interferers are separated by 
approximately half the 3-dB beamwidth of the 

subarray (% 9.6” ). 
The second set of simulations examines the ef- 

fects of pointing errors on the proposed beamformer. 
In this case, the look direction 0s was varied from 

-5” to 5”, corresponding to a maximum pointing 

error of 5” (the 3-dB beamwidth of the array is ap- 
proximately 4.8”). The input SNR was fixed at 10 

dB, and the other parameters were the same as in 

the previous simulation. Figs. 7(a) and (b) show 

the curves of SINb versus 00 for different values of a. 

Both types of combiners were tested for comparison. 
The results indicate that desired signal cancellation 
did not occur with pointing errors (no performance 

breakdown). The MSNR combiner exhibits a certain 
degradation in performance due to the beam squint 

effect. The eigen-based combiner, on the other hand, 

is surprisingly robust. These are confirmed by the 
beam patterns shown in Figs. 7(c) and (d) obtained 
with 8s = - 5” and E = 10P4. Clearly, both combiners 

successfully cancelled the three interferers even with 
a large pointing error. Moreover, the eigen-based 

combiner was able to ‘resteer’ the beam back to the 

desired source direction to compensate for the point- 
ing error at the first stage. This did not happen with 
the MSNR combiner. 

The final set of simulations examines the effects 
of deviations of the interpolation region. In this 

case, the primary interpolation region was modified 
into 

0 = [-3”, 3”] u [-45” + ae, -35” +Ae] 

u [20”, 40”], (53) 

with -10” <A0 d lo”, and @A was modified accord- 
ingly. This corresponds to a maximum deviation of 
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Fig. 7. (a), (b): Comparison of beamfonner output SINR versus pointing error with E as a parameter. (a) MSNR combiner; (b) eigen-based 

combiner. (c), (d): Beam patterns obtained with fIa= - So and a= 10e4. (c) MSNR combiner; (d) eigen-based combiner. Od=O’, 

81 = - 40°, 82 =28’ and 83 =33’. Input SNR= 10 dB. Linear array case. 
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Fig. 8. (a) Comparison of beamformer output SINR versus deviation of one interpolation region with E as a parameter. (b) Beam patterns 

obtained with A0= - 10’ and ~=10-~. Od=O”, BI= -40°, &=28’ and 63=33’. &=O”. Input SNR =lO dB. Linear array case. 
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Fig. 9. (a) Comparison of beamformer output SINR versus input SNR with E as a parameter. (b) Beam patterns obtained with input SNR 

=lOdB andE=10V4. Od=O’, &= -80°, t$=52’ andt$=60°. &=O”. Circulararraycase. 

10’ in choosing the interpolation region associated 
with the first interferer. Again the input SNR was fixed 

at IOdE& and the other parameters were the same as in 
the first simulation. Fig. 8(a) plots the resulting SIN& 
curves versus A0 for different values of E obtained 

with the &ENR combiner. The beamformer is ob- 
served to perform reasonably well for - 5’ < A 0 < 5’. 

Outside that region its performance is not reliable but 
still acceptable even when the interpolator fails to 
operate for the first interferer (for [A01 > 5”). This 
is an indication of the ‘extrapolation’ capability of 
the interpolator. To gain more insights, we show in 

Fig. 8(b) the beam patterns obtained with A6= - 10” 
and E = 1 Oe4. We note that although the first interferer 
was not perfectly cancelled, the beamformer was still 

able to impose sufficient attenuation on it to prevent 

performance breakdown. On the other hand, the other 
two interferers were eliminated as desired without be- 

ing affected by the large deviation angle. 

5.2. Part 2. Circular array case 

In this subsection, we repeat the three sets of simu- 
lation work in Part 1 with the 24-element circular array 
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Fig. 10. (a), (b): Comparison of beamfonner output SINR versus pointing error with E as a parameter. (a) MSNR combiner; (b) eigen-based 

combiner. (c), (d): Beam patterns obtained with 00= - 10’ and E= 10e4. (c) MSNR combiner; (d) eigen-based combiner. &=O’, 

01= - SO”, 02 = 52” and 03 =60”. Input SNR= 10 dB. Circular array case. 

described in Section 3.5. For all cases, the real array 

was interpolated into L = 8 virtual circular subarrays 

of IV, = 12 elements with the configuration depicted 

in Fig. 3. The desired source was at & = 0”) and K = 3 
interferers were generated at or= - 80”) 82 = 52” and 

0s =60”. The source correlation matrix was the same 
as (51). 

The first set of examples evaluates the performance 
of the interpolated beamformer against white noise. 
Again, the correct look direction 80 = 0” was used, and 
the primary and auxiliary interpolation regions were 
the same as those given in Eqs. (26) and (27), respec- 
tively. Fig. 9(a) shows the curves of SINb versus in- 
put SNR obtained with the MSNR type combiner. The 

results follow the same trend as observed in the linear 
array case, except that the disparity in performance as- 

sociated with different E values is more significant than 

that observed in Fig. 6(a). Also, the SINRQ values are 
not as close to the optimum ones as in the linear ar- 

ray case. We have tried smaller E but found no notice- 
able improvement. Choosing a larger A4, will slightly 
increase the output SINR, but the price is a rise in 
complexity. A careful examination on the two-stage 
behaviors of the beamformer reveals that, although 
the subarray beamformer successfully cancelled the 
interference, the second stage combiner was not able 
to recover the full SNR gain capability of the real 
array. This is deemed as the cost of imposing the 
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Fig. 11. (a) Comparison of beamformer output SINR versus deviation of one interpolation region with E as a parameter. (b) Beam patterns 

obtained with A@= - 15’ and E= 10e4. Bd=O’, Bl= - 80°, 82 =.52’ and 03 =60”. Oo=O”. Input SNR = 10 dB. Circular array case. 

two-stage scheme on the circular array. The beam pat- 
tern obtained with SNR = 10 dB and E = 1 0P4 is given 

in Fig. 9(b) along with the corresponding subarray 
pattern. Three deep nulls are found in the interference 

directions for both w(0) and w,(e), as in the linear 
array case. 

The second set of simulations examines the effects 
of pointing errors. The look direction 8s was varied 
from - 10’ to lo”, corresponding to a maximum point- 

ing error of 10”. The input SNR was fixed at 10 dB, 

and the other parameters were the same as in the pre- 
vious simulation. Figs. 10(a) and (b) show the curves 

of SIN& versus 8s for different values of E obtained 
with both types of combiners. The results are simi- 

lar in trend to those observed in Figs. 7(a) and (b). 
Again, the disparity among the curves is more signi- 

ficant than in the linear array case. Figs. 10(c) and (d) 
show the corresponding beam patterns obtained with 
0s = - 10” and E = 10w4. The results are quite similar 

in nature to those observed in Figs. 7(c) and (d). 
The final set of simulations examines the effects of 

deviations of the interpolation region. In this case, the 

primary interpolation region was modified into 

0 = [-5”, 5”] u [-87.5’ + A& -72.5 + Ae] 

u [40”, 70”], (54) 

with - 15” < A 8 < 15”, and 0~ was modified accord- 
ingly. This corresponds to a maximum deviation of 

15” in choosing the interpolation region associated 

with the first interferer. The input SNR was fixed at 

10 dB, and the other parameters were the same as in the 

first simulation. Fig. 1 l(a) shows the resulting SIN& 
curves versus A0 for different values of E obtained 
with the MSNR combiner. We see that the beamformer 

performs well with a= lop4 as long as the interfer- 

ence direction is contained in the interpolation region 
(for IA01 ~7.5”). F or other E values, the beamformer 

was not as reliable in the presence of deviations. Fi- 

nally the beam patterns obtained with A0 = - 15” and 

E = 1 Oe4 confirm that the interpolator does indeed ex- 
hibit a certain extrapolation effect outside its operation 

region. The first interferer (SIR = - 30 dB) received a 
gain of approximately -30 dB, resulting in an output 

SINR close to 0 dB. 

6. Conclusions 

A method of adaptive beamforming in the pres- 

ence of multiple coherent interferers was presented 
which can be applied to arbitrary array geometry. The 

beamformer was developed based on interpolation, 
spatial smoothing and dimension recovery. The inter- 
polator transformed the real array into several identi- 
cal virtual subarrays with the desired signal removed. 
A spatially smoothed virtual subarray was then 
formed with the interferers decorrelated, on which the 
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optimum subarray beamformer was constructed. By a 
judiciously designed procedure, we successfully 
converted the subarray beamformer back into a full 
aperture beamformer for the original array. The full 
array beamformer preserves the interference nulls of 
the subarray beamformer and optimizes the output 
signal-noise condition. In particular, two types of 
combiners were suggested for dimension recovery: 
the maximum SNR combiner and the eigen-based 
combiner. We showed that the eigen-based com- 
biner gave better performance if the interferers were 
sufficiently suppressed in the subarray beamformer. 
Numerical examples confirmed that the output SINR 
performance of the proposed two-stage beamformer 
is quite reliable as long as the interpolation error 
is confined to a moderate size. For the linear array 
case, the proposed beamformer can perform almost 
as well as the optimum beamformer working under 
the quiescent situation. 
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