
Chapter 1 

Introduction 
 
 

1.1 Introduction 

In recent years, testing is more difficult because of increasing high complexity of 

integrated circuit. Many testing and design-for-testability methods for digital sequential 

circuits have been proposed and developed [1]. However, these methods usually involve long 

test generation time. A test methodology, Oscillation Ring Test (OR-Test) was proposed in the 

papers [2][3] to test the stuck-at and path delay faults for the sequential circuit. The 

methodology re-configures the feedback paths of the circuit under test (CUT) to be many 

oscillation rings (ORs) under the test mode. Under appropriate patterns applied to inputs of 

the CUT, ORs will oscillate. By observing the oscillation at the output of the CUT, we can tell 

that if the circuit is working properly. The methodology is very simple and effective since it 

needs not many patterns.  

 

1.2 Characteristic of Tested Asynchronous Circuits 

Digital sequential circuits can be divided into categories of the synchronous and the 

asynchronous circuit. The synchronous sequential circuit is synchronized with one or more 

clock signals. It is generally simple to be designed with only need to take clock skew and the 

worse case delay into account. For the asynchronous circuit, it dose not have a clock and the 

circuit works under a carefully designed timing consideration. As long as an input variable 

changes the value, the circuit will have response to that. It has the advantages of relatively 

high speed, low power consumption and no problem with the clock skew. However, it is 

 1



more difficult to be designed since it needs to be considered the timing problems such as 

races and hazards [4]-[8].  

To apply the OR-Test to the asynchronous circuit, we have assumed that the 

asynchronous circuit has the following characteristics. 

 It operates in the fundamental mode 

 No input signals changed until the circuit is stable 

 Only one input signal changed at a time 

 Its architecture is: 

 Combination circuit uses the static feedbacks used to maintain states 

 No explicit storage elements such as latches, flip-flops or C-elements 

 It has a predetermined time period to give input vectors 

 

1.3 Outline of The Thesis 

In Chapter 2, we illustrate this OR-Test methodology and give the basic architecture of 

OR-Test for a asynchronous circuit. And we illustrate what kinds of fault detections to be used 

to detected stuck-at faults. Finally, we illustrate how to form oscillation rings and generate 

state patterns from the state transition table. 

In Chapter 3, we show the overall procedure for applying the OR-Test for the 

asynchronous circuit. Examples are used to illustrate these procedures. 

In Chapter 4, we give the experimental result on several benchmark circuits by applying 

this OR-Test methodology. 

In Chapter 5, we propose a procedure to reassign the state for an asynchronous circuit for 
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OR-Test to improve its testability. An example is also given to demonstrate the procedure.  

In Chapter 6, we give conclusion for the thesis. 
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Chapter 2 

Application of OR-Test Methodology to the 

Asynchronous Circuit 
 
 

2.1 OR-Test Methodology 

Figure 2.1 is the architecture of the OR-Test applied to the synchronous sequential circuit, 

where the oscillation ring is formed, to detect stuck-at faults. If there is a stuck-at fault on the 

path of the oscillation ring or the sensitized path the oscillation will stop. So, a fault will be 

detected. 

 

Combinational
Logic

Oscillation Path

... ...Inputs Outputs

Feedback Cell  

Figure 2.1 Simple illustration of OR-Test 

 

2.2 Basic Architecture of OR-Test 

The basic architecture of OR-Test is shown in Figure 2.2(a). In the architecture, feedback 

cells are added to the feedback paths. These feedback cells can be controlled to give the state 

patterns to achieve the oscillation condition. These state cells are shown in Figure 2.2(b). Two 
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control pins are to control the state of the feedback cell and one common pin is added to 

control test/normal mode for OR-Test. An encoder is used to encode the control signal which 

will be explained later.  
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(b) (c) 
 

Figure 2.2 (a) Basic architecture of the asynchronous circuit under test; 

 (b) Feedback cell; (c) Operation of control signals 

 

2.3 Fault Detection  

Oscillation rings can be classified into two cases by its detection: Case A and Case B.  
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Case A Fault Detection 

Case A fault detection is that oscillating signals of oscillation rings can be propagated to 

the output of the CUT. Stuck-at faults can be detected by observing the output if the output 

signals stop oscillating. An example circuit of such type is shown in Figure 2.3 which is in the 

fault-free condition. Under the input: XY = 01, the OR closed loop (c→ d→ e) will be 

oscillation, and the oscillating signal is propagated to the output Z. However, when a 

stuck-at-1 fault occurs at line c as shown in Figure 2.4, the output Z will stop oscillating and 

stay at 1. Thus, this fault is detected. 
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Figure 2.3 A fault-free circuit of Case A 
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Figure 2.4 A faulty circuit of Case A 

Similarly, c↑, c↓, d↑, d↓, e↑, e↓ faults on the closed loop, f↑, f↓, g↑, g↓ 

faults on lines used to propagate the oscillation signal into the output Z and a↑, b↓ faults on 
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the lines used to sensitize the oscillation ring will be also detected. 

 

Case B Fault Detection 

Case B fault detection is that oscillating signals of oscillation rings are not propagated to 

the output at the fault free case but the output oscillates when stuck-at faults exist in the CUT. 

An example is shown in Figure 2.5. The circuit is the same as that in Figure 2.3. When input 

X changes from 0 to 1, the oscillation signal can not be propagated to output Z. However, if a 

stuck-at-0 fault exists at line a as shown in Figure 2.6, output Z will be oscillating. Thus the 

fault is detected. 
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Figure 2.5 A fault-free circuit of Case B 
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Figure 2.6 A faulty circuit of Case B 

Both two cases have their advantages. Oscillation rings whose detection belongs to Case 

A can detect stuck-at faults on oscillation closed loops or on the paths that are used to 
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propagate the oscillation signal to the output. Therefore, it usually can detect more faults than 

Case B. But oscillation rings whose detection belong to Case B can detect stuck-at faults 

which result in the propagation of the inner oscillation signal into the output and also can be 

used to detect stuck-at faults of some special circuits.  

 

2.4 Formation of Oscillation Rings  

This section introduces how oscillation rings are formed from the state transition table. It 

is assumed that the state transition table is available for the CUT from the circuit designer. 

From the transition table, state sets whose hamming distances are all 1 are first obtained. The 

following will show how to build the oscillation relation of these state sets and illustrate 

several tables to be used to generate state patterns. 

 

2.4.1 Relation of State Sets for Oscillation Rings 

Table 2.1 is a state transition table which is used to explain the procedure. Assume that 

the stable state a at XY = 01 is chosen first. In order to avoid race conditions in OR-Test, only 

present state b and d whose hamming distances are both 1 with respect to state a at the same 

input are considered. 

 

Table 2.1 A state transition table example 

d  10

PS
Q2Q1

a 00
b 01
c 11
d 10

a  00
a  00
b 01
b 01

a  00
b  01
b  01
c  11

b  01
 b 01
d  10

b  01
b  01
b 01
a  00

NS
XY=00       XY=01 XY=11     XY=10

10
1
1
1

0
1
1
1

1
1
1

1
1
1
1

OUT
XY=00    XY=01 XY=11    XY=10
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Consider state b first. For the same input XY = 01, the next state of present state b is b, 

therefore, it is a stable state. If we add an inverter to the feedback path of state variable Q1, 

the oscillation ring of state variable Q1 will be formed as shown in Figure 2.7(a). So, state 

variable Q1 of state a and b will interchange mutually with value 0 and 1. Since the output 

value of state b is opposite to state a, the detection of the oscillation ring belongs to Case A. 

Thus, the oscillation signal can be propagated into the output as shown in Figure 2.7(b). 
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Figure 2.7 (a) Oscillation relation of state set [a, b] 
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Figure 2.7 (b) Circuit diagram of state set [a, b] 
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Now consider state d. At the same input XY = 01, the next state of state d is c. Similarly, 

if we add an inverter to the feedback path of state variable Q2 and make the feedback path of 

state variable Q1 be always 0( This is Hold 0) , the oscillation ring of state variable Q2 will be 

formed as shown in Figure 2.8. The detection of the oscillation ring also belongs to Case A. 
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Figure 2.8 (a) Oscillation relation of state set [a, d] 
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Figure 2.8 (b) Circuit diagram of state set [a, d] 
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2.4.2 True Table of State Variable and Function Table of Feedback Cell 

Through the state transition table and the constraint of hamming distance = 1 between 

state sets, we can find total state sets which may be generated oscillation rings with valid 

states, and we use the true table of state variable and the function table of feedback cells to 

generate state patterns. As shown in Table 2.2(a), the true table of state variable is used to 

mark the change of state variables. For example, if the transition of the bit is from 0 to 0, we 

mark the transition Low. And Table 2.2(b) shows that the function table of the feedback cell is 

used to generate state patterns through the true table of the state variable. However, we should 

pay attention to the condition Fail. We can not provide simple logic circuit to achieve the 

condition Fail. Therefore, if a state pattern includes the condition Fail, it is invalid. In the 

next section, we will illustrate how to complete the function table of feedback cell. 

 

Table 2.2 (a) True table of the state variable; 

           (b) Function table of the feedback cell 

OP Value
Low0 -> 0

0 -> 1
1 -> 0
1 -> 1

Rising

Falling

h

Change of Bit

( a )

Hig

H

H
L

L
Fail

Fail

F
Bypass

2nd

1st

R
INV

INV

Hold 0

Hold 1

( b )

OP Value

Bypass
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2.5 State Pattern 
 

2.5.1 Type 1: Bypass State 

Bypass state indicates that the function which is used to achieve the transition of present 

states without any logic devices added into the feedback cell. As shown in Figure 2.9(a) and 

Figure 2.10, state bits of two present states are both 0 and next states are also 0, too. Thus, 

nothing needs to be added to satisfy the condition that make 1st next state equal to 2nd present 

state and 2nd next state equal to 1st present state. This is Bypass state. In the same way, 

operation set {H, H} is the same as shown in Figure 2.9(b). 

 

PS NS OP
0 0
0 0

L
L

Bypass
-> 0

0->
->
->

MSR Cell PS

( a )   

PS NS OP
1 1
1 1

H
H

Bypass
-> 1

1->
->
->

MSR Cell PS

( b )  

Figure 2.9 (a) Operation set {L, L}; (b) Operation set {H, H} 
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L       L

transition value
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2nd b
b
a
a

state

L       H

L       L

transition value

0 1
0 1
0 0
0 0

bit1  bit0
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Next state

2nd

Bypass InvBypass Inv
 

Figure 2.10 Example of operation set {L, L} 

 

2.5.2 Type 2: INV State 

INV state indicates that an inverse operation should be added for the feedback cell. As 

shown in Figure 2.11(a) and Figure 2.12, 1st present state and next state are both 0 and 2nd are 
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both 1. Thus, we just add an inverter to make two present states can interchange mutually 

with 0 and 1. This is INV state. In the same way, operation set {H, L} is the same as shown in 

Figure 2.11(b). 

 

PS NS OP
0 0
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L
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->
->

MSR Cell PS

( a )   

PS NS OP
1 1
0 0

H
L
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->

MSR Cell PS

( b )  

Figure 2.11 (a) Operation set {L, H}; (b) Operation set {H, L} 
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Figure 2.12 Example of operation set {L, H} 

 

2.5.3 Type 3: Hold State 

Hold state indicates that no matter what the next state value is, the feedback cell is a 

fixed value. As shown in Figure 2.13(a) and Figure 2.14, we must make 1st next state equal to 

2nd  present state and 2nd next state equal to 1st present state. But Bypass state and INV state 

both do not apply to this condition. Thus, we only give the feedback cell a 0. That is Hold 0 

state. In the same way, operation set {H, F} is Hold 1 state like Hold 0 as shown in Figure 

2.13(b). 
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0 0
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( a )   

PS NS OP
1 1
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H
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( b )  
Figure 2.13 (a) Operation set {L, R}; (b) Operation set {H, F} 
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Figure 2.14 Example of operation set {L, R} 

 

2.5.4 Type 4: Fail State 

Fail state indicates that no matter what we add into the feedback cell, the condition can 

not be achieved. As shown in Figure 2.15(a) and Figure 2.16, we must make 1st next state 

equal to 2nd  present state and 2nd next state equal to 1st present state. But Bypass state, INV 

state and Hold state are all un-applicable for this condition. Thus, this state is an invalid state. 

This is Fail state. In the same way, operation set {H, R} is also Fail state as shown in Figure 

2.15(b). 
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Figure 2.15 (a) Operation set {L, F}; (b) Operation set {H, R} 
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Figure 2.16 Example of operation set {L, F} 

 

2.6 Condition of State Patterns 

Through the detailed illustration about types of state patterns added into the feedback 

cells in the last section, we illustrate two conditions of state patterns in this section. The first 

condition, which is termed as Condition Ⅰ, is composed of only one INV state on a feedback 

cell and Bypass states on all other cells as shown in Figure 2.17(a). The second condition, 

which is termed as Condition Ⅱ, is composed of only one INV state on a feedback cell and 

Bypass states and Hold states on all other cells as shown in Figure 2.17(b). 

Condition II : 
H

H

..
..

H

H

..
..

Condition I : ....
....

Better Feedback  cells

Feedback  cells

(a) (b)  

Figure 2.17 (a) ConditionⅠof state patterns  (b) Condition Ⅱ of state patterns 

Condition Ⅰ is better than Condition Ⅱ on the capability to detect stuck-at faults. As 

shown in Figure 2.18, the s-a-1 fault on the wire W can not be detected by Condition Ⅱ of 

state patterns. No matter what the value of the wire W is, Cell 1 always provides the value 1 
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in Figure 2.18(a). However, Cell 1 will be affected by the s-a-1 fault on the wire W in Figure 

2.18(b). Thus, the s-a-1 fault on the wire W may be detected by Condition Ⅰ of state 

patterns.  

Cell 0

Cell 1

H
01

( a )

W

        

Cell 0

Cell 1
01

( b )

W

 

Figure 2.18 (a) W↑ in Condition Ⅱ (b) W↑ in Condition Ⅰ 
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Chapter 3   

Procedure to Generate OR-Test Test Patterns 
 
 

3.1 Flow of OR-Test by State Transition Table 

OR-Test for asynchronous circuits by state transition table can be divided into two parts. 

First part is to obtain oscillation rings with their state patterns and input sequences from the 

state transition table, then to use synthesis tools to synthesize the state transition table into the 

circuit netlist in order to make the procedure more convenient. And second part is fault 

simulation. Figure 3.1 is the total flow chart of OR-Test by the state transition table. 

G iv e  a  c i r c u it

P r o c e s s
 in p u t  s e q u e n c e  

a lg o r i th m

P r o c e s s
 s ta te  p a t te r n  

a lg o r i th m

S ta r t

O s c i l la t io n  r in g  l is t  
w i th  in p u t  s e q u e n c e  

a n d  s ta te  p a t te r n

O s c .  R in g  l is t  
e m p ty  ?

F a u l t  s im u la t io n

N o

G iv e  a n  
o s c i l la t io n  r in g

E n d

Y e s

 

Figure 3.1 Flow chart of OR-Test by state transition table 
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For this procedure, the data and netlist of the circuit is given as the input and the output 

will be the final fault coverage. The following sections will illustrate how to find state 

patterns and input sequences of oscillation rings and to do fault simulation. 

 

3.2 Algorithm of Input Sequence Finding 

Before doing OR-Test for asynchronous circuits, the most important thing is to find all 

input sequences of states. For the asynchronous circuit, invalid states are unstable states and 

only valid states have input sequences. An input sequence can make the inner state reach the 

starting state of an oscillation ring. So we want to find valid states and their input sequences. 

As shown in Figure 3.2, we have the initial state and input first. And we must decide the 

length of input sequences. Then, use binary search to find them. Only one of input variables 

can be changed one time. When input changes, the state maybe changes. Until the new state is 

stable, diagnose if the new state and its corresponding input can be found in the valid state list. 

If not, save the state and input into the valid state list and continue to change input. On the 

contrary, if the state can be found in the list, diagnose if the length of the state found now is 

shorter than that in the list. If yes, replace that in the list with the state found now. If no, go 

back to the last node and search another path. Until all the paths are looked for, the valid state 

list with input sequences can be obtained and the maximum length of input sequences doesn’t 

exceed that we decided before. 
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Start state : Q1Q2…Qn
Start input : X1X2…Xm

/X1X2…Xm X1/X2…Xm X1X2…/Xm……

m

/X1/X2…Xm X1X2…Xm X1/X2…/Xm……

m

1 2

1 2

Length 1

Length 2

 

Figure 3.2 Illustration of finding input sequence 

An example is shown in Table 3.1. First, the inputs XY and the state Q2Q1 are initially 

provided 00 and 00, respectively. The max length of input sequence is 2. 

 

Table 3.1 Example of state transition table 

d  10

PS
Q2Q1

a 00
b 01
c 11
d 10

a  00
a  00

-
-

a  00
b  01
b  01
c  11

b  01
-

d  10

b  01
b  01

-
a  00

NS
XY=00       XY=01 XY=11     XY=10

 

Thus, we can get the binary search figure like Figure 3.3. The symbol, X, in Figure 3.3 

means that the state at that input was found before. Nevertheless, if the length of input 

sequence of the state found now is shorter than before, the state before is replaced by that 

found now and continue to do binary search until all paths are looked for. Although the valid 

states in the example are not found totally, we can increase the max length until the total valid 

states are found. So it is dependent on the actual situation to decide the max length of input 

sequences. Very often, we do not have to obtain the total valid states but still can achieve a 
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high fault coverage.  

Start input XY = 00
Start state Q2Q1 = 00

XY=01
Q2Q1=00

XY=10
Q2Q1=01

2

XY=00
Q2Q1=00

XY=11
Q2Q1=10

1

1

Length 1

Length 2

2

XY=11
Q2Q1=01

XY=00
Q2Q1=00

1 2

 

Figure 3.3 Binary search of Table 3.1 

 

3.3 Algorithm of State Pattern 

When finding valid states with their input sequence, observe other states whose 

hamming distances with these valid states is one. This is in order to avoid race condition. 

Then, observe the different bit between the two present states. If the bit changes the value at 

the next state, no oscillation rings are produced. If two bits are the same, an oscillation ring 

can be formed.  

Now see Table 3.2. Assume there is a valid state A (Q3Q2Q1Q0 = 0000) at one certain 

input. Thus, state B, C, D and E will be observed because they are the states whose hamming 

distance with state A is one. And the different bits of state B, C, D and E against state A will 

be added INV state into. If different bits change values at their next states, there are no 

oscillation rings generated. So, in Table 3.2, only state B can not be used to generate an 

oscillation ring with state A because of the transition of Q0. The fault detection of the state set 

[A, C] belongs to Case B fault detection and state set [A, D], [A, E] belong to Case A fault 

detection. 
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Table 3.2 State transition table in certain input 

Present State Next state Output

A  0000 0000 0 

B  0001 0000 0 

C  0010 0010 0 

D  0100 0100 1 

E  1000 1001 1 

Through the example we demonstrated, we can understand how to find state patterns. So, 

Figure 3.4 is the basic flow chart of finding state patterns. 

C hoose  one  
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V a lid  s ta te  lis t
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V a lue  changes 
a t the  next s ta te  ?

O utpu t 
d iffe ren t ?

Y es

N o

G enera te  s ta te  
pa tte rns th rough  

function  tab le

C ase  A  
fau lt de tection  

Y es

C ase  B  
fau lt de tection  

S ta rt

N o

Figure 3.4 Flow chart of finding state patterns 
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3.4 Fault Simulation 

After section 3.3, we have found oscillation rings with their state patterns and input 

sequences, and now we do fault simulation finally. Figure 3.5 is the simple flow chart of our 

fault simulation which is logic simulation written in C language. 

Inse rt a  fau lt

R un  inpu t 
sequence

S ta rt

F au lt lis t

G ive  s ta te  pa tte rn
s igna ls  o f feedback  

ce lls

O u tpu t 
no t osc illa te  ?

F au lt de tec ted

Y es

C ase  A C ase  B

O utpu t 
osc illa te  ?

F au lt de tec ted

Y es

E nd

 

Figure 3.5 Simple flow chart of fault simulation 

When doing fault simulation, the data of the oscillation ring will be given to the fault 

simulation program. Then, a fault is inserted into the circuit. Then, run input sequence of the 

fault-free circuit. When the predetermined cycle time goes by, give the next input vector of 

input sequence. Because of the inserted fault, race condition may happen when running input 
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sequence. If more than two bits of state variables change at the same time, we presume that a 

race condition happens and the fault is undetected. After this, assign feedback cells with state 

patterns and start to do the OR-Test simulation. If the fault detection of the oscillation ring is 

Case A, and the output is stable, the fault is detected. Similarly, for the Case B, the output 

should be oscillating to detect the fault.  
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Chapter 4  

Experimental Results on Benchmark Circuits 
 
 

In the chapter, we apply the OR-test methodology derived above to several ISCAS89 

benchmark circuits. These benchmark circuits are synchronous sequential circuits but in our 

experiment we took their circuits and then treat them as asychronous sequential circuits. The 

results are shown in Table 4.1. The circuits included are only small size circuits since for large 

size circuits, even the initial states can not be found and circuits are untestable by using this 

methodology. In the table, the # of gates, inputs, outputs, feedbacks, length of patterns, 

oscillation rings formed, and patterns, and fault coverages obtained for each circuit. For the 

column of the state patterns, the first number in the bracket is the number state patterns of OR 

rings of ConditionⅠand the second number of the bracket is the number of state patterns of 

OR rings of Condition Ⅱ.  

From the table, we can see that for small size sequential circuits, a length of 3 for input 

sequence finding is enough for some circuits. In some circuits, we increased the length from 3 

to 5 to obtain higher fault coverage. Thus, we can see that the fault coverage of the circuit, 

s3384, is changed from 75.99 % to 98.29 % when we change the length for input sequence 

finding from 3 to 5. Thus, if the input variables are more and more, we must give longer 

length to obtain higher fault coverage. And for circuits such as s208 and s838, the fault 

coverage are 0%, it is beause these circuits are counter-like cicuits whose state always 

changes during valid state searching. The number of valid states in those circuits are so few 

besides of the initial state, thus, no oscillation rings can be formed. 
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Table 4.1 Experimental results applying the OR Test methodology 

to benchmark circuits 

Circuits #Gates #Inputs #Outputs
#Feedback

s 
#Length #Osc rings #Patterns F.C. 

s27 17 4 1 3 3 28 6 (2,4) 98.07%
s208 115 11 2 8 3 0 0 0 
s349 185 9 11 15 3 1209 13 (12,1) 99.55%
s386 172 7 7 6 5 85 3 (3,0) 20.98%
s510 236 19 7 6 3 4940 10 (5,5) 29.51%
s713 447 35 23 19 3 22169 19 (3,16) 80.72%
s832 310 18 19 5 3 841 7 (4,3) 18.09%
s838 457 35 2 32 3 0 0 0 
s953 440 16 23 29 3 1626 19 (1,18) 93.70%
s1269 624 18 10 37 3 13364 140 (24,116) 68.08%
s1269 624 18 10 37 5 193322 692 (24,668) 74.23%
s1494 661 8 19 6 3 68 4 (0,4) 18.51%
s1512 866 29 21 57 3 194012 64 (56,8) 53.60%
s3384 1911 43 26 183 3 239 27 (1,26) 75.99%
s3384 1911 43 26 183 5 3054 47 (1,46) 98.29%
s3330 1961 40 73 132 3 16285 19 (8,11) 30.90%
s4863 2495 49 16 104 3 0 0 0 
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Chapter 5 

State Assignment to Improve OR-Testability for 

Asynchronous Circuits 
 
 

In the prevous analysis, we have found that the state assignment is very important in 

forming the OR-Test rings which involve the fault coverage. In this chapter we will include 

some preliminary results on the state assignment of the asynchronous sequential circuits to 

improve their OR testability. 

 

5.1 Assignment Flow 

In the previous analysis, it was found that if the fault detections of the circuit belong to 

Case B or most state patterns belong to Condition Ⅱ, fault coverage will be bad. And if not 

all state variables have an oscillation signal in their closed loops, the detection result is also 

bad. Thus, we must assign states to make the circuit include more and more Case A fault 

detection or most state patterns belong to Condition Ⅰ.  

The following is the steps to make the suitable state assignment. 

Step 1. Find state sets which may be formed oscillation rings in the flow table 

Step 2. Assign to make every state variables have oscillation rings with Case A fault 

detections. ( Case A & ConditionⅠ, first ) 

Step 3. Add extra states to avoid race condition  

Step 4. If numbers of state variables are not enough to solve race condition, expand 

state variables one bit and return to Step 2 
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Step 5. Make don’t care items of states stable to generate extra oscillation rings with 

Case A fault detection 

i. Find don’t care items of states which can generate oscillation rings with 

valid states 

ii. Make them stable and their outputs opposite to outputs of valid states 

Step 6. Fill in suitable values into outputs which maybe result in static hazards 

Step 7. end 

Through the last steps, we use state sets which may be built oscillation rings in the flow 

table and don’t care items of states to generate oscillation rings with Case A fault detections 

and Condition Ⅰ state patterns on the feedback path of every state variable. And we also can 

expand state variables one bit to increase fault coverage.  

 

5.2 Example and Result Analysis 

Now, we will give an example to illustrate the steps in the above section. As shown in the 

following, Table 5.1(a) is an original flow table and Table 5.1(b) is its original state transition 

table of an asychronous machine. With the state transition table, fault coverage is around 77 %. 

Now we reassign the state by using the steps we proposed in the last section. In Table 5.1(a), 

we sort state sets which may be generated ORs by cases of fault detection and conditions of 

state patterns as shown in Table 5.2. We want to assign the states with the highest priority 

detection condition as Case A & Condition Ⅰ. 
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Table 5.1(a) Original flow table of an asychronous circuit 

c

PS

a
b
c

a
a
-

a
b
b

b
c

b
b
b

NS
XY=00       XY=01 XY=11     XY=10

-0
0
-

0
0
-

0
1

0
0
-

OUT
XY=00    XY=01 XY=11    XY=10

 
 

Table 5.1(b) Original state transition table of an asychronous circuit 

c  10

PS
Q2Q1

a 00
b 01
d 11
c 10

a  00
a  00

-
-

a  00
b  01
b  01
d  11

b  01
-

c  10

b  01
b  01

-
a  00

NS
XY=00       XY=01 XY=11     XY=10

-0
0
-
-

0
0
-
-

0
-
1

0
0
-
-

OUT
XY=00    XY=01 XY=11    XY=10

 
 

Table 5.2 State sets of oscillation rings of Table 5.1 

 XY = 01 XY = 11 

Case A & Condition Ⅰ - [b, c] 

Case A & Condition Ⅱ [a, c] [a, b] 

Case B & Condition Ⅰ [a, b] - 

 
Through Step 2, we assign state b (Q2, Q1) = (1, 0) and state c (Q2, Q1) = (1, 1). Thus, the 

state variable Q1 has the oscillation signal on its feedback path. Since the state set [a, b] can 

be also found to be in the condition of Case B and Condition Ⅰ, thus we choose this state 

and assign (Q2, Q1) = (0, 0) and, for the input XY = 11, assign the output of state a (0, 0) to 

be 1, which is opposite in value to the output of state b (1, 0). Thus, state variable Q2 also 

has the oscillation signal on its feedback path. And continue this to assign other state sets. In 

 28



the asssignment, we find that state set [a, c] can not be achieved our OR condition since the 

hamming distance needed for assignment will exceed one. Thus, after Step 2 , the result will 

be as shown in Table 5.3. 

 

Table 5.3 State transition table after executing Step 2 

c  11

PS
Q2Q1

a 00
b 10
c 11

a  00
a  00

-

a  00
b  10
b  10

b  10
c  11

b  10
b  10
b  10

NS
XY=00       XY=01 XY=11     XY=10

10
-
-

0
0
-

0
1

-
0
-

OUT
XY=00    XY=01 XY=11    XY=10

 

In Table 5.3, when the present state is state a (0, 0) at XY = 01 and input XY will be 

changed from 01 to 11, race condition may occur. Thus, Step 3 is executed to avoid this 

condition. Hence, state d (0, 1) is added to avoid race condition and the modified table is as 

shown in Table 5.4. 

 

Table 5.4 State transition table after executing Step 3 

d  01

PS
Q2Q1

a 00
b 10
c 11

a  00
a  00

-

a  00
b  10
b  10

b  10
c  11

b  10
b  10
b  10

NS
XY=00       XY=01 XY=11     XY=10

10
-
-

0
0
-

0
1

-
0
-

OUT
XY=00    XY=01 XY=11    XY=10

d 01 - - c  11 - - - 1 -
 

For this example, no extra state variables are needed to avoid race condition and Step 4 

is omitted. We continue to execute Step 5. Step 5 is to make don’t care entries of states stable 

at certain inputs in order to generate extra oscillation rings with Case A fault detections and 

Condition Ⅰ state patterns. When state d (0, 1) is stable and its output value is 1 at XY = 00 

and 01 as shown in Table 5.5, two oscillation rings with Case A fault detections and 
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Condition Ⅰ state patterns can be generated. Thus, this step is very useful to generate extra 

oscillation rings. 

 

Table 5.5 State transition table after executing Step 5 

d  01

PS
Q2Q1

a 00
b 10
c 11

a  00
a  00

-

a  00
b  10
b  10

b  10
c  11

b  10
b  10
b  10

NS
XY=00       XY=01 XY=11     XY=10

10
-
-

0
0
-

0
1

-
0
-

OUT
XY=00    XY=01 XY=11    XY=10

d 01 d  01 d  01 c  11 - 1 1 1 -

 
 

Finally, Step 6 is to fill in suitable values in don’t care entries of the outputs to avoid 

static hazards. And the finial state transition table obtained is that as shown in Table 5.6. 

 

Table 5.6 Final state transition table 

d  01

PS
Q2Q1

a 00
b 10
c 11

a  00
a  00

-

a  00
b  10
b  10

b  10
c  11

b  10
b  10
b  10

NS
XY=00       XY=01 XY=11     XY=10

10
0
-

0
0
-

0
1

0
0
-

OUT
XY=00    XY=01 XY=11    XY=10

d 01 d  01 d  01 c  11 - 1 1 1 -
 

 

Result Analysis and Comparison 

With the state assignment of Table 5.6, the fault coverage obtained is around 95% which 

is an 18% increase from the original 77%. The detail analysis results for two cases are shown 

below.  
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Table 5.7 Simulation result of two state transition tables 

 
Original State Transition 

Table 
Modified State Transition 

Table 

Numbers of 
Oscillation Rings 

3 Case A (Condition Ⅱ)

1 Case B (Condition Ⅰ)

3 Case A (Condition Ⅰ) 

1 Case A (Condition Ⅱ) 

1 Case B (Condition Ⅰ) 

Fault Coverage 77 % ( 48 / 62 ) 95 % ( 72 / 76 ) 
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Chapter 6 

Conclusion 
 
 

In the thesis, we propose an OR-Test methodology to test asynchronous circuits. We 

have investigated the conditions of forming oscillation rings and analyzed conditions of 

acihieving maximal detection. Due to un-availability of benchmark asychronous circuits, only 

a few circuits had been applied with this methodology as the experiment. However, it is found 

that generally a few number of state patterns will obtain a significant percentage of fault 

coverages. We have also proposed a state assignment procedure to reassign states of an 

asychronous circuit to obtain a higher OR testability. One good feature of this methodology is 

that it has the BIST capability. Although this is only a preliminary study, in view of the 

diffuculty in testing asychronous circuits encountered, this methodology is worthy of further 

studying. 
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