
Chapter 1

Introduction

1.1 Introduction

In recent years, testing is more difficult because of increasing high complexity of

integrated circuit. Many testing and design-for-testability methods for digital sequential

circuits have been proposed and developed [1]. However, these methods usually involve long

test generation time. A test methodology, Oscillation Ring Test (OR-Test) was proposed in the

papers [2][3] to test the stuck-at and path delay faults for the sequential circuit. The

methodology re-configures the feedback paths of the circuit under test (CUT) to be many

oscillation rings (ORs) under the test mode. Under appropriate patterns applied to inputs of

the CUT, ORs will oscillate. By observing the oscillation at the output of the CUT, we can tell

that if the circuit is working properly. The methodology is very simple and effective since it

needs not many patterns.

1.2 Characteristic of Tested Asynchronous Circuits

Digital sequential circuits can be divided into categories of the synchronous and the

asynchronous circuit. The synchronous sequential circuit is synchronized with one or more

clock signals. It is generally simple to be designed with only need to take clock skew and the

worse case delay into account. For the asynchronous circuit, it dose not have a clock and the

circuit works under a carefully designed timing consideration. As long as an input variable

changes the value, the circuit will have response to that. It has the advantages of relatively

high speed, low power consumption and no problem with the clock skew. However, it is

 1

more difficult to be designed since it needs to be considered the timing problems such as

races and hazards [4]-[8].

To apply the OR-Test to the asynchronous circuit, we have assumed that the

asynchronous circuit has the following characteristics.

 It operates in the fundamental mode

 No input signals changed until the circuit is stable

 Only one input signal changed at a time

 Its architecture is:

 Combination circuit uses the static feedbacks used to maintain states

 No explicit storage elements such as latches, flip-flops or C-elements

 It has a predetermined time period to give input vectors

1.3 Outline of The Thesis

In Chapter 2, we illustrate this OR-Test methodology and give the basic architecture of

OR-Test for a asynchronous circuit. And we illustrate what kinds of fault detections to be used

to detected stuck-at faults. Finally, we illustrate how to form oscillation rings and generate

state patterns from the state transition table.

In Chapter 3, we show the overall procedure for applying the OR-Test for the

asynchronous circuit. Examples are used to illustrate these procedures.

In Chapter 4, we give the experimental result on several benchmark circuits by applying

this OR-Test methodology.

In Chapter 5, we propose a procedure to reassign the state for an asynchronous circuit for

 2

OR-Test to improve its testability. An example is also given to demonstrate the procedure.

In Chapter 6, we give conclusion for the thesis.

 3

Chapter 2

Application of OR-Test Methodology to the

Asynchronous Circuit

2.1 OR-Test Methodology

Figure 2.1 is the architecture of the OR-Test applied to the synchronous sequential circuit,

where the oscillation ring is formed, to detect stuck-at faults. If there is a stuck-at fault on the

path of the oscillation ring or the sensitized path the oscillation will stop. So, a fault will be

detected.

Combinational
Logic

Oscillation Path

... ...Inputs Outputs

Feedback Cell

Figure 2.1 Simple illustration of OR-Test

2.2 Basic Architecture of OR-Test

The basic architecture of OR-Test is shown in Figure 2.2(a). In the architecture, feedback

cells are added to the feedback paths. These feedback cells can be controlled to give the state

patterns to achieve the oscillation condition. These state cells are shown in Figure 2.2(b). Two

 4

control pins are to control the state of the feedback cell and one common pin is added to

control test/normal mode for OR-Test. An encoder is used to encode the control signal which

will be explained later.

Feedback cell

Combinational
Logic

... ...Inputs Outputs

Sin[1] Sin[0]

(a)

test/normal

Output
Input

Sin[1] Sin[0]

Bypass
operationSin[0]

0 0

0 Hold 01
11 Hold

0 1 INV

Sin[1]

 1

(b) (c)

Figure 2.2 (a) Basic architecture of the asynchronous circuit under test;

 (b) Feedback cell; (c) Operation of control signals

2.3 Fault Detection

Oscillation rings can be classified into two cases by its detection: Case A and Case B.

 5

Case A Fault Detection

Case A fault detection is that oscillating signals of oscillation rings can be propagated to

the output of the CUT. Stuck-at faults can be detected by observing the output if the output

signals stop oscillating. An example circuit of such type is shown in Figure 2.3 which is in the

fault-free condition. Under the input: XY = 01, the OR closed loop (c→ d→ e) will be

oscillation, and the oscillating signal is propagated to the output Z. However, when a

stuck-at-1 fault occurs at line c as shown in Figure 2.4, the output Z will stop oscillating and

stay at 1. Thus, this fault is detected.

G1

G2

G3

Y

X Z

ec

b d f

a g

1

0

1

0

Figure 2.3 A fault-free circuit of Case A

G1

G2

G3

Y

X Z

ec

b d f

a g

0

1 1

1

1

0 1

Figure 2.4 A faulty circuit of Case A

Similarly, c↑, c↓, d↑, d↓, e↑, e↓ faults on the closed loop, f↑, f↓, g↑, g↓

faults on lines used to propagate the oscillation signal into the output Z and a↑, b↓ faults on

 6

the lines used to sensitize the oscillation ring will be also detected.

Case B Fault Detection

Case B fault detection is that oscillating signals of oscillation rings are not propagated to

the output at the fault free case but the output oscillates when stuck-at faults exist in the CUT.

An example is shown in Figure 2.5. The circuit is the same as that in Figure 2.3. When input

X changes from 0 to 1, the oscillation signal can not be propagated to output Z. However, if a

stuck-at-0 fault exists at line a as shown in Figure 2.6, output Z will be oscillating. Thus the

fault is detected.

G1

G2

G3

Y

X Z

ec

b d f

a g

1

1 1

1 1

Figure 2.5 A fault-free circuit of Case B

G1

G2

G3

Y

X Z

ec

b d f

a g

0

1 1

1

Figure 2.6 A faulty circuit of Case B

Both two cases have their advantages. Oscillation rings whose detection belongs to Case

A can detect stuck-at faults on oscillation closed loops or on the paths that are used to

 7

propagate the oscillation signal to the output. Therefore, it usually can detect more faults than

Case B. But oscillation rings whose detection belong to Case B can detect stuck-at faults

which result in the propagation of the inner oscillation signal into the output and also can be

used to detect stuck-at faults of some special circuits.

2.4 Formation of Oscillation Rings

This section introduces how oscillation rings are formed from the state transition table. It

is assumed that the state transition table is available for the CUT from the circuit designer.

From the transition table, state sets whose hamming distances are all 1 are first obtained. The

following will show how to build the oscillation relation of these state sets and illustrate

several tables to be used to generate state patterns.

2.4.1 Relation of State Sets for Oscillation Rings

Table 2.1 is a state transition table which is used to explain the procedure. Assume that

the stable state a at XY = 01 is chosen first. In order to avoid race conditions in OR-Test, only

present state b and d whose hamming distances are both 1 with respect to state a at the same

input are considered.

Table 2.1 A state transition table example

d 10

PS
Q2Q1

a 00
b 01
c 11
d 10

a 00
a 00
b 01
b 01

a 00
b 01
b 01
c 11

b 01
 b 01
d 10

b 01
b 01
b 01
a 00

NS
XY=00 XY=01 XY=11 XY=10

10
1
1
1

0
1
1
1

1
1
1

1
1
1
1

OUT
XY=00 XY=01 XY=11 XY=10

 8

Consider state b first. For the same input XY = 01, the next state of present state b is b,

therefore, it is a stable state. If we add an inverter to the feedback path of state variable Q1,

the oscillation ring of state variable Q1 will be formed as shown in Figure 2.7(a). So, state

variable Q1 of state a and b will interchange mutually with value 0 and 1. Since the output

value of state b is opposite to state a, the detection of the oscillation ring belongs to Case A.

Thus, the oscillation signal can be propagated into the output as shown in Figure 2.7(b).

Bypass INV

0 0
0 0
0 1
0 1

state Q2 Q1

2nd

1st

Present state
Next state

Present state
Next state

b
b
a
a

Figure 2.7 (a) Oscillation relation of state set [a, b]

Q 2

Feedback Cell

Combinational
Logic

X = 0

Bypass

INV

Output

Q 1

Y = 1

Figure 2.7 (b) Circuit diagram of state set [a, b]

 9

Now consider state d. At the same input XY = 01, the next state of state d is c. Similarly,

if we add an inverter to the feedback path of state variable Q2 and make the feedback path of

state variable Q1 be always 0(This is Hold 0) , the oscillation ring of state variable Q2 will be

formed as shown in Figure 2.8. The detection of the oscillation ring also belongs to Case A.

INV Hold 0

0 0
0 0
1 0
1 1

state Q2 Q1

2nd

1st

Present state
Next state

Present state
Next state

c
d
a
a

Figure 2.8 (a) Oscillation relation of state set [a, d]

Q 2

Feedback Cell

Com binational
Logic

X = 0

INV

Hold 0

Output

Q 1

Y = 1

Figure 2.8 (b) Circuit diagram of state set [a, d]

 10

2.4.2 True Table of State Variable and Function Table of Feedback Cell

Through the state transition table and the constraint of hamming distance = 1 between

state sets, we can find total state sets which may be generated oscillation rings with valid

states, and we use the true table of state variable and the function table of feedback cells to

generate state patterns. As shown in Table 2.2(a), the true table of state variable is used to

mark the change of state variables. For example, if the transition of the bit is from 0 to 0, we

mark the transition Low. And Table 2.2(b) shows that the function table of the feedback cell is

used to generate state patterns through the true table of the state variable. However, we should

pay attention to the condition Fail. We can not provide simple logic circuit to achieve the

condition Fail. Therefore, if a state pattern includes the condition Fail, it is invalid. In the

next section, we will illustrate how to complete the function table of feedback cell.

Table 2.2 (a) True table of the state variable;

 (b) Function table of the feedback cell

OP Value
Low0 -> 0

0 -> 1
1 -> 0
1 -> 1

Rising

Falling

h

Change of Bit

(a)

Hig

H

H
L

L
Fail

Fail

F
Bypass

2nd

1st

R
INV

INV

Hold 0

Hold 1

(b)

OP Value

Bypass

 11

2.5 State Pattern

2.5.1 Type 1: Bypass State

Bypass state indicates that the function which is used to achieve the transition of present

states without any logic devices added into the feedback cell. As shown in Figure 2.9(a) and

Figure 2.10, state bits of two present states are both 0 and next states are also 0, too. Thus,

nothing needs to be added to satisfy the condition that make 1st next state equal to 2nd present

state and 2nd next state equal to 1st present state. This is Bypass state. In the same way,

operation set {H, H} is the same as shown in Figure 2.9(b).

PS NS OP
0 0
0 0

L
L

Bypass
-> 0

0->
->
->

MSR Cell PS

(a)

PS NS OP
1 1
1 1

H
H

Bypass
-> 1

1->
->
->

MSR Cell PS

(b)

Figure 2.9 (a) Operation set {L, L}; (b) Operation set {H, H}

b
b
a
a

state

L H

L L

transition value

0 1
0 1
0 0
0 0

bit1 bit0
Present state1st

Next state
Present state

Next state

2nd b
b
a
a

state

L H

L L

transition value

0 1
0 1
0 0
0 0

bit1 bit0
Present state1st

Next state
Present state

Next state

2nd

Bypass InvBypass Inv

Figure 2.10 Example of operation set {L, L}

2.5.2 Type 2: INV State

INV state indicates that an inverse operation should be added for the feedback cell. As

shown in Figure 2.11(a) and Figure 2.12, 1st present state and next state are both 0 and 2nd are

 12

both 1. Thus, we just add an inverter to make two present states can interchange mutually

with 0 and 1. This is INV state. In the same way, operation set {H, L} is the same as shown in

Figure 2.11(b).

PS NS OP
0 0
1 1

L
H

INV
-> 1

0->
->
->

MSR Cell PS

(a)

PS NS OP
1 1
0 0

H
L

INV
-> 0

1->
->
->

MSR Cell PS

(b)

Figure 2.11 (a) Operation set {L, H}; (b) Operation set {H, L}

b
b
a
a

state

L H

L L

transition value

0 1
0 1
0 0
0 0

bit1 bit0
Present state1st

Next state
Present state

Next state

2nd b
b
a
a

state

L H

L L

transition value

0 1
0 1
0 0
0 0

bit1 bit0
Present state1st

Next state
Present state

Next state

2nd

Bypass InvBypass Inv

Figure 2.12 Example of operation set {L, H}

2.5.3 Type 3: Hold State

Hold state indicates that no matter what the next state value is, the feedback cell is a

fixed value. As shown in Figure 2.13(a) and Figure 2.14, we must make 1st next state equal to

2nd present state and 2nd next state equal to 1st present state. But Bypass state and INV state

both do not apply to this condition. Thus, we only give the feedback cell a 0. That is Hold 0

state. In the same way, operation set {H, F} is Hold 1 state like Hold 0 as shown in Figure

2.13(b).

 13

PS NS OP
0 0
0 1

L
R

Hold 0
-> 0

0->
->
->

MSR Cell PS

(a)

PS NS OP
1 1
1 0

H
F

Hold 1
-> 1

1->
->
->

MSR Cell PS

(b)
Figure 2.13 (a) Operation set {L, R}; (b) Operation set {H, F}

d
c
a
a

state

H R

L L

transition value

1 1
1 0
0 0
0 0

bit1 bit0
Present state1st

Next state
Present state

Next state

2nd d
c
a
a

state

H R

L L

transition value

1 1
1 0
0 0
0 0

bit1 bit0
Present state1st

Next state
Present state

Next state

2nd

Inv Hold0Inv Hold0

Figure 2.14 Example of operation set {L, R}

2.5.4 Type 4: Fail State

Fail state indicates that no matter what we add into the feedback cell, the condition can

not be achieved. As shown in Figure 2.15(a) and Figure 2.16, we must make 1st next state

equal to 2nd present state and 2nd next state equal to 1st present state. But Bypass state, INV

state and Hold state are all un-applicable for this condition. Thus, this state is an invalid state.

This is Fail state. In the same way, operation set {H, R} is also Fail state as shown in Figure

2.15(b).

PS NS OP
1 1
0 1

H
R

PS NS OP
0 0
1 0

L
F

Fail
-> 1

0->
->
->

MSR Cell PS

(a)

Fail
-> 0

1->
->
->

MSR Cell PS

(b)

Figure 2.15 (a) Operation set {L, F}; (b) Operation set {H, R}

 14

a
b
a
a

state

L F

L L

transition value

0 0
0 1
0 0
0 0

bit1 bit0
Present state1st

Next state
Present state

Next state

2nd a
b
a
a

state

L F

L L

transition value

0 0
0 1
0 0
0 0

bit1 bit0
Present state1st

Next state
Present state

Next state

2nd

Bypass FailBypass Fail

Figure 2.16 Example of operation set {L, F}

2.6 Condition of State Patterns

Through the detailed illustration about types of state patterns added into the feedback

cells in the last section, we illustrate two conditions of state patterns in this section. The first

condition, which is termed as Condition Ⅰ, is composed of only one INV state on a feedback

cell and Bypass states on all other cells as shown in Figure 2.17(a). The second condition,

which is termed as Condition Ⅱ, is composed of only one INV state on a feedback cell and

Bypass states and Hold states on all other cells as shown in Figure 2.17(b).

Condition II :
H

H

..
..

H

H

..
..

Condition I :
....

Better Feedback cells

Feedback cells

(a) (b)

Figure 2.17 (a) ConditionⅠof state patterns (b) Condition Ⅱ of state patterns

Condition Ⅰ is better than Condition Ⅱ on the capability to detect stuck-at faults. As

shown in Figure 2.18, the s-a-1 fault on the wire W can not be detected by Condition Ⅱ of

state patterns. No matter what the value of the wire W is, Cell 1 always provides the value 1

 15

in Figure 2.18(a). However, Cell 1 will be affected by the s-a-1 fault on the wire W in Figure

2.18(b). Thus, the s-a-1 fault on the wire W may be detected by Condition Ⅰ of state

patterns.

Cell 0

Cell 1

H
01

(a)

W

Cell 0

Cell 1
01

(b)

W

Figure 2.18 (a) W↑ in Condition Ⅱ (b) W↑ in Condition Ⅰ

 16

Chapter 3

Procedure to Generate OR-Test Test Patterns

3.1 Flow of OR-Test by State Transition Table

OR-Test for asynchronous circuits by state transition table can be divided into two parts.

First part is to obtain oscillation rings with their state patterns and input sequences from the

state transition table, then to use synthesis tools to synthesize the state transition table into the

circuit netlist in order to make the procedure more convenient. And second part is fault

simulation. Figure 3.1 is the total flow chart of OR-Test by the state transition table.

G iv e a c i r c u it

P r o c e s s
 in p u t s e q u e n c e

a lg o r i th m

P r o c e s s
 s ta te p a t te r n

a lg o r i th m

S ta r t

O s c i l la t io n r in g l is t
w i th in p u t s e q u e n c e

a n d s ta te p a t te r n

O s c . R in g l is t
e m p ty ?

F a u l t s im u la t io n

N o

G iv e a n
o s c i l la t io n r in g

E n d

Y e s

Figure 3.1 Flow chart of OR-Test by state transition table

 17

For this procedure, the data and netlist of the circuit is given as the input and the output

will be the final fault coverage. The following sections will illustrate how to find state

patterns and input sequences of oscillation rings and to do fault simulation.

3.2 Algorithm of Input Sequence Finding

Before doing OR-Test for asynchronous circuits, the most important thing is to find all

input sequences of states. For the asynchronous circuit, invalid states are unstable states and

only valid states have input sequences. An input sequence can make the inner state reach the

starting state of an oscillation ring. So we want to find valid states and their input sequences.

As shown in Figure 3.2, we have the initial state and input first. And we must decide the

length of input sequences. Then, use binary search to find them. Only one of input variables

can be changed one time. When input changes, the state maybe changes. Until the new state is

stable, diagnose if the new state and its corresponding input can be found in the valid state list.

If not, save the state and input into the valid state list and continue to change input. On the

contrary, if the state can be found in the list, diagnose if the length of the state found now is

shorter than that in the list. If yes, replace that in the list with the state found now. If no, go

back to the last node and search another path. Until all the paths are looked for, the valid state

list with input sequences can be obtained and the maximum length of input sequences doesn’t

exceed that we decided before.

 18

Start state : Q1Q2…Qn
Start input : X1X2…Xm

/X1X2…Xm X1/X2…Xm X1X2…/Xm……

m

/X1/X2…Xm X1X2…Xm X1/X2…/Xm……

m

1 2

1 2

Length 1

Length 2

Figure 3.2 Illustration of finding input sequence

An example is shown in Table 3.1. First, the inputs XY and the state Q2Q1 are initially

provided 00 and 00, respectively. The max length of input sequence is 2.

Table 3.1 Example of state transition table

d 10

PS
Q2Q1

a 00
b 01
c 11
d 10

a 00
a 00

-
-

a 00
b 01
b 01
c 11

b 01
-

d 10

b 01
b 01

-
a 00

NS
XY=00 XY=01 XY=11 XY=10

Thus, we can get the binary search figure like Figure 3.3. The symbol, X, in Figure 3.3

means that the state at that input was found before. Nevertheless, if the length of input

sequence of the state found now is shorter than before, the state before is replaced by that

found now and continue to do binary search until all paths are looked for. Although the valid

states in the example are not found totally, we can increase the max length until the total valid

states are found. So it is dependent on the actual situation to decide the max length of input

sequences. Very often, we do not have to obtain the total valid states but still can achieve a

 19

high fault coverage.

Start input XY = 00
Start state Q2Q1 = 00

XY=01
Q2Q1=00

XY=10
Q2Q1=01

2

XY=00
Q2Q1=00

XY=11
Q2Q1=10

1

1

Length 1

Length 2

2

XY=11
Q2Q1=01

XY=00
Q2Q1=00

1 2

Figure 3.3 Binary search of Table 3.1

3.3 Algorithm of State Pattern

When finding valid states with their input sequence, observe other states whose

hamming distances with these valid states is one. This is in order to avoid race condition.

Then, observe the different bit between the two present states. If the bit changes the value at

the next state, no oscillation rings are produced. If two bits are the same, an oscillation ring

can be formed.

Now see Table 3.2. Assume there is a valid state A (Q3Q2Q1Q0 = 0000) at one certain

input. Thus, state B, C, D and E will be observed because they are the states whose hamming

distance with state A is one. And the different bits of state B, C, D and E against state A will

be added INV state into. If different bits change values at their next states, there are no

oscillation rings generated. So, in Table 3.2, only state B can not be used to generate an

oscillation ring with state A because of the transition of Q0. The fault detection of the state set

[A, C] belongs to Case B fault detection and state set [A, D], [A, E] belong to Case A fault

detection.

 20

Table 3.2 State transition table in certain input

Present State Next state Output

A 0000 0000 0

B 0001 0000 0

C 0010 0010 0

D 0100 0100 1

E 1000 1001 1

Through the example we demonstrated, we can understand how to find state patterns. So,

Figure 3.4 is the basic flow chart of finding state patterns.

C hoose one
va lid s ta te

V a lid s ta te lis t

F ind s ta tes tha t
ham m ing d is tance

is 1 w ith it

O bserve
d iff. b it

V a lue changes
a t the next s ta te ?

O utpu t
d iffe ren t ?

Y es

N o

G enera te s ta te
pa tte rns th rough

function tab le

C ase A
fau lt de tection

Y es

C ase B
fau lt de tection

S ta rt

N o

Figure 3.4 Flow chart of finding state patterns

 21

3.4 Fault Simulation

After section 3.3, we have found oscillation rings with their state patterns and input

sequences, and now we do fault simulation finally. Figure 3.5 is the simple flow chart of our

fault simulation which is logic simulation written in C language.

Inse rt a fau lt

R un inpu t
sequence

S ta rt

F au lt lis t

G ive s ta te pa tte rn
s igna ls o f feedback

ce lls

O u tpu t
no t osc illa te ?

F au lt de tec ted

Y es

C ase A C ase B

O utpu t
osc illa te ?

F au lt de tec ted

Y es

E nd

Figure 3.5 Simple flow chart of fault simulation

When doing fault simulation, the data of the oscillation ring will be given to the fault

simulation program. Then, a fault is inserted into the circuit. Then, run input sequence of the

fault-free circuit. When the predetermined cycle time goes by, give the next input vector of

input sequence. Because of the inserted fault, race condition may happen when running input

 22

sequence. If more than two bits of state variables change at the same time, we presume that a

race condition happens and the fault is undetected. After this, assign feedback cells with state

patterns and start to do the OR-Test simulation. If the fault detection of the oscillation ring is

Case A, and the output is stable, the fault is detected. Similarly, for the Case B, the output

should be oscillating to detect the fault.

 23

Chapter 4

Experimental Results on Benchmark Circuits

In the chapter, we apply the OR-test methodology derived above to several ISCAS89

benchmark circuits. These benchmark circuits are synchronous sequential circuits but in our

experiment we took their circuits and then treat them as asychronous sequential circuits. The

results are shown in Table 4.1. The circuits included are only small size circuits since for large

size circuits, even the initial states can not be found and circuits are untestable by using this

methodology. In the table, the # of gates, inputs, outputs, feedbacks, length of patterns,

oscillation rings formed, and patterns, and fault coverages obtained for each circuit. For the

column of the state patterns, the first number in the bracket is the number state patterns of OR

rings of ConditionⅠand the second number of the bracket is the number of state patterns of

OR rings of Condition Ⅱ.

From the table, we can see that for small size sequential circuits, a length of 3 for input

sequence finding is enough for some circuits. In some circuits, we increased the length from 3

to 5 to obtain higher fault coverage. Thus, we can see that the fault coverage of the circuit,

s3384, is changed from 75.99 % to 98.29 % when we change the length for input sequence

finding from 3 to 5. Thus, if the input variables are more and more, we must give longer

length to obtain higher fault coverage. And for circuits such as s208 and s838, the fault

coverage are 0%, it is beause these circuits are counter-like cicuits whose state always

changes during valid state searching. The number of valid states in those circuits are so few

besides of the initial state, thus, no oscillation rings can be formed.

 24

Table 4.1 Experimental results applying the OR Test methodology

to benchmark circuits

Circuits #Gates #Inputs #Outputs
#Feedback

s
#Length #Osc rings #Patterns F.C.

s27 17 4 1 3 3 28 6 (2,4) 98.07%
s208 115 11 2 8 3 0 0 0
s349 185 9 11 15 3 1209 13 (12,1) 99.55%
s386 172 7 7 6 5 85 3 (3,0) 20.98%
s510 236 19 7 6 3 4940 10 (5,5) 29.51%
s713 447 35 23 19 3 22169 19 (3,16) 80.72%
s832 310 18 19 5 3 841 7 (4,3) 18.09%
s838 457 35 2 32 3 0 0 0
s953 440 16 23 29 3 1626 19 (1,18) 93.70%
s1269 624 18 10 37 3 13364 140 (24,116) 68.08%
s1269 624 18 10 37 5 193322 692 (24,668) 74.23%
s1494 661 8 19 6 3 68 4 (0,4) 18.51%
s1512 866 29 21 57 3 194012 64 (56,8) 53.60%
s3384 1911 43 26 183 3 239 27 (1,26) 75.99%
s3384 1911 43 26 183 5 3054 47 (1,46) 98.29%
s3330 1961 40 73 132 3 16285 19 (8,11) 30.90%
s4863 2495 49 16 104 3 0 0 0

 25

Chapter 5

State Assignment to Improve OR-Testability for

Asynchronous Circuits

In the prevous analysis, we have found that the state assignment is very important in

forming the OR-Test rings which involve the fault coverage. In this chapter we will include

some preliminary results on the state assignment of the asynchronous sequential circuits to

improve their OR testability.

5.1 Assignment Flow

In the previous analysis, it was found that if the fault detections of the circuit belong to

Case B or most state patterns belong to Condition Ⅱ, fault coverage will be bad. And if not

all state variables have an oscillation signal in their closed loops, the detection result is also

bad. Thus, we must assign states to make the circuit include more and more Case A fault

detection or most state patterns belong to Condition Ⅰ.

The following is the steps to make the suitable state assignment.

Step 1. Find state sets which may be formed oscillation rings in the flow table

Step 2. Assign to make every state variables have oscillation rings with Case A fault

detections. (Case A & ConditionⅠ, first)

Step 3. Add extra states to avoid race condition

Step 4. If numbers of state variables are not enough to solve race condition, expand

state variables one bit and return to Step 2

 26

Step 5. Make don’t care items of states stable to generate extra oscillation rings with

Case A fault detection

i. Find don’t care items of states which can generate oscillation rings with

valid states

ii. Make them stable and their outputs opposite to outputs of valid states

Step 6. Fill in suitable values into outputs which maybe result in static hazards

Step 7. end

Through the last steps, we use state sets which may be built oscillation rings in the flow

table and don’t care items of states to generate oscillation rings with Case A fault detections

and Condition Ⅰ state patterns on the feedback path of every state variable. And we also can

expand state variables one bit to increase fault coverage.

5.2 Example and Result Analysis

Now, we will give an example to illustrate the steps in the above section. As shown in the

following, Table 5.1(a) is an original flow table and Table 5.1(b) is its original state transition

table of an asychronous machine. With the state transition table, fault coverage is around 77 %.

Now we reassign the state by using the steps we proposed in the last section. In Table 5.1(a),

we sort state sets which may be generated ORs by cases of fault detection and conditions of

state patterns as shown in Table 5.2. We want to assign the states with the highest priority

detection condition as Case A & Condition Ⅰ.

 27

Table 5.1(a) Original flow table of an asychronous circuit

c

PS

a
b
c

a
a
-

a
b
b

b
c

b
b
b

NS
XY=00 XY=01 XY=11 XY=10

-0
0
-

0
0
-

0
1

0
0
-

OUT
XY=00 XY=01 XY=11 XY=10

Table 5.1(b) Original state transition table of an asychronous circuit

c 10

PS
Q2Q1

a 00
b 01
d 11
c 10

a 00
a 00

-
-

a 00
b 01
b 01
d 11

b 01
-

c 10

b 01
b 01

-
a 00

NS
XY=00 XY=01 XY=11 XY=10

-0
0
-
-

0
0
-
-

0
-
1

0
0
-
-

OUT
XY=00 XY=01 XY=11 XY=10

Table 5.2 State sets of oscillation rings of Table 5.1

 XY = 01 XY = 11

Case A & Condition Ⅰ - [b, c]

Case A & Condition Ⅱ [a, c] [a, b]

Case B & Condition Ⅰ [a, b] -

Through Step 2, we assign state b (Q2, Q1) = (1, 0) and state c (Q2, Q1) = (1, 1). Thus, the

state variable Q1 has the oscillation signal on its feedback path. Since the state set [a, b] can

be also found to be in the condition of Case B and Condition Ⅰ, thus we choose this state

and assign (Q2, Q1) = (0, 0) and, for the input XY = 11, assign the output of state a (0, 0) to

be 1, which is opposite in value to the output of state b (1, 0). Thus, state variable Q2 also

has the oscillation signal on its feedback path. And continue this to assign other state sets. In

 28

the asssignment, we find that state set [a, c] can not be achieved our OR condition since the

hamming distance needed for assignment will exceed one. Thus, after Step 2 , the result will

be as shown in Table 5.3.

Table 5.3 State transition table after executing Step 2

c 11

PS
Q2Q1

a 00
b 10
c 11

a 00
a 00

-

a 00
b 10
b 10

b 10
c 11

b 10
b 10
b 10

NS
XY=00 XY=01 XY=11 XY=10

10
-
-

0
0
-

0
1

-
0
-

OUT
XY=00 XY=01 XY=11 XY=10

In Table 5.3, when the present state is state a (0, 0) at XY = 01 and input XY will be

changed from 01 to 11, race condition may occur. Thus, Step 3 is executed to avoid this

condition. Hence, state d (0, 1) is added to avoid race condition and the modified table is as

shown in Table 5.4.

Table 5.4 State transition table after executing Step 3

d 01

PS
Q2Q1

a 00
b 10
c 11

a 00
a 00

-

a 00
b 10
b 10

b 10
c 11

b 10
b 10
b 10

NS
XY=00 XY=01 XY=11 XY=10

10
-
-

0
0
-

0
1

-
0
-

OUT
XY=00 XY=01 XY=11 XY=10

d 01 - - c 11 - - - 1 -

For this example, no extra state variables are needed to avoid race condition and Step 4

is omitted. We continue to execute Step 5. Step 5 is to make don’t care entries of states stable

at certain inputs in order to generate extra oscillation rings with Case A fault detections and

Condition Ⅰ state patterns. When state d (0, 1) is stable and its output value is 1 at XY = 00

and 01 as shown in Table 5.5, two oscillation rings with Case A fault detections and

 29

Condition Ⅰ state patterns can be generated. Thus, this step is very useful to generate extra

oscillation rings.

Table 5.5 State transition table after executing Step 5

d 01

PS
Q2Q1

a 00
b 10
c 11

a 00
a 00

-

a 00
b 10
b 10

b 10
c 11

b 10
b 10
b 10

NS
XY=00 XY=01 XY=11 XY=10

10
-
-

0
0
-

0
1

-
0
-

OUT
XY=00 XY=01 XY=11 XY=10

d 01 d 01 d 01 c 11 - 1 1 1 -

Finally, Step 6 is to fill in suitable values in don’t care entries of the outputs to avoid

static hazards. And the finial state transition table obtained is that as shown in Table 5.6.

Table 5.6 Final state transition table

d 01

PS
Q2Q1

a 00
b 10
c 11

a 00
a 00

-

a 00
b 10
b 10

b 10
c 11

b 10
b 10
b 10

NS
XY=00 XY=01 XY=11 XY=10

10
0
-

0
0
-

0
1

0
0
-

OUT
XY=00 XY=01 XY=11 XY=10

d 01 d 01 d 01 c 11 - 1 1 1 -

Result Analysis and Comparison

With the state assignment of Table 5.6, the fault coverage obtained is around 95% which

is an 18% increase from the original 77%. The detail analysis results for two cases are shown

below.

 30

Table 5.7 Simulation result of two state transition tables

Original State Transition

Table
Modified State Transition

Table

Numbers of
Oscillation Rings

3 Case A (Condition Ⅱ)

1 Case B (Condition Ⅰ)

3 Case A (Condition Ⅰ)

1 Case A (Condition Ⅱ)

1 Case B (Condition Ⅰ)

Fault Coverage 77 % (48 / 62) 95 % (72 / 76)

 31

Chapter 6

Conclusion

In the thesis, we propose an OR-Test methodology to test asynchronous circuits. We

have investigated the conditions of forming oscillation rings and analyzed conditions of

acihieving maximal detection. Due to un-availability of benchmark asychronous circuits, only

a few circuits had been applied with this methodology as the experiment. However, it is found

that generally a few number of state patterns will obtain a significant percentage of fault

coverages. We have also proposed a state assignment procedure to reassign states of an

asychronous circuit to obtain a higher OR testability. One good feature of this methodology is

that it has the BIST capability. Although this is only a preliminary study, in view of the

diffuculty in testing asychronous circuits encountered, this methodology is worthy of further

studying.

 32

