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Range and Size Estimation Based on a Coordinate Transformation
Model for Driving Assistance Systems

Bing-Fei WU'®, Member, Chuan-Tsai LIN', Nonmember, and Yen-Lin CHEN'', Member

SUMMARY  This paper presents new approaches for the estimation of
range between the preceding vehicle and the experimental vehicle, estima-
tion of vehicle size and its projective size, and dynamic camera calibration.
First, our proposed approaches adopt a camera model to transform coordi-
nates from the ground plane onto the image plane to estimate the relative
position between the detected vehicle and the camera. Then, to estimate
the actual and projective size of the preceding vehicle, we propose a new
estimation method. This method can estimate the range from a preced-
ing vehicle to the camera based on contact points between its tires and the
ground and then estimate the actual size of the vehicle according to the po-
sitions of its vertexes in the image. Because the projective size of a vehicle
varies with respect to its distance to the camera, we also present a simple
and rapid method of estimating a vehicle’s projective height, which allows
a reduction in computational time for size estimation in real-time systems.
Errors caused by the application of different camera parameters are also
estimated and analyzed in this study. The estimation results are used to
determine suitable parameters during camera installation to suppress esti-
mation errors. Finally, to guarantee robustness of the detection system, a
new efficient approach to dynamic calibration is presented to obtain accu-
rate camera parameters, even when they are changed by camera vibration
owing to on-road driving. Experimental results demonstrate that our ap-
proaches can provide accurate and robust estimation results of range and
size of target vehicles.

key words: camera model, calibration, position estimation, driving assis-
tant, vehicle

1. Introduction

Accurate and real-time detection of vehicle position, speed
and traffic flows are important issues for driving assistance
systems and traffic surveillance systems [1]-[4]. During the
detection, errors often arise because of camera vibration and
constraints such as the limitations of image resolution, quan-
tization errors, and lens distortions [5], [6]. Therefore, accu-
rate error estimation is important in vehicle detection issues,
and image processing techniques for position estimation or
motion detection are necessary in many situations [7]-[10].
However, most of the previous studies have not involved
methods of reducing errors caused by changes of camera
parameters, while some important issues like error estima-
tion and the way to set appropriate camera parameters were
seldom considered. This may influence the determination
of camera parameters and the specifications of a detection
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system. Therefore, in this paper, we propose an effective
strategy to reduce errors of range estimation by determining
the most suitable camera parameters.

Previous studies often adopted laser, radar or computer
vision techniques in range estimation issues. For exam-
ple, Chen [11] presented a radar-based detector to find ob-
stacles in the forward collision warning system, where a
vision-based module was adopted to confirm that the de-
tected object is not an overhead structure and so avoid false
alarms of the warning system. Segawa et al. [12] developed
a preceding vehicle detection system for collision avoidance
by using a combination of stereo images and non-scanning
millimeter-wave radar. In Hautiere et al.’s method [13], a
depth map of the road environment is computed and ap-
plied for detecting the vertical objects on the road. Stereo-
vision based techniques can also be applied on range esti-
mation. By comparing the disparities of two images, obsta-
cles can be detected and their distance to the experimental
vehicle can also be estimated [13], [14]. However, the meth-
ods above need multiple cameras or at least one set of radar
to detect obstacles and estimate the range. If only one sin-
gle camera is required, the cost and the complexity of the
system will be significantly decreased. Nevertheless, the
estimation results of a single camera are often influenced
by external camera parameters and thus serious errors arise.
For example, an outdoor camera is often affected by the
wind or rain. Furthermore, camera parameters vary with
the pressure of tires, unbalanced load or bumpy roads when
the camera is mounted on a moving vehicle. Therefore, au-
tomatic calibration is necessary to deal with the above is-
sues. Studies of camera calibration usually adopted points
in the world coordinates or certain distinctive patterns [15]—
[17]. For instance, Wang and Tsai [15] proposed a camera
calibration approach using a planar hexagon pattern drawn
on the ground. However, this approach may only be suitable
for calibration of fixed cameras. Schoepflin and Dailey [16]
supposed the camera swing angle was zero and searched for
the vanishing point by extending lane markings in the image
to calibrate the tilt angle. Nevertheless, when the camera
swing angle is not zero, errors may arise. Liang, et al. [17]
calibrated the tilt angle of a moving camera with the coor-
dinate of the vanishing point. However, the assumption of
vehicles staying in the center of lanes may not be reason-
able under typical driving conditions and thus such methods
may cause more errors on roads with curves. Therefore, it
would be better if calibration targets are objects available on
the road and errors caused by incomplete assumptions were
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estimated. In fact, camera intrinsic parameters are usually
fixed while extrinsic parameters such as angles and heights
are variable. Intrinsic parameters can be obtained by analyz-
ing a sequence of images captured by cameras [18]-[21] To
solve the problem of changing extrinsic parameters, we pro-
pose an approach of automatic calibration to provide robust
range estimation for vision-based systems.

Object features, like sizes and shapes, are widely em-
ployed in the recognition of objects [22]-[27]. Yilmaz et
al. [22] adopted a method of contour-based object tracking
to detect pedestrians and to solve the problem of occlusion
between objects. Lin et al. [23] computed the number of
people in crowded scenes by detecting features of human
heads. Pang et al.[24] analyzed vehicle projections with
geometry and divided their occlusions in the images to pro-
vide essential information to the traffic surveillance systems.
Broggi et al. [25] utilized inverse perspective mapping to
transfer images of the front driving lanes into a bird’s view
of parallel lanes to detect and identify vehicles with a bound-
ing box. However, most of the above-mentioned approaches
may need the prior information about the projective size
and shape of the target object, and it may not be possible
to obtain this information accurately and rapidly in many
situations. Moreover, the loss of dimensional information
during the transformation from 3-D coordinates to 2-D im-
age coordinates often increases difficulties in estimating the
projective size and shape of the target object. To solve the
problem, we regard a vehicle as a cuboid and with the world
coordinates of the cuboid’s vertex on the ground, we can es-
timate the world coordinates of other vertices in the cuboid,
determine their projective positions and estimate the size of
the cuboid. Since vehicle sizes are within certain ranges,
cuboids on the drive lanes whose sizes fit general vehicle
sizes should be vehicles. So our method can be applied to
vehicle recognition.

In our previous studies [8], [28], [29], we searched for
objects with vehicle-like contours and sizes and then esti-
mated their ranges to the experimental vehicle. In this study,
we apply error estimation to determine proper camera pa-
rameters and then estimate actual and projective sizes of tar-
get objects to facilitate vehicle recognition. An approach to
rapidly compute projective sizes is also proposed to signifi-
cantly reduce computation cost of vehicle detection process
for real-time and embedded systems. Then, a dynamic cali-
bration approach is presented to calibrate the tilt and swing
angles of the camera with information of lane markings and
vehicles in the image. The experimental results demonstrate
that our work can provide accurate and robust range and size
estimation of target vehicles. The content is organized as
follows: Section 2 presents rapid size estimation and posi-
tion estimation of a cuboid on the ground. Section 3 ex-
plores range estimation and error estimation with various
camera parameters. Section 4 proposes a dynamic calibra-
tion approach to deal with the problem of camera vibration
and variation in camera angle. Section 5 displays experi-
mental results of range and height estimation, dynamic cal-
ibration of camera angles, and comparisons with other ap-
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proaches. Section 6 provides the conclusion.

2. Position and Size Estimation Using Projective Ge-
ometry

The position of any point in the 3-D world coordinates
(X,Y,Z) projected to a 2-D image plane (x,y) can be cal-
culated through perspective transformation [15]. Mapping a
3-D scene onto the 2-D image plane is a many-to-one trans-
formation. However, mapping a point on the front horizon
of the camera onto an image plane is a one-to-one transfor-
mation. Therefore, the relative position between the camera
and any point on the ground can be estimated by the coordi-
nate transformation between image plane and ground plane.

2.1 Coordinates Transformation Model

Figure 1 shows the coordinate transformation between im-
age plane and ground plane, where D denotes the origin of
the world coordinates (X, Y, Z), and O represents the origin
of the image coordinates (u, v). Let A be the focal length of
the camera; L denote the lens center;h represent the height.
As shown in Fig. 2 (a), there is a cuboid C associated with
a target object, whose lengths, widths and heights are L,
W), and Hj, respectively. Let P;(X,0,Z) be located on the
ground, then P, = (X,H;,Z), P3 = (X + W,,0,Z), and
Ps = (X,0,Z + L;), which is inferred from the size of C.
Other vertices can be estimated in the same way. Based
on the cuboid’s size and the position of its vertex, P, the
projective positions of other vertices in a cuboid can be es-
timated to accurately estimate the contour and size of the
cuboid’s projection.

Figure 2 (b), (c) presents the side view and top view
of the image formation. In the figure, tilt angle a de-
notes the angle between the Z-axis and the optical axis,
LE. P1(X,0,Z) projects onto i;(u,v) on the image plane,
and the transformation between the two coordinates can be
expressed as (1) and (2) by applying trigonometric function
properties and our previous study [6], where ||Z|| and || X]| re-
spectively denote the range and lateral position between P,
and the camera.

Z(v) = h.tan((g —a)—tan’l(ﬁ)) (1
X(u,v) = —% xh-tan((g —a/)—tanfl(%)) @)

Y

5 i U/ Lens center Optical axis
LNz "
h 56 PZ[ \ };
A
\D Ground a
Plane

Fig.1 Coordinate transformation between image plane and ground
plane.
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Fig.2  The projective geometry of a camera model. (a) A cuboid C. (b)
Side view. (c) Top view.

Let P, and P; respectively project onto i(u,, vo) and
is(u3,v3). The P;P; is the height of cuboid C, whose pro-
jective height is &, in (3). The distance between P; and P3
is the width of C ; its projective width is w;;3 in (4).

Based on (1)—(4), if P, of the cuboid can be found in
the image, then the position and size of the cuboid can be
estimated. Likewise, the relation between v, and H; can be
obtained by (3), as shown as (5). Further by applying (5),
we can have the height of the cuboid C as in (6).

hiiz =v =y, 3)

(g - a') —tan”! (%)], v (Z) = X

el (2 )t (2|

where v(Z) = A X tan

A
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2.2 Rapid Estimation of Projective Height

A cuboid’s projective size varies with its relative position
with the camera. From (3), we can estimate its projective
height. When applied to driving assistance, the rapid size
estimation of the front vehicle’s projection can provide help-
ful information for vehicle recognition and determination of
vehicle size.

2 h-tan(g—a)—Z

h+Z-tan(g—a/) 7

From (1), we can obtain the relation between Z and v as
shown in (7). In Fig.2 (b), there is an object whose height
is H,. Therefore, supposing that P(X,0,Z) projects onto
i1(u,v), we can re-write (3) to turn /;1,(v) into a linear equa-
tion shown in (8). Since the camera is mounted on an exper-
imental vehicle for object detection, when « is too large, the
farther part of the lane will not appear in the image. There-
fore, a is usually between 0-6 degrees. Also, the height of
the camera is restricted by the height of the vehicle roof, to
be lower than 1.5 meters. Furthermore, the range Z of the
preceding vehicle is usually over 10 m, and thus we can ob-
tain (9) and (10). Then, substitute (9) and (10) into (8) to get
(11). Also, by substituting (1) into (11), we obtain A;;>(v) as
shown in (12). Equation (13) means the first derivative for v
to hin(v). Let & = (/2 — @), and 7 = tan"' (v/1). (15), (16)
and (17) derive from (13) and (14). In this study, let & < 6°,
so & > 84°, to get (18) and (19). Then they are substituted
to (17) to obtain (20) and (21). (21) shows the first deriva-
tive of h;12(v) is a constant. Therefore, the relation between
the projective height of Py P,, h;»(v), and the projected v-
coordinate of P can be expressed by a linear equation as
(22).

hit2 (v)
. h- tan(g—a')—Z ) (h—H,) - tan(g—af)—Z
h+Z~tan(g—a/) (h—H1)+Z-tan(g—a)
(®)
h+Z-tan(g—a)EZ~tan(g—a) )
(h—H1)+Z-tan(g—a)zZ-tan(g—a) (10)
i ) = T an
iy () = x4 (12)

rwl(3e)-m )
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dcot(( T_ a ) —tan~! (K))
dhia V)  Hi x4 2 A
dv T h dv

13)

_ 1 +tan(§) X tan(7)
cot¢ -7 = tan (£) — tan (1) (14)

dhii, (v) _ Hy x4

dv h
v tan (£) v 1
(tan(f)—;)x ;) —(1+tan(§)xz)x(—z)
X .
(tan ) - Z)
(17)
tan (€) > E (18)
tan (¢) v 1
tan (&) X 3 > (P xtan(§)+§) (19)
tan (£)
dhap(v) _ Hyxa @n@)x =
= (20)
dv h (tan (£))*
dhjx (v) _ H,
dv  h @h
]’l,‘]z(V)E %XV+C| (22)

where C; is a constant.

From the sequential images, we get the actual projec-
tive height of P;P,. Let the projective height of PP, be
hi1o(v4) when Py projects onto v,, and the height be A;1,(vp)
when projecting onto v,. Then, by substituting the obtained
hi12(v,) and h;12(vp) into (22), Cy and H; can be obtained as
expressed in (23), (24).

h- [hia (va) = hira (vp)]

Hl - (Va - Vb) (23)

H
Ci = hip (v) - 7‘ X v (24)

By comparing (3) and (22), we can find that the pro-
posed approach of projective height estimation significantly
reduces the computation cost. Also, the comparison be-
tween (6) and (23) shows that the proposed approach re-
quires much less computation timing for estimating the ac-
tual height of the target object.
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3. Range and Error Estimation

Inaccurate camera parameters often cause estimation errors.
Even if the parameters are initially set accurately, they could
be changed by external forces, or by the use of mechanical
devices, causing the estimated value to be different from the
real value. The range estimation results are discussed below.

3.1 Digitalized Equation of Range Estimation

To estimate range with a single camera, the equation evolved
by the camera model should be digitalized first. Therefore,
an affine transformation from real image coordinates (u, v)
to bitmap image coordinates (M, N) can be obtained by (25).
Figure 3 displays the relationship between the M-N bitmap
image coordinates and the u-v real image coordinates, where
the left bottom images denotes the origin Q(0, 0).

M=—-d;' xu+M,/2,N=—d;' xv+N,/2, (25)

where d, and d, are respectively horizontal and vertical
physical distances between adjacent pixels, and the frame
size is M, by N, pixels.

The relation between N-coordinates and v-coordinates
is shown in (25). Substitute (25) into (1), we have the coor-
dinate transformation of Z and N as shown in (26), which is
the digitalized equation of range estimation.

Z =h-tan ((g - a/) —tan”! (—((N,,/Z) /_l N X dy)) (26)

The Range Estimation is analyzed as follows. This study
utilized a Hitachi KP-F3 camera with a physical pixel size of

N :
P50 R
Q(, 0) 4 "M
|4

Fig.3
nates.

Relation between M-N image coordinates and u-v image coordi-

(tan (¢) — tan (1)) X

d (1 +tan (¢) X tan (7))

d (tan (¢) —tan (1))

dhin v) _ Hi x4 dv

— (1 +tan (¢) x tan (1)) X

dv

dv h

(1 +tan (&) x =
dh’“(v)EHlelx(tan(f)—£)x (+a;lv x/l)

(tan (&) — tan (1))*

—(1+tan(§)x%)x

15)

d (tan ) - %)
—

dv h

i)

(16)
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Table 1  Relations between N and Z coordinates.
Z-coordinate (Meter)
Parameters
N=0 N=100 N=200 N=300 N=400 N=492

a=0° A=8mm 5.715 9.63 30.56 © 0 0

a=0° A=16mm 1143 19.25 61.11 © 0 0

a=2° A=8mm 491 7.61 16.76 © © 0

a=2° A=16mm 8.71 12.66 23.12 130.82 © ©

a=6° A=16mm 5.87 7.48 10.26 16.27 38.66 ©

0=8° A=16mm 5.03 6.19 8.01 11.29 18.94 49.35

The units of N and Z are the numbers of pixels and meters respectively.
Table 2  Error analysis of range estimation.
Error ratio
Parameters
7=10 7=20 7=30 7=40 7=50 7=60
0=0° A=8mm 0.36% 0.72% 1.08% 1.44% 1.82% 2.18%
0=0° A=16mm — 0.36% 0.54% 0.72% 0.90% 1.08%
0=2° A=8mm 0.36% 0.72% 1.08% 1.44% 1.82% 2.18%
0=2° A=16mm 0.18% 0.36% 0.54% 0.72% 0.90% 1.08%
* “—“ means beyond the field of view.

7.4(H)x7.4(V) um, that is d, = d, = 7.4 um, the number of
pixels is 644493, and h = 1.3 meters. In the analyses, with
different camera parameters, Table 1 shows the mapping re-
lation between the N-coordinate and the Z-coordinate based
on (26). N = 0is mapped to the smallest Z-coordinate in the
field of view. The table shows that the smaller Z-coordinate
can be included in the field of view when the focal length is
smaller or the tilt angle is larger. When a = 0°, the map-
ping of N > 246 is Z = co. Here co means that the Z-
coordinate approaches infinity. Therefore, with a larger «, a
smaller Z-coordinate is still in the field of view. The range
of the N-coordinate onto which the Z-coordinate is mapped
will be relatively larger. For example, the mapping range is
N = [0,246] when @ = 0°, and N = [0,492] when a = §°.
So a larger @ leads to a compact mapping, thus the estima-
tion errors can be accordingly reduced. However, if « is too
large, the mapping range of Z shrinks and distant objects are
out of the field of view. When @ = 8° and A = 16 mm, the Z-
coordinate will be [5.03, 49.35] meters in the camera’s field
of view. Hence, it should make the focal length smaller or
a < 8°, the range of estimation can be larger than 49.35 m.

3.2 Error Estimation

Factors influencing the accuracy of range estimation will be
discussed and their impact will be estimated in this section.

3.2.1 Quantization Errors

Image digitization may causes quantization errors, errors in
range estimation are particularly caused by spatial quan-
tization, and are within +1/2 pixels[30],[31]. The re-
sults of range estimation are dominated by the projective
v-coordinate of P;. Therefore, the largest quantization error
in mapping to the Z-coordinate can be estimated with the
condition that the errors of v are within +1/2 pixels. Based

on (26), when Y = 0, the range of Z should be between the
largest range Z; and the smallest range Zg as shown in (27),
(28) and e, the percentage of the largest quantization error
is displayed in (29).

Table 2 displays the largest quantization error in the
range Z = [10, 60] m with specific @ and A. As can be seen
from Table 1, the relation between quantization errors and
the N-coordinate can be derived from the relation between Z
and N-coordinate. In Table 2, the largest quantization error
grows with an increasing Z. The larger the focal length of
the camera is, the smaller the quantization errors become.
The tilt angle of the camera will not influence the largest
quantization error according to the analysis results shown in
Table 2.

Zr=h- tan((% —a/) —tan™! (((N"/z) —N-05)x dy))

A
(27)
Zs = h-tan ((% - a) —tan™! (((N”/z) _ A/,l+ 0.5) x dy ))
(28)
e, = max(|Z — Z;|,|1Z — Zs|) 29)

Zz

3.2.2 Influence of Changes in Translation

The analyses of translation can be divided into the direc-
tions of X, Y and Z. The origin of the world coordinates
is on the ground below the camera, so the Z-coordinate is
the range between the preceding vehicle and the camera.
Therefore, the subsection will analyze how the changes of
X and Y translation influence the range estimation on the
Z-coordinate.

X-translation: in (1), the projective position of P,
onto the v-coordinate determines the Z-coordinate. Fig-
ure 2 (b) shows that the changes of X-translation rarely af-
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Table 3  Error analysis of range estimation caused by change of tilt angles.
Error ratio
Parameters
Z=10 Z=20 Z=30 Z=40 Z=50 Z=60

o=0° o=1° 12.04% 21.25% 28.75% 34.93% 40.17% 44.5%

o=0° o, =2° 21.53% 35.10% 44.71% 51.85% 57.36% 61.73%

a=2° o =3° 12.04% 21.25% 28.75% 34.93% 40.17% 44.5%

0=2° o,=4° 21.53% 35.10% 44.71% 51.85% 57.36% 61.73%
fect the mapping position of P; onto the v-coordinate. So ~ )P
X-translation seldom influences the accuracy of range esti- < <

. ~ i 5]
mation. <
Y-translation: if the ground is flat, the Y-translation of 235@
every point on the ground is zero. When the ground isun- j___ G\
even or when the height of the camera is changed because A / PAX Y2
of vibrations, then the initially determined camera height & F\; /
may be influenced. Let & denote the initially determined E}g /
height, and A, denote the actual height. According to (26), \ /
the Z-coordinate mapping result can be obtained by (30). If ?;\7/
the original height / is adopted, then the error coming from : /
changes of height will be Z, in (31) and the error ratio is e, L, 4, 0)\ : A//D(O, 0,0
in (32). Accordingly, errors caused by the Y-translation can DS At #oeemoooaeeen
. . . . u «—=—— Image

be suppressed by increasing the camera height or making o plane

the changes of height smaller.
N,/2) - N)xd
Zpp = hy - tan ((g - a) —tan”! (—(( /2) ) V))

A
(30)
Zun = abs ((h — hy) - tan ((g - a/)
_tan_l (((Nn/z)_N)de))) (31)
A
e =Zan/Zyp = (h—hy) /h (32)

3.2.3 Influence of Changes in Camera Tilt Angles

If vibrations cause the tilt angle of the camera to change
from « to @, the result of mapping is computed by (33).
Therefore, if the original « is applied, the error ratio of range
estimation caused by changes of tilt angles is e, in (34).

Zo1 = h-tan ((g - a’]) —tan”! (—((N"/z) ; N) x d, ))
(33)

o = |Zal _Z|
Z

To estimate errors caused by tilt angle changes of the
camera during the range estimation, let 2 be 1.3 meters, and
focal length A be 8 mini-meters. The analysis of errors is
shown in Table 3. As depicted in Table 3, when both a = 0°
and @ = 2° have a variation of 1°, the obtained errors are
the same. So the initially set tilt angle does not influence the
errors of results. However, errors increase when changes
of tilt angle grow larger. The error ratio is about 40% at a
Z = 50meters at a change of 1° on the tilt angle, reveal-
ing that changes of angles significantly affect the results of

(34)

Fig.4  The relation between the Z-axis and the direction of movement of
vehicles, denoted by ?

Table 4  Variation ratio betweenP| and P3 on the Z-coordinate.
o Zy (m) Variation ratio
Z=30m Z=40m
1° 0.024 0.08% 0.006%
5° 0.122 0.41% 0.31%
10° 0.243 0.81% 0.61%

range estimation. With the same camera parameters but the
focal length being changed to 16 mm, the result will remain
unchanged, which demonstrates that the focal length is not
related to errors arising from changes of tilt angles. This is
because when the focal length varies, the estimated range
Z and Za; will still remain the same, representing that the
error ratio will still keep constant.

3.2.4 Influence of Changes in Camera Pan Angles

Figure 2 (c) shows the condition that the Z-axis parallels the

preceding direction of vehicles, denoted by?. However, the
condition may not be always valid. For example, in Fig. 4,

the pan angle between ? and the Z-axis is 6, the variation
between P and P3 on the Z-coordinate is Z;, as expressed
in (35) and the variation ratio is modeled by (36). When
the distance between Py and Ps is 1.4 m, the related value
of Z;), and the variation ratio are shown in Table 4. In Table
4, the influence turns smaller with a smaller pan angle or a
larger range. Even when 6 = 10° and the range is 30 m, the
variation ratio is still less than 1%, which shows that pan
angles have little influence on the range estimation.
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‘B Ground plane

Fig.5 Relation between the coordinates (u,v) and (u',V").

Table 5  Variations between (i, v) and («/,V").
(u v) (u” v’)
i p=1° p=2°
(100, 200) (98.24,101.73) (96.45,103.43)
(200, 200) (196.48, 203.46) (192.90, 206.86)
Zyp = Wi X cos@ (35)
Zap
e, = — 36
dp 7 ( )

3.2.5 Influence of Changes in Camera Swing Angles

The swing angle, i.e. the u-v image plane rotation angle, de-
notes the angle between the u-axis in the image coordinates
and the X-axis in the world coordinates. As shown in Fig. 5,
let Py project onto #; and let #; be (u, v) on the u—v plane and
(u’,v") on the u'—" plane. (u,v) and («’,V") are the coordi-
nates when ¢ # 0 and ¥ = 0, respectively. The transforma-
tion of the two coordinates can be computed by (37).

u cosy —siny u

[v’ ]_[Sil‘ll,b cos Hv] (37)
If ¥ # 0, from (1), we can obtain the results of range esti-
mation by using (38).

Table 5 shows that the variation between the two coor-
dinates grows with the increasing ¢, u and v. Even if ¢ is
very small, it still has a great influence when the coordinates
are far away from the image center.

Z(v) = h.tan(( g _Cl)—tan_l (—SinlﬁXu+c05¢xv))

A
(38)

4. Dynamic Calibration Method

Error estimation shows that the variation of camera swing
and tilt angles significantly affects the range estimation re-
sults. Therefore, an approach is proposed to reduce estima-
tion errors by automatically calibrating camera angles.
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Swing Angle
0]

Fig.6  Projection of a vehicle and lane markings in the image coordi-
nates.

The proposed approach can obtain the swing angle ¢
by finding a line that is parallel to the X-axis. In Fig.4,
when the direction of the camera is the same as the moving
direction of the preceding vehicle, the camera’s pan angle
to the vehicle can be reasonably supposed to be zero. Let
contact points between the ground and the two rear wheels
of the preceding vehicle be P; and P53 as shown in Fig. 2 (a).
The world coordinates of the two points have the same Z-
coordinate, so P|Ps is parallel to X-axis. In Fig. 6, let P,
and Pj respectively project onto #; (u,v) and i3(u3, v3). The
slope of i}i3 is the same as u’-axis. Then, the angle between
iyi3 and u-axis is the swing angle y. Therefore, ¢ can be
derived from i;(u, v) and i3(u3, v3) as computed by (39).

g = tan”" [(v = v3)/(u — u3)] (39)

The analyses in Table 4 show that when the swing an-
gle ¢ = 0, even if the camera pan angle 6 # 0, the Z-
coordinates of P; and P are still very close and the mapped
v-coordinates of the two points are almost the same. So the
influence of the pan angle can be neglected and the angle be-
tween i,i3 and the u-axis can be regarded as the swing angle
Y as shown in Fig. 6.

When the distance between a point on the ground to
the camera approaches infinity, its projective point onto the
image is named by a vanishing point. When two parallel
lines on the ground project to the image coordinates, they
tend to converge in a vanishing point. In Fig. 6, let the con-
vergent point of the extended driving markings L; and L,
be p,(u,,v,). Then, p, is a vanishing point. Suppose that
the associated world coordinate of p, be P,,,(X, 0, Z,) whose
range to the camera approaches infinity. Based on (38), we
can compute @ by (40). Equation (41) is derived according
to Z, — oo. Equation (42) is formed by substituting (41)
into (40). Therefore, we can obtain @ by substituting a van-
ishing point (u,, v,) into (42).

@ =n/2—tan"! [(=siny X u, + cosy X v,) /4]

—tan"' (Z,/h) (40)
Zlim tan~! (Z,/h) = n/2 41)
a=—tan"' ((- siny X u, + cosyy X v,) [/A) 42)



1732

5. Application and Experimental Results

The proposed approach can be applied to range and posi-
tion estimation for vision-based on-road vehicle detection
systems.

5.1 Performance Evaluation on Range Estimation

We conduct experiments to compare the differences between
the estimated and measured results concerning the range and
size of the experimental objects. The height of experimental
target is 1 meter; the parameters of the camera, Hitachi KP-
F3, were settobe @ = 0°, h = 1.3mand 1 = 10mm. An
image was taken at every meter at the range of 11-60 meters.

In Fig. 7, the horizontal axis denotes the range between
the experimental target and the camera, while the vertical
axis represents the contact points between the experimen-
tal target and the ground, P;, which projects onto the N-
coordinate. ‘Manual’ curve shows the result of manual mea-
surement and ‘Estimated’ is the result of range estimation
using (26). The two curves approximately match each other,
and these results demonstrate that the proposed range esti-
mation approach yields similar results to those of the actual
measurements.

In Fig. 8, the horizontal axis denotes the contact point,
Py, which projects onto the N-coordinate, while the verti-
cal axis indicates the projective height of the experimental
target. The figure reveals that the results of manual measure-
ment closely match those of the estimated ones by our pro-
posed method. Figure 9 also reveals that the manually mea-
sured results and those estimated by our proposed method
are quite close. The experimental target is estimated as
0.98 m by our approach to height estimation, which shows a
slight error of 0.02 m when compared with the actual height
I meter. Those results demonstrate that the proposed ap-
proach is efficient in the estimation of vehicle heights and
can be used to determine the vehicle sizes.

Figure 9 indicates that the dynamic calibration of an-
gles can improve the accuracy of estimations when the
camera angles change. In the experiments, 7 = 1.32m;
A =20mm; @ = 5° 60 = 0° ¢ = 4.8°. To capture im-
ages of a calibrated target, measurements were taken ev-
ery 5 meters within a distance of 15-50m. The proposed

250
2200
g /
5 150
éloo 7 —~—Manual ||
Z 50 —— Estimated | |
0
0 10 20 30 40 50 60 70
Range (m)

Fig.7 A comparison between the manual range measurement and the
estimated range.
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approach was then applied to estimate the camera’s swing
angle based on those images. The estimated average of ¢
was 4.71°, and the standard deviation was 0.256°. Com-
pared with the setting of iy = 4.8°, the estimation error was
about 0.09°. The estimated results and errors of Schoepflin
and Dailey’s [16] approach in the same case are compared
with ours as shown in Table 6, where Schoepflin and Dailey
suppose ¢ = 0°. However, the hypothesis of = 0° dif-
fers from the actual situation and thus leads to larger errors
in tilt angle estimation. In Fig.9, curve ‘A’ shows the dif-
ference between manual range measurement and estimated
range results using @ = 4.70° obtained by Schoepflin and
Dailey’s approach. The comparison in the ‘B’ curve uses
our approach whose computed o = 4.93°. The comparison
between curve ‘A’ and ‘B’ shows that errors of range esti-
mation are significantly suppressed using our approach.

5.2 Simulation Results of Height Estimation

Figure 10 depicts the analytical results of the height estima-
tion. We set the camera height 7 = 1.3m and the height
P, P, of the target object to be 1 m; as shown in Fig.2 (a).
Then, as shown in Fig. 10, the horizontal axis represents the
projective N-coordinate of Pand the vertical axis is the pro-
jective height of P; P,. Lines (A) and (B) show that if @ =
0°, the changes in focal length seem not to influence the rela-

140 ¢
120 —e—  Manual
2100 \ —— Estimated [:
g 80 ***********m\: *********
S 60
5 B 40
e
5 20 S
2 90 !
0 50 100 150 200 250
N-coordinate

Fig.8 A comparison between the manual height measurement and the
estimated height.
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Fig.9 A comparison of estimation results between Schoepflin’s ap-
proach and ours.

Table 6  Experimental results of camera angle estimation.
Approach estimated y, Estimate o,
crror €rror
Schoepflin and 0°, 4.8° 4.70°, 0.30°
Dailey [16]
Our approach 4.71°, 0.09° 4.93°,0.07°
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tionship between the projective N-coordinate of P; and the
projective height of P; P,. Conversely, Lines (C) and (D)
display that if @ # 0°, differences in focal length can change
their relationship. In Fig. 10, the projective height of P, P,
varies with the projective position of P; in the N-coordinate,
and their relationship can be approximated by the linear
equation, as in (22). In Fig. 10, the slopes of lines (A) and
(B) are the same, —0.769, while in line (C), it is —0.767,
and line (D) —0.768. From the proposed approach of fast
height estimation in (22), the slope H;/h, can be estimated
to be —0.769, which shows that our fast computation model
can provide quite accurate estimation results. The computa-
tion using (3) requires 2 tan operations, 2 tan™! operations,
3 division, 2 multiplications, and 5 deductions, however, our
approach needs only 1 multiplication and 1 addition, which
obviously promotes executive efficiency.

5.3 Dynamic Calibration of the Swing Angle

The camera mounted on the experimental vehicle is slightly
adjusted to an incline of ¢ = 4° based on the manual estima-
tion. In the experiments, with the experimental vehicle driv-
ing on the road, 500 frames were taken to detect the nearest
vehicle in the front driving lane and the contact points be-
tween its two rear wheels and the ground. The mean and
variance of ¢ were estimated to be 3.859° and 0.99°, re-
spectively.

In this study, we analyze errors caused by image digi-
talization, algorithmic limitations, lens distortion, the vibra-
tion of the experimental vehicle, and the uneven surfaces
of the roads. The mean and variance obtained by a track-
ing process with a Kalman filter were 3.861° and 0.58° re-
spectively. In Fig. 11, the curve “Original” is the value of
the swing angle derived by the original algorithm without
the tracking process. The curve “Kalman” displays the re-
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Fig.10  Estimation of a cuboid’s projective height.
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sults of utilizing a Kalman filter to improve the robustness
of the estimation results. The experiments confirm that the
proposed dynamic calibration approach can efficiently and
accurately estimate the camera parameters.

5.4 Comparative Performance Evaluation

The proposed approach was compared with the well-known
methods shown in Table 7 [15],[17]. Wang and Tsai[15]
utilized a hexagon as the calibration target. However, the
hexagon is not available under the moving camera, and
needs to be pre-determined in the field of view. Conversely,
calibration targets applied in other approaches are objects
appearing in general traffic scenes, so require no additional
effort on manual setting of the calibration target. The cam-
era angle calibration in the range estimation depends only
on the tilt @ and the swing angle ¥, so only the access to
these two angles were compared. Liang et al. [17] assumed
that the vanishing point would be in the center of the image,
and accordingly estimated an approximate tilt @. Liang et
al.’s hypothesis is valid only in the conditions that the loca-
tion of the camera is in the middle of the driving lane and the
lane markings are straight lines. However, even when vehi-
cles are driving on an ideal straight lane, it is still not easy to
keep them stably in the center of lanes. Figure 12 (a) and (b)
are two cases of comparisons between Liang et al.’s and our
approach to estimate the tilt angle. Liang et al. [17] proposed
extending the lane markings to search for the vanishing line
V,(u,, v,) and estimating a by V,,. In Fig. 12, the convergent
point of the u-axis and v-axis is O;, the center of the image.
L, and L, respectively represent the extensions of the right
and left lane markings, and their convergent point is a van-
ishing point, V,;. Liang et al.’s approach estimated tilt angle
by V,i. Py and P; are the right and left contact points be-
tween the preceding vehicle and the ground. The two points
are applied to (39) to acquire the swing angle by our meth-
ods. The estimated @ and estimated errors of camera an-
gles are shown in Table 8, where case 1 and case 2 present
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Fig.11  Dynamic calibration of the swing angle.

Table 7  Comparison of approaches.
Approach Calibration Target Calibration angle Occasion
Wang and Tsai [15] Hexagon v, o Fixed camera
Liang et al. [17] Lane marking Approximation of a Moving camera
Our approach Lane marking, Vehicle v, a Moving camera
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Table 8 A comparison in estimation results of camera angle and errors.
Approach Case 1, ¥=6°; 0=3.5°. Case 2, y=0°, a=2.5°
o error o error
Liang et al. [17] 0.52° 2.98° 2.81° 0.31°
Our approach 3.51° 0.01° 2.29° 0.21°

(b)

Fig.12  The swing angle calculated by Liang et al’s and our approaches.
(a) Straight lane markings. (b) The curve of lane markings.

the situation of Fig. 12 (a) and Fig. 12 (b) respectively. The
camera setting in Fig. 12 (a) is ¢ = 6° and @ = 3.5°, and
in Fig. 12(b) is ¢ = 0°, @ = 2.5°. As shown in Table 8,
the estimated results of tilt angle by Liang et al.’s approach
may have larger errors in these cases. That is because the
camera is not at the center of the lane, the swing angle is not
correctly estimated, and the lane markings are not straight.
Comparatively, in our method, the swing angle can be cor-
rectly obtained by (39) and then the tilt angle can also be
appropriately estimated by (42). Therefore, in these cases,
our approach can obtain more accurate results without the
limitations due to some pre-determined conditions. Among
the three approaches in Table 7, only Liang et al.’s and our
approach use calibration targets on the road to achieve dy-
namic calibration, when the moving camera causes continu-
ously variations of tilt angle a.

6. Conclusions

In this study, we have presented several approaches for the
estimation of the range between the preceding vehicle and
the camera, range errors, the actual height of vehicles and
the projective height of the detected vehicles in various po-
sitions. The results of error estimation can be adopted as a

reference to determine the preset camera parameters, sup-
press estimation errors and facilitate rapid and accurate es-
timation of vehicle sizes.

According to the error analyses, the variations of cam-
era tilt and swing angles lead to significant errors in range
estimation results. A dynamic calibration approach has been
proposed to effectively reduce errors of range estimation. A
Kalman filter is also integrated in order to more stably esti-
mate swing angles so that the estimation results can be suffi-
ciently robust and estimation errors can be further reduced.
Experimental results demonstrate that our approaches can
provide accurate and robust estimations of range and size of
target vehicles. The proposed approaches can serve as ref-
erence for designers of vision-based driving assistance sys-
tems to improve the efficiency of vehicle detection and range
estimation.
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