
 i

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

基於基因演算法應用於異質性網路單晶片

之任務排程方法

GA-Based Task Scheduling for

Heterogeneous Network-on-Chip

研 究 生：謝 萬 熹

指導教授：周 景 揚 博士

中 華 民 國 九 十 四 年 六 月

 ii

基於基因演算法應用於異質性網路單晶片之任務排程方法

GA-Based Task Scheduling for Heterogeneous Network-on-Chip

研 究 生：謝萬熹 Student：Wan-Hsi Hsieh

指導教授：周景揚 博士 Advisor：Dr. Jing-Yang Jou

國 立 交 通 大 學
電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE
in

Electronics Engineering

June 2005
Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 四 年 六 月

 i

基於基因演算法應用於
異質性網路單晶片之任務排程方法

研究生：謝 萬 熹 指導教授：周 景 揚 博士

國 立 交 通 大 學

電 子 工 程 學 系 電 子 研 究 所 碩 士 班

摘 要

 網路單晶片是為了應付未來極為複雜的系統單晶片的通訊需求所提出的一種新

的設計方式，在這篇論文中，我們提出一個基於基因演算法的任務排程方法把應用排

程至一個使用異質性網路單晶片，這個任務排程方法試著去為每一個任務找到最適合

的處理器，使得系統的資料處理率提升至最大。在基因演算法中，我們考慮到應用中

的特性，而提出了一個新的交配運算元，藉此提升基因演算法的效能，實驗結果顯示

了我們所提出的交配運算元的效能較傳統的還要好上平均 10%，而在基因演算法的運

算時間方面也較使用傳統交配運算元還要快。

 ii

GA-Based Task Scheduling for
Heterogeneous Network-on-Chip

Student : Wan-Hsi Hsieh Advisor : Dr. Jing-Yang Jou

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract

Network-on-Chip is a new design paradigm to meet the communication requirement

of future billion-transistor System-on-Chip. In this thesis, we propose a genetic algorithm

(GA) based task scheduling technique to schedule the applications to the heterogeneous

Network-on-Chip. The task scheduling process attempts to arrange the allocation of

processor for each task such that the system throughput is maximized. As well, a new

mating operator of GA is also proposed to improve the performance of traditional GA by

considering the characteristics of application. The experimental results show that proposed

mating operator not only outperforms traditional ones by 10% averagely, but also requires

less computation time.

 iii

Acknowledgment

I would like to express my sincere gratitude to my advisor Professor Jing-Yanf Jou for

his suggestion and guidance throughout the years. I am also indebted to Liang-Yu Lin and

Cheng-Yeh Wang for their great help of my thesis. Special thanks to EDA lab members for

their company and friendship. Finally, I would like to show my appreciation to my family

and Man-Yun Su for their love and encouragement.

 iv

Contents
摘 要 .. i

Abstract.. ii

Acknowledgment..iii

Contents .. iv

List of Figures... vi

List of Tables ..viii

Chapter 1 Introduction... 1

1.1 The challenges of on-chip communication.. 1

1.2 The concept of Network-on-Chip.. 2

1.3 The focus of our work ... 4

1.4 Thesis organization.. 4

Chapter 2 Preliminary.. 5

2.1 Related works .. 5

2.2 Our design flow ... 8

2.3 Our NoC platform.. 9

2.3.1 Task graph.. 11

2.3.2 Performance evaluation ... 13

Chapter 3 Task Scheduling .. 14

3.1 Assumption.. 14

 v

3.2 Problem formulation.. 17

3.3 Genetic algorithms... 18

3.4 GA-based task scheduling flow... 20

3.5 Initial population ... 21

3.6 Evolution ... 23

3.6.1 Selection .. 24

3.6.2 Mating.. 24

3.6.3 Mutation .. 30

3.6.4 Simulation.. 31

3.6.5 Insertion... 35

3.7 Termination.. 36

Chapter 4 Experimental Results .. 37

4.1 Experimental flow ... 37

4.2 Analysis of performance of GAs ... 39

Chapter 5 Conclusions and Future Work... 43

5.1 Conclusions ... 43

5.2 Future works .. 44

Reference ... 45

Vita... 48

 vi

List of Figures
Figure 1 : An NoC with 16 resources [9]... 3

Figure 2 : Layerd-micronetwork design methodology.. 6

Figure 3 : Design flow... 9

Figure 4 : NoC platform .. 9

Figure 5 : Processing element model... 11

Figure 6 : Task graph of H.263 decoder[15].. 12

Figure 7 : Processing element database... 13

Figure 8 : Task graph example... 15

Figure 9 : Task scheduling flow... 20

Figure 10 : Task graph example... 22

Figure 11 : Generate an initial solution ... 22

Figure 12 : The evolution flow .. 23

Figure 13 : Roulette wheel method ... 24

Figure 14 : Traditional chromosome representation.. 25

Figure 15 : Traditional mating schemes .. 25

Figure 16 : Our chromosome representation ... 26

Figure 17 : Sub-graph crossover.. 27

Figure 18 : Shape of sub graph.. 28

Figure 19 : Rotate and reflect SB ... 28

 vii

Figure 20 : Shift SB8 close to SA .. 29

Figure 21 : Communication overhead of SB8 .. 29

Figure 22 : Mutation example ... 30

Figure 23 : Simulation flow... 31

Figure 24 : Buffer length assignment .. 32

Figure 25 : Discrete event simulation example ... 34

Figure 26 : Calculate throughput ... 35

Figure 27 : Insertion .. 36

Figure 28 : Experimental flow... 37

Figure 29 : TGFF output file ... 38

Figure 30 : Resource location.. 40

Figure 31 : The improvement of 4 mating schemes .. 41

Figure 32 : Saturation time of 4 mating schemes .. 42

 viii

List of Tables
Table 1 : The steps of discrete event-driven simulation .. 33

Table 2 : The parameters of GAs... 39

 1

Chapter 1

Introduction

1.1 The challenges of on-chip communication

With the advance of technology scaling, System on Chip (SoC) designers may

integrate hundreds of cores (processor, DSP, FPGA, etc.) into a single chip at the end of

this decade. Current SoC designs use shared-bus architecture to connect the cores.

However, this may suffer many issues in the future on-chip communication. First, since the

wire delays do not scale down as good as gate delays. The global wire delay will no longer

within a clock period. It is estimated that in 50nm technology, at a clock frequency of 10

GHz, a global wire delay will be 6 to 10 clock cycles. Therefore, synchronization of cores

will be unfeasible [1][2][3]. Secondly, the operating frequency degrades with the

increasing of number of cores attached to the bus, due to the growing of capacitive loading

 2

in its wires [4][5]. Thirdly, since the cores share the same bandwidth. System performance

does not scale when integrating more cores to the system, but degrade the system

performance [1][3][5]. Finally, the time to market needs to be kept as low as possible, so

that reusability becomes an important issue. New bus architecture may use multiple

on-chip busses which require case-specific grouping of IPs and the design of transversal

bridges to provide high bandwidth, and shared-bus architecture also need an arbiter to

decide which master to access the bus [3][5]. But these case-specific schemes and

instance-specific designs may decrease the reusability. As a result, there should be a better

design methodology to overcome these issues.

1.2 The concept of Network-on-Chip

By borrowing the experience of computer network and parallel computing, a new

design methodology called Network-on-Chip (NoC) has been proposed to solve the

on-chip communication problems [2]. Network-on-Chip as its name implies is to view the

system as a network of cores. In many cases, on-chip network can be designed in regular

structures, so that the electrical properties of global wire are optimized and well controlled.

It's helpful to enable the use of aggressive signaling circuits to reduce power dissipation

[4][7]. As well, the cores communicate with each other through the network. Obviously,

the NoC not only achieves the concept of Global Asynchronous Locally Synchronous

(GALS) paradigm easily but also alleviate the wire delay problem and other deep

sub-micro (DSM) problems. The NoC concept enables designers to design/reuse each core

in one synchronous clock domain, and make the communication between cores to use

message passing method through the network. Therefore, components communicate with

 3

each other asynchronously [2][5].

NoC provide better performance scalability than share-bus architecture. First, through

a Peer-two-Peer communication, it can provide high bandwidth and reduce power

consumption effectively. Second, by managing the network channel properly, multiple

communications originated by multiple cores can be handled at the same time.

Many proposed network platforms use the regular fashion. For example, as shown in

Figure 1 is a network platform with a 2D-mesh topology. Each switch is connected to its

neighboring switches and a processing element.

Figure 1 : An NoC with 16 resources [9]

In such a design fashion, designers can design and verify the processing elements

independently which is helpful to facilitate building a system. Moreover, designer can

further build the network platform in advance and integrate with many applications [9].

 4

Therefore, we can easily amortize the development cost of network platform across many

applications, and reduce time to market pressure by reusing the NoC platform.

1.3 The focus of our work

An application can be modeled as a large number of communicating tasks. Different

tasks may have different characteristics such as control or datapath. The situation implies a

heterogeneous implementation including different kind of resources for different tasks tend

to achieve the effective solution. Given a network platform with heterogeneous computing

resources, the task scheduling problem is to decide each task being implemented with what

kind of resource and which resource such that system performance is tend to be optimized.

On the other hand, due to the lack of on-chip memory, we propose a task scheduling

algorithm to solve this problem which optimize the system performance under memory

constraints.

1.4 Thesis organization

The rest in this thesis is organized as follows. Chapter 2 introduces related work and

our design flow. Chapter 3 presents the task scheduling method using genetic algorithms.

The experimental result are given and discussed in Chapter 4. Finally, the conclusions and

future work are described in Chapter 5.

 5

Chapter 2

Preliminary

2.1 Related works

There are many researches in the NoC domain. By borrowing the models, techniques

and tools from network and applying them to SoC design, the authors of [2] proposes a

layerd-micronetwork design methodology to address future SoC designs as shown in

Figure 2. In this vertical design flow, every layer is specialized and optimized for target

application domain. In [7], on-chip interconnection network is used to substitute for ad-hoc

global wiring structure. The structured network wiring gives well-controlled electrical

parameters that eliminate timing iterations and enable the use of high-performance circuits

to reduce latency and increase bandwidth.

 6

Figure 2 : Layerd-micronetwork design methodology

Recently, several NoC platforms and architectures have been proposed in

[9][5][10][3]. [9] proposes a packet switched NoC platform, which includes both

architecture and design methodology. The architecture is an m × n mesh of switches where

the computing resources like processor core, memory, FPGA, a custom hardware or any

other Intellectual Property (IP) block are connected to it. This work includes the decision

of NoC architecture and the process of mapping the application onto the architecture. The

Scalable Programmable Integrated Network (SPIN) is a regular, fat-tree-based network

architecture [5], which uses a wormhole routing to reduce the storage requirement of

network switch, and the latency of messages. A circuit switched two-dimensional mesh

network called SoCBUS is proposed in [10]. [10] introduces the concept of packet

connected circuit (PCC), where a packet is switched through the network locking the

circuit as it goes. PCC is similar to circuit switching which has the advantages of

bandwidth guarantee and deadlock-free.

 7

Some of the synthesis techniques are proposed in [3][11][12][13]. [3] presents the

Xpipes which consists of a library of soft macros (switches, network interfaces and links)

so that domain-specific heterogeneous architectures can be instantiated and synthesized.

Xpipes provides a tool called XpipeCompiler, which can automatically instantiates a

customized NoC from the library form soft network components. Precisely, the designer

uses the library from Xpipes to describe the network architecture. The information on the

network architecture is then specified in an input file for the XpipeComplier. The tool

generates a SystemC hierarchical description of whole system. Then the description can be

compiled and simulated at the cycle-accurate and signal-accurate level. [11] presents an

algorithm which automatically maps the IP/cores onto a generic regular NoC architecture.

This work develops an algorithm to solve the mapping problem based on branch and bound

technique to minimize communication energy consumption under performance constraints.

[12] presents a NMAP algorithm that maps the cores onto NOC architecture under

bandwidth constraints. The NMAP can be applied on both single-path routing and

split-traffic routing. In [13], the author uses a simple packet switching communication

model to estimate the communication time and propose a two-step genetic algorithm to

map a parameterized task graph onto the 2D-mesh NoC architecture, which minimizes the

overall execution time of the task graph.

 8

2.2 Our design flow

Figure 3 depicts our design flow. Our methodology has two input information. First,

an application can be partitioned into communicating tasks. And the characteristics of tasks

and their dependency is model as a task graph. Second, the NoC platform contains network

architecture and heterogeneous computing resources (the task graph and NoC platform will

be later explicitly explained in 2.2.1 and 2.2.2). The task scheduling process decides which

task should map onto which resource. The process not only tries to reduce the

communication time by mapping the interacting tasks into the same resource (make it an

intra-resource communication) under memory constraints but also tries to map tasks onto

the most appropriate resources to improve the computation time of each task. Next, the

routing process [14] assigns a dedicated connect path for each communication between

tasks. After the routing process, we can conduct a system performance analysis. If the

results do not meet our requirement, we will iteratively refine our application or NoC

platform and perform task scheduling and routing until the results satisfy our requirement.

 9

Application

Task Scheduling

Performance
Analysis

Good ?

NoC Platform

Refinement Refinement

no no
yes

Routing

Finish

Task Graph

Application

Task Scheduling

Performance
Analysis

Good ?

NoC Platform

Refinement Refinement

no no
yes

Routing

Finish

Task Graph

Figure 3 : Design flow

2.3 Our NoC platform

Our NoC platform is shown in Figure 4. It contains a network architecture constructed

by switches, and each switch connects to a corresponding processing element.

switch switch switch

switch switch switch

switch switch switch

PE PE PE

PEPEPE

PE PE PE

switch switch switch

switch switch switch

switch switch switch

PE PE PE

PEPEPE

PE PE PE

Figure 4 : NoC platform

 10

The processing elements communicate to each other by passing messages through the

switches of the network. Our network and switch have the following five features:

(1) circuit switching,

(2) dedicated connection path,

(3) virtual channel flow control,

(4) weighted round-robin scheduling, and

(5) pipeline bus.

Feature (1) and (2) provide the bandwidth guarantee and small memory usage of network

switches. Feature (3) and (4) prevent deadlock and improve the utilization of network.

Finally, feature (5) improves the performance of network. The details of the switch and the

network architecture are explicitly described in [14].

Our NoC platform contains two types of processing elements: processor and FPGA.

This makes our NoC platform a fully programmable platform. The FPGA is a dedicated

hardware that can be reconfigured at run time. With a fully programmable platform, we can

reduce the development cost by reusing our platform for many different applications

(different applications with different configurations) without any architectural

modification.

The processor is a highly flexible processing element. It is good at executing tasks

with the characteristics of controls. But in most cases, processors cannot provide better

performance than a dedicated hardware in executing tasks with the characteristics of

datapath. On the contrary, dedicated hardwares cannot be as flexible as processors.

Therefore, our platform contains another type of processing element FPGA to overcome

 11

this issue. A FPGA works like a dedicated hardware but it has the advantage of being

reconfigured at run time. Consequently, our platform is capable of executing various tasks

efficiently.

Figure 5 shows the architectural model of our processing element. Each processing

element contains a network interface to communicate with the local switch. The buffer is a

temporary memory which stores the input data from other processing elements and output

data to other processing elements. As mentioned before, our platform consists of two

different types of processing elements. The FPGA contains a FPGA core. The processor

contains a processor core and local memory which stores the program and intermediate

data when executing a task.

Buffer

NI

FPGABuffer

NI

FPGA Buffer

NI
Processor

Memory

Buffer

NI
Processor

Memory

Figure 5 : Processing element model

2.3.1 Task graph

Applications are able to be partitioned into many communication tasks due to the

parallelism. Figure 6 shows a task graph of a H.263 decoder [15]. A vertex represents a

task and its functionality is shown in the vertex, too. For example, task C is IDCT which

performs an inverse discrete cosine transformation of a frame produced by task B. The

edge represents a data transmission and the communication amount. For example, after

 12

task B being completed, it transmits c2 unit data to task C. An edge also indicates the data

dependency. A task cannot be executed until it receives the data from its predecessor. For

example, task G cannot be executed until it receives c5 unit data from task D and c6 unit

data from task E.

B
IQ

C
IDCT

E
R P-f

D
R I-f

c1

A
VLD

G
out

c2

c4c3

c5 c6

B
IQ

C
IDCT

E
R P-f

D
R I-f

c1

A
VLD

G
out

c2

c4c3

c5 c6

Figure 6 : Task graph of H.263 decoder[15]

In addition to the task graph, there is a processing element database to specify the

details of tasks when executing on the specific processing elements. As shown in Figure 7,

a processing element database first describe the executing time of the task and the memory

usage (program and intermediate data) when executing on a processor. If the task is

executing on a FPGA, it shows the execution time and the capacity usage (logics) of the

task. And ∞ represent that it cannot be executed on that processing element.

 13

∞ , ∞

6 , 8

6 , 8

10 , 10

3 , 4

4 , 6

FPGA (e, c)

10 , 10

12 , 10

12 , 10

15 , 12

5 , 8

10 , 4

Processor (e, m)

VLD

IDCT

out

R P-f

R I-f

IQ

task

e : executing time
m : memory usage
c : capacity usage∞ , ∞

6 , 8

6 , 8

10 , 10

3 , 4

4 , 6

FPGA (e, c)

10 , 10

12 , 10

12 , 10

15 , 12

5 , 8

10 , 4

Processor (e, m)

VLD

IDCT

out

R P-f

R I-f

IQ

task

e : executing time
m : memory usage
c : capacity usage

Figure 7 : Processing element database

2.3.2 Performance evaluation

Since the application is not being executed only once but consecutively, we take

throughput as the system performance metric, instead of the overall execution time of the

application. Take the video compressing as an example. We may compress the entire movie

to a more compact form, e.g. Mpeg4. A movie may contain thousands of frames. Therefore,

when we are evaluating the system performance of the ability of video compressing, we

may take frame per second as the rating of system performance but not second per frame.

As a result, we take throughput as the metric of the system performance. More precisely,

our system performance evaluation is to calculate how many times the application (task

graph) can be executed in a fixed time period.

 14

Chapter 3

Task Scheduling

3.1 Assumption

Before we formulate our problem, it is necessary to define the constraints and make

some assumptions.

A task can be implemented by software (program) or hardware (logics). Since the

local memory of processor and total capacity of FPGA is limited, a processor cannot store

infinite tasks and an FPGA cannot implement infinite tasks. Therefore, there are two

constraints should be considered. The first, memory constraint of processor means that the

size of the programs and intermediate data of the tasks which are stored in a processor

cannot exceed the memory size of processor. The second, capacity constraint of FPGA is

similar to the memory constraint. The total logics of the tasks which are implemented in a

 15

FPGA cannot exceed maximum capacity of FPGA.

There should be some buffer for executing a task. For example, as shown in Figure 8,

task A will be executed until it receives 4 units data from task B and 2 units data from task

C. Task A needs 6 unit buffer for storing these input data temporarily. Thus the minimum

requirement of input buffer in task A is 6 units. Similarly, when task A is executing, the

generated output data need to be stored in output buffer. So the minimum requirement of

output buffer here is 3 units. Finally, the minimum buffer requirement is 9 (6 + 3) units.

D

CB

A
4 2

3

D

CB

A
4 2

3

Figure 8 : Task graph example

However, it is not efficient if our buffer is only the sum of input data and output data

for two reasons. First, if task A is executing, there are 4 units data from task B and 2 units

data from task C in input buffer, and output buffer should prepare 3 units for task A, which

means that the buffer is full. Consequently, neither task B nor task C can transmit data to

task A until task A finish executing. This prevents task A from being executed continuously.

Second, if task A is ready to execute, and the output buffer is full (task D does not receive

data or finish receiving data from task A), task A may idle until the output buffer is clear

(task D has received data from task A). As the result, the system performance may be

 16

degraded if the buffer size is only the minimum buffer requirement. Obviously, if we set

our minimum buffer requirement equals to 18 units (twice of the minimum buffer

requirement). The buffer works like pingpong buffer. Then, the task can receive data or

transmit data no matter when the task is executing or not. It greatly improves the system

performance. Hence, the reasonable buffer requirement is set to twice of the sum of input

data and output data.

As mentioned before, the sum of the reasonable buffer requirement of the tasks, which

are implemented with the same PE, cannot exceed the maximum capacity of buffer of PE.

If more than two tasks that are implemented on the same FPGA, it is unnecessary to

decide execution order of these tasks. Since the tasks are implemented in different parts of

FPGA, none of them share the same component of FPGA.

If more than two tasks that are implemented on the same processor, we make the

decisions of the execution order of these tasks dynamically. Due to the dynamic behavior

of communication in on-chip network, it is not suitable to decide the execution order of the

tasks in design time. In addition, the application is represented as a task graph (dataflow

graph) that a task is never being executed until its input data arrive.

According to these two reasons, it is suitable to use a dynamic First In First Serve

(FIFS) strategy to decide the execution order of tasks. It is not only flexible to overcome

the uncertainty of network, but also considering about the data availability of tasks to raise

the utilization of processor [15].

 17

A FIFS strategy is implemented as a queue. If all the input data are available and

output buffer size is enough, we push this task into the queue. The processor executes the

tasks sequentially in order. The FIFS strategy can be further improved by either

considering the data dependency or replacing it by other algorithms.

3.2 Problem formulation

The task scheduling problem can be formulated as :

Given :

(1) A task graph G(V, E) and the corresponding processing element database.

(2) An NoC platform which has the following characteristics:

(a) mesh size,

(b) local memory size of processor,

(c) total capacity size of FPGA,

(d) buffer size of processing element,

(e) communication bandwidth of each channel,

with :

(1) memory and capacity constraints, and

(2) buffer constraint.

Determine :

The allocation of each task such that system throughput is maximized.

 18

3.3 Genetic algorithms

Basically, task scheduling is simply to allocate a set of tasks to resources such that the

performance is optimal. However, it is known as NP-complete. Thus, task scheduling

problem is often handled by heuristic algorithms [8][11][13][14][17].

Nevertheless, there are several important facets that influence the system performance.

First, since the NoC platform contains heterogeneous computing resources, for example, a

task may be suited to be executed on processor rather than on FPGA. Therefore, the

execution time of a task depends on what resource that it uses. Second, the communication

time between tasks highly depends on the communication distance of the resources. The

communication time can be greatly improved by mapping the communicating tasks onto

the same resources. However, this may violate the constraints as mentioned before.

Moreover, suitability of tasks and resources are not considered. As the result, the task

scheduling problem involves the trade-off among the execution time, communication time

and constraints.

Typically, genetic algorithms (GAs) provide good performance at finding

near-optimal solutions in a large search space. Also, unlike many traditional optimization

techniques, genetic algorithms do not require the knowledge of the search-space, but need

only a measure of the solution [13][18][19]. Consequently, genetic algorithms are quite

suitable for the task scheduling problem.

Genetic algorithms are search algorithms based on the mechanics of natural selection

 19

and natural genetics. GAs are differ from other traditional optimization methods in four

fundamental ways [18] :

(1) GAs work with a coding of the parameter set, not the parameter themselves.

(2) GAs search from a population of points, not a single point.

(3) GAs use payoff (objective function) information, not derivatives or other

auxiliary knowledge.

(4) GAs use probabilistic transition rules, not deterministic rules.

The first step to employ GAs is to encode the possible solutions of the optimization

problem as a set of chromosomes (the encoding scheme may differ form problem to

problem, however the simplest way is to encode it into a string). Each chromosome

represents a solution to the problem. And a set of solutions is referred to as a population.

The next step is to generate an initial population. The chromosomes in the initial

population are often generated randomly or heuristically. The initial population is also

called the first generation of the evolution. Then, it is necessary to evaluate the fitness of

the chromosomes, where the fitness value represents how good (fit) the chromosome is to

the problem (environment).

Next, the GAs perform evolution process to optimize the population generation by

generation using genetic operators: selection, mating, and mutation. During the evolution

process, the GAs select chromosomes from current generation according to their fitness

value, where the higher fitness the chromosome has, the higher probability it will be

selected. By performing mating and mutation to the selected chromosomes, the next

generation is generated by means of exploring the search-space. At last, the chromosomes

 20

in the next generation are evaluated to obtain its fitness value, and then add the next

generation to the current generation. Some bad chromosomes in the population may be

discarded to keep a fixed-size population.

Finally, the GAs continue evolution process until the termination condition has bean

met. When the GAs terminates, the best chromosome is the final result to the problem.

3.4 GA-based task scheduling flow

The GA-based task scheduling flow is illustrated in Figure 9. First, we generate an

initial population. Next, the evolution process tries to explore the search space until it

reaches the termination condition. Finally, the best chromosome in the population is our

solution.

Saturation ?Saturation ?

EvolutionEvolution

FinishFinish

Initial PopulationInitial Population

no

yes

Saturation ?Saturation ?

EvolutionEvolution

FinishFinish

Initial PopulationInitial Population

no

yes

Figure 9 : Task scheduling flow

 21

3.5 Initial population

For initial population, each chromosome is generated using a meta-random scheme

which is divided into two steps:

(1) The tasks in the task graph are sorted in topological order.

(2) The tasks are mapped onto the NoC platform sequentially in this order.

During step 2, we must consider 3 conditions:

(a) If the task has no precedence, the task is mapped randomly.

(b) If the task has only one precedence, the task is mapped according to the

allocation of its precedence.

(c) If the task has two or more than two precedence, the task is mapped according to

not only the allocation of its precedence but also the communication amount

between the task and its precedence.

Take the task graph in Figure 10 as an example. First, we perform topological sort on

the task graph, and the topological order is given by A, B, C, D. Next, task A is randomly

mapped to the NoC platform. Then, task B and task C are mapped according to the

allocation of task A. As shown as Figure 11, task B and task C have higher probability to

be mapped onto the allocations that close to task A. Finally, task D is mapped according to

the allocations of task B and task C. Obviously, edge B→D and edge C→D has different

communication amount. Therefore, the probability should be higher for the allocations that

near to task B than those near to task C. Figure 11 shows how to calculate the probability

of each allocation that task D are mapped.

 22

D

CB

A

2 1

2 3

D

CB

A

2 1

2 3

Figure 10 : Task graph example

A11% 11%

11%

11% 11%

11%

11%

11%

11%

13% 17%

10%

7% 10%

13%

13%

10%

7%

A

sequence Probability Allocation

A

B

C

B C

6 8

8

6 8

10

6

8

6

3 4

2

1 2

3

5

4

3

9 12

10

7 10

13

11

12

9

9% 13%

11%

8% 11%

14%

12%

13%

9%

A

BD

C

D

1 1

1

1 1

1

1

1

1

4 5

3

2 3

4

4

3

2

weight

A11% 11%

11%

11% 11%

11%

11%

11%

11%

13% 17%

10%

7% 10%

13%

13%

10%

7%

A

sequence Probability Allocation

A

B

C

B C

6 8

8

6 8

10

6

8

6

3 4

2

1 2

3

5

4

3

9 12

10

7 10

13

11

12

9

9% 13%

11%

8% 11%

14%

12%

13%

9%

A

BD

C

D

1 1

1

1 1

1

1

1

1

4 5

3

2 3

4

4

3

2

weight

Figure 11 : Generate an initial solution

 23

During the process of generating a chromosome, the constraints are also needed to be

considered. The tasks cannot be assigned to the allocations in which the constraints may be

violated. The initial population is generated with a fixed number of chromosomes which is

generated by the meta-random scheme. Then, the fitness value of each chromosome is

evaluated.

There are two reasons why we use a meta-random scheme to generate a chromosome.

First, a pure random scheme may cause a very bad performance. Second, the diversity of

the chromosomes in the initial population should be kept as high as possible so that the

GAs have higher probability to explore larger search-space. Due to these two reasons, we

use a meta-random scheme to generate the chromosomes which not only consider the

performance issue but also the diversity issue.

3.6 Evolution

GAs try to explore the search space using the three genetic operators: selection,

mating, and mutation. The evolution flow is illustrated in Figure 12.

Saturation ?Saturation ?

EvolutionEvolution

FinishFinish

Initial PopulationInitial Population

no

yes

SelectionSelection

Mating
&

Mutation

Mating
&

Mutation

SimulationSimulation

InsertionInsertion

Saturation ?Saturation ?

EvolutionEvolution

FinishFinish

Initial PopulationInitial Population

no

yes

SelectionSelection

Mating
&

Mutation

Mating
&

Mutation

SimulationSimulation

InsertionInsertion

SelectionSelection

Mating
&

Mutation

Mating
&

Mutation

SimulationSimulation

InsertionInsertion

Figure 12 : The evolution flow

 24

3.6.1 Selection

Due to the principle of eugenics, an individual (chromosome) which has higher fitness

value has higher probability to produce next generation. Therefore, we select pairs of

parents from the population using roulette wheel method [18]. Each chromosome in the

population has roulette wheel slot sized in proportion to its fitness value. Then the

chromosome is selected by spinning the roulette wheel. Take Figure 13 as an example,

chromosome A has the largest fitness value, so it occupies the largest size in the roulette

wheel. By spinning roulette wheel many times, the selected chromosomes are going to

mate in the next step.

A

chromosome

B
C
D
E

5

fitness

4
2
3
1

A

B
C

D

E spin

A

chromosome

B
C
D
E

5

fitness

4
2
3
1

A

B
C

D

E spin
A

B
C

D

E spin

Figure 13 : Roulette wheel method

3.6.2 Mating

GAs use mating to explore the search space and try to find the local optimal. In the

nature, the children inherit the features from parents. For example, if parents have big eyes,

their children usually have big eyes, too. So as in GAs, the generated chromosomes inherit

the features from their parents.

 25

First of all, it is needed to explain how the traditional mating scheme works. But,

before we talk about the traditional mating scheme, it is necessary to introduce the

traditional representation of chromosomes. Each chromosome is represented as a string,

and each word in the string represents the allocation of the corresponding task. As shown

in Figure 14, the chromosome is represented as a string {(0,0), (1,1), (2,1), (3,1), (1,1)},

which indicates that task A is in (0,0), task B is in (1,1), and so on.

A

B E

C

D

{(0,0), (1,1), (2,1), (3,1), (1,1)}

(row, col)

col

row
A

B E

C

D

A

B E

C

D

{(0,0), (1,1), (2,1), (3,1), (1,1)}

(row, col)

col

row

Figure 14 : Traditional chromosome representation

The traditional mating schemes consist of single-point crossover, two-point crossover,

etc. As illustrate in Figure 15, single-point crossover first randomly selects a cross point of

two parents, and then exchange the sub-string between the cross point and the end of the

string. As the name implies, two-point crossover use two randomly selected cross points to

choose the sub-string to be exchanged. However, both of these two mating schemes do not

consider the dependency of tasks.

Parents

Children

cross point

Parents

Children

cross point

Single-point crossover Two-point crossover

Parents

Children

cross point

Parents

Children

cross point

Single-point crossover Two-point crossover

Figure 15 : Traditional mating schemes

 26

Unlike the traditional mating schemes, we propose two different mating schemes

which consider the dependency of tasks to obtain better performance in communication.

Different from the traditional representations, the representation of our chromosome is a

graph, where each word in the vertex indicates the allocations of corresponding tasks. As

illustrated in Figure 16, the top vertex of the chromosome indicates that task A is in (0,0),

the top-right vertex indicates that task B is in (1,1), and so on. Hence, our representation is

capable of representing the dependency between tasks where the string representation

cannot provide these important information.

A

B E

C

D

col

row

A

C

D

B

E

0,0

2,1

3,1

1,1

1,1

SolutionTask graph Chromosome

A

B E

C

D

A

B E

C

D

col

row

A

C

D

B

E

0,0

2,1

3,1

1,1

1,1

SolutionTask graph Chromosome

Figure 16 : Our chromosome representation

The first mating scheme we proposed is sub-graph crossover which exchanges a

sub-graph in a well-coded representation. Figure 17 illustrates the exchanging process of

sub-graph crossover. At first, we randomly select a number x between 1~n-1 (where n is

the total task number). Second, we randomly choose a task at the task graph and then

perform breadth first search (BFS) starting from task until the number of visiting tasks

reaches x. At last, the sub-graph is found, and we can exchange the sub-graph to produce

the next generation.

 27

0,0

1,2

1,4

1,1

2,1

2,0

1,21,3

1,1
2,2

1,3

A
0,2

2,3

4,0

3,1

2,1

3,0

3,02,0

2,1
3,0

2,1

B
exchange 0,0

1,2

2,1

2,0

1,1

1,3

A’

4,0

3,1

3,02,0

3,0

0,2

2,3

1,4

1,1

2,1

3,0

1,21,3

2,1
2,2

2,1

B’
Parents Children

0,0

1,2

1,4

1,1

2,1

2,0

1,21,3

1,1
2,2

1,3

A
0,2

2,3

4,0

3,1

2,1

3,0

3,02,0

2,1
3,0

2,1

B
exchangeexchange 0,0

1,2

2,1

2,0

1,1

1,3

A’

4,0

3,1

3,02,0

3,0

0,2

2,3

1,4

1,1

2,1

3,0

1,21,3

2,1
2,2

2,1

B’
Parents Children

Figure 17 : Sub-graph crossover

Although sub-graph crossover considers the dependency of tasks, it is still not good

enough. It can be further improved by taking the suitability between the parents and the

exchanged sub-graph into account. The higher fitness the chromosome has, the higher

probability the chromosome will be selected to be parent. In other words, the selected

parents usually provide good performance. It is not wise to change the parents in a big way,

because this may destroy the original structure of parents and then get a bad chromosome.

Hence, shape crossover is proposed to raise the suitability between the parents and the

exchanged sub-graph. As shown in Figure 18, the allocations of tasks in the sub-graph

construct a shape. Obviously, if we exchange SA and SB directly in the absolute position, it

will destroy the original structure. Since the communication between original A and SA

may be good. But after exchanging, original A and SB may be too far to communicate to

each other. Therefore, the clever way is to exchange SB and SA in the relative position, and

then the structure is not destroyed but makes a little change.

 28

0,0

1,2

1,4

1,1

2,1

2,0

1,21,3

1,1
2,2

1,3

A
0,2

2,3

4,0

3,1

2,1

3,0

3,02,0

2,1
3,0

2,1

B A B

SB

SA

SA SB

0,0

1,2

1,4

1,1

2,1

2,0

1,21,3

1,1
2,2

1,3

A
0,2

2,3

4,0

3,1

2,1

3,0

3,02,0

2,1
3,0

2,1

B A B

SB

SA

SA SB

Figure 18 : Shape of sub graph

The details of shape crossover are described as following steps:

Assume dad A and mom B produce son C.

(1) Randomly choose a sub-graph, and then find the allocations of the corresponding

tasks, which construct a shape. Take Figure 18 as an example, the allocations of the

corresponding tasks are SA and SB, respectively.

(2) Rotate and reflect SB in 8 conditions (rotate 0°, 90°, 180°, 270° and reflect the above)

which is illustrated in Figure 19. And then shift these shapes to an appropriate position

which makes the gravity center of each shape as close as to that of SA. Figure 20

shows the process of shifting SB8 to SA.

reflect

rotate 90° rotate 180° rotate 270°rotate 0°

reflect reflect reflect

SB1 SB2 SB3 SB4

SB5 SB6 SB7 SB8

reflect

rotate 90° rotate 180° rotate 270°rotate 0°

reflect reflect reflect

SB1 SB2 SB3 SB4

SB5 SB6 SB7 SB8

Figure 19 : Rotate and reflect SB

 29

gravity center
of SA

gravity center
of SB8

shift

Figure 20 : Shift SB8 close to SA

(3) After step (2), we get 8 solutions. It is necessary to estimate which solution is the best

among these 8 solutions. The way we estimate these solutions is to calculate the

communication overhead that they cause. The communication overhead is defined as

Σci*di where ci is input or output communication amount of the sub-graph and di is the

Manhattan distance of that communication. For example, the communication

overhead of SB8 = 5*1+4*4+2*2+3*1+2*3+1*4 = 38 which is shown in Figure 21.

The first term 5*1 is the top left vertex of the sub-graph where 5 is the communication

amount, 1 is the Manhattan distance between (1,2) and (1,1), and so on.

0,0

1,2

1,1

2,2

2,1

2,0

1,21,3

1,1
1,2

1,3

0,0

1,2

1,1

2,2

2,1

2,0

1,21,3

1,1
1,2

1,321

3

2
5

4

Figure 21 : Communication overhead of SB8

 30

After calculating the communication overhead of these 8 solutions, the final result is

the solution with minimum communication overhead that causes by SB.

During the step (2), some of the tasks may violate the constraints and lead to an

infeasible solution. Therefore, we must repair the tasks which violate the constraints. The

repair method is similar to the second step in generating the chromosome of the initial

population. The different is that we just map the tasks which violate the constraints but not

all tasks in the task graph.

3.6.3 Mutation

The goal of mutation is to prevent GAs from finding just local optimal. By randomly

change the feature of the chromosome, the chromosome may have the opportunity to reach

or get close to the global optimal. Our mutation scheme first selects a task at random. Next,

the selected task has a probability to move to a random allocation. Also, the new allocation

must satisfy the constraints. Here is an example in Figure 22.

D C

E B

A

1. Randomly select a task :
task E

D C

B

E

A

2. Randomly move to
new allocation

D C

E B

A

1. Randomly select a task :
task E

D C

B

E

A

2. Randomly move to
new allocation

Figure 22 : Mutation example

 31

3.6.4 Simulation

After mating and mutation, it is necessary to evaluate the fitness value of each new

generated chromosome. We use high-level simulation to obtain the throughput of every

new generated chromosome. Figure 23 demonstrates our simulation flow.

Saturation ?Saturation ?

EvolutionEvolution

FinishFinish

Initial PopulationInitial Population

no

yes

SelectionSelection

Mating
&

Mutation

Mating
&

Mutation

SimulationSimulation

InsertionInsertion

Discrete
event-driven
simulation

Discrete
event-driven
simulation

Calculate the
throughput

Calculate the
throughput

Buffer length
assignment

Buffer length
assignment

Saturation ?Saturation ?

EvolutionEvolution

FinishFinish

Initial PopulationInitial Population

no

yes

SelectionSelection

Mating
&

Mutation

Mating
&

Mutation

SimulationSimulation

InsertionInsertion

Discrete
event-driven
simulation

Discrete
event-driven
simulation

Calculate the
throughput

Calculate the
throughput

Buffer length
assignment

Buffer length
assignment

Figure 23 : Simulation flow

At first, the buffer length assignment of each task is conducted. We assign input and

output buffer to every task equally and make sure that each task has one input and output

buffer shown in Figure 24.

 32

buffer T1 T3Buffer

NI

T1 T3

buffer T1 T3Buffer

NI

T1 T3

Figure 24 : Buffer length assignment

Second, since there are many dynamic behaviors when executing the application (task

graph) consecutively using our platform, and the time to find out the throughput of the

chromosome must be short. It is not feasible to use a simple scheduling scheme or a

simulation in the cycle-accurate level to obtain the throughput of each chromosome.

Therefore, by considering both the dynamic behaviors and time issue, we use a discrete

event-driven simulation in signal-accurate level to evaluate each chromosome. In this

environment, each communication time must be estimated in a fixed value. For simplicity,

XY routing is used to route the communication paths. By assuming that contention always

happens, the communication time is estimated under pipeline manner [14].

There are two kinds of event in this discrete event-driven simulation: computation

event and communication event. The computation event of a task represents that the task

finish executing, and is ready to transmit data to its successors. In FPGA, when all input

data arrive and the output buffer size is large enough, the computation event is inserted into

the time queue with the time equals to the current time plus computation time. In processor,

 33

the event will not be directly inserted to the time queue, but arranged by the scheduler

(FIFS) of processor that we mentioned before. The communication event between tasks

represents that the successor receives data from predecessor. When the input buffer of the

successor is large enough, the communication event is inserted to the time queue with the

time equals to the current time plus communication time. Figure 25 shows an example,

where the number in the vertex is the computation time of the task, and the number on the

edge is the communication time of the data transmission. Table 1 explicitly describes the

steps of the simulation.

step 1 : Current time = 3, execute computation event A.

step 2 : Current time = 3, after executing computation event A, the data is transmitted to

task C, and then it arrives at time = 3+5=8, therefore insert a communication

event A→C with time = 8.

step 3 : Current time = 4, execute computation event B.

step 4 : Current time = 4, after executing computation event B, the data is transmitted to

task C, and then it arrives at time = 4+3=7, therefore insert a communication

event B→C with time = 7.

step 5 : Current time = 7, the data is transmitted from task B to task C.

step 6 : Current time = 8, the data is transmitted from task A to task C.

step 7 : Current time = 8, since all input data of task C arrive, insert a computation event

of task C with time = 8+2=10.

step 8 : Current time = 10, execute computation event C.

Table 1 : The steps of discrete event-driven simulation

 34

4

3

2
B->C
A->C

C

A

B

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

4

3

2 A->C

C

A
B

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

4

3

2

C

A
B

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

4

3

2
B->C
A->C

C

A
B

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

B B

B B

1 2

3 4

4

3

2
B->C

C

A

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

4

3

2
B->C
A->C

C

A

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

B B

5 6

B

B

4

3

2 A->C

C

A

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

4

3

2
B->C

A

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

B B

7 8

B

A->C

B

B->C
A->C

C

4

3

2
B->C
A->C

C

A

B

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

4

3

2 A->C

C

A
B

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

4

3

2

C

A
B

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

4

3

2
B->C
A->C

C

A
B

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

B B

B B

1 2

3 4

4

3

2
B->C

C

A

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

4

3

2
B->C
A->C

C

A

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

B B

5 6

B

B

4

3

2 A->C

C

A

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

4

3

2
B->C

A

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

time queue

5
3

A

C

3
D

3

B B

7 8

B

A->C

B

B->C
A->C

C

Figure 25 : Discrete event simulation example

 35

By continuously input the data to the NoC platform, the output data are sequentially

generated at different times, which are recorded to the profile. After simulation, we are able

to calculate the throughput of the chromosome from the profile. The data generation rate is

taken as system throughput when the system is stable. As shown in Figure 26, data

generation rate equals 0.8 (4/5).

NoC
Platform

input
data

output
data

time

stable

0 5 10 15

: output data

NoC
Platform

input
data

output
data

time

stable

0 5 10 15

: output data

Figure 26 : Calculate throughput

3.6.5 Insertion

The last step of evolution is insertion. After calculate the fitness value of every new

chromosome, we insert these chromosomes into current population. Due to the population

size being fixed, we must remove some chromosomes. According to selection of natures,

the redundant chromosomes with low fitness value are discarded. Here is an example in

Figure 27. After we insert new chromosomes to current population, we sort the population

in decreasing order by fitness value. And then the bad chromosomes are discarded to keep

a fixed-size population.

 36

current

new

sort remove

current

new

sort remove

Figure 27 : Insertion

3.7 Termination

GAs terminate until the fitness value of the best chromosome is saturated during the

evolution process or the generation number reaches a pre-defined number.

 37

Chapter 4

Experimental Results

4.1 Experimental flow

Figure 28 demonstrates our experimental flow. At first, we exploit Task Graphs for

Free (TGFF) [20] , which is a user-controllable, general-purpose, pseudorandom task graph

generator, to generate random cases. And then, the generated task graphs are scheduled by

our task scheduling tool. Finally, we can analyze the experimental results.

Task GraphTGFF AnalysisTask
Scheduling

Task GraphTGFF AnalysisTask
Scheduling

Figure 28 : Experimental flow

 38

We use TGFF to generate many task graphs. Each task graph contains a netlist and

tables for related information. For example, Figure 29 (a) is a netlist, where “TASK”

represents a task and the following are the task name and computation information which

is specified in Figure 29 (c) (processing element database). As well, “ARC” represents a

data transmission from the former to the later, and the corresponding communication

amount is given in Figure 29 (d). In the computation table, “uP” and “fpga” represent the

computation time in processor and FPGA, respectively. “memory” and “capacity” are the

memory and capacity usage of processor and FPGA. The TGFF output file and its

corresponding task graph is shown in Figure 29 (b).

@computation 0 {
#--
type uP memory fpga capacity

0 55.7067 163.892 151.128 178.518
1 64.9349 152.398 159.265 175.757
2 75.4444 160.801 166.259 193.153
3 52.5038 157.158 152.051 153.982
4 66.1995 175.019 170.291 192.132
5 56.5161 151.905 154.492 159.021

.

.
}

@communication 0 {
#---
type amount

0 155.707
1 151.676
2 158.991
3 153.979
4 194.139
5 160.684

.

.
}

@TASK_GRAPH 0 {
PERIOD 1659

TASK t0_0 TYPE 2
TASK t0_1 TYPE 73
TASK t0_2 TYPE 14
TASK t0_3 TYPE 51

ARC a0_0 FROM t0_0 TO t0_1 TYPE 35
ARC a0_1 FROM t0_0 TO t0_2 TYPE 11
ARC a0_2 FROM t0_1 TO t0_3 TYPE 30
ARC a0_3 FROM t0_2 TO t0_3 TYPE 47

}

t0_3
51

t0_2
73

t0_1
14

t0_0
2

30 47

35 11

(d) Communication table(c) Computation table

(a) Netlist (b) Task graph

@computation 0 {
#--
type uP memory fpga capacity

0 55.7067 163.892 151.128 178.518
1 64.9349 152.398 159.265 175.757
2 75.4444 160.801 166.259 193.153
3 52.5038 157.158 152.051 153.982
4 66.1995 175.019 170.291 192.132
5 56.5161 151.905 154.492 159.021

.

.
}

@communication 0 {
#---
type amount

0 155.707
1 151.676
2 158.991
3 153.979
4 194.139
5 160.684

.

.
}

@TASK_GRAPH 0 {
PERIOD 1659

TASK t0_0 TYPE 2
TASK t0_1 TYPE 73
TASK t0_2 TYPE 14
TASK t0_3 TYPE 51

ARC a0_0 FROM t0_0 TO t0_1 TYPE 35
ARC a0_1 FROM t0_0 TO t0_2 TYPE 11
ARC a0_2 FROM t0_1 TO t0_3 TYPE 30
ARC a0_3 FROM t0_2 TO t0_3 TYPE 47

}

t0_3
51

t0_2
73

t0_1
14

t0_0
2

30 47

35 11

t0_3
51

t0_2
73

t0_1
14

t0_0
2

30 47

35 11

(d) Communication table(c) Computation table

(a) Netlist (b) Task graph

Figure 29 : TGFF output file

 39

4.2 Analysis of performance of GAs

In this experiment, we compare the traditional mating schemes and our mating

schemes. The parameters of GAs are shown in Table 2.

1000Max generation

400Population

20%Mutation rate

40%Cross rate

1000Max generation

400Population

20%Mutation rate

40%Cross rate

Table 2 : The parameters of GAs

Cross rate means that 40% of population is going to mate. Mutation rate means that

every new generated chromosome has the probability of 20% to perform mutation. The

whole population is set to 400 chromosomes. The algorithm terminates until the

performance of the best chromosome is saturated or when it reach max generation.

We generate 20 random task graphs and each task graph contains 270 ~ 330 tasks. The

computation time of each task is set to 150 ~ 200 time unit on FPGA and 50 ~ 67 time unit

on processor. When two or more than two tasks that are mapped onto a processor, the

processor needs to schedule the tasks. Therefore, we set the computation time of each task

on processor 1/3 times of that on FPGA, such that total computation time of tasks on

processor or FPGA is more balance. The communication amount is 150 ~ 200 data unit,

and the maximum fanin/out of each task is 6. The memory and capacity usage of each task

is set to 150 ~ 200.

 40

The communication time is the communication amount divided by channel bandwidth

without any contention. Here, the channel bandwidth is set 1 ~ 4 (data unit / time unit),

such that the ratio of computation time to communication time (no contention) is 1 ~ 4.

When the ratio is low (e.g., 1), the system is computation intensive. When the ratio is high

(e.g., 4), the system is communication intensive.

The resource location of our platform is shown in Figure 30. The topology is like a

chessboard, and the mesh size is 7 × 7. The memory of processor and capacity of FPGA are

set to 1800. The buffer size of each PE is 12000 (data unit).

Processor

FPGA

Processor

FPGA

Figure 30 : Resource location

The system performance improved rate of four mating schemes with four ratio (1~4)

are shown in Figure 31. Since sub-graph crossover considers the dependency of tasks, the

improved rate of GAs that using sub-graph crossover outperforms those use traditional

single point-crossover and two-point crossover. This implies that the mating schemes

should consider the dependency of tasks. In addition, shape crossover not only inherits the

features of sub-graph crossover but also consider about the suitability issues. As a result,

 41

shape crossover outperforms all other mating schemes. In Figure 32, the saturation time of

shape crossover is less than others. Shape crossover provides better results and shorter

computation times than other mating schemes.

140%133%131%124%0%3
137%

140%

129%

sub-graph

139%

150%

139%
shape

126 %123%0%4

135%124%0%2

120%

1 point
123%

2 point
0%

random
1

Ratio

140%133%131%124%0%3
137%

140%

129%

sub-graph

139%

150%

139%
shape

126 %123%0%4

135%124%0%2

120%

1 point
123%

2 point
0%

random
1

Ratio

*Average of 20 cases

Improve rate = , Ratio = comp. time / commu. time

Computation
intensive

Communication
intensive

0%

20%

40%

60%

80%

100%

120%

140%

160%

1 2 3 4

random

1p

2p

sub-g

shape

(Tx - Trandom)
Trandom

(Tx - Trandom)
Trandom

Figure 31 : The improvement of 4 mating schemes

 42

8118188368663
824

861

786

sub-graph

711

832

765
shape

8388404

8458432

845

1 point
801

2 point
1

Ratio

8118188368663
824

861

786

sub-graph

711

832

765
shape

8388404

8458432

845

1 point
801

2 point
1

Ratio

700

720
740

760

780
800

820

840
860

880

1 2 3 4

1p

2p

sub-g

shape

Saturation time (generation)

*Average of 20 cases

Figure 32 : Saturation time of 4 mating schemes

 43

Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis, we solve the multi-constraints task scheduling problem. By mapping the

task scheduling problem to GA-domain, this problem is solved in an efficient way. Since

the traditional mating schemes in GAs do not consider the dependency of the task graph,

we propose both sub-graph and shape crossover to overcome this issue. We also construct a

high-level simulator to evaluate our solutions. This is not only fast but also accurate. The

experimental results show that our mating schemes provide better performance and require

less computation time than traditional ones.

 44

5.2 Future works

It is found that buffer-size for every input/output of task has great impact on system

performance. If the buffer-size is unlimited, the data transmission can always be accepted,

and the utilization of communication resources will be maximized so that system

performance is also improved. However, due to the lack of on-chip memory, unlimited

buffer-size is impossible. An algorithm must be developed to optimize the buffer-length of

each input/output instead of equally-distributed, such that the system performs well with

limited buffer size.

Resource location is also important. If we do not consider the relationship between

topology of resource location and application, the system may not perform well.

Consequently, given a specific application and several platforms with different topologies,

an algorithm must be developed to find out the most suitable platform for the application.

 45

Reference
[1] Axel Jantsch and Hannu Tenhunen, Networks on Chip, Kluwer Academic Publishers,

2003.

[2] Luca Benini and Giovanni De Micheli, “Networks On Chips: A New SoC

Paradigm,” in Computer Jan. 2002, Volume 35, Issue 1, pp. 70-78.

[3] Davide Berozzi and Luca Benini, “Xpipes: A Network-on-Chip Architecture for

Gigascale Systems-on-Chip,” in Circuit and Systems Magazine 2004, Volume 4,

Issue 2, pp. 18-31.

[4] Cesar Albenes Zeferino and Altamiro Amsdeu Susin, “SoCIN: A Parametric and

Scalable Network-on-Chip,” in Proceedings of the 16th Symposium on Integrated

Circuits and Systems Design, Sep. 2003, pp. 169-174.

[5] Pierre Guerrier and Alain Greiner, “A Generic Architecture for On-Chip

Packet-Switched Interconnections,” in proceedings of the conference on Design,

automation and test in Europe, 2000, pp. 250-256.

[6] Alan Allan, Don Edenfeld, William J. Joyber, Jr, Andrew B. Kahng, Mike Rodgers

and Yervant Zorian, “2001 Technology Roadmap for Semiconductors,” in IEEE

computer, Jan. 2002, pp.42-53.

[7] William J. Dally and Brian Towles, “Route Packets, Not Wires: On-Chip

Interconnection Networks,” in Proceedings of the Design Automation Conference,

June 2001, pp. 684-689.

[8] Jingcao Hu and Radu Marculescu, “Energy- and Performance-Aware Mapping of

Regular NoC Architectures,” on IEEE transactions on Computer-Aided Design of

 46

Integrated Circuits and Systems, April 2005, Volume 24, Issue 4, pp.551-562.

[9] Shashi Kumar, Axel Jantsch, Juha-Pekka Soininen, Martti Forsell, Mikaek Millberg,

Johny Öberg, Kari Tiensyrjä and Ahmed Hemani, “A Network on Chip Architecture

and Design Methodology,” in Proceedings of IEEE Computer Society Annual

Symposium on VLSI, April 2002, pp. 105-112.

[10] Daniel Wiklund and Dake Liu, “SoCBUS: Switched Network on Chip for Hard Real

Time Embedded Systems,” in Proceedings of the Parallel and Distributed

Processing Symposium, April 2003.

[11] Jingcao Hu and Radu Marculescu, “Energy-Aware Mapping for Tile-based NoC

Architectures Under Performance Constraints,” in Proceedings of Asia & South

Pacific Design Automation Conference, Jan. 2003, pp. 233-239.

[12] Srinivasan Murali and Giovanni De Micheli, “Bandwidth-Constrained Mapping of

Cores onto NOC Architectures,” in Proceedings of the Design, Automation and Test

in Europe Conference and Exhibition, Feb. 2004, volume. 2, pp. 896-901.

[13] Tang. Lei and Shashi Kumar, “A Two-Step Genetic Algorithm for Mapping Task

Graphs to a Network on Chip Architecture,” in Proceedings of Euromicro

Symposium on Digital System Design, Sep. 2003, pp. 180-187.

[14] Liang-Yu Lin, Cheng-Yeh Wang, Pao-Jui Huang, Chih-Chieh Chou and Jing-Yang

Jou, “Communication-driven Task Binding for Multiprocessor with Latency

Insensitive Network-on-Chip,” Asia and South Pacific Design Automation

Conference, Jan. 2005.

[15] R.J.H. Hoes, “Predictable Dynamic Behavior in NoC-based Multiprocessor

System-on-Chip,” M.Sc. Thesis, TUE, Eindhoven, Dec. 2004.

[16] Edward Ashford Lee and Soonhoi Ha, “Scheduling Strategies for Multiprocessor

 47

Real-Time DSP,” in Global Telecommunication Conference and Exhibitions, Nov.

1989, Volume 2, pp. 1279-1283.

[17] Kenjiro Taura and Andrew Chien, “A Heuristic Algorithm for Mapping

Communicating Tasks on Heterogeneous Resources,” in Proceedings of 9th

Heterogeneous Computing Workshop, May 2000, pp. 102-115.

[18] David E. Goldberg, Genetic Algorithms in Search, Optimization & Machine

Learning, Addison-Wesley Publishers, 1989.

[19] Baxter, M. J., Tokhi, M. O. and Fleming, P. J. “An Investigation of the

Heterogeneous Mapping Problem Using Genetic Algorithms,” on CONTROL '96,

UKACC International Conference, Sep. 1996, Volume 1, pp. 448-453.

[20] Robert P. Dick, David L. Rhodes and Wayne Wolf, “TGFF: Task Graphs for Free,” in

proceeding of the 6th International Workshop on Hardware/Software Codesign, 1998,

pp. 97-101.

 48

Vita

Wan-His Hsieh was born in Taoyuan, Taiwan on August 6, 1981. He received the B.S.

degree in Electrical Engineering from National Central University in June 2003 and

entered the Institute of Electronics, National Chiao Tung University in September 2003.

His research interests include electronic design automation (EDA) and VLSI design. He

received the M.S. degree from National Chiao Tung University in June 2005.

