A ATIRE A R e g Y
2B EERRS

GA-Based Task Scheduling for

Heterogeneous Network-on-Chip

RN o I

hEREY B B4

PoE N R4 e R

ANAFFEZ R TR ?'}ié}gﬁ%ﬁ g 7 2 IEIRPEAR S E

GA-Based Task Scheduling for Heterogeneous Network-on-Chip

P M Student : Wan-Hsi Hsieh
hERER PR BL Advisor : Dr. Jing-Yang Jou
oz < i % &

TH1IARE RFAY AT LT
M L m
A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
MASTER OF SCIENCE
in

Electronics Engineering

June 2005

Hsinchu, Taiwan, Republic of China

P X F 4 L e g

il

(W -

B R A
ﬂ-?“ﬁﬁﬁféﬁiﬁa¥Tiﬁ{§}$ﬁﬂi%}é

EHV“* /4

AR Ry 4§ B

gk 2 3

PR E S P ST R A KRS AT A & ¢ el g R e J8AT
'\va

FohiEhwme o oA PRS- BASATIRE ZOEREES 2 R 2

fr- BRYBFHeREL P TR EREAEZRFI LA - BEASIIEGE
e S IS N SRR

PEEFEL TR o AATFFEE Y AT R R P
Bl a R - BATHLfE

Eao Be RS AR 2 Ao RRE RN

TR AR R B T R AR R E L T 0% A AATIFE 2 guF
EREF G4 Rt BRpEE ARE

2

2~ ©

GA-Based Task Scheduling for
Heterogeneous Network-on-Chip

Student : Wan-Hsi Hsieh Advisor : Dr. Jing-Yang Jou

Department of Electronics Engineering
Institute of Electronics

National Chiae:Tung University

Abstract

Network-on-Chip is a new design paradigm to meet the communication requirement
of future billion-transistor System-on-Chip. In this thesis, we propose a genetic algorithm
(GA) based task scheduling technique to schedule the applications to the heterogeneous
Network-on-Chip. The task scheduling process attempts to arrange the allocation of
processor for each task such that the system throughput is maximized. As well, a new
mating operator of GA is also proposed to improve the performance of traditional GA by
considering the characteristics of application. The experimental results show that proposed
mating operator not only outperforms traditional ones by 10% averagely, but also requires

less computation time.

Acknowledgment

I would like to express my sincere gratitude to my advisor Professor Jing-Yanf Jou for
his suggestion and guidance throughout the years. I am also indebted to Liang-Yu Lin and
Cheng-Yeh Wang for their great help of my thesis. Special thanks to EDA lab members for
their company and friendship. Finally, I would like to show my appreciation to my family

and Man-Yun Su for their love and encouragement.

il

Contents

BB e i
ADSETACT. ...ttt e h e et e bt et e bt e e bt e e heeenb e e eatesateebeeeas 1
ACKNOWIEAZMENT........iiiiiiiieiiecie ettt ettt ettt e st e et e sabeesbeessseeseesnneens il
(01031115 11O SO RO UUSTOURRPROPIO v
LSt OF FIGUIS.....veeeiiieiiecieeie ettt ettt et ettt e st e et e e s abe et e e sabeesbeeenbeeseesnseens vi
LSt OF TADIES ...ttt ettt ettt viil
Chapter 1 INtroduction............oeueeee i fions o i ettt et 1
1.1 The challenges of on-chip cOMMUNICAtION.c.eevieiiiieiiiiiienieeeeeeee e 1

1.2 The concept of Network-on-Chip............ccoecveeriieiieniiiiiieee e, 2

1.3 The focus of our WOTK it eveeiieeiti e 4

1.4 ThesiS OTZANIZAtION.c.ceeuieriieeiieriieeieeiee et eriteeteeseeesaeesseeenbeessnesnseesseeenseensnas 4
Chapter 2 PrelimMINary.........ccocvieeciieeeiieeciie et esiee et e sveeesveeetaeesssaeessaeeessaeesssaeesnseeesnseeans 5
2.1 Related WOTKSeeuiiiiiiieiecieceeee ettt 5

2.2 OUT dESIZN TOW 1.t e e e eebeeeneeas 8

23 OUr NOC Platform......c.eeeiiiiieiiieiiece ettt 9
2.3.1 TaSK GIaph....ccceviieiieciie e e 11

232 Performance evaluationccceeveriiiiiniinieienieneeeceeeeeee e 13

Chapter 3 Task SChedUIINGcccviieiiieeiieeeeee e e 14
3.1 ASSUIMPLION ...ttt ettt eite et et e et estteebeesteeesseessaeeseessseenseessseeseesnsaeseans 14

v

32 Problem fOrmMUIALION.eevviiieieeeeeeieee 17

33 Genetic algOTItIMS.cooiiiiiiieceeee e e 18

34 GA-based task scheduling flow...........cccceeiieiiieiieniiceeee e 20

3.5 Initial POPUIALIONoeeeiiiiiiieie e 21

3.6 EVOIUHION .ottt sttt 23

3.6.1 SEIECTION ...ttt e s 24

3.6.2 IMALINE. ...teeiiieiie ettt ettt ettt et esate et e et e e seeeabeebeeenseennes 24

3.63 IMIUEALION .ttt ettt ettt et 30

3.6.4 STMUIATION. ¢t 31

3.6.5 INSETION ...t d e ee i ettt ettt 35

3.7 Termination............ 3 uasbeamlarr e Wccceonuenrerneeneenreeneesseessenns 36
Chapter 4 Experimental Results .i....... o cmmmmmmmmm i et e e 37
4.1 Experimental fIow 0 sttt 37

4.2 Analysis of performance 0f GAScccovveeciieeiieeeiie et 39
Chapter 5 Conclusions and Future Work...........cccoooieiiiiiiiiniiiiieicceee e 43
5.1 CONCIUSIONS ...ttt ettt ettt et e st e e e 43

5.2 FUtUIe WOTKS .c.eoiiiiiiiiiicee e e 44
RETEIEIICE ...ttt ettt ettt eb e saae e b 45
VB ettt bbb et h bt e a e bttt et a e b e a e she et et e bt ennea 48

List of Figures

Figure 1 : An NoC With 16 1€S0UICES [9]...uiiiiviiiiiiiiiiiieciee ettt 3
Figure 2 : Layerd-micronetwork design methodologycoecueeriieiiiiniiinieniieiiecieeee 6
FIigure 3 1 DeSIZN flOW ..ciiuiiiiiiiecieecee ettt et e e e et e e e e e eraeesnsaeens 9
Figure 4 : NOC PlatfOrmmooiuiiiiiieiiieiece ettt sttt eseteesaeeens 9
Figure 5 : Processing element model...........ccccuvieiiieeiiiieiiieciieceece e 11
Figure 6 : Task graph of H.263 decoder|15]......ccovriiiiriiiiieieeieeeeceeee e 12
Figure 7 : Processing element database .. i reeeerreeeririeeriiieeniieenieeenieeenneeesveeessveesnnnes 13
Figure 8 : Task graph example.....cui . eemh et it et 15
Figure 9 : Task scheduling flow. ..o i e 20
Figure 10 : Task graph example... . et 22
Figure 11 : Generate an initial SOIUtion ...l e 22
Figure 12 : The evolution floWcccuiiiiiiiiiiieeie e 23
Figure 13 : Roulette wheel methodooocuviiiiiiiiii e 24
Figure 14 : Traditional chromosome representation............cceveeeereereenienieneenieneeseenieennes 25
Figure 15 : Traditional mating SChemEsccccveieriiiiiiiiieeciie e 25
Figure 16 : Our chromosome representationc.veecveereeerieerieesieeneeesieesieeeeesveeseesnneas 26
Figure 17 : SUb-Graph CTOSSOVET......cccuuiiiiiieeiieeciie ettt e et eae e e eaeeeneeas 27
Figure 18 : Shape of sub @raphi.........cccooeiiiiiiiiie e 28

Figure 19 :

ROTAtE AN TETLECT SB ettt e et e e e e e e e e e 28

vi

Figure 20 :

Figure 21

Figure 22

Figure 23 :

Figure 24

Figure 25

Figure 26 :

Figure 27 :

Figure 28
Figure 29
Figure 30

Figure 31

Figure 32 :

SHIft SBS CLOSE 10 S A 1 oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 29
: Communication OVETHEAd OF SBE et eeeeieeeeeee et e e 29
S MULation €XAMPLEc.eevuiieiiiiiieiieeie ettt e 30
SIMULAtION FlOW....oiiiiiiii e 31
: Buffer length assignmentccoocuieiiiiiiiiiiieiiieeceee e 32
: Discrete event simulation €Xampleccccecvieeiieeeriieeriee e 34
Calculate throughpuL..........c.oooiiiiiiiiie e 35
INSETEION ..ttt ettt ettt et 36
s Experimental floOW.......cooiiiiiiiiiiiiee e 37
P TGEFF OULPUL fI1€ ..o tei e e aefir e ieeete e ere e e eae e e e e e v e e esreeeaaeeenenas 38
1 Resource 10Cation.... S i s s it 40
: The improvement of 4 mating SChemescccoeeveeeiieiieeiieiecie e, 41
Saturation time of 4 MatingSChemMEsccceevviiiriieiieieeee e 42

vii

List of Tables

Table 1 : The steps of discrete event-driven simulationceeeeeevcieeiieniienienieeeeeen

Table 2 : The parameters of GAs

viii

Chapter 1
Introduction

1.1 The challenges of an-chipreemmunication

With the advance of technology scaling, System on Chip (SoC) designers may
integrate hundreds of cores (processor, DSP, FPGA, etc.) into a single chip at the end of
this decade. Current SoC designs use shared-bus architecture to connect the cores.
However, this may suffer many issues in the future on-chip communication. First, since the
wire delays do not scale down as good as gate delays. The global wire delay will no longer
within a clock period. It is estimated that in 50nm technology, at a clock frequency of 10
GHz, a global wire delay will be 6 to 10 clock cycles. Therefore, synchronization of cores
will be unfeasible [1][2][3]. Secondly, the operating frequency degrades with the

increasing of number of cores attached to the bus, due to the growing of capacitive loading

in its wires [4][5]. Thirdly, since the cores share the same bandwidth. System performance
does not scale when integrating more cores to the system, but degrade the system
performance [1][3][5]. Finally, the time to market needs to be kept as low as possible, so
that reusability becomes an important issue. New bus architecture may use multiple
on-chip busses which require case-specific grouping of IPs and the design of transversal
bridges to provide high bandwidth, and shared-bus architecture also need an arbiter to
decide which master to access the bus [3][5]. But these case-specific schemes and
instance-specific designs may decrease the reusability. As a result, there should be a better

design methodology to overcome these issues.

1.2 The concept of Network=on=Chip

By borrowing the experience of computer network and parallel computing, a new
design methodology called Network-on-Chip (NoC) has been proposed to solve the
on-chip communication problems [2]. Network-on-Chip as its name implies is to view the
system as a network of cores. In many cases, on-chip network can be designed in regular
structures, so that the electrical properties of global wire are optimized and well controlled.
It's helpful to enable the use of aggressive signaling circuits to reduce power dissipation
[4][7]. As well, the cores communicate with each other through the network. Obviously,
the NoC not only achieves the concept of Global Asynchronous Locally Synchronous
(GALS) paradigm easily but also alleviate the wire delay problem and other deep
sub-micro (DSM) problems. The NoC concept enables designers to design/reuse each core
in one synchronous clock domain, and make the communication between cores to use

message passing method through the network. Therefore, components communicate with

each other asynchronously [2][5].

NoC provide better performance scalability than share-bus architecture. First, through
a Peer-two-Peer communication, it can provide high bandwidth and reduce power
consumption effectively. Second, by managing the network channel properly, multiple

communications originated by multiple cores can be handled at the same time.

Many proposed network platforms use the regular fashion. For example, as shown in

Figure 1 is a network platform with a 2D-mesh topology. Each switch is connected to its

neighboring switches and a processing element.

i}
Ts |
ni

i i [rni] rni
Resource Resource Resource Resource
-1 -1 -1
1S | | S| | S |

Ml — I — I
i i i [Tl
Resource Resource Resource Resource
-1 -1 -1
1S | | S| | S |
Bl — I)1——‘-
rni rni rni [Tl
Resource Resource Resource Resource
1 1 I — 1
EP s] Isk
rni rni rni rni
Resource Resource Resource Resource

Figure 1 : An NoC with 16 resources [9]

In such a design fashion, designers can design and verify the processing elements
independently which is helpful to facilitate building a system. Moreover, designer can

further build the network platform in advance and integrate with many applications [9].

Therefore, we can easily amortize the development cost of network platform across many

applications, and reduce time to market pressure by reusing the NoC platform.

1.3 The focus of our work

An application can be modeled as a large number of communicating tasks. Different
tasks may have different characteristics such as control or datapath. The situation implies a
heterogeneous implementation including different kind of resources for different tasks tend
to achieve the effective solution. Given a network platform with heterogeneous computing
resources, the task scheduling problem is to decide each task being implemented with what
kind of resource and which resource such that'system performance is tend to be optimized.
On the other hand, due to the lack of on-chip memory, we propose a task scheduling
algorithm to solve this problent which optimize the System performance under memory

constraints.

1.4 Thesis organization

The rest in this thesis is organized as follows. Chapter 2 introduces related work and
our design flow. Chapter 3 presents the task scheduling method using genetic algorithms.
The experimental result are given and discussed in Chapter 4. Finally, the conclusions and

future work are described in Chapter 5.

Chapter 2
Preliminary

2.1 Related works

There are many researches in the NoC domain. By borrowing the models, techniques
and tools from network and applying them to SoC design, the authors of [2] proposes a
layerd-micronetwork design methodology to address future SoC designs as shown in
Figure 2. In this vertical design flow, every layer is specialized and optimized for target
application domain. In [7], on-chip interconnection network is used to substitute for ad-hoc
global wiring structure. The structured network wiring gives well-controlled electrical
parameters that eliminate timing iterations and enable the use of high-performance circuits

to reduce latency and increase bandwidth.

Software

application
system

Architecture
and control

transport
netwaork
data link

Physical
wiring

Figure 2 : Layerd-micronetwork design methodology

Recently, several NoC platforms and “atchitectures have been proposed in
[9][5][10][3]. [9] proposes a -packet switched NoC platform, which includes both
architecture and design methodology. [The-architecture is an m x n mesh of switches where
the computing resources like processor core, memory, FPGA, a custom hardware or any
other Intellectual Property (IP) block are connected to it. This work includes the decision
of NoC architecture and the process of mapping the application onto the architecture. The
Scalable Programmable Integrated Network (SPIN) is a regular, fat-tree-based network
architecture [5], which uses a wormhole routing to reduce the storage requirement of
network switch, and the latency of messages. A circuit switched two-dimensional mesh
network called SoCBUS is proposed in [10]. [10] introduces the concept of packet
connected circuit (PCC), where a packet is switched through the network locking the
circuit as it goes. PCC is similar to circuit switching which has the advantages of

bandwidth guarantee and deadlock-free.

Some of the synthesis techniques are proposed in [3][11][12][13]. [3] presents the
Xpipes which consists of a library of soft macros (switches, network interfaces and links)
so that domain-specific heterogeneous architectures can be instantiated and synthesized.
Xpipes provides a tool called XpipeCompiler, which can automatically instantiates a
customized NoC from the library form soft network components. Precisely, the designer
uses the library from Xpipes to describe the network architecture. The information on the
network architecture is then specified in an input file for the XpipeComplier. The tool
generates a SystemC hierarchical description of whole system. Then the description can be
compiled and simulated at the cycle-accurate and signal-accurate level. [11] presents an
algorithm which automatically maps the IP/cores onto a generic regular NoC architecture.
This work develops an algorithm to.solve the mapping problem based on branch and bound
technique to minimize communieation energy.eonsumption under performance constraints.
[12] presents a NMAP algorithm that-maps-the cores onto NOC architecture under
bandwidth constraints. The NMAP can _be applied on both single-path routing and
split-traffic routing. In [13], the author uses a simple packet switching communication
model to estimate the communication time and propose a two-step genetic algorithm to
map a parameterized task graph onto the 2D-mesh NoC architecture, which minimizes the

overall execution time of the task graph.

2.2 Our design flow

Figure 3 depicts our design flow. Our methodology has two input information. First,
an application can be partitioned into communicating tasks. And the characteristics of tasks
and their dependency is model as a task graph. Second, the NoC platform contains network
architecture and heterogeneous computing resources (the task graph and NoC platform will
be later explicitly explained in 2.2.1 and 2.2.2). The task scheduling process decides which
task should map onto which resource. The process not only tries to reduce the
communication time by mapping the interacting tasks into the same resource (make it an
intra-resource communication) under themory c¢onstraints but also tries to map tasks onto
the most appropriate resources to 1mprove the computation time of each task. Next, the
routing process [14] assigns a dedicated ‘connect path for each communication between
tasks. After the routing process, wWe can conduct.a system performance analysis. If the
results do not meet our requirement, we will iteratively refine our application or NoC

platform and perform task scheduling and routing until the results satisfy our requirement.

Task Graph NoC Platform

LIOIE]
D00
\

Task Scheduling
¥
Routing
¥

Refinement Refinement

Performance
Analysis

no no

yes

Figure 3 : Design flow

2.3 Our NoC platform

Our NoC platform is shown-in Figute4-It-contains a network architecture constructed

by switches, and each switch connects to.a corresponding processing element.

switch [« » switch [« » switch [&——
A A r Y
PE PE PE
A4 A A4
switch (< > switch [« > switch [&—»
F 3 F N
PE PE PE
A4 Y A4
switch [« » switch [« » switch &—
F y F y
PE PE PE
v v

Figure 4 : NoC platform

The processing elements communicate to each other by passing messages through the
switches of the network. Our network and switch have the following five features:

(1) circuit switching,

(2) dedicated connection path,

(3) virtual channel flow control,

(4) weighted round-robin scheduling, and

(5) pipeline bus.
Feature (1) and (2) provide the bandwidth guarantee and small memory usage of network
switches. Feature (3) and (4) prevent deadlock and improve the utilization of network.
Finally, feature (5) improves the performance of network. The details of the switch and the

network architecture are explicitly described in [14].

Our NoC platform containg two types of processing elements: processor and FPGA.
This makes our NoC platform a fully programmable platform. The FPGA is a dedicated
hardware that can be reconfigured at run time. With a fully programmable platform, we can
reduce the development cost by reusing our platform for many different applications
(different applications with different configurations) without any architectural

modification.

The processor is a highly flexible processing element. It is good at executing tasks
with the characteristics of controls. But in most cases, processors cannot provide better
performance than a dedicated hardware in executing tasks with the characteristics of
datapath. On the contrary, dedicated hardwares cannot be as flexible as processors.

Therefore, our platform contains another type of processing element FPGA to overcome

10

this issue. A FPGA works like a dedicated hardware but it has the advantage of being
reconfigured at run time. Consequently, our platform is capable of executing various tasks

efficiently.

Figure 5 shows the architectural model of our processing element. Each processing
element contains a network interface to communicate with the local switch. The buffer is a
temporary memory which stores the input data from other processing elements and output
data to other processing elements. As mentioned before, our platform consists of two
different types of processing elements. The FPGA contains a FPGA core. The processor
contains a processor core and local memory which stores the program and intermediate

data when executing a task.

NI NI

Processor

Buffer| FPGA Buffer

Memory

Figure 5 : Processing element model

2.3.1 Task graph

Applications are able to be partitioned into many communication tasks due to the
parallelism. Figure 6 shows a task graph of a H.263 decoder [15]. A vertex represents a
task and its functionality is shown in the vertex, too. For example, task C is IDCT which
performs an inverse discrete cosine transformation of a frame produced by task B. The

edge represents a data transmission and the communication amount. For example, after

11

task B being completed, it transmits c2 unit data to task C. An edge also indicates the data
dependency. A task cannot be executed until it receives the data from its predecessor. For
example, task G cannot be executed until it receives ¢5 unit data from task D and c6 unit

data from task E.

Figure 6 :-Task graph-of H.263 decoder[15]

In addition to the task graph, ‘there is a processing element database to specify the
details of tasks when executing on the specific processing elements. As shown in Figure 7,
a processing element database first describe the executing time of the task and the memory
usage (program and intermediate data) when executing on a processor. If the task is
executing on a FPGA, it shows the execution time and the capacity usage (logics) of the

task. And oo represent that it cannot be executed on that processing element.

12

task | Processor (e, m) FPGA (e, C)
VLD 10,4 4,6
IQ 5,8 3,4
IDCT 15,12 10, 10
R I-f 12,10 6,8 o
e : executing time
R P-f 12,10 6,8 m : memory usage
out 10 , 10 0 oo C : capacity usage

Figure 7 : Processing element database

2.3.2 Performance evaluation

Since the application is not being executed'.only once but consecutively, we take
throughput as the system performance metric,instead- of the overall execution time of the
application. Take the video compressihg as-an-example. We may compress the entire movie
to a more compact form, e.g. Mpeg4 . Aimovie may contain thousands of frames. Therefore,
when we are evaluating the system performance of the ability of video compressing, we
may take frame per second as the rating of system performance but not second per frame.
As a result, we take throughput as the metric of the system performance. More precisely,
our system performance evaluation is to calculate how many times the application (task

graph) can be executed in a fixed time period.

13

Chapter 3

Task Scheduling

3.1 Assumption

Before we formulate our problem, it is necessary to define the constraints and make

some assumptions.

A task can be implemented by software (program) or hardware (logics). Since the
local memory of processor and total capacity of FPGA is limited, a processor cannot store
infinite tasks and an FPGA cannot implement infinite tasks. Therefore, there are two
constraints should be considered. The first, memory constraint of processor means that the
size of the programs and intermediate data of the tasks which are stored in a processor
cannot exceed the memory size of processor. The second, capacity constraint of FPGA is

similar to the memory constraint. The total logics of the tasks which are implemented in a

14

FPGA cannot exceed maximum capacity of FPGA.

There should be some buffer for executing a task. For example, as shown in Figure 8,
task A will be executed until it receives 4 units data from task B and 2 units data from task
C. Task A needs 6 unit buffer for storing these input data temporarily. Thus the minimum
requirement of input buffer in task A is 6 units. Similarly, when task A is executing, the
generated output data need to be stored in output buffer. So the minimum requirement of

output buffer here is 3 units. Finally, the minimum buffer requirement is 9 (6 + 3) units.

4 ° 2
3
Figure 8 : Task graph example

However, it is not efficient if our buffer is only the sum of input data and output data
for two reasons. First, if task A is executing, there are 4 units data from task B and 2 units
data from task C in input buffer, and output buffer should prepare 3 units for task A, which
means that the buffer is full. Consequently, neither task B nor task C can transmit data to
task A until task A finish executing. This prevents task A from being executed continuously.
Second, if task A is ready to execute, and the output buffer is full (task D does not receive
data or finish receiving data from task A), task A may idle until the output buffer is clear

(task D has received data from task A). As the result, the system performance may be

15

degraded if the buffer size is only the minimum buffer requirement. Obviously, if we set
our minimum buffer requirement equals to 18 units (twice of the minimum buffer
requirement). The buffer works like pingpong buffer. Then, the task can receive data or
transmit data no matter when the task is executing or not. It greatly improves the system
performance. Hence, the reasonable buffer requirement is set to twice of the sum of input

data and output data.

As mentioned before, the sum of the reasonable buffer requirement of the tasks, which

are implemented with the same PE, cannot exceed the maximum capacity of buffer of PE.

If more than two tasks that are implemented on the same FPGA, it is unnecessary to
decide execution order of these tasks. Sincé'the tasks are implemented in different parts of

FPGA, none of them share the sime componéent of FPGA.

If more than two tasks that are implemented on the same processor, we make the
decisions of the execution order of these tasks dynamically. Due to the dynamic behavior
of communication in on-chip network, it is not suitable to decide the execution order of the
tasks in design time. In addition, the application is represented as a task graph (dataflow

graph) that a task is never being executed until its input data arrive.

According to these two reasons, it is suitable to use a dynamic First In First Serve
(FIFS) strategy to decide the execution order of tasks. It is not only flexible to overcome
the uncertainty of network, but also considering about the data availability of tasks to raise

the utilization of processor [15].

16

A FIFS strategy is implemented as a queue. If all the input data are available and

output buffer size is enough, we push this task into the queue. The processor executes the

tasks sequentially in order. The FIFS strategy can be further improved by either

considering the data dependency or replacing it by other algorithms.

3.2 Problem formulation

The task scheduling problem can be formulated as :

Given :

(1) A task graph G(V, E) and the corresponding processing element database.

(2) An NoC platform which has, the following characteristics:

(a)
(b)
(©)
(d)
(e)

with :

mesh size,

local memory size of processor,
total capacity sizé.of FPGA,
buffer size of processing element,

communication bandwidth of each channel,

(1) memory and capacity constraints, and

(2) bufter constraint.

Determine :

The allocation of each task such that system throughput is maximized.

17

3.3 Genetic algorithms

Basically, task scheduling is simply to allocate a set of tasks to resources such that the
performance is optimal. However, it is known as NP-complete. Thus, task scheduling

problem is often handled by heuristic algorithms [8][11][13][14][17].

Nevertheless, there are several important facets that influence the system performance.
First, since the NoC platform contains heterogeneous computing resources, for example, a
task may be suited to be executed on processor rather than on FPGA. Therefore, the
execution time of a task depends on what resource that it uses. Second, the communication
time between tasks highly depends on th&lcommunication distance of the resources. The
communication time can be greatly improved by mapping the communicating tasks onto
the same resources. However, this 'may-wviolate ‘the constraints as mentioned before.
Moreover, suitability of tasks and resources'are not considered. As the result, the task
scheduling problem involves the trade-off among the execution time, communication time

and constraints.

Typically, genetic algorithms (GAs) provide good performance at finding
near-optimal solutions in a large search space. Also, unlike many traditional optimization
techniques, genetic algorithms do not require the knowledge of the search-space, but need
only a measure of the solution [13][18][19]. Consequently, genetic algorithms are quite

suitable for the task scheduling problem.

Genetic algorithms are search algorithms based on the mechanics of natural selection

18

and natural genetics. GAs are differ from other traditional optimization methods in four
fundamental ways [18] :
(1) GAs work with a coding of the parameter set, not the parameter themselves.
(2) GAs search from a population of points, not a single point.
(3) GAs use payoff (objective function) information, not derivatives or other
auxiliary knowledge.

(4) GAs use probabilistic transition rules, not deterministic rules.

The first step to employ GAs is to encode the possible solutions of the optimization
problem as a set of chromosomes (the encoding scheme may differ form problem to
problem, however the simplest way+is to encode it into a string). Each chromosome
represents a solution to the problem. And:a set of solutions is referred to as a population.
The next step is to generate 7an initial® population. The chromosomes in the initial
population are often generated randomly or heutistically. The initial population is also
called the first generation of the evolution. Then, it is necessary to evaluate the fitness of
the chromosomes, where the fitness value represents how good (fit) the chromosome is to

the problem (environment).

Next, the GAs perform evolution process to optimize the population generation by
generation using genetic operators: selection, mating, and mutation. During the evolution
process, the GAs select chromosomes from current generation according to their fitness
value, where the higher fitness the chromosome has, the higher probability it will be
selected. By performing mating and mutation to the selected chromosomes, the next

generation is generated by means of exploring the search-space. At last, the chromosomes

19

in the next generation are evaluated to obtain its fitness value, and then add the next
generation to the current generation. Some bad chromosomes in the population may be

discarded to keep a fixed-size population.

Finally, the GAs continue evolution process until the termination condition has bean

met. When the GAs terminates, the best chromosome is the final result to the problem.

3.4 GA-based task scheduling flow

The GA-based task scheduling flow is illustrated in Figure 9. First, we generate an
initial population. Next, the evolution process tries to explore the search space until it
reaches the termination condition.*Finally;ithe best’chromosome in the population is our

solution.

Initial Population)

Evolution

no

?

Saturation ? _>

Figure 9 : Task scheduling flow

20

3.5 Initial population

For initial population, each chromosome is generated using a meta-random scheme
which is divided into two steps:
(1) The tasks in the task graph are sorted in topological order.
(2) The tasks are mapped onto the NoC platform sequentially in this order.
During step 2, we must consider 3 conditions:
(a) If the task has no precedence, the task is mapped randomly.
(b) If the task has only one precedence, the task is mapped according to the
allocation of its precedence,
(c) If the task has two or ndore than two precedence, the task is mapped according to
not only the allocation of its ptecedence but also the communication amount

between the task and its precedence.

Take the task graph in Figure 10 as an example. First, we perform topological sort on
the task graph, and the topological order is given by A, B, C, D. Next, task A is randomly
mapped to the NoC platform. Then, task B and task C are mapped according to the
allocation of task A. As shown as Figure 11, task B and task C have higher probability to
be mapped onto the allocations that close to task A. Finally, task D is mapped according to
the allocations of task B and task C. Obviously, edge B—D and edge C—D has different
communication amount. Therefore, the probability should be higher for the allocations that
near to task B than those near to task C. Figure 11 shows how to calculate the probability

of each allocation that task D are mapped.

21

Figure 10 : Task graph example

sequence weight Probability Allocation
O @& O
A |HDEDEEEDOO

0oQ
AR BER| R
sc | 1) Bt s+ [O
OOO
) [(]
) [[
& [
+
ajal
v [BEE
]
OEE

5] []

= =
HH
= =
H!

[7] o] [¢]

i ol 54+ B [

NN

Figure 11 : Generate an initial solution

22

During the process of generating a chromosome, the constraints are also needed to be
considered. The tasks cannot be assigned to the allocations in which the constraints may be
violated. The initial population is generated with a fixed number of chromosomes which is
generated by the meta-random scheme. Then, the fitness value of each chromosome is

evaluated.

There are two reasons why we use a meta-random scheme to generate a chromosome.
First, a pure random scheme may cause a very bad performance. Second, the diversity of
the chromosomes in the initial population should be kept as high as possible so that the
GAs have higher probability to explore larger search-space. Due to these two reasons, we
use a meta-random scheme to generate the chromosomes which not only consider the

performance issue but also the diversity issue.

3.6 Evolution

GAs try to explore the search space using the three genetic operators: selection,

mating, and mutation. The evolution flow is illustrated in Figure 12.

Initial Population) 7 *
— Selection
A 1 ‘‘‘‘‘‘‘‘‘‘‘
Evolution Mating
& i
3 Mutation |
no v | T :
\ 1 [
\ A A g
Saturation ? > Simulation
et \
yes Y Insertion |
.) | e e e I
Finish : 1

Figure 12 : The evolution flow

23

3.6.1 Selection

Due to the principle of eugenics, an individual (chromosome) which has higher fitness
value has higher probability to produce next generation. Therefore, we select pairs of
parents from the population using roulette wheel method [18]. Each chromosome in the
population has roulette wheel slot sized in proportion to its fitness value. Then the
chromosome is selected by spinning the roulette wheel. Take Figure 13 as an example,
chromosome A has the largest fitness value, so it occupies the largest size in the roulette
wheel. By spinning roulette wheel many times, the selected chromosomes are going to

mate in the next step.

chromosome fitness

m|(O|O|m@|>
R WNAO

Figure 13 : Roulette wheel method

3.6.2 Mating

GAs use mating to explore the search space and try to find the local optimal. In the
nature, the children inherit the features from parents. For example, if parents have big eyes,
their children usually have big eyes, too. So as in GAs, the generated chromosomes inherit

the features from their parents.

24

First of all, it is needed to explain how the traditional mating scheme works. But,
before we talk about the traditional mating scheme, it is necessary to introduce the
traditional representation of chromosomes. Each chromosome is represented as a string,
and each word in the string represents the allocation of the corresponding task. As shown
in Figure 14, the chromosome is represented as a string {(0,0), (1,1), (2,1), (3,1), (1,1)},
which indicates that task A is in (0,0), task B is in (1,1), and so on.

col

(Al

E%E —> {(00), (L), (2,1), 3.), (1,1)}

NG

(row, col)

Figure 14 : Traditional chromosome representation

The traditional mating schemes consist of single-point crossover, two-point crossover,
etc. As illustrate in Figure 15, single-point crossover first randomly selects a cross point of
two parents, and then exchange the sub-string between the cross point and the end of the
string. As the name implies, two-point crossover use two randomly selected cross points to
choose the sub-string to be exchanged. However, both of these two mating schemes do not

consider the dependency of tasks.

Single-point crossover Two-point crossover
Parents Parents
Children Children
/ 4 X
cross point cross point

Figure 15 : Traditional mating schemes

25

Unlike the traditional mating schemes, we propose two different mating schemes
which consider the dependency of tasks to obtain better performance in communication.
Different from the traditional representations, the representation of our chromosome is a
graph, where each word in the vertex indicates the allocations of corresponding tasks. As
illustrated in Figure 16, the top vertex of the chromosome indicates that task A is in (0,0),
the top-right vertex indicates that task B is in (1,1), and so on. Hence, our representation is
capable of representing the dependency between tasks where the string representation

cannot provide these important information.

® D

) A0 2y
® | —pOuog _
0 6)

G [o} I[] @

Task graph Solution Chromosome

Figure 16 : Our chromosome representation

The first mating scheme we proposed is sub-graph crossover which exchanges a
sub-graph in a well-coded representation. Figure 17 illustrates the exchanging process of
sub-graph crossover. At first, we randomly select a number x between 1~n-1 (where n is
the total task number). Second, we randomly choose a task at the task graph and then
perform breadth first search (BFS) starting from task until the number of visiting tasks
reaches x. At last, the sub-graph is found, and we can exchange the sub-graph to produce

the next generation.

26

Parents Children

Figure 17 : Sub-graph crossover

Although sub-graph crossover considers the dependency of tasks, it is still not good
enough. It can be further improved by taking the suitability between the parents and the
exchanged sub-graph into account. The higher fitness the chromosome has, the higher
probability the chromosome will be'selected to be parent. In other words, the selected
parents usually provide good performance:-lt-is-not wise to change the parents in a big way,
because this may destroy the original structure-0f parents and then get a bad chromosome.
Hence, shape crossover is proposed to raise the suitability between the parents and the
exchanged sub-graph. As shown in Figure 18, the allocations of tasks in the sub-graph
construct a shape. Obviously, if we exchange S and Sg directly in the absolute position, it
will destroy the original structure. Since the communication between original A and Sa
may be good. But after exchanging, original A and Sg may be too far to communicate to
each other. Therefore, the clever way is to exchange Sg and Sy, in the relative position, and

then the structure is not destroyed but makes a little change.

27

(1)

2

Figure 18 : Shape of sub graph

The details of shape crossover are described as following steps:

Assume dad A and mom B produce son C.

Randomly choose a sub—graph,‘ and then find ﬁhe allocations of the corresponding
tasks, which construct a shape. Take Figure 18 as an example, the allocations of the
corresponding tasks are S, and Sk, respectively:

Rotate and reflect Sg in 8 conditions (rotate 0", 90°, 180", 270° and reflect the above)
which is illustrated in Figure 19. And then shift these shapes to an appropriate position
which makes the gravity center of each shape as close as to that of Ss. Figure 20

shows the process of shifting Sgg to Sa.

rotate O°

rotate 90°

rotate 180°

rotate 270°

S, .
[
[]

S

‘mom
0

Ses M
]
[]

S

B4

[]
-

reflect

reflect

reflect

reflect

Ses .
(1N
[]

SB6

[
]

Ser .
]
[]

S

BN
[]

Figure 19 : Rotate and reflect Sg

28

] S -
LI H N
| 000 " -
gravg]%/ é:enter CICICIEIE] gravity center
g OO0 f S

Figure 20 : Shift Sgg close to Sa

OO0O00
COOOmO
W00
LM
OOOom

(3) After step (2), we get 8 solutions. It is necessary to estimate which solution is the best
among these 8 solutions. The way we estimate these solutions is to calculate the
communication overhead that they cause. The communication overhead is defined as
Yc¢i*d; where ¢; is input or output communication amount of the sub-graph and d; is the
Manhattan distance of that.‘communication. For example, the communication
overhead of Sgg = 5*1+4*4+2%2+3*1+2%3+1*4-= 38 which is shown in Figure 21.
The first term 5*1 is the top-left vertex-of-the sub-graph where 5 is the communication

amount, 1 is the Manhattan distance between (1,2) and (1,1), and so on.

O8O0
(NN
O0mof =—»
OO0
OOO0n

Figure 21 : Communication overhead of Sgg

29

After calculating the communication overhead of these 8 solutions, the final result is

the solution with minimum communication overhead that causes by Sg.

During the step (2), some of the tasks may violate the constraints and lead to an
infeasible solution. Therefore, we must repair the tasks which violate the constraints. The
repair method is similar to the second step in generating the chromosome of the initial
population. The different is that we just map the tasks which violate the constraints but not

all tasks in the task graph.

3.6.3 Mutation

The goal of mutation is to prevent GAs from finding just local optimal. By randomly
change the feature of the chromosomeé; the-chromoseome may have the opportunity to reach
or get close to the global optimal. Our mutation'scheme first selects a task at random. Next,
the selected task has a probability to move to a random allocation. Also, the new allocation

must satisfy the constraints. Here is an example in Figure 22.

LI Al LICIEIAIL]
[J[o][c]][] [I[o][c]I[]
O0@ECL = COO0EC
LIOIOE] LE O]
NN Hinmn

1. Randomly select a task : 2. Randomly move to
task E new allocation

Figure 22 : Mutation example

30

3.6.4 Simulation

After mating and mutation, it is necessary to evaluate the fitness value of each new
generated chromosome. We use high-level simulation to obtain the throughput of every

new generated chromosome. Figure 23 demonstrates our simulation flow.

S Selection | /| |Buffer length |

/ 1 ---------------- & 7 assignment |

] /0 1

Evolution Mating | | : :
: & /,/ DlscreFe

| Mutation | / SUEnEEhen

\ 1, simulation |

\ S 1

\ . : 8 :

\ Simulation Calculate the |

[I > throughput |

‘:\ Insertion |
[Finish J

Figure 23 : Simulation flow

At first, the buffer length assignment of each task is conducted. We assign input and
output buffer to every task equally and make sure that each task has one input and output

buffer shown in Figure 24.

31

NI

Buffer @ @

E%S %5

Figure 24 : Buffer length assignment

Second, since there are many dynamic,behaviors when executing the application (task
graph) consecutively using our platfornijand the time to find out the throughput of the
chromosome must be short. It'is"not feasible to use a simple scheduling scheme or a
simulation in the cycle-accurate level to-obtain the throughput of each chromosome.
Therefore, by considering both the dynamic'behaviors and time issue, we use a discrete
event-driven simulation in signal-accurate level to evaluate each chromosome. In this
environment, each communication time must be estimated in a fixed value. For simplicity,
XY routing is used to route the communication paths. By assuming that contention always

happens, the communication time is estimated under pipeline manner [14].

There are two kinds of event in this discrete event-driven simulation: computation
event and communication event. The computation event of a task represents that the task
finish executing, and is ready to transmit data to its successors. In FPGA, when all input
data arrive and the output buffer size is large enough, the computation event is inserted into

the time queue with the time equals to the current time plus computation time. In processor,

32

the event will not be directly inserted to the time queue, but arranged by the scheduler
(FIFS) of processor that we mentioned before. The communication event between tasks
represents that the successor receives data from predecessor. When the input buffer of the
successor is large enough, the communication event is inserted to the time queue with the
time equals to the current time plus communication time. Figure 25 shows an example,
where the number in the vertex is the computation time of the task, and the number on the
edge is the communication time of the data transmission. Table 1 explicitly describes the

steps of the simulation.

step 1 : Current time = 3, execute computation event A.

step 2: Current time = 3, after/executing computation event A, the data is transmitted to
task C, and then it arfives at time = 3+5=8, therefore insert a communication
event A—C with time =8,

step 3 : Current time = 4, execute computation event B.

step 4 : Current time = 4, after executing computation event B, the data is transmitted to
task C, and then it arrives at time = 4+3=7, therefore insert a communication
event B—C with time = 7.

step 5: Current time = 7, the data is transmitted from task B to task C.

step 6 : Current time = 8, the data is transmitted from task A to task C.

step 7: Current time = 8, since all input data of task C arrive, insert a computation event
of task C with time = 8+2=10.

step 8 : Current time = 10, execute computation event C.

Table 1 : The steps of discrete event-driven simulation

33

1 A time queue time queue
B - 0 0
~ 1 1

. 2 2

N 3 A 3

5 B 4 B 4

3 5 5
6 . 6

& - &

~~-> [A>C

C 9 9
10 10
3 11 11
12 12
13 13
14 14
D 15 15
3 A time queue time queue
0 0

1 1

2 2

A 3 A 3

B 4 B 4

5 5

6 6

7 =>[B->C 7

8 A->C 8

C 9 9
10 10

3 11 11

12 12

13 13

14 14

D 15 D 15
time queue 6 time queue

q 6| A q

0 B 0

1 1

2 2

A 3 A 3

B 4 5 B 4

5 3 5

6 6

v [B>C 7 B->C 7

A>C| 8 c e _-'[asc| s

9 | L/ TTTTtee--- 9

10 10

11 3 11

12 12

13 13

14 14

15 D 15

time queue time queue

0 0

1 1

2 2

A 3 A 3

B 4 B 4

5 5

6 6

B->C 7 B->C 7

A->C 8 A->C 8

9 9

__-v C T Y R - C 10

"""""" 11 Tt 11

12 12

13 13

14 14

15 15

Figure 25 : Discrete event simulation example

34

By continuously input the data to the NoC platform, the output data are sequentially
generated at different times, which are recorded to the profile. After simulation, we are able
to calculate the throughput of the chromosome from the profile. The data generation rate is
taken as system throughput when the system is stable. As shown in Figure 26, data

generation rate equals 0.8 (4/5).

input __ | NoC | output

data Platform data
0 5 10 15
—oo—p-o0—o—+to—o0—o0—ol—> time
gy
Jtable 0 : output data

Figure 26, Calculate throughput

3.6.5 Insertion

The last step of evolution is insertion. After calculate the fitness value of every new
chromosome, we insert these chromosomes into current population. Due to the population
size being fixed, we must remove some chromosomes. According to selection of natures,
the redundant chromosomes with low fitness value are discarded. Here is an example in
Figure 27. After we insert new chromosomes to current population, we sort the population
in decreasing order by fitness value. And then the bad chromosomes are discarded to keep

a fixed-size population.

35

current

3.7 Termination

Figure 27 : Insertion

GAs terminate until the fitness value, of the best chromosome is saturated during the

evolution process or the generation .numb_e;I |reac"hes d.pre-defined number.
= F—HAE] Y %

i
e
. 1

36

Chapter 4
Experimental:Results

4.1 Experimental flow

Figure 28 demonstrates our experimental flow. At first, we exploit Task Graphs for
Free (TGFF) [20], which is a user-controllable, general-purpose, pseudorandom task graph
generator, to generate random cases. And then, the generated task graphs are scheduled by

our task scheduling tool. Finally, we can analyze the experimental results.

Task
Scheduling

v

Task Graph >
\/_

Figure 28 : Experimental flow

TGFF

37

We use TGFF to generate many task graphs. Each task graph contains a netlist and
tables for related information. For example, Figure 29 (a) is a netlist, where “TASK”
represents a task and the following are the task name and computation information which
is specified in Figure 29 (c¢) (processing element database). As well, “ARC” represents a
data transmission from the former to the later, and the corresponding communication
amount is given in Figure 29 (d). In the computation table, “uP” and “fpga” represent the
computation time in processor and FPGA, respectively. “memory” and “capacity” are the
memory and capacity usage of processor and FPGA. The TGFF output file and its

corresponding task graph is shown in Figure 29 (b).

@TASK_GRAPH 0 {
PERIOD 1659
T EEEEEE 1
1 TASK10 0 _ TYPE2_
TASKt0 1 TYPE73 35 1
TASKt0_ 2 TYPE 14
TASKt0 3 TYPES1

ARCa0_0 FROMt0_O TO t0_1TYPE 35
ARCa0 1_ FROMt0_Q TO t0 2 TYPE 11 30 47

o= - = SIS S e e S e S S

{ARCa0_2 FROM10_1 TO t0_3 TYPE 30

1
_______________________]

ARCa0_3 ~ FROMt0_2 TO {0 3 TYPE 47

(@) Netlist (b) Task graph

@computation 0 { @communication 0 {
. #H
type ubP memory fpga capacity #type amount

0 55.7067 163.892 151.128 178.518 0 155.707

1 64.9349 152.398 159.265 175.757 1 151.676

2 75.4444 160.801 166.259 193.153 2 158.991

3 525038 157.158 152.051 153.982 3 153.979

4 66.1995 175.019 170.291 192.132 4 194.139

5 56.5161 151.905 154.492 159.021 5 160.684
} }

(c) Computation table (d) Communication table

Figure 29 : TGFF output file

38

4.2 Analysis of performance of GAs

In this experiment, we compare the traditional mating schemes and our mating

schemes. The parameters of GAs are shown in Table 2.

Cross rate 40%
Mutation rate 20%
Population 400

Max generation 1000

Table 2 : The parameters of GAs

Cross rate means that 40% of populationis going to mate. Mutation rate means that
every new generated chromosome ‘has the probability of 20% to perform mutation. The
whole population is set to 400 chromosomes.’ The algorithm terminates until the

performance of the best chromosome 1s saturated or when it reach max generation.

We generate 20 random task graphs and each task graph contains 270 ~ 330 tasks. The
computation time of each task is set to 150 ~ 200 time unit on FPGA and 50 ~ 67 time unit
on processor. When two or more than two tasks that are mapped onto a processor, the
processor needs to schedule the tasks. Therefore, we set the computation time of each task
on processor 1/3 times of that on FPGA, such that total computation time of tasks on
processor or FPGA is more balance. The communication amount is 150 ~ 200 data unit,
and the maximum fanin/out of each task is 6. The memory and capacity usage of each task

1s set to 150 ~ 200.

39

The communication time is the communication amount divided by channel bandwidth
without any contention. Here, the channel bandwidth is set 1 ~ 4 (data unit / time unit),
such that the ratio of computation time to communication time (no contention) is 1 ~ 4.
When the ratio is low (e.g., 1), the system is computation intensive. When the ratio is high

(e.g., 4), the system is communication intensive.

The resource location of our platform is shown in Figure 30. The topology is like a
chessboard, and the mesh size is 7 x 7. The memory of processor and capacity of FPGA are

set to 1800. The buffer size of each PE is 12000 (data unit).

P Processor

FPGA

Figure 30 : Resource location

The system performance improved rate of four mating schemes with four ratio (1~4)
are shown in Figure 31. Since sub-graph crossover considers the dependency of tasks, the
improved rate of GAs that using sub-graph crossover outperforms those use traditional
single point-crossover and two-point crossover. This implies that the mating schemes
should consider the dependency of tasks. In addition, shape crossover not only inherits the

features of sub-graph crossover but also consider about the suitability issues. As a result,

40

shape crossover outperforms all other mating schemes. In Figure 32, the saturation time of

shape crossover is less than others. Shape crossover provides better results and shorter

computation times than other mating schemes.

Communication
intensive

Computation
intensive

T -T . . :
Improve rate = (T rancom) , Ratio = comp. time / commu. time
random
Ratio random 1 point 2 point | sub-graph shape
0% 120% 123% 129% 139%
2 0% 124% 135% 140% 150%
3 0% 124% 131% 133% 140%
4 0% 123% 126 % 137% 139%
*Average of 20 cases
160%
140% |
120% O random
100% | Eip
80% F O2p
60% | O sub-g
40% B shape
20% F
0%
3 4

Figure 31 : The improvement of 4 mating schemes

41

Saturation time (generation)

Ratio 1 point 2 point | sub-graph shape
1 845 801 786 765
2 843 845 861 832
3 866 836 818 811
4 840 838 824 711

*Average of 20 cases

880
860 |-
840
820
800
780
760
740
720
700

O1p
M 2p
O sub-g
O shape

Figure 32 : Saturation time of4 mating schemes

42

Chapter 5
Conclusions and“Future Works

5.1 Conclusions

In this thesis, we solve the multi-constraints task scheduling problem. By mapping the
task scheduling problem to GA-domain, this problem is solved in an efficient way. Since
the traditional mating schemes in GAs do not consider the dependency of the task graph,
we propose both sub-graph and shape crossover to overcome this issue. We also construct a
high-level simulator to evaluate our solutions. This is not only fast but also accurate. The
experimental results show that our mating schemes provide better performance and require

less computation time than traditional ones.

43

5.2 Future works

It is found that buffer-size for every input/output of task has great impact on system
performance. If the buffer-size is unlimited, the data transmission can always be accepted,
and the utilization of communication resources will be maximized so that system
performance is also improved. However, due to the lack of on-chip memory, unlimited
buffer-size is impossible. An algorithm must be developed to optimize the buffer-length of
each input/output instead of equally-distributed, such that the system performs well with

limited buffer size.

Resource location is also important.If weé.do not consider the relationship between
topology of resource location= and application, the system may not perform well.
Consequently, given a specific application and-several platforms with different topologies,

an algorithm must be developed to find out the most suitable platform for the application.

44

Reference

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

Axel Jantsch and Hannu Tenhunen, Networks on Chip, Kluwer Academic Publishers,
2003.

Luca Benini and Giovanni De Micheli, “Networks On Chips: A New SoC
Paradigm,” in Computer Jan. 2002, Volume 35, Issue 1, pp. 70-78.

Davide Berozzi and Luca Benini, “Xpipes: A Network-on-Chip Architecture for
Gigascale Systems-on-Chip,” in Circuit and Systems Magazine 2004, Volume 4,
Issue 2, pp. 18-31.

Cesar Albenes Zeferino and Altamiro Aimsdeu Susin, “SoCIN: A Parametric and
Scalable Network-on-Chip;” in Proceedings of the 16th Symposium on Integrated
Circuits and Systems Design, Sep. 2003, pp. 1692174.

Pierre Guerrier and Alain Greiner, “A “Generic Architecture for On-Chip
Packet-Switched Interconnections,” in proceedings of the conference on Design,
automation and test in Europe, 2000, pp. 250-256.

Alan Allan, Don Edenfeld, William J. Joyber, Jr, Andrew B. Kahng, Mike Rodgers
and Yervant Zorian, “2001 Technology Roadmap for Semiconductors,” in IEEE
computer, Jan. 2002, pp.42-53.

William J. Dally and Brian Towles, “Route Packets, Not Wires: On-Chip
Interconnection Networks,” in Proceedings of the Design Automation Conference,
June 2001, pp. 684-689.

Jingcao Hu and Radu Marculescu, “Energy- and Performance-Aware Mapping of

Regular NoC Architectures,” on IEEE transactions on Computer-Aided Design of

45

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Integrated Circuits and Systems, April 2005, Volume 24, Issue 4, pp.551-562.

Shashi Kumar, Axel Jantsch, Juha-Pekka Soininen, Martti Forsell, Mikaek Millberg,
Johny Oberg, Kari Tiensyrji and Ahmed Hemani, “A Network on Chip Architecture
and Design Methodology,” in Proceedings of IEEE Computer Society Annual
Symposium on VLSI, April 2002, pp. 105-112.

Daniel Wiklund and Dake Liu, “SoCBUS: Switched Network on Chip for Hard Real
Time Embedded Systems,” in Proceedings of the Parallel and Distributed
Processing Symposium, April 2003.

Jingcao Hu and Radu Marculescu, “Energy-Aware Mapping for Tile-based NoC
Architectures Under Performance Constraints,” in Proceedings of Asia & South
Pacific Design Automation Conference, Jan. 2003, pp. 233-239.

Srinivasan Murali and Gievanni De Micheli, “Bandwidth-Constrained Mapping of
Cores onto NOC Architectures,” in-Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition, Feb: 2004, volume. 2, pp. 896-901.

Tang. Lei and Shashi Kumar, “A Two-Step Genetic Algorithm for Mapping Task
Graphs to a Network on Chip Architecture,” in Proceedings of Euromicro
Symposium on Digital System Design, Sep. 2003, pp. 180-187.

Liang-Yu Lin, Cheng-Yeh Wang, Pao-Jui Huang, Chih-Chieh Chou and Jing-Yang
Jou, “Communication-driven Task Binding for Multiprocessor with Latency
Insensitive Network-on-Chip,” Asia and South Pacific Design Automation
Conference, Jan. 2005.

R.J.H. Hoes, “Predictable Dynamic Behavior in NoC-based Multiprocessor
System-on-Chip,” M.Sc. Thesis, TUE, Eindhoven, Dec. 2004.

Edward Ashford Lee and Soonhoi Ha, “Scheduling Strategies for Multiprocessor

46

Real-Time DSP,” in Global Telecommunication Conference and Exhibitions, Nov.
1989, Volume 2, pp. 1279-1283.

[17] Kenjiro Taura and Andrew Chien, “A Heuristic Algorithm for Mapping
Communicating Tasks on Heterogeneous Resources,” in Proceedings of 9th
Heterogeneous Computing Workshop, May 2000, pp. 102-115.

[18] David E. Goldberg, Genetic Algorithms in Search, Optimization & Machine
Learning, Addison-Wesley Publishers, 1989.

[19] Baxter, M. J., Tokhi, M. O. and Fleming, P. J. “An Investigation of the
Heterogeneous Mapping Problem Using Genetic Algorithms,” on CONTROL '96,
UKACC International Conference, Sep. 1996, Volume 1, pp. 448-453.

[20] Robert P. Dick, David L. Rhodes and Wayne ' Wolf, “TGFF: Task Graphs for Free,” in
proceeding of the 6™ International Workshop.on-Hardware/Software Codesign, 1998,

pp. 97-101.

47

Vita

Wan-His Hsieh was born in Taoyuan, Taiwan on August 6, 1981. He received the B.S.
degree in Electrical Engineering from National Central University in June 2003 and
entered the Institute of Electronics, National Chiao Tung University in September 2003.
His research interests include electronic design automation (EDA) and VLSI design. He

received the M.S. degree from National Chiao Tung University in June 2005.

48

