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摘要 

因為渦輪碼擁有非常好的錯誤更正能力，所以在近 10 年它已經

成為無線通訊中相當重要的一種改錯碼技術。然而一個好的渦輪碼通

常需要很長的交錯器，長的交錯器雖然能夠提升渦輪碼的性能但也造

成冗長的解碼延遲以及需要大量的儲存記憶體。此外，因為渦輪碼有

error floor 的現象導致在高的 SNR 時它無法達到很低的錯誤率。 

 在這篇論文中我們提出了一種使用事先資訊之三元渦輪編碼調

變系統，簡稱為鑲入已知資訊之三元渦輪編碼調變。相較於使用交錯

器長度 20730 的一般渦輪碼，使用交錯器長度 800 的鑲入已知資訊之

三元渦輪編碼調變不但可以節省 86%的記憶體並且降低 94%的解碼

延遲。另外在錯誤率 10-5和 10-6之下，此系統比一般渦輪編碼器還要

好 0.2dB 和 0.6dB。 
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ABSTRACT 

Recently, (binary) turbo code is one of most important coding techniques for 

wireless communication due to its excellent error correction ability. The main problem 

of turbo code is that using a long interleaver is able to support its remarkable 

performance, but a long decoding latency and huge memory size are introduced. 

Moreover, at high SNR, the error floor phenomenon causes that turbo code unable to 

achieve very low bit error rates. 

In this thesis the ternary turbo coded modulation using embedded prior 

information, in short, called EPI TTC is presented. Comparison with binary turbo code 

with interleaver size of 20730, the proposed system with interleaver size of 800 can 

save not only memory size about 86% but also decoding latency about 94%. In addition, 

it has 0.2 dB and 0.6 dB performance gains than binary turbo code at BER of 10-5 and 

10-6, separately. 
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Chapter1 Introduction 

1.1 Motivation 

In the last decade, turbo code is one of most important coding techniques for wireless 

communication due to its excellent error correction ability. The main problem with 

turbo code is that a long interleaver is able to support its exceptional performance, but a 

long decoding latency and huge memory size are introduced. The second problem 

about turbo code is error floor effect that causes turbo code unable to satisfy the 

requirement of very low bit error rates. The occasion of main problem with turbo code 

originates form long interleaver, and second problem is caused by relative small of 

minimum code free distance. In general, to concatenate a RS code before turbo code 

can easily solve the error floor effect. However it decreases the data rate. 

 Our work is motivated by the need to achieve large coding gains where the 

required interleaver size is as small as possible and the data rate is not reduced. Firstly, 

the trellis coded modulation technique is considered since it can introduce additional 

coding by constellation expansion, but keeping constant data rate. Then, we are 

interested in building a coded modulation system for the transmission of a 3-ary signal 

constellation over an additive white Gaussian noise (AWGN) channel. Fig. 1.1 

illustrates this idea where System 1 is binary turbo code with long interleaver and 

modulated by BPSK and the question mark in System 2 is the coding system that we 

want to design. The design challenge is how to design a coded modulation system 

which has not only excellence performance as binary turbo code with long interleaver 

size but also small latency. Finally the ternary turbo coded modulation is adopted since 

its property is similar to binary turbo code and its codeword sequences can be direct 

modulated by 3PSK. 

 1



 
Fig. 1.1 Block diagram of the different systems 

 

In this thesis, the ternary coded modulation using embedded prior information is 

presented. The proposed coding system with interleaver size of 800 has not only better 

performance but also lower error floor effect than binary turbo with interleaver size of 

20730. In addition, it can save not only memory size about 86% but also decoding 

latency about 94%. 

 

1.2 Thesis Organization 

 This thesis consists of 6 chapters. In chapter 2, the binary turbo code included 

structure of turbo coding, decoding algorithm and its relative techniques, is introduced. 

The concept of ternary turbo code and some property comparisons between binary 

turbo code and ternary turbo code is described in Chapter 3. In chapter 4, the proposed 

system is presented, and some performance effects introduced by known digits will be 

discussed. In chapter 5, simulation will be shown to verify the performance of proposed 

system has better performance gain than binary turbo code system. However, the 

hardware and computing complexity will discuss in this chapter. Finally, conclusion 

and future work are made in chapter 6. 
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Chapter2 Reviews of Turbo Code 

The turbo code [1] over GF(2) was first proposed by C. Berrou, A. Glavieux, and P. 

Thitimajshima in 1993. The performance in terms of bit error rate (BER) has been 

proved to close to the Shannon limit. The basic elements in turbo coding include 

reliability-based, iterative decoding and random interleaver. Reliability-based means 

that turbo code employs soft-input soft-output (SISO) maximum-a-posteriori (MAP) 

decoders for the component codes. Iterative decoding signifies that turbo decoder uses 

extrinsic information, the symbol reliability, from a component decoder feedback to 

other one, and vice versa. Random interleaver is to ensure that, at each iteration the 

component MAP decoders get independent estimates on the information symbols.  

 The turbo code is now adopted by many standards listed in Table 2.1 due to its 

excellent error correction ability. In this chapter, we’ll describe the principle of turbo 

coding. 

 

Table 2.1 Standard specifications for turbo coding 

Standard Application Iterative Code Max. Throughput 

DVB-RCS 
Digital video 

broadcast 

Parallel conc. of 

8-state conv. codes 
68 Mb/s (rate 7/8) 

IEEE 802.16 
Wireless networking 

(MAN) 
Turbo product codes 25 Mb/s (rate 5/6) 

3GPP UMTS Wireless cellular 
Parallel conc. of 

8-state conv. codes 
2 Mb/s (rate 1/3) 

3GPP2 CDMA2000 Wireless cellular 
Parallel conc. of 

8-state conv. codes 
3.09 Mb/s (rate 1/5) 

CCSDS Space telemetry 
Parallel conc. of 

16-state conv. codes 
384 kb/s (rate 1/2) 
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2.1: The Structure of Turbo Code 

2.1.1: Encoder of Turbo Code 

The turbo encoder is built with a parallel concatenation of two recursive 

systematic convolutional (RSC) encoders and separating them by an interleaver. The 

two RSC encoders are also called component codes of the turbo code. The interleaver is 

a pseudo-random block scrambler. In a pseudo-random interleaver, a block of N input 

bits is read into the interleaver and read out pseudo-randomly. Note that the encoder 

structure is called parallel concatenation because each RSC encoder operates on the 

same set of input data but in different order, due to the presence of an interleaver. A 

block diagram of a rate 1/3 turbo encoder with constraint length 3 is shown in Fig 2.1. 

The generator matrix for a rate 1/2 component RSC code can be represented as 

polynomial matrix G(D) or octal matrix G. 

2

1 5( ) 1  or G=[1 ]
1

DG D
D D
+⎡ ⎤= ⎢ ⎥+ +⎣ ⎦

 
7                       (2.1) 

 In a rate 1/2 RSC encoder, each input massage is encoded as one systematic bit and 

one parity check bits. In turbo encoder, two RSC encoders encode the same input 

message sequence, individually, but in the different order. In order to increase the code 

rate of turbo code, the systematic bits of RSC Encoder 2 are not transmitted. Therefore, 

the output sequence of turbo encoder should be {X0, Y10, Y20, X1, Y11, Y21, …}, and the 

overall code rate is 1/3 as shown in Fig. 2.1. 

 After encoding a block included N input messages, transmission of some tail bits 

to drive the encoder to the all zero state is required. It makes sure that the initial state for 

next block is the all-zero state. The numbers of tail bit are equal to register numbers of 

RSC encoder. Since the component encoders are recursive, it is impossible to terminate 

the trellis to all zero state only by transmitting dummy zeros directly. A simple solution 

to solve this problem is provided in Fig 2.2. The switch of each component encoder is 
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set to position “A” for inputting N messages, and then the position of switch is changed 

to “B” for 2 tail bits in an example of a rate 1/2 RSC encoder with memory order 2. This 

will force all registers of RSC encoder to zeros and thus the trellis return to all zero 

state. 

 

 
Fig. 2.1 The structure of turbo encoder 

 

 

 

Fig. 2.2 Trellis termination for component RSC encoder 
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2.1.2: Interleaver 

In the turbo code, the interleaver is to construct a long block code from small 

memory component convolutional codes. Secondly, it spreads out the burst error and 

de-correlates the input of two RSC encoders that iterative decoding algorithm can be 

applied between two component decoders. Lastly, the interleaver can reduce low 

weight codewords that reduce the coding gain. In [2][3], it uses analytical 

upper-bounding technique to show that a turbo code with RSC component codes can 

produce an interleaving gain. The performance upper-bound of turbo code is based on 

uniform random interlever. The result points out that the bit-error-probability upper 

bound of turbo code is approximately proportional to 1/N, where N is the block length 

of interleaver, and the factor “1/N” is also called the interleaver gain. The error 

performance of turbo code at low BER’s is dominated by the interleaver size. Low 

weight codwords dominate the turbo code performance at high BER’s, and are 

produced by low weight input sequence. However, the interleaver structure affects the 

mapping of low weight input sequences to the interleaver output and its size and 

structure play an important role in the asymptotic performance of the turbo code. 

 

 

Fig. 2.3 The 3GPP2 inteleaver for 3GPP2 standard 
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Table 2.2 3GPP2 interleaver parameter 

3GPP2 Interleaver Block 

Length Nturbo 

3GPP2 Interleaver 

Parameter n 

210 3 

378 4 

402 4 

570 5 

762 5 

786 5 

1,146 6 

1,530 6 

1,554 6 

2,298 7 

2,322 7 

3,066 7 

3,090 7 

3,858 7 

4,602 8 

6,138 8 

9,210 9 

12,282 9 

20,730 10 

 

In this thesis, the performances of turbo code will be compared with a complex 
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interleaver, S-Random interleaver[4] and a structured interleaver, 3GPP2 interleaver 

[5], so only both interleaver are introduced. An S-Random address generator, or an 

S-Random interleaver, is defined as follows. A new randomly selected integer is 

compared to the S1 previously selected integers. If the absolute value of the difference 

between the current selected integer and any of the S1 previous selected integers is 

smaller than S2, then the current selected integer is rejected. The S1 and S2 are two 

integers smaller than N. This process is repeated until all N integers are selected. The 

3GPP2 address generator provides the different block length N from maximum block 

length of 20,739 to minimum block length of 378. Fig 2.3 shows the procedure of 

3GPP2 permutation in 3GPP2 standard. Detail supported block lengths and its 

corresponded parameter n are listed in Table 2.2. In next section, the performance 

comparison between S-Random interleaver and 3GPP2 interleaver will show. 

 

2.1.3: Decoder of Turbo Code 

 Exchanging soft information among the receiver parts is the main idea for turbo 

iterative decoding. The principle is illustrated in Fig. 2.4, where Rs is the received 

systematic information sequence, Rpl and Rp2 are the received parity information 

sequences generated by the first component RSC encoder and the second component 

RSC encoder, separately.  

 

Fig. 2.4 The structure of turbo decoding 
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The general turbo decoding consists of two component decoders, which are 

soft-in/soft-out (SISO) decoders serially concatenated via an interleaver and a 

de-interleaver. The component decoder can be implemented based on either maximum 

a posteriori probability (MAP) algorithm [6], or soft-output Viterbi algorithm (SOVA) 

[7], which will be discussed particularly in the next section. In first iteration, the 

decoder, DEC 1, takes Rs and Rp1 as input to produces a soft output Lex1 called  

 

 
Fig. 2.5 Performance comparison under different iteration numbers in S-Random 

interleaver, S=10 (N=1530, code rate=1/3, state 4, MAP algorithm, BPSK) 

 

extrinsic information, which is interleaved and used as the a priori probabilities of the 

information sequence for the second decoder, DEC 2. Then the DEC 2 takes Rp2, 

interleaved extrinsic information and received systematic information sequences from 

DEC 1 as input to procedure a soft output Lex2, which is de-interleaved and used to 

improve the estimate of the a priori probabilities of the information sequence for first 

decoder, DEC 1. During the iteration decoding process, the decoder performance can be 
 9



improved, as the number of iterations increases. However, the correlation between two 

component decoder is also raised up. There is no significant performance improvement 

after a certain number of iterations. Then the last stage decoding makes a hard decision 

after de-interleaver. A performance comparison under different iteration numbers and 

different iterleaver structures is shown in Fig. 2.5 and Fig. 2.6. Both simulation results 

are stopped when 35 error blocks have happened or 500000 blocks have run 

completely. 

 

 
Fig. 2.6 Performance comparison under different iteration numbers  

in 3GPP2 interleaver (N=1530, code rate=1/3, state 4, MAP algorithm, BPSK) 

 

2.1.4: Error Floor Effect 

 The asymptotic performance of turbo code can be separate into two regions shown 

in Fig. 2.5 and Fig. 2.6. One region about form 0dB to 1.5dB in Fig. 2.5 and Fig. 2.6 is 

called waterfall region. In this region, bit-error-rate (BER) has a sharply drop slop at 

low signal-to-noise ratio (SNR). The other about form 2.5dB to 4.5dB is called error 
 10



floor region when the BER starts to decrease quite slowly at high SNR. The error floor 

phenomenon is due to relative small code free distance. Consider the relation between 

the minimum free distance and the bit error probability in turbo coding, which can be 

expressed by [4] 

0

( 2 )b
b free free

E
P B Q d R

N
∝                         (2.2) 

where BBfree is the average number of ones on the minimum free distance path in the 

overall turbo code trellis, R is the code rate, Eb is the received bit energy, N0 is the 

Gaussian noise one sided power spectral density, and dfree is the code minimum free 

distance. The value of dfree depends on the generator polynomials and the interleaver 

structure. 

 

2.2: Decoding Algorithm for Turbo Code 

 Both the maximum a posteriori probability (MAP) algorithm [4] [6] [9] and 

soft-output Viterbi algorithm (SOVA) [7] are common used techniques for turbo 

decoding. The SOVA exploits maximum likelihood (ML) algorithm to find the 

codewords and to minimize the word error probability which is defined as the 

probability that the transmitted and estimated code sequences are unequal. The MAP 

algorithm minimizes the symbol (or bit) error probability which is defined as the 

probability that transmitted and estimated code symbols (or bits) are unequal. If the 

code sequences are equally likely, MAP and SOVA decoders are equivalent in terms of 

word error probability. In this section, the focus will be MAP algorithm, and the SOVA 

will be skipped, because it has been proved that the MAP algorithm is the optimal 

decoding method for turbo code while comparing with SOVA [8]. 
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2.2.1: The MAP Algorithm 

 Due to minimizing the symbol (or bit) error probability, the MAP algorithm 

generates the soft output in the form of P(uk|R), a posteriori probability based on the 

received code sequence R, to estimate the hard value for each transmitted information 

bits uk. It computes the logarithm of likelihood ratio (LLR), and the logarithm is the 

natural logarithm.  

( 1|ˆ( ) ( | ) log
( 1|

k
k k

k

P uL u L u
P u

)
)

= +
= =

= −
RR
R

                  (2.3) 

for 1 ≤ k ≤ N, where N is the interleaver length, and compares this value to a zero 

threshold to determine the hard estimate as 

ˆ1    if  ( ) 0
ˆ

0    otherwise
k

k

L u
u

≥⎧
= ⎨
⎩

                              (2.4) 

 a rate 1/2 state 4 (memory order 2) RSC encoder and its trellis diagram are shown 

in Fig 2.7 as an example, and its decoding trellis diagram is shown in Fig. 2.8. Note that 

the solid lines represent the transitions from Sk-1 to Sk caused by the input information 

bit uk of -1, and the dashed lines represent the transitions from Sk-1 to Sk caused by the 

input information bit uk of +1. Then, the equation.(2.3) can be further expressed as  

1
1

1
1

( , ,
( 1| )ˆ( ) log log
( 1| ) ( , ,

k

k

k k
uk

k
k k

u

P S S
P uL u
P u P S S

−
=+

−
=−

= +
= =

= −

)

)k

∑
∑

R
R
R R

            (2.5) 

Here, the numerator and denominator are the sum of joint probabilities for all existing 

transitions from state Sk-1 to Sk that corresponding to the information bit uk of +1 and -1, 

respectively. In order to compute equation (2.5), the joint probability P(Sk-1,Sk,R) was 

needed to calculate. Now we defined following metrics: 
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Fig. 2.7 A rate 1/2 state 4 RSC encoder and its trellis diagram  

 

 

Fig. 2.8 The decoding trellis diagram of a rate 1/2 state 4 RSC encoder

 

 The forward recursion metric α: 

( ) log ( , )k k k j kS P Sα ≤= R                        (2.6) 

 The backward recursion metric β: 

( ) log{ ( | )}k k j k kS P Sβ >= R                        (2.7) 

 The branch transition metric γ: 

1( , ) log{ ( , | )}k k k k k kS S P S S 1γ − −= R                     (2.8) 

Assume the code sequence after encoding is transmitted through the discrete 

memoryless channel (DMC), and then the probability P(Sk-1,Sk,R) can be decomposed 

as three terms: 
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Now we can further define the equations (2.6) (2.7) and (2.8) as follow: 

 The definition of forward recursion metric α: 

1
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             (2.10) 

Note that since the trellis of encoding diverges from state zero, the initial condition of 

the forward recursion metric should be set as α0(0) = 0 and α0(S0) = -∞ for S0 ≠0. 

 The definition of backward recursion metric β: 
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Note that since the trellis of encoding converges from state zero, the initial condition of 

the backward recursion metric should be set as βN(0) = 0 and βN(SN) = -∞ for SN ≠0. 

 The definition of branch transition metric γ: 

1 1

1 1

( , ) log{ ( , | )}
                  log{ ( | ) ( | , )}
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The term “Pa(uk)” is well-known as a priori probability of uk. According to the 

definition of log-likelihood ratio: 

(( ) log
( 1

k
a k

k

P uL u
P u

1)
)

= +
=

= −
                        (2.13) 

P(uk) can be rewritten as  
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                (2.14) 

And the term “P(Rk|uk)” is dependent on channel characteristic. For an additive white 

Gaussian noise (AWGN) channel, its log-likelihood ratio can be expressed as: 
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Here, Lc = 4*Es/N0, and it is the channel reliability. In a similar way liking (2.14), the 

conditioned probability P(Rk|uk) for systematic convolutional codes can be written as 
2

,0 , ,
1

1 1( | ) exp( )
2 2k k k c k k c k v k v

v
P u B L u L Y

=

= + ∑R Ri R             (2.16) 

Noted that Xk is equal to uk, for systematic codes. The terms Ak and BBk in (2.14) and 

(2.16) are equal for all transitions at the same time index, and hence will cancel out in 

the ratio of (2.5). Therefore, the branch transition probability can be reduced to the 

expression: 
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 Substituting (2.10), (2.11) and (2.17) into (2.5), The LLR can be further expressed as 
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The term Lex(uk) is called extrinsic information. Since the extrinsic information is a 

function of the redundant information that introduces by the RSC encoder, it is 

independent on systematic input and a priori information, La(uk), from LLR. In general, 

extrinsic information has the same sign as uk. Therefore, it is helpful to estimate the 

priori probabilities of code sequence for next component decoder. 

 

2.2.2: The Max-Log-MAP Algorithm 

 In last section the MAP algorithm is derived. As we can see, this algorithm is too 

difficult in practice because of a high number of exponentiation and multiplication 

operations. For simplifying the implementation complexity of MAP decoders, an 

approximation of MAP algorithm termed Max-Log-MAP algorithm [10] [11] was 

derived. By using the approximation formula max function 

1 2

{1,2, , }
log( ) maxn

i
i n

e e eδδ δ δ
∈

+ + + ≈
"

"                    (2.19) 

The equation (2.18) can be further simplified as:  

 16



1 1 1

1

1 1 1

1

1

1

( ) ( , ) ( )

( , )
1

( ) ( , ) ( )

( , )
1

1 1 1
( , )

1

1 1
( , )

1

ˆ( ) log

         ( ( ) ( , ) ( ))

         ( ( )

max

max

k k k k k k k

k k
k

k k k k k k k

k k
k

k k
k

k k
k

S S S S

S S
u

k S S S S

S S
u

k k k k k k k
S S

u

k k
S S

u

e e e

L u
e e e

S S S S

S

α γ β

α γ β

α γ β

α

− − −

−

− − −

−

−

−

=+

=−

− − −

=+

− −

=−

=

≈ + +

−

∑

∑

i i

i i

1( , ) ( ))k k k k kS S Sγ β−+ +  

          (2.20) 

Similarly, the forward recursive and backward recursive metrics (2.10) (2.11) can 

individually be expressed as 
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and 
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Both equations involved computations are add-compare-selection operations, which 

are similar to the path metric updating of Viterbi algorithm. Thus multiplications in the 

MAP algorithm are replaced by additions in the Max-Log-MAP algorithm, and the 

exponentiation operations can be avoided.  

 

2.2.3: The Log-MAP Algorithm 

The performance of Max-Log-MAP algorithm is suboptimal because of its use of 

the max function (2.19) to reduce the complexity of MAP algorithm. The 

Max-Log-MAP algorithm can be modified through the use of the Jacobian algorithm. 

The modified algorithm, called Log-MAP algorithm, is equivalent to the MAP 

algorithm, but without its major disadvantages. The Jacobian algorithm [10] is 
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where fc(⋅) is a correction function, which can be implemented using a 

one-dimensional look-up table. By a recursive operation of (2.23), the expression (2.19) 

can be computed exactly. 
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Now we can substitute (2.21) and (2.22) into (2.23), the forward and backward 

recursive metrics can be represented as 
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where the max*(⋅) operation is defined as 

1 2 2 1max*( ) max( , ) (| |)cfδ δ δ δ⋅ = + −               (2.27) 

Then, the (2.20) can be expressed as 
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 The performance of Log-MAP algorithm is identical to the performance of MAP 

algorithm. However, by calculating fc(⋅), its complexity is increased in comparison with 

Max-Log-MAP algorithm. For simplified the computation of correction function, it is 

usually stored in a pre-computed table. The table is only one dimensional, since the 
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correction only depends on |δ2-δ1|. Then Log-MAP algorithm can be implemented by 

table look-up. It has been found that excellent performance can be obtained with 8 

stored values and |δ2-δ1| ranging between 0 and 5, and no improvement can be achieved 

with using a finer representation. 

 

2.2.4: SNR Sensitivity of Max-Log-MAP and Log-MAP Algorithm 

 From the deductions of MAP algorithm and Log-MAP, they need SNR estimation 

to obtain the channel reliability Lc. The accurate SNR estimation cannot be ease 

approached, because it depends on channel characteristic. There are many researches 

have discussed the effect of SNR sensitivity, or SNR mismatch, on the bit error rate 

performance of turbo code. In [12], the simulation results indicate that the larger 

interleaver length is more sensitive to SNR estimation errors than the smaller one, and 

the turbo code with MAP or Log-MAP algorithm is more sensitive to SNR estimation 

errors on AWGN channel than on the BSC. In [13], the simulation shows that the 

underestimation of SNR is more detrimental than overestimation for tolerating a SNR 

mismatch without significant degradation. Compared with MAP or Log-MAP 

algorithm, the paper [14] has proven that the Max-Log-MAP does not require 

knowledge of the SNR, if L(uk), a priori information, is initialized to zero for each bit. 

Due to the max function operation, the L(uk) can be assumed to be proportional to SNR, 

and the SNR can be factored out in (2.20), (2.21) and (2.22). Then, the soft outputs are 

scaled with the SNR, but the hard decisions become SNR independent. 

 Although the performance of Max-Log-MAP algorithm is poor than MAP 

algorithm, but it has not the risk of serious SNR mismatch offset. So, it has been 

suggested in [14] that if channel characteristics change over time, the Max-Log-MAP 

algorithm is more suitable than Log-MAP in turbo decoding. A simulation result form 

[14] is shown in Fig. 2.9. 
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Fig. 2.9 SNR estimation offset, AWGN channel. R=1/2, m=2, Lblock=600, random 

interleaver, 10 iterations. 

 

2.3: Sliding Window Method for Turbo Decoding 

 In the standard turbo decoding algorithm included MAP algorithm, Log-MAP 

algorithm and Max-Log-MAP algorithm, the decisions are based on forward and 

backward operations, and the backward recursive operation initials from the end of 

decoding trellis shown in Fig. 2.8. So the decoding process starts after a received delay 

that is equal to received sequence length N. For large sequence lengths, the memory 

required for hardware implementation of turbo decoder is huge, and long output latency 

is also introduced. For example, the maximum block length of 3GPP2 standard is 

20730, which means at least 2*20730 metrics for forward and back recursive need to be 

stored, and the received delay is 20730 time slots. These are main disadvantages of 

turbo code for real time applications. 

 These problems, in the main, cause by that long block length can not divide into 

several short sub-blocks, since the unknown initial state of backward recursive 

operation will damage the performance of turbo code. One method to overcome this 
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problem is called sliding window algorithm [15]. The algorithm utilizes the fact that the 

backward recursive metrics can be highly reliable even without knowing the initial 

state if the backward recursion goes long enough. Fig. 2.10 illustrated the sliding 

window process diagram. 

 Initially, the received sequence is divided into several sub-blocks, with a 

sub-block length of L. L is normally about five times constraint length of component 

encoder in turbo code, and called the convergence length. For forward recursive 

operation, the end of each sub-block i is the initial of next sub-block i+1, and the initial 

metric values of each sub-block i are inherited from the last metric values of previous 

sub-block i-1. For backward recursive operation, a dummy backward recursion βpre is 

employed to find the beginning metric values for β recursion. However, the forward 

recursion computes the forward path metrics α and storing these values into memory. In 

parallel, an additional dummy backward recursion βpre is performed in the next 

sub-block. As soon as the βpre operation is finished, the true backward recursion β 

operation starts and the decoder also stars making soft decision based on both forward 

and backward recursions. 

 

 
Fig. 2.10 The diagram of sliding window algorithm 
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Chapter3 Ternary Turbo Code  

Compared with turbo code over GF(2), also called binary turbo code, the turbo 

code over GF(3) is called ternary turbo code. Its basic elements as reliability-based, 

iterative decoding and random interleaver are equivalent to binary turbo code. However, 

there are some diversity between ternary turbo code and binary turbo code, due to 

component convoluational codes over different fields. In this chapter, we’ll describe the 

principle of ternary turbo coding. 

 

3.1: The Structure of Ternary Turbo Code 

 The ternary turbo encoder is built with a parallel concatenation of two component 

RSC encoders and separating them by an interleaver. Since component RSC encoder is 

over GF(3), we’ll call it component GF(3) RSC encoder. A block diagram of a rate 1/3 

ternary turbo encoder with constraint length 3 is shown in Fig. 3.1. The generator 

matrix for a rate 1/2 component GF(3) RSC encoder can be represented as polynomial 

matrix G(D) [17]. 
2

2

1 2( ) 1 
2

D DG D
D D

⎡ ⎤+ +
= ⎢ ⎥+ +⎣ ⎦

                          (3.1) 

From (3.1), it can be observed that the connections of ternary turbo encoder have 

connection weights, but, in binary turbo encoder, the connection is only “on” or “off”. 

Since the operation principles of ternary turbo encoder and binary turbo encoder are 

similar, the design rules as to maximize the minimum output weight from low weight 

input of binary turbo encoder can be copied to design ternary turbo encoder. However, 

ternary turbo encoder also needs to implement trellis termination after encoded a block 

messages. The procedure of trellis termination is shown in Fig.3.2. The switch of each 

component encoder is set to position “A” for inputting N messages, and then the 
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position of switch is changed to “B” for tail bits. Then trellis of ternary turbo encoder 

will return to all zero state. Note that the sun of W1 and W2 in component GF(3) RSC 

encoder must be equal to 3. 

 

 
Fig. 3.1 The structure of ternary turbo encoder 

 

 
Fig. 3.2 Trellis termination for component GF(3) RSC encoder 

 

 In section 2.1.2, we have discussed the function and the property of interleaver. 

Due to same operation principles of ternary and binary turbo encoders unless weight 

distribution of their component encoders; the same capability for interleaver will be 
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expected by intuition. In the performance simulation shown in Fig. 3.3 and Fig. 3.4, the 

S-Random interleaver has better BER performance than 3GPP2 interleaver’s, and the 

result is as same as the performance of Fig. 2.5 and Fig. 2.6 in binary turbo code. So, it 

can be observed that interleaver be able to works well in binary turbo code as well as in 

ternary turbo code, for ‘good’ component encodes 

Since the ternary turbo decoding which consists of two component decoders 

exchanged soft information among the receiver parts has same structure as binary turbo 

decoding shown in Fig. 2.4. And the component decoder can also be implemented 

based on either MAP algorithm, or SOVA, which will be discussed particularly in the 

next section. Hence, the more detail about the procedure of ternary turbo decoding, 

please refer to section 2.1.3. A performance comparison under different iteration 

numbers and different interleaver structures in ternary turbo code is shown in Fig. 3.3 

and Fig. 3.4. 

 

 
Fig. 3.3 Performance comparison under different iteration numbers in S-Random 

interleaver S=10 (N=1530, code rate=1/3, state 9, MAP algorithm, 3PSK) 
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Fig. 3.4 Performance comparison under different iteration numbers in 3GPP2 
interleaver (N=1530, code rate=1/3, state 9, MAP algorithm, 3PSK)

 

It has known that the error floor phenomenon is due to relative small code free 

distance. At high SNR, the bit error probability of ternary turbo coding with 3PSK 

modulation can refer to bit error probability of binary turbo code and expressed as: 

0

( 2 )b
b free free

E
P B Q d R

N
∝                        (3.2) 

where BBfree is the average number of ‘non-zero values’ on the minimum free distance 

path in the overall turbo code trellis, R is the code rate, and dfree is the code minimum 

free distance and depends on the generator polynomials and the interleaver structure. 

For an example illustrated in Fig. 3.1, the dfree is 6 which are relatively low. Through the 

simulation results shown in Fig. 3.3 and Fig. 3.4, it can be observed the BER has a very 

low slope at high SNR. 
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3.2: Decoding Algorithm for Ternary Turbo Decoding 

3.2.1: The MAP Algorithm 

 Assume that input bit uk takes value {0, 1, 2} with the same probability, the MAP 

algorithm in ternary turbo code evaluates the logarithm of a posteriori probability 

(LAPP), P(uk|R), to minimizing the symbol (or bit) error probability. It can be 

expressed as:  
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                 (3.3) 

The hard estimate for 1 ≤ k ≤ N, where N is the interleaver length, can be determined by 

following conditions: 

0 1 0 2

1 0 1 2

? ?0   if ( ( ) ( ))  ( ( ) ( ))
? ?1   if ( ( ) ( ))  ( ( ) ( )  

2  otherwise

k k k

k k k k

u u and u u
u u u and u

Λ > Λ Λ > Λ⎧
⎪= Λ > Λ Λ > Λ⎨
⎪
⎩

               (3.4) 

A rate 1/2 state 3 (memory order 1) GF(3) RSC encoder and its trellis diagram are 

shown in Fig.3.5 as an example. Here, the solid lines represent the transitions form Sk-1 

to Sk caused by the input information bit uk of 0, and transitions caused by input 

information bit uk of 1 and 2 are individually represented dashed lines and dotted lines.  

 

 
Fig. 3.5 A rate 1/3 state 3 GF(3) RSC encoder and its trellis diagram 
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In order to calculate equation (3.3), the joint probability P(Sk-1,Sk,R) was needed to 

computed. Based on the assumption of discrete memoryless channel, the joint 

probability can be decomposed as three terms. 
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Then, the following metrics can be defined: (The more details about the derivation of 

equations, please refer to section 2.2.1) 

 The forward recursion metric α: 
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Note that since the trellis of encoding diverges from state zero, the initial condition of 

the forward recursion metric should be set as α0(0) = 0 and α0(S0) = -∞ for S0 ≠0. 

 The backward recursion metric β: 
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Note that since the trellis of encoding converges from state zero, the initial condition of 

the backward recursion metric should be set as βN(0) = 0 and βN(SN) = -∞ for SN ≠0. 

 The branch transition metric γ: 
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Noted that Xk is equal to uk, for systematic codes. For 3PSK modulation, the Xk 

includes {Xr,k, Xi,k}, the real part and image part of xk in signal constellation, and Yk,v 

also includes {Yr,k,v, YI,k,v }. The terms Ak in (2.16) is equal for all transitions at the 

same time index, through the show of simulation result, it can be neglected. 

Substituting (3.6), (3.7), and (3.8) into (3.3), and the LAPP can be further expressed as:  
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The term La(uk) is called a priori information, and the term Lex(uk) is called extrinsic 

information. Since the extrinsic information is a function of the redundant information 

that introduces by the RSC encoder, it is independent on systematic input and a priori 

information from LAPP. In general, extrinsic information has the same sign as uk. 

Therefore, it is helpful to estimate the priori probabilities of code sequence for next 

component decoder. 

 

3.2.2: The Max-Log-MAP Algorithm 

For simplifying the implementation complexity of MAP decoders, an 

approximation of MAP algorithm termed Max-Log-MAP algorithm was derived by 

using equation (2.19), max function. The equation (3.9) can be further simplified as:  
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Similarly, the forward recursive and backward recursive metrics (3.6) (3.7) can 
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individually be expressed as 
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and 
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3.2.3: The Log-MAP Algorithm 

Through the use of the Jacobian algorithm shown in (2.23) and (2.24), the 

Max-Log-MAP algorithm can be modified and avoided the performance loss which 

caused by approximation max function. The modified algorithm, called Log-MAP 

algorithm, is equivalent to the MAP algorithm. Now we can substitute (3.11) and (3.12) 

into (2.23), the forward and backward recursive metrics can be represented as 

1

1 1 1( ) *( ( ) ( , ))max
k

k k k k k k k
S

S Sα α γ
−

− − −= +             (3.13) 

and 

1

1 1 1( ) *( ( ) ( , ))max
k

k k k k k k k
S

S S Sβ β γ
+

+ + += +              (3.14) 

where the max*(⋅) operation is defined by (2.27). Then, the (3.10) can be expressed as 
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3.2.4: SNR Sensitivity of Max-Log-MAP and Log-MAP Algorithm 

In section 2.2.3, it has been discussed that, for binary turbo code, both MAP and 

log-MAP algorithm requires SNR estimation and Max-Log-MAP algorithm is SNR 
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independent if a priori information is initialized with a reasonable value. For ternary 

turbo code, the MAP and Log-MAP algorithms also need SNR estimation from their 

deductions. The effect of SNR sensitivity on BER performance of ternary turbo code 

can is observed through simulations shown in Fig.3.6 and Fig.3.7. Both Figs. show the 

BER versus SNR estimation offset based on ternary turbo code, MAP algorithm, 10 

iterations, and AWGN channel. The simulation result points out that the 

underestimation of SNR is more harmful than overestimation, and the sensitivity of 

ternary turbo code with 3GPP2 interleaver is lightly less than ternary turbo with 

S-Random interleaver. Note that in both Figs., the minimum BER is not achieved for 

0dB offset-SNR, and this effect occurs only for the short block sizes under 

consideration, please refer to [14] for more detail discuss. 

 

 
Fig. 3.6 Sensitivity of BER performance of ternary turbo code with S-Random 

interleaver (length 1200) 
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Fig. 3.7 Sensitivity of BER performance of ternary turbo code with 3GPP2 

interleaver (length 1146) 

 

For Max-Log-MAP algorithm in ternary turbo code, the method of paper [14] can be 

extend to show the fact that it does not require knowledge of the SNR, if La(uk), a priori 

information, is initialized to zero for each bit. 

 

3.3: Sliding Window Method for Ternary Turbo Decoding 

 Since the decoding algorithm of ternary turbo code is very similar to the algorithm 

of binary turbo code, the sliding window decoding method can directly be employed to 

ternary turbo decoding. The more detail discuss, please refer to section 2.3. 
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Chapter4 Embedded Prior Information Ternary 

Turbo-Coded Modulation 

 Coded modulation is to combine coding and modulation technique. It achieves 

significant coding gain without bandwidth expansion the trellis coded modulation 

(TCM) is a form of coded modulation based on convolutional codes, and block coded 

modulation (BCM) is based on block codes. In this chapter, we’ll focus on turbo code 

which is one of trellis codes, so only TCM is introduced. 

 

4.1: Trellis-Coded Modulation 

How to construct the bits-to-symbols mapping is main fundamental questions on 

combining coding and modulation. Now, consider that if soft ML-decoding is applied, 

the error-event probability will approach asymptotically at high SNR, the lower bound 

[16] is 

2
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                      (4.1) 

here N(dfree) denote the number of nearest neighbors of transmitted coded sequence, 

and 2
freed  is the minimum Euclidean free distance between transmitted coded sequence 

and any other coded sequence. Thus, it is very obvious that the term of 2
freed  dominates 

the performance at high SNR, so the goal of bits-to-symbols mapping is to maximum 

the minimum Euclidean free distance, but how to achieve this goal?  

 Through set partition applied a natural mapping of bits to signals, the author, 

Ungerboeck, of [16] describes the concrete method to maximum the minimum 

Euclidean free distance of a coded modulation system combined binary convolutional 
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codes and modulation. This coded modulation is well-known trellis coded modulation 

(TCM). Comparison with un-coded system, TCM combined ordinary rate Rc = k/(k+1) 

binary convolutional codes with an M-ary signal constellation (M = 2k+1>2) achieves 

coding gain without increasing transmitted symbol rate. Note that due to TCM scheme 

uses signal set expansion rather than additional transmitted symbols to accommodate 

the redundant bits, performance comparisons must be made with un-coded modulation 

systems that have same spectral efficiency. The design rule of TCM can be summarized 

as follows: 

I. All subsets should occur in the trellis with equal frequency. 

II. State transitions that begin and end in the same state should be assigned 

subsets separated by the largest Euclidean distance. 

III. Parallel transitions are assigned signal points separated by the largest 

Euclidean distance. 

 

4.2: Embedded Prior Information Technique 

 The main idea of TCM is similar to extend signal constellation to join redundant 

parity bits. For convenience, parity bits mentioned in this chapter express redundant 

bits which is introduced by coding and obtained from constellation extension. This 

concept can apply to a coded system, such as a rate 1/2 binary convolutional code with 

binary phase shift keying (BPSK) modulation, an extra coding gain can be obtained in 

such a way that by expanding the signal constellation which from 2-ary extends to 

m-ary to add extra parity bits into original coded system, without increasing the 

required bandwidth. The idea is experimented on a concatenated coding system with 

ternary phase shift keying (3PSK) modulation. The simulation result shows the 

concatenated coding built with an inner rate 1/2 ternary convolutional code and an 
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outer (128, 64, t=6) BCH code has better performance gain than original binary 

convolutional code with BPSK modulation. More detail discuss about these, please 

refer to Appendix A. However, the additional coding gain based on expanding 

constellation to concatenate an outer code to original coded system is not always able to 

achieve, and an opposite instance is described in Appendix B. 

 

 
Fig. 4.1 Structure diagram of two different coding systems 

 

Now, consider two coding systems show in Fig. 4.1. Based on following 

conditions: 1. Constant data rate, 2. Unit transmitted signal power, 3. Constant spectral 

efficiency (transmitted symbols/unit time slot), and 4. Constant block size. System 1 is 

a rate 1/3 state 8 binary turbo code with BPSK modulation. System 2 extends BPSK 

modulation to 3PSK and utilizes a rate 1/3 state 9 ternary turbo code for coding. Note 

that the question marks in System 2 represent how to utilize redundant information 

which can be used since constellation expansion. Whereas joining additional parity bits 

introduced by coding into a complex coding system, such as turbo code, increase not 

only hardware complexity but also decoding latency, how to “efficiently” use 
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redundant information to achieve remarkable coding gain is the key design. In this 

section, we propose a method which embedded known digits into ternary turbo code to 

improve the performance. This method was kind of like [20]. 

 

4.2.1: Proposed Structure 

 In general, two GF(3) symbols can carry about 3-bit information, that is, 1200 bits 

can be represented only 800 GF(3) symbols. Supposed that the System 1 want to 

transmit 1200 binary symbols, based on same channel efficiency condition, System 2 

also transmits 1200 GF(3) symbols. As former mention, and based on same data rate 

condition, System 2 has additional 400 GF(3) symbols can arbitrary use. How to 

maximum minimum free distance of System 2 is first considered. Due to the minimum 

free distance depends on minimum low weight coded sequences which are generated 

from low weight input sequences, therefore, how to maximize low weight input 

sequences is design key point. A simple method to maximize low weight input 

sequences is to insert known GF(3) digits, into ternary turbo code. Here, two questions 

will be considered as follow: 

I. Are known digits constant or variable?  

II. Which positions of information sequence are known digits inserted into? 

For question one, the constant known digits are selected and by simulation that 

inserting constant known GF(3) digit of 2 into ternary turbo coding has the best 

performance, comparison to constant known GF(3) digit of 0 and 1. For question two, 

inserting known digits uniformly into information sequence is considered. The idea of 

uniform distribution known digits originates in S-Random interleaver which is able to 

break up burst error. 

The structure of System 2 inserted known GF(3) digits is illustrated in Fig. 4.2. 

Here, “π” represents the interleaver. This system, in short, is called Embedded Prior 
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Information-I Ternary Turbo Code (EPI-I TTC) and uses constant and known GF(3) 

digits rather than parity bits. The inserting locations of known GF(3) digits are fixed 

and one known GF(3) digit is inserted after two GF(3) information digits. Note that 

known digit is not to transmit, since it is constant and has already known by both 

encoder and decoder. 

 

 
Fig. 4.2 Structure of EPI-I TTC

 

In Fig. 4.2, it can be observed that positions of known digits that input into ENC 1 

and ENC 2 are different, since interleaver before ENC 2 reorders the input sequence. 

However, the non-uniform location distribution of known digits is not one as expected. 

Fig. 4.3 shows a modified system, and it called Embedded Prior Information-II Ternary 

Turbo Code (EPI-II TTC). The EPI-II TTC has not only uniform known digit location 

distribution but also smaller interleaver size. Note the interleaver size in EPI-II TTC is 

800. 
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Fig. 4.3 Structure of modified EPI-II TTC

 

If the block size of binary turbo code in System 1 is 1200, based on constant block 

size condition, the block lengths of EPI-I TTC and EPI-II TTC are also 1200 included 

800 GF(3) information digits and 400 known Gf(3) digits. In general, the block size of 

turbo code is as same as interleaver size, but in Fig. 4.3 they are different, since known 

GF(3) digits is inserted after intleaver. As mention before, the ternary turbo code have 

only 800 GF(3) information digits and, thus, its interleaver size is the same. The 

advantage of using embedded known digits to fill in parity bits is to remarkable enlarge 

low weight coded sequence, that is not only improving BER performance but also 

increasing no additional complexity of hardware and computation, comparison to 

original ternary turbo code. 

 

4.2.2: Performance Effects 

In this section we discuss the effect of embedded known digits into ternary turbo 

code and binary turbo code. The influence of embedded known digits can be discussed 

from two viewpoints.  

I. Breaking up burst errors. 

II. Maximizing minimum low weight coded sequences. 
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Consider an extreme case shown in Fig. 4.4, there are 15 burst errors which is not able 

to decode correctly by ternary turbo code. But in EPI-II TTC, since known digits break 

a long burst-error sequence into some small parts, and the strong reliable extrinsic 

values of known digits revise error path close to correct one, through iteration by 

iteration, the burst error sequence lastly can be correct decoded. 

 

 
Fig. 4.4 Sketch diagram of breaking off burst error by inserting known digits

 

 

Fig. 4.5 Sensitivity of BER performance of EPI-II TTC with S-Random 
interleaver (length 800)
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Fig. 4.6 Sensitivity of BER performance of ternary turbo code with 3GPP2 
interleaver (length 1146)

 

Let v = (v0, v1, … , vn-1) be a Gf(3) n-tuple. The Hamming weight of v, denoted by 

w(v), defined as the number of nonzero components of v. For example, the Hamming 

weight of v = (1 2 0 1 0 2) is 4, Let v and w be two n-tuples. The Hamming distance 

between v and w, denoted d(v, w), is defined as the number of places where they differ. 

For example, the Hamming distance between v = (1 2 1 0 0 2) and w = (2 1 1 0 0 0) is 3; 

they differ in the zeroth, first, and, sixth places. Now, consider a rate 1/2 ternary 

convolutional code with a generator matrix, 
2

2

1+D+2D[1 ]
2+D+D

, its minimum weight input 

is (2,1,1,0,…) and Hamming weight is 3. This value is very small. If inserted constant 

known digits into input sequence in such way that two input data insert a known digit of 

2. The effect of inserting known digits for ternary convolutaional code is equal to 

multiply a factor, 
2 4

2 4

2 D 2D
1 D 2D 2D

+ +
+ + + 6 , into generator matrix. Then, 

2 4 2 3 4 5

2 4 6 3 4 5 7

2 D 2D 2 2D 2D D D 2D D[  
1 D 2D 2D 2 D D D 2D 2D

+ + + + + + + +
+ + + + + + + +

6

]  is the new generator matrix, 

so the low weight input can be enlarged well. 
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Due to the decoded algorithm of EPI-II TTC is MAP algorithm, its SNR 

sensitivity showed in Fig. 4.5 and Fig. 4.6 needs to be considered. Fig. 4.5 and Fig. 4.6 

show the BER versus SNR estimation offset based on EPI-II TTC, MAP algorithm, 10 

iterations, and AWGN channel, but different interleavers. The simulation result points 

out that the underestimation of SNR is more harmful than overestimation, and the 

sensitivity in 3GPP2 interleaver is lightly less than S-Random interleaver. 

However, the SNR sensitivity of EPI-II TTC and ternary turbo code seems to be 

the same for a glance. But through the charts shown in Fig. 4.7 and Fig. 4.8, their 

diversity can be noted. In charts, the BER of real Eb/N0 is normalized to 1, thus, the 

level of SNR sensitivity corresponded to SNR offset can be observed. The chart points 

out that the SNR sensitivity of EPI-II TTC is less than ternary turbo code. Fig. 4.7 

shows SNR sensitivity comparisons between EPI-II TTC and ternary turbo code with 

S-Random interleavers at Eb/N0 of 0.1dB and Fig. 4.8 shows SNR sensitivity 

comparisons with 3GPP2 interleaver. 

 

 
Fig. 4.7 SNR sensitivity comparisons between EPI-II TTC with S-Random 

interleavers. 
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Fig. 4.8 SNR sensitivity comparisons between EPI-II TTC and normal ternary 

turbo code in 3GPP2 interleaver. 

 

 
Fig. 4.9 Performance comparison between embedded known digits binary turbo 

code and binary turbo code with S-Random, S=10 (10 iterations, state 8)
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Fig. 4.10 Performance comparison between embedded known digits binary turbo 

code and binary turbo code with 3GPP2 interleaver (10 iterations, state 8) 

 

If the constant data rate condition does not considered, can binary turbo code 

improve its performance in terms Eb/N0 by using embedded known bits technique? The 

solution is answered by simulations. Fig. 4.9 and Fig. 4.10 display BER performances 

of a rate 1/3 state 8 embedded known bits binary turbo code and a rate 1/3 state 8 binary 

turbo code. Both Figs. are based on MAP algorithm, 10 iterations, BPSK modulation, 

AWGN channel, and two information data insert a known bit of 1 for embedded known 

bits binary turbo code. In Fig. 4.9, with S-Random interleaver, binary turbo code has 

better BER performance than embedded known bits one after Eb/N0 of 0.6dB. In Fig. 

4.10, with 3GPP2 interleaver, the embedded known bits binary turbo code has better 

BER performance than binary turbo code from top to bottom. In Fig. 4.11, the different 

embedded known bit numbers is examined, the simulation result points out that the 

binary turbo code is always superior after Eb/N0 of 0.001, than others. However, the less 

known bits are embedded into binary turbo code; the better performance is achieved. 

Due to limitation of computing power, the simulation in Fig. 4.11 is done with only 4 
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iterations. It can be conclusion that the method of embedded known bit is helpful for 

structured interleaver, but in random interleaver, it has better performance at lower 

SNR. 

 

 
Fig 4.11 Performance comparison under different embedded known bit numbers 

in binary turbo code (4 iterations, state 8, S-Random interleaver) 
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Chapter5 Simulation and Implement Results 

Look back on Fig. 4.1 it has been expected that System 2 has better performance than 

System 1, by using embedded known digits technique. And both systems need to satisfy 

following conditions as: 1. unit transmitted power, 2. constant data rate, 3. constant 

channel efficiency. In this chapter, performance simulations in terms of Eb/N0 and 

hardware complexities of two systems will be compared. Section 5.1 discusses 

simulation results between Embedded Prior Information-II Ternary Turbo Code (EPI-II 

TTC), Embedded Prior Information-I Ternary Turbo Code (EPI-I TTC), ternary turbo 

code (TTC), and binary turbo code (BTC). And hardware complexity is describes in 

section 5.2.  

 

5.1: The Comparison of Simulation Performance 

 Before entering this section, some environment specifications in our simulation 

have been defined. 

 

Table 5.1 Environment specification: 

 Binary Turbo Code Ternary Turbo Code 

Modulation BPSK 3PSK 

Transmitted Channel AWGN AWGN 

Numbers of Iteration 10 10 

Decoding Algorithm Log-MAP Log-MAP 

Generator Matrix 
2 3

2 3

1+D D[1 ]
1+D+D D

+
+

2

2

1+D 2D[1 ]
2+D+D

+  

Numbers of State 8 9 
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Here, ternary turbo code includes EPI-I TTC, EPI-II TTC, and TTC. And the factor, S, 

of S-Random is set to 10. However, the coding gain on BER of 10-5 will be focus, since 

the BER of 10-5 is the basic demand in most systems. 

 

 

Fig. 5.1 Performance comparisons of ternary turbo codes with S-Random 
Interleaver 

 

 

Fig. 5.2 Performance comparisons of ternary turbo codes with 3GPP2 interleaver
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Fig. 5.1 and Fig. 5.2 compare performances of ternary turbo code included EPI-II 

TTC, EPI-I TTC, and TTC on S-Random interleaver and 3GPP2 interleaver, separately. 

From both simulations, it can be observed that known digit is able to improve BER 

performance, and EPI-II TTC is better than EPI-I TTC. Note that the data rate of TTC 

is larger than EPI-II TTC and EPI-I TTC about 1.5 times, but the interleaver size of 

EPI-II TTC is smaller than EPI-I TTC and TTC about 1/3 since the interleaver size in 

EPI-II TTC is 800 and others are 1200 if the block size is 1200. For constant block size 

of 1200, Fig. 5.3 displays the performance comparison of turbo codes included EPI-II 

TTC, TTC, and BTC with S-Random interleaver. The simulation result points out that 

the EPI-II TTC has performance gain about 0.2dB than TTC and about 1dB than BTC. 

Fig. 5.4, with 3GPP2 interleaver, shows that the EPI-II TTC has performance gain 

about 0.5dB than TTC and about 1.2dB than BTC. 

 

 

Fig. 5.3 Performance comparisons of turbo codes with S-Random Interleaver 
(block length=1200) 
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Fig. 5.4 Performance comparisons of turbo codes with 3GPP2 Interleaver (block 
length=1146) 

 

 

Fig. 5.5 Performance Comparison between EPI-II TTC and Binary turbo code 
with 3GPP2 interleaver length of 20730

 

 Former discuss focus on that in same block length, EPI-II TTC is able to improve 

how many performance gains if comparison with TTC and BTC. But the key point, 
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which we really care about, is that the performance comparison between EPI-II TTC 

with short interleaver and BTC with long interlaver. Fig. 5.5 shows their performance 

simulation, which EPI-II TTC using length-800 S-Random interleaver and BTC using 

length-20730 3GPP2 interleaver. The simulation result points out that EPI-II TTC has 

performance gain than BTC about 0.2dB at BER of 0.00001 and about 0.6dB at BER of 

0.000001. However, it is very obvious that the error floor region of BTC occurs after 

BER of 0.00001, but the error floor region of EPI-II TTC does not appear yet. Finally a 

performance constellation shown in Fig. 5.6 displays that based on BER of 0.00001, the 

performance comparison between different turbo codes which employ different 

interleaver structures and different interleaver lengths. The horizontal axis represents 

Eb/No and the vertical axis represents interleaver length in log-scale. 

 

 

Fig. 5.6 Performance constellation of turbo codes at Eb/N0=10-5
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5.2: The Estimation of Hardware Complexity 

 In previous chapter, all discussions about turbo codes are based on importing 

floating point information as required soft-input. Nevertheless, the floating point value 

should be bounded since infinite precision is impossible to be achieved for practical 

implementation. A trade-off between hardware cost and the performance must be 

concerned since coding performance may suffer quantization loss due to internal 

bit-width limitation. In general, hardware complexity of turbo code can be estimation in 

computing complexity and memory size which is proportional to bit-with. In this 

section, based on acceptable performance loss, the fixed point analysis and computing 

complexity is discussed. Note that in this section, only hardware complexities of EPI-II 

TTC with length-800 S-Random interleaver and BTC with length-20730 3GPP2 

interleaver are compared, since there have similar performance gain. And the sliding 

window method for turbo decoder is assumed. The length of sliding window is set as 5 

times of constrain length of component convolutional codes. 

 

5.2.1 Memory Size Analysis 

 The most area in turbo code implementation is dominated by memories which 

store receiver information, LLR value, extrinsic value, forward recursive metric, 

backward recursive metric, and branch transition metric. And overall required size of 

memory is determined by fixed point analysis. The bit-width of receiver information is 

determined firstly, since this value influences numbers of bit-width of internal metric 

and LLR. Fig. 5.7 plots the quantization loss of the bounded receiver information with 

3PSK modulation and EPI-II TTC. Fig. 5.8 shows the same simulation but with BPSK 

and BTC. Due to the BER performance is centered below 0.00001dB, the 3.3 scheme 

for EPI-II TTC and the 3.2 scheme for BTC are chose. 
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Fig. 5.7 Fixed point simulation result of the input symbols with 3PSK modulation 

and a rate 1/3 state 9 EPI-II TTC with S-Random interleaver size of 800 

 

 
Fig. 5.8 Fixed point simulation result of the input symbols with BPSK modulation 

and a rate 1/3 state 8 binary turbo code with 3GPP2 interleaver size of 20730
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Fig. 5.10 Fixed point simulation result of the extrinsic information (Lex) in a rate 

1/3 state 9 EPI-II TTC with S-Random interleaver size of 800 

 

Fig. 5.11 Fixed point simulation result of the extrinsic information (Lex) in a rate 
1/3 state 8 binary turbo code with 3GPP2 interleaver size of 20730 

 

Extrinsic data provides reliable information to be a priori information for turbo code to 

perform the iteration decoding. So quantization of extrinsic information should be done 
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carefully or the effect of iterative decoding will be diminished. A fixed point simulation 

of the extrinsic information is performed, as shown in Fig. 5.10 and Fig. 5.11. Then, the 

4.2 scheme for EPI-II TTC and the 5.2 scheme for BTC are selected. Now, ranges of 

received information and a priori information that comes from the extrinsic information 

are determined. According the bounded method of [18] and [19], the bit-width of 

internal variables, α, β, γ, and LLR value, for Log-MAP algorithm can be derived. The 

final bit-width of all information that is required by Log-MAP decoding algorithm is 

listed in Table 5.2. Note that any information exceeding the range that can be expressed 

is saturated to the nearest value instead to truncating it directly. 

 

Table 5.2 Summary of bit-width decision for EPI-II TTC and binary turbo code 

Bit-width Rec. Infor. La(uk) α β γ Lex(uk) LLR 

EPI-II TTC 6 (3.3) 6 (4.2) 8 (6.2) 8 (6.2) 8 (6.2) 6 (4.2) 9 (7.2) 

BTC 5 (3.2) 7 (5.2) 8 (6.2) 8 (6.2) 8 (6.2) 7 (5.2) 9 (7.2) 

 

 
Fig. 5.12 Performance loss of EPI-II TTC comparison between floating point and 

fixed point scheme 
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Fig. 5.13 Performance loss of binary turbo code comparison between floating 

point and fixed point scheme 

 

Table 5.3 Memory sizes comparison between BTC and EPI-II TTC 

 BTC with 3GPP2 

Int. Len.20730 

EPI-II TTC with S-Rand. 

Int. Len. 800 

LLR 186570 (20730*9) 21600 (3*800*9) 

Lex 145110 (20730*7) 14400 (3*800*6) 

X1 103650 (20730*5) 9600 (2*800*6) 

Y1 & Y2 207300 (2*20730*5) 28800(2*2*1200*6) 

α 1280 (8*20*8) 1080 (9*15*8) 

β 1280 (8*20*8) 1080 (9*15*8) 

γ 2560(2*8*20*8) 3240 (3*9*15*8) 

Table 0 8000 (800*10) 

Sum 647750 87800 

Normalize 1 0.14 
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Finally, both performances of EPI-II TTC and BTC under complete fixed point 

condition are simulated, as shown in Fig. 5.12 and Fig. 5.13. For simulation results, 

their performance losses of fixed point are all less than 0.05dB, comparison with 

floating point simulations. Now, sizes of memory which required by decoders of 

EPI-II TTC and BTC can be compared, as listed in Table 5.3. In Table 5.3, the total 

memory sizes required for EPI-II TTC are 87800 bits and total memory sizes for BTC 

are 647750, that is, the EPI-II TTC can save about 86% of memory size than BTC. 

 

5.2.2 Computing Complexity Analysis 

 Based on Log-MAP decoding algorithm and Sliding method for turbo decoding, 

the following procedures are executed, for each decoded bit. Note that the trellis 

diagram of BTC has 8 states and 16 branches and the trellis diagram of EPI-II TTC has 

9 states and 27 branches. 

 Update forward recursive metrics: 

Update forward node metrics based on equation (2.25), and the operation of 

1 2 2 1max*( ) max( , ) (| |)cfδ δ δ δ⋅ = + −  consists of one adder, one 2-input comparator, called 

comp-2, and one table. Each node for BTC needs 2 adders, 1 comp-2, and 1 table. For 

EPI-II TTC, each node needs 3 adders, 1 comparator, and 1 table. Assume one 3-input 

comparator is composed by two comp-2. 

 Update backward recursive metrics: 

The computation is the same as that in the forward recursive metric update. Since 

sliding window is able to estimate βpre in advance, 2-suit max function operations are 

needed. 

 Update branch metrics 

For equation (2.17), each branch for BTC needs 3 adder and 3 multipliers. For 

equation (3.8), each branch for EPI-II TTC needs 11 adders and 5 multipliers. Here, 
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subtraction operation is instead of adder. 

 Calculate LLR information: 

For equation (2.28), each LLR for BTC needs 33 adders, 2 tab, and two 8-input 

comparators. For equation (3.15), each LAPP for EPI-II TTC needs 54 adders, 2 tab, 

and three 9-input comparators, but one GF(3) digit is represented to 3 LAPP values. 

Assume one 8-input comparators are consisted of 7 comp-2s and one 9-input 

comparators are consisted of 9 comp-2s. 

The comparison of computing complexity between BTC and EPI-II TTC are listed in 

Table 5.4. 

 

Table 5.4 Comparisons of computing complexity between BTC and EPI-II TTC 

 BTC with 3GPP2 

Int. Len.20730 

EPI-II TTC with S-Rand. 

Int. Len. 800 

LLR 33 add. + 2 tab. + 14 com-2 162 add. + 6 tab. + 72 com-2

α 16 add. + 8 tab. + 8 comp-2 27 add. + 9 tab. + 18 comp-2

β 32 add. + 16 tab. + 16 com-2 54 add. + 18 tab. + 36 com-2

γ 48 add. + 48 mult. 297 add. + 135 mult.

Add. 129 540

Mult. 48 135

Tab. 26 33
Sum 

Comp-2 38 126

Add. 1 4.186

Mult. 1 2.8125

Tab. 1 1.2692
Normal. 

Comp-2 1 3.3158
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Conclusion 

 In this thesis, the ternary turbo coded modulation using embedded prior 

information, and in short, called embedded prior information ternary turbo code 

(EPI-II TTC) is presented. The proposed method not only overcomes the main 

disadvantage of binary turbo code with long interleaver but also lowers error floor 

effect. 

Comparison with binary turbo code (BTC) with BPSK modulation which employs 

a length-20730 3GPP2 interleaver to achieve BER of 10-5 at Eb/N0 of 0.4dB, the EPI-II 

TTC with 3PSK modulation which employs a length 800 S-Random interleaver to 

achieve the same BER at Eb/N0 of 0.2dB has 0.2dB performance gain, but at BER of 

10-6 EPI-II TTC can obtain 0.6dB performance gain than BTC. Since embedded known 

digits is able to widely enlarge the minimum low weigh coded sequences, the error 

floor of EPI-II TTC can be reduced. And further, comparison with BTC, the proposed 

system can save not only memory size about 89% but also decoding latency about 

94% for the same data rate condition.  

Comparison to general ternary turbo code, the SNR sensitivity of MAP decoded 

algorithm as well as interleaver size can be reduced when embedded known digits 

technique is employed. However, comparison with binary turbo code, advantages of 

EPI-II TTC can be concluded as following: 

I. Decreasing required memory (saving about 86%) 

II. Reducing computing latency (saving about 94%). 

III. To lower down the error floor (0.6 dB performance gain at Eb/N0 of 10-6). 

In addition, the overhead which the EPI-II TTC needs to pay is the more computing 

complexity for Log-MPA algorithm than BTC. And due to ternary turbo code works on 

GF(3), the additional hardware need to implement that two tables, a table for the 
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transformation of binary bit to ternary digit and another table for ternary turbo encoder, 

are required to built, but both tables are small. Moreover, comparison to BPSK 

modulation technique, the 3PSK modulation is more complex. 
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Appendix A: Scheme I (BCH + Ternary Convolutional 

Code) 

 Since comparison with un-coded system, TCM which extended signal 

constellation to join redundant parity bits have great performance gain. So we want to 

observe that how many performance gains can be achieved when the idea of TCM is 

extended into coded system. In Fig. A.1, System 2 is a concatenated coding built with 

an outer (126, 84, t=6) BCH code and rate-1/2 state-9 ternary convolutional code. 

System 1 is a rate 1/2 state-128 convolutional code. The generator matrices of binary 

and ternary convolutional code are  and 

, separately. Both systems have the same conditions, such as: 

constant data rate, constant channel efficiency, and unit transmitting power. Then the 

simulation result shown in Fig. A.2 points out that System 2 has about 0.5dB 

performance gains than System 1. Note that the decoding algorithm of binary or 

ternary convolutional code is Viterbi algorithm. 

2 5 6 7 2 3 4 7[1+D +D +D +D ,  1+D+D +D +D +D ]G =

2[1+D+2D , 2+D+D ]G = 2

 

Fig. A.1 Structure diagram of two different coding systems 
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Fig. A.2 Performance comparisons between binary convolutional code and 
ternary convolutional code with BCH code 

 

 

Fig. A.3 Performance comparison between ternary convolutional code and 
ternary convolutional code with BCH code 

 

In addition, comparison with ternary convolutional code with 3PSK modulation, the 

concatenated coding in System2 has about 1dB performance gain as shown in Fig. 
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A.3. Now, we have a conclusion that by extended constellation to join redundant 

parity bits into convolutional codes the performance can be remarkably proved. 

Furthermore, in chapter 4, we know that inserting known digits into ternary turbo 

code in such way that one GF(3) known digit is inserted after two GF(3) information 

datum, the extra performance gain can be achieved. So, an experiment for inserting 

known digits into ternary convolutional code with the same method as former 

description is implemented. In Fig. A.4, the simulation result displays that the 

concatenated system has better performance than inserting known digit into ternary 

convolutional code, that is, inserting known digit into ternary convolutional code has 

almost no performance gain. 

 

 

Fig. A.4 Performance comparison between ternary convolutional code with BCH 
and ternary convolutional code with inserting known digits 
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Appendix B: Scheme II (RS + Ternary Turbo Code) 

Compared with a concatenated coding system with 3PSK modulation, a rate 1/3 

state-8 binary turbo code with BPSK modulation has better performance in terms of 

BER as shown in Fig. B.2. The concatenated coding system formed from a rate 1/3 

state-9 inner ternary turbo code and an outer (63, 42) RS code. For both turbo codes, 

the S-Random interleavers are employed. Simulation points out that System 1 has 

about 0.2 dB performance gain than System 2 at BER of 10-4, but at high SNR the 

System 2 will has better performance than System 1 since error floor phenomenon. 

However, in turbo code system, using an outer code instead redundant information 

maybe is not an efficiency method due to computing analysis in section 5.2.2 shows 

that the computing complexity of ternary turbo code is more complex than binary 

turbo code. So, if System 2 has not significant performance gain, the cost of 

concatenated coding system is too large. 

 

 
Fig. B.1 Structure diagram of binary turbo code with BPSK modulation and a 

concatenated coding system with 3PSK modulation. 
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Fig. B.2Performance comparison between binary turbo code and concatenated 
coding formed form a ternary turbo code and a RS code. 
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