
國 立 交 通 大 學

電 子 工 程 系

碩 士 論 文

使用事先資訊之三元渦輪編碼調變

Ternary Turbo Coded Modulation Using
Embedded Prior Information

研 究 生：周毓堂

指導教授：張錫嘉 教授

中 華 民 國 九 十 四 年 十 月

使用事先資訊之三元渦輪編碼調變
Ternary Turbo Coded Modulation Using

Embedded Prior Information

研 究 生：周毓堂 Student : Yu-Tang Chou

指導教授：張錫嘉 Advisor : Hsie-Chia Chang

國立交通大學 電子工程學系

電子研究所 碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical Engineering and Computer Science

National Chiao Tung University

In Partial Fulfillment of the Requirements

For the Degree of

Master

In

Electronics Engineering

October 2005

Hsinchu, Taiwan, R.O.C.

中華民國九十四年十月

使用事先資訊之三元渦輪編碼調變

研究生：周毓堂 指導教授：張錫嘉 博士

國立交通大學電子工程學系(研究所)碩士班

摘要

因為渦輪碼擁有非常好的錯誤更正能力，所以在近 10 年它已經

成為無線通訊中相當重要的一種改錯碼技術。然而一個好的渦輪碼通

常需要很長的交錯器，長的交錯器雖然能夠提升渦輪碼的性能但也造

成冗長的解碼延遲以及需要大量的儲存記憶體。此外，因為渦輪碼有

error floor 的現象導致在高的 SNR 時它無法達到很低的錯誤率。

 在這篇論文中我們提出了一種使用事先資訊之三元渦輪編碼調

變系統，簡稱為鑲入已知資訊之三元渦輪編碼調變。相較於使用交錯

器長度 20730 的一般渦輪碼，使用交錯器長度 800 的鑲入已知資訊之

三元渦輪編碼調變不但可以節省 86%的記憶體並且降低 94%的解碼

延遲。另外在錯誤率 10-5和 10-6之下，此系統比一般渦輪編碼器還要

好 0.2dB 和 0.6dB。

 I

Ternary Turbo Coded Modulation Using Embedded

Known Digits Technique

student: Yu-Tang Chou Advisor: Dr. Hsie-Chia Chang

Department of Electronics Engineering

National Chiao Tung University

ABSTRACT

Recently, (binary) turbo code is one of most important coding techniques for

wireless communication due to its excellent error correction ability. The main problem

of turbo code is that using a long interleaver is able to support its remarkable

performance, but a long decoding latency and huge memory size are introduced.

Moreover, at high SNR, the error floor phenomenon causes that turbo code unable to

achieve very low bit error rates.

In this thesis the ternary turbo coded modulation using embedded prior

information, in short, called EPI TTC is presented. Comparison with binary turbo code

with interleaver size of 20730, the proposed system with interleaver size of 800 can

save not only memory size about 86% but also decoding latency about 94%. In addition,

it has 0.2 dB and 0.6 dB performance gains than binary turbo code at BER of 10-5 and

10-6, separately.

 II

誌謝

 在交大兩年的時光很快就結束了，這兩年我學到了許多做學問的

方法，也交到許多很好的朋友，最後我得以順利完成我的論文首先要

感謝我的指導教授：張錫嘉老師對我的指導，每當我遇到困難時老師

總能夠給予我適當的幫助，另外我要感謝林建青學長，這兩年學長教

我很多觀念也不厭其煩的跟我討論許多我不懂的問題，我還要感謝毓

成、允率、弘安、維君、小科、景大和其它Oasis以及FEC Group的成

員，有你們的陪伴讓我的生活多了很多樂趣，最後也感謝我的女朋友

雯婷，感謝你能體諒這些日子我不能好好陪妳，最後我要再次向每個

幫助過我的人說聲謝謝。

 III

Content

摘要 I

ABSTRACT...II

誌謝 III

Content IV

LIST OF FIGURES: ... VI

LIST OF TABLES: ... IX

Chapter1 Introduction..1

1.1 Motivation..1

1.2 Thesis Organization ...2

Chapter2 Reviews of Turbo Code..3

2.1: The Structure of Turbo Code ..4

2.1.1: Encoder of Turbo Code..4

2.1.2: Interleaver ..6

2.1.3: Decoder of Turbo Code..8

2.1.4: Error Floor Effect...10

2.2: Decoding Algorithm for Turbo Code..11

2.2.1: The MAP Algorithm ..12

2.2.2: The Max-Log-MAP Algorithm..16

2.2.3: The Log-MAP Algorithm...17

2.2.4: SNR Sensitivity of Max-Log-MAP and Log-MAP Algorithm..........19

2.3: Sliding Window Method for Turbo Decoding ..20

Chapter3 Ternary Turbo Code ..22

3.1: The Structure of Ternary Turbo Code ...22

3.2: Decoding Algorithm for Ternary Turbo Decoding26

 IV

3.2.1: The MAP Algorithm ..26

3.2.2: The Max-Log-MAP Algorithm..28

3.2.3: The Log-MAP Algorithm...29

3.2.4: SNR Sensitivity of Max-Log-MAP and Log-MAP Algorithm..........29

3.3: Sliding Window Method for Ternary Turbo Decoding.................................31

Chapter4 Embedded Prior Information Ternary Turbo-Coded Modulation ...32

4.1: Trellis-Coded Modulation...32

4.2: Embedded Prior Information Technique...33

4.2.1: Proposed Structure ...35

4.2.2: Performance Effects...37

Chapter5 Simulation and Implement Results ..44

5.1: The Comparison of Simulation Performance ...44

5.2: The Estimation of Hardware Complexity ...49

5.2.1 Memory Size Analysis ..49

5.2.2 Computing Complexity Analysis..54

Conclusion ..56

Appendix A: Scheme I (BCH + Ternary Convolutional Code)..............................58

Appendix B: Scheme II (RS + Ternary Turbo Code) ...61

BIBLIOGRAPHY..63

 V

LIST OF FIGURES:

Fig. 1.1 Block diagram of the different systems..2

Fig. 2.1 The structure of turbo encoder..5

Fig. 2.2 Trellis termination for component RSC encoder..5

Fig. 2.3 The 3GPP2 inteleaver for 3GPP2 standard ..6

Fig. 2.4 The structure of turbo decoding..8

Fig. 2.5 Performance comparison under different iteration numbers in S-Random

interleaver, S=10 (N=1530, code rate=1/3, state 4, MAP algorithm, BPSK)9

Fig. 2.6 Performance comparison under different iteration numbers10

in 3GPP2 interleaver (N=1530, code rate=1/3, state 4, MAP algorithm, BPSK)........10

Fig. 2.7 A rate 1/2 state 4 RSC encoder and its trellis diagram13

Fig. 2.8 The decoding trellis diagram of a rate 1/2 state 4 RSC encoder13

Fig. 2.9 SNR estimation offset, AWGN channel. R=1/2, m=2, Lblock=600, random

interleaver, 10 iterations...20

Fig. 2.10 The diagram of sliding window algorithm ...21

Fig. 3.1 The structure of ternary turbo encoder ...23

Fig. 3.2 Trellis termination for component GF(3) RSC encoder23

Fig. 3.3 Performance comparison under different iteration numbers in S-Random

interleaver S=10 (N=1530, code rate=1/3, state 9, MAP algorithm, 3PSK)24

Fig. 3.4 Performance comparison under different iteration numbers in 3GPP2

interleaver (N=1530, code rate=1/3, state 9, MAP algorithm, 3PSK)25

Fig. 3.5 A rate 1/3 state 3 GF(3) RSC encoder and its trellis diagram.........................26

Fig. 3.6 Sensitivity of BER performance of ternary turbo code with S-Random

interleaver (length 1200)..30

Fig. 3.7 Sensitivity of BER performance of ternary turbo code with 3GPP2 interleaver

 VI

(length 1146) ..31

Fig. 4.1 Structure diagram of two different coding systems..34

Fig. 4.2 Structure of EPI-I TTC ...36

Fig. 4.3 Structure of modified EPI-II TTC ..37

Fig. 4.4 Sketch diagram of breaking off burst error by inserting known digits...........38

Fig. 4.5 Sensitivity of BER performance of EPI-II TTC with S-Random interleaver

(length 800)..38

Fig. 4.6 Sensitivity of BER performance of ternary turbo code with 3GPP2 interleaver

(length 1146) ..39

Fig. 4.7 SNR sensitivity comparisons between EPI-II TTC with S-Random

interleavers...40

Fig. 4.8 SNR sensitivity comparisons between EPI-II TTC and normal ternary turbo

code in 3GPP2 interleaver..41

Fig. 4.9 Performance comparison between embedded known digits binary turbo code

and binary turbo code with S-Random, S=10 (10 iterations, state 8)41

Fig. 4.10 Performance comparison between embedded known digits binary turbo code

and binary turbo code with 3GPP2 interleaver (10 iterations, state 8)42

Fig 4.11 Performance comparison under different embedded known bit numbers in

binary turbo code (4 iterations, state 8, S-Random interleaver)43

Fig. 5.1 Performance comparisons of ternary turbo codes with S-Random Interleaver

..45

Fig. 5.2 Performance comparisons of ternary turbo codes with 3GPP2 interleaver....45

Fig. 5.3 Performance comparisons of turbo codes with S-Random Interleaver (block

length=1200) ..46

Fig. 5.4 Performance comparisons of turbo codes with 3GPP2 Interleaver (block

length=1146) ..47
 VII

Fig. 5.5 Performance Comparison between EPI-II TTC and Binary turbo code with

3GPP2 interleaver length of 20730..47

Fig. 5.6 Performance constellation of turbo codes at Eb/N0=10-548

Fig. 5.7 Fixed point simulation result of the input symbols with 3PSK modulation and a

rate 1/3 state 9 EPI-II TTC with S-Random interleaver size of 800............................50

Fig. 5.8 Fixed point simulation result of the input symbols with BPSK modulation and a

rate 1/3 state 8 binary turbo code with 3GPP2 interleaver size of 20730....................50

Fig. 5.10 Fixed point simulation result of the extrinsic information (Lex) in a rate 1/3

state 9 EPI-II TTC with S-Random interleaver size of 800...51

Fig. 5.11 Fixed point simulation result of the extrinsic information (Lex) in a rate 1/3

state 8 binary turbo code with 3GPP2 interleaver size of 20730.................................51

Fig. 5.12 Performance loss of EPI-II TTC comparison between floating point and fixed

point scheme ..52

Fig. 5.13 Performance loss of binary turbo code comparison between floating point and

fixed point scheme ...53

Fig. A.1 Structure diagram of two different coding systems58

Fig. A.2 Performance comparisons between binary convolutional code and ternary

convolutional code with BCH code ...59

Fig. A.3 Performance comparison between ternary convolutional code and ternary

convolutional code with BCH code ...59

Fig. A.4 Performance comparison between ternary convolutional code with BCH and

ternary convolutional code with inserting known digits..60

Fig. B.1 Structure diagram of binary turbo code with BPSK modulation and a

concatenated coding system with 3PSK modulation. ..61

Fig. B.2Performance comparison between binary turbo code and concatenated coding

formed form a ternary turbo code and a RS code. ...62
 VIII

LIST OF TABLES:

Table 2.1 Standard specifications for turbo coding..3

Table 2.2 3GPP2 interleaver parameter ...7

Table 5.1 Environment specification: ..44

Table 5.2 Summary of bit-width decision for EPI-II TTC and binary turbo code.......52

Table 5.3 Memory sizes comparison between BTC and EPI-II TTC53

Table 5.4 Comparisons of computing complexity between BTC and EPI-II TTC......55

 IX

Chapter1 Introduction

1.1 Motivation

In the last decade, turbo code is one of most important coding techniques for wireless

communication due to its excellent error correction ability. The main problem with

turbo code is that a long interleaver is able to support its exceptional performance, but a

long decoding latency and huge memory size are introduced. The second problem

about turbo code is error floor effect that causes turbo code unable to satisfy the

requirement of very low bit error rates. The occasion of main problem with turbo code

originates form long interleaver, and second problem is caused by relative small of

minimum code free distance. In general, to concatenate a RS code before turbo code

can easily solve the error floor effect. However it decreases the data rate.

 Our work is motivated by the need to achieve large coding gains where the

required interleaver size is as small as possible and the data rate is not reduced. Firstly,

the trellis coded modulation technique is considered since it can introduce additional

coding by constellation expansion, but keeping constant data rate. Then, we are

interested in building a coded modulation system for the transmission of a 3-ary signal

constellation over an additive white Gaussian noise (AWGN) channel. Fig. 1.1

illustrates this idea where System 1 is binary turbo code with long interleaver and

modulated by BPSK and the question mark in System 2 is the coding system that we

want to design. The design challenge is how to design a coded modulation system

which has not only excellence performance as binary turbo code with long interleaver

size but also small latency. Finally the ternary turbo coded modulation is adopted since

its property is similar to binary turbo code and its codeword sequences can be direct

modulated by 3PSK.

 1

Fig. 1.1 Block diagram of the different systems

In this thesis, the ternary coded modulation using embedded prior information is

presented. The proposed coding system with interleaver size of 800 has not only better

performance but also lower error floor effect than binary turbo with interleaver size of

20730. In addition, it can save not only memory size about 86% but also decoding

latency about 94%.

1.2 Thesis Organization

 This thesis consists of 6 chapters. In chapter 2, the binary turbo code included

structure of turbo coding, decoding algorithm and its relative techniques, is introduced.

The concept of ternary turbo code and some property comparisons between binary

turbo code and ternary turbo code is described in Chapter 3. In chapter 4, the proposed

system is presented, and some performance effects introduced by known digits will be

discussed. In chapter 5, simulation will be shown to verify the performance of proposed

system has better performance gain than binary turbo code system. However, the

hardware and computing complexity will discuss in this chapter. Finally, conclusion

and future work are made in chapter 6.
 2

Chapter2 Reviews of Turbo Code

The turbo code [1] over GF(2) was first proposed by C. Berrou, A. Glavieux, and P.

Thitimajshima in 1993. The performance in terms of bit error rate (BER) has been

proved to close to the Shannon limit. The basic elements in turbo coding include

reliability-based, iterative decoding and random interleaver. Reliability-based means

that turbo code employs soft-input soft-output (SISO) maximum-a-posteriori (MAP)

decoders for the component codes. Iterative decoding signifies that turbo decoder uses

extrinsic information, the symbol reliability, from a component decoder feedback to

other one, and vice versa. Random interleaver is to ensure that, at each iteration the

component MAP decoders get independent estimates on the information symbols.

 The turbo code is now adopted by many standards listed in Table 2.1 due to its

excellent error correction ability. In this chapter, we’ll describe the principle of turbo

coding.

Table 2.1 Standard specifications for turbo coding

Standard Application Iterative Code Max. Throughput

DVB-RCS
Digital video

broadcast

Parallel conc. of

8-state conv. codes
68 Mb/s (rate 7/8)

IEEE 802.16
Wireless networking

(MAN)
Turbo product codes 25 Mb/s (rate 5/6)

3GPP UMTS Wireless cellular
Parallel conc. of

8-state conv. codes
2 Mb/s (rate 1/3)

3GPP2 CDMA2000 Wireless cellular
Parallel conc. of

8-state conv. codes
3.09 Mb/s (rate 1/5)

CCSDS Space telemetry
Parallel conc. of

16-state conv. codes
384 kb/s (rate 1/2)

 3

2.1: The Structure of Turbo Code

2.1.1: Encoder of Turbo Code

The turbo encoder is built with a parallel concatenation of two recursive

systematic convolutional (RSC) encoders and separating them by an interleaver. The

two RSC encoders are also called component codes of the turbo code. The interleaver is

a pseudo-random block scrambler. In a pseudo-random interleaver, a block of N input

bits is read into the interleaver and read out pseudo-randomly. Note that the encoder

structure is called parallel concatenation because each RSC encoder operates on the

same set of input data but in different order, due to the presence of an interleaver. A

block diagram of a rate 1/3 turbo encoder with constraint length 3 is shown in Fig 2.1.

The generator matrix for a rate 1/2 component RSC code can be represented as

polynomial matrix G(D) or octal matrix G.

2

1 5() 1 or G=[1]
1

DG D
D D
+⎡ ⎤= ⎢ ⎥+ +⎣ ⎦

7 (2.1)

 In a rate 1/2 RSC encoder, each input massage is encoded as one systematic bit and

one parity check bits. In turbo encoder, two RSC encoders encode the same input

message sequence, individually, but in the different order. In order to increase the code

rate of turbo code, the systematic bits of RSC Encoder 2 are not transmitted. Therefore,

the output sequence of turbo encoder should be {X0, Y10, Y20, X1, Y11, Y21, …}, and the

overall code rate is 1/3 as shown in Fig. 2.1.

 After encoding a block included N input messages, transmission of some tail bits

to drive the encoder to the all zero state is required. It makes sure that the initial state for

next block is the all-zero state. The numbers of tail bit are equal to register numbers of

RSC encoder. Since the component encoders are recursive, it is impossible to terminate

the trellis to all zero state only by transmitting dummy zeros directly. A simple solution

to solve this problem is provided in Fig 2.2. The switch of each component encoder is

 4

set to position “A” for inputting N messages, and then the position of switch is changed

to “B” for 2 tail bits in an example of a rate 1/2 RSC encoder with memory order 2. This

will force all registers of RSC encoder to zeros and thus the trellis return to all zero

state.

Fig. 2.1 The structure of turbo encoder

Fig. 2.2 Trellis termination for component RSC encoder

 5

2.1.2: Interleaver

In the turbo code, the interleaver is to construct a long block code from small

memory component convolutional codes. Secondly, it spreads out the burst error and

de-correlates the input of two RSC encoders that iterative decoding algorithm can be

applied between two component decoders. Lastly, the interleaver can reduce low

weight codewords that reduce the coding gain. In [2][3], it uses analytical

upper-bounding technique to show that a turbo code with RSC component codes can

produce an interleaving gain. The performance upper-bound of turbo code is based on

uniform random interlever. The result points out that the bit-error-probability upper

bound of turbo code is approximately proportional to 1/N, where N is the block length

of interleaver, and the factor “1/N” is also called the interleaver gain. The error

performance of turbo code at low BER’s is dominated by the interleaver size. Low

weight codwords dominate the turbo code performance at high BER’s, and are

produced by low weight input sequence. However, the interleaver structure affects the

mapping of low weight input sequences to the interleaver output and its size and

structure play an important role in the asymptotic performance of the turbo code.

Fig. 2.3 The 3GPP2 inteleaver for 3GPP2 standard

 6

Table 2.2 3GPP2 interleaver parameter

3GPP2 Interleaver Block

Length Nturbo

3GPP2 Interleaver

Parameter n

210 3

378 4

402 4

570 5

762 5

786 5

1,146 6

1,530 6

1,554 6

2,298 7

2,322 7

3,066 7

3,090 7

3,858 7

4,602 8

6,138 8

9,210 9

12,282 9

20,730 10

In this thesis, the performances of turbo code will be compared with a complex

 7

interleaver, S-Random interleaver[4] and a structured interleaver, 3GPP2 interleaver

[5], so only both interleaver are introduced. An S-Random address generator, or an

S-Random interleaver, is defined as follows. A new randomly selected integer is

compared to the S1 previously selected integers. If the absolute value of the difference

between the current selected integer and any of the S1 previous selected integers is

smaller than S2, then the current selected integer is rejected. The S1 and S2 are two

integers smaller than N. This process is repeated until all N integers are selected. The

3GPP2 address generator provides the different block length N from maximum block

length of 20,739 to minimum block length of 378. Fig 2.3 shows the procedure of

3GPP2 permutation in 3GPP2 standard. Detail supported block lengths and its

corresponded parameter n are listed in Table 2.2. In next section, the performance

comparison between S-Random interleaver and 3GPP2 interleaver will show.

2.1.3: Decoder of Turbo Code

 Exchanging soft information among the receiver parts is the main idea for turbo

iterative decoding. The principle is illustrated in Fig. 2.4, where Rs is the received

systematic information sequence, Rpl and Rp2 are the received parity information

sequences generated by the first component RSC encoder and the second component

RSC encoder, separately.

Fig. 2.4 The structure of turbo decoding

 8

The general turbo decoding consists of two component decoders, which are

soft-in/soft-out (SISO) decoders serially concatenated via an interleaver and a

de-interleaver. The component decoder can be implemented based on either maximum

a posteriori probability (MAP) algorithm [6], or soft-output Viterbi algorithm (SOVA)

[7], which will be discussed particularly in the next section. In first iteration, the

decoder, DEC 1, takes Rs and Rp1 as input to produces a soft output Lex1 called

Fig. 2.5 Performance comparison under different iteration numbers in S-Random

interleaver, S=10 (N=1530, code rate=1/3, state 4, MAP algorithm, BPSK)

extrinsic information, which is interleaved and used as the a priori probabilities of the

information sequence for the second decoder, DEC 2. Then the DEC 2 takes Rp2,

interleaved extrinsic information and received systematic information sequences from

DEC 1 as input to procedure a soft output Lex2, which is de-interleaved and used to

improve the estimate of the a priori probabilities of the information sequence for first

decoder, DEC 1. During the iteration decoding process, the decoder performance can be
 9

improved, as the number of iterations increases. However, the correlation between two

component decoder is also raised up. There is no significant performance improvement

after a certain number of iterations. Then the last stage decoding makes a hard decision

after de-interleaver. A performance comparison under different iteration numbers and

different iterleaver structures is shown in Fig. 2.5 and Fig. 2.6. Both simulation results

are stopped when 35 error blocks have happened or 500000 blocks have run

completely.

Fig. 2.6 Performance comparison under different iteration numbers

in 3GPP2 interleaver (N=1530, code rate=1/3, state 4, MAP algorithm, BPSK)

2.1.4: Error Floor Effect

 The asymptotic performance of turbo code can be separate into two regions shown

in Fig. 2.5 and Fig. 2.6. One region about form 0dB to 1.5dB in Fig. 2.5 and Fig. 2.6 is

called waterfall region. In this region, bit-error-rate (BER) has a sharply drop slop at

low signal-to-noise ratio (SNR). The other about form 2.5dB to 4.5dB is called error
 10

floor region when the BER starts to decrease quite slowly at high SNR. The error floor

phenomenon is due to relative small code free distance. Consider the relation between

the minimum free distance and the bit error probability in turbo coding, which can be

expressed by [4]

0

(2)b
b free free

E
P B Q d R

N
∝ (2.2)

where BBfree is the average number of ones on the minimum free distance path in the

overall turbo code trellis, R is the code rate, Eb is the received bit energy, N0 is the

Gaussian noise one sided power spectral density, and dfree is the code minimum free

distance. The value of dfree depends on the generator polynomials and the interleaver

structure.

2.2: Decoding Algorithm for Turbo Code

 Both the maximum a posteriori probability (MAP) algorithm [4] [6] [9] and

soft-output Viterbi algorithm (SOVA) [7] are common used techniques for turbo

decoding. The SOVA exploits maximum likelihood (ML) algorithm to find the

codewords and to minimize the word error probability which is defined as the

probability that the transmitted and estimated code sequences are unequal. The MAP

algorithm minimizes the symbol (or bit) error probability which is defined as the

probability that transmitted and estimated code symbols (or bits) are unequal. If the

code sequences are equally likely, MAP and SOVA decoders are equivalent in terms of

word error probability. In this section, the focus will be MAP algorithm, and the SOVA

will be skipped, because it has been proved that the MAP algorithm is the optimal

decoding method for turbo code while comparing with SOVA [8].

 11

2.2.1: The MAP Algorithm

 Due to minimizing the symbol (or bit) error probability, the MAP algorithm

generates the soft output in the form of P(uk|R), a posteriori probability based on the

received code sequence R, to estimate the hard value for each transmitted information

bits uk. It computes the logarithm of likelihood ratio (LLR), and the logarithm is the

natural logarithm.

(1|ˆ() (|) log
(1|

k
k k

k

P uL u L u
P u

)
)

= +
= =

= −
RR
R

 (2.3)

for 1 ≤ k ≤ N, where N is the interleaver length, and compares this value to a zero

threshold to determine the hard estimate as

ˆ1 if () 0
ˆ

0 otherwise
k

k

L u
u

≥⎧
= ⎨
⎩

 (2.4)

 a rate 1/2 state 4 (memory order 2) RSC encoder and its trellis diagram are shown

in Fig 2.7 as an example, and its decoding trellis diagram is shown in Fig. 2.8. Note that

the solid lines represent the transitions from Sk-1 to Sk caused by the input information

bit uk of -1, and the dashed lines represent the transitions from Sk-1 to Sk caused by the

input information bit uk of +1. Then, the equation.(2.3) can be further expressed as

1
1

1
1

(, ,
(1|)ˆ() log log
(1|) (, ,

k

k

k k
uk

k
k k

u

P S S
P uL u
P u P S S

−
=+

−
=−

= +
= =

= −

)

)k

∑
∑

R
R
R R

 (2.5)

Here, the numerator and denominator are the sum of joint probabilities for all existing

transitions from state Sk-1 to Sk that corresponding to the information bit uk of +1 and -1,

respectively. In order to compute equation (2.5), the joint probability P(Sk-1,Sk,R) was

needed to calculate. Now we defined following metrics:

 12

Fig. 2.7 A rate 1/2 state 4 RSC encoder and its trellis diagram

Fig. 2.8 The decoding trellis diagram of a rate 1/2 state 4 RSC encoder

 The forward recursion metric α:

() log (,)k k k j kS P Sα ≤= R (2.6)

 The backward recursion metric β:

() log{ (|)}k k j k kS P Sβ >= R (2.7)

 The branch transition metric γ:

1(,) log{ (, |)}k k k k k kS S P S S 1γ − −= R (2.8)

Assume the code sequence after encoding is transmitted through the discrete

memoryless channel (DMC), and then the probability P(Sk-1,Sk,R) can be decomposed

as three terms:
 13

1 1 1

1 1 1

() (,) ()

(, ,) (,) (, |) (

 k k k k k k k

k k k j k k k k j k k

S S S

P S S P S P S S P S

e e eα γ− − −

− − < −=

=

R R R Ri i���	��
���	��
 ��

i i

)

Sβ

>	�

1

 (2.9)

Now we can further define the equations (2.6) (2.7) and (2.8) as follow:

 The definition of forward recursion metric α:

1

1

1 1

1

1 1 1

1

1

1

()
1

(() (,))

() log{ (,)}

 log (, , ,)

 log (,) (, | ,)

 log (, |)

 log

k

k

k k

k

k k k k k

k

k k k j k

k k j k k
S

k j k k k k j k
S

S
k k k

S

S S S

S

S P S

P S S

P S P S S

e P S S

e

α

α γ

α

−

−

− −

−

− − −

−

≤

− ≤

− ≤ − ≤

−

+

=

=

=

=

=

∑

∑

∑

R

R R

R R R

R

i

i

∑

 (2.10)

Note that since the trellis of encoding diverges from state zero, the initial condition of

the forward recursion metric should be set as α0(0) = 0 and α0(S0) = -∞ for S0 ≠0.

 The definition of backward recursion metric β:

1

1

1

1 1

1

1 1 1

1 1 1 1 1

() 1

() log{ (|)}

 log (, |)

(, , ,)
 log

()
(| , ,) (, ,

 log
()

(log

k

k

k

k k

k k j k k

k j k k
S

k k j k k

S k

)j k k k k k k k

S k

S k

S P S

P S S

P S S
P S

P S S P S
P S

P Seβ

S

β

+

+

+

+ +

>

+ >

+ + > +

> + + + + +

+

=

=

=

=

=

∑

∑

∑

R

R

R R

R R Ri

i
1

1 1 1

1

1

(() (,))

, ,)
()

 log
k

k k k k k

k

k k

S k

S S S

S

S
P S

e β γ

+

+ + +

+

+

+=

∑

∑

R

 (2.11)

Note that since the trellis of encoding converges from state zero, the initial condition of

the backward recursion metric should be set as βN(0) = 0 and βN(SN) = -∞ for SN ≠0.

 The definition of branch transition metric γ:

1 1

1 1

(,) log{ (, |)}
 log{ (|) (| ,)}
 log{ () (|)}

k k k k k k

k k k k k

a k k k

S S P S S
P S S P S S
P u P u

γ − −

− −

=
=
=

R
R

R
i

i
 (2.12)

 14

The term “Pa(uk)” is well-known as a priori probability of uk. According to the

definition of log-likelihood ratio:

(() log
(1

k
a k

k

P uL u
P u

1)
)

= +
=

= −
 (2.13)

P(uk) can be rewritten as
()

()

() / 2
() / 2

()

() / 2

(1)
1

1

a k

a k

a k
a k k

a k

a k k

L u

k L u

L u
L u u

L u

L u u
k

eP u
e

e e
e

A e

±

±

−
−

−

−

= ± =
+

=
+

=

i

i

i

i

 (2.14)

And the term “P(Rk|uk)” is dependent on channel characteristic. For an additive white

Gaussian noise (AWGN) channel, its log-likelihood ratio can be expressed as:

2
2 2

,0 1 , , 1
10 0

2
2 2

,0 1 , ,
0 1 0

0

(| 1)(|) log
(| 1)

exp(()) | exp(()) |
 log log

exp(()) | exp(()) |

 4 (

k k

k k

k k
k k

k k

s s
k k u k v k v u

v

s s
k k u k v k v u

v

s

P uL u
P u

E EX Y
N N
E EX Y
N N

E
N

1

=+ =
=

=− =−
=

= +
=

= −

− − − −
= +

− − − −

=

∏

∏

RR
R

R R

R R

R
2 2

,0 , , ,0 , ,
1 1

) ()k k k v k v c k k k v k v
v v

X Y L X Y
= =

+ = +∑ ∑R R Ri i i i

+

(2.15)

Here, Lc = 4*Es/N0, and it is the channel reliability. In a similar way liking (2.14), the

conditioned probability P(Rk|uk) for systematic convolutional codes can be written as
2

,0 , ,
1

1 1(|) exp()
2 2k k k c k k c k v k v

v
P u B L u L Y

=

= + ∑R Ri R (2.16)

Noted that Xk is equal to uk, for systematic codes. The terms Ak and BBk in (2.14) and

(2.16) are equal for all transitions at the same time index, and hence will cancel out in

the ratio of (2.5). Therefore, the branch transition probability can be reduced to the

expression:

1
2

,0 , ,
1

()
,0 1

(,) log{ () (|)}
1 1 (()) ()
2 2
1 (()) (,)
2

k k k k k k

k c k a k c k v k v
v

e
k c k a k k k k

S S P u P u

u L L u L Y

u L L u S S

γ

γ

−

=

−

=

= + +

= + +

∑

R

R

R

i

R (2.17)

 15

 Substituting (2.10), (2.11) and (2.17) into (2.5), The LLR can be further expressed as

1 1 1

1

1 1 1

1

()
11 1

1

()
1 1

() (,) ()

(,)
1

() (,) ()

(,)
1

(,)() ()

(,)
1

,0 (()

ˆ() log

 () log

k k k k k k k

k k
k

k k k k k k k

k k
k

e
k kk k k k k

k k
k

e
k k k

S S S S

S S
u

k S S S S

S S
u

S SS S

S S
u

c k a k S

e e e

L u
e e e

e e e

L L u
e e

α γ β

α γ β

γα β

γα

− − −

−

− − −

−

−− −

−

− −

=+

=−

=+

=

= + +

∑

∑

∑
R

i i

i i

i i

i 1

1

,) ()

(,)
1

,0 () ()

k k k k

k k
k

S S S

S S
u

c k a k ex k

e

L L u L u

β−

−
=−

= + +

∑

R

i
 (2.18)

The term Lex(uk) is called extrinsic information. Since the extrinsic information is a

function of the redundant information that introduces by the RSC encoder, it is

independent on systematic input and a priori information, La(uk), from LLR. In general,

extrinsic information has the same sign as uk. Therefore, it is helpful to estimate the

priori probabilities of code sequence for next component decoder.

2.2.2: The Max-Log-MAP Algorithm

 In last section the MAP algorithm is derived. As we can see, this algorithm is too

difficult in practice because of a high number of exponentiation and multiplication

operations. For simplifying the implementation complexity of MAP decoders, an

approximation of MAP algorithm termed Max-Log-MAP algorithm [10] [11] was

derived. By using the approximation formula max function

1 2

{1,2, , }
log() maxn

i
i n

e e eδδ δ δ
∈

+ + + ≈
"

" (2.19)

The equation (2.18) can be further simplified as:

 16

1 1 1

1

1 1 1

1

1

1

() (,) ()

(,)
1

() (,) ()

(,)
1

1 1 1
(,)

1

1 1
(,)

1

ˆ() log

 (() (,) ())

 (()

max

max

k k k k k k k

k k
k

k k k k k k k

k k
k

k k
k

k k
k

S S S S

S S
u

k S S S S

S S
u

k k k k k k k
S S

u

k k
S S

u

e e e

L u
e e e

S S S S

S

α γ β

α γ β

α γ β

α

− − −

−

− − −

−

−

−

=+

=−

− − −

=+

− −

=−

=

≈ + +

−

∑

∑

i i

i i

1(,) ())k k k k kS S Sγ β−+ +

 (2.20)

Similarly, the forward recursive and backward recursive metrics (2.10) (2.11) can

individually be expressed as

1 1 1

1

1

(() (,))

1 1 1

() log

 (() (,))max

k k k k k

k

k

S S S
k k

S

k k k k k
S

S e

S S S

α γα

α γ

− − −

−

−

+

− − −

=

≈ +

∑
 (2.21)

and

1 1 1

1

1

(() (,))

1 1 1

() log

 (() (,))max

k k k k k

k

k

S S S
k k

S

k k k k k
S

S e

S S S

β γβ

β γ

+ + +

+

+

+

+ + +

=

≈ +

∑
 (2.22)

Both equations involved computations are add-compare-selection operations, which

are similar to the path metric updating of Viterbi algorithm. Thus multiplications in the

MAP algorithm are replaced by additions in the Max-Log-MAP algorithm, and the

exponentiation operations can be avoided.

2.2.3: The Log-MAP Algorithm

The performance of Max-Log-MAP algorithm is suboptimal because of its use of

the max function (2.19) to reduce the complexity of MAP algorithm. The

Max-Log-MAP algorithm can be modified through the use of the Jacobian algorithm.

The modified algorithm, called Log-MAP algorithm, is equivalent to the MAP

algorithm, but without its major disadvantages. The Jacobian algorithm [10] is

 17

2 1| |1 2
1 2

1 2 2 1

log() max(,) log(1)
 max(,) (| |)

e e

c

e e e
f

δ δδ δ δ δ
δ δ δ δ

− −+ = + +
= + −

 (2.23)

where fc(⋅) is a correction function, which can be implemented using a

one-dimensional look-up table. By a recursive operation of (2.23), the expression (2.19)

can be computed exactly.

11 2 1 2log() log(),
 max(log ,) (| log |)
 max(,) (| |)

n n n

n c n

n c n

e e e e e e e e
f

f

δ δ δδ δ δ δ δ

δ δ
δ δ δ δ

−+ + + = Δ + Δ = + + + =
= Δ + Δ −

= + −

" "

 (2.24)

Now we can substitute (2.21) and (2.22) into (2.23), the forward and backward

recursive metrics can be represented as

1 1 1

1

1

(() (,))

1 1 1

() log

 *(() (,))max

k k k k k

k

k

S S S
k k

S

k k k k k
S

S e

S S S

α γα

α γ

− − −

−

−

+

− − −

=

= +

∑
 (2.25)

and

1 1 1

1

1

(() (,))

1 1 1

() log

 *(() (,))max

k k k k k

k

k

S S S
k k

S

k k k k k
S

S e

S S S

β γβ

β γ

+ + +

+

+

+

+ + +

=

= +

∑
 (2.26)

where the max*(⋅) operation is defined as

1 2 2 1max*() max(,) (| |)cfδ δ δ δ⋅ = + − (2.27)

Then, the (2.20) can be expressed as

1

1

1 1 1
(,)

1

1 1 1
(,)

1

ˆ() *(() (,) ())

 *(() (,) ())

max

max
k k

k

k k
k

k k k k k k k
S S

u

k k k k k k k
S S

u

L u S S S S

S S S S

α γ β

α γ β

−

−

− − −

=+

− − −

=−

= + +

− + +

k

 (2.28)

 The performance of Log-MAP algorithm is identical to the performance of MAP

algorithm. However, by calculating fc(⋅), its complexity is increased in comparison with

Max-Log-MAP algorithm. For simplified the computation of correction function, it is

usually stored in a pre-computed table. The table is only one dimensional, since the
 18

correction only depends on |δ2-δ1|. Then Log-MAP algorithm can be implemented by

table look-up. It has been found that excellent performance can be obtained with 8

stored values and |δ2-δ1| ranging between 0 and 5, and no improvement can be achieved

with using a finer representation.

2.2.4: SNR Sensitivity of Max-Log-MAP and Log-MAP Algorithm

 From the deductions of MAP algorithm and Log-MAP, they need SNR estimation

to obtain the channel reliability Lc. The accurate SNR estimation cannot be ease

approached, because it depends on channel characteristic. There are many researches

have discussed the effect of SNR sensitivity, or SNR mismatch, on the bit error rate

performance of turbo code. In [12], the simulation results indicate that the larger

interleaver length is more sensitive to SNR estimation errors than the smaller one, and

the turbo code with MAP or Log-MAP algorithm is more sensitive to SNR estimation

errors on AWGN channel than on the BSC. In [13], the simulation shows that the

underestimation of SNR is more detrimental than overestimation for tolerating a SNR

mismatch without significant degradation. Compared with MAP or Log-MAP

algorithm, the paper [14] has proven that the Max-Log-MAP does not require

knowledge of the SNR, if L(uk), a priori information, is initialized to zero for each bit.

Due to the max function operation, the L(uk) can be assumed to be proportional to SNR,

and the SNR can be factored out in (2.20), (2.21) and (2.22). Then, the soft outputs are

scaled with the SNR, but the hard decisions become SNR independent.

 Although the performance of Max-Log-MAP algorithm is poor than MAP

algorithm, but it has not the risk of serious SNR mismatch offset. So, it has been

suggested in [14] that if channel characteristics change over time, the Max-Log-MAP

algorithm is more suitable than Log-MAP in turbo decoding. A simulation result form

[14] is shown in Fig. 2.9.
 19

Fig. 2.9 SNR estimation offset, AWGN channel. R=1/2, m=2, Lblock=600, random

interleaver, 10 iterations.

2.3: Sliding Window Method for Turbo Decoding

 In the standard turbo decoding algorithm included MAP algorithm, Log-MAP

algorithm and Max-Log-MAP algorithm, the decisions are based on forward and

backward operations, and the backward recursive operation initials from the end of

decoding trellis shown in Fig. 2.8. So the decoding process starts after a received delay

that is equal to received sequence length N. For large sequence lengths, the memory

required for hardware implementation of turbo decoder is huge, and long output latency

is also introduced. For example, the maximum block length of 3GPP2 standard is

20730, which means at least 2*20730 metrics for forward and back recursive need to be

stored, and the received delay is 20730 time slots. These are main disadvantages of

turbo code for real time applications.

 These problems, in the main, cause by that long block length can not divide into

several short sub-blocks, since the unknown initial state of backward recursive

operation will damage the performance of turbo code. One method to overcome this

 20

problem is called sliding window algorithm [15]. The algorithm utilizes the fact that the

backward recursive metrics can be highly reliable even without knowing the initial

state if the backward recursion goes long enough. Fig. 2.10 illustrated the sliding

window process diagram.

 Initially, the received sequence is divided into several sub-blocks, with a

sub-block length of L. L is normally about five times constraint length of component

encoder in turbo code, and called the convergence length. For forward recursive

operation, the end of each sub-block i is the initial of next sub-block i+1, and the initial

metric values of each sub-block i are inherited from the last metric values of previous

sub-block i-1. For backward recursive operation, a dummy backward recursion βpre is

employed to find the beginning metric values for β recursion. However, the forward

recursion computes the forward path metrics α and storing these values into memory. In

parallel, an additional dummy backward recursion βpre is performed in the next

sub-block. As soon as the βpre operation is finished, the true backward recursion β

operation starts and the decoder also stars making soft decision based on both forward

and backward recursions.

Fig. 2.10 The diagram of sliding window algorithm

 21

Chapter3 Ternary Turbo Code

Compared with turbo code over GF(2), also called binary turbo code, the turbo

code over GF(3) is called ternary turbo code. Its basic elements as reliability-based,

iterative decoding and random interleaver are equivalent to binary turbo code. However,

there are some diversity between ternary turbo code and binary turbo code, due to

component convoluational codes over different fields. In this chapter, we’ll describe the

principle of ternary turbo coding.

3.1: The Structure of Ternary Turbo Code

 The ternary turbo encoder is built with a parallel concatenation of two component

RSC encoders and separating them by an interleaver. Since component RSC encoder is

over GF(3), we’ll call it component GF(3) RSC encoder. A block diagram of a rate 1/3

ternary turbo encoder with constraint length 3 is shown in Fig. 3.1. The generator

matrix for a rate 1/2 component GF(3) RSC encoder can be represented as polynomial

matrix G(D) [17].
2

2

1 2() 1
2

D DG D
D D

⎡ ⎤+ +
= ⎢ ⎥+ +⎣ ⎦

 (3.1)

From (3.1), it can be observed that the connections of ternary turbo encoder have

connection weights, but, in binary turbo encoder, the connection is only “on” or “off”.

Since the operation principles of ternary turbo encoder and binary turbo encoder are

similar, the design rules as to maximize the minimum output weight from low weight

input of binary turbo encoder can be copied to design ternary turbo encoder. However,

ternary turbo encoder also needs to implement trellis termination after encoded a block

messages. The procedure of trellis termination is shown in Fig.3.2. The switch of each

component encoder is set to position “A” for inputting N messages, and then the

 22

position of switch is changed to “B” for tail bits. Then trellis of ternary turbo encoder

will return to all zero state. Note that the sun of W1 and W2 in component GF(3) RSC

encoder must be equal to 3.

Fig. 3.1 The structure of ternary turbo encoder

Fig. 3.2 Trellis termination for component GF(3) RSC encoder

 In section 2.1.2, we have discussed the function and the property of interleaver.

Due to same operation principles of ternary and binary turbo encoders unless weight

distribution of their component encoders; the same capability for interleaver will be

 23

expected by intuition. In the performance simulation shown in Fig. 3.3 and Fig. 3.4, the

S-Random interleaver has better BER performance than 3GPP2 interleaver’s, and the

result is as same as the performance of Fig. 2.5 and Fig. 2.6 in binary turbo code. So, it

can be observed that interleaver be able to works well in binary turbo code as well as in

ternary turbo code, for ‘good’ component encodes

Since the ternary turbo decoding which consists of two component decoders

exchanged soft information among the receiver parts has same structure as binary turbo

decoding shown in Fig. 2.4. And the component decoder can also be implemented

based on either MAP algorithm, or SOVA, which will be discussed particularly in the

next section. Hence, the more detail about the procedure of ternary turbo decoding,

please refer to section 2.1.3. A performance comparison under different iteration

numbers and different interleaver structures in ternary turbo code is shown in Fig. 3.3

and Fig. 3.4.

Fig. 3.3 Performance comparison under different iteration numbers in S-Random

interleaver S=10 (N=1530, code rate=1/3, state 9, MAP algorithm, 3PSK)

 24

Fig. 3.4 Performance comparison under different iteration numbers in 3GPP2
interleaver (N=1530, code rate=1/3, state 9, MAP algorithm, 3PSK)

It has known that the error floor phenomenon is due to relative small code free

distance. At high SNR, the bit error probability of ternary turbo coding with 3PSK

modulation can refer to bit error probability of binary turbo code and expressed as:

0

(2)b
b free free

E
P B Q d R

N
∝ (3.2)

where BBfree is the average number of ‘non-zero values’ on the minimum free distance

path in the overall turbo code trellis, R is the code rate, and dfree is the code minimum

free distance and depends on the generator polynomials and the interleaver structure.

For an example illustrated in Fig. 3.1, the dfree is 6 which are relatively low. Through the

simulation results shown in Fig. 3.3 and Fig. 3.4, it can be observed the BER has a very

low slope at high SNR.

 25

3.2: Decoding Algorithm for Ternary Turbo Decoding

3.2.1: The MAP Algorithm

 Assume that input bit uk takes value {0, 1, 2} with the same probability, the MAP

algorithm in ternary turbo code evaluates the logarithm of a posteriori probability

(LAPP), P(uk|R), to minimizing the symbol (or bit) error probability. It can be

expressed as:

0 1
0

1
1

2 1
2

ˆ() log (0 |) (, ,)

ˆ() log (1 |) (, ,)

ˆ() log (2 |) (, ,)

k k k k
uk

k k k k
uk

k k k k
uk

u P u P S S

u P u P S S

u P u P S S

−
=

−
=

−
=

⎧Λ = = =⎪
⎪⎪Λ = = =⎨
⎪
⎪Λ = = =
⎪⎩

∑

∑

∑

R R

R

R R

1 R

�)
k

ku

 (3.3)

The hard estimate for 1 ≤ k ≤ N, where N is the interleaver length, can be determined by

following conditions:

0 1 0 2

1 0 1 2

? ?0 if (() ()) (() ())
? ?1 if (() ()) (() ()

2 otherwise

k k k

k k k k

u u and u u
u u u and u

Λ > Λ Λ > Λ⎧
⎪= Λ > Λ Λ > Λ⎨
⎪
⎩

 (3.4)

A rate 1/2 state 3 (memory order 1) GF(3) RSC encoder and its trellis diagram are

shown in Fig.3.5 as an example. Here, the solid lines represent the transitions form Sk-1

to Sk caused by the input information bit uk of 0, and transitions caused by input

information bit uk of 1 and 2 are individually represented dashed lines and dotted lines.

Fig. 3.5 A rate 1/3 state 3 GF(3) RSC encoder and its trellis diagram

 26

In order to calculate equation (3.3), the joint probability P(Sk-1,Sk,R) was needed to

computed. Based on the assumption of discrete memoryless channel, the joint

probability can be decomposed as three terms.

1 1 1

1 1 1

() (,) ()

(, ,) (,) (, |) (

 k k k k k k k

k k k j k k k k j k k

S S S

P S S P S P S S P S

e e eα γ− − −

− − < −)

Sβ

>=

=

R R R Ri i���	��
���	��
 ��

i i

	� (3.5)

Then, the following metrics can be defined: (The more details about the derivation of

equations, please refer to section 2.2.1)

 The forward recursion metric α:

1 1 1

1

(() (,))

() log{ (,)}

 log k k k k k

k

k k k j k

S S S

S

S P S

e α γ

α
− − −

−

≤

+

=

= ∑
R

 (3.6)

Note that since the trellis of encoding diverges from state zero, the initial condition of

the forward recursion metric should be set as α0(0) = 0 and α0(S0) = -∞ for S0 ≠0.

 The backward recursion metric β:

1 1 1

1

(() (,))

() log{ (|)}

 log k k k k k

k

k k j k k

S S S

S

S P S

e β γ

β
+ + +

+

>

+

=

= ∑
R

 (3.7)

Note that since the trellis of encoding converges from state zero, the initial condition of

the backward recursion metric should be set as βN(0) = 0 and βN(SN) = -∞ for SN ≠0.

 The branch transition metric γ:

2 2
, ,

0 0

1 1

2() ()
3

10

,
0

(,) log{ (, |)}
 log{ () (|)}

 log{ ()} log{() }

 = log{ ()} {(

s s
k v k k v k v

k k k k k k

k k k

E E
N Ns

k
v

s
k k k v k

S S P S S
P u P u

EP u e e
N

EP u A
N

,

γ

π

− −

− − − −

=

=
=

= +

+ − −

∏
R X R Y

R
R

R X

i

i i

i
2

2 2
, ,

1

2
2 2

, ,
10 0

()
a 1

) () }

 log{ ()} () ()

 = L () () (,)

k v k v
v

s s
k k v k k v k v

v

e
k c k k k k

E EP u
N N

u L u r S S

=

=

−

+ −

− − − −

+ +

∑

∑

R Y

R X R Y� i i ,

 (3.8)

 27

Noted that Xk is equal to uk, for systematic codes. For 3PSK modulation, the Xk

includes {Xr,k, Xi,k}, the real part and image part of xk in signal constellation, and Yk,v

also includes {Yr,k,v, YI,k,v }. The terms Ak in (2.16) is equal for all transitions at the

same time index, through the show of simulation result, it can be neglected.

Substituting (3.6), (3.7), and (3.8) into (3.3), and the LAPP can be further expressed as:

() (,) ()1 1 1
0 0 0 0

(,)1
0

() (,) ()1 1 1
1 1 1 1

(,)1
1

() (,)1 1 1
2

ˆ() log () () ()

ˆ() log () () ()

ˆ() log

S S S Sk k k k k k k
k a k c k ex k

S Sk k
uk

S S S Sk k k k k k k
k a k c k ex k

S Sk k
uk

S S Sk k k k k
k

u e e e L u L u L

u e e e L u L u L

u e e

α γ β

α γ β

α γ

− − −

−
=

− − −

−
=

− − −

Λ = = + +

Λ = = + +

Λ =

∑

∑

i i

i i

i i ()
2 2 2

(,)1
2

() () ()Sk k
a k c k ex k

S Sk k
uk

e L u L u L uβ

−
=

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪

= + +⎪
⎪⎩

∑

u

u

k

k

k

S

S

S

 (3.9)

The term La(uk) is called a priori information, and the term Lex(uk) is called extrinsic

information. Since the extrinsic information is a function of the redundant information

that introduces by the RSC encoder, it is independent on systematic input and a priori

information from LAPP. In general, extrinsic information has the same sign as uk.

Therefore, it is helpful to estimate the priori probabilities of code sequence for next

component decoder.

3.2.2: The Max-Log-MAP Algorithm

For simplifying the implementation complexity of MAP decoders, an

approximation of MAP algorithm termed Max-Log-MAP algorithm was derived by

using equation (2.19), max function. The equation (3.9) can be further simplified as:

0 1 1 1
(,)1

0

1 1 1 1
(,)1

1

2 1 1 1
(,)1

2

ˆ() (() (,) ())

ˆ() (() (,) ())

ˆ() (() (,) ())

max

max

max

k k k k k k k
S Sk k

uk

k k k k k k k
S Sk k

uk

k k k k k k k
S Sk k

uk

u S S S

u S S S

u S S S

α γ β

α γ β

α γ β

− − −
−
=

− − −
−
=

− − −
−
=

⎧
⎪Λ ≈ + +
⎪
⎪⎪Λ ≈ + +⎨
⎪
⎪Λ ≈ + +⎪
⎪⎩

 (3.10)

Similarly, the forward recursive and backward recursive metrics (3.6) (3.7) can

 28

individually be expressed as

1

1 1 1() (() (,))

max
k

k k k k k k k
S

S S Sα α γ
−

− − −≈ + S

S

S S

S

k

k

k

S

S

S

 (3.11)

and

1

1 1 1() (() (,))

max
k

k k k k k k k
S

S S Sβ β γ
+

+ + +≈ +
 (3.12)

3.2.3: The Log-MAP Algorithm

Through the use of the Jacobian algorithm shown in (2.23) and (2.24), the

Max-Log-MAP algorithm can be modified and avoided the performance loss which

caused by approximation max function. The modified algorithm, called Log-MAP

algorithm, is equivalent to the MAP algorithm. Now we can substitute (3.11) and (3.12)

into (2.23), the forward and backward recursive metrics can be represented as

1

1 1 1() *(() (,))max
k

k k k k k k k
S

S Sα α γ
−

− − −= + (3.13)

and

1

1 1 1() *(() (,))max
k

k k k k k k k
S

S S Sβ β γ
+

+ + += + (3.14)

where the max*(⋅) operation is defined by (2.27). Then, the (3.10) can be expressed as

0 1 1 1
(,)1

0

1 1 1 1
(,)1

1

2 1 1 1
(,)1

2

ˆ() *(() (,) ())

ˆ() *(() (,) ())

ˆ() *(() (,) ())

k k k k k k k
S Sk k

uk

k k k k k k k
S Sk k

uk

k k k k k k k
S Sk k

uk

u S S S

u S S S

u S S S

α γ β

α γ β

α γ β

− − −
−
=

− − −
−
=

− − −
−
=

⎧
⎪Λ = + +
⎪
⎪⎪Λ = + +⎨
⎪
⎪Λ = + +⎪
⎪⎩

max

max

max

 (3.15)

3.2.4: SNR Sensitivity of Max-Log-MAP and Log-MAP Algorithm

In section 2.2.3, it has been discussed that, for binary turbo code, both MAP and

log-MAP algorithm requires SNR estimation and Max-Log-MAP algorithm is SNR

 29

independent if a priori information is initialized with a reasonable value. For ternary

turbo code, the MAP and Log-MAP algorithms also need SNR estimation from their

deductions. The effect of SNR sensitivity on BER performance of ternary turbo code

can is observed through simulations shown in Fig.3.6 and Fig.3.7. Both Figs. show the

BER versus SNR estimation offset based on ternary turbo code, MAP algorithm, 10

iterations, and AWGN channel. The simulation result points out that the

underestimation of SNR is more harmful than overestimation, and the sensitivity of

ternary turbo code with 3GPP2 interleaver is lightly less than ternary turbo with

S-Random interleaver. Note that in both Figs., the minimum BER is not achieved for

0dB offset-SNR, and this effect occurs only for the short block sizes under

consideration, please refer to [14] for more detail discuss.

Fig. 3.6 Sensitivity of BER performance of ternary turbo code with S-Random

interleaver (length 1200)

 30

Fig. 3.7 Sensitivity of BER performance of ternary turbo code with 3GPP2

interleaver (length 1146)

For Max-Log-MAP algorithm in ternary turbo code, the method of paper [14] can be

extend to show the fact that it does not require knowledge of the SNR, if La(uk), a priori

information, is initialized to zero for each bit.

3.3: Sliding Window Method for Ternary Turbo Decoding

 Since the decoding algorithm of ternary turbo code is very similar to the algorithm

of binary turbo code, the sliding window decoding method can directly be employed to

ternary turbo decoding. The more detail discuss, please refer to section 2.3.

 31

Chapter4 Embedded Prior Information Ternary

Turbo-Coded Modulation

 Coded modulation is to combine coding and modulation technique. It achieves

significant coding gain without bandwidth expansion the trellis coded modulation

(TCM) is a form of coded modulation based on convolutional codes, and block coded

modulation (BCM) is based on block codes. In this chapter, we’ll focus on turbo code

which is one of trellis codes, so only TCM is introduced.

4.1: Trellis-Coded Modulation

How to construct the bits-to-symbols mapping is main fundamental questions on

combining coding and modulation. Now, consider that if soft ML-decoding is applied,

the error-event probability will approach asymptotically at high SNR, the lower bound

[16] is

2

0

2

4 0

() () ()
2

 ()

free
r free

d free
N

free

d
P e N d Q

N

N d e
−

≈

≈

i
 (4.1)

here N(dfree) denote the number of nearest neighbors of transmitted coded sequence,

and 2
freed is the minimum Euclidean free distance between transmitted coded sequence

and any other coded sequence. Thus, it is very obvious that the term of 2
freed dominates

the performance at high SNR, so the goal of bits-to-symbols mapping is to maximum

the minimum Euclidean free distance, but how to achieve this goal?

 Through set partition applied a natural mapping of bits to signals, the author,

Ungerboeck, of [16] describes the concrete method to maximum the minimum

Euclidean free distance of a coded modulation system combined binary convolutional

 32

codes and modulation. This coded modulation is well-known trellis coded modulation

(TCM). Comparison with un-coded system, TCM combined ordinary rate Rc = k/(k+1)

binary convolutional codes with an M-ary signal constellation (M = 2k+1>2) achieves

coding gain without increasing transmitted symbol rate. Note that due to TCM scheme

uses signal set expansion rather than additional transmitted symbols to accommodate

the redundant bits, performance comparisons must be made with un-coded modulation

systems that have same spectral efficiency. The design rule of TCM can be summarized

as follows:

I. All subsets should occur in the trellis with equal frequency.

II. State transitions that begin and end in the same state should be assigned

subsets separated by the largest Euclidean distance.

III. Parallel transitions are assigned signal points separated by the largest

Euclidean distance.

4.2: Embedded Prior Information Technique

 The main idea of TCM is similar to extend signal constellation to join redundant

parity bits. For convenience, parity bits mentioned in this chapter express redundant

bits which is introduced by coding and obtained from constellation extension. This

concept can apply to a coded system, such as a rate 1/2 binary convolutional code with

binary phase shift keying (BPSK) modulation, an extra coding gain can be obtained in

such a way that by expanding the signal constellation which from 2-ary extends to

m-ary to add extra parity bits into original coded system, without increasing the

required bandwidth. The idea is experimented on a concatenated coding system with

ternary phase shift keying (3PSK) modulation. The simulation result shows the

concatenated coding built with an inner rate 1/2 ternary convolutional code and an

 33

outer (128, 64, t=6) BCH code has better performance gain than original binary

convolutional code with BPSK modulation. More detail discuss about these, please

refer to Appendix A. However, the additional coding gain based on expanding

constellation to concatenate an outer code to original coded system is not always able to

achieve, and an opposite instance is described in Appendix B.

Fig. 4.1 Structure diagram of two different coding systems

Now, consider two coding systems show in Fig. 4.1. Based on following

conditions: 1. Constant data rate, 2. Unit transmitted signal power, 3. Constant spectral

efficiency (transmitted symbols/unit time slot), and 4. Constant block size. System 1 is

a rate 1/3 state 8 binary turbo code with BPSK modulation. System 2 extends BPSK

modulation to 3PSK and utilizes a rate 1/3 state 9 ternary turbo code for coding. Note

that the question marks in System 2 represent how to utilize redundant information

which can be used since constellation expansion. Whereas joining additional parity bits

introduced by coding into a complex coding system, such as turbo code, increase not

only hardware complexity but also decoding latency, how to “efficiently” use
 34

redundant information to achieve remarkable coding gain is the key design. In this

section, we propose a method which embedded known digits into ternary turbo code to

improve the performance. This method was kind of like [20].

4.2.1: Proposed Structure

 In general, two GF(3) symbols can carry about 3-bit information, that is, 1200 bits

can be represented only 800 GF(3) symbols. Supposed that the System 1 want to

transmit 1200 binary symbols, based on same channel efficiency condition, System 2

also transmits 1200 GF(3) symbols. As former mention, and based on same data rate

condition, System 2 has additional 400 GF(3) symbols can arbitrary use. How to

maximum minimum free distance of System 2 is first considered. Due to the minimum

free distance depends on minimum low weight coded sequences which are generated

from low weight input sequences, therefore, how to maximize low weight input

sequences is design key point. A simple method to maximize low weight input

sequences is to insert known GF(3) digits, into ternary turbo code. Here, two questions

will be considered as follow:

I. Are known digits constant or variable?

II. Which positions of information sequence are known digits inserted into?

For question one, the constant known digits are selected and by simulation that

inserting constant known GF(3) digit of 2 into ternary turbo coding has the best

performance, comparison to constant known GF(3) digit of 0 and 1. For question two,

inserting known digits uniformly into information sequence is considered. The idea of

uniform distribution known digits originates in S-Random interleaver which is able to

break up burst error.

The structure of System 2 inserted known GF(3) digits is illustrated in Fig. 4.2.

Here, “π” represents the interleaver. This system, in short, is called Embedded Prior
 35

Information-I Ternary Turbo Code (EPI-I TTC) and uses constant and known GF(3)

digits rather than parity bits. The inserting locations of known GF(3) digits are fixed

and one known GF(3) digit is inserted after two GF(3) information digits. Note that

known digit is not to transmit, since it is constant and has already known by both

encoder and decoder.

Fig. 4.2 Structure of EPI-I TTC

In Fig. 4.2, it can be observed that positions of known digits that input into ENC 1

and ENC 2 are different, since interleaver before ENC 2 reorders the input sequence.

However, the non-uniform location distribution of known digits is not one as expected.

Fig. 4.3 shows a modified system, and it called Embedded Prior Information-II Ternary

Turbo Code (EPI-II TTC). The EPI-II TTC has not only uniform known digit location

distribution but also smaller interleaver size. Note the interleaver size in EPI-II TTC is

800.

 36

Fig. 4.3 Structure of modified EPI-II TTC

If the block size of binary turbo code in System 1 is 1200, based on constant block

size condition, the block lengths of EPI-I TTC and EPI-II TTC are also 1200 included

800 GF(3) information digits and 400 known Gf(3) digits. In general, the block size of

turbo code is as same as interleaver size, but in Fig. 4.3 they are different, since known

GF(3) digits is inserted after intleaver. As mention before, the ternary turbo code have

only 800 GF(3) information digits and, thus, its interleaver size is the same. The

advantage of using embedded known digits to fill in parity bits is to remarkable enlarge

low weight coded sequence, that is not only improving BER performance but also

increasing no additional complexity of hardware and computation, comparison to

original ternary turbo code.

4.2.2: Performance Effects

In this section we discuss the effect of embedded known digits into ternary turbo

code and binary turbo code. The influence of embedded known digits can be discussed

from two viewpoints.

I. Breaking up burst errors.

II. Maximizing minimum low weight coded sequences.

 37

Consider an extreme case shown in Fig. 4.4, there are 15 burst errors which is not able

to decode correctly by ternary turbo code. But in EPI-II TTC, since known digits break

a long burst-error sequence into some small parts, and the strong reliable extrinsic

values of known digits revise error path close to correct one, through iteration by

iteration, the burst error sequence lastly can be correct decoded.

Fig. 4.4 Sketch diagram of breaking off burst error by inserting known digits

Fig. 4.5 Sensitivity of BER performance of EPI-II TTC with S-Random
interleaver (length 800)

 38

Fig. 4.6 Sensitivity of BER performance of ternary turbo code with 3GPP2
interleaver (length 1146)

Let v = (v0, v1, … , vn-1) be a Gf(3) n-tuple. The Hamming weight of v, denoted by

w(v), defined as the number of nonzero components of v. For example, the Hamming

weight of v = (1 2 0 1 0 2) is 4, Let v and w be two n-tuples. The Hamming distance

between v and w, denoted d(v, w), is defined as the number of places where they differ.

For example, the Hamming distance between v = (1 2 1 0 0 2) and w = (2 1 1 0 0 0) is 3;

they differ in the zeroth, first, and, sixth places. Now, consider a rate 1/2 ternary

convolutional code with a generator matrix,
2

2

1+D+2D[1]
2+D+D

, its minimum weight input

is (2,1,1,0,…) and Hamming weight is 3. This value is very small. If inserted constant

known digits into input sequence in such way that two input data insert a known digit of

2. The effect of inserting known digits for ternary convolutaional code is equal to

multiply a factor,
2 4

2 4

2 D 2D
1 D 2D 2D

+ +
+ + + 6 , into generator matrix. Then,

2 4 2 3 4 5

2 4 6 3 4 5 7

2 D 2D 2 2D 2D D D 2D D[
1 D 2D 2D 2 D D D 2D 2D

+ + + + + + + +
+ + + + + + + +

6

] is the new generator matrix,

so the low weight input can be enlarged well.

 39

Due to the decoded algorithm of EPI-II TTC is MAP algorithm, its SNR

sensitivity showed in Fig. 4.5 and Fig. 4.6 needs to be considered. Fig. 4.5 and Fig. 4.6

show the BER versus SNR estimation offset based on EPI-II TTC, MAP algorithm, 10

iterations, and AWGN channel, but different interleavers. The simulation result points

out that the underestimation of SNR is more harmful than overestimation, and the

sensitivity in 3GPP2 interleaver is lightly less than S-Random interleaver.

However, the SNR sensitivity of EPI-II TTC and ternary turbo code seems to be

the same for a glance. But through the charts shown in Fig. 4.7 and Fig. 4.8, their

diversity can be noted. In charts, the BER of real Eb/N0 is normalized to 1, thus, the

level of SNR sensitivity corresponded to SNR offset can be observed. The chart points

out that the SNR sensitivity of EPI-II TTC is less than ternary turbo code. Fig. 4.7

shows SNR sensitivity comparisons between EPI-II TTC and ternary turbo code with

S-Random interleavers at Eb/N0 of 0.1dB and Fig. 4.8 shows SNR sensitivity

comparisons with 3GPP2 interleaver.

Fig. 4.7 SNR sensitivity comparisons between EPI-II TTC with S-Random

interleavers.

 40

Fig. 4.8 SNR sensitivity comparisons between EPI-II TTC and normal ternary

turbo code in 3GPP2 interleaver.

Fig. 4.9 Performance comparison between embedded known digits binary turbo

code and binary turbo code with S-Random, S=10 (10 iterations, state 8)

 41

Fig. 4.10 Performance comparison between embedded known digits binary turbo

code and binary turbo code with 3GPP2 interleaver (10 iterations, state 8)

If the constant data rate condition does not considered, can binary turbo code

improve its performance in terms Eb/N0 by using embedded known bits technique? The

solution is answered by simulations. Fig. 4.9 and Fig. 4.10 display BER performances

of a rate 1/3 state 8 embedded known bits binary turbo code and a rate 1/3 state 8 binary

turbo code. Both Figs. are based on MAP algorithm, 10 iterations, BPSK modulation,

AWGN channel, and two information data insert a known bit of 1 for embedded known

bits binary turbo code. In Fig. 4.9, with S-Random interleaver, binary turbo code has

better BER performance than embedded known bits one after Eb/N0 of 0.6dB. In Fig.

4.10, with 3GPP2 interleaver, the embedded known bits binary turbo code has better

BER performance than binary turbo code from top to bottom. In Fig. 4.11, the different

embedded known bit numbers is examined, the simulation result points out that the

binary turbo code is always superior after Eb/N0 of 0.001, than others. However, the less

known bits are embedded into binary turbo code; the better performance is achieved.

Due to limitation of computing power, the simulation in Fig. 4.11 is done with only 4

 42

iterations. It can be conclusion that the method of embedded known bit is helpful for

structured interleaver, but in random interleaver, it has better performance at lower

SNR.

Fig 4.11 Performance comparison under different embedded known bit numbers

in binary turbo code (4 iterations, state 8, S-Random interleaver)

 43

Chapter5 Simulation and Implement Results

Look back on Fig. 4.1 it has been expected that System 2 has better performance than

System 1, by using embedded known digits technique. And both systems need to satisfy

following conditions as: 1. unit transmitted power, 2. constant data rate, 3. constant

channel efficiency. In this chapter, performance simulations in terms of Eb/N0 and

hardware complexities of two systems will be compared. Section 5.1 discusses

simulation results between Embedded Prior Information-II Ternary Turbo Code (EPI-II

TTC), Embedded Prior Information-I Ternary Turbo Code (EPI-I TTC), ternary turbo

code (TTC), and binary turbo code (BTC). And hardware complexity is describes in

section 5.2.

5.1: The Comparison of Simulation Performance

 Before entering this section, some environment specifications in our simulation

have been defined.

Table 5.1 Environment specification:

 Binary Turbo Code Ternary Turbo Code

Modulation BPSK 3PSK

Transmitted Channel AWGN AWGN

Numbers of Iteration 10 10

Decoding Algorithm Log-MAP Log-MAP

Generator Matrix
2 3

2 3

1+D D[1]
1+D+D D

+
+

2

2

1+D 2D[1]
2+D+D

+

Numbers of State 8 9

 44

Here, ternary turbo code includes EPI-I TTC, EPI-II TTC, and TTC. And the factor, S,

of S-Random is set to 10. However, the coding gain on BER of 10-5 will be focus, since

the BER of 10-5 is the basic demand in most systems.

Fig. 5.1 Performance comparisons of ternary turbo codes with S-Random
Interleaver

Fig. 5.2 Performance comparisons of ternary turbo codes with 3GPP2 interleaver

 45

Fig. 5.1 and Fig. 5.2 compare performances of ternary turbo code included EPI-II

TTC, EPI-I TTC, and TTC on S-Random interleaver and 3GPP2 interleaver, separately.

From both simulations, it can be observed that known digit is able to improve BER

performance, and EPI-II TTC is better than EPI-I TTC. Note that the data rate of TTC

is larger than EPI-II TTC and EPI-I TTC about 1.5 times, but the interleaver size of

EPI-II TTC is smaller than EPI-I TTC and TTC about 1/3 since the interleaver size in

EPI-II TTC is 800 and others are 1200 if the block size is 1200. For constant block size

of 1200, Fig. 5.3 displays the performance comparison of turbo codes included EPI-II

TTC, TTC, and BTC with S-Random interleaver. The simulation result points out that

the EPI-II TTC has performance gain about 0.2dB than TTC and about 1dB than BTC.

Fig. 5.4, with 3GPP2 interleaver, shows that the EPI-II TTC has performance gain

about 0.5dB than TTC and about 1.2dB than BTC.

Fig. 5.3 Performance comparisons of turbo codes with S-Random Interleaver
(block length=1200)

 46

Fig. 5.4 Performance comparisons of turbo codes with 3GPP2 Interleaver (block
length=1146)

Fig. 5.5 Performance Comparison between EPI-II TTC and Binary turbo code
with 3GPP2 interleaver length of 20730

 Former discuss focus on that in same block length, EPI-II TTC is able to improve

how many performance gains if comparison with TTC and BTC. But the key point,

 47

which we really care about, is that the performance comparison between EPI-II TTC

with short interleaver and BTC with long interlaver. Fig. 5.5 shows their performance

simulation, which EPI-II TTC using length-800 S-Random interleaver and BTC using

length-20730 3GPP2 interleaver. The simulation result points out that EPI-II TTC has

performance gain than BTC about 0.2dB at BER of 0.00001 and about 0.6dB at BER of

0.000001. However, it is very obvious that the error floor region of BTC occurs after

BER of 0.00001, but the error floor region of EPI-II TTC does not appear yet. Finally a

performance constellation shown in Fig. 5.6 displays that based on BER of 0.00001, the

performance comparison between different turbo codes which employ different

interleaver structures and different interleaver lengths. The horizontal axis represents

Eb/No and the vertical axis represents interleaver length in log-scale.

Fig. 5.6 Performance constellation of turbo codes at Eb/N0=10-5

 48

5.2: The Estimation of Hardware Complexity

 In previous chapter, all discussions about turbo codes are based on importing

floating point information as required soft-input. Nevertheless, the floating point value

should be bounded since infinite precision is impossible to be achieved for practical

implementation. A trade-off between hardware cost and the performance must be

concerned since coding performance may suffer quantization loss due to internal

bit-width limitation. In general, hardware complexity of turbo code can be estimation in

computing complexity and memory size which is proportional to bit-with. In this

section, based on acceptable performance loss, the fixed point analysis and computing

complexity is discussed. Note that in this section, only hardware complexities of EPI-II

TTC with length-800 S-Random interleaver and BTC with length-20730 3GPP2

interleaver are compared, since there have similar performance gain. And the sliding

window method for turbo decoder is assumed. The length of sliding window is set as 5

times of constrain length of component convolutional codes.

5.2.1 Memory Size Analysis

 The most area in turbo code implementation is dominated by memories which

store receiver information, LLR value, extrinsic value, forward recursive metric,

backward recursive metric, and branch transition metric. And overall required size of

memory is determined by fixed point analysis. The bit-width of receiver information is

determined firstly, since this value influences numbers of bit-width of internal metric

and LLR. Fig. 5.7 plots the quantization loss of the bounded receiver information with

3PSK modulation and EPI-II TTC. Fig. 5.8 shows the same simulation but with BPSK

and BTC. Due to the BER performance is centered below 0.00001dB, the 3.3 scheme

for EPI-II TTC and the 3.2 scheme for BTC are chose.

 49

Fig. 5.7 Fixed point simulation result of the input symbols with 3PSK modulation

and a rate 1/3 state 9 EPI-II TTC with S-Random interleaver size of 800

Fig. 5.8 Fixed point simulation result of the input symbols with BPSK modulation

and a rate 1/3 state 8 binary turbo code with 3GPP2 interleaver size of 20730

 50

Fig. 5.10 Fixed point simulation result of the extrinsic information (Lex) in a rate

1/3 state 9 EPI-II TTC with S-Random interleaver size of 800

Fig. 5.11 Fixed point simulation result of the extrinsic information (Lex) in a rate
1/3 state 8 binary turbo code with 3GPP2 interleaver size of 20730

Extrinsic data provides reliable information to be a priori information for turbo code to

perform the iteration decoding. So quantization of extrinsic information should be done

 51

carefully or the effect of iterative decoding will be diminished. A fixed point simulation

of the extrinsic information is performed, as shown in Fig. 5.10 and Fig. 5.11. Then, the

4.2 scheme for EPI-II TTC and the 5.2 scheme for BTC are selected. Now, ranges of

received information and a priori information that comes from the extrinsic information

are determined. According the bounded method of [18] and [19], the bit-width of

internal variables, α, β, γ, and LLR value, for Log-MAP algorithm can be derived. The

final bit-width of all information that is required by Log-MAP decoding algorithm is

listed in Table 5.2. Note that any information exceeding the range that can be expressed

is saturated to the nearest value instead to truncating it directly.

Table 5.2 Summary of bit-width decision for EPI-II TTC and binary turbo code

Bit-width Rec. Infor. La(uk) α β γ Lex(uk) LLR

EPI-II TTC 6 (3.3) 6 (4.2) 8 (6.2) 8 (6.2) 8 (6.2) 6 (4.2) 9 (7.2)

BTC 5 (3.2) 7 (5.2) 8 (6.2) 8 (6.2) 8 (6.2) 7 (5.2) 9 (7.2)

Fig. 5.12 Performance loss of EPI-II TTC comparison between floating point and

fixed point scheme
 52

Fig. 5.13 Performance loss of binary turbo code comparison between floating

point and fixed point scheme

Table 5.3 Memory sizes comparison between BTC and EPI-II TTC

 BTC with 3GPP2

Int. Len.20730

EPI-II TTC with S-Rand.

Int. Len. 800

LLR 186570 (20730*9) 21600 (3*800*9)

Lex 145110 (20730*7) 14400 (3*800*6)

X1 103650 (20730*5) 9600 (2*800*6)

Y1 & Y2 207300 (2*20730*5) 28800(2*2*1200*6)

α 1280 (8*20*8) 1080 (9*15*8)

β 1280 (8*20*8) 1080 (9*15*8)

γ 2560(2*8*20*8) 3240 (3*9*15*8)

Table 0 8000 (800*10)

Sum 647750 87800

Normalize 1 0.14

 53

Finally, both performances of EPI-II TTC and BTC under complete fixed point

condition are simulated, as shown in Fig. 5.12 and Fig. 5.13. For simulation results,

their performance losses of fixed point are all less than 0.05dB, comparison with

floating point simulations. Now, sizes of memory which required by decoders of

EPI-II TTC and BTC can be compared, as listed in Table 5.3. In Table 5.3, the total

memory sizes required for EPI-II TTC are 87800 bits and total memory sizes for BTC

are 647750, that is, the EPI-II TTC can save about 86% of memory size than BTC.

5.2.2 Computing Complexity Analysis

 Based on Log-MAP decoding algorithm and Sliding method for turbo decoding,

the following procedures are executed, for each decoded bit. Note that the trellis

diagram of BTC has 8 states and 16 branches and the trellis diagram of EPI-II TTC has

9 states and 27 branches.

 Update forward recursive metrics:

Update forward node metrics based on equation (2.25), and the operation of

1 2 2 1max*() max(,) (| |)cfδ δ δ δ⋅ = + − consists of one adder, one 2-input comparator, called

comp-2, and one table. Each node for BTC needs 2 adders, 1 comp-2, and 1 table. For

EPI-II TTC, each node needs 3 adders, 1 comparator, and 1 table. Assume one 3-input

comparator is composed by two comp-2.

 Update backward recursive metrics:

The computation is the same as that in the forward recursive metric update. Since

sliding window is able to estimate βpre in advance, 2-suit max function operations are

needed.

 Update branch metrics

For equation (2.17), each branch for BTC needs 3 adder and 3 multipliers. For

equation (3.8), each branch for EPI-II TTC needs 11 adders and 5 multipliers. Here,
 54

subtraction operation is instead of adder.

 Calculate LLR information:

For equation (2.28), each LLR for BTC needs 33 adders, 2 tab, and two 8-input

comparators. For equation (3.15), each LAPP for EPI-II TTC needs 54 adders, 2 tab,

and three 9-input comparators, but one GF(3) digit is represented to 3 LAPP values.

Assume one 8-input comparators are consisted of 7 comp-2s and one 9-input

comparators are consisted of 9 comp-2s.

The comparison of computing complexity between BTC and EPI-II TTC are listed in

Table 5.4.

Table 5.4 Comparisons of computing complexity between BTC and EPI-II TTC

 BTC with 3GPP2

Int. Len.20730

EPI-II TTC with S-Rand.

Int. Len. 800

LLR 33 add. + 2 tab. + 14 com-2 162 add. + 6 tab. + 72 com-2

α 16 add. + 8 tab. + 8 comp-2 27 add. + 9 tab. + 18 comp-2

β 32 add. + 16 tab. + 16 com-2 54 add. + 18 tab. + 36 com-2

γ 48 add. + 48 mult. 297 add. + 135 mult.

Add. 129 540

Mult. 48 135

Tab. 26 33
Sum

Comp-2 38 126

Add. 1 4.186

Mult. 1 2.8125

Tab. 1 1.2692
Normal.

Comp-2 1 3.3158

 55

Conclusion

 In this thesis, the ternary turbo coded modulation using embedded prior

information, and in short, called embedded prior information ternary turbo code

(EPI-II TTC) is presented. The proposed method not only overcomes the main

disadvantage of binary turbo code with long interleaver but also lowers error floor

effect.

Comparison with binary turbo code (BTC) with BPSK modulation which employs

a length-20730 3GPP2 interleaver to achieve BER of 10-5 at Eb/N0 of 0.4dB, the EPI-II

TTC with 3PSK modulation which employs a length 800 S-Random interleaver to

achieve the same BER at Eb/N0 of 0.2dB has 0.2dB performance gain, but at BER of

10-6 EPI-II TTC can obtain 0.6dB performance gain than BTC. Since embedded known

digits is able to widely enlarge the minimum low weigh coded sequences, the error

floor of EPI-II TTC can be reduced. And further, comparison with BTC, the proposed

system can save not only memory size about 89% but also decoding latency about

94% for the same data rate condition.

Comparison to general ternary turbo code, the SNR sensitivity of MAP decoded

algorithm as well as interleaver size can be reduced when embedded known digits

technique is employed. However, comparison with binary turbo code, advantages of

EPI-II TTC can be concluded as following:

I. Decreasing required memory (saving about 86%)

II. Reducing computing latency (saving about 94%).

III. To lower down the error floor (0.6 dB performance gain at Eb/N0 of 10-6).

In addition, the overhead which the EPI-II TTC needs to pay is the more computing

complexity for Log-MPA algorithm than BTC. And due to ternary turbo code works on

GF(3), the additional hardware need to implement that two tables, a table for the

 56

transformation of binary bit to ternary digit and another table for ternary turbo encoder,

are required to built, but both tables are small. Moreover, comparison to BPSK

modulation technique, the 3PSK modulation is more complex.

 57

Appendix A: Scheme I (BCH + Ternary Convolutional

Code)

 Since comparison with un-coded system, TCM which extended signal

constellation to join redundant parity bits have great performance gain. So we want to

observe that how many performance gains can be achieved when the idea of TCM is

extended into coded system. In Fig. A.1, System 2 is a concatenated coding built with

an outer (126, 84, t=6) BCH code and rate-1/2 state-9 ternary convolutional code.

System 1 is a rate 1/2 state-128 convolutional code. The generator matrices of binary

and ternary convolutional code are and

, separately. Both systems have the same conditions, such as:

constant data rate, constant channel efficiency, and unit transmitting power. Then the

simulation result shown in Fig. A.2 points out that System 2 has about 0.5dB

performance gains than System 1. Note that the decoding algorithm of binary or

ternary convolutional code is Viterbi algorithm.

2 5 6 7 2 3 4 7[1+D +D +D +D , 1+D+D +D +D +D]G =

2[1+D+2D , 2+D+D]G = 2

Fig. A.1 Structure diagram of two different coding systems
 58

Fig. A.2 Performance comparisons between binary convolutional code and
ternary convolutional code with BCH code

Fig. A.3 Performance comparison between ternary convolutional code and
ternary convolutional code with BCH code

In addition, comparison with ternary convolutional code with 3PSK modulation, the

concatenated coding in System2 has about 1dB performance gain as shown in Fig.

 59

A.3. Now, we have a conclusion that by extended constellation to join redundant

parity bits into convolutional codes the performance can be remarkably proved.

Furthermore, in chapter 4, we know that inserting known digits into ternary turbo

code in such way that one GF(3) known digit is inserted after two GF(3) information

datum, the extra performance gain can be achieved. So, an experiment for inserting

known digits into ternary convolutional code with the same method as former

description is implemented. In Fig. A.4, the simulation result displays that the

concatenated system has better performance than inserting known digit into ternary

convolutional code, that is, inserting known digit into ternary convolutional code has

almost no performance gain.

Fig. A.4 Performance comparison between ternary convolutional code with BCH
and ternary convolutional code with inserting known digits

 60

Appendix B: Scheme II (RS + Ternary Turbo Code)

Compared with a concatenated coding system with 3PSK modulation, a rate 1/3

state-8 binary turbo code with BPSK modulation has better performance in terms of

BER as shown in Fig. B.2. The concatenated coding system formed from a rate 1/3

state-9 inner ternary turbo code and an outer (63, 42) RS code. For both turbo codes,

the S-Random interleavers are employed. Simulation points out that System 1 has

about 0.2 dB performance gain than System 2 at BER of 10-4, but at high SNR the

System 2 will has better performance than System 1 since error floor phenomenon.

However, in turbo code system, using an outer code instead redundant information

maybe is not an efficiency method due to computing analysis in section 5.2.2 shows

that the computing complexity of ternary turbo code is more complex than binary

turbo code. So, if System 2 has not significant performance gain, the cost of

concatenated coding system is too large.

Fig. B.1 Structure diagram of binary turbo code with BPSK modulation and a

concatenated coding system with 3PSK modulation.

 61

Fig. B.2Performance comparison between binary turbo code and concatenated
coding formed form a ternary turbo code and a RS code.

 62

BIBLIOGRAPHY

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit

Error-Correcting Coding and Decoding: turbo-codes (1),” in IEEE Int. conf.

Communications (ICC), pp.1064-1070, May 1993.

[2] S. Benedetto and G. Montorsi, “Unveiling turbo codes: some results on parallel

concatenated convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, no. 2,

pp. 409-428, May 1996.

[3] D. Divsalar, S. Dolinar, R.J. McEliece and F. Pollara, “Performance analysis of

turbo codes”, in IEEE MILCOM’95, vol. 1, pp. 91-96, Nov. 1995.

[4] V. Branda and J. Yuang, “Turbo Codes: Principles and Applications”.

[5] Physical Layer Standard for cdma2000 Spread Spectrum Systems, 3GPP2 Std.

C.S0002-C, May 2002.

[6] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear Codes

for Minimizing Symbol Error Rate,” IEEE Trans. Inform. Theory, vol. IT-20, pp.

284-287, Mar. 1974.

[7] J. Hagenauer and P. Hoeher, “A Viterbi Algorithm with Soft-decision Outputs and

its Applications,” in IEEE GLOBE-COM, Dallas, TX, pp. 47.1.1-47.1.7, Nov.

1989.

[8] P. Robertson, E. Villebrun and P. Hoeher, “A Comparison of Optimal and

Sub-Optimal MAP Decoding Algorithms operating in the Log Domain,” in Proc.

ICC’95, Seattle, June 1995.

[9] J. Hagenauer, E. Offer and L. Papke, “Iterative Decoding of Binary Block and

Convolutional Codes,” IEEE Trans. Inform. Theory, vol. 42, No. 2, Mar. 1996.

[10] J. A. Erfanian, S. Pasupathy, and G. Gulak, “Reduced Complexity Symbol

Detectors with Parallel Structures,” in IEEE GLOBECOM’90, vol. 2, pp. 704-708,

 63

Dec. 1990.

[11] P. Robertson, E. Villebrun, and P. Hoeher, “A Comparison of Optimal and

Sub-Optimal MAP Decoding Algorithms Operating in the Log Domain,” in

Comm. ICC 95 Seattle, vol. 2, pp. 1009-1013, June 1995.

[12] M. Jordan and R. Nichols, “The Effects of Channel Characteristics on Turbo

Code Performance,” in IEEE MILCOM’96, vol. 1, pp. 17-21, Oct. 1996.

[13] T. A. Summers and S. G. Wilson, “SNR Mismatch and Online Estimation in

Turbo Decoding,” IEEE Trans. Comm., vol. 46, pp. 421-423, Apr. 1998.

[14] A. Worm, P. Hoeher, and N. When, “Turbo-Decoding Without SNR Estimation,”

IEEE Comm. Letters, vol. 4, no. 6, pp. 193-195, June 2000.

[15] S. A. Barbulescu, “Sliding Window and Interleaver Design,” IEEE Electronics

Letters, vol. 37, no. 21, pp. 1299-1300, Oct. 2001.

[16] G. Ungerboeck, “Channel Coding with Multilevel/Phase Singals,” IEEE Trans.

Inform. Theory, IT-28: 55-67, Jan. 1982.

[17] A. C. Reid, D. P. Taylor, and T. A. Gulliver, “Non-Binary Turbo Codes,” in Proc.

IEEE Int. Symp. Information Theory, pp. 57, 2002.

[18] Y. Wu, B. D. Woerner, and T. K. Blankenship, “Data Width Requirements in

SISO Decoding With Module Normalization,” IEEE Trans. Commun., vol. 49, no.

11, pp. 1861-1868, Nov. 2001.

[19] Yen-Hsu Shih, “A Dual Mode Channel Decoder for 3GPP2 Mobile Wireless

Communications,” Master Thesis, NCTU, 2004.

[20] O.M. Collins, M. Hizlan, “Determinate State Convolutional codes,” IEEE Trans.

Commun., vol. 41, issue 12, pp. 1785-1794, Dec. 1993.

 64

作者簡介

姓名: 周毓堂

出生: 台北市

學歷 : 虎尾國小 揚子國中 大成商工

 88.9 ~ 92.6 國立虎尾科技大學飛機工程學系(電子組)

 92.9 ~ 94.10 國立交通大學 電子研究所 (oasis lab)

 65

	摘要
	ABSTRACT
	誌謝
	Content
	LIST OF FIGURES:
	LIST OF TABLES:
	1.1 Motivation
	1.2 Thesis Organization
	2.1: The Structure of Turbo Code
	2.1.1: Encoder of Turbo Code
	2.1.2: Interleaver
	2.1.3: Decoder of Turbo Code
	2.1.4: Error Floor Effect

	2.2: Decoding Algorithm for Turbo Code
	2.2.1: The MAP Algorithm
	2.2.2: The Max-Log-MAP Algorithm
	2.2.3: The Log-MAP Algorithm
	2.2.4: SNR Sensitivity of Max-Log-MAP and Log-MAP Algorithm

	2.3: Sliding Window Method for Turbo Decoding
	3.1: The Structure of Ternary Turbo Code
	3.2: Decoding Algorithm for Ternary Turbo Decoding
	3.2.1: The MAP Algorithm
	3.2.2: The Max-Log-MAP Algorithm
	3.2.3: The Log-MAP Algorithm
	3.2.4: SNR Sensitivity of Max-Log-MAP and Log-MAP Algorithm

	3.3: Sliding Window Method for Ternary Turbo Decoding
	4.1: Trellis-Coded Modulation
	4.2: Embedded Prior Information Technique
	4.2.1: Proposed Structure
	4.2.2: Performance Effects

	5.1: The Comparison of Simulation Performance
	5.2: The Estimation of Hardware Complexity
	5.2.1 Memory Size Analysis
	5.2.2 Computing Complexity Analysis

	Appendix B: Scheme II (RS + Ternary Turbo Code)
	BIBLIOGRAPHY

