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ABSTRACT

Recently, (binary) turbo code is one_of .mast important coding techniques for
wireless communication due to its excellent error correction ability. The main problem
of turbo code is that using a:long interleaver is. able to support its remarkable
performance, but a long decoding lateney-and huge memory size are introduced.
Moreover, at high SNR, the error floor phenomenon causes that turbo code unable to
achieve very low bit error rates.

In this thesis the ternary turbo coded modulation using embedded prior
information, in short, called EPI TTC is presented. Comparison with binary turbo code
with interleaver size of 20730, the proposed system with interleaver size of 800 can
save not only memory size about 86% but also decoding latency about 94%. In addition,
it has 0.2 dB and 0.6 dB performance gains than binary turbo code at BER of 10” and

10°®, separately.
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Chapterl Introduction

1.1 Motivation

In the last decade, turbo code is one of most important coding techniques for wireless
communication due to its excellent error correction ability. The main problem with
turbo code is that a long interleaver is able to support its exceptional performance, but a
long decoding latency and huge memory size are introduced. The second problem
about turbo code is error floor effect that causes turbo code unable to satisfy the
requirement of very low bit error rates. The occasion of main problem with turbo code
originates form long interleaver, and second problem is caused by relative small of
minimum code free distance. In genéral, to concatenate a RS code before turbo code
can easily solve the error floor effect. However it.decreases the data rate.

Our work is motivated by the need to achieve large coding gains where the
required interleaver size is as small.as.possible and the data rate is not reduced. Firstly,
the trellis coded modulation technique is considered since it can introduce additional
coding by constellation expansion, but keeping constant data rate. Then, we are
interested in building a coded modulation system for the transmission of a 3-ary signal
constellation over an additive white Gaussian noise (AWGN) channel. Fig. 1.1
illustrates this idea where System 1 is binary turbo code with long interleaver and
modulated by BPSK and the question mark in System 2 is the coding system that we
want to design. The design challenge is how to design a coded modulation system
which has not only excellence performance as binary turbo code with long interleaver
size but also small latency. Finally the ternary turbo coded modulation is adopted since
its property is similar to binary turbo code and its codeword sequences can be direct

modulated by 3PSK.
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Fig. 1.1 Block diagram of the different systems

In this thesis, the ternary coded modulation using embedded prior information is
presented. The proposed coding system with interleaver size of 800 has not only better
performance but also lower error floor effect than binary turbo with interleaver size of
20730. In addition, it can save:not only.-memory size about 86% but also decoding

latency about 94%.

1.2 Thesis Organization

This thesis consists of 6 chapters. In chapter 2, the binary turbo code included
structure of turbo coding, decoding algorithm and its relative techniques, is introduced.
The concept of ternary turbo code and some property comparisons between binary
turbo code and ternary turbo code is described in Chapter 3. In chapter 4, the proposed
system is presented, and some performance effects introduced by known digits will be
discussed. In chapter 5, simulation will be shown to verify the performance of proposed
system has better performance gain than binary turbo code system. However, the
hardware and computing complexity will discuss in this chapter. Finally, conclusion

and future work are made in chapter 6.



Chapter2 Reviews of Turbo Code

The turbo code [1] over GF(2) was first proposed by C. Berrou, A. Glavieux, and P.
Thitimajshima in 1993. The performance in terms of bit error rate (BER) has been
proved to close to the Shannon limit. The basic elements in turbo coding include
reliability-based, iterative decoding and random interleaver. Reliability-based means
that turbo code employs soft-input soft-output (SISO) maximum-a-posteriori (MAP)
decoders for the component codes. Iterative decoding signifies that turbo decoder uses
extrinsic information, the symbol reliability, from a component decoder feedback to
other one, and vice versa. Random interleaver is to ensure that, at each iteration the
component MAP decoders get independent estimates on the information symbols.

The turbo code is now adopted by many standards listed in Table 2.1 due to its

excellent error correction ability. In this chapter, we’ll describe the principle of turbo

coding.
Table 2.1 Standard specifications for turbo coding
Standard Application Iterative Code Max. Throughput
Digital video Parallel conc. of
DVB-RCS 68 Mb/s (rate 7/8)
broadcast 8-state conv. codes
Wireless networking
IEEE 802.16 Turbo product codes 25 Mb/s (rate 5/6)

(MAN)

Parallel conc. of
3GPP UMTS Wireless cellular 2 Mb/s (rate 1/3)
8-state conv. codes

Parallel conc. of
3GPP2 CDMAZ2000 | Wireless cellular 3.09 Mb/s (rate 1/5)
8-state conv. codes

Parallel conc. of
CCSDS Space telemetry 384 kb/s (rate 1/2)
16-state conv. codes




2.1: The Structure of Turbo Code

2.1.1: Encoder of Turbo Code

The turbo encoder is built with a parallel concatenation of two recursive
systematic convolutional (RSC) encoders and separating them by an interleaver. The
two RSC encoders are also called component codes of the turbo code. The interleaver is
a pseudo-random block scrambler. In a pseudo-random interleaver, a block of N input
bits is read into the interleaver and read out pseudo-randomly. Note that the encoder
structure is called parallel concatenation because each RSC encoder operates on the
same set of input data but in different order, due to the presence of an interleaver. A
block diagram of a rate 1/3 turbo encoder with constraint length 3 is shown in Fig 2.1.
The generator matrix for a rate 1/2 component RSC code can be represented as

polynomial matrix G(D) or octal .matrix.G:

1+D 5
——==orG=ll —
1+ D+ Dz} : 7] (2.1)

G(D) = [1

Inarate 1/2 RSC encoder, each input massage is encoded as one systematic bit and
one parity check bits. In turbo encoder, two RSC encoders encode the same input
message sequence, individually, but in the different order. In order to increase the code
rate of turbo code, the systematic bits of RSC Encoder 2 are not transmitted. Therefore,
the output sequence of turbo encoder should be {Xo, Y10, Y20, X1 Y11, Y21, ...}, and the
overall code rate is 1/3 as shown in Fig. 2.1.

After encoding a block included N input messages, transmission of some tail bits
to drive the encoder to the all zero state is required. It makes sure that the initial state for
next block is the all-zero state. The numbers of tail bit are equal to register numbers of
RSC encoder. Since the component encoders are recursive, it is impossible to terminate
the trellis to all zero state only by transmitting dummy zeros directly. A simple solution

to solve this problem is provided in Fig 2.2. The switch of each component encoder is

4



set to position “A” for inputting N messages, and then the position of switch is changed
to “B” for 2 tail bits in an example of a rate 1/2 RSC encoder with memory order 2. This

will force all registers of RSC encoder to zeros and thus the trellis return to all zero

state.

Interleaver

Yo

Fig. 2.1 The structure of turbo encoder

mied
2

Fig. 2.2 Trellis termination for component RSC encoder



2.1.2: Interleaver

In the turbo code, the interleaver is to construct a long block code from small
memory component convolutional codes. Secondly, it spreads out the burst error and
de-correlates the input of two RSC encoders that iterative decoding algorithm can be
applied between two component decoders. Lastly, the interleaver can reduce low
weight codewords that reduce the coding gain. In [2][3], it uses analytical
upper-bounding technique to show that a turbo code with RSC component codes can
produce an interleaving gain. The performance upper-bound of turbo code is based on
uniform random interlever. The result points out that the bit-error-probability upper
bound of turbo code is approximately proportional to 1/N, where N is the block length
of interleaver, and the factor “1/N” is also called the interleaver gain. The error
performance of turbo code at low:BER’s is dominated by the interleaver size. Low
weight codwords dominate the turbo code-performance at high BER’s, and are
produced by low weight input sequence.-However, the interleaver structure affects the
mapping of low weight input sequences to.the"interleaver output and its size and

structure play an important role in the asymptotic performance of the turbo code.

7 QR Add 1 and e
_BMOBs e the P2 Milinty MSBs | _
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Lk " |nBits | LSBs If Output
Select - . HIDU
. the n ko t) I.l'lp!.'.T = Address
&y Rite Table |n Bits g Wiike Gt )
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G 5 Reverse | 1)

Fig. 2.3 The 3GPP2 inteleaver for 3GPP2 standard



Table 2.2 3GPP2 interleaver parameter

3GPP2 Interleaver Block 3GPP2 Interleaver
Length Nturbo Parameter n

210 3

378 4

402 4

570 S)

762 5

786 5
1,146 6
1,530 6
1,554 6
2,298 7
2,322 7
3,066 7
3,090 7
3,858 7
4,602 8
6,138 8
9,210 9
12,282 9
20,730 10

In this thesis, the performances of turbo code will be compared with a complex

7



interleaver, S-Random interleaver[4] and a structured interleaver, 3GPP2 interleaver
[5], so only both interleaver are introduced. An S-Random address generator, or an
S-Random interleaver, is defined as follows. A new randomly selected integer is
compared to the S; previously selected integers. If the absolute value of the difference
between the current selected integer and any of the S; previous selected integers is
smaller than S,, then the current selected integer is rejected. The S; and S, are two
integers smaller than N. This process is repeated until all N integers are selected. The
3GPP2 address generator provides the different block length N from maximum block
length of 20,739 to minimum block length of 378. Fig 2.3 shows the procedure of
3GPP2 permutation in 3GPP2 standard. Detail supported block lengths and its
corresponded parameter n are listed in Table 2.2. In next section, the performance

comparison between S-Random interleaver and 3GPP2 interleaver will show.

2.1.3: Decoder of Turbo Code

Exchanging soft information among the-receiver parts is the main idea for turbo
iterative decoding. The principle is illustrated in Fig. 2.4, where Rs is the received
systematic information sequence, Ry and Ry, are the received parity information
sequences generated by the first component RSC encoder and the second component

RSC encoder, separately.

fﬂ 1 L
2( ) De- < exﬂ(u)
Interleaver
L (24) L ()
— = » [nterleaver * o
x4 550 =,
] - R £
BT J L)
» Interleaver
R,

Fig. 2.4 The structure of turbo decoding



The general turbo decoding consists of two component decoders, which are
soft-in/soft-out (SISO) decoders serially concatenated via an interleaver and a
de-interleaver. The component decoder can be implemented based on either maximum
a posteriori probability (MAP) algorithm [6], or soft-output Viterbi algorithm (SOVA)
[7], which will be discussed particularly in the next section. In first iteration, the

decoder, DEC 1, takes Rs and Ry as input to produces a soft output Lex; called

1EI E T T T T T T T T T
b —— lter. 1
[ —#— lter. 4
5 lter. G
10 E —= lter 8 |3
i —= lter. 10 |]
107k

Bit Error Rate
=

10" '
i)

Fig. 2.5 Performance comparison under different iteration numbers in S-Random
interleaver, S=10 (N=1530, code rate=1/3, state 4, MAP algorithm, BPSK)

extrinsic information, which is interleaved and used as the a priori probabilities of the
information sequence for the second decoder, DEC 2. Then the DEC 2 takes Rp,
interleaved extrinsic information and received systematic information sequences from
DEC 1 as input to procedure a soft output Lo, Which is de-interleaved and used to
improve the estimate of the a priori probabilities of the information sequence for first

decoder, DEC 1. During the iteration decoding process, the decoder performance can be
9



improved, as the number of iterations increases. However, the correlation between two
component decoder is also raised up. There is no significant performance improvement
after a certain number of iterations. Then the last stage decoding makes a hard decision
after de-interleaver. A performance comparison under different iteration numbers and
different iterleaver structures is shown in Fig. 2.5 and Fig. 2.6. Both simulation results

are stopped when 35 error blocks have happened or 500000 blocks have run

completely.

10°
—— lter. 1
—— |ter. 4

1 [ter. G

oE —& lter. 8
—= lter. 10 |3

1wt

Bit Error Rate
=

107" L
)
Eb/Ma

Fig. 2.6 Performance comparison under different iteration numbers
in 3GPP2 interleaver (N=1530, code rate=1/3, state 4, MAP algorithm, BPSK)

2.1.4: Error Floor Effect

The asymptotic performance of turbo code can be separate into two regions shown
in Fig. 2.5 and Fig. 2.6. One region about form 0dB to 1.5dB in Fig. 2.5 and Fig. 2.6 is
called waterfall region. In this region, bit-error-rate (BER) has a sharply drop slop at

low signal-to-noise ratio (SNR). The other about form 2.5dB to 4.5dB is called error
10



floor region when the BER starts to decrease quite slowly at high SNR. The error floor
phenomenon is due to relative small code free distance. Consider the relation between

the minimum free distance and the bit error probability in turbo coding, which can be

/ E
Pb oc BfreeQ( 2d freeRN_b) (22)
0

where B IS the average number of ones on the minimum free distance path in the

expressed by [4]

overall turbo code trellis, R is the code rate, Ey is the received bit energy, No is the
Gaussian noise one sided power spectral density, and die. IS the code minimum free
distance. The value of ds. depends on the generator polynomials and the interleaver

structure.

2.2: Decoding Algorithm for Turbo'Code

Both the maximum a posteriori_probability (MAP) algorithm [4] [6] [9] and
soft-output Viterbi algorithm (SOVA) [7] are common used techniques for turbo
decoding. The SOVA exploits maximum likelihood (ML) algorithm to find the
codewords and to minimize the word error probability which is defined as the
probability that the transmitted and estimated code sequences are unequal. The MAP
algorithm minimizes the symbol (or bit) error probability which is defined as the
probability that transmitted and estimated code symbols (or bits) are unequal. If the
code sequences are equally likely, MAP and SOVA decoders are equivalent in terms of
word error probability. In this section, the focus will be MAP algorithm, and the SOVA
will be skipped, because it has been proved that the MAP algorithm is the optimal

decoding method for turbo code while comparing with SOVA [8].

11



2.2.1: The MAP Algorithm

Due to minimizing the symbol (or bit) error probability, the MAP algorithm
generates the soft output in the form of P(ux|R), a posteriori probability based on the
received code sequence R, to estimate the hard value for each transmitted information
bits uy. It computes the logarithm of likelihood ratio (LLR), and the logarithm is the

natural logarithm.

P(u,=+1|R)

L(G) =L [R) =log o - _1|R)

(2.3)

for 1 < k < N, where N is the interleaver length, and compares this value to a zero

threshold to determine the hard estimate as

(2.4)

. [t ifLgy=zo
10 otherwise

a rate 1/2 state 4 (memory order.2) RSC encoder and its trellis diagram are shown
in Fig 2.7 as an example, and its-decoding trellis diagram is shown in Fig. 2.8. Note that
the solid lines represent the transitions from:Sy:; to Sy caused by the input information
bit uk of -1, and the dashed lines represent the‘transitions from Sy.; to S caused by the

input information bit uk of +1. Then, the equation.(2.3) can be further expressed as

P(S, ,,S.,R
oo, 1IR)_ > P(S,150R)

L(G,)=log—*———"=log
‘ P(uk :_1| R) Z P(Sk—l’Sk’ R)
U =—1

(2.5)

Here, the numerator and denominator are the sum of joint probabilities for all existing
transitions from state S.; to Sk that corresponding to the information bit ui of +1 and -1,
respectively. In order to compute equation (2.5), the joint probability P(Sk.1,5«,R) was

needed to calculate. Now we defined following metrics:

12
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Fig. 2.7 A rate 1/2 state 4 RSC encoder and its trellis diagram
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Fig. 2.8 The decoding trellis diagram of arate 1/2 state 4 RSC encoder

€ The forward recursion metric o.:

2, (S,) =log P(S,, stk) (2.6)

€ The backward recursion metric f:
,Bk (Sk) = IOg{P(Rj>k | Sk )} (2.7)

€ The branch transition metric y:

% (81, S) =10g{P(5,,R, | S, )} (2.8)
Assume the code sequence after encoding is transmitted through the discrete
memoryless channel (DMC), and then the probability P(Sk.1,5¢,R) can be decomposed

as three terms:
13



P(Sk—l’ S R) = P(Sk—l’ Rj<k )'P(Sk’ R, | Sk—l)'P(Rj>kSk)

—_— T (2.9)

_ eak—l(sk—l) o el (Sk1:5) . eﬂk (Sx)

Now we can further define the equations (2.6) (2.7) and (2.8) as follow:

€ The definition of forward recursion metric o.:

2, (S,) =10g{P(S,,R )}
= |ng P(Si1: SR Ry)

Sk—l

=109 Y P(S,1.R 15 )*P(Si, Ry Sc 1 R i) (2.10)

Sk

=log > e &ep(S,,R, S, ,)

Skt

= |Og Z (@1 ()7 (Sa8))
Ska

Note that since the trellis of encoding diverges from state zero, the initial condition of

the forward recursion metric should.be setas a6(0) = 0 and ap(So) = -0 for Sp #0.

€ The definition of backward recursion metric :

B (Sk) =log{P(R j>k l Si i
= IOg z I:)(Sk+l’ Rj>k | Sk)

Sk+1
Rk+l’ R j>k+11 Sk)
P(S,)

_ Iog Z P(Rj>k+l | Sk+1! Rk+11 Sk)oP(SkH, Rk+1’ Sk) (211)
P(S)

Sk+1

_ |Og Z P(Sk+l’

Sk+1

= Iog zeﬂkﬂ(skﬂ) P(Sk+1a Rk+1! Sk)
Sk+1 P(Sk)
=log Y el uat (Gl

Sk+1

Note that since the trellis of encoding converges from state zero, the initial condition of

the backward recursion metric should be set as A(0) = 0 and f(Sn) = -oo for Sy #0.

€ The definition of branch transition metric y:

7k (Sk_l, Sk) = Iog{P(Sk, Rk | Sk—l)}
=log{P(S, | S, 1)*P(R, 15,4, S,)} (2.12)
= IOg{Pa (uk)'P(Rk |uk)}

14



The term “P4(ux)” is well-known as a priori probability of u. According to the

definition of log-likelihood ratio:

P(u, =+1)

T (2.13)

L, (u,) =log

P(uk) can be rewritten as

ELha (ue)

e

1+ eiLa(uk)

e—La(uk)IZ
- 1+ e’La(uk)
— Ak.e—La(uk)-ukIZ

P(u =£1)=

g o liu s (2.14)

And the term “P(Ry|uk)” is dependent on channel characteristic. For an additive white

Gaussian noise (AWGN) channel, its log-likelihood ratio can be expressed as:

L(Rk | uk) — |ng
P(R, |u, =-1
E, 5 2 E, )
eXp(_W(Rk,o -Xi)) |uk:+1 Hexp(_W(Rk,v —Y)) |uk:+1
=log 0 +log-= 0 (2.15)

E, E
EXp(_Ni (Reoe= X,)%) |uk=—1 HeXp(_I\TS (Ryy _Yk,v)z) |uk=71
v=l

0 0

E : 2
= 4N_S(Rk,0’xk + ZRk,v.Yk,v) = Lc(Rk,o'xk +2Rk,v'Yk,v)

0 v=1 v=1

Here, Lc = 4*E4/No, and it is the channel reliability. In a similar way liking (2.14), the

conditioned probability P(Ry|uk) for systematic convolutional codes can be written as
1 13
P(Ry [u) = Bexp(o LR, U, +2 > LR, Y,,) (2.16)
v=1

Noted that X is equal to ug, for systematic codes. The terms Ay and By in (2.14) and
(2.16) are equal for all transitions at the same time index, and hence will cancel out in
the ratio of (2.5). Therefore, the branch transition probability can be reduced to the

expression:
7 (S1r Sy ) =log{P(u,)-P(R, [u)}
1 13
:Euk(Lch,O_'_La(uk))+§Z(Lch,va,v) (2.17)

v=1

1 e
:Euk(Lch,o +L,(u)) +71§ )(Sk—li S)

15



Substituting (2.10), (2.11) and (2.17) into (2.5), The LLR can be further expressed as

eakfl(sk—l) ek (Sk-1:5) ‘eﬁk (S)

Ejsk—l!lsk)
A _ =+
L(uk) - Iog z eak—l(sk—l).eyk(sk—lvsk) .eﬁk(sk)

(Si1,5¢)
ue=-1

eam(sm) .e}’lge) (Sk-1,S¢) .eﬂk (Sx)

fjsmvlsk)
= LR, +L,(u,)+log== 2.18
¢ ko a( k) g Z eam(sm).67&5)(Sk4v5k).eﬁk(sk) ( )

(Sk-1:5¢)
U =-1

=LRyo+ L, (u)+ L, (u)

The term Lex(uy) is called extrinsic information. Since the extrinsic information is a
function of the redundant information that introduces by the RSC encoder, it is
independent on systematic input and.a’prioriinformation, L,(uy), from LLR. In general,
extrinsic information has the same sign as .. Therefore, it is helpful to estimate the

priori probabilities of code sequence for next component decoder.

2.2.2: The Max-Log-MAP Algorithm

In last section the MAP algorithm is derived. As we can see, this algorithm is too
difficult in practice because of a high number of exponentiation and multiplication
operations. For simplifying the implementation complexity of MAP decoders, an
approximation of MAP algorithm termed Max-Log-MAP algorithm [10] [11] was

derived. By using the approximation formula max function

log(e™ +e” +---+e™) = maxJ, (2.19)
i€f1,2,---,n}

The equation (2.18) can be further simplified as:

16



eam(sm) op’k (Sk1:S¢) .eﬂk (S)

(S1,5¢)

L(0,) = log %5

e%-1(8c) g @7k (Ska:8c) g A (S)

(Sk-1:5¢)
u=-1

~max (a1 (Si1) + 7 (Sc1: S + B (S,)) (2.20)

(Sk1:5)
U =+1

-maX(e(Sc4) + 7 (Si_1, S ) + B (S))

(Sk-1:5¢)
U =-1

Similarly, the forward recursive and backward recursive metrics (2.10) (2.11) can

individually be expressed as

a, (Sk) — |og Z e(ak71(3k71)+7k (Sk1:S¢))

i (2.21)
~ maX (@ (Sc1) + 7 (51, Sy))

Sk—l

and

/Bk (Sk) — IOg Z e(ﬂk+1(5k+1)+7k (S Skaa))

L (2.22)
~ maX (B.a(Sca) +7 (S¢, Si.0))

St
Both equations involved computations are add-compare-selection operations, which
are similar to the path metric updating of Viterbi algorithm. Thus multiplications in the
MAP algorithm are replaced by additions in the Max-Log-MAP algorithm, and the

exponentiation operations can be avoided.

2.2.3: The Log-MAP Algorithm

The performance of Max-Log-MAP algorithm is suboptimal because of its use of
the max function (2.19) to reduce the complexity of MAP algorithm. The
Max-Log-MAP algorithm can be modified through the use of the Jacobian algorithm.
The modified algorithm, called Log-MAP algorithm, is equivalent to the MAP

algorithm, but without its major disadvantages. The Jacobian algorithm [10] is

17



log(e* +e%) = max(s,, 5,) + log(L+ e,‘e(52,e<91|)

= max(8,6,)+ £.(16, -5, | (2.23)

where f.(:) is a correction function, which can be implemented using a
one-dimensional look-up table. By a recursive operation of (2.23), the expression (2.19)
can be computed exactly.

S5

log(e™ +e” +---+e™)=log(A+e™), A=e?+e?+...+eMl=¢
=max(logA,d,)+ f (|logA—-3, |)
=max(5,0,)+ f. (|07, 1)

(2.24)

Now we can substitute (2.21) and (2.22) into (2.23), the forward and backward

recursive metrics can be represented as

o, (Sk) — IOg Z e(ak—l(sk—1)+7k(sk—1vsk )

Sk—l

(2.25)
=maX * (@ 1(Ses) + 7 (S 1, Sy))

Sk—l

and

ﬂk (Sk) — IOg Z e(ﬁk+1(5k+1)+7k (SkaSk+1))

N (2.26)
=maX* (Be..(Sc.1) + 7 (S¢» Si.)

Sk+1

where the max(-) operation is defined as
max* () = max(§1,52) + fc (| 52 _51 |) (2.27)

Then, the (2.20) can be expressed as
L(G) = max™ (@1 (Sc) + 7 (Sc1 S ) + B (S)))

(S1:5¢)
U =+1

-max (1 (Sc1) + 7 (Si1, S ) + B (Sy))

(Sk1:5)
u =-1

(2.28)

The performance of Log-MAP algorithm is identical to the performance of MAP
algorithm. However, by calculating f.(-), its complexity is increased in comparison with
Max-Log-MAP algorithm. For simplified the computation of correction function, it is

usually stored in a pre-computed table. The table is only one dimensional, since the
18



correction only depends on |&5-a1|. Then Log-MAP algorithm can be implemented by
table look-up. It has been found that excellent performance can be obtained with 8
stored values and |5-61| ranging between 0 and 5, and no improvement can be achieved

with using a finer representation.

2.2.4: SNR Sensitivity of Max-Log-MAP and Log-MAP Algorithm

From the deductions of MAP algorithm and Log-MAP, they need SNR estimation
to obtain the channel reliability L.. The accurate SNR estimation cannot be ease
approached, because it depends on channel characteristic. There are many researches
have discussed the effect of SNR sensitivity, or SNR mismatch, on the bit error rate
performance of turbo code. In [12], the simulation results indicate that the larger
interleaver length is more sensitive'to SNR estimation errors than the smaller one, and
the turbo code with MAP or Log-MAP algorithm is more sensitive to SNR estimation
errors on AWGN channel than-on the:BSC.In [13], the simulation shows that the
underestimation of SNR is more detrimental than overestimation for tolerating a SNR
mismatch without significant degradation. Compared with MAP or Log-MAP
algorithm, the paper [14] has proven that the Max-Log-MAP does not require
knowledge of the SNR, if L(uk), a priori information, is initialized to zero for each bit.
Due to the max function operation, the L(ux) can be assumed to be proportional to SNR,
and the SNR can be factored out in (2.20), (2.21) and (2.22). Then, the soft outputs are
scaled with the SNR, but the hard decisions become SNR independent.

Although the performance of Max-Log-MAP algorithm is poor than MAP
algorithm, but it has not the risk of serious SNR mismatch offset. So, it has been
suggested in [14] that if channel characteristics change over time, the Max-Log-MAP
algorithm is more suitable than Log-MAP in turbo decoding. A simulation result form

[14] is shown in Fig. 2.9.
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Fig. 2.9 SNR estimation offset, AWGN channel. R=1/2, m=2, Lpjox=600, random
interleaver, 10 iterations.

2.3: Sliding Window Method for, Turbo Decoding

In the standard turbo decoding algorithm included MAP algorithm, Log-MAP
algorithm and Max-Log-MAP ‘algorithm;-the decisions are based on forward and
backward operations, and the backward ‘recursive operation initials from the end of
decoding trellis shown in Fig. 2.8. So the decoding process starts after a received delay
that is equal to received sequence length N. For large sequence lengths, the memory
required for hardware implementation of turbo decoder is huge, and long output latency
is also introduced. For example, the maximum block length of 3GPP2 standard is
20730, which means at least 2*20730 metrics for forward and back recursive need to be
stored, and the received delay is 20730 time slots. These are main disadvantages of
turbo code for real time applications.

These problems, in the main, cause by that long block length can not divide into
several short sub-blocks, since the unknown initial state of backward recursive

operation will damage the performance of turbo code. One method to overcome this
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problem is called sliding window algorithm [15]. The algorithm utilizes the fact that the
backward recursive metrics can be highly reliable even without knowing the initial
state if the backward recursion goes long enough. Fig. 2.10 illustrated the sliding
window process diagram.

Initially, the received sequence is divided into several sub-blocks, with a
sub-block length of L. L is normally about five times constraint length of component
encoder in turbo code, and called the convergence length. For forward recursive
operation, the end of each sub-block i is the initial of next sub-block i+1, and the initial
metric values of each sub-block i are inherited from the last metric values of previous
sub-block i-1. For backward recursive operation, a dummy backward recursion Sy is
employed to find the beginning metric values for S recursion. However, the forward
recursion computes the forward path metrics o and:storing these values into memory. In
parallel, an additional dummy- backward recursion: S is performed in the next
sub-block. As soon as the Sy-Operation-is-finished, the true backward recursion g
operation starts and the decoder also stars making soft decision based on both forward

and backward recursions.

", i-1 i i+1 i+2 i+3 i+4 onh
————— = 8
i P R B
| T | I I | |
& i b T JeeFiien] | i
S s S PO S
b e et
| i B ¥ e Fii |
O | ) [ B @ et
| i ! R 2 | |
v | | L@, | |

Fig. 2.10 The diagram of sliding window algorithm
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Chapter3 Ternary Turbo Code

Compared with turbo code over GF(2), also called binary turbo code, the turbo
code over GF(3) is called ternary turbo code. Its basic elements as reliability-based,
iterative decoding and random interleaver are equivalent to binary turbo code. However,
there are some diversity between ternary turbo code and binary turbo code, due to
component convoluational codes over different fields. In this chapter, we’ll describe the

principle of ternary turbo coding.

3.1: The Structure of Ternary Turbo Code

The ternary turbo encoder is built with a parallel concatenation of two component
RSC encoders and separating them by an.interleaver. Since component RSC encoder is
over GF(3), we’ll call it component GF(3) RSC encader. A block diagram of a rate 1/3
ternary turbo encoder with constraint length'3' is‘shown in Fig. 3.1. The generator
matrix for a rate 1/2 component GF(3) RSC encoder can be represented as polynomial

matrix G(D) [17].

(3.1)

2
G(D)=|1 1+D+2D
2+ D+ D?

From (3.1), it can be observed that the connections of ternary turbo encoder have
connection weights, but, in binary turbo encoder, the connection is only “on” or “off”.
Since the operation principles of ternary turbo encoder and binary turbo encoder are
similar, the design rules as to maximize the minimum output weight from low weight
input of binary turbo encoder can be copied to design ternary turbo encoder. However,
ternary turbo encoder also needs to implement trellis termination after encoded a block
messages. The procedure of trellis termination is shown in Fig.3.2. The switch of each

component encoder is set to position “A” for inputting N messages, and then the
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position of switch is changed to “B” for tail bits. Then trellis of ternary turbo encoder
will return to all zero state. Note that the sun of W; and W, in component GF(3) RSC

encoder must be equal to 3.

RSC Encoder 1 |

muod
3

Input GF(3)
message di |

e
3

Interleaver

Y 2k

il
3

Fig. 3.1 The structure of ternary turbo encoder

g

- i
3

Input GF(3)
message 4

| ;
Wi+Wr=3

V2

(Ox

mod
3

Fig. 3.2 Trellis termination for component GF(3) RSC encoder

In section 2.1.2, we have discussed the function and the property of interleaver.
Due to same operation principles of ternary and binary turbo encoders unless weight

distribution of their component encoders; the same capability for interleaver will be
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expected by intuition. In the performance simulation shown in Fig. 3.3 and Fig. 3.4, the
S-Random interleaver has better BER performance than 3GPP2 interleaver’s, and the
result is as same as the performance of Fig. 2.5 and Fig. 2.6 in binary turbo code. So, it
can be observed that interleaver be able to works well in binary turbo code as well as in
ternary turbo code, for ‘good’ component encodes

Since the ternary turbo decoding which consists of two component decoders
exchanged soft information among the receiver parts has same structure as binary turbo
decoding shown in Fig. 2.4. And the component decoder can also be implemented
based on either MAP algorithm, or SOVA, which will be discussed particularly in the
next section. Hence, the more detail about the procedure of ternary turbo decoding,
please refer to section 2.1.3. A performance comparison under different iteration

numbers and different interleaver structures in ternary turbo code is shown in Fig. 3.3

and Fig. 3.4.
10° :
—— lter. 1 |3
—=— |ter. 4 |]
-1 [ter. B
oE —=— lter. A _
0L .
i)
=
ral:
S 107k 7
L
E
10t .
0L .
5
1|:|'6 1 1 1 1
05 0 0.5 1 1.5 2

Eb/Mo

Fig. 3.3 Performance comparison under different iteration numbers in S-Random
interleaver S=10 (N=1530, code rate=1/3, state 9, MAP algorithm, 3PSK)
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Fig. 3.4 Performance comparison under different iteration numbers in 3GPP2
interleaver (N=1530, code rate=1/3, state 9, MAP algorithm, 3PSK)

It has known that the error-floor phenomenon-is due to relative small code free
distance. At high SNR, the bit error ‘probability of ternary turbo coding with 3PSK

modulation can refer to bit error probability of binary turbo code and expressed as:

Pb o BfreeQ(1 2dfreeR%) (3'2)

where B is the average number of ‘non-zero values’ on the minimum free distance
path in the overall turbo code trellis, R is the code rate, and dye iS the code minimum
free distance and depends on the generator polynomials and the interleaver structure.
For an example illustrated in Fig. 3.1, the ds.e IS 6 which are relatively low. Through the
simulation results shown in Fig. 3.3 and Fig. 3.4, it can be observed the BER has a very

low slope at high SNR.
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3.2: Decoding Algorithm for Ternary Turbo Decoding

3.2.1: The MAP Algorithm

Assume that input bit uy takes value {0, 1, 2} with the same probability, the MAP
algorithm in ternary turbo code evaluates the logarithm of a posteriori probability
(LAPP), P(uyR), to minimizing the symbol (or bit) error probability. It can be
expressed as:

A0 (Gk) = |Og P(uk = Ol R) = ZO P(Sk—l' Sk ) R)
ug=

Al(l:ik) = IOg P(uk :1| R) = Z P(S

ug =1

1 SuR) (3.3)
Az (ﬁk) = Iog P(uk = 2| R) = Z P(Ska’ SwR)

ug=2

The hard estimate for 1 <k <N, where N is the interleaver length, can be determined by

following conditions:

0 if (A, (&) >MA () and (A, (7)) > A, (u,))
Q=11 if (A, (u)> A, (G))and (ALu,) > A, (u,)) (3.4)
2 otherwise

A rate 1/2 state 3 (memory order: 1) GF(3) RSC encoder and its trellis diagram are
shown in Fig.3.5 as an example. Here, the solid lines represent the transitions form Sy.;
to Sk caused by the input information bit uy of 0, and transitions caused by input

information bit u, of 1 and 2 are individually represented dashed lines and dotted lines.

Fig. 3.5 A rate 1/3 state 3 GF(3) RSC encoder and its trellis diagram
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In order to calculate equation (3.3), the joint probability P(Sx.1,S«,R) was needed to
computed. Based on the assumption of discrete memoryless channel, the joint

probability can be decomposed as three terms.

P(Sk—l’sk'R) = P(Sk—l’ Rj<k)'P(Skka | Sk—l).P(Rj>kSk)
— " ————  (35)

— eam(sm) eyk(sk—l’sk) eﬂk(sk)

Then, the following metrics can be defined: (The more details about the derivation of

equations, please refer to section 2.2.1)

€ The forward recursion metric o.:

a, (S,) =10g{P(S,,R .)}
= |og Z e(akfl(sk—ﬂ*'n (Sk1:SK)) (36)

Sk—l

Note that since the trellis of encoding diverges from state zero, the initial condition of

the forward recursion metric should be setias ¢4(0).= 0 and ap(So) = -0 for Sp #0.

€ The backward recursion:metric fB:

BS, )= IOg{P(Rj>k 1S)}
x |Og Ze(ﬂk+1(3k+1)+}’k(3k,Skﬂ)) (37)

Sk+1

Note that since the trellis of encoding converges from state zero, the initial condition of

the backward recursion metric should be set as A(0) = 0 and f(Sn) = -oo for Sy #0.

€ The branch transition metric y:

7 (81, S ) =10g{P(5,, R, | S, .))}
= IOg{P(uk)’P(Rk |uk )}

Es 3 7%(Rk,v’xk )2 2 7%(Rk'V7YkYV)2
=log{P(u,)}+log{(,|[——)"-e ™ ‘[]e ™ }
7N, A

2 3.8
=log{P(u)}+ A _%’{(Rk,v - Xk)z +Z(Rk,v _Yk,v)z} (39)

= log{Pu)} - (R, =X ) oY (R~ YL’

0 0 v=l

= L u)+ L u)+ 57 (S, S,)
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Noted that Xy is equal to uk, for systematic codes. For 3PSK modulation, the X
includes {Xrk, Xik}, the real part and image part of xi in signal constellation, and Yy
also includes {Y kv, Yikv }. The terms A in (2.16) is equal for all transitions at the
same time index, through the show of simulation result, it can be neglected.

Substituting (3.6), (3.7), and (3.8) into (3.3), and the LAPP can be further expressed as:

AO (ak) = Iog z eak_l(Sk_l) .eyk(Sk_l’Sk) .eﬂk(Sk) = LaO (uk ) + LCO (uk ) + LeXO (uk )

(Sk-1.5¢)
uk=0

Al (ﬁk) _ Iog Z @%-1(5k-1) gark (Sk-15K) g2k (5Kk) — |_a11 (uk ) + Lcl (uk ) + |_ex1 (uk)
(Sk-1.5) (3.9)

ug=1

A,(G)=log 3 emittlen®aileeh® =1, (u)+L,(u)+L,,1,)

(Sk—1.5¢)
ug=2

The term Ly(uy) is called a priori information, and the term Le(uk) is called extrinsic
information. Since the extrinsic infarmation-is a-function of the redundant information
that introduces by the RSC encader, it is independent on systematic input and a priori
information from LAPP. In general, extrinsic _information has the same sign as ux.
Therefore, it is helpful to estimate the priori probabilities of code sequence for next

component decoder.

3.2.2: The Max-Log-MAP Algorithm
For simplifying the implementation complexity of MAP decoders, an
approximation of MAP algorithm termed Max-Log-MAP algorithm was derived by

using equation (2.19), max function. The equation (3.9) can be further simplified as:

A, (ﬁk) ~ Max (O‘H(SH) + 7 (Sk—l’ Sk) + 5 (Sk )

(Sk-1,5k)
ug =0

Al (L’jk) ~ (mas)()(ak—l (Sk—l) + }/k (Sk—l’ Sk) + ﬁk (Sk )) (3.10)

AZ (Gk) ~ max(ak—l (Sk—l) + 7k (Sk—l’ Sk) + ﬂk (Sk ))

(Sk-1.5¢)
ug =2

Similarly, the forward recursive and backward recursive metrics (3.6) (3.7) can
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individually be expressed as

«(Sk) = k1 (S « (S Sy
o (Sy) rrlgx(a (Ska) + 7 ( ) (3.1

and

«(S¢) = c1 (S « (S Sk
B (S) n!gx(ﬂ (Skaa) + 7 ( ) (312)

3.2.3: The Log-MAP Algorithm

Through the use of the Jacobian algorithm shown in (2.23) and (2.24), the
Max-Log-MAP algorithm can be modified and avoided the performance loss which
caused by approximation max function. The modified algorithm, called Log-MAP
algorithm, is equivalent to the MAP-algorithm. Now we can substitute (3.11) and (3.12)

into (2.23), the forward and backward recurstve metrics can be represented as

2 (S¢) =MaXC (=S )+ 7 (Se 1, S)) (3.13)
Si1
and
B (S) =max ™ (Bea(Si.) +7(Sys S¢.)) (3.14)

Sk-¢-1

where the max(-) operation is defined by (2.27). Then, the (3.10) can be expressed as

Ao (l:ik) = (I‘snasx)*(akfl(skfl) + 7 (Sk—l' Sk) + ﬂk (Sk ))
k-1.5k
uy=0

Al (l:ik) = maX*(ak—l(Sk—l) + 7k (Sk—l’ Sk) + ﬂk (Sk )) (3.15)

(Sk-1.5k)
ug=1

A, (Gk) =max* (. (5.) +7.(5.,S)+B.(S))

(Sk-1.5)
ug=2

3.2.4: SNR Sensitivity of Max-Log-MAP and Log-MAP Algorithm
In section 2.2.3, it has been discussed that, for binary turbo code, both MAP and

log-MAP algorithm requires SNR estimation and Max-Log-MAP algorithm is SNR
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independent if a priori information is initialized with a reasonable value. For ternary
turbo code, the MAP and Log-MAP algorithms also need SNR estimation from their
deductions. The effect of SNR sensitivity on BER performance of ternary turbo code
can is observed through simulations shown in Fig.3.6 and Fig.3.7. Both Figs. show the
BER versus SNR estimation offset based on ternary turbo code, MAP algorithm, 10
iterations, and AWGN channel. The simulation result points out that the
underestimation of SNR is more harmful than overestimation, and the sensitivity of
ternary turbo code with 3GPP2 interleaver is lightly less than ternary turbo with
S-Random interleaver. Note that in both Figs., the minimum BER is not achieved for
0dB offset-SNR, and this effect occurs only for the short block sizes under

consideration, please refer to [14] for more detail discuss.

BEit Errar Rate

—+ Eb/MNo =-0.5dB
uil Eb/Mo = -0.3dB
—& Eb/MNo=-0.2dB
—&— Eb/No =0dB

—#%— Eb/No=0.1dE

5 Eb/Mo = 0.3d6
10 1 1 1 1 1 1 1
] -4 -3 -2 1 ] 1 2 3 4 ]

Eh/Mo Estimate Offset, dB

10

Fig. 3.6 Sensitivity of BER performance of ternary turbo code with S-Random
interleaver (length 1200)
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—— Eb/No = -0.505
4| EbiNo = -0.3dB
~&- Eb/No = 0.2d5
~~ Eb/No = 0dB

—% Eb/No=D0.1dB
. L EbiNo = 0.3d8

-5 -4 -3 -2 -1 1] 1 2 3 4 5
Eb/Mo Estimate Offset, dB

Fig. 3.7 Sensitivity of BER performance of ternary turbo code with 3GPP2
interleaver (length 1146)

For Max-Log-MAP algorithm in‘ternary turbo code; the method of paper [14] can be
extend to show the fact that it does not require knowledge of the SNR, if La(ux), a priori

information, is initialized to zero for each bit!

3.3: Sliding Window Method for Ternary Turbo Decoding

Since the decoding algorithm of ternary turbo code is very similar to the algorithm
of binary turbo code, the sliding window decoding method can directly be employed to

ternary turbo decoding. The more detail discuss, please refer to section 2.3.
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Chapter4 Embedded Prior Information Ternary

Turbo-Coded Modulation

Coded modulation is to combine coding and modulation technique. It achieves
significant coding gain without bandwidth expansion the trellis coded modulation
(TCM) is a form of coded modulation based on convolutional codes, and block coded
modulation (BCM) is based on block codes. In this chapter, we’ll focus on turbo code

which is one of trellis codes, so only TCM is introduced.

4.1: Trellis-Coded Modulation

How to construct the bits-to-symbols'mapping is main fundamental questions on
combining coding and modulatien. Now; consider that if soft ML-decoding is applied,
the error-event probability will approach asymptotically at high SNR, the lower bound
[16] is

P.(e) ~ N(d,..)*Q( %)
2N, (4.1)

2
d free

~ N (d free )e o

here N(dse) denote the number of nearest neighbors of transmitted coded sequence,

and d?

free

is the minimum Euclidean free distance between transmitted coded sequence

and any other coded sequence. Thus, it is very obvious that the term of d2_ dominates

free

the performance at high SNR, so the goal of bits-to-symbols mapping is to maximum
the minimum Euclidean free distance, but how to achieve this goal?

Through set partition applied a natural mapping of bits to signals, the author,
Ungerboeck, of [16] describes the concrete method to maximum the minimum

Euclidean free distance of a coded modulation system combined binary convolutional
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codes and modulation. This coded modulation is well-known trellis coded modulation
(TCM). Comparison with un-coded system, TCM combined ordinary rate R = k/(k+1)
binary convolutional codes with an M-ary signal constellation (M = 2X**>2) achieves
coding gain without increasing transmitted symbol rate. Note that due to TCM scheme
uses signal set expansion rather than additional transmitted symbols to accommodate
the redundant bits, performance comparisons must be made with un-coded modulation
systems that have same spectral efficiency. The design rule of TCM can be summarized
as follows:

. All subsets should occur in the trellis with equal frequency.

Il. State transitions that begin and end in the same state should be assigned

subsets separated by the largest Euclidean distance.
I11. Parallel transitions are .assigned signal. points separated by the largest

Euclidean distance.

4.2: Embedded Prior Information;Technique

The main idea of TCM is similar to extend signal constellation to join redundant
parity bits. For convenience, parity bits mentioned in this chapter express redundant
bits which is introduced by coding and obtained from constellation extension. This
concept can apply to a coded system, such as a rate 1/2 binary convolutional code with
binary phase shift keying (BPSK) modulation, an extra coding gain can be obtained in
such a way that by expanding the signal constellation which from 2-ary extends to
m-ary to add extra parity bits into original coded system, without increasing the
required bandwidth. The idea is experimented on a concatenated coding system with
ternary phase shift keying (3PSK) modulation. The simulation result shows the

concatenated coding built with an inner rate 1/2 ternary convolutional code and an
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outer (128, 64, t=6) BCH code has better performance gain than original binary
convolutional code with BPSK modulation. More detail discuss about these, please
refer to Appendix A. However, the additional coding gain based on expanding
constellation to concatenate an outer code to original coded system is not always able to

achieve, and an opposite instance is described in Appendix B.

Input datz

Input data | o 9 Ternary / 3psk
| : _1’l'urbu Enc. _>._ﬁ'{ﬂd-_. I
ssumption of | I : I
e data Tt _ AWGN
) : : System 2 : Channel
: I
| i 9 Ternary |
irE_mmm I ’ Turbo Dec. |
decoded datal =

Fig. 4.1 Structure diagram of two different coding systems

Now, consider two coding systems show in Fig. 4.1. Based on following
conditions: 1. Constant data rate, 2. Unit transmitted signal power, 3. Constant spectral
efficiency (transmitted symbols/unit time slot), and 4. Constant block size. System 1 is
a rate 1/3 state 8 binary turbo code with BPSK modulation. System 2 extends BPSK
modulation to 3PSK and utilizes a rate 1/3 state 9 ternary turbo code for coding. Note
that the question marks in System 2 represent how to utilize redundant information
which can be used since constellation expansion. Whereas joining additional parity bits
introduced by coding into a complex coding system, such as turbo code, increase not

only hardware complexity but also decoding latency, how to “efficiently” use
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redundant information to achieve remarkable coding gain is the key design. In this
section, we propose a method which embedded known digits into ternary turbo code to

improve the performance. This method was kind of like [20].

4.2.1: Proposed Structure

In general, two GF(3) symbols can carry about 3-bit information, that is, 1200 bits
can be represented only 800 GF(3) symbols. Supposed that the System 1 want to
transmit 1200 binary symbols, based on same channel efficiency condition, System 2
also transmits 1200 GF(3) symbols. As former mention, and based on same data rate
condition, System 2 has additional 400 GF(3) symbols can arbitrary use. How to
maximum minimum free distance of System 2 is first considered. Due to the minimum
free distance depends on minimum:low weight coded sequences which are generated
from low weight input sequences, therefore; how-to maximize low weight input
sequences is design key point. ‘A simple-method -to maximize low weight input
sequences is to insert known GF(3)"digits, into-ternary turbo code. Here, two questions
will be considered as follow:

. Are known digits constant or variable?
1. Which positions of information sequence are known digits inserted into?

For question one, the constant known digits are selected and by simulation that
inserting constant known GF(3) digit of 2 into ternary turbo coding has the best
performance, comparison to constant known GF(3) digit of 0 and 1. For question two,
inserting known digits uniformly into information sequence is considered. The idea of
uniform distribution known digits originates in S-Random interleaver which is able to
break up burst error.

The structure of System 2 inserted known GF(3) digits is illustrated in Fig. 4.2.

Here, “n” represents the interleaver. This system, in short, is called Embedded Prior
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Information-I Ternary Turbo Code (EPI-1 TTC) and uses constant and known GF(3)
digits rather than parity bits. The inserting locations of known GF(3) digits are fixed
and one known GF(3) digit is inserted after two GF(3) information digits. Note that
known digit is not to transmit, since it is constant and has already known by both

encoder and decoder.

DO D1 D2 D3 D4 ... DO D1 © D2 D3 ENC 1 [
Generating 800 GF(3) [nserting known bits ENC 2 b
data randomly [ ot o —
Interleaver
length 1200 ST
Puncture || 1 1
ot patlern L 1 1]

AWGN
Channel

Fig. 4.2 Structure of EP1-1 TTC

Turbo Dec.

In Fig. 4.2, it can be observed-that positions.of-known digits that input into ENC 1
and ENC 2 are different, since interleaver before ENC 2 reorders the input sequence.
However, the non-uniform location distribution of known digits is not one as expected.
Fig. 4.3 shows a modified system, and it called Embedded Prior Information-11 Ternary
Turbo Code (EPI-1I TTC). The EPI-1I TTC has not only uniform known digit location
distribution but also smaller interleaver size. Note the interleaver size in EPI-II TTC is

800.
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Fig. 4.3 Structure of modified EPI-11 TTC

If the block size of binary turbo code in System 1 is 1200, based on constant block
size condition, the block lengths of EPI-I TTC and EPI-I1 TTC are also 1200 included
800 GF(3) information digits and 400 known. Gf(3) digits. In general, the block size of
turbo code is as same as interleavér size, butiin'F1g.4.3 they are different, since known
GF(3) digits is inserted after intleaver. As mention before, the ternary turbo code have
only 800 GF(3) information digits and, thus; its interleaver size is the same. The
advantage of using embedded known digits to fill in parity bits is to remarkable enlarge
low weight coded sequence, that is not only improving BER performance but also
increasing no additional complexity of hardware and computation, comparison to

original ternary turbo code.

4.2.2: Performance Effects

In this section we discuss the effect of embedded known digits into ternary turbo
code and binary turbo code. The influence of embedded known digits can be discussed
from two viewpoints.

. Breaking up burst errors.

I1.  Maximizing minimum low weight coded sequences.
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Consider an extreme case shown in Fig. 4.4, there are 15 burst errors which is not able
to decode correctly by ternary turbo code. But in EPI-Il1 TTC, since known digits break
a long burst-error sequence into some small parts, and the strong reliable extrinsic
values of known digits revise error path close to correct one, through iteration by

iteration, the burst error sequence lastly can be correct decoded.

i jiz)13] 14 rew

-1
20
o

saw o112 | E]E 1S5 |5

D Error Digit l Known Digit Embedded known information

saw| [} ll] '_-'-l-1 5.(} 7 8 Ul][l- lIl]E lE.li-i

Fig. 4.4 Sketch diagram of breaking off burst error by inserting known digits

—— Eb/No=105dB |1
—& Ebio=-D.24E |]
i —& Ebio=0.1dB

Bit Error Rate

-5 -4 -3 -2 -1 0 1 2 3 4 A
Eb/Mo Estimate Offset, dB

Fig. 4.5 Sensitivity of BER performance of EPI-11 TTC with S-Random
interleaver (length 800)
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—— Eb/No=-0.5d6 |3
—& Ebo=-0.24B |
j: —& EbiMo=0.1dB

Bit Error Rate

EbiMao Estimmate Offzet, dB

Fig. 4.6 Sensitivity of BER performance of ternary turbo code with 3GPP2
interleaver (length 1146)

Letv = (vo, V1, ..., Vn-1) be @ Gf(3) n-tuple, The Hamming weight of v, denoted by
w(V), defined as the number of nonzero components of v. For example, the Hamming
weight of v=(12010 2) is 4, Let v and w be.two n-tuples. The Hamming distance
between v and w, denoted d(v, w), is defined as the number of places where they differ.
For example, the Hamming distance betweenv=(121002)andw=(211000) is 3;

they differ in the zeroth, first, and, sixth places. Now, consider a rate 1/2 ternary

: . . 1+D+2D%, . . L
convolutional code with a generator matrix, [1 m] , Its minimum weight input

is (2,1,1,0,...) and Hamming weight is 3. This value is very small. If inserted constant
known digits into input sequence in such way that two input data insert a known digit of

2. The effect of inserting known digits for ternary convolutaional code is equal to

2+D?*+2D*
1+ D% +2D* +2D°

2+D?+2D* 2+2D+2D?+D*+D*+2D° +D®
1+ D*+2D* +2D°® 2+D+D%*+D*+2D° +2D’

multiply a factor, , into generator matrix. Then,

] is the new generator matrix,

so the low weight input can be enlarged well.
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Due to the decoded algorithm of EPI-Il TTC is MAP algorithm, its SNR
sensitivity showed in Fig. 4.5 and Fig. 4.6 needs to be considered. Fig. 4.5 and Fig. 4.6
show the BER versus SNR estimation offset based on EPI-11 TTC, MAP algorithm, 10
iterations, and AWGN channel, but different interleavers. The simulation result points
out that the underestimation of SNR is more harmful than overestimation, and the
sensitivity in 3GPP2 interleaver is lightly less than S-Random interleaver.

However, the SNR sensitivity of EPI-II TTC and ternary turbo code seems to be
the same for a glance. But through the charts shown in Fig. 4.7 and Fig. 4.8, their
diversity can be noted. In charts, the BER of real E,/Ng is normalized to 1, thus, the
level of SNR sensitivity corresponded to SNR offset can be observed. The chart points
out that the SNR sensitivity of EPI-II TTC is less than ternary turbo code. Fig. 4.7
shows SNR sensitivity comparisons between EPI=ll TTC and ternary turbo code with
S-Random interleavers at Eu/No.0f 0.1dB.-and. Fig. 4.8 shows SNR sensitivity

comparisons with 3GPP2 interleaver:

[—&= EPHITIC at EbMNo=0.1dB |

Bit Error Rate
=

1|:|- 1 1 1 1 1 1
-2 -1 0 1 2 £ 4 4

'| = 'I'I'CI at Eb/Na = 0.1dB |

Bit Error Rate
=)

-2 -1 i} 1 2 3 4 L3
Eh/Mo Estimate Offset, dB

Fig. 4.7 SNR sensitivity comparisons between EPI-11 TTC with S-Random
interleavers.
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Fig. 4.8 SNR sensitivity comparisons between EPI-11 TTC and normal ternary
turbo code in 3GPP2 interleaver.

T T d

—=~ Binary Turbo Code with 1200 5-Ran. Int. size
—— Embedded Known Bits Binary Turbo Code with 800 3-Ran. Int. size

Bit Error Rate

1
0.2 ] 0z 0.4 0k 0.8 1 1.2 1.4
Eb/Ma

1 D'B 1 1 1

Fig. 4.9 Performance comparison between embedded known digits binary turbo
code and binary turbo code with S-Random, S=10 (10 iterations, state 8)
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= Binary Turbo Code with 1146 3GPP2 Int. size
[| = Embedded known Bits Binary Turbo Code with 786 3GPP2 Int. size

Eit Error Rate

1
0.2 0 0z 0.4 0B n.s 1 1.2 1.4 16
Eb/Mo
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Fig. 4.10 Performance comparison between embedded known digits binary turbo
code and binary turbo code with 3GPP2 interleaver (10 iterations, state 8)

If the constant data rate condition does noet considered, can binary turbo code
improve its performance in terms E,/Ng by-using embedded known bits technique? The
solution is answered by simulations..Fig. 4.9 and Fig. 4.10 display BER performances
of a rate 1/3 state 8 embedded known bits binary turbo code and a rate 1/3 state 8 binary
turbo code. Both Figs. are based on MAP algorithm, 10 iterations, BPSK modulation,
AWGN channel, and two information data insert a known bit of 1 for embedded known
bits binary turbo code. In Fig. 4.9, with S-Random interleaver, binary turbo code has
better BER performance than embedded known bits one after E,/No of 0.6dB. In Fig.
4.10, with 3GPP2 interleaver, the embedded known bits binary turbo code has better
BER performance than binary turbo code from top to bottom. In Fig. 4.11, the different
embedded known bit numbers is examined, the simulation result points out that the
binary turbo code is always superior after Ey/Ng of 0.001, than others. However, the less
known bits are embedded into binary turbo code; the better performance is achieved.
Due to limitation of computing power, the simulation in Fig. 4.11 is done with only 4
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iterations. It can be conclusion that the method of embedded known bit is helpful for

structured interleaver, but in random interleaver, it has better performance at lower

SNR.

107 ¢ . . . T T T T T
2 —&- Mo Known Bits S-Rand. 1200
r —&- |nserted Knonw Bits 4+1
10-1@ —#— Inserted Knonw Bits 2+1 1
P —& Insered Known Bits 1+1
107 L
o F
= N
o . r
B 107
5 F
i, C
10
10° L
10'8 1 1 1 1 1 1 1 1
0.2 0 0.2 0.4 0B 0.e 1 1.2 1.4 16

Eb/MNa

Fig 4.11 Performance comparison underdifferent embedded known bit numbers
in binary turbo code (4 iterations, state'8, S-Random interleaver)
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Chapter5 Simulation and Implement Results

Look back on Fig. 4.1 it has been expected that System 2 has better performance than
System 1, by using embedded known digits technique. And both systems need to satisfy
following conditions as: 1. unit transmitted power, 2. constant data rate, 3. constant
channel efficiency. In this chapter, performance simulations in terms of E,/No and
hardware complexities of two systems will be compared. Section 5.1 discusses
simulation results between Embedded Prior Information-11 Ternary Turbo Code (EPI-11
TTC), Embedded Prior Information-1 Ternary Turbo Code (EPI-I TTC), ternary turbo
code (TTC), and binary turbo code (BTC). And hardware complexity is describes in

section 5.2.

5.1: The Comparison of:Simulation:Performance

Before entering this section, some environment specifications in our simulation

have been defined.

Table 5.1 Environment specification:

Binary Turbo Code Ternary Turbo Code
Modulation BPSK 3PSK
Transmitted Channel AWGN AWGN
Numbers of Iteration 10 10
Decoding Algorithm Log-MAP Log-MAP
Generator Matrix I L;LD: ] i M |
1+D+D°+D 2+D+D
Numbers of State 8 9
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Here, ternary turbo code includes EPI-1 TTC, EPI-II TTC, and TTC. And the factor, S,

of S-Random is set to 10. However, the coding gain on BER of 10” will be focus, since

the BER of 10 is the basic demand in most systems.

Bit Error Rate

—& EPHITTC 5-Random Int. 800 (3
—— EPKITTC S-Random Int. 1200 (]
—+— TTC S-Random Int. 1200

Fig. 5.1 Performance comparisonsofternary turbo codes with S-Random
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Fig. 5.2 Performance comparisons of ternary turbo codes with 3GPP2 interleaver
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Fig. 5.1 and Fig. 5.2 compare performances of ternary turbo code included EPI-II
TTC, EPI-I TTC, and TTC on S-Random interleaver and 3GPP2 interleaver, separately.
From both simulations, it can be observed that known digit is able to improve BER
performance, and EPI-1l TTC is better than EPI-I TTC. Note that the data rate of TTC
is larger than EPI-1I TTC and EPI-1 TTC about 1.5 times, but the interleaver size of
EPI-1I TTC is smaller than EPI-1 TTC and TTC about 1/3 since the interleaver size in
EPI-11 TTC is 800 and others are 1200 if the block size is 1200. For constant block size
of 1200, Fig. 5.3 displays the performance comparison of turbo codes included EPI-II
TTC, TTC, and BTC with S-Random interleaver. The simulation result points out that
the EPI-11 TTC has performance gain about 0.2dB than TTC and about 1dB than BTC.
Fig. 5.4, with 3GPP2 interleaver, shows that the EPI-II TTC has performance gain

about 0.5dB than TTC and about 1:2dB than BTC:

1° : : -
—& EPHITTC |
1 —=— TTC ]
10'E — BTC !
0t .
= 10°k .
o E
5
polR I 3
i E
10° S—
10" \
1D'T 1 1 1 1 1 1 1 1 1
06 04 D2 0O 02 04 0B 08 1 12 14

Eb/Ma

Fig. 5.3 Performance comparisons of turbo codes with S-Random Interleaver
(block length=1200)
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Fig. 5.4 Performance comparisons of turbo codes with 3GPP2 Interleaver (block

length=1146)

—#— EPI TTC with S-Random Int. 800
—i— BTG with 3GPP2 Int. 20730 ]

Bit Error Rate

Fig. 5.5 Performance Comparison between EPI-11 TTC and Binary turbo code

with 3GPP2 interleaver length of 20730

Former discuss focus on that in same block length, EPI-I1 TTC is able to improve

how many performance gains if comparison with TTC and BTC. But the key point,
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which we really care about, is that the performance comparison between EPI-1I TTC
with short interleaver and BTC with long interlaver. Fig. 5.5 shows their performance
simulation, which EPI-1I TTC using length-800 S-Random interleaver and BTC using
length-20730 3GPP2 interleaver. The simulation result points out that EPI-1I TTC has
performance gain than BTC about 0.2dB at BER of 0.00001 and about 0.6dB at BER of
0.000001. However, it is very obvious that the error floor region of BTC occurs after
BER of 0.00001, but the error floor region of EPI-11 TTC does not appear yet. Finally a
performance constellation shown in Fig. 5.6 displays that based on BER of 0.00001, the
performance comparison between different turbo codes which employ different
interleaver structures and different interleaver lengths. The horizontal axis represents

En/N, and the vertical axis represents interleaver length in log-scale.

[ [ [ [ [ T I | T
: : i 5 : : # EPHITTC 5-Rand.
[ S Bt g EPHITTC 3GPP2
: : : : : : ¥ TTC S-Rand.
: ! ! : ; i | w TIC3GPP2
4 i i i i i i A BTC S-Ran
LLE e S A SRRt R W =1 L o3 € == ]
e ososees Poesoe- ERRRCEE SRREEE r--| W BTC 3GPP2 y

---------------------------------------------------------------------------

---------------------------------------------------------------------------

___________________________________________________________________________

Interleaver Length

___________________________________________________________________________

a 0.2 0.4 0.6 0.9 1 12 1.4 16 1.8
Eb/Mo dB

Fig. 5.6 Performance constellation of turbo codes at E,/No=10"
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5.2: The Estimation of Hardware Complexity

In previous chapter, all discussions about turbo codes are based on importing
floating point information as required soft-input. Nevertheless, the floating point value
should be bounded since infinite precision is impossible to be achieved for practical
implementation. A trade-off between hardware cost and the performance must be
concerned since coding performance may suffer quantization loss due to internal
bit-width limitation. In general, hardware complexity of turbo code can be estimation in
computing complexity and memory size which is proportional to bit-with. In this
section, based on acceptable performance loss, the fixed point analysis and computing
complexity is discussed. Note that in this section, only hardware complexities of EPI-II
TTC with length-800 S-Random interleaver and BTC with length-20730 3GPP2
interleaver are compared, since there have similar performance gain. And the sliding
window method for turbo decoder is assumed: The length of sliding window is set as 5

times of constrain length of component.convolutional codes.

5.2.1 Memory Size Analysis

The most area in turbo code implementation is dominated by memories which
store receiver information, LLR value, extrinsic value, forward recursive metric,
backward recursive metric, and branch transition metric. And overall required size of
memory is determined by fixed point analysis. The bit-width of receiver information is
determined firstly, since this value influences numbers of bit-width of internal metric
and LLR. Fig. 5.7 plots the quantization loss of the bounded receiver information with
3PSK modulation and EPI-Il1 TTC. Fig. 5.8 shows the same simulation but with BPSK
and BTC. Due to the BER performance is centered below 0.00001dB, the 3.3 scheme

for EPI-11 TTC and the 3.2 scheme for BTC are chose.
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Fixed Point Analysis of Input Infarmatian

10 T T T T T T T T
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Fig. 5.7 Fixed point simulation result of the input symbols with 3PSK modulation
and a rate 1/3 state 9 EPI-11 TTC with S-Random interleaver size of 800

Fixed Paint Analysis of Input Information
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Fig. 5.8 Fixed point simulation result of the input symbols with BPSK modulation
and a rate 1/3 state 8 binary turbo code with 3GPP2 interleaver size of 20730
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Fixed Point Analysis of Extrinsic Information (Lex)
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Fig. 5.10 Fixed point simulation result of the extrinsic information (Lex) in a rate
1/3 state 9 EPI-11 TTC with S-Random interleaver size of 800

Fixed Point Analysis of Extrinsic Information (Lex)
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Fig. 5.11 Fixed point simulation result of the extrinsic information (Lex) in a rate
1/3 state 8 binary turbo code with 3GPP2 interleaver size of 20730

Extrinsic data provides reliable information to be a priori information for turbo code to

perform the iteration decoding. So quantization of extrinsic information should be done
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carefully or the effect of iterative decoding will be diminished. A fixed point simulation

of the extrinsic information is performed, as shown in Fig. 5.10 and Fig. 5.11. Then, the

4.2 scheme for EPI-I1 TTC and the 5.2 scheme for BTC are selected. Now, ranges of

received information and a priori information that comes from the extrinsic information

are determined. According the bounded method of [18] and [19], the bit-width of

internal variables, ¢, S, 7, and LLR value, for Log-MAP algorithm can be derived. The

final bit-width of all information that is required by Log-MAP decoding algorithm is

listed in Table 5.2. Note that any information exceeding the range that can be expressed

IS saturated to the nearest value instead to truncating it directly.

Table 5.2 Summary of bit-width decision for EPI-11 TTC and binary turbo code

Bit-width Rec. Infor. | La(uk) a B y Lex(uk) | LLR
EPI-IITTC | 6(3.3) 6 (4.2) 4 8(6.2) |816.2 8 (6.2) 6(4.2) |9(7.2
BTC 5(3.2) 7(5.2) 78 (6:2)71181(6.2) 8 (6.2) 7(5.2) |9(7.2

Bit Error Rate

Cwerall Fixed Point Analysis of EPFITTC

—=— floating paint E
—de overall fixed point |]

0.5 0.

4 0.3

0.2 0.1 0 0.1
Eb/Ma

Fig. 5.12 Performance loss of EPI-11 TTC comparison between floating point and
fixed point scheme
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Overall Fixed Point Analysis of BTC with len. 20730 3GFP2 Int.
10 . . .

—= floating point
—d overall fixed point
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Fig. 5.13 Performance loss of binary turbo code comparison between floating
point and fixed point scheme

Table 5.3 Memory sizes:comparison between BTC and EPI-I1 TTC

BTC with 3GPP2 EPI1-11 TTC with S-Rand.

Int. Len:20730 Int. Len. 800
LLR 186570 (20730*9) 21600 (3*800*9)
Lex 145110 (20730*7) 14400 (3*800*6)
X1 103650 (20730*5) 9600 (2*800*6)
Y1 &Y, 207300 (2*20730*5) 28800(2*2*1200*6)
a 1280 (8*20*8) 1080 (9*15*8)
B 1280 (8*20*8) 1080 (9*15*8)
y 2560(2*8*20*8) 3240 (3*9*15*8)
Table 0 8000 (800*10)
Sum 647750 87800
Normalize |1 0.14




Finally, both performances of EPI-IIl TTC and BTC under complete fixed point
condition are simulated, as shown in Fig. 5.12 and Fig. 5.13. For simulation results,
their performance losses of fixed point are all less than 0.05dB, comparison with
floating point simulations. Now, sizes of memory which required by decoders of
EPI-1l TTC and BTC can be compared, as listed in Table 5.3. In Table 5.3, the total
memory sizes required for EPI-11 TTC are 87800 bits and total memory sizes for BTC

are 647750, that is, the EPI-11 TTC can save about 86% of memory size than BTC.

5.2.2 Computing Complexity Analysis

Based on Log-MAP decoding algorithm and Sliding method for turbo decoding,
the following procedures are executed, for each decoded bit. Note that the trellis
diagram of BTC has 8 states and 16:branches and the trellis diagram of EPI-11 TTC has
9 states and 27 branches.
B Update forward recursive metrics:
Update forward node metrics based..on_equation (2.25), and the operation of
max* (-) = max(s,,0,) + f.(|8,—5,]) consists of one adder, one 2-input comparator, called
comp-2, and one table. Each node for BTC needs 2 adders, 1 comp-2, and 1 table. For
EPI-1l TTC, each node needs 3 adders, 1 comparator, and 1 table. Assume one 3-input
comparator is composed by two comp-2.
B Update backward recursive metrics:

The computation is the same as that in the forward recursive metric update. Since
sliding window is able to estimate Sy in advance, 2-suit max function operations are
needed.

B Update branch metrics
For equation (2.17), each branch for BTC needs 3 adder and 3 multipliers. For

equation (3.8), each branch for EPI-1l TTC needs 11 adders and 5 multipliers. Here,
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subtraction operation is instead of adder.

B Calculate LLR information:

For equation (2.28), each LLR for BTC needs 33 adders, 2 tab, and two 8-input

comparators. For equation (3.15), each LAPP for EPI-II TTC needs 54 adders, 2 tab,

and three 9-input comparators, but one GF(3) digit is represented to 3 LAPP values.

Assume one 8-input comparators are consisted of 7 comp-2s and one 9-input

comparators are consisted of 9 comp-2s.

The comparison of computing complexity between BTC and EPI-11 TTC are listed in

Table 5.4.

Table 5.4 Comparisons of computing complexity between BTC and EPI-11 TTC

BTC, with 3GPP2

Int. len.20730

EPI-11 TTC with S-Rand.

Int. Len. 800

LLR 33 add. + 2 tabs+14com-2 | 162 add. + 6 tab. + 72 com-2

a 16 add. + 8'tab:+8comp-2 | 27 add. + 9 tab. + 18 comp-2

p 32 add. + 16 tab. + 16 com-2 | 54 add. + 18 tab. + 36 com-2

y 48 add. + 48 mult. 297 add. + 135 mult.

Add. 129 540

Mult. 48 135

Sum

Tab. 26 33
Comp-2 38 126

Add. 1 4.186

Mult. 1 2.8125

Normal.

Tab. 1 1.2692
Comp-2 1 3.3158
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Conclusion

In this thesis, the ternary turbo coded modulation using embedded prior
information, and in short, called embedded prior information ternary turbo code
(EPI-II TTC) is presented. The proposed method not only overcomes the main
disadvantage of binary turbo code with long interleaver but also lowers error floor
effect.

Comparison with binary turbo code (BTC) with BPSK modulation which employs
a length-20730 3GPP2 interleaver to achieve BER of 10 at Ey/N, of 0.4dB, the EPI-I
TTC with 3PSK modulation which employs a length 800 S-Random interleaver to
achieve the same BER at Ep/Ng of 0.2dB has 0.2dB performance gain, but at BER of
10° EPI-11 TTC can obtain 0.6dB performance gain than BTC. Since embedded known
digits is able to widely enlarge the minimum low weigh coded sequences, the error
floor of EPI-11 TTC can be reduced. And-further, comparison with BTC, the proposed
system can save not only memory size about-89% but also decoding latency about
949% for the same data rate condition.

Comparison to general ternary turbo code, the SNR sensitivity of MAP decoded
algorithm as well as interleaver size can be reduced when embedded known digits
technique is employed. However, comparison with binary turbo code, advantages of
EPI-11 TTC can be concluded as following:

I.  Decreasing required memory (saving about 86%)

1. Reducing computing latency (saving about 94%).

I11. To lower down the error floor (0.6 dB performance gain at Ex/Ng of 10).

In addition, the overhead which the EPI-II TTC needs to pay is the more computing
complexity for Log-MPA algorithm than BTC. And due to ternary turbo code works on

GF(3), the additional hardware need to implement that two tables, a table for the
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transformation of binary bit to ternary digit and another table for ternary turbo encoder,
are required to built, but both tables are small. Moreover, comparison to BPSK

modulation technique, the 3PSK modulation is more complex.
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Appendix A: Scheme | (BCH + Ternary Convolutional

Code)

Since comparison with un-coded system, TCM which extended signal
constellation to join redundant parity bits have great performance gain. So we want to
observe that how many performance gains can be achieved when the idea of TCM is
extended into coded system. In Fig. A.1, System 2 is a concatenated coding built with
an outer (126, 84, t=6) BCH code and rate-1/2 state-9 ternary convolutional code.
System 1 is a rate 1/2 state-128 convolutional code. The generator matrices of binary
and ternary convolutional code are G=[1+D?+D°+D°+D’, 1+D+D*+D°+D‘+D’] and
G =[1+D+2D?, 2+D+D?], separately. Both systems have the same conditions, such as:
constant data rate, constant chanpel efficiency; and- unit transmitting power. Then the
simulation result shown in Fig. "A.2 points out that System 2 has about 0.5dB
performance gains than System 1. Note that the decoding algorithm of binary or

ternary convolutional code is Viterbialgorithm.

Input data | Binary CV BPSK \
| A Bne. | Mod. /)
| 1 |~ awan
| System 1 I\_Channel
Output | l
decoded data | Binary CV | BPSK
% | Dec. DeMod. | -
e e e e o ek Sl g
Input datz BCH Ternary | IPSK ¥ |
| Enc. = CV Enc. T Mod.
| |
| { AWGN
: System 2 | Channel
5 i |
I | BECH F_ Ternary CV J
K1 o Dec. |

deooded datill b e e e e e

Fig. A.1 Structure diagram of two different coding systems
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State-128 Binary-CY ]
(126,84 t=6) BCH + State-3 Ternary-C% |
(126 84 1=6) BCH + State-9 Ternary-CY% (]

-
-
.

107k

Bit Error Rate

10

10

SNR

Fig. A.2 Performance comparisons between binary convolutional code and
ternary convolutional code with BCH code

10- T T T T T T
—& State-9 Ternary-CY 3
—#— (126 34 t=F) BCH + State-9 Ternary-Cv [

Bit Error Hate
=]

10' I I 1 I I 1
5 35 4 45 5 55 3 6.5

SNR

Fig. A.3 Performance comparison between ternary convolutional code and
ternary convolutional code with BCH code

In addition, comparison with ternary convolutional code with 3PSK modulation, the

concatenated coding in System2 has about 1dB performance gain as shown in Fig.
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A.3. Now, we have a conclusion that by extended constellation to join redundant
parity bits into convolutional codes the performance can be remarkably proved.
Furthermore, in chapter 4, we know that inserting known digits into ternary turbo
code in such way that one GF(3) known digit is inserted after two GF(3) information
datum, the extra performance gain can be achieved. So, an experiment for inserting
known digits into ternary convolutional code with the same method as former
description is implemented. In Fig. A.4, the simulation result displays that the
concatenated system has better performance than inserting known digit into ternary
convolutional code, that is, inserting known digit into ternary convolutional code has

almost no performance gain.

T T T T
— State-8 Ternary-C with Known Bits ]
—— (126,84 t=6) BCH + State-9 Termary-CY |

Eit Error Rate

10'5 1 I I 1 I I
3 35 4 4.5 5 585 B B.5

SNR

Fig. A.4 Performance comparison between ternary convolutional code with BCH
and ternary convolutional code with inserting known digits
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Appendix B: Scheme Il (RS + Ternary Turbo Code)

Compared with a concatenated coding system with 3PSK modulation, a rate 1/3
state-8 binary turbo code with BPSK modulation has better performance in terms of
BER as shown in Fig. B.2. The concatenated coding system formed from a rate 1/3
state-9 inner ternary turbo code and an outer (63, 42) RS code. For both turbo codes,
the S-Random interleavers are employed. Simulation points out that System 1 has
about 0.2 dB performance gain than System 2 at BER of 10, but at high SNR the
System 2 will has better performance than System 1 since error floor phenomenon.
However, in turbo code system, using an outer code instead redundant information
maybe is not an efficiency method due to computing analysis in section 5.2.2 shows
that the computing complexity ofsternary turbo.code is more complex than binary
turbo code. So, if System 2 :has 'not 'significant -performance gain, the cost of

concatenated coding system is too large:

et R N
Input data | Binary { BPSK o}
| “| Turbo Ene. A\ Mod. '
| | ~awoN
| System 1 I\ Channel
Catput | I
decoded data | Binary BPFSK
! i Turbo Dec. Debdod. I

St it | Ly (63.42) Ternary /3psk !
| | | RS Enc. Turbo Enc. _7"-_ Mod. JT |

ssumption of | I o I
e dalp Tate . AWGN
] ; : System 2 :E Channel J
: I
| i RS Ternary J
iréhw[ T Dec, Turbo Dec, |
decoded datelt

Fig. B.1 Structure diagram of binary turbo code with BPSK modulation and a
concatenated coding system with 3PSK modulation.
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—&~ State-S Binary Turbo code
—&- (B3,42) RS code + State-3 Ternary Turbo Code

Bit Error Rate

3l 1 1 1 1 1 1
-2 -1.8 -1.6 -1.4 1.2 -1 0.8 0.6
SMR

10

Fig. B.2Performance comparison between binary turbo code and concatenated
coding formed form a ternary:turbo code and a RS code.
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