

Figure 2-1 Process flow of ECTFT sample with GOLDD

Figure 2-1 Process flow of ECTFT sample with GOLDD

Figure 2-1 Process flow of ECTFT sample with GOLDD

(j)

Figure 2-1 Process flow of ECTFT sample with GOLDD structure

Figure2-1 Process flow of ECTFT sample with GOLDD

Figure 2-2 Cross-sectional view of a conventional

top-gate TFT

Figure 2-3 $I_D - V_{GS}$ curves of conventional TFTs with different thickness of the active layer

Figure 2-4 The dependence of MILC length on a-Si layer thickness after heat treatment 550°C for 24 hr [ref. 2.13].

Figure 2-5 SEM micrographs of MILC front regions with different a-Si layer thickness : (a) 20, (b) 30, (c) 50, (d) 100 nm.[ref. 2.13]

Figure 2-6 Transfer curves of ECTFT structure (d=0, d : gate overlapping length) with different thickness of the active layer

(A)

(B)

Figure 2-7 Failure mechanism of sample ECT15: (a) misalignment of top gate electrodes and channel over etching, and (b) planarization of LPD with large electric field at the trench corner

Figure 2-8 The field-effect mobility versus gate length for TFTs with different channel thickness and device structure

Figure 2-9 Off-state leakage current of TFTs with different channel thickness and device structure at $V_G = -20 \text{ V}$, $V_D = 10 \text{ V}$

Figure 2-10 I_D - V_{GS} curves of ECTFT with various doping concentration of LDD region; W/L = 20 μ m /8 μ m and d = 0 μ m

μm

Figure 2-12 Comparison of mobility and versus gate length for ECTFT with different LDD doping concentration

Figure 2-13 Comparison of GIDL leakage current versus gate length for ECTFT with different LDD doping concentration

Figure 2-14 I_D - V_{GS} curves of ECTFT with various doping concentration of LDD region; $W/L = 20 \ \mu m \ /8 \ \mu m$ and $d = 2 \ \mu m$

Figure 2-15Transfer curves of ECTFT with differentgate overlapped length d

Figure 2-16 Forward (solid line) and reverse (dash line) measurement of the transfer curves of an ECTFT with $W/L = 20 \ \mu m/8 \ \mu m$ and d = 0

Figure 2-17 The values of the extracted source/drain series resistances for different conventional TFT and ECTFT samples

Figure 2-18 I_D - V_D curves extracted at $V_G = 25$ V for various TFT samples: (a) W/L = 20/8, d = 0 μ m, and (b) W/L = 20/8, d = 2 μ m

Figure 2-19 Extracted kink point for different TFT samples; W/L = 20/8 and $d = 0 \ \mu m$, $d = 2 \ \mu m$