

Figure 3-1Process flow ofMILC n-channel TFT'swith Ge Layer and Si_3N_4 NanoCap Layer.

Figure 3-1Process flow ofMILC n-channel TFT'swith Ge Layer and Si_3N_4 NanoCap Layer.

Figure 3-1Process flow ofMILC n-channel TFT'swith Ge Layer and Si_3N_4 NanoCap Layer.

Figure 3-1Process flow ofMILC n-channel TFT'swith Ge Layer and Si_3N_4 NanoCap Layer.

Figure 3.2 Transfer characteristics for comparison of MILC TFT's with and without Si_3N_4 filter layer(V_D=0.1V).

Figure 3.3 Transfer characteristics for comparison of MILC TFT's with and without Si_3N_4 filter layer(V_D=5V).

Figure 3.4 Comparison of mobility fo MILC TFT's with and without Si_3N_4 filter layer at $V_{DS}=0.1V$.

Figure 3.5 Extraction of Nt by modified Levinson theorem for comparison of MILC TFT's and SPC TFT's.

Figure 3.6 Transfer characteristics for comparison of

MILC TFT's with and without Si_3N_4 filter layer($V_D=0.1V$).

Figure 3.7 Transfer characteristics for comparison of MILC TFT's with and without Si_3N_4 filter layer($V_D=5V$).

Figure 3.8 Comparison of mobility fo MILC TFT's with and without Si_3N_4 filter layer at V_{DS} =0.1V.

Figure 3.9 Transfer characteristics for MILC TFT's

deposited Ge layer(V_D=0.1V).

Figure 3.10 Transfer characteristics for MILC TFT's

deposited Ge layer($V_D=5V$).

Figure 3.11 Comparsion of mobility fo MILC TFT's deposited Ge layer at V_{DS} =0.1V.

Fig. 3-12 Crystallization rate for Ge 5nm/ Ni 5nm/ a-Si deposited structure at different temperature.

Fig. 3-13 Crystallization rate for Ni 5nm/ Ge 5nm/ a-Si deposited structure at different temperature.

Fig. 3-14 Crystallization rate for Ni 5nm/ Ge 20nm/ a-Si deposited structure at different temperature.

Fig. 3-15 Arrhenius plots and extracting of E_a and r_o for different samples.

Fig. 3-16 Crystallization rate for different deposited

metal structure at 550 °C.

(b) Ni 5nm/Ge 20nm/a-Si

(d)Ni 5nm/Si_{0.85}Ge_{0.15}

Fig.3-17 SEM graph of Secco-etched Ni MILC Poly –Si for difference structure ,after 6 hr at 550 °C:
(a)Ni 5nm/Ge 5nm/a-Si, (b) Ni 5nm/Ge 20nm/a-Si, (c) Ge 5nm/Ni 5nm/a-Si, (d)Ni 5nm/Si_{0.85}Ge_{0.15}

Fig.3-18 Sheet resistance for metal-induced crystallization after 24 hr at 550 °C.