Contents

Abstract(in Chinese)i
Abstract(in English)ii
Acknowledgementiii
Contentsiv
Table Captionsvi
Figure Captionsvii
Chapter 1 Introduction
1.1 General Background and Motivation1
1.2 Thesis Organization4
Chapter 2 Poly-Si TFTs with Elevated Channel and Gate
Overlapped Structure by Metal-Induced Lateral
Crystallization 2.1 Introduction
2.1 Introduction
2.2 Experiment Details
2.2.1 Elevated Channel TFTs with Different Thickness of Active Layer7
2.2.2 Elevated Channel TFTs with Different Doping Concentration
of LDD
2.3 Results and Discussion
2.3.1 Electrical Characteristics of ECTFT without GOLDD Structure11
2.3.2 Electrical Characteristics of ECTFT with GOLDD Structure and without NH3 Passivation15
2.3.3 Electrical Characteristics of ECTFT with NH3 Plasma Passivation18
2.3.4 Reliability of ECTFT with NH3 Plasma Passivation19
2.4 Summary21

Chapter 3	Effects of (Ge Layer and Si ₃ N ₄ NanoCap Laye	r On
	Metal-Ind	uced Laterally Crystallized Polycry	ystalline
	Silicon TF	'Ts	
3.1 Intro	duction		
3.2 Expe	riment Detai	ils	23
3.3 Resul	lts and Discu	ission	
3.3.1 I	Electrical char	acteristics on Si ₃ N ₄ NanoCap layer	26
3.3.2	Effect on add	ding Ge layer	
3.4 Sumr	nary	• • • • • • • • • • • • • • • • • • • •	
	re Works		32
••	• • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••	
Reference	•••••		
Table List	•••••		46
Figure List	••••••		49
Vita and Pı	iblications		103

Table Captions

Chapter 2

Table 2.1Comparisons of device characteristics between
conventional MILC TFT's and ECTFT with
 $W/L=20\mu m/8\mu m$ at d=0(gate overlapping length).

Chapter 3

Tab3.1 Comparisons of device characteristics between MILC TFT's and SPC TFT's with W/L=20µm/6µm at 600°C.
Tab3.2 Comparisons of device characteristics between MILC TFT's and SPC TFT's with W/L=20µm/6µm at 900°C.
Tab3.3 Comparisons of device characteristics between MILC TFT's and SPC TFT's with W/L=20µm/6µm.

Tab3.4 Summary of physical properties for different samples

Figure Captions

Chapter 2

- Figure 2-1 Process flow of ECTFT sample with GOLDD structure
- Figure 2-2 Cross-sectional view of a conventional top-gate TFT
- Figure 2-3 I_D V_{GS} curves of conventional TFTs with different thickness of the active layer
- **Figure 2-4** The dependence of MILC length on a-Si layer thickness after heat treatment 550°C for 24 hr [ref. 2.13].
- Figure 2-5 SEM micrographs of MILC front regions with different a-Si layer thickness : (a) 20, (b) 30, (c) 50, (d) 100 nm.[ref. 2.13]
- **Figure 2-6** Transfer curves of ECTFT structure (d=0, d : gate overlapping length)with different thickness of the active layer
- **Figure 2-7** Failure mechanism of sample ECT15: (a) misalignment of top gate electrodes and channel over etching, and (b) planarization of LPD with large electric field at the trench corner
- **Figure 2-8** The field-effect mobility versus gate length for TFTs with different channel thickness and device structure
- Figure 2-9 Off-state leakage current of TFTs with different channel thickness and device structure at $V_G = -20 \text{ V}$, $V_D = 10 \text{ V}$
- Figure 2-10 I_D V_{GS} curves of ECTFT with various doping concentration of LDD region; W/L = 20 µm /8 µm and d = 0 µm
- **Figure 2-11** The schematic diagram for illustrating a misaligned ECTFT device with overlapped length $d = 0 \ \mu m$
- Figure 2-12 Comparison of mobility and versus gate length for ECTFT with different LDD doping concentration
- **Figure 2-13** Comparison of GIDL leakage current versus gate length for ECTFT with different LDD doping concentration
- Figure 2-14 I_D V_{GS} curves of ECTFT with various doping concentration of LDD region; W/L = 20 µm /8 µm and d = 2 µm
- **Figure 2-15** Transfer curves of ECTFT with different gate overlapped length *d*
- **Figure 2-16** Forward (solid line) and reverse (dash line) measurement of the transfer curves of an ECTFT with W/L = $20 \mu m/8 \mu m$ and d = 0
- Figure 2-17 The values of the extracted source/drain series resistances for different

conventional TFT and ECTFT samples

- Figure 2-18 I_D V_D curves extracted at $V_G = 25$ V for various TFT samples: (a) W/L = 20/8, d = 0 μ m, and (b) W/L = 20/8, d = 2 μ m
- **Figure 2-19** Extracted kink point for different TFT samples; W/L = 20/8 and d = 0 μm , $d= 2\mu m$
- **Figure 2-20** Transfer characteristics for ECT TFT's before and after 1hr NH₃ plasma passivation
- Figure 2-21 I_D V_{GS} curves of ECT structure with different thickness of the active layer after passivation
- Figure 2-22 I_D V_D curves extracted at $V_G = 25$ V for various TFT samples, before and after 1hr NH₃ plasma passivation
- Figure 2-23 I_D V_D curves extracted at $V_G = 25$ V for various TFT samples: (a) W/L = 20/8, d = 0 μ m, and d = 2 μ m, after 1hr NH₃ plasma passivation
- **Figure 2-24** Variation of threshold voltage at $V_{DS}=5V$ under hot carrier stress. D is gate overlapping length.
- **Figure 2-25** Variation of mobility at $V_{DS}=0.1V$ under hot carrier stress.
- Figure 2-26 Variation of mobility at $V_{DS}=0.1V$ under hot carrier stress.D(=2) is gate overlapping length.
- **Figure 2-27** Variation of on current at $V_{DS}=5V$ under hot carrier stress.
- **Figure 2-28** Variation of on current at $V_{DS}=5V$ under hot carrier stress. D(=2) is gate overlapping length.

Chapter 3

- Figure 3-1 Process flow of MILC n-channel TFT's with Ge Layer and Si_3N_4 NanoCap Layer.
- Figure 3-2 Transfer characteristics for comparison of MILC TFT's with and without Si_3N_4 filter layer(Vg=0.1V).
- Figure 3-3 Transfer characteristics for comparison of MILC TFT's with and without Si_3N_4 filter layer(Vg=5V).
- Figure 3-4 Comparison of mobility fo MILC TFT's with and without Si_3N_4 filter layer at V_{DS} =0.1V.
- Figure 3-5 Extraction of Nt by modified Levinson theorem for comparison of MILC TFT's and SPC TFT's.
- Figure 3-6 Transfer characteristics for comparison of MILC TFT's with and without Si_3N_4 filter layer(Vg=0.1V).

- Figure 3-7 Transfer characteristics for comparison of MILC TFT's with and without Si_3N_4 filter layer(Vg=5V).
- Figure 3-8 Comparsion of mobility fo MILC TFT's with and without Si_3N_4 filter layer at V_{DS} =0.1V.
- Figure 3-9 Transfer characteristics for MILC TFT's deposited Ge layer(Vg=0.1V).
- Figure 3-10 Transfer characteristics for MILC TFT's deposited Ge layer(Vg=5V).
- Figure 3-11 Comparsion of mobility fo MILC TFT's deposited Ge layer at $V_{DS}=0.1V$.
- **Figure 3-12** Crystallization rate for Ge 5nm/ Ni 5nm/ a-Si deposited structure at different temperature.
- **Figure 3-13** Crystallization rate for Ni 5nm/ Ge 5nm/ a-Si deposited structure at different temperature.
- **Figure 3-14** Crystallization rate for Ni 5nm/ Ge 20nm/ a-Si deposited structure at different temperature.
- **Figure 3-15** Arrhenius plots and extracting of E_a and r_o for different samples.
- **Figure 3-16** Crystallization rate for different deposited metal structure at 550 °C.

Figure 3-17 SEM graph of Secco-etched Ni MILC Poly –Si for difference

structure :

(a)Ni 5nm/Ge 5nm/a-Si, (b) Ni 5nm/Ge 20nm/a-Si, (c) Ge 5nm/Ni 5nm/a-Si, (d)Ni 5nm/Si_{0.85}Ge_{0.15}, after 6 hr at 550 $^{\circ}$ C

Figure 3-18 Sheet resistance for metal-induced crystallization after 24 hr at 550 °C.

