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SUMMARY

For multiple-class prediction, a frequently used approach is based on ordered probit model. We show
that this approach is not optimal in the sense that it is not designed to minimize the error rate of the
prediction. Based upon the works by Altman (J. Finance 1968; 23:589–609), Ohlson (J. Accounting Res.
1980; 18:109–131), and Begley et al. (Rev. Accounting Stud. 1996; 1:267–284) on two-class prediction,
we propose a modified ordered probit model. The modified approach depends on an optimal cutoff value
and can be easily applied in applications. An empirical study is used to demonstrate that the prediction
accuracy rate of the modified classifier is better than that obtained from usual ordered probit model. In
addition, we also show that not only the usual accounting variables are useful for predicting issuer credit
ratings, market-driven variables and industry effects are also important determinants. Copyright q 2008
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Credit ratings are extensively used by practitioners and regulators as a surrogate measure for the
creditworthiness of bonds and companies. The ratings represent rating agency’s opinions and risk
assessments for bonds and companies. There are two basic types of credit ratings, the bond rating
and the issuer credit rating. The former attempts to measure the likelihood of the default or delayed
payments of a bond issue. The latter is an overall assessment of the creditworthiness of a company.
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Currently, there are many widely recognized rating agencies, such as Moody’s Investors Service,
Standard and Poor’s Ratings Services (S&P’s), etc. They routinely provide credit ratings for bonds
and companies.

This study focuses on the S&P’s long-term issuer credit rating (LTR). According to the definition
given by S&P’s, the LTR focuses on the obligor’s capacity and willingness to meet its long-term
financial commitments. To determine the LTR of a company, S&P’s examines a profile called the
corporate rating analysis and methodology profile. The profile contains two types of information
of the company. The first type of information is available publicly, for example, public financial
data. The second type of information is collected through a proprietary process from industry
characteristics, competitive bargain positions, interviews with management team, etc. Thus, S&P’s
rating procedure is in part common knowledge. However, the major determinants of S&P’s LTR
are basically not clear. In this paper, we propose to first identify important predictors of S&P’s
LTR, selected from publicly available market data, accounting data, and industry classification.

Based on the Compustat North America (COMPUSTAT) database, there were 8039 companies
in the year 2005 having stock traded on the New York Stock Exchange, American Stock Exchange,
or NASDAQ. However, among those 8039 companies, there were only 20.46% (1645) companies
having S&P’s LTRs. This means that most of companies do not have their S&P’s LTRs. In this
paper, our next focus is to forecast ratings of those companies ‘without’ S&P’s LTRs. Pettit et al.
[1] reported that the new faces in the pool of companies with S&P’s LTRs have lower rating
category on the average. Blume et al. [2] also found similar results that bond ratings have declined,
but the decline could be due to the use of more stringent rating standards in assigning ratings. On
the other hand, we do not pursue the issue of rating forecast for companies ‘with’ S&P’s LTRs
for two reasons. First, if a company is once rated by S&P’s, then it will be continuously rated
unless a special event happens to the company, for example, bankruptcy. Second, the continuously
rated companies have relatively unchanged rating categories in general [1]. Thus, it seems less
interesting in discussing the ratings of these companies.

There are several important developments in statistical techniques for constructing classification
models. These techniques include multiple regression analysis [3–5], multiple discriminant analysis
[6–8], ordered probit model [9–11], ordered and unordered logit models [10], etc. We refer to the
monograph by Altman et al. [12] for a detailed introduction of statistical classification models.

In this paper, we focus on the study based on ordered probit model.‡ We point out in Section 2.1
that its prediction rule is basically equivalent to a method using cutoff value 1

2 . In the two-
class classification problem, Altman [15], Ohlson [16], and Begley et al. [17] suggested that the
classification rule based on cutoff value 1

2 is not optimal. We extend their idea to the multiple-class
prediction problem and propose a variation of the usual ordered probit model based on an optimal
cutoff value. To be more precise, the usual ordered probit model approach is modified by replacing
cutoff value 1

2 with a data-dependent optimal cutoff value p∗ in [0,1]. The optimal cutoff value p∗
is determined by minimizing the error rate on the estimation sample. This idea is straightforward
and can also be easily extended to the ordered logit model or multiple discriminant analysis.

‡Owing to the superiority in explaining and predicting, the ordered probit model has been adopted by a number of
studies such as Kaplan and Urwitz [9], Ederington [10], and Gentry et al. [11]. Also, the test procedure of sample
selection bias is only available for the ordered probit model [13]. On the other hand, it is not suggested using
discrete explanatory variables in multiple discriminant analysis [14, p. 641]. In this paper, the industry effects on
S&P’s LTR were estimated through coefficients of eight indicator variables. Given these industry indicator variables,
it is not adequate to use multiple discriminant analysis to predict S&P’s LTRs.
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To study important predictors of S&P’s LTR, we considered 24 variables as potential predictors
in our data analysis section. These variables include four market-driven variables, 19 accounting
variables, and industry effects. According to the efficient market hypothesis, stock prices reflect all
publicly available information, including that contained in the accounting variables [18]. Thus it
is reasonable that market-driven variables may reflect the rating of a company. The market-driven
variables have been considered in the papers by Shumway [19], Bharath and Shumway [20], and
Chava and Jarrow [18] for bankruptcy prediction. Their importance to bond ratings has also been
noted by Blume et al. [2]. The 19 accounting variables were also considered in Altman [15],
Poon [21], and Pettit et al. [1] measuring six aspects (size, financial leverage, coverage, cash flow,
profitability, and liquidity) of financial health of a company. The industry effects on S&P’s LTR
were studied by introducing indicator variables in this paper. However, they could also be studied
by using a latent variable approach to describe the unobservable heterogeneity (see [22, 23]). We
note that it is important to include industry effects in the analysis, because different industries
may face different types of business risk and adopt different accounting conventions. In this paper,
industries were classified through the levels of standard industry classification (SIC) code. The
industry effects on bond rating and bankruptcy prediction also have been considered by Perry et al.
[24] and Chava and Jarrow [18], respectively.

The studied data were collected from COMPUSTAT and Center for Research in Security Prices
(CRSP) databases. Our sample consisted of 736 companies having complete values of the 24
potential predictors for the year 2004 and receiving S&P’s LTRs in April 2005. The sample
was further divided into the estimation sample and holdout sample. The longevity of the S&P’s
LTR was adopted as a factor to separate the sampled companies into the holdout and estimation
samples.§ According to S&P’s Research Insight North America Data Guide [25, p. 54], S&P’s
began to use the term LTR on 1 September 1998. Companies receiving S&P’s LTRs in consecutive
seven years (April 1999–April 2005) were classified into the estimation sample. The rest of the
sampled companies were classified into the holdout sample. Based on our division principle, 504
companies were divided into the estimation sample and 232 companies into the holdout sample.
In this paper, the estimation sample was used to determine the effective predictors of our model,
and the holdout sample was employed to demonstrate the performance of the prediction rule.

To examine whether our divided samples (estimation and holdout samples) induced selection
bias, a procedure based on ordered probit model with sample selection was performed using
LIMDEP 8.0 to test the null hypothesis of no selection bias caused by the above sample division.
The result of the test shows no rejection of the null hypothesis of interest at 5% level of significance.

Before performing the selection bias test, a stepwise selection procedure was used to objectively
determine the effective predictors for ordered probit model. The final list of the selected predictors
includes two market-driven variables, three accounting variables, and industry effects. The values
of estimated coefficients of the selected market-driven and accounting variables all agree with
their expected signs. This indicates that the result of the variable selection basically is correct, and
market-driven variables and industry effects are also important to the prediction of S&P’s LTR.

§Given the pool of companies with S&P’s LTRs, our estimation companies solely correspond to the rated ones, and
our holdout companies the new faces. Their purified composition agrees with our purpose to forecast ratings for
companies without S&P’s LTRs. On the other hand, one may separate the sampled companies by random allocation.
Random allocation has the advantage of eliminating the need to test for selection bias since the resulting estimation
and holdout samples have the same composition structure. However, each of the latter samples contains both rated
companies and new faces. Such mixed composition does not agree with our prediction purpose.
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We remark that to study the difference between the unsolicited and the solicited ratings, Poon [21]
suggested profitability and sovereign credit risk as two major factors in determining S&P’s LTR.
The sample for her study consists of 265 companies in 15 countries, while ours contains 736
companies selected from the COMPUSTAT database.

In our analysis, we also used the selected predictors and the ordered probit model to predict
S&P’s LTRs for the 232 holdout companies. The empirical results show that the prediction accuracy
rate of the ordered probit model with cutoff value 1

2 is 72.84%. In contrast, using optimal cutoff
value p∗, the prediction accuracy rate becomes 77.16%.

The remainder of this paper is organized as follows. Section 2 introduces our method for
predicting S&P’s LTR. Section 3 describes the data under study. Section 4 presents the empirical
results. Finally, conclusions are given in Section 5.

2. METHODS

In this section, we propose a variation of ordered probit model depending on the optimal cutoff
value so that the prediction power for classifying S&P’s LTR categories can be improved. The
ordered probit model is briefly introduced below, and its detailed introduction can be referred to
Kaplan and Urwitz [9].

Suppose that there are m categories among S&P’s LTRs, where m�2. Define R as the ordinal
response variable. R= j denotes that the S&P’s LTR of a company belongs to the category j ,
where j =1,2, . . . ,m. The larger the value of R, the better the S&P’s LTR category. We aim to
predict the values of R for companies without S&P’s LTRs.

To describe the ordered probit model, we first assume that there exists a latent variable R∗ relating
to the S&P’s LTR assessment R. Here R is a random variable representing the creditworthiness
of a company. The relation between R and R∗ is described by

R∗ = �+�x+�

R = j if � j−1<R∗�� j for j =1,2, . . . ,m
(1)

Here � is an intercept, � a vector of coefficients, x a vector of predictors, and � a random
error. �0=−∞,�1=0,� j is the threshold parameter between categories j and j+1, for each
j =2, . . . ,m−1, and �m =∞. The values of � j are of ascending order.
The ordered probit model is defined by assuming that � is a standard normal random variable.

Thus, the cumulative probability of the variable R can be written as

P(R� j |�, x) = �(� j −�−�x) for j =1,2, . . . ,m−1

P(R�m|�, x) = 1
(2)

where �=(�2,�3, . . . ,�m−1,�,�) is a vector of parameters, and �(·) the standard normal distri-
bution function. Given model (2), the parameter � can be estimated by the maximum likelihood
method [26]. Let �̂=(�̂2, �̂3, . . . , �̂m−1, �̂, �̂) be the maximum likelihood estimate of � based on the
estimation sample. The ordered probit model assigns category R̂ to the company with predictor
value x0, where R̂ is defined by

R̂= j if �̂ j−1<�̂+ �̂x0��̂ j for some j ∈{1,2, . . . ,m} (3)
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Figure 1. Plot of an artificial example of the distribution of the values of p̂ j and the cutoff value 1
2 .

It is important to point that the prediction rule R̂ in (3) is actually equivalent to basing on cutoff
value 1

2 and estimated cumulative probabilities of R:

R̂= j if p̂ j−1<1/2� p̂ j for some j ∈{1,2, . . . ,m} (4)

Here p̂0=0, p̂ j =�(�̂ j − �̂− �̂x0), for j =1, . . . ,m−1, and p̂m =1. To illustrate inequality (4),
Figure 1 shows an artificial example. In Figure 1, interval [0,1] is divided into m subintervals by
the p̂ j values, and the j th subinterval has endpoints p̂ j−1 and p̂ j . The value of R̂ is determined
by the subinterval containing the quantity 1

2 .

In this study, following the idea of Altman [15], Ohlson [16], and Begley et al. [17], we propose
replacing cutoff value 1

2 in (4) with some optimal cutoff value p∗. For each value of p∈[0,1], let
R̂(p) denote the prediction rule defined in (4) but with 1

2 replaced by p. We suggest taking p∗ as

the value p over [0,1] so that the corresponding prediction rule R̂(p∗) has the minimum error rate
on the estimation sample. If there are multiple p∗ values, then the smallest one is suggested. After
calculating the optimal cutoff value p∗, we give rating R̂∗ = R̂(p∗) to the company with predictor
value x0. We remark that using p∗ has the advantage of reducing the rate of misclassifying a
company with worse rating category to better rating category. This seems of importance, since
misclassifying worse category to better category might cause severe losses to investors.

3. DATA

The data for this research were collected from COMPUSTAT and CRSP databases. The studied
population consists of companies that must (i) adopt calendar fiscal year, (ii) have stock traded
on the New York Stock Exchange, American Stock Exchange, or NASDAQ, and (iii) not be a
financial services company with the SIC code 6000–6999. The criterion (i) synchronizes the timing
of predictors in the sense that all market-driven and accounting variables cover the calendar year
2004. The criterion (ii) makes sure that market-driven variables are available. The criterion (iii)
excludes the financial services companies since they are subject to regulations and adopt different
accounting conventions.

Based on the COMPUSTAT database, there were 4042 companies in the population, but only
983 companies receiving S&P’s LTRs in April 2005. However, among those 983 companies, there
were only 736 companies having complete values of the studied 24 predictors for the year 2004.
The missing data problem is not unusual in applications, especially when there are many predictors
in the model. However, as long as the missingness occurs ‘at random’ then the sample will not
introduce systematic bias in our analyses [27, 28]. We have no reason not to believe that the
missingness occurred in COMPUSTAT and CRSP databases is ‘missing at random’.

For purpose of later analysis, we decide to divide sample data into two groups. According
to S&P’s Research Insight North America Data Guide, S&P’s began using the term LTR on 1
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September 1998. Thus 504 companies among our 736 sampled companies receiving S&P’s LTRs
in consecutive seven years (April 1999–April 2005) were classified into the estimation sample.
The rest of the sampled companies were classified into the holdout sample.

S&P’s LTR ranges from AAA to D. Panel A of Table I presents the frequency distribution of the
sampled companies according to their S&P’s LTRs. Based on the result from the estimation sample,
it seems reasonable to group S&P’s LTRs into three categories: {Below BBB} as category 1, {BBB}
as category 2, and {AAA, AA, A} as category 3.¶ According to S&P’s, firms in the {AAA, AA, A}
category mean that they have demonstrated strong capacity to meet their financial obligations. Firms
receiving BBB rating mean that they have adequate capacity to meet their financial commitments.
However, firms receiving LTR below BBB mean that they were regarded as having speculative
characteristics. According to the three S&P’s LTR categories, the frequency distribution of the
sampled companies is shown in Panel B of Table I.

Note that the companies in our holdout sample are mostly new faces in the pool of companies with
S&P’s LTRs and have lower S&P’s LTRs on the average. Such result agrees with the observation
reported in Pettit et al. [1]. Blume et al. [2] also reported the same observation for bond ratings.
The distribution of the companies in the holdout sample shows that there are about 71% companies
in the speculative S&P’s LTR category. In contrast, there are only about 38% companies in the
estimation sample with the speculative S&P’s LTR category.

The 24 potential explanatory variables considered in this research for studying the important
predictors of S&P’s LTR include four market-driven variables [19, 20], 19 accounting variables
[1, 15, 21], and industry effects [1, 18]. In order to study industry effects on S&P’s LTR, we
classified companies according to the first digit of their four-digit SIC codes. The frequency distri-
bution of the sampled companies according to their SIC codes is given in Panel C of Table I. The
industry effects were estimated through the coefficients of eight indicator variables in the model.
The four market-driven variables were excess return (EXRET), relative size (RSIZE), standard
deviation of monthly returns (SIGMA), and the logarithm of the KMV-Merton default proba-
bility (log10(�KMV)).‖ The 19 accounting variables measure six aspects (size, financial leverage,
coverage, cash flow, profitability, and liquidity) of financial health of a company. The definitions
of the 24 predictors are given in Table II. Using data in the estimation sample, Table III shows
summary statistics and F-tests of equality of the means among the three S&P’s LTR categories for
the market-driven variables and accounting variables. The p-values in Table III show that testing
the null hypothesis of equal means is significant at 0.05 level for each of the four market-driven
variables and are significant for all accounting variables, except OM, ROE, CASHR, and QR.
This result indicates that most of the variables considered in this paper are effective predictive
variables. Table III also shows that, on the average, if a company has larger firm size, smaller

¶The estimation sample was divided into the three categories so that the resulting three cells have approximately
equal sizes. On the other hand, if one divides the estimation sample into more categories, then some cells have
smaller sizes and the number of threshold parameters increases. Thus the corresponding estimates of parameters in
the model may become less precise. The unreported results based on each of the four-seven categories show the
same conclusion on studying important predictors of S&P’s LTR as, but much worse prediction performance using
each of cutoff values p∗ and 1

2 than those based on the three categories.
‖Since the computation of KMV-Merton default probability �KMV requires the market value of equity, it is treated
as a market-driven variable. The detailed computation procedure of �KMV can be referred to Bharath and Shumway
[20]. For most companies in the estimation sample, their values of �KMV are very close to 0. Thus, log10(�KMV)
is considered as an explanatory variable in this study.
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Table I. The frequency distributions of the sampled companies collected from the COMPUSTAT
and CRSP databases with complete values of the predictors in the year 2004.

Estimation companies Holdout companies

Panel A: S&P’s LTR
AAA 6 0
AA 17 1
A 114 18
BBB 173 48
BB 128 92
B 64 70
CCC 1 2
CC 1 0
C 0 0
D 0 1
Total firms 504 232

Panel B: S&P’s LTR category
{Below BBB} 194 165
{BBB} 173 48
{AAA, AA, A} 137 19
Total firms 504 232

Panel C: SIC code
100–999 3 2
1000–1999 49 18
2000–2999 116 42
3000–3999 118 60
4000–4999 129 58
5000–5999 29 12
7000–7999 37 28
8000–8999 19 12
9000–9999 4 0
Total firms 504 232

Panels A, B, and C present the frequency distributions of the sampled companies according to different
S&P’s LTR categories and SIC codes.

financial leverage, larger coverage, larger cash flow, or larger profit, then it has better S&P’s LTR
category.

4. RESULTS

In this section, we shall apply stepwise selection procedure to objectively choose important predic-
tors of S&P’s LTR and apply our suggested method to predict S&P’s LTR categories for companies
in the holdout sample. We also examine whether our estimation and holdout samples induced bias
in sample selection. Section 4.1 gives the results of ordered probit model for testing the selection
bias. The results in Table IV show the selected predictors, parameter estimates, and conclusion for
testing the null hypothesis of no bias in sample selection. Using the selected predictors, Section 4.2
compares the prediction performance of the ordered probit model with cutoff value 1

2 and that
with optimal cutoff value p∗.
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Table II. The definitions of the studied predictors.

Variable Definition

Panel A: market-driven variables
EXRET Monthly return on the firm minus the value-weighted CRSP NYSE/

AMEX/NASDAQ index return cumulated to obtain the yearly return
RSIZE Logarithm of each firm’s market equity value divided by the total

NYSE/AMEX/NASDAQ market equity value
SIGMA Standard deviation of each company monthly stock returns
log10(�KMV) Logarithm of the KMV-Merton default probability

Panel B: accounting variables
Size

log10(TA) Logarithm of total assets
Financial leverage

TDEBITDA Toal debt/(EBIT+DA), DA: depreciation plus amortization
EM Total assets/equity
LDC Long-term debt to capital
TDC Total debt to capital
SDC Short-term debt to capital

Coverage
EBITINT EBIT/interest expenses
EBITDAINT (EBIT+DA)/interest expenses

Cash flow
FFO Net income from continuing operations, plus DA, deferred income

taxes, and other non-cash expense
INT Interest expenses
CASHEQ Total cash and equivalent

Profitability
RETA Retain earnings/total assets
OM (%) Operating margin after depreciation
ROC (%) Return on capital
ROE (%) Return on equity
ROA (%) Return on assets

Liquidity
CASHR Cash ratio
QR Quick asset ratio
CR Current ratio

Panel C: Indicator variables for industry effects
SIC1 1 if SIC code is within 100–999, and 0 otherwise
SIC2 1 if SIC code is within 1000–1999, and 0 otherwise
SIC3 1 if SIC code is within 2000–2999, and 0 otherwise
SIC4 1 if SIC code is within 3000–3999, and 0 otherwise
SIC5 1 if SIC code is within 5000–5999, and 0 otherwise
SIC6 1 if SIC code is within 7000–7999, and 0 otherwise
SIC7 1 if SIC code is within 8000–8999, and 0 otherwise
SIC8 1 if SIC code is within 9000–9999, and 0 otherwise

Note: The SIC code 4000–4999 was used as the reference level in studying the industry effects. The financial
service companies with the SIC code 6000–6999 were excluded from the study, since they are subject to
regulations and adopt different accounting conventions.
Panels A, B, and C present the definitions of market-driven variables, accounting variables, and industry
indicator variables, respectively.
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Table III. Summary statistics and F-tests of the estimation sample.

Variable Mean Median Standard deviation Minimum Maximum p-Value

Panel A: {Below BBB}
EXRET 0.188 0.105 0.453 −0.951 1.707 0.001∗∗
RSIZE −4.106 −4.087 0.517 −5.337 −2.704 0.000∗∗
SIGMA 0.100 0.089 0.043 0.030 0.356 0.000∗∗
log10(�KMV) −20.499 −10.200 37.192 −307.653 −0.032 0.000∗∗
log10(TA) 3.345 3.277 0.519 2.307 4.516 0.000∗∗
TDEBITDA 4.966 3.320 12.962 −1.179 178.338 0.001∗∗
EM 6.730 3.060 20.153 1.295 227.106 0.005∗∗
LDC 0.491 0.495 0.210 0.000 0.928 0.000∗∗
TDC 0.530 0.537 0.208 0.000 0.991 0.000∗∗
SDC 0.039 0.014 0.073 0.000 0.512 0.000∗∗
EBITINT 3.631 2.233 7.347 −31.123 48.853 0.000∗∗
EBITDAINT 6.160 3.692 8.819 −26.747 58.987 0.000∗∗
FFO 322.789 138.057 642.040 −451.149 5512.000 0.000∗∗
INT 139.457 50.133 255.348 0.500 1958.000 0.009∗∗
CASHEQ 350.184 113.337 651.787 0.000 4244.000 0.000∗∗
RETA −0.003 0.047 0.390 −3.730 0.923 0.000∗∗
OM 5.972 8.560 74.724 −1014.605 57.198 0.101
ROC 2.647 3.447 11.385 −50.279 38.266 0.000∗∗
ROE −2.545 7.512 152.947 −2008.112 345.580 0.091
ROA 1.650 2.220 7.433 −36.379 30.131 0.000∗∗
CASHR 0.592 0.400 1.168 0.000 14.540 0.231
QR 1.172 0.942 1.195 0.154 15.021 0.334
CR 1.790 1.591 1.344 0.332 16.781 0.030∗

Panel B: {BBB}
EXRET 0.128 0.046 0.356 −0.417 3.227
RSIZE −3.568 −3.565 0.504 −5.225 −2.282
SIGMA 0.060 0.058 0.021 0.018 0.144
log10(�KMV) −46.287 −35.825 45.548 −307.653 −0.335
log10(TA) 3.778 3.751 0.501 2.534 5.393
TDEBITDA 2.306 2.060 1.847 −12.324 7.809
EM 3.148 2.503 3.084 1.338 34.329
LDC 0.359 0.371 0.162 0.000 0.918
TDC 0.404 0.398 0.168 0.000 0.950
SDC 0.045 0.032 0.050 0.000 0.307
EBITINT 10.496 5.054 30.032 −3.481 346.237
EBITDAINT 15.118 7.776 43.383 −0.984 498.772
FFO 1101.827 512.700 1635.879 −137.000 14973.028
INT 204.737 86.506 297.835 0.359 1807.000
CASHEQ 828.016 268.964 1869.804 0.000 15778.539
RETA 0.206 0.196 0.225 −0.991 0.940
OM 14.167 12.163 9.623 −1.252 47.997
ROC 7.191 6.827 7.601 −33.119 45.298
ROE 13.330 12.108 12.168 −58.236 80.414
ROA 4.914 4.525 4.288 −22.503 24.544
CASHR 0.454 0.246 0.594 0.000 3.527
QR 1.081 0.883 0.723 0.160 4.798
CR 1.583 1.435 0.858 0.409 5.360
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Table III. Continued.

Variable Mean Median Standard deviation Minimum Maximum p-Value

Panel C: {AAA, AA, A}
EXRET 0.034 0.031 0.211 −0.545 0.842
RSIZE −3.164 −3.169 0.609 −4.943 −1.696
SIGMA 0.052 0.046 0.022 0.017 0.152
log10(�KMV) −74.181 −60.009 61.667 −307.653 −0.793
log10(TA) 4.036 4.032 0.542 2.476 5.291
TDEBITDA 1.933 1.498 1.841 0.010 16.102
EM 2.729 2.336 1.270 1.248 9.168
LDC 0.286 0.274 0.150 0.000 0.756
TDC 0.356 0.344 0.165 0.004 0.759
SDC 0.070 0.055 0.066 0.000 0.282
EBITINT 20.805 10.680 31.539 −1.916 205.840
EBITDAINT 28.143 13.603 43.117 1.309 303.040
FFO 2920.325 1073.190 5179.117 −3991.000 40551.000
INT 264.979 77.700 545.486 3.740 4891.279
CASHEQ 2326.562 559.000 4265.138 0.000 23135.000
RETA 0.357 0.333 0.255 −0.307 0.914
OM 16.168 14.581 8.584 −3.508 53.244
ROC 11.558 10.295 8.786 −33.743 44.282
ROE 19.449 15.639 17.540 −35.835 101.736
ROA 7.250 7.056 5.257 −22.146 20.397
CASHR 0.462 0.277 0.567 0.000 3.344
QR 1.025 0.902 0.624 0.292 4.184
CR 1.494 1.349 0.768 0.354 5.294

Note: The notations ∗∗ and ∗ indicate the significance of the F-test at the 1 and 5% levels, respectively.
The p-values refer to the F-tests of equality of the means among the three S&P’s LTR categories based on the
estimation sample. Panels A, B, and C present the results for the three S&P’s LTR categories {Below BBB},
{BBB}, and {AAA, AA, A}, respectively.

4.1. Testing selection bias

To examine whether our criterion for dividing the overall sample into estimation and holdout
samples induced selection bias, the procedure of ordered probit model under our particular sample
selection was performed. This procedure was designed by simultaneously applying the ordered
probit model with multiple classes to the estimation sample, and applying the two-class probit
model to the particular sample in which classes 0 and 1 were assigned to companies in the holdout
and estimation samples, respectively (see Model 1 of Table IV). The detail of this approach can
be found in Greene [13]. Before performing it, a stepwise selection procedure provided by SAS
was first used to objectively determine the predictors for each of the two models. The significance
level for including and excluding a predictor in the selection procedure was set as 5%, a default
value provided by SAS.

The final list of the selected predictors in the ordered probit model includes industry effects,
RSIZE, SIGMA, LDC, FFO, and RETA. Results in Table III, by using F-test for testing equality
of three means (corresponding to the three S&P’s LTR categories), show that the last five selected
predictors are all significant at the 1% level. The two selected market-driven variables, RSIZE
and SIGMA, stand for the market capitalization and the risk of a company, respectively. The three
selected accounting variables, LDC, FFO, and RETA, measure a company’s financial leverage,
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Table IV. Maximum likelihood estimates of the parameters in Models 1 and 2.

Model 1 Model 2

Variable Coefficient p-Value Coefficient p-Value

Panel A: ordered probit specification
�2 1.6781 0.0000∗∗ 1.6962 0.0000∗∗
Intercept � 5.8699 0.0000∗∗ 6.0403 0.0000∗∗
SIC1 −1.4021 0.1162 −1.4238 0.0950
SIC2 −0.4749 0.0430∗ −0.4819 0.0337∗
SIC3 −0.0359 0.8528 −0.0386 0.8348
SIC4 −0.3311 0.0919 −0.3355 0.0762
SIC5 −0.7423 0.0092∗∗ −0.7504 0.0092∗∗
SIC6 −0.6764 0.0096∗∗ −0.6883 0.0084∗∗
SIC7 −1.3759 0.0075∗∗ −1.3978 0.0004∗∗
SIC8 −0.3308 0.4597 −0.3117 0.6038
RSIZE 0.7941 0.0235∗ 0.8679 0.0000∗∗
SIGMA −21.1330 0.0000∗∗ −21.4097 0.0000∗∗
LDC −2.4886 0.0000∗∗ −2.4383 0.0000∗∗
FFO 0.000075 0.0335∗ 0.000078 0.0322∗
RETA 1.5633 0.0001∗∗ 1.6135 0.0000∗∗

Panel B: two-class probit sample selection specification
Intercept 0.3932 0.6332
RSIZE 0.3963 0.0011∗∗
log10(TA) 0.3641 0.0041∗∗
TDC 0.7031 0.0063∗∗
RETA 0.4142 0.0003∗∗

Panel C: model fit test
Chi-squared statistic 0.2674 0.6051 453.5957 0.0000∗∗
d.f. 1 13
� −0.2166 0.7838

Note: The notations ** and * indicate the significance of the test at the 1 and 5% levels, respectively. The
notations d.f. and � stand for the degree of freedom and the correlation coefficient between the error term of
the ordered probit model and that of the two-class probit model, respectively.
Model 1 denotes the ordered probit model with sample selection. Model 2 stands for the usual ordered probit
model. The variables used in each of the ordered probit approach and the two-class probit approach were
selected from using the stepwise selection procedure. The significance level for including and excluding a
predictor in the selection procedure was 5%. The p-values refer to the Wald chi-squared tests for testing the
significance of parameters. Panel A shows the inference results using the ordered probit approach under Models
1 and 2. Panel B gives the inference results using the two-class probit approach under Model 1. Panel C
presents the results for model fit test.

cash flow, and profitability, respectively. The results of our analysis indicate that industry effects
and market-driven variables are also important to the S&P’s LTR.

Note that none of the accounting variables, which measures the short-term liquidity aspect of
a firm, appeared in the final list of selected predictors. This is perhaps not surprising, because
the S&P’s LTR reflects an obligator’s capacity to meet its long-term financial commitments.
Furthermore, the S&P’s withdraws issuer credit ratings if the companies default on payments or
file bankruptcy. The absence of pending bankruptcy or extreme financial distress in the studied
population explains why the stepwise selection procedure failed to select the fourth market-driven
variable (KMV-Merton default probability).
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The final list of the selected predictors for the two-class probit model using both the estimation
and the holdout samples includes RSIZE, log10(TA), TDC, and RETA. Table IV shows the results
obtained from performing the procedure of ordered probit model, under our particular sample
selection, based on the application of LIMDEP 8.0. Panel C of Model 1 in Table IV shows that
the null hypothesis of �=0 was not rejected at 5% level of significance. Here the null hypothesis
of �=0 stands for no sample selection bias caused by our criterion of dividing the overall sample.
On the other hand, Model 2 in Table IV shows the final results of the usual ordered probit
model, including p-value of the chi-squared test for model fit. It is also interesting to note that by
comparing the parameter estimates of the two ordered probit models (in Models 1 and 2 of Table
IV), we find out that their values are approximately equal. Thus since there is no sample selection
bias, the results of Model 2 are adopted for predicting S&P’s LTR categories for companies in the
holdout sample.

From the results of Model 2, the industry indicator variable SIC1 is non-significant at 5%
level. This means that the industry effect with SIC code 100–999 is of no significant difference,
comparing with that of the reference level with SIC code 4000–4999. The same remark also applies
to the industry effects with SIC code 2000–2999, 3000–3999, and 9000–9999.

It is important to note that the two selected predictors SIGMA and LDC measure various
aspects of risk and financial leverage of an issuer, respectively. The larger the values of these two
predictors (SIGMA and LDC), the smaller the value of R. That is, these two selected predictors
should be negatively correlated with rating R, and the signs of their coefficients should be negative.
On the other hand, the rest of the selected predictors RSIZE, FFO, and RETA stand for the
market capitalization, cash flow, and profitability of an issuer, respectively. Thus, the larger the
values of these three predictors, the better the creditworthiness of an issuer will result. This
implies that RSIZE, FFO, and RETA should be positively correlated with rating R, and the signs
of their coefficients should be positive. From Table IV, the signs of the values of estimated
coefficients for selected predictors RSIZE, SIGMA, LDC, FFO, and RETA all agree with our
expectation.

4.2. Prediction results

In this subsection, the S&P’s LTR categories of the 232 holdout companies were predicted based
on the application of Model 2 with cutoff value 1

2 and the optimal cutoff value p∗. Recall that the
optimal cutoff value p∗ was taken as the minimum among those p arriving at the minimum error
rate of the prediction rule R̂(p) over [0,1], based on applying Model 2 to the estimation sample.
It was selected on the 10 001 equally spaced grids of p in [0,1]. We plot cutoff value p against
the corresponding error rate of R̂(p) in Figure 2. The figure shows that the optimal cutoff value
should be p∗ =0.3706.

The classification results for the 504 estimation companies are given in Table V. Table V shows
that Model 2 with the optimal cutoff value p∗ =0.3706 has the same accuracy rate 71.03% as that
with cutoff value 1

2 . As expected from the definition of optimal cutoff value p∗ given in Section
2.2, one interesting point is that Model 2 with optimal cutoff value has better ability in classifying
the speculative grade {Below BBB}.

The prediction results for the 232 holdout companies are given in Table VI. Table VI shows
that Model 2 with the optimal cutoff value p∗ =0.3706 has better prediction performance than that
with cutoff value 1

2 , since the accuracy rates of their predictions are, respectively, equal to 77.16
and 72.84%. Another interesting point is that Model 2 with optimal cutoff value also has better
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Figure 2. Plot of the error rate among the estimation sample of the prediction rule R̂(p) versus the cutoff
value p in [0,1]. The location of the vertical line in the plot stands for the optimal cutoff value p∗.

Table V. Classification results obtained from the 504 estimation companies.

Classified category

True category {Below BBB} {BBB} {AAA, AA, A}
Panel A: cutoff value 1

2{Below BBB} 151 42 1
{BBB} 20 120 33
{AAA, AA, A} 4 46 87

Accuracy rate=(151+120+87)/504=71.03%

Panel B: optimal cutoff value p∗ =0.3706
{Below BBB} 171 23 0
{BBB} 37 120 16
{AAA, AA, A} 10 60 67

Accuracy rate=(171+120+67)/504=71.03%

Panel A shows the results using cutoff value 1
2 . Panel B presents the results using the optimal cutoff value

p∗ =0.3706.

ability in predicting the speculative grade {Below BBB}. This is important, since misclassifying
speculative grade to investment grade ({BBB} or {AAA, AA, A}) might cause severe losses to
investors.

In this analysis, a hypothesis testing was also performed to confirm that Model 2 with the
optimal cutoff value p∗ =0.3706 has better prediction performance than that with cutoff value 1

2 .
The one-sided McNemar’s binomial test [29] was used to test the null hypothesis of no difference
in prediction performance. The results are given in Table VII. The p-value of the one-sided
McNemar test is 0.006 indicating the data strongly support that Model 2 with the optimal cutoff
value p∗ =0.3706 should be used instead of that with cutoff value 1

2 .
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Table VI. Prediction results obtained from the 232 holdout companies.

Predicted category

True category {Below BBB} {BBB} {AAA, AA, A}
Panel A: cutoff value 1

2{Below BBB} 130 35 0
{BBB} 6 33 9
{AAA, AA, A} 4 9 6

Accuracy rate=(130+33+6)/232=72.84%
Panel B: optimal cutoff value p∗ =0.3706
{Below BBB} 140 25 0
{BBB} 10 34 4
{AAA, AA, A} 4 10 5

Accuracy rate=(140+34+5)/232=77.16%

Panel A shows the results using cutoff value 1
2 . Panel B presents the results using the optimal cutoff value

p∗ =0.3706.

Table VII. McNemar test for comparing the ordered probit model with cutoff value 1
2 and that with

optimal cutoff value p∗ =0.3706 on their prediction performance obtained from the holdout sample.

Cutoff value 1
2

Optimal cutoff value p∗ =0.3706 Correct Incorrect Total p-Value

Correct 164 15 179 0.006∗∗
Incorrect 5 48 53
Total 169 63 232

Note: ∗∗ indicates significance at the 1% level.

5. CONCLUSIONS

In this paper, we have shown that the prediction rule based on the usual ordered probit model
is equivalent to using classification rule in (4) with cutoff value 1

2 , and hence this approach may
not be optimal. We thus have proposed a modified method based on the ordered probit model
but using an optimal cutoff value instead. Also, we have performed an empirical analysis to find
important predictors of S&P’s LTR from the publicly available market and accounting data as
well as industry classification. Using the important predictors of S&P’s LTR, we have developed a
prediction rule combining ordered probit model and optimal cutoff value p∗. Our empirical results
demonstrate that the proposed prediction rule has better accuracy rate of prediction than that based
on cutoff value 1

2 .
To find the important predictors of S&P’s LTR, we have considered 24 potential explanatory

variables used in previous studies. They include industry effects, four market-driven variables,
and 19 accounting variables. A data set containing 736 companies (504 estimation companies and
232 holdout companies) having complete values of the 24 explanatory variables was collected
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from COMPUSTAT and CRSP databases. The results from the stepwise selection procedure show
that the final list of the selected predictors in the ordered probit model contains industry effects,
two market-driven variables, and three accounting variables. They were considered as important
predictors of S&P’s LTR. The values of estimated coefficients of the selected market-driven and
accounting variables all agree with their expected signs. Our analysis indicates that industry effects
and market-driven variables are also important to the prediction of S&P’s LTR.

The longevity of the S&P’s LTR was adopted as a factor for separating the sampled companies
into the holdout and estimation samples. To examine whether our criterion of dividing the overall
sample into estimation and holdout samples induced bias in ‘selection’, a procedure using LIMDEP
8.0 was performed. Our analysis shows that there is no selection bias in dividing the overall sample
into the estimation and holdout samples at 5% level of significance.

In this paper, we have applied a variation of the ordered probit model, depending on optimal
cutoff value p∗, to improve the power of prediction. The optimal cutoff value p∗ is determined by
minimizing the error rate on the estimation sample. Our empirical results show that the ordered
probit model with optimal cutoff value p∗ has better prediction power than that with cutoff value 1

2 ,
since their prediction accuracy rates are 77.16 and 72.84%, respectively. Also, the model with
optimal cutoff value p∗ also has better ability in predicting the speculative grade {Below BBB}.

Finally, there are two possible extensions of the methods considered in this paper. First, Blume
et al. [2] applied panel data with independence assumption to the ordered probit model to study
bond ratings. In this paper, we only used cross-sectional data to study LTRs. In the future, to
account for the correlations among panel data, we shall use dynamic ordered probit model with
autocorrelation structure [30, 31] to study LTRs. Second, in the future research, the methods
considered in this paper will be used for bond rating prediction. The same problem has been done
by Pinches and Mingo [6, 7], Blume et al. [2], and others.
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