
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 25, 1539-1553 (2009)

1539

A Distributed Multi-Dimensional Publications
Management System*

TSUNG-YUAN LIU AND YUH-JZER JOUNG+
Department of Computer and Information Science

National Chiao Tung University
Hsinchu, 300 Taiwan

+Department of Information Management
National Taiwan University

Taipei, 106 Taiwan

Conventional hierarchical organizations are inadequate in managing publications

which are inherently multi-dimensional. The rigid hierarchical organization limits a user
to a small number of navigable paths, and ambiguities arise on the preferred location of
an object. Prior research on enhanced browsing or information visualization suffers from
the curse of dimensionality and is limited by the interaction usability and/or the computa-
tional efforts required.

This paper proposes a hypercube object space for modeling an interactive browsing
methodology, called multi-dimensional browsing, along with an integrated, powerful, yet
simple interface for navigating the object space. The entire navigation control is dis-
played as one concept hierarchy tree, allowing a user to navigate the object space by re-
fining and generalizing multi-dimensional search criteria incrementally with strong feed-
back − but without the major drawbacks of prior research. A cross-platform, peer-to-
peer architecture and modular implementation is also prototyped in Java to support the
concept and to demonstrate its feasibility in handling thousands of publications.

Keywords: multi-dimensional browsing, hierarchical directory file system, publication
management system, interfaces, interactive IR, peer-to-peer architecture

1. INTRODUCTION

The evolution of computing devices and the proliferation of personal computing
have placed vast amount of e-Data at our disposal. In terms of publications, there now
exist hundreds of thousands of papers in the form of Postscript or Portable Document
Format (PDF). However, as the amount of available content grows, locating the exact
information required becomes increasingly difficult. Without an adequate publications
management system, there exists the danger of duplicate effort when researchers are
unaware of similar work done already.

One of the most widely used information management technique is the plain vanilla
hierarchical directory file system. The concept of the hierarchical directory file system is
simple and natural, and hence its popularity. However, this simple system is doomed to
fail when storing large numbers of publication papers.

Received October 31, 2007; revised May 22, 2008; accepted October 16, 2008.
Communicated by Jonathan Lee.
* A preliminary version of this paper appeared as “Multi-dimension browse,” in Proceedings of the 28th Annual

IEEE International Computer Software and Applications Conference, Hong Kong, China, 2004, pp. 480-485,
and was partially supported in part by the National Science Council of Taipei, under grants No. NSC 94-
2422-H-002-014 and 95-2422-H-002-017.

+ Corresponding author.

TSUNG-YUAN LIU AND YUH-JZER JOUNG

1540

First, a publication has many dimensions such as its title, authors, keywords, publi-
cation date and publication place, etc. If we organize the directory according to one of
the dimensions, then search according to the other dimensions becomes difficult. For
example, if the directory structure groups papers by subject areas such as Ad hoc Net-
work and Routing, then there is no direct way to find papers written by a certain author,
or papers written in a specific year. This is a dimensional problem since we are trying to
store something that is multi-dimensional (paper attributes) into a single dimensional
space (directory hierarchy).

Secondly, some paper attributes such as authors and subject areas are not mutually
exclusive, so logically the paper should appear in more than one directory. For example,
a paper on Ad hoc Multicast Routing should be in both the Ad hoc Network and Routing
directories (see Fig. 1). Using techniques such as symbolic links or duplicate copies only
solves part of the problem, yet brings along additional complications, such as dangling
links and wastage of storage space.

Ad hoc. Multicast Routing

Ad hoc. Network

MANET

Categories

Peer To Peer

Information Management

Routing

+

+

+

+

+

Fig. 1. Hierarchical directory file system.

Alternatively, papers can be stored in a database with text indices so that users can

retrieve required information via queries. Search by querying requires some knowledge
about the target object as well as the search engine so that appropriate queries can be
formulated. Moreover, queries cannot be too general, or else thousands of search results
could be returned. They may not be too specific either − unless users know exactly what
they want; otherwise specific queries might bring nothing out. However, often times us-
ers cannot clearly describe what they want without clues, or cannot translate human lan-
guage into system-understandable queries.

Browsing is an attractive retrieval technique for the casual user, or someone unfa-
miliar with the database contents or the query language. An interactive, iterative brows-
ing interface should assist a user to find the required information quickly. This capital-
izes on a well known human cognitive characteristic: it is easier to recognize some object
than to describe it [1]. Browsing is especially desirable in a multi-user environment, as it
is hard to discover what others have contributed without a browsable overview. The fol-
lowing quote by Mark Apperley [1] highlights the beauty of browsing:

Navigation is … about finding your way confidently and successfully to your goal
while discovering fresh delights along the way.

MULTI-DIMENSIONAL PUBLICATIONS MANAGEMENT SYSTEM

1541

This paper introduces an innovative and efficient browsing methodology that allows
a user to find the required information quickly and easily via pointing and clicking op-
erations. During the browsing process, the interface reveals summary information, giving
the user quick insight of the scope and number of related papers in the system.

The rest of the paper is organized as follows: Section 2 discusses related work; sec-
tion 3 presents the proposed multi-dimensional browsing scheme; section 4 briefs the
system implementation; and finally, section 5 concludes and presents directions for fu-
ture work.

2. RELATED WORK

Doyle [2] was among the first to propose an interactive browsing environment
based on a graph structure for information retrieval purposes. Many variations have ap-
peared since, and more modern interactive user interfaces based on concept lattices were
proposed by Godin et al. [3] and Lindig [4]. However, the proposed interfaces are
somewhat cluttered. Nevertheless, concept lattices do offer more degree of freedom in
browsing than the conventional hierarchical organization, as concepts in the lattice are
independent and users can browse along every possible path within the lattice. Our mul-
ti-dimensional browsing was in fact based on concept lattices. However, rather than us-
ing lattices, we use hypercubes to represent our browsing space so as to give a finer dis-
tinction of our navigation philosophy. A hypercube is geometrically symmetric, repre-
senting that at any point of browsing, a user can go to any dimension to view the docu-
ment collection, henceforth the term “multi-dimensional browsing”.

Browsing from multiple dimensions has also been highly appraised for image-based
content. For example, the Flamenco system [5, 6] uses faceted metadata to describe im-
ages, and a user can select any arbitrary facet to navigate the art gallery. The Endeca
information access platform1 has also successfully applied this multi-dimensional brows-
ing concept to manage large inventories for e-commerce companies (e.g., Wal-Mart,
Barnes and Noble, IBM, and Home Depot). Compared to these systems, our work differs
from them dramatically in user interface and in the browsing target. More importantly,
we have proposed a formal model for this multi-dimensional browsing concept. Such a
model is useful not only in capturing the browsing space and user interaction, but can
also serve as a basis for measuring the computational complexity as well as for further
possible optimization in the implementation.

Also related to our work are document management systems and knowledge man-
agement systems, where many commercial systems are now available. The focus of the
commercial document management systems, e.g., Domino.Doc [7] and Onbase [8], is
often on scalability and flexibility [9]. Scalability ensures that the stored contents are
readily accessible by the users. Flexibility refers to the types of purposes the system can
serve, and the extent to which the system can be customized and extended. Most docu-
ment management systems offer only a simple text search and a hierarchical categoriza-
tion of documents.

Knowledge management systems, e.g., IBM Lotus Knowledge Discovery System
[10], on the other hand, aim to track organizational knowledge and expertise that exist
throughout the organization, and present it to the end user in a meaningful context, with

1 http://www.endeca.com.

TSUNG-YUAN LIU AND YUH-JZER JOUNG

1542

the effect of improving an organization’s responsiveness, innovation, competency and
efficiency. Contents and resources that a user requires are context dependent and forever
changing. A successful knowledge management system has to separate contents that
have value from those that do not for a particular context via automated discovery,
knowledge mining or manual means.

Despite the efforts, one must admit that the intelligence and knowledge of present
day systems is still no match for an experienced veteran. Our research philosophy is to
separate the expertise of man and computer where their strengths lie. Man is responsible
for maintaining a well-managed, deterministic browsing structure that is easy and effi-
cient for fellow researchers to navigate. The computer is responsible for straightforward
calculations, such as mass summarization, set manipulation, and interactive visualizations.

Moreover, although our publications management system is no match against the
scope of current document and knowledge management systems that exhibit features
such as automatic text analysis, automatic categorizing, version control, integrated work-
flow, compound documents, full text search, consistent replication and flexible access
control, etc. [11], our interactive and efficient browsing methodology is unseen in these
systems. The ad hoc browsing proposed in this paper is attractive for users unfamiliar
with the stored contents, and allows such users to find the required information quickly
via the interactive, iterative browsing interface. Existing systems should benefit with the
addition of the proposed browsing methodology.

3. HYPERCUBE-BASED MULTI-DIMENSIONAL BROWSING

We propose an innovative and efficient browsing methodology − multi-dimensional
browsing − which allows a user to navigate in a hypercube object space that is familiar
with the way how humans locate information. List of symbols used in this section is
tabulated in Table 1.

Table 1. List of symbols used and their description.
A: Number of objects in the database.
ai: A particular object in the database, 0 ≤ i < A.
F: Total number of distinct object features.
fk: A particular object feature, 0 ≤ k < F.
Fai: Set of logical features that are true for object ai.
N: Number of nodes in an F-dimensional hypercube.
nj: A particular node in the hypercube, 0 ≤ j < N.
b j

k: Bit k in the address of node nj.
Fnj: Set of features that are true for node nj.
Anj

: Set of objects that have the same features as that of the node nj, that is, ai ∈ Anj
 ⇔ Fai = Fnj

.
A*

nj
: Set of objects that contain features of node nj, that is, ai ∈ A *

nj ⇔ Fnj ⊆ Fai.

3.1 Hypercube Object Space

Consider a database with A objects a0, a1, …, aA−1. We characterize the objects with

F features f0, f1, …, fF−1 where each feature is either true or false for a particular object

MULTI-DIMENSIONAL PUBLICATIONS MANAGEMENT SYSTEM

1543

(or equivalently, whether an object exhibits that particular feature), such as “published in
year 2002 or 2003”, “object is a master thesis”, and “keywords of object include infor-
mation retrieval,” etc. We define Fai as the set of logical features that are true for object
ai, that is, fk ∈ Fai if and only if feature fk is true for object ai. Our model graphically cor-
responds to the hypercube structure. A d-dimensional hypercube is an undirected graph
of 2d nodes, and each node has degree d. Examples of hypercubes of dimensions 1, 2, 3,
and 4 are shown in Fig. 2.

Fig. 2. Hypercubes of dimensions 1, 2, 3, and 4.

We use a logical F-dimensional hypercube, called Hypercube Object Space (HOS),

to represent the object database. The hypercube consists of N = 2F nodes n0, n1, …, nN−1,
where each node is identified by an F-bit binary number b0b1…bF−1. We associate each
node with a set of features by letting a node’s identity b0b1…bF−1 represent its features.
That is, bit bk indicates if (1 = true, 0 = false) feature fk is associated with the node. We
use Fnj to denote the set of features that are associated with node nj. Thus, a node with
binary address b j

0b j
1… b j

F−1 has the set Fnj such that fk ∈ Fnj ⇔ b j
k = 1. We populate the

object space by placing the objects into the corresponding nodes in the hypercube. Each
node nj then contains a set of objects Anj such that ai ∈ Anj ⇔ Fai = Fnj. We browse the
HOS by navigating from node to node along the edges of the hypercube. The object set
Anj is presented when visiting node nj, and in each step we can follow any one of the F
edges out of the node to explore other object sets.

The definition of a hypercube states that two nodes are linked with an edge if and
only if their binary addresses differ in precisely one bit [12, section 3.1.1]. Thus travers-
ing an edge directly translates to toggling the true/false state of a logical feature. Al-
though visualization of a high dimensional hypercube is difficult, the features of the hy-
percube make a flat representation of the navigational interface possible, such as that
shown in Fig. 3. The currently visiting node is presented by the on/off state of the list of
features. The figure shows that the current node has feature 1 being true while the other
features false. In this interface, we navigate to the next node by checking or unchecking
any one of the F features, which corresponds to traversing over one of the F edges linked
to the current node.

3.2 Object Aggregation

We introduce an object aggregation A*nj that is the set of objects containing features
of node nj; that is, A*nj

 = ∪x Anx
, where x is such that bx

k ≥ bj
k for all 0 ≤ k < F. In terms of

object features, the aggregation can alternatively be defined as follows: ai ∈ A*nj ⇔ Fnj ⊆
Fai. The object aggregation is useful for object retrieval − it alleviates the need to fully
specify an object’s characteristics. Specifying a subset of features will return a set of

TSUNG-YUAN LIU AND YUH-JZER JOUNG

1544

Feature 0

Feature 1

A=...

Feature (F −2)

Feature (F −1)
Fig. 3. Navigation interface in a hypercube object space.

Feature 0 (0/6)

Feature 1 (0/54)

Feature 2 (3/7)

Feature 3 (0/4)

Feature 5 (1/8)

Feature 4 (0/3)

|A|=1, |A*|=28

Fig. 4. Navigation interface in a 6-dimensional hypercube object space with 54 objects.

objects containing those required. The size of the returned set |A*nj| decreases with in-
creasing specificity of nj (that is, Σib j

i).
An example browsing interface with addition of the aggregation is shown in Fig. 4.

The figure shows a 6-dimensional HOS with 54 objects. Conceptually, a user is at a node
of the hypercube object space in each iteration, where the current node is reflected by the
on-off state of the features as before. The object sets Anc and A*nc for the currently visit-
ing node nc are displayed. In addition, the sizes of the object sets Anj and A*nj for the
node nj that is to be navigated when selecting one of the features are shown next to that
feature. For example, the figure shows that the current node nc has feature 1 being true,
while the rest of the five features being false. There is exactly one object (|Anc| = 1) with
this characteristic, while there are 28 objects (|A*nc| = 28) in total that have feature 1 be-
ing true. The information (3/7) next to feature 2 indicates that there are 7 objects in our
database with features 1 and 2, and among them, 3 objects have exactly the two features
being true but the rest of the features being false. Similarly, the information (0/4) next to
feature 3 tells us that if the feature is selected, then we are expected to see a total of 4
objects in our database that have features 1 and 3, but all of the 4 objects have some oth-
er features with them (as there is no object having just features 1 and 3).

Intuitively, the document aggregation A*nj is the set of documents navigable if we
are only allowed to change the state of logical properties from false to true. Thus, as we
specify more and more logical properties, we narrow down the browsing region, with
each navigated document set a subset of the previous navigated set. A user thus browses
the database iteratively by specifying a document property (asserting the property to be
true) in each iteration. Our browsing scheme can be further refined by hiding properties
that leads to nodes with |A*| = 0. This allows us to choose only relevant sets of document
properties pertaining to the current document database.

We note that the browsing methodology proposed can achieve the same effect as
concept lattice browsing from prior researches. Essentially, the “more specific”, “cur-
rent” and “more general” browsing features in concept lattice [3] are united into the sin-

MULTI-DIMENSIONAL PUBLICATIONS MANAGEMENT SYSTEM

1545

gle interface of our scheme, and the document sets stored in vertices of the concept lat-
tice browsing correspond to the document set A* in our multi-dimensional browsing.

3.3 Multi-Dimensional Browsing

The multi-dimensional browsing interface we propose is shown in Fig. 5. Every at-
tribute in every document stored in the system is summarized and displayed in a familiar
hierarchical style. We refer to this structure as a concept hierarchy tree. The number in
brackets before an attribute gives the number of documents containing that attribute (plus
the attributes selected so far).2 This summary offers a quick overview of the scope and
amount of stored contents available in the system.

(7513) Author

(7541) Keywords

(1492) P2P

(1833) Network

(915) Information Management

(...)

(1297) 2002

(...)

(7487) Publication Date

(5985) Publication Place

(217) June

(235) May

(196) April

(135) March

(256) February

(258) January

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

(7541) Distributed Publications Management System

(0) April

(213) Author

(213) Keywords

(83) P2P

(85) Network

(47) Information Management

(...)

(7487) Publication Date

(1297) 2002

(0) May
+

(0) March
(0) February
(0) January

(...)

(115) Publication Place

June

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

(7541) Distributed Publications Management System

Fig. 5. An example of concept hierarchy tree with object counts. The right one shows the result

after selecting publication date 2002/June in the left.

Although similar in view to a conventional directory tree, the user interface interac-
tion is radically different. The user browses the stored contents by selecting and de-se-
lecting object features in the concept hierarchy tree. For example, say we are looking for
papers published in June 2002, we simply check the feature 2002/June. Note that with
our object summarization feature, we already know that there are 217 such papers before
making the selection.

Similar to a conventional file management system, the selected objects (synony-
mous to files in a directory) are shown in a contents panel in list, icon or thumbnail view
(not shown). Our system differs in that the user can opt to select or de-select any number
of features in any dimension, and in any order at will. The effect of the selection is that it

2 More precisely, it is the number of documents that will be in the browsing pool after selecting that attribute.

This number is |A*
nj| for the to be visited node nj. Also note that in the example shown in Fig. 9, a document

may not have all the necessary attributes. For example, among the 7,541 documents, only 7,513 of them have
an author attribute.

TSUNG-YUAN LIU AND YUH-JZER JOUNG

1546

allows a user to browse different sections of the stored database, or in view of the HOS a
node in that space. This truly free and multi-dimensional browsing capability lured us to
coin the term ad hoc browsing in our project. This term reflects on the end-user’s per-
spective better than the theoretical term, multi-dimensional browsing, and is used through-
out the user interface that is shown in the following section.

The right one in Fig. 5 shows the resulting concept hierarchy tree after we have se-
lected the feature 2002/June in the left. Examining the concept hierarchy tree we see that
the object counts next to each feature have been updated − they are filtered by the current
object selection. The 83 next to the feature P2P means that there are 83 papers on P2P
published in 2002/June. Thus, even if we are not looking for peer-to-peer papers in par-
ticular, we can still learn the scope and amount of papers available in the sea of 217 pub-
lications, which could be useful. Additionally, we can choose to hide features that lead to
nodes with A* = 0. This allows us to choose only relevant sets of object features pertain-
ing to the current object database. For example, since a paper can be published at most
once, no paper can contain both the features 2002/May and 2002/June. This is reflected
in the figure by an object count of zero next to 2002/May. Concepts that are irrelevant
such as 2002/May in this case are conveniently compressed as shown in the figure, and
can be completely removed from the interface.

A minor benefit of our user interaction is the close correlation with traditional hier-
archical organizations. In fact, with slight modifications − allowing a user to select one
concept only, and do not sum document sets from child nodes for a parent node − our
system can be used like a normal file system. This can be beneficial for a smooth transi-
tion, in that a backward compatibility mode can be provided for newcomers.

3.4 Data Structure and Algorithm

The data structure used to implement multi-dimensional browsing is as follows:

• Each concept (feature) ci in the concept hierarchy tree is an object that contains a ref-
erence to its parent concept and references to its child concepts.

• Each concept ci also contains a hash set A*ci that stores the set of objects that contain ci.
• A hash set Sc is used to store the currently selected set of concepts.
• A hash set Sa is used to store the currently selected set of objects.

In the initialization step, the set A*ci for each concept ci in the concept hierarchy tree
is computed, and Sc and Sa are set to the empty set and all objects set respectively. At the
end of the initialization step, the concept hierarchy tree along with the object counts (size
of A*ci) is displayed for user navigation.

In the multi-dimensional browsing stage, whenever a user selects a concept cj from
the concept hierarchy tree, that concept is added to Sc and the set Sa is intersected with
the set of objects A*cj that contain the concept cj. If a concept cj is de-selected, that con-
cept is removed from S c and the set S a is recomputed from A*ci for all ci ∈ Sc. Whenever
the set Sa changes, each visible concept node object in the concept hierarchy tree is re-
drawn to reflect the change in object count. The intersection size between the selected
object set Sa and the object set in the concept node (A*ci) is displayed next to the tree node,
and nodes that have a zero intersection size are compressed (by setting the node’s row
height to a small value).

MULTI-DIMENSIONAL PUBLICATIONS MANAGEMENT SYSTEM

1547

3.5 Complexity Analysis

In this subsection we analyze the time complexity required in order to achieve the
interface interaction as described. We list the notations used in our analysis:

N: The number of objects stored in the system.
C: Total number of concepts.
s: (= |S c|): The size of the currently selected set of concepts.
â: the depth of the concept hierarchy tree.
ĉ: the maximum number of concepts an object can contain.

In the initialization step, we scan the concepts that an object contains and place the

reference of the object under the appropriate concept nodes of the concept hierarchy tree.
The hierarchy requires us to place the object under the concept node’s object set and all
parent concepts’ object sets. With the (hash) data container proposed, such operations
require O(â) time for each concept an object contains. Processing all concepts of an ob-
ject thus requires O(ĉâ) time, and the total time complexity for initialization is O(Nĉâ).
In practical cases, ĉ and â are much smaller than C, so the time complexity for initializa-
tion is loosely bounded by O(NC). Object insertions, deletions and updates after initiali-
zation all have cost O(ĉâ), which is O(C) and much better in real cases. Concept modifi-
cations cost Nâ at worst, which is O(N) in practice.

The set Sa is calculated from A*ci for all ci ∈ Sc, and thus requires worst case time
complexity O(sN). Updating Sc is a trivial O(1) operation. To display the object counts
next to the concepts in the concept hierarchy tree, we need to calculate the intersection
count between the currently selected object set and the object set for that concept, which
is an O(N) time operation for each node. However, since only the object counts fall with-
in the currently viewable region in the interface need to be calculated, given a fixed
bounded screen size, the time complexity to calculate the counts is only O(N). Even if
irrelevant concepts are compressed, the “hidden” concepts still occupy finite space, and
thus for any fixed view region, the time complexity required is still O(N). As the user
scrolls the viewable region or expands contracted nodes, the pending counts are calcu-
lated interactively on demand. The total time complexity for the multi-dimensional
browsing action is thus only O(sN) and, with the small s expected in practical usage, the
complexity reduces to O(N).

More efficient data structures and algorithms, perhaps those from that of data cube
researches [13-15], will be beneficial in future work.

3.6 Feature Extensions

We note that the features in multi-dimensional browsing are generic, and thus multi-

dimensional browsing can be easily complemented by other search techniques, such as
full-text search or search by similarity. The resultant object set from other search tech-
niques can be regarded as another “feature”, and is fed back into the multi-dimensional
browsing interaction to obtain a quantitative/qualitative overview and for further iterative
interactions. Multiple resultant object sets from the extended searches will result in addi-
tional feature nodes displayed in the concept hierarchy tree, and these features are avail-

TSUNG-YUAN LIU AND YUH-JZER JOUNG

1548

able to the user for further multi-dimensional browsing. We see that multi-dimensional
browsing is indeed unlimited in terms of the number and nature of dimensions/features to
browse against.

4. SYSTEM IMPLEMENTATION

4.1 Overview

A multi-dimensional publications management system with the browsing interactions
described is implemented over a cross-platform, peer-to-peer architecture. The design
choice of this system architecture is to reflect a typical decentralized publications man-
agement system within a mid-size organization.3 The peers are interconnected by some
communications medium, and have the ability to communicate with each other via mes-
sage passing. They can be partitioned into different groups based on, say, their interests
or organizational structure. Each peer can be in several groups, and for each group it
maintains a list of peers within the group for communication. Optional rendezvous nodes
may be employed to assist peer and group discovery.

Each peer stores some publications and publishes the index to other peers. Collect-
ing the indices allows a user to browse documents that are physically stored on distrib-
uted machines off-line. Actual file contents are downloaded on demand by the user, and
document updates are sent asynchronously as inter-server gossips.

Each publication contains a number of multi-dimensional attributes, and has possi-
bly one or more content formats − the actual informational content of the document in a
digital format. The document attributes may be automatically deduced from the docu-
ment contents by automatic text analysis using techniques such as natural language
processing [16], or managed manually. Manual management is sometimes desirable as
proper administration of document attributes can filter out irrelevant information accu-
rately and quickly. Although it costs more than automatic text processing, it is justified
for our purpose since the frequency of document retrieval is expected to be much more
than that of document insertion or modification in a multi-user environment.

4.2 Graphical User Interface

The main user interface, shown in Fig. 6, consists of action controls (menu and tool
bar) and a tabbed pane. Each tab (except for the first, which show messages useful for
debugging) in the tabbed pane corresponds to a group that the user has joined or created.
Information about the peers of a group and the last interaction with the peers is tabulated
in the tab panel. The user can aid peer discovery by informing the system of known peers,
or requesting the system to perform a bandwidth-consuming flooding discovery. There is
also an option to disable data synchronization within a group to conserve bandwidth. Dis-
abling data synchronization is not desired if there are pending document modifications
not yet distributed to remote peers, as this will raise the likelihood of conflicting updates.

3 For small organizations, a centralized server would suffice to manage the publications, while for large organi-
zations that involve thousands of peers, a more deliberate design in the peer-to-peer architecture may be
needed to facilitate a more efficient communication and peer management within the network.

MULTI-DIMENSIONAL PUBLICATIONS MANAGEMENT SYSTEM

1549

Fig. 6. Main frame of the system.

When “View Documents” is clicked, a snapshot of the current document indices is

taken and the main document browsing frame is displayed. A user is free to open multi-
ple browsing frames to browse documents in different groups simultaneously. A screen-
shot of the document browse frame is shown in Fig. 7. It consists of a toolbar and a
tabbed pane with two tabs, offering the ad hoc browsing and the document set search
features respectively. The ad hoc browsing tab consists of three panels: The concept hi-
erarchy tree on the left that shows all the concepts contained in all available documents.
The user browses and selects the desired set of documents as that described in section 3.3.
The current selected set of documents is listed in the top right panel, and clicking on a

Fig. 7. Ad hoc browsing user interface.

TSUNG-YUAN LIU AND YUH-JZER JOUNG

1550

document reveals its details in the bottom right panel. Document contents and URL
fields can be clicked on in the bottom right document panel to bring up a browser.

A screenshot of the document set browsing user interface is shown in Fig. 8. The
top half portion for document set selection allows a user to select and combine arbitrary
sets of documents with graphical visualization. It consists of four functional panels: (1)
tree panel that consists of a concept hierarchy tree to be browsed and selected; (2) selec-
tion panel that shows the currently selected sets of documents; (3) operations panel that
allows a user to specify which set operation to perform, along with a graphical display of
the selected set operation underneath the radio button; and (4) saved query panel that
allows a user to save the current set operation result for further manipulations of com-
pound sets, thus offering the user full expressivity of Boolean logic selections.

The lower half lists the documents currently selected. Clicking on a document re-
veals its details in the pop-up bottom right panel (not shown in the figure).

As an example, to browse technical reports that are published in either 1993 or 1994,
we first drag the concepts year/1993 and year/1994 from the concept hierarchy tree and
drop these selections onto the selection panel. The operations panel will list the available
set operation pertaining to our selection. In this example, the two selected document sets
are disjoint, so operations such as set intersection and subtraction will be appropriately
dimmed. We inform the system to perform the union operation on the document sets by
selecting the A OR B radio button in the operations panel. After saving the “1993 or
1994” query for further manipulation, we then drag the concept type/techreport and in-
form the system that we wish to perform an intersection (A AND B) operation. The result
(shown in Fig. 8) is then all the technical reports that are published in 1993 or 1994.

Fig. 8. Document set browsing user interface.

MULTI-DIMENSIONAL PUBLICATIONS MANAGEMENT SYSTEM

1551

Apart from allowing a user to select any arbitrary set of documents based on the
concepts they contain, it is worth to note that this interactive interface also allows a user
to visualize the correlation between any two document sets. Specifically, the graphical
drawing allows one to see the proportion of the overlap between two sets of documents,
or whether a set completely embodies another. This knowledge is nontrivial to achieve in
a conventional document management system.

The user can also freely contribute new documents or edit any document stored on
the system (subject to security checks). Our implementation features direct importing of
BibTeX bibliography database files. The user can select one or more BibTeX file for
parsing, and the parsed BibTeX entries will be presented for further editing and refine-
ment.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have pointed out the inadequacies of the conventional hierarchical
organization in handling multi-dimensional objects such as publications. The rigid hier-
archical organization limits a user to a small number of navigable paths, and ambiguities
arise on the preferred location of an object. Prior research on enhanced browsing or in-
formation visualization suffers from the curse of dimensionality and is limited by the
interaction usability and/or the computational efforts required.

The multi-dimensional browsing proposed in this paper navigates in a hypercube
object space using an integrated, powerful, yet simple interface. The entire navigation
control is displayed as one concept hierarchy tree, offering the user full control of the
navigation process without getting disoriented, and at the same time requires low brows-
ing as well as low data maintenance computational cost. The browsing methodology pro-
posed also allows the user to begin the navigation process starting with any object set,
thus enabling simple integration with other research efforts.

We have also prototyped a cross-platform, peer-to-peer architecture and modular
implementation in the Java language as proof-of-concept and performed user evaluation.
Preliminary user experience of the browsing methodology is positive, and our system
loaded with thousands of bibliographical records and dimensions offers adequate per-
formance on a moderate PC.

Future work will focus on production quality implementation with better crafted in-
terfaces, security, and integration with researches from information retrieval and data
mining. Moreover, we are planning a more comprehensive user experience study for this
multi-dimensional publications management system. Interested readers may also refer to
[17] for a related evaluation study of multi-dimensional browsing that additionally takes
context into account.

REFERENCES

1. S. Jul and G. W. Furnas, “Navigation in electronic worlds: A CHI 97 workshop,”
ACM SIGCHI Bulletin, Vol. 29, 1997, pp. 44-49.

2. L. B. Doyle, “Semantic road maps for literature searchers,” Journal of the ACM, Vol.

TSUNG-YUAN LIU AND YUH-JZER JOUNG

1552

8, 1961, pp. 553-578.
3. R. Godin, J. Gecsei, and C. Pichet, “Design of a browsing interface for information

retrieval,” in Proceedings of the 12th ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, 1989, pp. 32-39.

4. C. Lindig, “Concept-based component retrieval,” Working Notes of the IJCAI-95
Workshop: Formal Approaches to the Reuse of Plans, Proofs, and Programs, 1995,
pp. 21-25.

5. M. Hearst, A. Elliott, J. English, R. Sinha, K. Swearingen, and K. P. Yee, “Finding
the flow in web site search,” Communications of the ACM, Vol. 45, 2002, pp. 42-49.

6. K. P. Yee, K. Swearingen, K. Li, and M. Hearst, “Faceted metadata for image search
and browsing,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 2003, pp. 401-408.

7. IBM Corporation, IBM Lotus Domino Document Manager, http://www-01.ibm.com/
software/lotus/products/dominodocumentmgr/, accessed 2008.

8. Hyland Software, Inc., Enterprise content management – Integrated Document Man-
agement – OnBase by Hyland Software, http://www.onbase.com/, accessed 2006.

9. R. Allen, “White paper: Document management systems survey,” Technical Report,
Information Technology at Johns Hopkins, 2002, http://www.it.jhu.edu/nts/status/
dmwp.pdf.

10. W. Pohs, G. Pinder, C. Dougherty, and M. White. “The lotus knowledge discovery
system: Tools and experiences,” IBM Systems Journal, Vol. 40, 2001, pp. 956-966.

11. R. Grutter and K. Stanoevska-Slabeva, “Document, communication and operating
system standards: A survey on compound document standards, document manage-
ment systems, and document database systems,” Technical Report, Institute for In-
formation Management, University of St. Gallen, 1997.

12. F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes, Morgan Kaufmann Publishers, San Francisco, 1991.

13. S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrish-
nan, and S. Sarawagi, “On the computation of multidimensional aggregates,” in Pro-
ceedings of the 22nd International Conference on Very Large Data Bases, 1996, pp.
506-521.

14. T. Johnson, “Performance measurements of compressed bitmap indices,” in Pro-
ceedings of the 25th International Conference on Very Large Data Bases, 1999, pp.
278-289.

15. M. Riedewald, D. Agrawal, and A. E. Abbadi, “Flexible data cubes for online aggre-
gation,” in Proceedings of the 8th International Conference on Database Theory, Vol.
1973, 2001, pp. 159-173.

16. C. Faloutsos and D. W. Oard, “A survey of information retrieval and filtering meth-
ods,” Technical Report, No. CS-TR-3514, University of Maryland, College Park,
U.S.A., 1995.

17. L. L. Wu, Y. L. Chuang, and Y. J. Joung, “Contextual multi-dimensional browsing,”
Computers in Human Behavior, Vol. 24, 2008, pp. 2873-2888.

MULTI-DIMENSIONAL PUBLICATIONS MANAGEMENT SYSTEM

1553

Tsung-Yuan Liu (劉宗原) received his B.S. in Electrical
Engineering from the University of the Witwatersrand, R.S.A.,
and M.B.A. from National Taiwan University. He is currently
pursuing a Ph.D. from the Institute of Computer Science and
Engineering at the National Chiao Tung University. His research
interests include Internet technologies, information hiding, and
artificial intelligence.

Yuh-Jzer Joung (莊裕澤) received his B.S. in Electrical
Engineering from the National Taiwan University in 1984, and
his M.S. and Ph.D. in Computer Science from the State Univer-
sity of New York at Stony Brook in 1988 and 1992, respectively.
He is currently a Professor at the Department of Information
Management in the National Taiwan University, where he has
been a Faculty member since 1992. From 1999 to 2000, he was a
visiting scientist at the Lab for Computer Science, Massachusetts
Institute of Technology. He was the Chair of his Department
from 2001 to 2005. His main research interests are in the area of

distributed computing, with specific interests in multiparty interaction, fairness, (group)
mutual exclusion, ad hoc and peer-to-peer computing, and personal data management.

