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摘要 

在本文中，我們提出一個能夠自動偵測 LCD 面板上四種不均勻(Mura)瑕疵型

態的演算法。這四種瑕疵是分別是群聚型瑕疵、垂直塊狀瑕疵、刮痕狀瑕疵、以

及漏光瑕疵。要偵測群聚型瑕疵，我們使用了 Laplacian of Gaussian (LOG)濾波器。

要偵測垂直塊狀型瑕疵，我們檢查原始影像一維投影的曲率變動。要偵測刮痕狀

瑕疵，我們設計了一個頻率域上的濾波器來偵測特定的頻率成分。要偵測漏光瑕

疵則是利用影像鏡面的方式並且採用偵測與群聚狀瑕疵相同的 LOG 濾波器方法。

這四種不均勻的瑕疵偵測方式被整合成一個有效系統。實驗的結果證明這些演算

法的確可以很有效率地偵測出 LCD 面板上的這四種 Mura 瑕疵。 
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Abstract 

 
In this thesis, we propose an automatic inspection system, which can 

automatically detect four types of Muras on an LCD panel: Cluster Mural, V-band Mura, 

Rubbing Mura, and Light Leak Mura. To detect cluster Mura, the Laplacian of Gaussian 

(LOG) filter is used. To detect v-band Mura, we check the variation tendency of the 

projected 1-D intensity profile. To detect rubbing Mura, we designed a frequency mask 

to detect distinct components in the frequency domain. To detect light leak Mura, we 

apply image mirroring and adopt the same LOG filter used in detecting cluster Muras. 

All four types of Mura detection are integrated together into an efficient system. 

Simulation results demonstrate that the proposed automatic Mura detection algorithms 

can efficiently detect these four types of mura defects on LCD panels. 
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Chapter 1  Introduction 
As TFT-LCD (Thin Film Transistor Liquid Crystal Display) devices get more and 

more popular in display market, the inspection of LCD quality has been receiving 

increasing attention. So far, most inspection methods depend on the perception of 

human eyes. However, there are many disadvantages in human inspection: high labor 

power, inconsistent detection, and limitations in visual sensitivity. Hence, automatic 

inspection based on machine vision could be another option for the inspection of LCD 

panels.  

In this thesis, we propose an automatic inspection system for the inspection of 

visual defects on TFT-LCD panels. These visual defects are usually called muras in the 

literature. They are defined as visible imperfections on an active LCD display screen. A 

typical mura usually appears as a low-contrast and non-uniform region and is typically 

larger than a single pixel [1]. The causes of muras are due to the imperfection 

manufactures of various components or foreign particles within the liquid crystal. 

Several efforts have already been spent to classify these defects and to establish the 

evaluation standards [1-2]. Several detection algorithms, on the other hand, have also 

been proposed in the literature [3-8]. 

In this thesis, we focus on the detection of four types of Muras. The contents of this 

thesis are organized as follows. In Chapter 2, we introduce the background of LCD 

components, human vision system, related researches and existing Mura detection 

algorithms. In Chapter 3, we describe the inspection procedure of our Mura inspection 

system and present several Mura detection algorithms. Experiments are then presented 

in Chapter 4. Finally, in Chapter 5, we conclude our work. 
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Chapter 2 Background 
In this chapter, we’ll first introduce major LCD components and the causes of Mura 

defects. Then we will discuss the capability of human vision perception in terms of just 

noticeable difference (JND). Since some associations have already standardized Mura 

defects, we will introduce the defined Mura types and the evaluation formulae of Mura 

in these standards. Finally, we will give an overview of existing Mura detection 

algorithms. 

 

2.1 LCD components 
In this thesis, we focus on the development of detection algorithms for the 

inspection of the FOS (Front Of Screen) quality of an active matrix thin-film transistor 

liquid crystal display (AM TFT-LCD). Figure 2-1 illustrates the cross-section of an AM 

TFT-LCD. According to Y. Mori’s classification, various causes, as listed in Table 2-1, 

could produce defects. Basically, an LCD display includes two essential components: 1) 

Cell Unit and 2) Backlight Unit. In the cell unit, there are five elements: (1) liquid 

crystal, (2) thin-film-transistor (TFT) array, (3) color filters, (4) glasses and (5) polarizer. 

In general, the functionality of cell unit is to make the RGB color switching at each 

pixel controllable. On the other hand, in the backlight unit, there are four basic elements: 

(1) lamp, (2) light pipe, (3) reflective film and (4) optical film. Generally, the 

functionality of backlight unit is to produce uniform light.  
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Figure 2-1 Cross-section of an active matrix TFT-LCD 

 

2.1.1 Causes of Mura for TFT-LCD 

 

In the inspection of FOS quality, the so-called Mura defects greatly influence the 

FOS quality [1]. Mura defects are defined as these visible imperfections of the FOS 

image of a display screen in active use. In [3], Mori et al listed several causes of Mura 

defects in TFT-LCD, as shown in Table 2-1. Usually, the manufacturing performance of 

every component in the cell unit or the backlight unit will affect the appearance of Mura 

defects. A superior manufacture process will cause less Mura defects, while an inferior 

manufacture process will induce more visible Mura defects. Usually, the non-uniformity 

in various kinds of components induces different kinds of Mura defects. 

The Non-uniform gap between glasses will induce Cluster Muras while the 

non-uniformity of color filter usually causes color Muras. Wrinkled optical filters 

usually induce Light Leak Muras, and non-uniform lamp’s rays usually cause gradation 

Muras. On the other hand, a so-called “rubbing” process is usually used to achieve LCD 

alignment by reordering liquid crystal cell along a certain direction. This ‘Rubbing 

process’ may causes Rubbing Muras.  
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Table 2-1 Causes of Mura defects for TFT-LCD [3] 

Basic Unit Causes of Mura 

(1) Non-uniform gap between glasses  

(2) Non-uniform color of color filter  

(3) Non-uniform density of liquid crystal 

 

Cell unit 

(4) Non-uniform thickness of TFT array layer 

(5) Wrinkled optical filter  

(6) Non-uniform lamp’s rays 

 

Backlight unit 

(7) Warped light pipe 

 

2.1.2 Introduction of Mura Types 

 

Mura is a non-uniform brightness region in the FOS image of an LCD. There are 

several existing Mura types, such as Cluster Mura, Gradation Mura, line Mura, region 

Mura,.and so on. We will show some of the Mura type in the following figures. 

 

 
          (a)                                         (b) 

Figure 2-2 (a) A Cluster Mura and (b) microscope image of a contamination on the TFT 

array that causes a Cluster Mura. [4] 
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(a)                              (b) 

Figure 2-3 (a) A Gradation Mura (b) cross-sectional schematic illustration of backlight 

[4] 

 
Figure 2-4 Example of Mura types on TTLA LCD 

Figure 2-2 shows an example of Cluster Mura, which is a small dark spot caused by 

non-uniformity of the cell, non-uniformity of color filters, contaminations in the cell, 

and so on. Figure 2-3 (a) shows luminance gradients where the right region of the 

screen is brighter than the left region. It seems this defect is caused by non-uniformity 

of the backlight and is called a “Gradation Mura”. Figure 2-3 (b) shows the 

cross-sectional illustration of the backlight. The backlight consists of various 

components. In the backlight unit, non-uniform lamp’s ray, wrinkled optical film, and 
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warped light pipe tend to cause Gradation Muras [4]. Finally, in Figure 2-4, we show 

some examples of s Mura defects on TTLA LCD. These are the major types of muras 

that we want to detect. 

 

2.2 Human visual contrast and just 

noticeable distortion 
Traditionally, mura defects on LCD panels are to be inspected by human eyes. If 

we want to inspect mura defects with machine vision, we need to define some objective 

measures that are closely related to human’s subjective visual perception about the 

degree of mura defects. In [2], it has been indicated that the minimum perceivable 

contrasts of a defect is closely related to its size and shape. Based on this phenomenon, 

a so-called Semu value is defined to measure the degree of mura defects [2]. In this 

section, we will especially discuss the sensitivity of human visual contrast and just 

noticeable distortion (JND). 

2.2.1 Contrast Sensitivity  

Human visual perception is sensitive to the contrast of luminance. Till now, three 

types of contrast definitions have been widely used in the world. 

For a periodic pattern of symmetrical deviations, ranging from Lmin to Lmax, 

Michelson contrast is defined as 

minmax

minmax

LL
LL

CM +
−

=
. 

(1) 

When the pattern is an increment or a decrement of L∆  with respect to a uniform 

background with luminance L, Weber’s contrast is defined as 
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L
LCW

∆
=

. 
(2)

To measure the contrast sensitivity of complex images, the above two definitions 

are usually not sufficient enough. For example, if (1) or (2) is adopted to define contrast, 

the appearance of a very bright or a very dark point in the image will seriously affect 

the measure of image contrast. Moreover, it is the local luminance average, instead of 

the global luminance average, that influences human perception about image contrast  

Hence, to define contrast for complex images, Peli proposed a local band limited 

contrast measure in [14]. His definition about contrast is expressed as 

),(
),(

),(
yxLP
yxBP

yxCi
i

i=
, 

(3)

where BPi(x,y) is the bandpass image of the ith band at location (x, y), and LPi(x,y) 

contains the energy of all the subbands below the ith band at location (x, y). Several 

different modifications of this contrast definition have been used to measure contrast 

sensitivity. In [13], some psychophysical experiments had demonstrated good 

agreement with Peli’s definition based on Gabor patches. 

Contrast sensitivity can be described as a function of spatial frequency. This 

function is called contrast sensitivity function (CSF). Contrast sensitivity is defined as 

the inverse of contrast threshold, which is the minimum contrast necessary for an 

observer to detect the targets. 

In [16], Mannos and Sakrison first applied an HVS (Human Visual System) model 

to image coding. They modeled the HVS as a nonlinear point transform followed by the 

modulation transform function (MTF) of the form: 

))114.0(exp()114.0192.0(6.2)( 1.1fffH −+= . (4)

In [17], Nill proposed a new function of MTF that can be used for DCT (Discrete 

Cosine Transform) transform 
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)18.0exp()45.02.0()( fffH −+= . (5)

In [18], Ngan et al proposed another definition of MTF, which is expressed as 

)29.0exp()69.031.0()( fffH −+= . (6)

In spite of the dependence on spatial frequency, the contrast sensitivity also 

depends on temporal frequency. Therefore, the contrast sensitivity can be described as 

the combinational function of spatial frequency and temporal frequency. In [19], Kelly 

proposed a contrast sensitivity function based on spatial and temporal frequency and the 

function is formulated as 

))
3

log(3.71.6()
9.45

)2(4
exp(4),(

3
2

s

tst
tsts f

fff
ffffCSF +×

+−
=

π
π

. 

(7)

This CSF function reflects that human eyes have lower sensitivity at low and high 

spatial (temporal) frequency and higher sensitivity at medium spatial (temporal) 

frequency. 

 

2.2.2 Just-Noticeable Distortion 

The definition of just-noticeable distortion (JND) is the visibility threshold of 

distortion, below which the reconstruction errors are imperceptible [20]. As mentioned 

above, human eyes are more sensitive to luminance contrast than to absolute luminance 

value. Furthermore, the average value of background luminance will influence the 

sensitivity of human visual perception. In Weber’s law, the ratio of just noticeable 

luminance difference to stimulus’ luminance is almost constant. From the viewpoint of 

JND, we just need to detect these defects whose contrast is above this threshold.  

In [21], the JND profile of a still image is represented as a function of local signal 

properties, such as background luminance, activity of luminance changes and dominant 



 9

spatial frequency. Here, JND is defined as 

WyHxyxbgfyxmgfyxJNDS <≤<≤= 0,0))},,(()),,((max{),( 21 , (8)

where H and W denote the horizontal and vertical dimensions of the still image. f1 

represents the error visibility threshold due to texture masking and f2 represents the 

error visibility threshold due to average background luminance. mg(x, y) denotes the 

maximal weighted average of luminance gradients around the pixel at location (x, y) 

and bg(x, y) is the average background luminance around the pixel at location (x, y). 

In [22], mg(x, y) of the pixel at (x, y) is determined by calculating the weighted 

average of luminance changes around the pixel in four directions, expressed as 

}),({max),(
4,3,2,1

yxgradyxmg kk=
=

, 
(9)

and 

∑∑
= =

<≤<≤⋅+−+−=
5

1

5

1
0,0),,()3,3(

16
1),(

i j
kk WyHxyxGjyixpyxgrad

, 
(10)

where p(x, y) denotes the pixel at (x, y). These four operations, Gk(i, j) for k = 1,2,3,4 

and i, j = 1,2,3,4,5, are shown in Figure 2-5. 

 

Figure 2-5 Operators for the calculation of the weighted average of   

luminance changes along four directions. [20] 

 

The value of f1(mg(x, y)) is calculated as 

WyHxyxmgyxmgf <≤<≤×= 0,0,),()),((1 β , (11)

where the value of β is gotten from a subject test and its value is chosen to be 2/17. bg(x, 
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y) is calculated based on a weighted low-pass operator, B(i, j), i, j = 1,2,3,4,5, and is 

expressed as 

∑∑
= =

<≤<≤⋅+−+−=
5

1

5

1

0,0),,()3,3(
32
1),(

i j

WyHxjiBjyixpyxbg
 

(12)

 

Figure 2-6 The operator for the calculation of average background luminance. 

[20] 

 

The relationship of between visibility threshold and the average background bg(x, y) is 

shown in Figure 2-7 

 

 

Figure 2-7 Error visibility thresholds due to background luminance in the 

spatial domain [21]. 

JND can also be calculated on the spatial-temporal domain. The process to get this 

value is to multiply spatial JND and temporal JND, as expressed below [21]: 
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),,()),,((),,( 3 nyxJNDnyxildfnyxJND STS ⋅=− , (13)

where ild(x, y, n) is the average interframe luminance difference between the nth and 

(n-1)th frame at pixel (x, y): 

2
)1,,(),,()1,,(),,(),,( −−+−−

=
nyxbgnyxbgnyxpnyxpnyxild

 
(14)

The empirical results of f3 for all possible interframe luminance difference are 

shown in Figure 2-8. 

 

Figure 2-8 Error visibility threshold in the spatial-temporal domain, which is 

modeled as a scale factor of interframe luminance difference and 

the JND value in the spatial domain [21] 

The error visibility threshold increases when interframe luminance difference 

increases. The sensitivity of human vision decreases if the scene changes or there is a 

large temporal luminance difference. 
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2.3 Definition, evaluation and 

discrimination of Mura on LCD 
 

Recently, several efforts have been spent on the classification of defects and 

standardization of quality evaluation. For example, the Video Electronics Standards 

Association (VESA) has standardized the classification of mura defects [1], while the 

Semiconductor Equipment and Materials International (SEMI) has standardized the 

defect quantification [2]. Based on properties of human perception, other researches 

have further improved the analysis methods and proposed several detection algorithms 

[3-8]. 

 

2.3.1 Definition of Mura in VESA 

The FPDM2 (Flat Panel Display Measurements，Version 2.0) standard of VESA 

(Video Electronics Standards Association) defines Muras to be low contrast, 

non-uniform brightness regions, typically larger than a single pixel. The captured 

DUT(Display under test) image is processed by MuraTool according to Photon 

Dynamics Inc. This Mura Tool is capable of detecting multiple classes of defects, as 

specified in Table 2-2. 

In the 15 phases defined by VESA, Phases 1~5 are more obvious defects, Phase 

6~11 are less obvious defects, and Phases 12~15 are block or non-uniform defects. 

Additional Mura defect classes can be defined in the future version of this specification. 

Figure 2-9 shows some examples of Mura types.  
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(a) S-line, G-line, black and white Spot, 
bright border bloom and fill port defect 

 

(b) Rubbing line defect 

 
(c) Bright and dark region defect (d) Block defect 

Figure 2-9 Example of Mura types in VESA 

 

Different Muras have different features. Hence, a Mura detection system usually 

adopts several detection algorithms at the same time. In MuraTool, it uses 

morphological methods to segment and classify Muras, as shown in Figure 2-10. In the 

initialization step of the algorithm, edges of the DUT are detected first, and an active 

region rectangular display L(x,y) is passed to the Segmentation step of the algorithm. 

The segmentation component sequentially examines the DUT image to perform 15 

phases of detection. At each phase, a Boolean blob is generated if any potential defect is 

detected. The blob mask is in the TRUE state wherever a potential defect exists, and is 

in the FALSE state otherwise. Figure 2-11 illustrates a blob mask with a single blob. 
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Table 2-2 Defect detection phases and defect classes in FPDM2 [1] 
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Figure 2-10 Flowchart of MuraTool [1] 

 
 

 
Figure 2-11 A blob and its boundary box 

 

In the classification step, the image data masked by each blob mask are examined. 

If the average or peaks contrast of the detected region is above a contrast threshold, that 

region is classified as a defect. The contrast threshold can be manually set. In [1], the 

average contrast is defined as 
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where L(x,y) represents pixel amplitude in the defect region and B(x,y) represents the 

pixel amplitude in the background. The peak contrast is defined as 
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 (16) 

After all the processes, the MuraTool produces a defects report file, as shown in Table 

2-3. 

 

Table 2-3 Example of Mura defect file presented in LCD pixel unit 
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2.3.2 Definition of Mura in SEMI  

On the other hand, the Semiconductor Equipment and Materials International 

(SEMI) have spent a lot of efforts on the standardization of defect quantification. The 

SEMI D31-1102 standard defines Mura in terms of luminance [2]. 

Based on sensory analysis, quantitative evaluation method of Mura on liquid 

crystal displays (LCD’s) was investigated. They conducted a perception test by using 

pseudo Mura to figure out the relationship between "just noticeable differences"(JND) 

and the size of Mura. This approach intends to clarify the detection method and to 

create an automated Mura inspection process. The quality level of a Mura can be 

described as a function of area and contrast. Then they provide the evaluation standard 

‘Semu’ to analyze the level of Mura defects. 

 
Experiment 

In the experiment, pseudo Muras with different combinations of background and 

luminance are displayed on the LCD. An observer was asked to observe the pseudo 

Mura and to control the luminance of the pseudo Mura, as illustrated in Figure 2-12. 

The experiment results are shown in Figure 2-13. 

 

Figure 2-12 Illustration of SEMI Experiment [4] 
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Figure 2-13 Experiment results of SEMI experiment [4] 

 

In the experiment results, several important characteristics were observed: 

 The larger the Mura area is, the easier to perceive the Mura. In this case, the 

Cjnd is smaller.  

 The contrast of a pixel Mura must be 1.5~2 stronger to be inspect by human 

eyes. 

 There is no difference between experts and normal people in observing Mura. 

 Opposite to experts, the distinct contrast of normal people spreads over a 

larger range.  

SEMI defines the evaluation standard Semu (SEMI Mura) based on Cjnd. The 

Semu value is formulated as 

)72.097.1( 33.0 +
==

x

x

jnd

x

S

C
C
C

Semu

                                   (17) 

Cjnd : Contrast of the Just Noticeable Difference to human eyes. 

Cx : Average contrast of Mura. 
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2.3.3 Further Research on JND Contrast of Mura  

 In [8], the effect of the background luminance on the Just Noticeable Difference 

(JND) contrast of Mura was discussed. Three types of Mura, round type, line type, and 

rectangle type, were under test. The evaluation of JND contrast is tested at 9.8, 41.8 and 

97.5 cd/m2. The results showed that there is no significant difference on the JND 

contrast between 41.8cd/m2 and 97.5 cd/m2. However, the JND contrast at 9.8cd/m2 

was higher than that at the other background luminances. The result shows that human 

perception is more sensitive in the dark background for line type Mura. The following 

figure shows the evaluation result. 

 

Figure 2-14 The JND contrast of line type Mura [8] 

 

 

Figure 2-15 The JND contrast of round type and rectangle type [8] 
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Semu formula explains well how Mura strength correlates with the area of Mura 

(Sx) and the Mura contrast (Cx). However, the sensitivity of human eyes varies under 

different luminance levels. Hence, a new Semu value is proposed in [8]: 

 

(18)

where the JND is calculated as 

 
(19)

with the Mura transfer function being defined as 

 

Here, a = 1.85832, b = 0.546316, c = -0.0685062.  

With the above equations, the HVC is expressed as 

(20)

 
(21)

         
     (a)          (b) 

Figure 2-16 Comparison result between Cx and HVC [8] 
 

If the area size is fixed, the human visual contrast (HVC) will change when 

background varies. However, Cx ratio will be the same in this case. Figure 2-16 shows 

the Comparison result between Cx and HVC. In this case, Semu will have a same value, 

for all luminance levels, while the R_semu will change as the HVC changes. As a result, 

HVC is more suitable than Cx in the evaluation of Mura level. 
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2.4 Existing Mura detection 

Methods 
Some researches had proposed various methods to detect point and line Muras. In 

2004, Jong-Hwan Oh proposed the use of a directional filter bank and adaptive 

multilevel thresholding to detect Line-defects [10]. On the other hand, Woo-Seob Kim 

proposed adaptive multilevel thresholding using local block processing methods to 

detect blob-defects and point-defects [11].  

Jae Y. Lee and Suk I. Yoo proposed a modified regression diagnostics and used 

Niblack’s thresholding to detect region-Muras from TFT-LCD panel images [12]. In 

their approach, the input image of an LCD panel is divided into overlapping windows. 

Segmentation of region-Mura is performed on each window. Then, the segmentation 

results of different local regions are merged together into a single image. The merged 

image is possessed by median filtering, morphological closing, and morphological 

opening to remove noise. Finally, candidate region-Muras are extracted out and their 

Mura levels are quantified. The segmentation is completed by using modified 

regression diagnostics to roughly estimate the background region. Then, subtraction of 

the background surface from the original window image is used to find a threshold to 

obtain the binary segmentation result. Figure 2-17 shows the overall inspection 

procedure. After finding out all candidate region-Muras, they evaluated the Mura levels 

of all candidate region-Muras. They found that the Mura level claimed by human 

inspection was greater than 5.5 and they set the Mura level threshold to be 5.5. Figure 

2-18 shows the Mura levels of all candidate region-Muras. 
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Figure 2-17 Region-Mura inspection procedure in [12] (a) Input image (b) 

Extracted windows (c) Local segmentation result (d) Merged 

segmentation result. (e) Post-processed image (f) Extracted 

candidate region-Mura, whose Mura level is to be quantified 

 

Figure 2-18 Plot of Mura level and area of all candidate region Muras detected in 

[12]. Candidates claimed by human inspection are denoted by blue 

asterisk (＊) and the other candidates by red dot (．). 
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Chapter 3  Automatic Mura detection 

algorithms  

In this chapter, we will first introduce the setup pf our mura inspection system. 

Then we’ll present a set of automatic inspection algorithms, which can automatically 

detect four types of Muras on an LCD panel: Cluster Mura, V-band Mura, Rubbing 

Mura, and Light Leakage Mura. To detect Cluster Muras, the Laplacian of Gaussian 

(LOG) filter is used. A multi-resolution approach is proposed to detect Cluster Muras of 

different scales. To speed up the processing speed, this multi-resolution approach is 

actually implemented in the frequency domain. To detect V-band Muras, we check the 

variation tendency of the projected 1-D intensity profile. Then, V-band Muras are 

detected by identifying these portions of the 1-D profile where a large deviation occurs. 

To detect Rubbing Muras, we designed a frequency mask to detect distinct components 

in the frequency domain. To detect light leak Muras, we apply image mirroring over the 

boundary parts and adopt the same LOG filter that has been used in detecting Cluster 

Muras. All four types of Mura detection are integrated together in an efficient way.  

 

3.1 Inspection Procedure  

 

The inspection system is shown in Figure 3-1. It consists of three major parts: 1) 

the LCD panel under test, 2) a CCD camera, and 3) a personal computer to execute 

Mura detection algorithms. The inspection procedure is described as follows. The LCD 

panel is first placed on the equipment vertically. This panel is driven by a pattern 

generator to generate patterns of constant gray level. Then, a high-resolution digital 
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camera takes a few FOS (Front-Of-Screen) images and these FOS images are 

transmitted to the computer to be inspected by our Mura inspection algorithms. The 

CCD camera has a 14-bit dynamic range and a spatial resolution of 2048 by 2048 pixels. 

The detection flow chart of this Mura detection system is illustrated in Figure 3-1 (b). 

 

  

 

Figure 3-1. (a) Mura inspection system;(b) inspection flowchart. 

 

The inspection system hardware and the driven firmware are set up by TTLA 

(Taiwan TFT-LCD Association). After the retrieval of the FOS images of LCD panels, 

we analyze the features of the images and classify the FOS images into different types. 

According to different features of the image, we extract the Mura defects from the 

images. The thresholds of our algorithms are selected based on some experiments of 

human vision test. At the end, the detection result is compared with the original image 

to ensure to detection result is reasonable. Figure 3-2 shows the block diagram of our 

automatic Mura detection algorithms. 
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image-retrieving 
environment hardware

image-retrieving 
driven software TTLA

Mura image collection 
and analysis

Human vision 
characteristic simulation

Mura image extraction
module 

Mura image detection
module 

Human vision 
model threshold

detection
result verification 

 

Figure 3-2 Automatic Mura detection algorithms 

 

Figure 3-3 (a) Cluster Mura; (b) Vertical Band Mura; (c) Rubbing Mura; (d) Light Leak 

Mura.  

 

(d) 

(a) (b) 

(c) 
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Among various kinds of Mura defects, our Mura inspection system focuses on the 

detection of four typical types of Mura defects: Cluster Mura, vertical-band Mura 

(V-band Mura), Rubbing Mura, and light leak Mura (LL Mura). A Cluster Mura usually 

appears as a Cluster of dark or bright points in a localized area, as shown at the central 

bottom of Figure 3-3(a); V-band Mura appears as a wide, vertical stripe with different 

brightness with respect to the background, as shown in the middle of Figure 3-3(b); 

Rubbing Mura usually appears as tiled lines with a 45-degree angle spreading over a 

large region, as shown in Figure 3-3(c); and light leak Mura appears at the boundary of 

LCD panels, as shown on the top and bottom of Figure 3-3(d). 

The inspection procedure of our system is illustrated in Figure 3-4. The LCD panel 

is first driven by patterns of constant gray level. The image is transmitted to the 

computer to be processed by the detection algorithms. The detection procedure consists 

of two major tracks. In one track, the boundary of the FOS image is first padded with 

mirror images that are to be used for the detection of light-leak Muras. The image is 

then transformed into the frequency domain to detect Cluster Muras, Rubbing Muras, 

and light-leak Muras. In the other track, V-band Muras are to be detected in the spatial 

domain via a curve fitting method. The results of all these four Mura detection 

algorithms are then combined together to generate the final detection report. 
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Cluster Mura Detection; 
Light Leak Mura detection

Image Mirroring

Rubbing Mura
Detection

IFFT

V-band Mura
Detection

ThresholdingBlob analysis

Detection result

Input retrieving image

Fast Fourier Transform

 

Figure 3-4 Flowchart of Mura detection algorithms 

 

3.2 Inspection of Cluster Mura  

 

Cluster Mura usually appears as a cluster of bright or dark points in a localized area 

[13]. Generally speaking, there are two types of Cluster Mura: round-type Cluster Mura 

and line-type Cluster Mura, as shown in Figure 3-5(a) and (b). A major cause of Cluster 

Mura is due to dust or particles coming into some layers of LCD panel. Poor LCD 

manufactory process may also produce this type of defects. We started to research the 

Cluster Mura detection because the Cluster Mura is the basis of Mura and the research 

is also partial applicable to other kinds of Mura. For example, Light Leak Mura and 

Around Mura can be applying the method to detect Cluster Mura. 
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(a) Round-type Cluster Mura 

 

(c) Line-type Cluster Mura 

 

(b) Detection result of (a) 

 

(d) Detection result of (c) 

Figure 3-5. Cluster Mura 

 

In our approach, we proposed a 2-D LOG (Laplacian of Gaussian) filters The LOG 

filter to detect Cluster Muras. The LOG filter is designed to match the shapes of Cluster 

Mura, with the optimal threshold being determined based on the SEMU formula [2]. To 

detect round-type Cluster Muras, the round-type LOG filter is chosen to be  
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function with zero mean and standard deviations σx and σy, respectively. If we choose 

σx = σy = σ, then there is only one parameter to be assigned by the users. On the other 

hand, to detect a horizontal line-type Cluster Mura, the LOG filter is chosen to be 

( ) ),,;,(),( yxyyLOG yxNyxfilter σσ0rRectangula ∇=
 

(23) 

If the ratio of  is fixed, there is only one parameter left. Similarly, to 

detect a vertical line-type Mura, we can use an operator similar to (2) with ∇yy being 

replaced by ∇xx.  

Figure 3-6 shows these two types of LOG operator and Figure 3-5(c). 

 
 

yx σσ /
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Figure 3-6. (a)  Round-type LOG operator;(b) Line-type LOG operator. 

 The area size of LOG filter is proportional to the standard deviation of Gaussian 

function. The following is the threshold selection formula used in [13]. According to 

SEMU [2], the Mura area is proportional to the human sensitivity of Mura. Also, the 

contrast between background and Mura is proportion the human eye’s sensitivity.  
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Here, S means the selected Semu value and Std_dev means the standard deviation of the 

LOG. operator. The following is the SEMU formula [2]. 
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C

Semu  (25) 

Cx means the average contrast of the Mura (unit: % relative to background = 100%), Sx 

means the area of Mura (unit: mm2), Cjnd means the contrast of Mura at JND (unit: % 

relative to background = 100%). 

 

 The threshold value mentioned above will change for the LOG operators with 

different standard deviations. To formulate the LOG operation, we assume the intensity 

values of a point Mura looks like a Gaussion function. Without loss of generality, we 

assume the height of the Gaussian function to be 1. On the other hand, the Laplacian of 



 31

Gaussian (LOG) operator is the second derivative of a Gaussian function. 
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After convolution, we have 
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where the standard deviation of LOG filter is σ and the standard deviation of the 

Gaussian Mura is K×σ. 

At the center of the convolution result, we have the value 
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The result indicates that f(x,y) reaches its maximum value at k = 1. This means when 

the standard deviation of the LOG filter is the same as the standard deviation of the 

Gaussian Mura, the convolution result has the maximum output. Hence, if the filter size 

can be matched to the size of the Cluster Mura, there will be a maximum response. On 

the other hand, an unmatched LOG filter will generate a response with a lower 

magnitude. 

Let LOG std = σ and the Gaussian Mura std = σ. The maximum convolution value 
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will be:  
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Hence, the convolution result will change as the standard deviation of the LOG filter 

changes. However, ff we divide the convolution result by an appropriate normalization 

factor, the maximum convolution value may get fixed no matter how the standard 

deviation of the LOG filter changes. That is, after adding the normalization factor, we 

have   
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where the normalize factor is the value used to normalize the positive summation of the 

LOG operator to 1.  
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Figure 3-7shows the example of convolving Gaussian Mura with a normalized LOG 

filter. The Gaussian Mura which matches the size of the LOG filter will have the 

maximum response and the maximum response value is always equal to 0.6735．h, 

where h is the strength of the Gaussian Mura.  
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(c) 

Figure 3-7 example of convolving Gaussian Mura with a normalized LOG filter  

(a) a normalized LOG filter with a small σ. 

(b) a normalized LOG filter with a median σ. 

(c) a normalized LOG filter with a large σ. 

 

Figure 3-8 Example of threshold selection (a) the original pseudo Cluster Mura;  

(b) matching size LOG filter (c) convolution result (d) illustration of 

thresholding position (e) threshold result 
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The threshold of convolution result is decided by the height of the Gaussian Mura 

to be detected.  
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The convolution result is shown in the above formula. With matching filter, k will 

be 1 and the maximum response will appear in x=0 and y=0. Thus, we 0,0    == yxlet , 

the convolution result will be 28
1
σ⋅

= . We select the standard deviation smaller than 1 

to be the detected location of the convolution result. Thus, we 0,    == yxlet σ , the 

convolution result will be 4
-1

24
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σ

.The ratio the matching maximum is 

0.3894
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⋅
⋅ σσ

e , which means we can select the threshold to be 0.3894．

0.6735．h =0.2623．h. In our approach, we choose h to be 0.05, which corresponds to 

4-bit difference in the intensity values could be detected. Figure 3-8 shows an example 

of the threshold selection result. 

After thresholding, the detection result will be a binary image. Some times false 

detection appears and we need to eliminate these falsely detected results. Figure 3-13 

illustrates the example of false detection elimination based on Semu threshold. Figure 

3-13 (a) show two pseudo Gaussian Muras, one in the upper-left corner, while the other 

in the lower-right corner. Figure 3-13 (b) shows the detection result after LOG 

convolution and thresholding. We can see the false detection occurs in the lower-right 

corner. In Figure 3-13 (d)(e)(f), the detection results are grouped into different blobs. 

For each blob, we evaluate its Semu value. For this example, the results are 31.6239 and 
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12.5487 and 1.1009, respectively. Here, we set the threshold of Semu value to be 3. 

Hence, these detection results with Semu value less than 3 will be removed. The final 

detection result is then shown in Figure 3-13 (c). 

 

 

Figure 3-9 Example of Semu value thresholding. (a) original test image; (b) detection     

result; (c)final detection result after thresholding (d)(e)(f) evaluation of 

Semu value for each blob. 

 

 As mentioned before, there may be Muras of different sizes in a single LCD panel. 

It is not possible to detect all these Muras by using a single LOG filter. Hence, we 

propose the use of a bank of LOG filters of different sizes to detect Muras of different 

scales. In Figure 3-10, we shows five LOG filters of different sizes. 

 
 

Area = 2449 
Cx = 12.7787 
Semu = 12.5487

Area = 4152 
Cx = 1.1009 
Semu = 1.1994 

Area = 3801 
Cx = 30.9296 
Semu = 31.6239

threshold2 = 3 Semu 

(a) (b) (c) 

(d) (e) (f) 
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Figure 3-10 Five LOG filters of different sizes 

To detect Cluster Muras of different scales, we adopt a multi-resolution approach. 

All these convolution results are then merged in a proper way to generate the final 

results. Figure 3-11 illustrates an example for the proposed multi-resolution Cluster 

Mura detection. Figure 3-11 (a) contains 8 synthesized Muras, with radius being 5, 10, 

15, 20, 25, 30, 35, and 40, respectively. The luminance of the background is zero. For 

this example, we apply two LOG filters with σ = 10 and 30, respectively. As mentioned 

above, for each LOG filter, the convolution result will reach its maximum magnitude 

when the size of Mura matches to the size of the LOG filter. Figure 3-11 (b) shows the 

convolution result by using the LOG filter with σ = 10. It can be seen that the 

convolution result does reach its maximum magnitude (represented in red) at the Mura 

with radius 10. Figure 3-11 (c) shows a similar result when we use the LOG filter with 

σ = 30. Moreover, as mentioned before, both LOG filters are normalized to have their 

positive parts summed to 1 and negative parts summed to -1. With this normalization, 

when the intensity difference between the Mura and the surrounding background is kept 

the same, the maximum magnitude of the convolution result for different LOG filters 

will also be normalized to be the same.  

After performing multiple convolutions with LOG filters of different scales, we 

merge all convolution results by calculating at each pixel the maximum magnitude of 

all convolution results. That is, we calculate 

( ) ),....),(result),,(resultmax(,result 21 yxyxyx =  
(35) 

where resulti(x,y) denotes the convolution result at (x,y) with the use of the ith LOG 

std_dev = 1 std_dev = 2 std_dev = 3 std_dev = 4 std_dev = 5 
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filter. Figure 3-11(d) shows the final result based on (5). Figure 3-11(e)~(g) show the 

detection results of Figure 3-11 (b)~(d) by setting the threshold to be 100. As expected, 

it can be seen that the smaller LOG filter detects only small Muras, while the larger 

LOG filter detects only large Muras. However, with the proposed multi-resolution 

approach, all sizes of Mura defects can be correctly detected. 

 

Figure 3-11 Multi-resolution Cluster Mura detection 

(a) test image; (b) result by using an LOG filter with σ =10; (c) result by using an   

LOG filter with σ =30; (d) maximization of (b) and (c); (e)~(g) detection results 

of (b)~(d), respectively, with threshold =100. 

Figure 3-12 shows the multi-resolution detection result of Cluster Mura. It can be 

seen that the detection results are pretty consistent with respect to the original image.  

 

(a) 

(c) (b) (d) 

(e) (f) (g) 
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Figure 3-12 Multi-resolution detection result of Cluster Mura 

 

Even though the method proposed here is quite effective in detecting Cluster Muras, 

the execution time of spatial convolution could be a problem. In the detection of Cluster 

Muras, we need to inspect Muras of different sizes. As we increase the size of the LOG 

operator to detect Cluster Muras of larger size, the computation load of the convolution 

operation increases exponentially. To deal with this kind of problem, we convert the 

operation from spatial domain to frequency domain. In theory, convolution of two 

digital patterns in the spatial domain is equivalent to multiplication of their counterparts 

in the frequency domain. More explicitly, we have 

 

)},({)},({)},(),({ yxgyxfyxgyxf ℑ⋅ℑ=∗ℑ  (36) 

or 

)}},({)},({{),(),( 1 yxgyxfyxgyxf ℑ⋅ℑℑ=∗ −
 (37) 

)500 ,300(.)max .,(min =

)500 ,300(.)max .,(min =

)700 ,500(.)max .,(min =

)900 ,700(.)max .,(min =

)700 ,500(.)max .,(min =
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where * denotes the spatial convolution operation and ℑ{.} denotes the Fourier 

transform operation. Hence, to perform the convolution operation, we may compute the 

Fourier transforms of the original image and the LOG operator first, multiply their 

transforms together, and then perform inverse Fourier transformation over their 

multiplication product to get the final convolution result. Note that we only need to 

perform the Fourier transform of the original image once. To detect Cluster Muras of 

different sizes, we only need to multiply the Fourier transform of the original image 

with the Fourier transforms of different LOG filters. These multiplication products are 

then converted back to the spatial domain, respectively. 

Figure 3-13 illustrates an example of this process. Figure 3-13 (a) shows the FOS 

image of an LCD panel and Figure 3-13 (b) shows its Fourier transform. Here, we apply 

FFT (Fast Fourier Transform) for the computation of Fourier transform. Figure 3-13(c) 

shows the Fourier transform of a round-type LOG filter with σx = σy= σ = 1.  Figure 

3-13(d) shows the product of Figure 3-13(b) and (c). After computing the multiplication 

product, we perform inverse Fourier transform to get the corresponding convolution 

result. A threshold is then selected to detect Cluster Muras. Figure 3-13(e) shows a 

zoomed image of the red rectangle area marked in Figure 3-13(a). Figure 3-13(f) shows 

the corresponding detection result. These detected pixels are grouped into blobs. Based 

on the Semu formula [2], we further check the semu value of these detected blobs to 

determine whether these blobs are perceivable to human eyes.  
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Figure 3-13 Example of Cluster Mura detection; (a) original image; (b) FFT of the 

original image; (c) FFT of an LOG filter; (d) product of (b) and (c); (e) zoomed image 

of the original image; (f) detection result 

3.3 Inspection of Light Leak Mura  

Light Leakage Muras usually appears at the boundary regions of an LCD panel. An 

ideal LCD panel should have no visible bright area around the boundaries of the panel if 

the screen is in fully dark. However, Light Leakage may occur at the boundaries due to 

misalignment during manufacturing. The non-uniform distribution of brightness 

enhancement film in the boundary region may also produce this kind of Mura defect. 

(a) (b) 

(c) (d) 

(f) (e) 
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Figure 3-14 (a) shows an example of Light Leakage Mura. We can easily see that both 

the upper side and the bottom side of the FOS image appear brighter than the other 

regions. Figure 3-14 (b) shows the 1-D intensity profile along the red vertical line in 

Figure 3-14(a). The intensity values at both ends are much higher than that in the center. 

Figure 3-14(c) and Figure 3-14 (d) show the 1-D intensity profiles along the two red 

horizontal lines in Figure 3-14 (a). It can be seen that the intensity value across the 

center part is roughly flat, while the intensity value along the bottom boundary changes 

quite dramatically.  

 

Figure 3-14. (a) FOS image with Light Leakage Muras; (b) 1-D intensity profile 

along the vertical red line in (a); (c) 1-D intensity profile along the central horizontal 

line in (a); (d)1-D intensity profile along the bottom horizontal line in (a); (e) detection 

result. 

(a) (b) 

(c) (d) 

(e) 
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To detect Light Leakage Muras, we also adopt the aforementioned LOG filter that 

has been used in the detection of Cluster Muras. However, since Light Leakage Muras 

always occur at boundaries of the FOS image, we need to manipulate the boundary 

regions properly before we apply the LOG operator. As shown in Figure 3-15(b), above 

the top boundary of the FOS image, we pad a mirror image of that part. After the 

padding, a Light Leakage Mura appears just like a line-type Cluster Mura and we can 

simply apply a line-type LOG filter as shown in Figure 3-15(c) to detect it. The process 

would be the same as that in detecting Cluster Muras. The detection result of Figure 

3-14(a) is shown in Figure 3-14(e).  

 

 

Figure 3-15 (a) Top boundary area of Figure 3-14 (a); (b) padded on the top of (a) 

with a mirror image; (c) applied line-type LOG filter. (d) padded image 

 

(a)

(b)

(c) (d)
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3.4 Inspection of Rubbing Mura  

During the manufacturing of LCD panels, the rubbing process is a process to 

control the arrangement of liquid crystals. However, during this rubbing process, dust or 

particles may cause Rubbing Muras. Poor rubbing process or polluted rubbing cloth 

may also cause this kind of defects. Figure 3-16(a) shows a typical Rubbing Mura on 

the FOS image of an LCD panel. These rubbing lines appear along the diagonal 

direction. Because these rubbing lines appear as a periodic pattern, we may apply 

frequency-domain analysis to the extraction of Rubbing Muras. 

 

 

 

 
(a)                                (b) 

 

 

 

 

(c)                                 (d) 

 

 

(e) 

Figure 3-16. (a) FOS image with Rubbing Mura; (b) FFT of (a); (c) frequency mask; (d) 

masked frequency components; (e) detected Rubbing Mura. 
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Figure 3-16 (b) shows the FFT of the FOS image with Rubbing Mura. The center of 

Figure 3-16 (b) represents the dc component and the two axes represent the frequency 

axes along the vertical and horizontal directions. Due to the existence of Rubbing Mura, 

there appear a few bright points in Figure 3-16 (b) that correspond to the strong periodic 

components in the FOS image. In our experiments, Rubbing Muras tend to appear at the 

same frequency. With this observation, we presume the same manufacturing process 

will produce the same type of Rubbing Mura. Hence, we explicitly design a frequency 

mask as shown in Figure 3-16(c) to sift out unnecessary frequency components. 

Moreover, in the design of the frequency mask, we also preserve the 2nd and 3rd 

harmonic components. Figure 3-16 (d) shows the masked frequency contents. If we 

transform the masked frequency components back to the spatial domain via inverse FFT, 

we can get the red pattern as shown in Figure 3-16(e). This pattern does correspond to 

the Rubbing Mura in Figure 3-16(a). Hence, to detect Rubbing Muras, we may simply 

check whether there are distinct components in the masked frequency components. 

Here, we check the sum of power to detect the existence of distinct components. In 

Table 1, we show the comparison between the JND (Just Noticeable Difference) value 

and the sum of power of the masked frequency components. These subjective JND 

values are determined by professional LCD panel inspectors, who had been well trained 

to inspect the visual quality of LCD panels. A Mura with “JND-value =1.5” indicates 

that the contrast of that Mura is about 1.5 times of the JND level, subjectively. Table 1 

indicates that the JND-value of a Rubbing Mura is basically proportional to the power 

sum. As a result, we can select a threshold, shown as the red line in Table 1, to 

determine whether there is a Rubbing Mura in the FOS image of an LCD panel. Note 

that the thresholding is performed in the frequency domain and there is no need to 

convert the masked frequency components back to the spatial domain. 
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Table 4. JND value inspected by inspectors versus power sum in the masked 

frequency components 

2747462.1  L92 1.8LCD13

1761911.7LCD11

43381LCD6

41728LCD5

33492LCD4

30912LCD3

1699281.8LCD10

1553562.2LCD9

16801LCD1

18544LCD2

58281LCD7

2.4  L92  2.2-2.3

2.1

1.8

JND value by 
inspector

Sum of power in 
frequency domain

LCD number

129056LCD8

195643LCD12

275137LCD14
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2.1

1.8

JND value by 
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LCD number

129056LCD8

195643LCD12

275137LCD14

Threshold

 
 

 

3.5 Inspection of V-band Mura  

V-band Mura appears as a wide, vertical stripe with different brightness with 

respect to the background. The cause of V-band Mura usually comes from non-uniform 

thickness of components, such as non-uniform thickness of glasses in the cell unit. This 

type of Mura spreads over a large area. Hence, it is difficult to detect V-band Muras 

based simply on local operator. To detect V-band Mura, we check the variation tendency 

of the projected 1-D intensity profile. Figure 3-17 (a) shows an FOS image. We first 

vertically project the 2-D image data into a 1-D intensity profile, shown as the blue 

dotted line in Figure 3-17 (b). In the projected profile, significant intensity deviations 
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indicate the existence of V-band Muras. To detect large intensity deviation, we analyze 

the variation tendency of the projected profile by checking the profile curvature. Here, 

we adopt the zero-crossing points on the profile curvature to indicate the turning points 

of variation tendency. Based on these zero-crossing points, a 2nd-order curve fitting is 

performed to generate a smooth approximation of the projected profile, shown as the 

cyan line in Figure 3-17 (b). Figure 3-17(c) shows the difference between the smooth 

approximating profile and the original profile. The difference is smoothed by Gaussian 

filter to suppress noise. Red points indicate local minimums while green points indicate 

local maximums. To determine whether there is a visible V-band Mura, we calculate at 

each local extreme the intensity difference between that extreme and its adjacent local 

extremes, indicated as the red line in Figure 3-17(c). This intensity difference indicates 

how serious a local deviation is, as indicated in Figure 3-17 (d). If the difference is 

above a pre-selected threshold, that local deviation is detected as a V-band Mura. In our 

experiments, the threshold is set to be 0.015, empirically. Figure 3-17(e) shows the final 

detection result, with the cyan box indicating the area of the detected V-band Mura.  
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Figure 3-17 Example of V-band Mura detection (a) original FOS image; (b) projected 

1-D profile, zero-crossing points, and fitted curve; (c) difference between the 1-D 

projection and the fitted curve; (d) illustration of intensity deviation;(e) detection result. 

   

 
 

Picture capture environment of Light Leakage Mura 
 

Light Leakage Muras appear brighter than the surrounding region. If the LCD 

displays high luminance, the leakage light might not be visible. Hence, Light Leakage 

Muras should be observed when the LCD panel is displayed in low luminance. In our 

inspection procedure, the pattern generator normally displays L92 luminance and  

(e) 

(c) (d) 

(b) (a) 
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most defects can be observed under this luminance situation, including bright Mura and 

dark Mura. However, L92 is too bright for the inspection of Light Leakage Muras. In 

this case, L0 is a better choice. Figure 3-18 shows two images under different test 

situations. Figure 3.5.8 (a) shows the LCD image captured in L92, while Figure 3-18 (b) 

shows the same LCD image captured in L0. Figure 3-18 (c) shows the 1-D vertical 

projection profile in L92, while Figure 3-18 (d) shows the 1-D vertical projection 

profile in L0. We can easily see that the peak in Figure 3-18 (d) is much higher than that 

in Figure 3-18 (d). Hence, it is much easier to detect Light Leak Muras based on Figure 

3-18(d). Thus, in our inspection procedure, Light Leakage Muras are to be inspected 

under L0. 

 

 
Figure 3-18 Different test luminance of Light Leak Mura. (a) Captured image in L92; (b) 
Capture imaged in L0; (c) vertical projection profile of (a); (d) vertical projection 
profile of (b). 

(c)  

(a)  (b)  

(d)  

Small difference
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Chapter 4 Experimental Results 

4.1 Detection results of Light Leak Muras  

In this section, Light Leak Mura detection results are shown, together with their 

original images. 

 

LCD panel NO.1 

 
 
 

LCD panel NO.2 
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LCD panel NO.3 

 
 
 

LCD panel NO.4 

 

 
 

LCD panel NO.5 
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LCD panel NO.6 

 
 
 

LCD panel NO.7 

 
 
 

LCD panel NO.8 
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LCD panel NO.9 

 

Figure 4-1 Light Leak Mura detection result; threshold = 0.02, std of LOG =6 

Left: original images; 

Right: detection results. 

 

4.2 Detection Results of Rubbing Muras  

In this section, Rubbing Mura detection results are shown, together with their original 
images 
. 

LCD panel NO.1 
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LCD panel NO.2 

 
 
 

LCD panel NO.3 

 
 
 

LCD panel NO.4 
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LCD panel NO.5 

 
 
 

LCD panel NO.6 

 
 
 

LCD panel NO.7 
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LCD panel NO.8 

 
 
 

LCD panel NO.9 

 
Figure 4-2 Rubbing detection result; threshold = 0.002 

Left: original images; 

Right: detection results 
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4.3 Detection results of V_band Muras  

In this section, V-band Mura detection results are shown, together with their original 
images. 

LCD panel NO.1 

 
 
 

LCD panel NO.2 

 
 
 

LCD panel NO.3 
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LCD panel NO.4 

 
 
 

LCD panel NO.5 

 
 
 

LCD panel NO.6 
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LCD panel NO.7 

 
 
 

LCD panel NO.8 

 

Figure 4-3 Vband detection result; threshold = 0.015, std of LOG = 5 

Left: original images; 

Right: detection results 
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  Conclusions 
In this paper an automatic Mura defection system is proposed. This system can 

detect four types of Mura defects. 

1. To detect cluster Muras, the Laplacian of Gaussian (LOG) filter is used. The Cluster 

Mura is detected by multi-resolution LOG filters. A multi-resolution approach is 

proposed to detect cluster Muras of different scales.  

2. To detect light leak Mura, we apply image mirroring and adopt the same LOG filter 

that has been used in detecting cluster Muras. 

3. To detect v-band Mura, we check the variation tendency of the projected 1-D 

intensity profile. The curve fitting method is used and the sample points are the zero 

crossing points detected by a 1-D LOG filter. 

4. To detect rubbing Mura, we designed a frequency mask to detect distinct components 

in the frequency domain. The summation power of distinct components within the 

masked frequency domain is then calculated to determine whether a rubbing Mura 

exists.  

All four types of Mura detection algorithms have been integrated together in an 

efficient way. Simulation results have demonstrated that the proposed Mura detection 

algorithms are very reliable in automatically detecting Mura defects. 
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