TFT i% % 7% & + 5 Mura B f # ]

Automatic Mura Defect Detection on

TFT Liquid Crystal Display Panels



TFT 7% &5 &g o1 & = e Mura 3o p & 1 /B

Automatic Mura Defect Detection on TFT Liquid
Crystal Display Panels

Foyodr 32 Student: Li-Te Fang
iR 2 FA Advisor: Sheng-Jyh Wang

A Thesis
Submitted to the Institute of Electronics
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of Requirements
for the Degree of
Master of Science
in
Electronics Engineering
September 2005

Hsinchu, Taiwan, Republic of China

PERARY e g

il



EHL#)

MEHE TR LY AL *F(FR) T
K BER% YR I B2k o

l.ofF & o% k&

ARG FOMARLGY 2 TR BT ARRRTPELR § P RT
RSN ER IS SRR S RV NG ES 5% s R
%mé&ﬁﬂﬁiﬁ%%i@@ﬁ#§ﬁ§1§$%o

R R A ERITEMA B Y Bl L - o R THEES
-&TQ# A\E’?? °(§F ;I.Fl Q%’fu_,: )

2.0k & 0% k&

PSR FioR Fir ol 2 RS <’] o ik ﬂx,}",—:%g;’ﬁ AR RS
FHEA] o R APRETE 2T VE QB 52 %ﬁﬁ‘ﬁﬂ"}? AR =1 SRR

bﬁnk&xﬁﬁﬁiﬁ%’i&k&ﬁkﬁﬁ°

R

Pyt E L g5
(BETH) (G 8H )
P AR ¥ i p

= 5 v, 8 2 s T
-*%ﬁ%%'giﬁﬁlﬁﬁﬁﬁﬁér\éa\

B
20 BAEE - B H 0 THAG Y Add (P R R R F LRGP E T
3 RgEHEF N NRSS £ 40 10 P F R A F TR L R § ORE g

4. AR EpET IR RET 85419 S RSB F ¥ T12 HLa el




7

wrrRif g Ad
L AR T %
i
FEE LT

xR

E2 ¥ A

* I i
i R

1 ¥ A
R

R ; 7.
PO = 4

e g ¥
PEARY e E - 8 L4 op

v

wht



TFT % & 887+ & e Mura B p # 1§ g

RFIEE h RIFLATRLIT

&

ke ¥ oo AP - B4 AR BIRILCD % w7 53 (Mura) Bop 4
o i B F o ipw AR A4 WA FERAIR R e HRBR ~ SRR R 1Y
E OB RTER o £ R B AR 3V M %1 Laplacian of Gaussian (LOG)jg it B ©
£ R HR AR 0 AP RE R G R R o & RIDIAGRK
Bope 0 ANPEFET - B gk B R RIE R R A o & 0 RIR R
BRI E A P 2 T2 R W REERRBRAR R DLOG ik F 2
B Y R GRS SR L A - Bk i FHROEEED SR FE

F AT v g 2 F e Rl 1 LCD & fF o fhig e f& Mura Bop e



Automatic Mura Defect Detection on TFT Liquid

Crystal Display Panels

Student: Li-Te Fang Advisor: Dr. Sheng-Jyh Wang

Institute of Electronics
National Chiao Tung University

Abstract

In this thesis, we propose an automatic inspection system, which can
automatically detect four types of Muras on an LCD panel: Cluster Mural, V-band Mura,
Rubbing Mura, and Light Leak Mura..To detect ¢luster Mura, the Laplacian of Gaussian
(LOG) filter is used. To detect v=band Mura, we:check the variation tendency of the
projected 1-D intensity profile. To detect rubbing Mura, we designed a frequency mask
to detect distinct components in the frequency domain. To detect light leak Mura, we
apply image mirroring and adopt the same LOG filter used in detecting cluster Muras.
All four types of Mura detection are integrated together into an efficient system.
Simulation results demonstrate that the proposed automatic Mura detection algorithms

can efficiently detect these four types of mura defects on LCD panels.
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Chapter 1 Introduction

As TFT-LCD (Thin Film Transistor Liquid Crystal Display) devices get more and
more popular in display market, the inspection of LCD quality has been receiving
increasing attention. So far, most inspection methods depend on the perception of
human eyes. However, there are many disadvantages in human inspection: high labor
power, inconsistent detection, and limitations in visual sensitivity. Hence, automatic
inspection based on machine vision could be another option for the inspection of LCD
panels.

In this thesis, we propose an automatic inspection system for the inspection of
visual defects on TFT-LCD panels. These visual'defects are usually called muras in the
literature. They are defined as visible imperfections on an active LCD display screen. A
typical mura usually appears as a low-contrast and non-uniform region and is typically
larger than a single pixel [1]. The causes of muras are due to the imperfection
manufactures of various components or foreign particles within the liquid crystal.
Several efforts have already been spent to classify these defects and to establish the
evaluation standards [1-2]. Several detection algorithms, on the other hand, have also
been proposed in the literature [3-8].

In this thesis, we focus on the detection of four types of Muras. The contents of this
thesis are organized as follows. In Chapter 2, we introduce the background of LCD
components, human vision system, related researches and existing Mura detection
algorithms. In Chapter 3, we describe the inspection procedure of our Mura inspection
system and present several Mura detection algorithms. Experiments are then presented

in Chapter 4. Finally, in Chapter 5, we conclude our work.



Chapter 2 Background

In this chapter, we’ll first introduce major LCD components and the causes of Mura
defects. Then we will discuss the capability of human vision perception in terms of just
noticeable difference (JND). Since some associations have already standardized Mura
defects, we will introduce the defined Mura types and the evaluation formulae of Mura
in these standards. Finally, we will give an overview of existing Mura detection

algorithms.

2.1 LCD components

In this thesis, we focus on.'the development'.of detection algorithms for the
inspection of the FOS (Front Of Screen) quality of an active matrix thin-film transistor
liquid crystal display (AM TFT-LED).*Figure-2-1 illustrates the cross-section of an AM
TFT-LCD. According to Y. Mori’s classification, various causes, as listed in Table 2-1,
could produce defects. Basically, an LCD display includes two essential components: 1)
Cell Unit and 2) Backlight Unit. In the cell unit, there are five elements: (1) liquid
crystal, (2) thin-film-transistor (TFT) array, (3) color filters, (4) glasses and (5) polarizer.
In general, the functionality of cell unit is to make the RGB color switching at each
pixel controllable. On the other hand, in the backlight unit, there are four basic elements:
(1) lamp, (2) light pipe, (3) reflective film and (4) optical film. Generally, the

functionality of backlight unit is to produce uniform light.
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Figure 2-1 Cross-section of an active matrix TFT-LCD

2.1.1 Causes of Mura for TFT-LCD

In the inspection of FOS quality, the so-called Mura defects greatly influence the
FOS quality [1]. Mura defects are defined as these visible imperfections of the FOS
image of a display screen in activeuse. In [3], Moti-et al listed several causes of Mura
defects in TFT-LCD, as shown in Table 2-1. Usually, the manufacturing performance of
every component in the cell unit or the backlight unit will affect the appearance of Mura
defects. A superior manufacture process will cause less Mura defects, while an inferior
manufacture process will induce more visible Mura defects. Usually, the non-uniformity
in various kinds of components induces different kinds of Mura defects.

The Non-uniform gap between glasses will induce Cluster Muras while the
non-uniformity of color filter usually causes color Muras. Wrinkled optical filters
usually induce Light Leak Muras, and non-uniform lamp’s rays usually cause gradation
Muras. On the other hand, a so-called “rubbing” process is usually used to achieve LCD
alignment by reordering liquid crystal cell along a certain direction. This ‘Rubbing

process’ may causes Rubbing Muras.



Table 2-1 Causes of Mura defects for TFT-LCD [3]

Basic Unit Causes of Mura

(1) Non-uniform gap between glasses

Cell unit (2) Non-uniform color of color filter

(3) Non-uniform density of liquid crystal

(4) Non-uniform thickness of TFT array layer

(5) Wrinkled optical filter

Backlight unit (6) Non-uniform lamp’s rays

(7) Warped light pipe

o
o

' : . W 1E9G6 g -~
Mura is a non-uniform brightngss region in fba-,w_"‘FOS image of an LCD. There are
oy =

. YT . . .
several existing Mura types, such as Cluster Mura, Gradation Mura, line Mura, region

Mura,.and so on. We will show some of the Mura type in the following figures.

(a) (b)

Figure 2-2 (a) A Cluster Mura and (b) microscope image of a contamination on the TFT

array that causes a Cluster Mura. [4]



(a) (b)
Figure 2-3 (a) A Gradation Mura (b) cross-sectional schematic illustration of backlight

V-Band mura

_

Figure 2-4 Example of Mura typeson TTLA LCD
Figure 2-2 shows an example of Cluster Mura, which is a small dark spot caused by
non-uniformity of the cell, non-uniformity of color filters, contaminations in the cell,
and so on. Figure 2-3 (a) shows luminance gradients where the right region of the
screen is brighter than the left region. It seems this defect is caused by non-uniformity
of the backlight and is called a “Gradation Mura”. Figure 2-3 (b) shows the
cross-sectional illustration of the backlight. The backlight consists of various

components. In the backlight unit, non-uniform lamp’s ray, wrinkled optical film, and

5



warped light pipe tend to cause Gradation Muras [4]. Finally, in Figure 2-4, we show
some examples of s Mura defects on TTLA LCD. These are the major types of muras

that we want to detect.

2.2 Human visual contrast and just

noticeable distortion

Traditionally, mura defects on LCD panels are to be inspected by human eyes. If
we want to inspect mura defects with machine vision, we need to define some objective
measures that are closely related to human’s subjective visual perception about the
degree of mura defects. In [2], it has been indicated that the minimum perceivable
contrasts of a defect is closely related. to its size:and shape. Based on this phenomenon,
a so-called Semu value is defined to m€asure-the degree of mura defects [2]. In this
section, we will especially discuss the sensitivity of human visual contrast and just

noticeable distortion (JND).

2.2.1 Contrast Sensitivity

Human visual perception is sensitive to the contrast of luminance. Till now, three
types of contrast definitions have been widely used in the world.
For a periodic pattern of symmetrical deviations, ranging from Lmin to Lmax,

Michelson contrast is defined as

Lmax B Lmin (1)

C, =
Moo +L

min

When the pattern is an increment or a decrement of AL with respect to a uniform
background with luminance L, Weber’s contrast is defined as

6



c, -2k @)

To measure the contrast sensitivity of complex images, the above two definitions
are usually not sufficient enough. For example, if (1) or (2) is adopted to define contrast,
the appearance of a very bright or a very dark point in the image will seriously affect
the measure of image contrast. Moreover, it is the local luminance average, instead of
the global luminance average, that influences human perception about image contrast
Hence, to define contrast for complex images, Peli proposed a local band limited

contrast measure in [14]. His definition about contrast is expressed as

BR.(x,Y) ()

Ci(x, y) =m

where BPj(x,y) is the bandpass image of,the ith band at location (X, y), and LPi(x,y)
contains the energy of all the subbands below the ith band at location (x, y). Several
different modifications of this contrast definition have been used to measure contrast
sensitivity. In [13], some psychophysical~experiments had demonstrated good
agreement with Peli’s definition based on Gabor patches.

Contrast sensitivity can be described as a function of spatial frequency. This
function is called contrast sensitivity function (CSF). Contrast sensitivity is defined as
the inverse of contrast threshold, which is the minimum contrast necessary for an
observer to detect the targets.

In [16], Mannos and Sakrison first applied an HVS (Human Visual System) model
to image coding. They modeled the HVS as a nonlinear point transform followed by the

modulation transform function (MTF) of the form:

H(f)=2.6(0.192+0.114f)exp(—(0.114f)"") 4)

In [17], Nill proposed a new function of MTF that can be used for DCT (Discrete

Cosine Transform) transform



H(f)=(0.2+0.45f)exp(-0.18f) (5)

In [18], Ngan et al proposed another definition of MTF, which is expressed as

H(f)=(0.31+0.69f)exp(-0.29 ) (6)

In spite of the dependence on spatial frequency, the contrast sensitivity also
depends on temporal frequency. Therefore, the contrast sensitivity can be described as
the combinational function of spatial frequency and temporal frequency. In [19], Kelly
proposed a contrast sensitivity function based on spatial and temporal frequency and the

function is formulated as

’ (7

—4r(f, +2f1) )

45.9

CSF(f,, f)=4xf f, exp( )x(6.1+7.310g(%)

S

This CSF function reflects that hurhan eyes have lower sensitivity at low and high
spatial (temporal) frequency and higher: sensitivity. at medium spatial (temporal)

frequency.

2.2.2 Just-Noticeable Distortion

The definition of just-noticeable distortion (JND) is the visibility threshold of
distortion, below which the reconstruction errors are imperceptible [20]. As mentioned
above, human eyes are more sensitive to luminance contrast than to absolute luminance
value. Furthermore, the average value of background luminance will influence the
sensitivity of human visual perception. In Weber’s law, the ratio of just noticeable
luminance difference to stimulus’ luminance is almost constant. From the viewpoint of
JND, we just need to detect these defects whose contrast is above this threshold.

In [21], the IND profile of a still image is represented as a function of local signal

properties, such as background luminance, activity of luminance changes and dominant



spatial frequency. Here, JND is defined as

IND; (X, y) = max{f,(mg(x,y)), f,(bg(x,y)},0<x<H,0<y<W 3

where H and W denote the horizontal and vertical dimensions of the still image. fl
represents the error visibility threshold due to texture masking and f2 represents the
error visibility threshold due to average background luminance. mg(x, y) denotes the
maximal weighted average of luminance gradients around the pixel at location (x, y)
and bg(x, y) is the average background luminance around the pixel at location (x, y).

In [22], mg(x, y) of the pixel at (X, y) is determined by calculating the weighted
average of luminance changes around the pixel in four directions, expressed as

mg(x,y) = max {lgrad, (x,y)|} ©)

5

and

5 5
grad, (X, Y)Z%ZZ P(X=3+Y -3+ -G, (X0 x<H,0<y<W (10)
i=1 j=1

where p(x, y) denotes the pixel at(x, y)-“Fhesefour operations, Gk(i, j) for k = 1,2,3,4

and i, j=1,2,3,4,5, are shown in Figure 2-5.

o[oJoro[a OJo[i[0]0 0] 0 010 BlLICG|-1[0
138131 0B 3(0(0] 0{CG[3[8|0 310(-3/0
(3N 0 1[3]01-3-1 -IT- 31 0] &|0[-8[0
1{-3|-8[3|-1 0]0[-3(-8]0 O[-8[-3|0f0 0l3/0[-3[0
ofo[0]0]0 0{0/-1|0|0 ofof-1j¢[0 1[0[-I[ 0
G] G: G; G¢

Figure 2-5 Operators for the calculation of the weighted average of

luminance changes along four directions. [20]

The value of f1(mg(x, y)) is calculated as

f,(mg(x,y)) =mg(x,y)x 0 <x<H,0<y <W (11)

where the value of B is gotten from a subject test and its value is chosen to be 2/17. bg(x,



y) is calculated based on a weighted low-pass operator, B(i, j), 1, j = 1,2,3,4,5, and is

expressed as

5 5
bg(x,y):3%22p(x—3+i,y—3+j)-B(i,j),0£x<H,OSy<W (12)

i=1 j=1

TTIJI[1]T

11221 2]1

T{2[0(2(1

11212121

ISESREBYE

B

Figure 2-6 The operator for the calculation of average background luminance.

[20]

The relationship of between visibility, threshold and the average background bg(x, y) is

shown in Figure 2-7

Wigibility Threshold

v 32 i ag 128 160 196 24 255

Backpround Luminance
Figure 2-7 Error visibility thresholds due to background luminance in the
spatial domain [21].
JND can also be calculated on the spatial-temporal domain. The process to get this

value is to multiply spatial JND and temporal JND, as expressed below [21]:

10



"]NDS—T (X9 y7 n) = f3(||d(xa ya n)) : ‘]NDS (Xa ya n) (13)

where ild(x, y, n) is the average interframe luminance difference between the nth and

(n-1)th frame at pixel (x, y):

p(X, Y, n) - p(Xa y,n— 1) + bg(X, Y, n) B bg(xa y,n— 1) (14)
2

ild(x,y,n) =

The empirical results of f3 for all possible interframe luminance difference are

shown in Figure 2-8.

6.0
f; 48 -
36 4
24
1.2 ’/
T
-255 o 255

Interframe Luminance Difference

Figure 2-8 Error visibility threshold in the spatial-temporal domain, which is
modeled as a scale factor of interframe luminance difference and

the JND value in the spatial domain [21]
The error visibility threshold increases when interframe luminance difference
increases. The sensitivity of human vision decreases if the scene changes or there is a

large temporal luminance difference.
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2.3 Definition, evaluation and

discrimination of Mura on LCD

Recently, several efforts have been spent on the classification of defects and
standardization of quality evaluation. For example, the Video Electronics Standards
Association (VESA) has standardized the classification of mura defects [1], while the
Semiconductor Equipment and Materials International (SEMI) has standardized the
defect quantification [2]. Based on properties of human perception, other researches
have further improved the analysis methods and proposed several detection algorithms

[3-8].

2.3.1 Definition of Murain VESA

The FPDM2 (Flat Panel Display Measurements > Version 2.0) standard of VESA
(Video Electronics Standards Association) defines Muras to be low contrast,
non-uniform brightness regions, typically larger than a single pixel. The captured
DUT(Display under test) image is processed by MuraTool according to Photon
Dynamics Inc. This Mura Tool is capable of detecting multiple classes of defects, as
specified in Table 2-2.

In the 15 phases defined by VESA, Phases 1~5 are more obvious defects, Phase
6~11 are less obvious defects, and Phases 12~15 are block or non-uniform defects.
Additional Mura defect classes can be defined in the future version of this specification.

Figure 2-9 shows some examples of Mura types.

12



(a) S-line, G-line, black and white Spot, (b) Rubbing line defect
bright border bloom and fill port defect

Different Muras have different features. Hence, a Mura detection system usually
adopts several detection algorithms at the same time. In MuraTool, it uses
morphological methods to segment and classify Muras, as shown in Figure 2-10. In the
initialization step of the algorithm, edges of the DUT are detected first, and an active
region rectangular display L(x,y) is passed to the Segmentation step of the algorithm.
The segmentation component sequentially examines the DUT image to perform 15
phases of detection. At each phase, a Boolean blob is generated if any potential defect is
detected. The blob mask is in the TRUE state wherever a potential defect exists, and is

in the FALSE state otherwise. Figure 2-11 illustrates a blob mask with a single blob.
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Table 2-2 Defect detection phases and defect classes in FPDM2 [1]

Fhase | Class | Class description Examples of physical LCD defect types

1 1 | calumn line signal line

2 2 | row line gate line

3 3 | random thin line pattern straw pattern, irregular thin dark streaks

4 4-1 | white Interior spot bright pixel, bright pixel cluster, bright spot

4 4-2 | white corner bloom bright corner

4 4-3 | white barder bloom bright panel eclge

5 5-1 | black interior spot dark pixel, dark pixel cluster, dark spot

5 5-2 | black corner bloom dark corner

5 5-3 | black border bloom dark panel edge

] 6 | thin horlzontal line thin rubbing line

7 7 | thin vertical line thin rubbing line

8 8 | thin positive slope diagonal line | thin rubbing line

a 8 | thin negatwe slope diagonal line | thin rubbing line

10 10-1 | bright reglon elliptical reglon, wide rubbing line, bright streak,
bright arc

10 10-2 | bright reglon collectlon bright ring, bright strealks, bright arcs

11 11-1 | dark reglon elliptical region, wide rubbing line, dark streak,
dark arc

11 11-2 | dark reglon collection Mewton ring, vertlcal perlodic lines, dark
streaks, dark arcs

12 12 | wide horlzontal line panel driver block, lthography mis-alignment

13 13 | wide vertical line panel driver block, Ithography mis-alignment

14 14-1 | bright reglon non-uniformity brightness non-uniformity of panel or backlight

14 14-2 | bright border non-untformity fill port

15 15-1 | dark reglon non-uniformity darkness non-untformity of panel or backlight

15 15-2 | dark border non-uniformity fill port

14
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Figure 2-10 Elowchart of MuraTool [1]
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Figure 2-11 A blob and its boundary box

In the classification step, the image data masked by each blob mask are examined.
If the average or peaks contrast of the detected region is above a contrast threshold, that
region is classified as a defect. The contrast threshold can be manually set. In [1], the

average contrast is defined as
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3 S ILO6Y) - B, V)
_ Xy
“a= > S B(x.Y) (15)

where L(x,y) represents pixel amplitude in the defect region and B(x,y) represents the

pixel amplitude in the background. The peak contrast is defined as

MAX ([L(x. ¥) ~ B(x. )
M (16)
B(XnsYn)

P

After all the processes, the MuraTool produces a defects report file, as shown in Table

2-3.
Table 2-3 Example of Mura defect file presented in LCD pixel unit
Filename: Panel.LCDBlobs
Blck x ¥ Width  Height LArea Type Contrast Fhase Class Result
1 185,90 300,50 5.58 600,50 30483.1 B 80,23 1 1 Defect
2 400.50 300.50 800.50 5.58  4068.3 2] 80.23 2 2 Defect
3 77.96 56.43 5.58 5.58 26.3 B 50.24 4 4-1 Defect
4 725.58 543,30 5.58 5.58 26.3 P 10.1s 4 4-1
5 725.58 56.43 5.58 5.58 26.3 2] 9.86 5 5-1
6 77.96 543.30 5.58 5.58 26.3 P 49 .97 5 5-1 Defect
7 650,66 78,04 108.44 10.67 1098.2 P 6.13 a & Defect
8 650.66 521.69 108.44 10.67  1098.2 2] 5.30 & & Defect
2] T02.72 177.19 11.93 81.86 az20.86 P 6.78 7 7 Defect
10 T02.72 423.81 11.93 8l.86 920.6 P 7.03 7 7 Defect
11 479.23 86.94 67.80 67.87  1090.1 2] 4.84 8 8 Defect
1z 479 .23 370.42 67.80 67.87 1088.5 B 5.08 g 8 Defect
13 479 .23 229,31 67.80 67.87 1090.1 P 4.84 9 Q Defect
14 479.23 512.79 67.80 67.87  1088.5 2] 5.08 9 9 Defect
15 617.37 441 .60 E2.56 43.72 1793.9 B 8.68 10 10-1 Defect
16 617.37 158.13 39.87 53.89 1756.8 B 8.68 11 11-1 Defect
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2.3.2 Definition of Mura in SEMI

On the other hand, the Semiconductor Equipment and Materials International
(SEMI) have spent a lot of efforts on the standardization of defect quantification. The
SEMI D31-1102 standard defines Mura in terms of luminance [2].

Based on sensory analysis, quantitative evaluation method of Mura on liquid
crystal displays (LCD’s) was investigated. They conducted a perception test by using
pseudo Mura to figure out the relationship between "just noticeable differences"(JND)
and the size of Mura. This approach intends to clarify the detection method and to
create an automated Mura inspection process. The quality level of a Mura can be
described as a function of area and contrast. Then they provide the evaluation standard

‘Semu’ to analyze the level of Mura.defects.

Experiment

In the experiment, pseudo Muras=with-different combinations of background and
luminance are displayed on the LCD. "An observer was asked to observe the pseudo
Mura and to control the luminance of the pseudo Mura, as illustrated in Figure 2-12.

The experiment results are shown in Figure 2-13.

Liguid crystal display

500mm

Pseudo mura

Numeric keypad

( 4
th SRS Background luminance: L

LY

\

Mura (Foreground) luminance: L + AL

Figure 2-12 lllustration of SEMI Experiment [4]
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Figure 2-13 Experiment results of SEMI experiment [4]

In the experiment results, several important characteristics were observed:

The larger the Mura areais, the easier to perceive the Mura. In this case, the

Cjnd is smaller.

The contrast of a pixel Mura-must-be-1.5~2: stronger to be inspect by human
eyes.

There is no difference between experts and normal people in observing Mura.

Opposite to experts, the distinct contrast of normal people spreads over a

larger range.

SEMI defines the evaluation standard Semu (SEMI Mura) based on Cjnd. The

Semu value is formulated as

Semu =

Sl __ I&

Cra (97 Lo72)

" (17)

Cjnd : Contrast of the Just Noticeable Difference to human eyes.

Cx : Average contrast of Mura.
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2.3.3 Further Research on JND Contrast of Mura

In [8], the effect of the background luminance on the Just Noticeable Difference
(JND) contrast of Mura was discussed. Three types of Mura, round type, line type, and
rectangle type, were under test. The evaluation of JND contrast is tested at 9.8, 41.8 and
97.5 cd/m2. The results showed that there is no significant difference on the JND
contrast between 41.8cd/m2 and 97.5 c¢d/m2. However, the JND contrast at 9.8cd/m2
was higher than that at the other background luminances. The result shows that human
perception is more sensitive in the dark background for line type Mura. The following
figure shows the evaluation result.

6

S| |mos ed/m’
) % 41 8ed/m - I
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Figure 2-14 The JND contrast of line type Mura [8]
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Figure 2-15 The JND contrast of round type and rectangle type [8]
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Semu formula explains well how Mura strength correlates with the area of Mura
(Sx) and the Mura contrast (Cx). However, the sensitivity of human eyes varies under

different luminance levels. Hence, a new Semu value is proposed in [8]:

HVC (18)

Proposed Mura value =
Cind _of _SEMU

where the JND is calculated as

JND ~ VHIIHE = 10 Mura _ irangfer | (19)

with the Mura transfer function being defined as
Mura _transfer, = a+bxlog(J ) +cx(log(],)) (20)

Here, a =1.85832, b =0.546316, ¢ = -0.0635062.

With the above equations, the HVC s expressed as

HVC =JND _value, — JND _value, 20
d - |
Cassl Caga2
20 000 20
e B oL g w—1
100.000 S0 - .
. B0ron g B —r -3
B0 2 o |2
m . = i =
2 e e Y Eail: il 2 oo
.-"“.
soco0 -2 ——SEML 5000 —t SERALI
o — 0o |—_':R__5Tu_.
I 2 3 a4 5 B 7 8 & W0 1 2 3 4 B & 71 8 8 10
Each mura Ezch mura
(a) (b)

Figure 2-16 Comparison result between Cx and HVC [§]

If the area size is fixed, the human visual contrast (HVC) will change when
background varies. However, Cx ratio will be the same in this case. Figure 2-16 shows
the Comparison result between Cx and HVC. In this case, Semu will have a same value,
for all luminance levels, while the R _semu will change as the HVC changes. As a result,

HVC is more suitable than Cx in the evaluation of Mura level.
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2.4 EXxisting Mura detection

Methods

Some researches had proposed various methods to detect point and line Muras. In
2004, Jong-Hwan Oh proposed the use of a directional filter bank and adaptive
multilevel thresholding to detect Line-defects [10]. On the other hand, Woo-Seob Kim
proposed adaptive multilevel thresholding using local block processing methods to
detect blob-defects and point-defects [11].

Jae Y. Lee and Suk I. Yoo proposed a modified regression diagnostics and used
Niblack’s thresholding to detect region-Muras from TFT-LCD panel images [12]. In
their approach, the input image of an LCD:panel is divided into overlapping windows.
Segmentation of region-Mura isZperformed on cach window. Then, the segmentation
results of different local regions are merged together into a single image. The merged
image is possessed by median filtering, morphological closing, and morphological
opening to remove noise. Finally, candidate region-Muras are extracted out and their
Mura levels are quantified. The segmentation is completed by using modified
regression diagnostics to roughly estimate the background region. Then, subtraction of
the background surface from the original window image is used to find a threshold to
obtain the binary segmentation result. Figure 2-17 shows the overall inspection
procedure. After finding out all candidate region-Muras, they evaluated the Mura levels
of all candidate region-Muras. They found that the Mura level claimed by human
inspection was greater than 5.5 and they set the Mura level threshold to be 5.5. Figure

2-18 shows the Mura levels of all candidate region-Muras.
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Figure 2-17 Region-Mura anspection precedure in [12] (a) Input image (b)
Extracted windows. (¢)-Local segmentation result (d) Merged
segmentation result:.. (e) -Post-processed image (f) Extracted

candidate region-Mura, whose Mura level is to be quantified
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Figure 2-18 Plot of Mura level and area of all candidate region Muras detected in

[12]. Candidates claimed by human inspection are denoted by blue

asterisk (%) and the other candidates by red dot ( - ).
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Chapter 3 Automatic Mura detection

algorithms

In this chapter, we will first introduce the setup pf our mura inspection system.
Then we’ll present a set of automatic inspection algorithms, which can automatically
detect four types of Muras on an LCD panel: Cluster Mura, V-band Mura, Rubbing
Mura, and Light Leakage Mura. To detect Cluster Muras, the Laplacian of Gaussian
(LOG) filter is used. A multi-resolution approach is proposed to detect Cluster Muras of
different scales. To speed up the processing speed, this multi-resolution approach is
actually implemented in the frequencysdomain. To detect V-band Muras, we check the
variation tendency of the projected 1-D intensity profile. Then, V-band Muras are
detected by identifying these portions of the 1-D profile where a large deviation occurs.
To detect Rubbing Muras, we designed a frequency mask to detect distinct components
in the frequency domain. To detect light leak Muras, we apply image mirroring over the
boundary parts and adopt the same LOG filter that has been used in detecting Cluster

Muras. All four types of Mura detection are integrated together in an efficient way.

3.1 Inspection Procedure

The inspection system is shown in Figure 3-1. It consists of three major parts: 1)
the LCD panel under test, 2) a CCD camera, and 3) a personal computer to execute
Mura detection algorithms. The inspection procedure is described as follows. The LCD
panel is first placed on the equipment vertically. This panel is driven by a pattern

generator to generate patterns of constant gray level. Then, a high-resolution digital
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camera takes a few FOS (Front-Of-Screen) images and these FOS images are
transmitted to the computer to be inspected by our Mura inspection algorithms. The
CCD camera has a 14-bit dynamic range and a spatial resolution of 2048 by 2048 pixels.

The detection flow chart of this Mura detection system is illustrated in Figure 3-1 (b).

(1) LCD under test

Pattern Generation

=

L

(2) CCD Camera

o
—_—

4

(3) Computer
Segmentation
Algorithms

Figure 3-1. (a) Mura inspection é)}stem;(b) inspection flowchart.

The inspection system hardware and the driven firmware are set up by TTLA
(Taiwan TFT-LCD Association). After the retrieval of the FOS images of LCD panels,
we analyze the features of the images and classify the FOS images into different types.
According to different features of the image, we extract the Mura defects from the
images. The thresholds of our algorithms are selected based on some experiments of
human vision test. At the end, the detection result is compared with the original image
to ensure to detection result is reasonable. Figure 3-2 shows the block diagram of our

automatic Mura detection algorithms.
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Figure 3-3 (a) Cluster Mura; (b) Vertical Band Mura; (c) Rubbing Mura; (d) Light Leak

Mura.
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Among various kinds of Mura defects, our Mura inspection system focuses on the
detection of four typical types of Mura defects: Cluster Mura, vertical-band Mura
(V-band Mura), Rubbing Mura, and light leak Mura (LL Mura). A Cluster Mura usually
appears as a Cluster of dark or bright points in a localized area, as shown at the central
bottom of Figure 3-3(a); V-band Mura appears as a wide, vertical stripe with different
brightness with respect to the background, as shown in the middle of Figure 3-3(b);
Rubbing Mura usually appears as tiled lines with a 45-degree angle spreading over a
large region, as shown in Figure 3-3(c); and light leak Mura appears at the boundary of
LCD panels, as shown on the top and bottom of Figure 3-3(d).

The inspection procedure of our system is illustrated in Figure 3-4. The LCD panel
is first driven by patterns of constant gray level. The image is transmitted to the
computer to be processed by the detéction algorithms. The detection procedure consists
of two major tracks. In one tracks the boundary of the- FOS image is first padded with
mirror images that are to be used forithe-detection of light-leak Muras. The image is
then transformed into the frequency domain to-detect Cluster Muras, Rubbing Muras,
and light-leak Muras. In the other track, V-band Muras are to be detected in the spatial
domain via a curve fitting method. The results of all these four Mura detection

algorithms are then combined together to generate the final detection report.
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Figure 3-4 Flowchart of Mura detection algorithms

3.2 Inspection of Cluster Mura

Cluster Mura usually appears as a cluster of bright or dark points in a localized area
[13]. Generally speaking, there are two types of Cluster Mura: round-type Cluster Mura
and line-type Cluster Mura, as shown in Figure 3-5(a) and (b). A major cause of Cluster
Mura is due to dust or particles coming into some layers of LCD panel. Poor LCD
manufactory process may also produce this type of defects. We started to research the
Cluster Mura detection because the Cluster Mura is the basis of Mura and the research
is also partial applicable to other kinds of Mura. For example, Light Leak Mura and

Around Mura can be applying the method to detect Cluster Mura.
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(a) Round-type Cluster Mura (c) Line-type Cluster Mura
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(b) Detection result of (a) (d) Detection result of (c)

Figure 3-5. Cluster Mura

In our approach, we proposed a 2-D LOG (Laplacian of Gaussian) filters The LOG
filter to detect Cluster Muras. The LOG filter is designed to match the shapes of Cluster
Mura, with the optimal threshold being determined based on the SEMU formula [2]. To

detect round-type Cluster Muras, the round-type LOG filter is chosen to be
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-1.  Round .
filter o™ (X, y) = (V otV )N(x, y;0,0,,0,) (22)
2 2_X2_ 2 _X2_ 2
=2 ) exp( 1
= 27 -0 20
1 _(z):ﬁz):z)
, where N(X,y;0,0,,0,)=———€ " 7 denotes a 2-D Gaussian
270 0,

function with zero mean and standard deviations 6x and oy, respectively. If we choose
ox = oy = o, then there is only one parameter to be assigned by the users. On the other

hand, to detect a horizontal line-type Cluster Mura, the LOG filter is chosen to be
H ectangular .
filter, 55 (x, y) =(V,, N(x,¥:0,0,.,0,) (23)

If the ratio q/@ of 1is fixed, there is only one parameter left. Similarly, to

detect a vertical line-type Mura, we cafi use an operator similar to (2) with Vyy being
replaced by Vxx. iy ‘ y ‘

Figure 3-6 shows these two types of LOG‘operator “and Figure 3-5(¢).
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Figure 3-6. (a) Round-type LOG operator;(b) Line-type LOG operator.

The area size of LOG filter is proportional to the standard deviation of Gaussian
function. The following is the threshold selection formula used in [13]. According to
SEMU [2], the Mura area is proportional to the human sensitivity of Mura. Also, the
contrast between background and Mura i$ proportion the human eye’s sensitivity.

(24)

0.141283/3 0.03942,; S=0.02;
std_dev std_dev ‘

threshold = —(

Here, S means the selected Semu value and Std _dev.means the standard deviation of the

LOG. operator. The following is the SEMU formula [2].

Cul _ & (25)

Cing (197 4972
S)(().SS

Semu =

Cx means the average contrast of the Mura (unit: % relative to background = 100%), Sx
means the area of Mura (unit: mm2), Cjnd means the contrast of Mura at JND (unit: %

relative to background = 100%).

The threshold value mentioned above will change for the LOG operators with
different standard deviations. To formulate the LOG operation, we assume the intensity
values of a point Mura looks like a Gaussion function. Without loss of generality, we

assume the height of the Gaussian function to be 1. On the other hand, the Laplacian of
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Gaussian (LOG) operator is the second derivative of a Gaussian function.

. 2 2 _ 2
Gaussian Mura: h(X, y) = exp(- X2 + 2’ )= exp(2 r 0) (26)

o o0,

] 52 52 26,2 —x2_y2? 22
LOG filter: g0 y) == hex y)+ 5 hixy) = (22— y.ep——F (@7
OX oy 2r-0, 20,
After convolution, we have
- +y?) (28)

2 2 2y 2 2 )
(KTo™ +07) =X ~y" L2(c*+0?) 5 1202

f ) =h 5 * ’ =
(X, Y) =h(x,y)*g(X,y) 2r- (ko 4 o2)

where the standard deviation of LOG filter is'«c and the standard deviation of the

Gaussian Mura is Kxo.

At the center of the convolution result, we have the value

£(0,0) = % (29)
(k*o+0)

Moreover, the maximum value will appear at the places where f” = 0. Hence,

8f(x,y)=0:> oc-k’c (30)

ok ko +0)?

The result indicates that f(x,y) reaches its maximum value at k = 1. This means when
the standard deviation of the LOG filter is the same as the standard deviation of the
Gaussian Mura, the convolution result has the maximum output. Hence, if the filter size
can be matched to the size of the Cluster Mura, there will be a maximum response. On
the other hand, an unmatched LOG filter will generate a response with a lower

magnitude.

Let LOG std = ¢ and the Gaussian Mura std = 6. The maximum convolution value
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will be:

2 2 2
Fy) =h (22X =Y (2 +y2)2202)) - 2702 = — 31)
27-(26°)° 452

Hence, the convolution result will change as the standard deviation of the LOG filter
changes. However, ff we divide the convolution result by an appropriate normalization
factor, the maximum convolution value may get fixed no matter how the standard

deviation of the LOG filter changes. That is, after adding the normalization factor, we

have
o (32)
h L2 s
40°? \/27m'2 '

where the normalize factor is the value.uised to normalize the positive summation of the

LOG operator to 1.

1
) 33
7 oyt —x2 5. Eh 262 : 33)
k=] (=) -exp(-x"/20% JdX======- " -(k: normalize factor)
-0 N27 -0, N2rwo,

Figure 3-7shows the example of convolving Gaussian Mura with a normalized LOG
filter. The Gaussian Mura which matches the size of the LOG filter will have the
maximum response and the maximum response value is always equal to 0.6735 - h,

where h is the strength of the Gaussian Mura.
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Gaussian Mura LOG filter convolution result
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Figure 3-7 example of convolving Gaussian Mura with a normalized LOG filter
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Figure 3-8 Example of threshold selection (a) the original pseudo Cluster Mura;

(b) matching size LOG filter (c¢) convolution result (d) illustration of

thresholding position (e) threshold result



The threshold of convolution result is decided by the height of the Gaussian Mura
to be detected.
-(x*+y?) (34)

2 2 2 2 2
f0y) =, y) # (e, y) = h-LETEIDTX Y 2tdotioh) oz 252
27-(k“c”+07)

The convolution result is shown in the above formula. With matching filter, k will

be 1 and the maximum response will appear in x=0 and y=0. Thus, welet x=0,y =0,

the convolution result will be= ;2 We select the standard deviation smaller than 1
8o

to be the detected location of the convolution result. Thus, welet x =0,y =0, the

-1

1 Sy . ) . .
5-€% .The fratio the matching maximum is

4o

convolution result will be =

e4/ > = 0.3894 , which means-we can select the threshold to be 0.3894 -

0.6735 - h =0.2623 - h. In our approach; we choose h to be 0.05, which corresponds to
4-bit difference in the intensity values could be detected. Figure 3-8 shows an example

of the threshold selection result.

After thresholding, the detection result will be a binary image. Some times false
detection appears and we need to eliminate these falsely detected results. Figure 3-13
illustrates the example of false detection elimination based on Semu threshold. Figure
3-13 (a) show two pseudo Gaussian Muras, one in the upper-left corner, while the other
in the lower-right corner. Figure 3-13 (b) shows the detection result after LOG
convolution and thresholding. We can see the false detection occurs in the lower-right
corner. In Figure 3-13 (d)(e)(f), the detection results are grouped into different blobs.

For each blob, we evaluate its Semu value. For this example, the results are 31.6239 and
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12.5487 and 1.1009, respectively. Here, we set the threshold of Semu value to be 3.
Hence, these detection results with Semu value less than 3 will be removed. The final

detection result is then shown in Figure 3-13 (c).

(2) (b)
(d) (e)

(9
Area = 3801 Area = 2449 Area = 4152
Cx = 30.9296 Cx.=12.7787 Cx =1.1009

Semu = 31.6239%.Semu = 12.5487 =

threshold2 = 3 Semu

Figure 3-9 Example of Semu value thresholding. (a) original test image; (b) detection
result; (c)final detection result after thresholding (d)(e)(f) evaluation of

Semu value for each blob.

As mentioned before, there may be Muras of different sizes in a single LCD panel.
It is not possible to detect all these Muras by using a single LOG filter. Hence, we
propose the use of a bank of LOG filters of different sizes to detect Muras of different

scales. In Figure 3-10, we shows five LOG filters of different sizes.
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Figure 3-10 Five LOG filters of different sizes

To detect Cluster Muras of different scales, we adopt a multi-resolution approach.
All these convolution results are then merged in a proper way to generate the final
results. Figure 3-11 illustrates an example for the proposed multi-resolution Cluster
Mura detection. Figure 3-11 (a) contains 8 synthesized Muras, with radius being 5, 10,
15, 20, 25, 30, 35, and 40, respectively. The luminance of the background is zero. For
this example, we apply two LOG filters with ¢ = 10 and 30, respectively. As mentioned
above, for each LOG filter, the convolution result will reach its maximum magnitude
when the size of Mura matches to.the sizetof theé. LOG filter. Figure 3-11 (b) shows the
convolution result by using the: LOG filter with ¢ = 10. It can be seen that the
convolution result does reach its maximum magnitude (represented in red) at the Mura
with radius 10. Figure 3-11 (c) shows a’ similar result when we use the LOG filter with
o = 30. Moreover, as mentioned before, both LOG filters are normalized to have their
positive parts summed to 1 and negative parts summed to -1. With this normalization,
when the intensity difference between the Mura and the surrounding background is kept
the same, the maximum magnitude of the convolution result for different LOG filters
will also be normalized to be the same.

After performing multiple convolutions with LOG filters of different scales, we
merge all convolution results by calculating at each pixel the maximum magnitude of

all convolution results. That is, we calculate
result(x, y) = max(result, (X, Y),result, (X, y),....) (335)

where resulti(x,y) denotes the convolution result at (x,y) with the use of the ith LOG
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filter. Figure 3-11(d) shows the final result based on (5). Figure 3-11(e)~(g) show the
detection results of Figure 3-11 (b)~(d) by setting the threshold to be 100. As expected,
it can be seen that the smaller LOG filter detects only small Muras, while the larger
LOG filter detects only large Muras. However, with the proposed multi-resolution

approach, all sizes of Mura defects can be correctly detected.

(@)

(b) (©) (d)

) (8)

Figure 3-11 Multi-resolution Cluster Mura detection
(a) test image; (b) result by using an LOG filter with o =10; (¢) result by using an
LOG filter with ¢ =30; (d) maximization of (b) and (c); (e)~(g) detection results

of (b)~(d), respectively, with threshold =100.
Figure 3-12 shows the multi-resolution detection result of Cluster Mura. It can be

seen that the detection results are pretty consistent with respect to the original image.
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Figure 3-12 Multi-resolution deteetion result of Cluster Mura

Even though the method proposed-here is-quite effective in detecting Cluster Muras,
the execution time of spatial convolution‘could be a problem. In the detection of Cluster
Muras, we need to inspect Muras of different sizes. As we increase the size of the LOG
operator to detect Cluster Muras of larger size, the computation load of the convolution
operation increases exponentially. To deal with this kind of problem, we convert the
operation from spatial domain to frequency domain. In theory, convolution of two
digital patterns in the spatial domain is equivalent to multiplication of their counterparts

in the frequency domain. More explicitly, we have

ST Y * g6y} =3 Y- 3{g(x, )} (36)
or

F(xy)*g(x,y) = 33T (V) IHg(x V) (37)
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where * denotes the spatial convolution operation and J{.} denotes the Fourier
transform operation. Hence, to perform the convolution operation, we may compute the
Fourier transforms of the original image and the LOG operator first, multiply their
transforms together, and then perform inverse Fourier transformation over their
multiplication product to get the final convolution result. Note that we only need to
perform the Fourier transform of the original image once. To detect Cluster Muras of
different sizes, we only need to multiply the Fourier transform of the original image
with the Fourier transforms of different LOG filters. These multiplication products are
then converted back to the spatial domain, respectively.

Figure 3-13 illustrates an example of this process. Figure 3-13 (a) shows the FOS
image of an LCD panel and Figure 3213 (b) shows its Fourier transform. Here, we apply
FFT (Fast Fourier Transform) for-the.computation of Fourier transform. Figure 3-13(c)
shows the Fourier transform of a round-type-LOG filter with ox = cy=c = 1. Figure
3-13(d) shows the product of Figure 3-13(b) and(c). After computing the multiplication
product, we perform inverse Fourier transform to get the corresponding convolution
result. A threshold is then selected to detect Cluster Muras. Figure 3-13(e) shows a
zoomed image of the red rectangle area marked in Figure 3-13(a). Figure 3-13(f) shows
the corresponding detection result. These detected pixels are grouped into blobs. Based
on the Semu formula [2], we further check the semu value of these detected blobs to

determine whether these blobs are perceivable to human eyes.
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© TR ®

Figure 3-13 Example of Cluster Mura detection; (a) original image; (b) FFT of the
original image; (c¢) FFT of an LOG filter; (d) product of (b) and (c); (e) zoomed image

of the original image; (f) detection result

3.3 Inspection of Light Leak Mura

Light Leakage Muras usually appears at the boundary regions of an LCD panel. An
ideal LCD panel should have no visible bright area around the boundaries of the panel if
the screen is in fully dark. However, Light Leakage may occur at the boundaries due to
misalignment during manufacturing. The non-uniform distribution of brightness

enhancement film in the boundary region may also produce this kind of Mura defect.
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Figure 3-14 (a) shows an example of Light Leakage Mura. We can easily see that both
the upper side and the bottom side of the FOS image appear brighter than the other
regions. Figure 3-14 (b) shows the 1-D intensity profile along the red vertical line in
Figure 3-14(a). The intensity values at both ends are much higher than that in the center.
Figure 3-14(c) and Figure 3-14 (d) show the 1-D intensity profiles along the two red
horizontal lines in Figure 3-14 (a). It can be seen that the intensity value across the
center part is roughly flat, while the intensity value along the bottom boundary changes

quite dramatically.

S S S S S——
£ L] ) = L] ] | 200 A0 ] B0 1000 1200 1400

(d)

(e

Figure 3-14. (a) FOS image with Light Leakage Muras; (b) 1-D intensity profile
along the vertical red line in (a); (c) 1-D intensity profile along the central horizontal
line in (a); (d)1-D intensity profile along the bottom horizontal line in (a); (e) detection

result.
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To detect Light Leakage Muras, we also adopt the aforementioned LOG filter that
has been used in the detection of Cluster Muras. However, since Light Leakage Muras
always occur at boundaries of the FOS image, we need to manipulate the boundary
regions properly before we apply the LOG operator. As shown in Figure 3-15(b), above
the top boundary of the FOS image, we pad a mirror image of that part. After the
padding, a Light Leakage Mura appears just like a line-type Cluster Mura and we can
simply apply a line-type LOG filter as shown in Figure 3-15(c) to detect it. The process
would be the same as that in detecting Cluster Muras. The detection result of Figure

3-14(a) is shown in Figure 3-14(e).

(c) (d)

Figure 3-15 (a) Top boundary area of Figure 3-14 (a); (b) padded on the top of (a)

with a mirror image; (c¢) applied line-type LOG filter. (d) padded image
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3.4 Inspection of Rubbing Mura

During the manufacturing of LCD panels, the rubbing process is a process to
control the arrangement of liquid crystals. However, during this rubbing process, dust or
particles may cause Rubbing Muras. Poor rubbing process or polluted rubbing cloth
may also cause this kind of defects. Figure 3-16(a) shows a typical Rubbing Mura on
the FOS image of an LCD panel. These rubbing lines appear along the diagonal
direction. Because these rubbing lines appear as a periodic pattern, we may apply

frequency-domain analysis to the extraction of Rubbing Muras.

(a) | - U

(© (d)

(e)

Figure 3-16. (a) FOS image with Rubbing Mura; (b) FFT of (a); (c) frequency mask; (d)

masked frequency components; (e) detected Rubbing Mura.
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Figure 3-16 (b) shows the FFT of the FOS image with Rubbing Mura. The center of
Figure 3-16 (b) represents the dc component and the two axes represent the frequency
axes along the vertical and horizontal directions. Due to the existence of Rubbing Mura,
there appear a few bright points in Figure 3-16 (b) that correspond to the strong periodic
components in the FOS image. In our experiments, Rubbing Muras tend to appear at the
same frequency. With this observation, we presume the same manufacturing process
will produce the same type of Rubbing Mura. Hence, we explicitly design a frequency
mask as shown in Figure 3-16(c) to sift out unnecessary frequency components.
Moreover, in the design of the frequency mask, we also preserve the 2nd and 3rd
harmonic components. Figure 3-16 (d) shows the masked frequency contents. If we
transform the masked frequency components back to the spatial domain via inverse FFT,
we can get the red pattern as shown’in Figure 3-16(e). This pattern does correspond to
the Rubbing Mura in Figure 3-16(a)..Hence, tordetect Rubbing Muras, we may simply
check whether there are distinct- comiponents-in, the masked frequency components.
Here, we check the sum of power to detect the existence of distinct components. In
Table 1, we show the comparison between the JND (Just Noticeable Difference) value
and the sum of power of the masked frequency components. These subjective JND
values are determined by professional LCD panel inspectors, who had been well trained
to inspect the visual quality of LCD panels. A Mura with “JND-value =1.5” indicates
that the contrast of that Mura is about 1.5 times of the JND level, subjectively. Table 1
indicates that the JND-value of a Rubbing Mura is basically proportional to the power
sum. As a result, we can select a threshold, shown as the red line in Table 1, to
determine whether there is a Rubbing Mura in the FOS image of an LCD panel. Note
that the thresholding is performed in the frequency domain and there is no need to

convert the masked frequency components back to the spatial domain.
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Table 4. JND value inspected by inspectors versus power sum in the masked

frequency components

LCD number JND value by Sum of power in
inspector frequency domain

LCDI 16801

LCD2 18544

LCD3 30912

LCD4 33492

LCD5 41728

LCD6 43381

LCD7 58281

"""" LCDS 1.8 120056 |~ Threshold

LCD9 22 155356

LCD10 1.8 169928

LCDI1 1.7 176191

LCD12 2.1 195643

LCD13 2.1 L9218 274746

LCD14 2.4 192 2223 275137

3.5 Inspection of V-band Mura

V-band Mura appears as a wide, vertical stripe with different brightness with
respect to the background. The cause of V-band Mura usually comes from non-uniform
thickness of components, such as non-uniform thickness of glasses in the cell unit. This
type of Mura spreads over a large area. Hence, it is difficult to detect V-band Muras
based simply on local operator. To detect V-band Mura, we check the variation tendency
of the projected 1-D intensity profile. Figure 3-17 (a) shows an FOS image. We first
vertically project the 2-D image data into a 1-D intensity profile, shown as the blue

dotted line in Figure 3-17 (b). In the projected profile, significant intensity deviations
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indicate the existence of V-band Muras. To detect large intensity deviation, we analyze
the variation tendency of the projected profile by checking the profile curvature. Here,
we adopt the zero-crossing points on the profile curvature to indicate the turning points
of variation tendency. Based on these zero-crossing points, a 2nd-order curve fitting is
performed to generate a smooth approximation of the projected profile, shown as the
cyan line in Figure 3-17 (b). Figure 3-17(c) shows the difference between the smooth
approximating profile and the original profile. The difference is smoothed by Gaussian
filter to suppress noise. Red points indicate local minimums while green points indicate
local maximums. To determine whether there is a visible V-band Mura, we calculate at
each local extreme the intensity difference between that extreme and its adjacent local
extremes, indicated as the red line in Figure 3-17(c). This intensity difference indicates
how serious a local deviation is, astindicated in Figure 3-17 (d). If the difference is
above a pre-selected threshold, that local deviation is detected as a V-band Mura. In our
experiments, the threshold is set to be 0.015;.empirically. Figure 3-17(e) shows the final

detection result, with the cyan box indicating the-area of the detected V-band Mura.
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© (d)

Figure 3-17 Example of V-band Mura detection (a) original FOS image; (b) projected
1-D profile, zero-crossing points, and fitted curve; (c) difference between the 1-D

projection and the fitted curve; (d) illustration of intensity deviation;(e) detection result.

Picture capture environment of Light Leakage Mura

Light Leakage Muras appear brighter than the surrounding region. If the LCD
displays high luminance, the leakage light might not be visible. Hence, Light Leakage
Muras should be observed when the LCD panel is displayed in low luminance. In our

inspection procedure, the pattern generator normally displays L92 luminance and
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most defects can be observed under this luminance situation, including bright Mura and
dark Mura. However, L92 is too bright for the inspection of Light Leakage Muras. In
this case, LO is a better choice. Figure 3-18 shows two images under different test
situations. Figure 3.5.8 (a) shows the LCD image captured in L92, while Figure 3-18 (b)
shows the same LCD image captured in LO. Figure 3-18 (c) shows the 1-D vertical
projection profile in L92, while Figure 3-18 (d) shows the 1-D vertical projection
profile in LO. We can easily see that the peak in Figure 3-18 (d) is much higher than that
in Figure 3-18 (d). Hence, it is much easier to detect Light Leak Muras based on Figure
3-18(d). Thus, in our inspection procedure, Light Leakage Muras are to be inspected

under LO.

(b)

l\“?‘

(c) ()
Figure 3-18 Different test luminance of Light Leak Mura. (a) Captured image in L92; (b)
Capture imaged in LO; (c) vertical projection profile of (a); (d) vertical projection
profile of (b).
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Chapter 4 Experimental Results

4.1 Detection results of Light Leak Muras

In this section, Light Leak Mura detection results are shown, together with their

original images.

LCD panel NO.1

LCD panel NO.2
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LCD panel NO.3

LCD panel NO.4

LCD panel NO.5
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LCD panel NO.6

LCD panel NO.7

LCD panel NO.8
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LCD panel NO.9

Figure 4-1 Light Leak Mura detection result; threshold = 0.02, std of LOG =6
Left: original images;

Right: detection results.

4.2 Detection Results of Rubbing Muras

In this section, Rubbing Mura detec on resul s are'shown, together with their original
images ' 2
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LCD panel NO.2
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LCD panel NO.5
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LCD panel NO.8

LCD panel NO.9

Figure 4-2 Rubbing detection result; trsod =0.002
Left: original images;

Right: detection results
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4.3 Detection results of V_band Muras

In this section, V-band Mura detection results are shown, together with their original

images.

LCD panel NO.1

LCD panel NO.3
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LCD panel NO.4

LCD panel NO.5

LCD panel NO.6
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LCD panel NO.7

LCD panel NO.8

Figure 4-3 Vband detection result; thrshld =0.015, std of LOG =5

Left: original images;

Right: detection results
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Conclusions

In this paper an automatic Mura defection system is proposed. This system can

detect four types of Mura defects.

1.

To detect cluster Muras, the Laplacian of Gaussian (LOG) filter is used. The Cluster
Mura is detected by multi-resolution LOG filters. A multi-resolution approach is

proposed to detect cluster Muras of different scales.

. To detect light leak Mura, we apply image mirroring and adopt the same LOG filter

that has been used in detecting cluster Muras.

. To detect v-band Mura, we check the variation tendency of the projected 1-D

intensity profile. The curve fitting méthod is'used and the sample points are the zero

crossing points detected by a 1-D LOG filter.

. To detect rubbing Mura, we designed a frequency mask to detect distinct components

in the frequency domain. The simmation power-of distinct components within the
masked frequency domain is then calculated to determine whether a rubbing Mura
exists.

All four types of Mura detection algorithms have been integrated together in an

efficient way. Simulation results have demonstrated that the proposed Mura detection

algorithms are very reliable in automatically detecting Mura defects.
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