Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Mutually orthogonal hamiltonian connected graphs

Tung-Yang Ho^{a,*}, Cheng-Kuan Lin^b, Jimmy J.M. Tan^b, Lih-Hsing Hsu^c

^a Department of Information Management, Ta Hwa Institute of Technology, Hsinchu, 30740, Taiwan, ROC

^b Department of Computer Science, National Chiao Tung University, Hsinchu, 30010, Taiwan, ROC

^c Department of Computer Science and Information Engineering, Providence University, Taichung, 43301, Taiwan, ROC

ARTICLE INFO

Article history: Received 11 June 2007 Received in revised form 6 January 2009 Accepted 6 January 2009

Keywords: Hamiltonian Hamiltonian connected Interconnection networks

ABSTRACT

In this work, we concentrate on those *n*-vertex graphs *G* with $n \ge 4$ and $\overline{e} \le n - 4$. Let $P_1 = \langle u_1, u_2, \ldots, u_n \rangle$ and $P_2 = \langle v_1, v_2, \ldots, v_n \rangle$ be any two hamiltonian paths of *G*. We say that P_1 and P_2 are *orthogonal* if $u_1 = v_1, u_n = v_n$, and $u_q \ne v_q$ for $q \in \{2, n - 1\}$. We say that a set of hamiltonian paths $\{P_1, P_2, \ldots, P_s\}$ of *G* are *mutually orthogonal* if any two distinct paths in the set are orthogonal. We will prove that there are at least two orthogonal hamiltonian paths of *G* between any two different vertices. Furthermore, we classify the cases such that there are exactly two orthogonal hamiltonian paths of *G* between any two different vertices. Aside from these special cases, there are at least three mutually orthogonal hamiltonian paths of *G* between any two different vertices.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this work, a network is represented as a loopless undirected graph. For graph definitions and notation we follow [1]. G = (V, E) is a graph if V is a finite set and E is a subset of $\{(u, v) \mid (u, v) \text{ is an unordered pair of } V\}$. We say that V is the vertex set and E is the edge set. Two vertices u and v are adjacent if $(u, v) \in E$. Let S be a subset of V. The subgraph of G induced by S is the graph G[S] with V(G[S]) = S and $E(G[S]) = \{(u, v) \mid (u, v) \in E, \text{ and } u, v \in S\}$. The complement \overline{G} of a graph G is with the same vertex set V(G) defined by $(u, v) \in E(G)$ if and only if $(u, v) \notin E(G)$. We use \overline{e} to denote $|E(\overline{G})|$. The degree of a vertex u of G, $\deg_G(u)$, is the number of edges incident with u. A path, $\langle v_0, v_1, v_2, \ldots, v_k \rangle$, is an ordered list of distinct vertices such that v_i and v_{i+1} are adjacent for $0 \le i \le k - 1$. A path is a hamiltonian path if its vertices are distinct and span V. A graph G is hamiltonian connected if there exists a hamiltonian path joining any two vertices of G. A cycle, $\langle v_0, v_1, \ldots, v_k, v_0 \rangle$, is a path with at least three vertices such that the first vertex is the same as the last vertex. A cycle is a hamiltonian cycle if it traverses every vertex of G exactly once. A graph is hamiltonian if it has a hamiltonian cycle.

Let $P_1 = \langle u_1, u_2, ..., u_n \rangle$ and $P_2 = \langle v_1, v_2, ..., v_n \rangle$ be any two hamiltonian paths of an *n*-vertex hamiltonian connected graph *G*. We say that P_1 and P_2 are orthogonal if $u_1 = v_1$, $u_n = v_n$, and $u_q \neq v_q$ for $q \in \{2, n - 1\}$. We say that a set of hamiltonian paths $\{P_1, P_2, ..., P_s\}$ of *G* are mutually orthogonal if any two distinct paths in the set are orthogonal.

In this work, we concentrate on those *n*-vertex graphs *G* with $n \ge 4$ and $\overline{e} \le n - 4$. By the famous Ore's Theorem [2], *G* is hamiltonian connected. Yet, we will prove that there are at least two orthogonal hamiltonian paths of *G* between any two different vertices. Furthermore, we classify the cases such that there are exactly two orthogonal hamiltonian paths of *G* between any two different vertices. Thus, there are at least three mutually orthogonal hamiltonian paths of *G* between any two different vertices except for the cases mentioned above. This result can be used to compute the fault-tolerant hamiltonian connectivity of the WK-recursive networks [3].

* Corresponding author. E-mail address: hoho@thit.edu.tw (T.-Y. Ho).

^{0893-9659/\$ –} see front matter ${\rm \textcircled{C}}$ 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2009.01.058

Fig. 1. Illustration of $C_{m,n}$.

2. Mutually orthogonal hamiltonian paths

The following theorem is proved by Ore [2].

Theorem 1 ([2]). Assume that G is an n-vertex graph with $n \ge 4$. Then G is hamiltonian if $\bar{e} \le n - 3$, and is hamiltonian connected if $\bar{e} \le n - 4$.

Let *G* and *H* be two graphs. We use G + H to denote the disjoint union of *G* and *H*. We use $G \vee H$ to denote the graph obtained from G+H by joining each vertex of *G* to each vertex of *H*. For $1 \le m < n/2$, let $C_{m,n}$ be the graph $(\bar{K}_m + K_{n-2m}) \vee K_m$. See Fig. 1 for an illustration.

The following theorem is proved by Chvátal [4].

Theorem 2 ([4]). If G is an n-vertex graph where $n \ge 3$ and $|E(G)| > C_2^{n-1} + 1$, then G is hamiltonian. Moreover, the only non-hamiltonian graphs with n vertices and $C_2^{n-1} + 1$ edges are $C_{1,n}$ and, for n = 5, $C_{2,5}$.

Suppose that *G* is an *n*-vertex graph with $\bar{e} \le n - 4$. Assume that n = 4. Obviously, *G* is isomorphic to K_4 . It is easy to check that there are exactly two orthogonal hamiltonian paths between any two distinct vertices of *G*.

Assume that n = 5. Obviously, *G* is isomorphic either to K_5 or to $K_5 - e$ where *e* is any edge of K_5 . We label the vertices of K_5 with {1, 2, 3, 4, 5} and we set e = (1, 2). Suppose that *G* is isomorphic to K_5 . It is easy to check that there are exactly three mutually orthogonal hamiltonian paths of *G* between any two vertices. Suppose that *G* is isomorphic to $K_5 - (1, 2)$. By brute force, we can check that there are exactly three mutually orthogonal hamiltonian paths between vertices 1 and 2. However, there are exactly two orthogonal hamiltonian paths between the remaining pairs.

Now, we assume that $n \ge 6$. Let *s* and *t* be any two distinct vertices of *G*. Let *H* be the subgraph of *G* induced by the remaining (n - 2) vertices of *G*. We have the following two cases:

Case 1: *H* is hamiltonian. We can label the vertices of *H* with $\{0, 1, 2, ..., n-3\}$ such that $\langle 0, 1, 2, ..., n-3, 0 \rangle$ forms a hamiltonian cycle of *H*. We use the notation [*i*] to denote *i* **mod** (n-2). Let *Q* denote the set $\{i \mid (s, [i+1]) \in E(G) \text{ and } (i, t) \in E(G)\}$. Since $\bar{e} \le n-4$, $|Q| \ge n-2 - (n-4) = 2$. There are at least two elements q_1, q_2 in *Q*. We set P_j as $\langle s, [q_j+1], [q_j+2], ..., [q_j], t \rangle$ for j = 1, 2. Then P_1 and P_2 are two orthogonal hamiltonian paths between *s* and *t*.

Suppose that $\bar{e} \le n-5$, $(s, t) \notin E$, or H is not isomorphic to the complete graph K_{n-2} . Then $|Q| \ge 3$. Let q_1, q_2 , and q_3 be the three elements in Q. For j = 1, 2, and 3, we set P_j as $\langle s, [q_j + 1], [q_j + 2], \ldots, [q_j], t \rangle$. Then P_1, P_2 , and P_3 are three mutually orthogonal hamiltonian paths between s and t.

Thus, we consider $\bar{e} = n - 4$, $(s, t) \in E$, and H is isomorphic to the complete graph K_{n-2} . Let ST be the set of vertices in H that are adjacent to s and t, let $S\bar{T}$ be the set of vertices in H that are adjacent to s but not adjacent to t, let $\bar{S}T$ be the set of vertices in H that are not adjacent to s but adjacent to t, and let $\bar{S}\bar{T}$ be the set of vertices in H that are neither adjacent to s nor adjacent to t.

Let a = |ST|, $b = |S\overline{T}|$, $c = |S\overline{T}|$, and $d = |S\overline{T}|$. Without loss of generality, we assume that $\deg_G(s) \ge \deg_G(t)$. Then $b \ge c$, b + c + 2d = n - 4, and a + b + c + d = n - 2. Thus, a - d = 2. Hence, $a \ge 2$.

Suppose $a \ge 3$. Let q_1, q_2 , and q_3 be three vertices in *ST* and $q_4, q_5, \ldots, q_{n-2}$ be the remaining vertices of *H*. We set P_1 as $\langle s, q_1, q_2, X, q_3, t \rangle$, P_2 as $\langle s, q_2, q_3, Y, q_1, t \rangle$, and P_3 as $\langle s, q_3, Z, q_1, q_2, t \rangle$ where *X*, *Y*, and *Z* are any permutations of $q_4, q_5, \ldots, q_{n-2}$. Obviously, P_1, P_2 , and P_3 are three mutually orthogonal hamiltonian paths between *s* and *t*.

Suppose a = 2. Then d = 0. Suppose $c \ge 1$. Then $b \ge 1$. We rearrange the vertices of H so that 0 is a vertex in $S\overline{T}$, 1 and 2 are the vertices in ST, 3 is a vertex in \overline{ST} , and 4, 5, ..., n - 3 are the remaining vertices. Obviously, (0, 1, 2, ..., n - 3, 0) forms a hamiltonian cycle of H. Let Q denote the set $\{i \mid (s, i) \in E(G) \text{ and } ([i + 1], t) \in E(G)\}$. Obviously, $|Q| \ge 3$. Thus, there are three mutually orthogonal hamiltonian paths between s and t.

Finally, we consider a = 2, d = 0, and c = 0. Thus, b = n - 4. In this case, s is adjacent to t and all the vertices in H; t is adjacent to s and exactly two vertices in H, say q_1 and q_2 . Let $\langle s = v_1, v_2, \ldots, v_n = t \rangle$ be a hamiltonian path of G between s and t. Obviously, v_{n-1} is either q_1 or q_2 . Therefore, there are exactly two orthogonal hamiltonian paths between s and t.

Case 2: *H* is non-hamiltonian. There are exactly (n - 2) vertices in *H*. By Theorem 2, there are exactly (n - 4) edges in the complement of *H* and *H* is isomorphic to $C_{1,n-2}$ or $C_{2,5}$. Hence, *s* is adjacent to $V(G) - \{s\}$ and *t* is adjacent to $V(G) - \{t\}$.

Fig. 2. (a) $C_{2,5}$ and (b) $C_{1,n-2}$.

We can construct two orthogonal hamiltonian paths of *G* between *s* and *t* as the following cases:

Subcase 2.1: *H* is isomorphic to $C_{2,5}$. We label the vertices of $C_{2,5}$ with $\{1, 2, 3, 4, 5\}$ as shown in Fig. 2(a). Let $P_1 = \langle s, 1, 2, 3, 4, 5, t \rangle$ and $P_2 = \langle s, 3, 4, 5, 2, 1, t \rangle$. Then P_1 and P_2 form the required orthogonal paths. By brute force, we can check that there are exactly two orthogonal hamiltonian paths between *s* and *t*.

Subcase 2.2: *H* is isomorphic to $C_{1,n-2}$. We label the vertices of $C_{1,n-2}$ with $\{1, 2, ..., n-2\}$ as shown in Fig. 2(b). Let $P_1 = \langle s, 1, 2, 3, ..., n-2, t \rangle$ and $P_2 = \langle s, 3, 4, ..., n-2, 2, 1, t \rangle$. Then P_1 and P_2 form the orthogonal hamiltonian paths. Let $\langle s = v_1, v_2, ..., v_n = t \rangle$ be any hamiltonian path of *G* between *s* and *t*. Obviously, 1 is either v_2 or v_{n-1} . Therefore, there are exactly two orthogonal hamiltonian paths between *s* and *t*.

From the above discussions, we have the following theorem.

Theorem 3. Assume that *G* is an *n*-vertex graph with $n \ge 4$ and $\overline{e} \le n - 4$. Let *s* and *t* be any two vertices of *G*. Then there are at least two orthogonal hamiltonian paths of *G* between *s* and *t*. Moreover, there are at least three mutually orthogonal hamiltonian paths of *G* between *s* and *t* except for the following cases:

- (1) *G* is isomorphic to K_4 where *s* and *t* are any two vertices of *G*.
- (2) *G* is isomorphic to $K_5 (1, 2)$ where *s* and *t* are any two vertices except for $\{s, t\} = \{1, 2\}$.
- (3) The subgraph H induced by $V(G) \{s, t\}$ is a complete graph with $n \ge 6$ where s is adjacent to t and all the vertices in H and t is adjacent to s and exactly two vertices in H.
- (4) The subgraph induced by $V(G) \{s, t\}$ is isomorphic to $C_{2.5}$ where s is adjacent to $V(G) \{s\}$ and t is adjacent to $V(G) \{t\}$.
- (5) The subgraph induced by $V(G) \{s, t\}$ is isomorphic to $C_{1,n-2}$ with $n \ge 6$ where s is adjacent to $V(G) \{s\}$ and t is adjacent to $V(G) \{t\}$.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North Holland, New York, 1980.
- [2] O. Ore, Coverings of graphs, Annali di Matematica pura ed Appllicata 55 (1961) 315-321.
- [3] T.Y. Ho, C.K. Lin, J.J.M. Tan, L.H. Hsu, Fault-tolerant hamiltonian connectivity of the WK-recursive networks, Information Sciences (submitted for publication).
- [4] V. Chvátal, On Hamilton's ideal, Journal of Combinatorial Theory (B) 12 (1972) 163–168.