Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/aml)

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Mutually orthogonal hamiltonian connected graphs

Tung-Yang Ho ^{[a,](#page-0-0)}*, Cheng-Kuan Lin ^{[b](#page-0-2)}, Jimmy J.M. Tan ^b, Lih-Hsing Hsu ^{[c](#page-0-3)}

^a *Department of Information Management, Ta Hwa Institute of Technology, Hsinchu, 30740, Taiwan, ROC*

^b *Department of Computer Science, National Chiao Tung University, Hsinchu, 30010, Taiwan, ROC*

^c *Department of Computer Science and Information Engineering, Providence University, Taichung, 43301, Taiwan, ROC*

ARTICLE INFO

Article history: Received 11 June 2007 Received in revised form 6 January 2009 Accepted 6 January 2009

Keywords: Hamiltonian Hamiltonian connected Interconnection networks

A B S T R A C T

In this work, we concentrate on those *n*-vertex graphs *G* with $n \geq 4$ and $\bar{e} \leq n - 4$. Let $P_1 = \langle u_1, u_2, \ldots, u_n \rangle$ and $P_2 = \langle v_1, v_2, \ldots, v_n \rangle$ be any two hamiltonian paths of *G*. We say that P_1 and P_2 are *orthogonal* if $u_1 = v_1$, $u_n = v_n$, and $u_q \neq v_q$ for $q \in \{2, n - 1\}$. We say that a set of hamiltonian paths {*P*1, *P*2, . . . , *Ps*} of *G* are *mutually orthogonal* if any two distinct paths in the set are orthogonal. We will prove that there are at least two orthogonal hamiltonian paths of *G* between any two different vertices. Furthermore, we classify the cases such that there are exactly two orthogonal hamiltonian paths of *G* between any two different vertices. Aside from these special cases, there are at least three mutually orthogonal hamiltonian paths of *G* between any two different vertices.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this work, a network is represented as a loopless undirected graph. For graph definitions and notation we follow [\[1\]](#page-2-0). $G = (V, E)$ is a graph if *V* is a finite set and *E* is a subset of $\{(u, v) | (u, v)$ is an unordered pair of *V*}. We say that *V* is the *vertex set* and *E* is the *edge set*. Two vertices *u* and *v* are *adjacent* if $(u, v) \in E$. Let *S* be a subset of *V*. The subgraph of *G* induced by S is the graph $G[S]$ with $V(G[S]) = S$ and $E(G[S]) = \{(u, v) | (u, v) \in E, \text{ and } u, v \in S\}$. The complement \overline{G} of a graph *G* is with the same vertex set $V(G)$ defined by $(u, v) \in E(\overline{G})$ if and only if $(u, v) \notin E(G)$. We use \overline{e} to denote $|E(\overline{G})|$. The *degree* of a vertex u of G , deg $_G(u)$, is the number of edges incident with u . A path, $\langle v_0, v_1, v_2, \ldots, v_k \rangle$, is an ordered list of distinct vertices such that v*ⁱ* and v*i*+¹ are adjacent for 0 ≤ *i* ≤ *k* − 1. A path is a *hamiltonian path* if its vertices are distinct and span *V*. A graph *G* is *hamiltonian connected* if there exists a hamiltonian path joining any two vertices of *G*. A *cycle*, $\langle v_0, v_1, \ldots, v_k, v_0 \rangle$, is a path with at least three vertices such that the first vertex is the same as the last vertex. A cycle is a *hamiltonian cycle* if it traverses every vertex of *G* exactly once. A graph is *hamiltonian* if it has a hamiltonian cycle.

Let $P_1 = \langle u_1, u_2, \ldots, u_n \rangle$ and $P_2 = \langle v_1, v_2, \ldots, v_n \rangle$ be any two hamiltonian paths of an *n*-vertex hamiltonian connected graph *G*. We say that P_1 and P_2 are *orthogonal* if $u_1 = v_1$, $u_n = v_n$, and $u_q \neq v_q$ for $q \in \{2, n - 1\}$. We say that a set of hamiltonian paths {*P*1, *P*2, . . . , *Ps*} of *G* are *mutually orthogonal* if any two distinct paths in the set are orthogonal.

In this work, we concentrate on those *n*-vertex graphs *G* with $n > 4$ and $\bar{e} < n - 4$, By the famous Ore's Theorem [\[2\]](#page-2-1), *G* is hamiltonian connected. Yet, we will prove that there are at least two orthogonal hamiltonian paths of *G* between any two different vertices. Furthermore, we classify the cases such that there are exactly two orthogonal hamiltonian paths of *G* between any two different vertices. Thus, there are at least three mutually orthogonal hamiltonian paths of *G* between any two different vertices except for the cases mentioned above. This result can be used to compute the fault-tolerant hamiltonian connectivity of the WK-recursive networks [\[3\]](#page-2-2).

Corresponding author. *E-mail address:* hoho@thit.edu.tw (T.-Y. Ho).

^{0893-9659/\$ –} see front matter © 2009 Elsevier Ltd. All rights reserved. [doi:10.1016/j.aml.2009.01.058](http://dx.doi.org/10.1016/j.aml.2009.01.058)

Fig. 1. Illustration of $C_{m,n}$.

2. Mutually orthogonal hamiltonian paths

The following theorem is proved by Ore [\[2\]](#page-2-1).

Theorem 1 ($[2]$). Assume that G is an n-vertex graph with $n \geq 4$. Then G is hamiltonian if $\bar{e} \leq n-3$, and is hamiltonian *connected if* \bar{e} < *n* − 4*.*

Let *G* and *H* be two graphs. We use *G* + *H* to denote the disjoint union of *G* and *H*. We use *G* \vee *H* to denote the graph obtained from G+H by joining each vertex of G to each vertex of H. For $1 \le m < n/2$, let $C_{m,n}$ be the graph $(K_m + K_{n-2m}) \vee K_m$. See [Fig. 1](#page-1-0) for an illustration.

The following theorem is proved by Chvátal [\[4\]](#page-2-3).

Theorem 2 ([\[4\]](#page-2-3)). If G is an n-vertex graph where $n \geq 3$ and $|E(G)| > C_2^{n-1} + 1$, then G is hamiltonian. Moreover, the only *non-hamiltonian graphs with n vertices and* C_2^{n-1} *+ 1 edges are* $C_{1,n}$ *and, for* $n = 5$ *,* $C_{2,5}$ *.*

Suppose that *G* is an *n*-vertex graph with \bar{e} < *n* − 4. Assume that *n* = 4. Obviously, *G* is isomorphic to K_4 . It is easy to check that there are exactly two orthogonal hamiltonian paths between any two distinct vertices of *G*.

Assume that $n = 5$. Obviously, G is isomorphic either to K_5 or to $K_5 - e$ where *e* is any edge of K_5 . We label the vertices of K_5 with $\{1, 2, 3, 4, 5\}$ and we set $e = (1, 2)$. Suppose that *G* is isomorphic to K_5 . It is easy to check that there are exactly three mutually orthogonal hamiltonian paths of *G* between any two vertices. Suppose that *G* is isomorphic to K_5 − (1, 2). By brute force, we can check that there are exactly three mutually orthogonal hamiltonian paths between vertices 1 and 2. However, there are exactly two orthogonal hamiltonian paths between the remaining pairs.

Now, we assume that $n \geq 6$. Let *s* and *t* be any two distinct vertices of *G*. Let *H* be the subgraph of *G* induced by the remaining (*n* − 2) vertices of *G*. We have the following two cases:

Case 1: *H* is hamiltonian. We can label the vertices of *H* with {0, 1, 2, . . . , *n* − 3} such that $\langle 0, 1, 2, ..., n - 3, 0 \rangle$ forms a hamiltonian cycle of *H*. We use the notation [*i*] to denote *i* **mod** $(n - 2)$. Let *Q* denote the set {*i* | $(s, [i + 1]) \in$ *E*(*G*) and (*i*, *t*) ∈ *E*(*G*)}. Since \bar{e} ≤ *n* − 4, |*Q*| ≥ *n* − 2 − (*n* − 4) = 2. There are at least two elements *q*₁, *q*₂ in *Q*. We set P_i as $\langle s, [q_j + 1], [q_j + 2], \ldots, [q_j], t \rangle$ for $j = 1, 2$. Then P_1 and P_2 are two orthogonal hamiltonian paths between s and t.

Suppose that $\bar{e} \leq n-5$, $(s, t) \notin E$, or *H* is not isomorphic to the complete graph K_{n-2} . Then $|Q| \geq 3$. Let q_1, q_2 , and q_3 be the three elements in Q. For $j = 1, 2$, and 3, we set P_j as $\langle s, [q_j + 1], [q_j + 2], \ldots, [q_j], t \rangle$. Then P_1, P_2 , and P_3 are three mutually orthogonal hamiltonian paths between *s* and *t*.

Thus, we consider \bar{e} = *n* − 4, (*s*, *t*) \in *E*, and *H* is isomorphic to the complete graph K_{n-2} . Let *ST* be the set of vertices in *H* that are adjacent to *s* and *t*, let *ST* be the set of vertices in *H* that are adjacent to *s* but not adjacent to *t*, let *ST* be the set of vertices in *H* that are not adjacent to *s* but adjacent to *t*, and let \overline{ST} be the set of vertices in *H* that are neither adjacent to *s* nor adjacent to *t*.

Let $a=|ST|$, $b=|\bar{ST}|$, $c=|\bar{S}T|$, and $d=|\bar{S}\bar{T}|$. Without loss of generality, we assume that $\deg_G(s)\geq \deg_G(t)$. Then $b\geq c$, *b* + *c* + 2*d* = *n* − 4, and *a* + *b* + *c* + *d* = *n* − 2. Thus, *a* − *d* = 2. Hence, *a* > 2.

Suppose $a \geq 3$. Let q_1, q_2 , and q_3 be three vertices in *ST* and $q_4, q_5, \ldots, q_{n-2}$ be the remaining vertices of *H*. We set P_1 as $\langle s, q_1, q_2, X, q_3, t \rangle$, P_2 as $\langle s, q_2, q_3, Y, q_1, t \rangle$, and P_3 as $\langle s, q_3, Z, q_1, q_2, t \rangle$ where X, Y, and Z are any permutations of $q_4, q_5, \ldots, q_{n-2}$. Obviously, P_1, P_2 , and P_3 are three mutually orthogonal hamiltonian paths between *s* and *t*.

Suppose $a = 2$. Then $d = 0$. Suppose $c \ge 1$. Then $b \ge 1$. We rearrange the vertices of H so that 0 is a vertex in *ST*, 1 and 2 are the vertices in *ST*, 3 is a vertex in *ST*, and 4, 5, . . . , *n* − 3 are the remaining vertices. Obviously, $(0, 1, 2, ..., n - 3, 0)$ forms a hamiltonian cycle of *H*. Let *Q* denote the set $\{i \mid (s, i) \in E(G) \}$ and $(\{i + 1\}, t) \in E(G)\}$. Obviously, $|Q| \geq 3$. Thus, there are three mutually orthogonal hamiltonian paths between *s* and *t*.

Finally, we consider $a = 2$, $d = 0$, and $c = 0$. Thus, $b = n - 4$. In this case, *s* is adjacent to *t* and all the vertices in *H*; *t* is adjacent to *s* and exactly two vertices in *H*, say q_1 and q_2 . Let $\langle s = v_1, v_2, \ldots, v_n = t \rangle$ be a hamiltonian path of *G* between *s* and *t*. Obviously, v*n*−¹ is either *q*¹ or *q*2. Therefore, there are exactly two orthogonal hamiltonian paths between *s* and *t*.

Case 2: *H* is non-hamiltonian. There are exactly $(n - 2)$ vertices in *H*. By [Theorem 2,](#page-1-1) there are exactly $(n - 4)$ edges in the complement of *H* and *H* is isomorphic to $C_{1,n-2}$ or $C_{2,5}$. Hence, *s* is adjacent to *V*(*G*) − {*s*} and *t* is adjacent to *V*(*G*) − {*t*}.

Fig. 2. (a) C_2 5 and (b) C_1 _{n−2}.

We can construct two orthogonal hamiltonian paths of *G* between *s* and *t* as the following cases:

Subcase 2.1: *H* is isomorphic to $C_{2.5}$. We label the vertices of $C_{2.5}$ with {1, 2, 3, 4, 5} as shown in [Fig. 2\(](#page-2-4)a). Let $P_1 =$ $\langle s, 1, 2, 3, 4, 5, t \rangle$ and $P_2 = \langle s, 3, 4, 5, 2, 1, t \rangle$. Then P_1 and P_2 form the required orthogonal paths. By brute force, we can check that there are exactly two orthogonal hamiltonian paths between *s* and *t*.

Subcase 2.2: *H* is isomorphic to $C_{1,n-2}$. We label the vertices of $C_{1,n-2}$ with $\{1, 2, \ldots, n-2\}$ as shown in [Fig. 2\(](#page-2-4)b). Let *P*₁ = \langle s, 1, 2, 3, . . . , *n* − 2, *t*) and *P*₂ = \langle s, 3, 4, . . . , *n* − 2, 2, 1, *t*). Then *P*₁ and *P*₂ form the orthogonal hamiltonian paths. Let $\langle s = v_1, v_2, \ldots, v_n = t \rangle$ be any hamiltonian path of *G* between *s* and *t*. Obviously, 1 is either v_2 or v_{n-1} . Therefore, there are exactly two orthogonal hamiltonian paths between *s* and *t*.

From the above discussions, we have the following theorem.

Theorem 3. Assume that G is an n-vertex graph with $n \geq 4$ and $\bar{e} \leq n-4$. Let s and t be any two vertices of G. Then there are at *least two orthogonal hamiltonian paths of G between s and t. Moreover, there are at least three mutually orthogonal hamiltonian paths of G between s and t except for the following cases:*

- (1) *G is isomorphic to K*⁴ *where s and t are any two vertices of G.*
- (2) *G* is isomorphic to $K_5 (1, 2)$ where s and t are any two vertices except for $\{s, t\} = \{1, 2\}$ *.*
- (3) *The subgraph H induced by V*(*G*) − {*s*, *t*} *is a complete graph with n* ≥ 6 *where s is adjacent to t and all the vertices in H and t is adjacent to s and exactly two vertices in H.*
- (4) *The subgraph induced by V*(*G*)− {*s*, *t*} *is isomorphic to C*2,⁵ *where s is adjacent to V*(*G*)− {*s*} *and t is adjacent to V*(*G*)− {*t*}*.*
- (5) *The subgraph induced by V*(*G*) − {*s*, *t*} *is isomorphic to* $C_{1,n-2}$ *with* $n \ge 6$ *where s is adjacent to* $V(G) \{s\}$ *and t is adjacent to* $V(G) - \{t\}$ *.*

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North Holland, New York, 1980.
- [2] O. Ore, Coverings of graphs, Annali di Matematica pura ed Appllicata 55 (1961) 315–321.
- [3] T.Y. Ho, C.K. Lin, J.J.M. Tan, L.H. Hsu, Fault-tolerant hamiltonian connectivity of the WK-recursive networks, Information Sciences (submitted for publication).
- [4] V. Chvátal, On Hamilton's ideal, Journal of Combinatorial Theory (B) 12 (1972) 163–168.