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Global synchronization in complex networks has attracted considerable interest in various fields.
There are mainly two analytical approaches for studying such time-varying networks. The first
approach is Lyapunov function-based methods. For such an approach, the connected-graph-stability
�CGS� method arguably gives the best results. Nevertheless, CGS is limited to the networks with
cooperative couplings. The matrix measure approach �MMA� proposed by Chen, although having a
wider range of applications in the network topologies than that of CGS, works for smaller numbers
of nodes in most network topologies. The approach also has a limitation with networks having
partial-state coupling. Other than giving yet another MMA, we introduce a new and, in some cases,
optimal coordinate transformation to study such networks. Our approach fixes all the drawbacks of
CGS and MMA. In addition, by merely checking the structure of the vector field of the individual
oscillator, we shall be able to determine if the system is globally synchronized. In summary, our
results can be applied to rather general time-varying networks with a large number of nodes.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3212941�

Synchronization of networks of dynamical systems is fre-
quently observed in nature and technology.1,2 Recently,
the study of synchronization phenomena in complex net-
works with different topologies has received much
attention.3–15 There are mainly two analytical approaches
for studying such time-varying networks. The first ap-
proach is Lyapunov function-based methods. For such an
approach, the connected-graph-stability (CGS) method
arguably gives the best results. Nevertheless, CGS is lim-
ited to the networks with cooperative couplings. The ma-
trix measure approach (MMA) proposed by Chen, de-
spite a wider range of applications in the network
topologies than that of CGS, works for smaller numbers
of nodes in most network topologies. The approach also
has a limitation with networks having partial-state cou-
pling. In the current work, generalizing our previous
work,26 which considered time-independent networks, we
are able to fix all the drawbacks of CGS and MMA. In
addition, by merely checking the structure of the vector
field of the individual oscillator, we shall be able to deter-
mine if the system is globally synchronized. In summary,
our results can be applied to rather general time-varying
networks with a large number of nodes.

I. INTRODUCTION

During the past few decades the study of networks of
dynamical systems has generated a rapidly growing interest
in theoretical physics and other fields of science. Particularly,
an increasing interest has been focused on complex networks
with different topologies.3–30 Complex networks, including

the Internet, the World Wide Web, and electrical power grids,
are prominent candidates to describe sophisticated collabora-
tive dynamics in many sciences.3–17

As one of the basic characteristics of a dynamical net-
work, synchronizing a crowd of dynamical nodes within the
complex networks has become an important and interesting
research topic in many fields.3–30 General approaches to local
synchronization of coupled chaotic systems have been pro-
posed, including the master stability function-based
criteria6,7,31,32 and the MMA.17,33 Typically, in networks of
coupled chaotic systems, the synchronous solution becomes
stable when the coupling strength between the oscillators
exceeds a critical value. However, a few examples34,35 were
reported to be inconsistent with this pattern. Among them is
a lattice of the x-component coupled Rössler systems in
which the stability of synchronization regime is lost with an
increase in coupling strengths. Furthermore, even if the
coupled system always stays in a compact set and local syn-
chronization occurs, global synchronization can be absent
due to the possible presence of different invariant sets lying
outside the synchronous manifold �in certain cases, this is a
multistability effect�. As a result, global synchronization of
coupled chaotic systems was also intensively studied.

The methods to deal with global synchronization include
but not limited to Lyapunov function-based
criteria12,14,23,35–38 as well as the MMA.26,33,39 Among the
Lyapunov function-based criteria, the CGS22–25 has the wid-
est range of the applicability. Indeed, the method can be ap-
plied to the asymmetrically coupled networks that are time
varying. However, the couplings in the network are assumed
to be non-negative. In fact, there exist some networks with
both negative/competitive and positive/cooperative cou-
plings. Recently, the MMA proposed by Chen17,33 has been
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very successful in treating local synchronization with com-
plex network topologies. In Refs. 33 and 39 some global
synchronization theorems were also obtained via a similar
MMA. Even though the theorems can be applied to a wider
range of complex networks than those obtained by CGS,
there are two drawbacks. First, the number of nodes consid-
ered may be limited. The matrix measure of the diffusive
synchronization stability matrix �see, e.g., Refs. 33 and 39�,
which is equivalent to our GC1

�t� �see Eq. �5b��, is size de-
pendent. Its corresponding matrix measure can go from
negative to positive as the size of the nodes increases. In-
deed, given a near-neighbor coupling with periodic boundary
conditions if the number of nodes is greater than 7, then GC1
has positive matrix measure �see Table I�. Second, their ap-
proach works better for systems of the full-state coupling
between connected nodes as opposed to those of the partial-
state coupling. It should be noted that the partial-state cou-
pling also finds applications in various fields. For instance, in
self-pulsating laser diode equations �see, e.g., Ref. 40�, only
the photon density can be coupled with the electron density
of the active region. Moreover, in the case of coupled chaotic
systems, the systems that are partial state coupled may ex-
hibit different dynamic behavior. For instance, it is well
known �see, e.g., Ref. 26� that for the coupled Lorentz sys-
tems, if the x-component or y-component is coupled, the
resulting system then achieves synchronization. In contrast,
the network would fail to be synchronized provided that only
the z-component is coupled.

The purpose of this paper is to give a different MMA,
which was originated in Ref. 26 to study global synchroni-
zation in time-varying complex networks. In particular, a
new and, in some cases, optimal coordinate transformation is
introduced to remedy the first drawback of MMA. Moreover,
by taking account of the structure of the uncoupled parts of
the vector field of the individual oscillators, we are able to
avoid the second drawback of MMA. In short, our approach
fixes both drawbacks of Chen’s approach and preserves their
salient feature of wider applicability of complex networks. In
addition, by merely checking the structure of the vector field
of the individual oscillator, we shall be able to determine if
the system is globally synchronized. Moreover, a rigorous
lower bound on the coupling strength for global synchroni-
zation of all oscillators is also obtained. The paper is orga-
nized as follows. Section II is to lay down the foundation of
our paper. The properties of the new coordinate transforma-
tion and its resulting coupling matrix G�t� are studied in Sec.
III. The main results are contained in Sec. IV. Some ex-
amples to illustrate the effectiveness of our approach and to

compare with the existing methods are recorded in Sec. V.
The examples include some complex networks such as the
star type, the wavelet transformed type, the pristine world
joining with some randomness, the generalized wheel type,
and the prism type. In Sec. VI, we summarize our main
results and give some concluding remarks. The needed defi-
nitions and properties of matrix measures of matrices and
some technical proofs leading to the main results of our pa-
per are recorded in Appendices A and B, respectively.

II. BASIC FRAMEWORK

In this paper, we will denote scalar variables in lower
case, matrices in bold type upper case, and vectors �or
vector-valued functions� in bold type lower case. We con-
sider an array of m nodes/oscillators, coupled linearly to-
gether, with each node/oscillator being an n-dimensional sys-
tem. The entire array is a system of nm ordinary differential
equations. In particular, the state equations are

dxi

dt
= f�xi,t� + d · �

j=1

m

gij�t�Dx j, i = 1,2, . . . ,m , �1a�

where D= �dij�n�n is the inner coupling matrix, xi

= �xi1 ,xi2 , . . . ,xin�T�Rn, and f is a vector-valued function
form Rn�R→Rn denoted by

f�xi,t� = � f1�xi,t�
]

fn�xi,t�
� . �1b�

Let x= �x1 ,x2 , . . . ,xm�T and G�t�= �gij�t��m�m. Then G�t� rep-
resents the �outer� coupling configuration of the network at
time t. Equivalently, Eq. �1a� becomes

ẋ = � f�x1,t�
]

f�xm,t�
� + d�G�t� � D�x ¬ F�x,t� + d�G�t� � D�x ,

�2�

where � denotes the Kronecker product. To study the syn-
chronization of Eq. �2�, we assume, throughout the paper,
that

G�t�e = 0 ∀ t , �3a�

where e=1 /�m�1,1 , . . . ,1�T. Such assumption above is to
ensure the invariant property of the synchronization manifold
M= 	x :xi=x j ,1� i , j�m
.

We further assume that the inner coupling matrix D is,
without loss of generality, of the form

D = �Ik 0

0 0
�

n�n
. �3b�

The index k, 1�k�n, means that the first k components of
the individual system are coupled. If k�n, then the system is
said to be partial state coupled. Otherwise, it is said to be full
state coupled.

Definition 1: System �1a� is said to have global synchro-
nization if for each initial condition x�0��Rnm, the trajectory
x�t� satisfies

TABLE I. The table gives the matrix measures of GCi
, i=1,2 with various

size of G, which is given in Eq. �9�. Since G is a circular matrix, the matrix
measures of G with respect to C1 and C2 are equal. Note that the matrix
measure of GC is �2�G�, ∀C�O, which is negative regardless of the size
of G.

m 4 5 6 7 8 9

C1 �1.78 �1 �0.51 �0.19 0.05 0.23
C2 �1.78 �1 �0.51 �0.19 0.05 0.23
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lim
t→�

�
1�i�j�m


xi�t� − x j�t�
 = 0.

Permute the state variables in the following way:

x̃i = �x1i

]

xmi
�

,

and x̃ = �x̃1

]

x̃n
� . �4a�

Then Eq. �2� can be written equivalently as

ẋ̃ = � f̃1�x̃,t�
]

f̃n�x̃,t�
� + d�D � G�t��x̃ ¬ F̃�x̃,t� + d�D � G�t��x̃ ,

�4b�

where

f̃i�x̃,t� = � f i�x1,t�
]

f i�xm,t�
� . �4c�

The purpose of such a reformulation is twofold. First, a
transformation of coordinates of x̃ is to be applied to Eq. �4b�
so as to isolate the synchronous manifold. Second, once the
synchronous manifold is isolated, proving synchronization of
Eq. �2� is then equivalent to showing that the origin is as-
ymptotically stable with respect to reduced system �7a�. To
this end, we first make a coordinate change to isolate the
synchronous subspace. Let C be an �m−1��m full-rank ma-
trix with all its row sums being zero. Such a matrix is to be
termed as coordinate transformation. Define

A = �C

eT � . �5a�

Then A−1= �CT�CCT�−1 ,e� and

AG�t�A−1 = �CG�t�CT�CCT�−1 0

eTG�t�CT�CCT�−1 0
�¬ �GC�t� 0

h�t�T 0
� .

�5b�

Let E=In � A and ỹ=Ex̃. Multiplying E to both sides of Eq.
�4b�, we get

ẏ̃ = EF̃�E−1ỹ,t� + d�D � �GC�t� 0

h�t�T 0
��ỹ .

Let ỹ= �ỹ1 , . . . , ỹn�T. Then

ỹi = � Cx̃i

�
j=1

m

xji/�m�¬ �yi

ei
� . �6�

Setting y= �y1 , . . . ,yn�T, we have that the dynamics of y is
now satisfied by the following equation:

ẏ = d�D � GC�t��y + F�y,t� , �7a�

where

F�y,t� = �In � C� · F̃�E−1ỹ,t� . �7b�

Since the rank and the row sums of C are m−1 and 0,
respectively, we conclude that the task of obtaining global
synchronization of system �1a� is now reduced to showing
that the origin is globally and asymptotically stable with re-
spect to system �7a�. The choice of a coordination transfor-
mation will greatly influence how negative the matrix mea-
sure of GC�t� could be, which plays the important role,
among others, to determine the global stability of Eq. �7a�
with respect to the origin.

III. MATRICES OF THE COORDINATE
TRANSFORMATION

In what follows we shall address the question of how to
choose a matrix C of the coordinate transformation and its
corresponding properties. To make the origin an asymptoti-
cally stable equilibrium of system �7a�, one would like to
have the matrix measure of GC�t� as smaller a negative num-
ber as possible. In fact, such an optimal choice C can be
achieved provided that the outer coupling matrix G�t� is
symmetric, nonpositive definite.

Definition 2: Denote by C the set of �m−1��m coordi-
nate transformations, i.e.,

C = 	C � R�m−1��m:C is full rank, and all its row sums are zero
 .

Let O�C be such that

O = 	C � C:C such that matrix A = �CT,e�T is orthogonal
 .

Theorem 1: Assume that all eigenvalues of outer cou-
pling matrix G�t� have nonpositive real parts. Then
infC�C �2�GC�t���Re �2�G�t��. Here Re �2�G�t�� is the sec-
ond largest real part of eigenvalues of G�t�. If, in addition,
G�t� is symmetric for all t, then the above equality can be
achieved by choosing any C in O.

Proof: It follows from Eq. �5b� that the spectrum
	�GC�t�� of GC�t� is equal to 	�G�t��− 	0
. Using the fact
that Re ��K���max�K+KT /2� for any real matrix K, we
have, via Eq. �A1�, that �2�GC�t���Re �2�G�t��. In particu-
lar, if C�O and G�t� is symmetric, then GC�t��=CG�t�CT� is
symmetric and h�t�=0. Here h�t� is given as in Eq. �5b�.

033131-3 Transformation measure synchronization Chaos 19, 033131 �2009�
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Therefore, �2�GC�t��=�2�G�t��. We have just completed the
proof of the theorem.

The theorem above amounts to saying that if G�t� is
symmetric, nonpositive definite, then any choice of C in O

yields the smallest possible matrix measure of GC�t�. This, in
turn, gives one the best possible position to study the stabil-
ity of Eq. �7a� with respect to the origin.

Remark 1: In those earlier papers �see, e.g., Refs. 12, 26,
and 33�, the choice of the coordinate transformations is ei-
ther

C1 =�
1 − 1 0 ¯ 0

1 0 − 1 � ]

] ] � � 0

1 0 ¯ 0 − 1
� or

�8�

C2 =�
1 − 1 0 ¯ 0

0 1 − 1 � ]

] � � � 0

0 ¯ 0 1 − 1
� .

The drawback for such a choice of C is that even if
G�t���G� is the diffusive matrix with periodic boundary
conditions, i.e.,

G�t� ��
− 2 1 0 ¯ 0 1

1 − 2 1 0 ¯ 0

0 � � � � ]

] � � � � 0

0 ¯ 0 1 − 2 1

1 0 ¯ 0 1 − 2

�
m�m

, �9�

the corresponding matrix measure of GCi
, i=1,2 is positive

whenever m
7 �see Table I�, while �2�GC�=�2�G��0 for
all C�O regardless of the size of G.

Theorem 2: For any outer coupling matrix G�t� and any
coordinate transformations Cp, Cq in O, �2�GCp

�t��
=�2�GCq

�t��.
Proof: Since for any x�Rm−1, there is z=CqCp

Tx such
that

xTCp�G�t� + G�t�T�Cp
Tx = zTCq�G�t� + G�t�T�Cq

Tz .

By the definition of matrix measure, we have that
�2�GCp

�t��=�2�GCq
�t��.

From here on, the matrix C in Eq. �7a� is assumed to lie
in D unless otherwise stated. For ease of the notations, we
shall drop the subscript C of GC�t� if C�O. The remainder
of the section is devoted to finding the matrix measure of
G�t� where its corresponding coupling matrix G�t� appears
often in many applications.

Proposition 1: Assume that for each t, G�t� is a node-
balancing matrix, i.e., its row sums and column sums are
equal. Then

�2�G�t�� = �2�G�t� + G�t�T

2
� , �10�

whenever all eigenvalues of G�t�+G�t�T are nonpositive.

Proof: If G�t� is as assumed, then it follows from Eq.
�5b� that

AG�t�A−1 = �G�t� 0

0 0
� .

Consequently, Eq. �10� holds as asserted.
In what follows, some outer coupling matrices are to be

provided. Their corresponding matrix measures of G�t� and

GCi
�t�, i=1 or 2, are to be compared.
Example 1: �Belykh et al. �Ref. 22�� Consider the regu-

lar coupled network by adding to the pristine world G �the
ring of 2K-nearest coupled oscillators� an additional global
coupling such that the coupling p�t�, 0� p�t��1 is placed on
all free spots of the matrix G �see, e.g., Ref. 22�. Specifically,
the resulting coupling matrix G�t� can be represented by a
circular matrix of the form

G�t� = circ�− g�t�,1, . . . ,1
K

,p�t�, . . . ,p�t�

m−2K−1

,1, . . . ,1
K

� , �11�

where g�t�=2K+ �m−2K−1�p�t�. Since G�t� is symmetric,
we have that

�2�G�t�� = �2�G�t��

= max
1�j�m−1

�− g�t� + �
l=1

K

��lj + ��m−l�j�

+ p�t� �
l=K+1

m−K−1

�lj� .

Here �=exp�2�i /m�. The matrix measures �2�G�t�� and
�2�GCi

�t��, i=1,2, with p�t�= t, t� �0,1� are recorded in
Fig. 1.

Example 2: �Wei et al. �Ref. 41�; Juang et al. �Ref. 42��
Let G=G


�m�, 0�
�1 be the diffusive matrix of size m
�m with mixed boundary conditions. That is, if m
2,

0 0.2 0.4 0.6 0.8 1
-16

-14

-12

-10

-8

-6

-4

-2

t

m
a

t.
m

e
a

.

µ2(ḠCi
(t))

µ2(Ḡ(t))

FIG. 1. �Color online� The matrix measures of G�t� and GCi
�t�, i=1,2 with

G being given in Eq. �11� and p�t�= t are, respectively, represented by the
solid line and the dotted lines above. Lines for GCi

�t�, i=1,2 are coincided
since G�t� is circular for all t.
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G

�m� =�

− 1 − 
 1 0 ¯ 0 


1 − 2 1 0 ¯ 0

0 � � � � ]

] � � � � 0

0 ¯ 0 1 − 2 1


 0 ¯ 0 1 − 1 − 


�
m�m

,

�12�

and if m=2,

G

�2� = �− 1 − 
 1 + 


1 + 
 − 1 − 

� .

For such G, �2�G�=�2�G��0. However, �2�G� would move
closer to the origin as the number of nodes increases. As a
result, synchronization of the network is more difficult to be
realized as the number m of nodes increases. In Refs. 41 and
42 a wavelet transformation method is proposed to alter the
connectivity topology of the network. In doing so, �2�G�t��
=�2�p�t�� becomes a quantity depending on wavelet param-
eter p�t�. By choosing suitable p�t�, which is a wavelet trans-
formation method41,42 applied to the coupling matrix G


�m�,
one would expect that �2�p�t�� will move away from the
origin regardless of the number of the nodes. Under such a
reconstruction, the resulting coupling matrix G�t� is of the
following form:

G�t� = G

�m� + p�t��G


�m/k�
� eeT� , �13�

where e= �1, . . . ,1�T. Here we assume p�t��0 and k=2l for
some l�N, and m=Nk for some N�N− 	1
. Since the re-
constructed matrix G�t� is symmetric, �2�G�t��=�2�G�t��
�0. The matrix measures �2�G�t�� and �2�GCi

�t��, i=1,2,
with p�t�= t, t� �0,1� are recorded in Fig. 2.

Example 3: Let

G�t� = circ�− 2,2,0, . . . ,0

m

� .

Since G�t� is a node-balancing matrix, �2�G�t��=�2�G�t��

�0. Note that the values of �2�GCi
�, i=1,2, are positive

provided that m
5 �see Table II�.
Proposition 2: Let C= �c1 , . . . ,cm−1�T�O. If, in addition,

	ci
i=1
m−1 are pairwise G�t�-conjugate, i.e., ci

TG�t�c j =0, ∀1
� i� j�m−1, then G�t� is a diagonal matrix. Moreover,

�2�G�t�� = �2�G�t�� , �14�

whenever all eigenvalues of G�t� are nonpositive.
Proof: Note that G�t�=CG�t�CT= �ci

TG�t�c j�. Hence, G�t�
is a diagonal matrix. Therefore, the assertion in Eq. �14�
holds as asserted.

Example 4: �Chen �Ref. 33�� Let G�t� describe a star-
typed coupled network of the form

G�t� =�
− d1�t� d1�t�

� ]

− d1�t� d1�t�
1 ¯ 1 − �m − 1�

�
m�m

. �15�

Here d1�t� is a real number. We next show that a set 	ci
i=1
m−1

of column vectors can be chosen so that C= �ci , . . . ,cm−1�
�O and that 	ci
i=1

m−1 are pairwise G�t�-conjugate. Define �i

= �i�i+1��−1/2, i=1, . . . ,m−1. Let

ci
T = ��i, . . . ,�i

i

,− i�i,0, . . . ,0
m−i−1

�

for all i=1, . . . ,m−1. Then ci, i=1, . . . ,m−1 are orthonor-
mal vectors. Moreover, they are also G�t�-conjugate. To see
this, we first note that d1�t� is an eigenvalue of G�t� and its
associated eigenvectors are ci, i=1, . . . ,m−2. Therefore,
ci

TG�t�c j =0 for all 1� i� j�m−2. Some direct computation
would yield that ci

TG�t�cm−1=0 for i=1, . . . ,m−2 and that
cm−1

T G�t�cm−1=−d1�t�− �m−1�. By Proposition 2, we have
that

�2�GC�t�� = max	− d1�t�,− d1�t� − �m − 1�
 = − d1�t� .

�16�

The matrix measures �2�G�t�� and �2�GCi
�t��, i=1,2, with

p�t�= t, t� �0,1� are demonstrated in Fig. 3.
The remainder of the section is to address the system

with even more complex topology.
Proposition 3: Let G�t�=O�t�+P�t� with O�t� and P�t�

having all its row sums zero. Suppose further that P�t� is
node balancing. Then

�2�G�t�� � �2�O�t�� + �2�P�t� + P�t�T

2
� ,

whenever all eigenvalues of P�t�+P�t�T are nonpositive.
Proof: Noting that G�t�=CG�t�CT=O�t�+CP�t�CT, we

easily conclude that the above inequality holds as asserted.
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m
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m
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. µ2(ḠC1
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µ2(ḠC2
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µ2(Ḡ(t))

FIG. 2. �Color online� The matrix measures of G�t� and GCi
�t�, i=1,2 with

G given in Eq. �13� and p�t�= t are, respectively, represented by the solid
line and the dotted lines above.

TABLE II. The table gives the matrix measures of GCi
, i=1,2 with various

size of G, which is given in Example 3.

m 4 5 6 7 8 9

C1 �0.83 �0.17 0.24 0.54 0.78 0.98
C2 �0.83 �0.17 0.24 0.54 0.78 0.98
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Example 5: �Belykh et al. �Ref. 22�� Consider the outer
coupling matrix G�t� to be of random type. Specifically, G�t�
is of the form

G�t� = circ�− 2K,1, . . . ,1

K

,0, . . . ,0

m−2K−1

,1, . . . ,1

K

� + P�t�

¬ O + P�t� , �17�

where P�t�¬ �pij�t�� is a symmetric matrix with all its row
sums being zero and satisfies pij�t��0 for �i , j� with i
− j mod m�K or j− i mod m�K, and pij�t�=Sij�q� for �q
−1��� t�q� for all remaining pairs �i , j� with i� j. Here
each of Sij�q� is a random variable that takes the value 1 with
probability p and 0 with probability 1− p.

The random variables Sij�q� are assumed to be all inde-
pendent. To each realization � of this stochastic process
S�1� ,S�2� , . . ., where S�q�= 	Sij�q� , i=1, . . . ,n , j= i
+ l mod n , l=K+1, . . . , �n /2�
, i.e., to each switching se-
quence �, there corresponds a time-varying system described
by Eq. �2�.

Since P�t� is symmetric, by Proposition 3,

�2�G�t�� � �2�O� + �2�P�t�� � �2�O� = �2�O� � 0.

Let G�t��G. Generally speaking, infC�C �2�GC�
��2�GC� for any C�O. Nevertheless, �2�GC� produces a
good upper bound of infC�C �2�GC�.

To support the observation, we conclude this section by
providing some additional network topologies where the ma-
trix measure of its corresponding GC�t�, C�O is smaller
than that of GCi

, i=1,2. As a matter of fact, �2�GCi
�, i

=1,2, switch signs as the number of nodes increases. In con-
trast, �2�GC� mostly remains negative as the size of the sys-
tem grows.

Example 6: Consider a generalized wheel-typed coupled
network of the form as illustrated in Fig. 4�a�. The inner
nodes have the strong all-to-all connections. The outer nodes
are only directly connected with their nearest neighbors. The
communications between the inner and outer nodes are

through one way going from each inside node to its nearest
outside node. Specifically, such a network can be written as
the following:

G�t� � �G1 G2

G3 G4
�

m�m
, �18�

where

G1 =�
− �m

2
− 1� 1 ¯ 1

1 � � ]

] � � 1

1 ¯ 1 − �m

2
− 1��

m/2�m/2

,

corresponding to the all-to-all coupling, G2=0, G3=0.1I, and
G4=G1

�m/2�−0.1I. Here G1
�m/2� is the diffusive matrix with pe-

riodic boundary conditions and of size m /2�m /2. The nu-
merical computation suggests that the matrix measures of
GCi

, i=1,2, are positive provided that m�4 while that of
GC, C�O, remains negative �see Table III�.

Example 7: Consider the prism-typed coupled network
of the form as illustrated in Fig. 4�b�. The difference between
the generalized wheel-typed network and the one considered
here lies only on how the inner nodes communicate with
each other �see Fig. 4�. Specifically, such a network can be
written as the following:
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FIG. 3. �Color online� The matrix measures of G�t� and GCi
�t�, i=1,2 with

G being given in Eq. �15� and p�t�= t are, respectively, represented by the
solid line and the dotted lines above.
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FIG. 4. �Color online� Coupling topologies: �a� generalized wheel-typed
coupled network with m=2N and �b� prism-typed coupled network with
m=2N. Networks �a� and �b� appear in Examples 6 and 7, respectively.
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G�t� � �G1 G2

G3 G4
�

m�m
,

where G1=G1
�m/2�, G2=0, G3=0.1I, and G4=G1

�m/2�−0.1I.
The numerical computation suggests �see Table IV� that the
matrix measures of GCi

, i=1,2, are positive provided that
m�4, while that of GC, C�O, stays negative until m=86.
The example demonstrates that a coordinate transformation
C, C�O, is indeed a good candidate among all coordinate
transformations.

IV. MAIN RESULTS

In the section, we turn our attention back to the dynam-
ics of Eq. �7a� and analyze the stability of the origin of the
system. As in Ref. 26, we break the space y into two parts:
yc, the coupled space, and yu, the uncoupled space. Specifi-
cally, let

y = �yc

yu
�, and F�y,t� = �Fc�y,t�

Fu�y,t�
� . �19�

Here

yc = �y1

]

yk
�, and yu = �yk+1

]

yn
� .

Then Eq. �7a� can be rewritten in the form

� ẏc

ẏu

� = �d�Ik � G�t�� 0

0 U�t�
��yc

yu
� + �Fc�y,t�

Ru�y,t�
� , �20�

where Ru�y , t�¬Fu�y , t�−U�t�yu for some matrix U�t�. Note
that form �20� can always be achieved since the remainder
term Ru still depends on the whole space y. In what follows,
we shall give some intuitive explanations as to why assump-
tions on system �20� would make the origin into a globally
attracting equilibrium.

The dynamics on the coupled space with respect to the
linear part is under the influence of G�t�, which is assumed to
have the negative matrix measure. The dynamics of the non-
linear part on coupled space can then be controlled by choos-

ing a large coupling strength. On the other hand, the un-
coupled space has no stable matrix G�t� to play with. Thus,
its corresponding vector field Fu�y , t� must have a certain
structure to make the trajectory stay closer to the origin as
time progresses, which we shall explain more later. Specifi-
cally, the following list of assumptions is needed for our first
main theorem:

�H1†� System �20� or Eq. �7a� is bounded dissipative with
respect to �. By that, we mean that there is a
bounded region B¬ 	y : 
y
��
 such that for each
parameter d
0, and each initial value y�0�, there is
a time t0, such that y�t� lies in B whenever t� t0.

�H2†� There is some �
0 such that �2�G�t���−�, ∀t
�0.

�H3†� For any 0�
��, 
Fc�y , t�
�b1
 whenever 
y

�
. Here b1 is independent of 
 and t.

�H4†� Matrix U�t� is of block diagonal form, i.e., U�t�
=diag�U1�t� , . . . ,Ul�t��. Here the sizes of U j�t�, j
=1, . . . , l, are �m−1�kj � �m−1�kj. Moreover, there
is some �
0 such that the matrix measures
�2�U j�t���−� for all t sufficiently large and all j.

�H5†� Let

Ru�y,t� = �Ru1�y,t�
]

Rul�y,t�
�

with each Ruj�y , t��R�m−1��kj, ∀j=1, . . . , l, where l,
kj are given as in �H4†�. There is some b2
0 such
that for each j=1, . . . , l, 
Ruj�y , t�
�b2
 whenever

�yc ,yu1 , . . . ,yuj−1�
�
 and 
y
��. Here

yui = �y�m−1�·�k+�j=1
i−1kj�+1

]

y�m−1�·�k+�j=1
i kj�

�
for all i=1, . . . , l.

Remark 2: �i� Although the nonlinear terms Ruj�y , t�
could possibly depend on the whole space, their norm esti-
mates are required to depend only on the coupled space and
the uncoupled subspaces with their indices proceeding j. �ii�
The size of the partition matrices U j�t�, j=1, . . . , l from U�t�
depends on how the uncoupled part of the vector field of the
single oscillator is structured. To determine how to partition
U�t�, we begin with checking the case for l=1. That is, if for
l=1, hypotheses �H4†� and �H5†� are satisfied, then no fur-
ther partition is necessary. Otherwise, we further partition
U�t� into a set of smaller pieces to see if the resulting in-
equalities in �H4†� and �H5†� are fulfilled.

We are now in a position to state our first main theorem.
Theorem 3: Let the outer coupling matrix G�t� satisfy-

ing Eq. (3a) and the inner coupling matrix D be given as in
Eq. (3b). Suppose hypotheses �H1†�, �H2†�, �H3†�, �H4†�,
and �H5†� hold true, then limt→� y�t�=0 for any initial value
provided that the coupling strength d satisfies the following
inequality:

TABLE III. The table gives the matrix measures of GCi
, i=1,2 and GC, C

�D with various size of G, which is given in Eq. �18�.

m 4 6 8 10 5000

C1 0.11 0.32 0.53 0.74 517.47
C2 0.23 0.56 0.96 1.44 34 843.01
C �0.1 �0.1 �0.1 �0.1 �0.1

TABLE IV. The table gives the matrix measures of GCi
, i=1,2 and GC, C

�D with various size of G, which is given in Example 7.

m 4 6 8 86 88

C1 0.34 0.32 0.35 4.65 4.72
C2 0.34 0.56 0.73 4.79 4.86
C �0.1 �0.1 �0.1 �0.0006 0.0004
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d 

b1

�
�1 +

b2
2

�2�l/2

. �21�

Proof: For any initial condition y�0�, there is t0
0 such
that 
y�t�
�� for all t� t0. Without loss of generality, t0 is
chosen sufficiently large so that the inequalities in �H4†�
hold. Applying the matrix measure inequality �A2� and hy-
potheses �H2†�, �H3†� on yc, for any t� t0, we have that


yc�t�
 � 
yc�t0�
e−�d�t−t0� +
b1�

�d

� �e−�d�t−t0� +
b1

�d
�� ¬ �e−�d�t−t0� + c0

1

d
�� .

Let �
1. We see that


yc�t�
 �
�

d
c0� �22a�

whenever t� t0,1 for some t0,1
 t0. Similarly, applying in-
equality �A2� and hypotheses �H4†�, �H5†� on yu1,


yu1�t�
 �
�

d
�b2

�
c0��2

¬

�

d
c1�2, �22b�

whenever t� t1,1 for some t1,1
 t0,1. Inductively, we have


yuj�t�
 �
�

d
cj�

j+1 �22c�

whenever t� tj,1 for all j=2, . . . , l. Here cj =b2 /���i=0
j−1ci

2.
Letting t1= tl,1 and summing up Eqs. �22a�–�22c�, we get


y�t�
 �
�

d
�1 +

b2
2

�2�l/2b1

�
�l+1

¬ h�

whenever t
 t1. Choosing d
 �1+b2
2 /�2�l/2�b1 /���l+1, we

see that the contraction factor h is strictly less than 1, and

y�t�
 contracts to zero as time progresses. Since �
1 can be
made arbitrarily close to 1, consequently, if d is chosen as
assumed, then h can still be made to be less than 1. The
assertion of the theorem now follows.

Note that the verification of hypotheses �H3†�, �H4†�,
and �H5†� is a nontrivial matter since those assumptions de-
pend on the coordinate transformation C. Furthermore, these
hypotheses are made for system �7a� or Eq. �20�. Hence, it is
desirable to derive some easily verifiable hypotheses for sys-
tem �1a�. Indeed, we are able to derive a set of hypotheses
for system �1a� that can be easily checked. In fact, by merely
checking the structure of the vector field f of the individual
oscillator, one would be able to verify if those hypotheses
hold true. Since the derivation of such a new set of hypoth-
eses is rather long and technical, we shall refer the interested
readers to Appendix B, which contains Propositions 4 and 5.
We summarize these derived hypotheses in the following:

�H1� System �1a� is bounded dissipative with respect to �.
�H2� There is some �
0 such that �2�G�t���−�, ∀t�0.
�H3� Functions f i�· , t�, i=1, . . . ,k in Eq. �1a� are uniformly

Lipschitz in region B given in �H1�. That is, there is a
constant r
0 such that �f i�u , t�− f i�v , t���r
u−v
,
whenever t is sufficiently large, and u, v in B.

�H4� The matrix Q�v , t�, which is given as in Eq. �B1�, is
of block diagonal form, i.e., Q�v , t�
=diag�Q1�v , t� , . . . ,Ql�v , t��. Here the sizes of
Q j�v , t�, j=1, . . . , l, are kj �kj. Moreover, there is
some �
0 such that matrix measures �2�Q j�v , t��
�−� for all j, whenever t is sufficiently large, and v
in B.

�H5� Denoted by s1=k and sj =k+�i=1
j−1ki, j=2, . . . , l, where

ki and l are defined in �H4�. Suppose, for any 1� j
� l, there is a �
0 such that


�r�u,v,t��sj+1
sj+kj
 � �
�u − v�1

sj


for t sufficiently large, and u, v in B. Here �u�i
j is

defined to be �ui , . . . ,uj�T.

Remark 3: �i� Using the similar techniques as developed
in the proof of Propositions 4 and 5, we may also conclude
that the global theorems obtained in Ref. 33 may still be
valid by using the coordinate transformation developed here
in this paper. Consequently, the first drawback of their ap-
proach can be removed. �ii� Examples are given in Sec. V to
illustrate how hypotheses �H4� and �H5� can be easily
checked.

The main result of the paper is now stated in the follow-
ing. The proof of the main theorem follows directly from
Theorem 3 and Propositions 4 and 5.

Theorem 4: Let the outer coupling matrix G�t� satisfy-
ing Eq. (3a) and the inner coupling matrix D be given as in
Eq. (3b). Suppose hypotheses (H1), (H2), (H3), (H4), and
(H5) hold true, then coupled system (1a) achieves global
synchronization whenever

d 

r�k cond�C1CT�

�
�1 +

�2
C̃
2
C1CT
2

�2 �l/2

, �23�

where C, C1, and C̃ are given as in Theorem 1, Eq. (8), and
Eq. (B4c), respectively.

Remark 4: The small price to pay by introducing the
coordinate transformation C is that the lower bound given as
in the right hand side of Eq. �23� on the coupling strength d
is size dependent.

V. APPLICATIONS AND COMPARISONS

To see the effectiveness of our main results and to com-
pare our results with existing methods, we consider coupled
Lorentz equations with various coupling configurations. The
vector field of the individual Lorentz oscillator under consid-
eration is recognized as f�x�= �	�x2−x1� ,rx1−x2−x1x3 ,
−bx3+x1x2�T

¬ �f1�x� , f2�x� , f3�x��T. Here 	=10, r=28, and
b=8 /3. We shall illustrate, via the first three cases, how one
should examine the structure of f�x� to see if hypotheses
�H3�–�H5� are fulfilled or not.

Case 1: Let the inner coupling matrix D correspond to
y-component partial-state coupling, i.e.,
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D = �0 0 0

0 1 0

0 0 0
� . �24�

Let the outer coupling matrix G�t� be either of the forms
given as in Eqs. �9�, �11�–�13�, and �17�. Then hypothesis
�H1� of bounded dissipation of system �1a� is well known
�see, e.g., Ref. 23�, which is the ball B containing the topo-
logical product of an absorbing domain

B = �x1
2 + x2

2 + �x3 − r − 	�2 �
b2�r + 	�2

4�b − 1� � .

Hypothesis �H2� of matrix measure �2�G� is clearly held as
shown in Sec. III. Since the “coupled” nonlinearity f2� · �
satisfies


f2�u� − f2�v�
 = 
�r − v3��u1 − v1� − �u2 − v2� − u1�u3 − v3�


� r
u − v


for some constant r
0 in region B, hypothesis �H3� holds
true. Moreover, the difference of “uncoupled” nonlinearities
f1 and f3 is given as follows:

f1�u� − f1�v� = �− 	�u1 − v1�� + 	�u2 − v2� ,

f3�u� − f3�v� = �− b�u3 − v3�� + u1�u2 − v2� + v2�u1 − v1� .

It is readily seen that one should break the uncoupled
space into two parts. That is, if we choose l=2 and pick the
space of the first �respectively, second� diagonal block being
the one associated with the nonlinearity f1 �respectively, f3�,
then Q1�v , t�= �−	� and Q2�v , t�= �−b�, it then follows that
hypothesis �H4� is held. Furthermore, since �r�u ,v , t��2

2

=r2�u ,v , t�=	�u2−v2�, which depends only on coupled
space, and �r�u ,v , t��3

3=r3�u ,v , t�=u1�u2−v2�+v2�u1−v1�,
which depends on the coupled system and the uncoupled
subspace with the proceeding index, hypothesis �H5� is ful-
filled as well. Hence, by Theorem 4, coupled system �1a� has
global synchronization provided coupling strength d is large
enough. A numerical result is also presented to support our
analytic result, see Fig. 5�a�.

Case 2: Let the inner coupling matrix D correspond to
either x-component partial-state coupling or full-state cou-
pling, i.e.,

D = �1 0 0

0 0 0

0 0 0
� . �25�

Let the outer coupling matrix G�t� be either of the forms
given as in Eqs. �9�, �11�–�13�, and �17�. In this case, the
coupled nonlinearity f1 satisfies the following uniformly Lip-
schitz condition:


f1�u� − f1�v�
 = 
− 	�u1 − v1� + 	�u2 − v2�


� �2	
u − v
 .

For uncoupled nonlinearities, we see that

� f2�u� − f2�v�
f3�u� − f3�v�

� = �− 1 − v1

v1 − b
��u2 − v2

u3 − v3
�

+ ��r − u3��u1 − v1�
u2�u1 − v1�

�
¬ Q�v,t��u2 − v2

u3 − v3
� + r�u,v,t� .

Clearly, �2�Q�v , t��=max	−1,−b
=−1�0 and 
r�u ,v , t�

�r�u1−v1� for some constant r
0 in region B. Hence, hy-
potheses �H4� and �H5� are satisfied, and we can conclude
that coupled system �1a� has global synchronization provided
coupling strength d is large enough. A numerical result is
also presented to support our analytic result, see Fig. 5�b�.

Case 3: Consider the z-component partial-state coupling.
Since the remainder term in the difference of uncoupled non-
linearities f1 and f2 contains each other, the only feasible
breaking is to be given in the following:
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FIG. 5. �Color online� The difference of components of the first two coupled
oscillators: �a� the y-component partial-state coupling addressed in Case 1
and �b� the x-component partial-state coupling addressed in Case 2. In both
cases m=8 and the outer coupling matrix is given as in Eq. �9�.
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� f1�u� − f1�v�
f2�u� − f2�v�

� = � − 	 	

r − v3 − 1
��u1 − v1

u2 − v2
�

+ � 0

− u1�u3 − v3�
� .

With r=28, the matrix measure of the associated Q�v , t� can-
not stay negative. Consequently, the conclusion of our main
theorem cannot be assumed, which is in consistence with the
numerical results.

In the next two cases various �outer� coupling matrices
addressed in Sec. III are considered.

Case 4: Let the coupling matrix G�t� be given in Eq.
�15� with d1�t�= 3

2 −sin�t�. The numerical results are demon-
strated in Fig. 6. The synchronization of the coupled Lorentz
systems with the coupling matrices G�t� studied in Examples
5–7 of Sec. III is also verified numerically. To save the space,
we will not provide such figures. It should be noted that for
G�t� considered in Example 7, our numerical results demon-
strate that the synchronization of the corresponding system
still occurs with m=88.

Comparison 1: �Chen �Ref. 33�� Consider the case that
the inner coupling matrix D is given in Eq. �25� and the outer
coupling matrix G�t� is of the form

G = �− 2 1 1

1 − 2 1

1 1 − 2
� .

To apply the global theorem proposed by Chen,33 one needs
to verify the following:

�a� There exists a matrix K�R3�3 such that f�x�+Kx is
V-uniformly decreasing for some symmetric positive
definite matrix V�R3�3. That is, there is a positive
constant � such that �x−y�TV�f�x�+Kx− f�y�−Ky�
�−�
x−y
2 for all x, y�R3.

�b� There exists a diagonal matrix U�R2�2 and M
�R6�6 with MTM=U � V such that

�2�M�dGC1
� D − I2 � K�M−1� � 0.

Here GC1
=−3I2.

For the choices of U=I2 and V=I3, we shall show that
conditions �a� and �b� cannot be satisfied simultaneously.
Indeed, suppose condition �b� holds true for some K,
then �2�M�dGC1

� D−I2 � K�M−1�=�2�−3dD−K��0 and,
hence, zTKz�−3dzTDz for any z�R3. Let x= �x1 ,x2 ,x3�T

with x2�10, x1, x3�R, and y=x−k�1,0 ,1�T with k�R
− 	0
. Then there is an �, 0���1 such that

�x − y�T�f�x� + Kx − f�y� − Ky�

= �x − y�T�K + Df��x + �1 − ��y���x − y�

� �x − y�T�Df��x + �1 − ��y� − 3dD��x − y� �
2
3k2.

Here

Df�x� = � − 10 10 0

28 − x̄3 − 1 − x̄1

x̄2 x̄1 − 8
3

� .

And so, condition �a� fails.
Comparison 2: �Chen �Ref. 39�� Let the outer coupling

matrix G�t� be given in Eq. �9�, and the inner coupling ma-
trix D be I3. To verify the criterion for global synchroniza-
tion in Ref. 39 it suffices to show

�2�Im−1 � A + GC1
� In� � 0, �26�

where A=diag�a1 , . . . ,an� and ai�0, i=1,2 , . . . ,n. How-
ever, if the number of oscillators is greater than 7, i.e., m

7, then �2�GC1

�
0 �see Table I�. And so

�2�Im−1 � A + GC1
� In� � �2�GC1

� − �2�− A�

= �2�GC1
� + min	a1, . . . ,an



 0.

VI. CONCLUSIONS

A general framework for determining the global stability
of synchronous chaotic oscillations in coupled oscillator sys-
tems with complex networks has been discussed. This frame-
work allows one to address very large array of oscillators
with complex topology including time-varying networks,
networks with asymmetric positive and negative coupling,
and networks with some randomness. Furthermore, the veri-
fication of our framework can be easily checked. The vehicle
for providing such general synchronization theory is the ma-
trix measure as well as the newly introduced coordinate
transformation.

Theoretical studies of globally synchronous chaos have
been conducted with the coupled Lorentz oscillators. The x,
y, and z-component couplings of the system have been used
as illustrations on how to apply the main theorem. The net-
works such as the star type, the wavelet transformed type, the
pristine world joining with some randomness, the general-
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FIG. 6. �Color online� The difference of components of the first two coupled
oscillators considered in Case 4. Here the x-component partial-state cou-
pling is considered with m=8 and the outer coupling matrix given as in Eq.
�15�.
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ized wheel type, and the prism type have been discussed. The
comparisons with the existing methods have also been
provided.

We would like to conclude our paper with the following
remarks. To prove global synchronization of the coupled cha-
otic systems, one needs to assume the bounded dissipation of
the systems, which plays the role of an a priori estimate.
Such an assumption is also implicitly required in both CGS
and MMA. Unfortunately, there have not many general theo-
rems been provided for the bounded dissipation of coupled
chaotic systems with complex topology. Note that the
bounded dissipation of the individual oscillator does not nec-
essarily imply that the coupled systems with complex net-
works would share the same property. Therefore, it would
certainly be of great interest to develop a theory of the
bounded dissipation of the coupled chaotic systems with
complex network topologies.

ACKNOWLEDGMENTS

We thank referees for suggesting numerous improve-
ments to the original draft.

APPENDIX A: CONCEPTS OF MATRIX MEASURE

In our derivation of synchronization of system �2�, we
need the concept of matrix measures. For completeness and
ease of references, we also recall the following definition of
matrix measures and their properties �see, e.g., Ref. 43�.

Definition 3: �Vidyasagar �Ref. 43�� Let 
 · 
i be an in-
duced matrix norm on Rn�n. The matrix measure of matrix K
on Rn�n is defined to be �i�K�=lim�→0+
I+�K
i−1 /�.

Lemma 1: [Vidyasagar (Ref. 43)] Let 
 · 
k be an induced
k-norm on Rn�n, where k=1,2 ,�. Then each of matrix mea-
sure �k�K�, k=1,2 ,�, of matrix K= �kij� on Rn�n is, respec-
tively,

���K� = max
i �kii + �

j�i

�kij�� ,

�1�K� = max
j �kjj + �

i�j

�kij�� ,

and

�2�K� = �max�KT + K�/2. �A1�

Here �max�K� is the maximum eigenvalue of K.
Theorem 5: [Vidyasagar (Ref. 43)] Consider the differ-

ential equation ẋ�t�=K�t�x�t�+v�t�, t�0, where x�t��Rn,
K�t��Rn�n, and K�t�, v�t� are piecewise continuous. Let 
 · 
i

be a norm on Rn and 
 · 
i, �i denote, respectively, the corre-
sponding induced norm and matrix measure on Rn�n. Then
whenever t� t0�0, we have


x�t0�
iexp��
t0

t

− �i�− K�s��ds�
− �

t0

t

exp��
s

t

− �i�− K����d��
v�s�
ids

� 
x�t�
i � 
x�t0�
iexp��
t0

t

�i�K�s��ds�
+ �

t0

t

exp��
s

t

�i�K����d��
v�s�
ids .

�A2�

APPENDIX B: PROOFS OF MAIN RESULTS

The following notation is needed. Let u
= �u1 , . . . ,ui ,ui+1 , . . . ,uj , . . . ,un�T. Denote by �u�i

j

= �ui ,ui+1 , . . . ,uj�T. Write the difference of f�· , t� at u and v in
the form

f�u,t� − f�v,t� = � f1�u,t� − f1�v,t�
]

fn�u,t� − fn�v,t�
�

¬ �fc�u,t� − fc�v,t�
fu�u,t� − fu�v,t�

�
¬ � fc�u,t� − fc�v,t�

Q�v,t��u − v�k+1
n + r�u,v,t�

� , �B1�

where fc�· , t��Rk, fu�· , t��Rn−k, and matrix Q�v , t� is of the
size �n−k�� �n−k�. Since r�u ,v , t� could depend on all com-
ponents of u and v, such a decomposition in Eq. �B1� can
always be achieved.

Proposition 4: Suppose fi�· , t�, i=1, . . . ,k are uniformly
Lipschitz, i.e., there exists a positive constant r
0 such that

�f i�u,t� − f i�v,t�� � r
u − v
 �B2�

for all i=1, . . . ,k. Then the inequality in �H3†� is satisfied
with b1=r�k cond�C1CT�. Here C1 is given as in Eq. (8) and
cond�C1CT�= 
C1CT

�C1CT�−1
 is the condition number of
�C1CT�.

Proof: Note first that C1=C1CTC and C= �C1CT�−1C1.
Now,


Fc�y,t�
 = ��Cf̃1�x̃,t�
]

Cf̃k�x̃,t�
��

= ��Ik � �C1CT�−1��C1f̃1�x̃,t�
]

C1f̃k�x̃,t�
��

� 
�C1CT�−1
��C1f̃1�x̃,t�
]

C1f̃k�x̃,t�
�� .

Since
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C1f̃1�x̃,t�
2 = �� f i�x1,t� − f i�x2,t�
]

f i�x1,t� − f i�xm,t�
��

2

� r2��x1 − x2

]

x1 − xm
��

2

for all i=1, . . . ,k, we have that


Fc�y,t�
 � �kr
�C1CT�−1
��x1 − x2

]

x1 − xm
��

= �kr
�C1CT�−1
��C1 � In��x1

]

xm
��

= �kr
�C1CT�−1

�C1CT
� In��C � In�x


� �kr cond�C1CT�
y
 . �B3�

The proof of the proposition is completed.
The above Proposition 4 amounts to saying that if f i, i

=1, . . . ,k, the coupled parts of the vector field of the indi-
vidual oscillator are uniformly Lipschitz, then hypothesis
�H3†� holds.

We next turn our attention to the structure of the vector
field of the uncoupled parts.

Proposition 5: (i) Suppose matrix Q�v , t� can be written
as the block diagonal form

Q�v,t� = diag�Q1�v,t�, . . . ,Ql�v,t�� ,

where the size of matrices Q j�v , t� is kj �kj, ∀j=1, . . . , l and
indices l, kj are given as in �H4†�. Moreover, there is some
�
0 such that

�2�Q j�v,t�� � − � . �B4a�

Here � is independent of v , t. Then the inequality in �H4†� is
fulfilled. (ii) Denoted by s1=k and sj =k+�i=1

j−1ki, j=2, . . . , l,
where ki and l are defined in �H4†�. Let C= �ci,j��m−1��m.
Suppose, for any 1� j� l, there is �
0 such that


�r�u,v,t��sj+1
sj+kj
 � �
�u − v�1

sj
 . �B4b�

Then the inequality in �H5†� is satisfied with b2

=�
C̃

C1CT
. Here

C̃ = �ci,j+1� � R�m−1���m−1�, 1 � i, j � m − 1. �B4c�

Proof: Write Fu�y , t� as �Fu1�y , t� , . . . ,Ful�y , t��T, which
is in consistence with the block diagonal form of U�t�. Now,
for 1� j� l,

Fuj�y,t� = �Cf̃sj+1�x̃,t�

]

Cf̃sj+kj
�x̃,t�

� =�
�
k=1

m

c1,kfsj+1�xk,t�

�

�
k=1

m

cm−1,kfsj+1�xk,t�

]

�
k=1

m

c1,kfsj+kj
�xk,t�

�

�
k=1

m

cm−1,kfsj+kj
�xk,t�

� = P�
�
k=1

m

c1,kfsj+1�xk,t�

�

�
k=1

m

c1,kfsj+kj
�xk,t�

]

�
k=1

m

cm−1,kfsj+1�xk,t�

�

�
k=1

m

cm−1,kfsj+kj
�xk,t�

� ¬ Ph.

Here P is a permutation matrix. That is, we exchange certain rows of Fuj�y , t� to obtain F. Using the fact that the row sums
of C are all zeros, we have that for 1� i�m−1, sj +1� l�sj +kj,

�
k=1

m

ci,kf l�xk,t� = �
k=2

m

ci,k�f l�xk,t� − f l�x1,t�� . �B5�

To save notations, ∀i=1, . . . ,kj, we denote by �rsj+i�xl ,x1 , t��l=2
m the vector �rsj+i�x2 ,x1 , t� ,rsj+i�x3 ,x1 , t� , . . . ,rsj+i�xm ,x1 , t��T.

Applying Eq. �B1� and Eqs. �B4a�–�B4c�, we shall be able to rewrite h as
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� �
k=2

m

c1,kQ j�x1,t��xk − x1�sj+1
sj+kj

]

�
k=2

m

cm−1,kQ j�x1,t��xk − x1�sj+1
sj+kj� +� �

k=2

m

c1,k�r�xk,x1,t��sj+1
sj+kj

]

�
k=2

m

cm−1,k�r�xk,x1,t��sj+1
sj+kj�

=� Q j�x1,t���
k=1

m

c1,kxk�
sj+1

sj+kj

]

Q j�x1,t���
k=1

m

cm−1,kxk�
sj+1

sj+kj� + PT� C̃�rsj+1�xl,x1,t��l=2
m

]

C̃�rsj+kj
�xl,x1,t��l=2

m �
= �Im−1 � Q j�x1,t��PT�Cx̃sj+1

]

Cx̃sj+kj

� + PT�Ikj
� C̃�� �rsj+1�xl,x1,t��l=2

m

]

�rsj+kj
�xl,x1,t��l=2

m �
= �Im−1 � Q j�x1,t��PTyuj + PT�Ikj

� C̃�P��r�x2,x1,t��sj+1
sj+kj

]

�r�xm,x1,t��sj+1
sj+kj� .

Therefore,

U j�t� = P�Im−1 � Q j�x1,t��PT �B6a�

and

Ruj�y,t� = �Ikj
� C̃�P��r�x2,x1,t��sj+1

sj+kj

]

�r�xm,x1,t��sj+1
sj+kj� . �B6b�

The first assertion of the position now follows from Eq.
�B6a�, �2�U j�t��=�2�Q j�x1 , t���−�. Upon using the similar
techniques as those in establishing the inequality in Eq. �B3�,
we conclude that Eqs. �B4a�–�B4c� hold as asserted.
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