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The cutting-stock problem, which considers how to arrange the component profiles on

the material without overlaps, can increase the utility rate of the sheet stock, and is thus

a standard constrained optimisation problem. In some applications the components

should be placed with specific orientations, but in others the components may be placed

with any orientation. This study presents an overlap index and it is much more suitable

for the active-set SQP method which can reduce the time spend for constraint

consideration. Using this method, various object orientations can be considered easily

and the number of object on the sheet stock can be improved by up to eight percent.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The cutting-stock problem is a key consideration in
many manufacturing industries, such as textile, garment,
metalware, paper, ship building, and sheet metal indus-
tries. The material expense is a large part of manufactur-
ing cost in these industries. For example: the fabric
expense is approximate 50–60% of the manufacturing cost
(Wong and Leung, 2008). The cutting-stock problem is a
type of constrained optimisation problem. The objective of
the cutting-stock problem is to place as many objects as
possible on a sheet stock. The common constraint is that
no object may overlap with another. Therefore, there are
two key points for the cutting-stock problem, and it can
thus be divided into two sub problems: how to consider
the overlaps, and how to place the objects.

In the application viewpoint, the product of some
industries may be mass production and the cutting-stock
problem will be very complex if considering every object
ll rights reserved.
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as an independent individual. For simplifying the pro-
blem, the components of a product may be placed as a
cluster first, and then nest the cluster instead of the
original components on the sheet stock. This ‘‘cluster-
then-nest’’ strategy is useful for simplifying the mass
production cutting-stock problem because the number of
objects is reduced. The advantage of the cluster-then-nest
strategy is not only for placing, but manufacture. The
manufacturing time may decrease because the compo-
nents of a product can be cut at the same time by using a
die.

This study considers the mass production cutting-stock
problem, and the cluster-then-nest strategy with an
improvement strategy is used. As the classification by
Wäscher, et al. (2007), the problem that will be solved in
this study is an ‘‘identical item packing problem (IIPP)’’.
2. Literature review

The cluster-then-nest strategy is used by Cheng and
Rao (1999). They used a sliding technique (Cheng and Rao,
1997) to place all objects—the components—of a product
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first, i.e. cluster, then integrated these objects into a
cluster, and nested it by compact neighborhood algorithm
(CNA). Finally, a Genetic Algorithm was used to adjust the
position and orientation of the object to improve the
result (2000).

Even the cluster-then-nest strategy is good for mass
production, there are few literature discussing it. There-
fore, the techniques used in the methods for placing
different kinds of objects on one sheet stock may be used
for generate cluster, and the technique for placing only
one kind of object on the sheet stock may be used for
nesting.
2.1. Methods for cluster

Bennell, et al. (2001) proposed a method to find the
relative positions where one object contacts another
object, and these positions can be shown as a polygon
called a ‘‘no-fit polygon’’. The sliding technique (Cheng
and Rao, 1997) can be used to get the no-fit polygon, but it
does not consider the hole in an object. Thus, a
sophisticated NFP calculation may get better no-fit
polygon than the sliding technique. Several methods use
the no-fit polygon to consider the overlaps and propose a
strategy of placing objects (Dowsland et al., 2002) and
deciding the placing sequence (Gomes and Oliveira, 2002).
Even though the no-fit polygon is a popular technique for
considering overlaps, the methods using the no-fit poly-
gon cannot consider different placement orientations
because the no-fit polygon is generated with a fixed
orientation. In some applications, the objects can be
placed only with some specific orientations because of the
property of the material, such as the rolling direction and
the pattern on the sheet stock surface. This is another
constraint called ‘‘orientation constraint’’ in the cutting-
stock problem, but the orientation constraint is not
applicable in certain applications. The sheet stock utility
rate will not be high when using these algorithms to solve
cutting-stock problems without the orientation constraint
because these algorithms do not consider the rotation of
objects, and finding the best placing sequence also
requires much calculation effort.

Jakobs (1996) used a two-stage method with a concept
similar to the polygon approximation. In the first stage,
the objects are enclosed by minimum rectangles, and then
these rectangles are placed instead of the real object. The
objects may be rotated when finding the minimum
enclosed rectangle, but the objects will not be rotated in
the next stage. In the second stage, the real objects are
placed directly and the initial positions of real objects are
set as the rectangle positions. There may be no gap
between rectangles after the first stage, but there will be
many gaps when considering the real objects. The real
objects are moved downward to fill the gaps between
them to reduce the height of the placing pattern. Dagli and
Poshyanonda (1997) used a coordinate transfer matrix to
find the minimum rectangle and represented the objects
as binary matrices. They used artificial neural networks to
learn to place the binary matrices instead of objects, and
used a Genetic Algorithm to decide the placing sequence.
These methods can consider different orientations of
objects, but objects can rotate only when finding the
minimum enclosed rectangle. The orientation cannot be
adjusted to a better one in the placing process.

In some formulation methods the cutting-stock pro-
blem is treated as a standard optimisation problem, and
uses the object positions and orientations as design
variables. The overlaps with the overlap areas are
considered directly. Ismail and Hon (1995) also used
binary matrices to represent the objects, but the object
profiles may become deformed if the binary matrices,
instead of the real objects, are rotated. Also, the calcula-
tion effort increases when rotating the real objects. This is
because the objects have to be transferred to binary
matrices after every rotation, and using the binary
matrices to determine the overlap area also requires
increased computation effort. Petridis and Kazarlis (1994)
used the real profiles instead of binary matrices and
calculated the overlap of real objects when considering
the overlaps. The object profiles will not be deformed by
this method, but the rotation of objects is not considered.

2.2. Methods for nest

Kershner (1968) showed that no convex polygon with
more than six sides can be nested without gaps, and there
are only eight kinds of pentagons and three kinds of
hexagons that can be nested without gaps. The cutting-
stock problem may be changed to approximate an object
as a special pattern because the nesting pattern is decided
when the special pattern is chosen. Various methods
based on polygon approximation have been proposed
(Koroupi and Loftus, 1991; Yu and Tseng, 2005).

A review of the literature shows that the Genetic
Algorithm, the artificial neural network, and other
heuristic algorithms are commonly used methods for
solving the cutting-stock problem. However, there are also
many other algorithms, such as sequential linear pro-
gramming (SLP) (Arora, 2004), traditional sequential
quadratic programming (SQP) (Arora, 2004), and con-
strained steepest descent (CSD) (Arora, 2004), that can be
used to solve this type of optimisation problem. These
algorithms use the gradient or Hessian calculation of the
cost function as the search direction. However, the cost
function of the cutting-stock problem is usually the
number of objects placed on the sheet stock or the area
of the necessary sheet stock, neither of which is sensitive
to the object position and orientation. When using the
number of objects placed on the sheet stock as the cost
function, the adjustment does not affect the cost function
unless it makes the object out of the sheet stock. When
using the area of the necessary sheet stock as the cost
function, it will be calculated by multiplying the max-
imum upper bound of objects and the width of the sheet
stock. At this time the position adjustment of objects will
not affect the cost function unless it is the object with
maximum upper bound. This will limited the efficient of
the SQP method. In these two cases, the adjustment of the
position or orientation of objects is not sensitive to the
cost function. If the cost function does not relate to design
variables sensitively, these algorithms cannot be used.
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Fig. 1. Flowchart for finding the maximum depth.
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An algorithm called ‘‘active-set SQP method’’ (Lim and
Arora, 1986) in this study, based on the traditional SQP
method, reduces the calculation effort by reducing the
considered constraints. For an inequality constraint that
should be less than or equal to zero, the constraint is
called ‘‘inactive’’ if its value is less than zero, i.e., the
solution satisfies the constraint. The constraint is said to
be ‘‘active’’ if its value equals to zero. Conversely, it is call
‘‘violated’’ if its value is larger than zero. The inactive
constraints can be ignored in the iteration. Hence, the
number of constraints that have to be considered is
reduced.

This study presents a formulation, and solves it by
using active-set SQP method for generating the cluster.
The formulation considers the orientations of objects
directly, and improves the sensitivity between the cost
function and design variables. Thus, the problem can be
solved by the traditional SQP method that is more efficient
than the Genetic Algorithm. This study also presents an
overlap index that considers the overlap amount instead
of the overlap area. Thus, the calculation effort may be
reduced and is well-suited for the active-set SQP method.

3. Method

A solving method for the cutting-stock problem can be
divided into two parts: the overlap consideration method,
and the placing strategy, which depends on the overlap
consideration method. Therefore, the overlap considera-
tion method will be introduced before introducing the
placing strategy in this section.

3.1. Overlap consideration method

The objects of the cutting-stock problem cannot over-
lap one other. In traditional methods, the overlap area is
calculated and the object positions are adjusted to reduce
the overlap area until the total overlap area equals to zero
when considering overlap directly. However, calculating
the real overlap area is computation-intensive, so another
index should preferably be used instead of the real overlap
area. This study uses the maximum ‘‘depth’’ of two objects
as the overlap index when considering the overlap.

When considering overlap between two objects, the
‘‘depth’’ means the distance from the vertex on one object
to a point on the edge of the other object, and the
maximum depth is the largest distance. The detailed
calculation process is shown in Fig. 1 while the process
can be explained with the example in Fig. 2. A and B are
two objects and every vertex is numbered in a counter-
clockwise order (a1�a8 and b1�b8, respectively). OA and OB

are the centres of gravity (COG) of object A and object B,
respectively. Objects are drawn by CAD software—CATIA,
and the COG can be obtained automatically in the CATIA.
As shown in the process (Fig. 1), the first step of finding
the maximum depth is transferring the original coordi-
nate to the coordinate system where the y-direction is
parallel to the OAOB

���!
vector, which will be helpful for

calculating depths. The next step initialises the maximum
depth, and its value is determined by subtracting the y-
value of a1 from the y-value of a01, where a01 is the point
that a1 projects onto object B in the OAOB

���!
direction. The

depth will be positive if the vertex is inside the other
object, such as the depth of a1. Similarly, if the vertex is
outside the other object, the depth will be negative. Once
the depth of a1 is known, the depth of a2 will be
calculated, and is less than the depth of a1 as shown in
the figure. Thus, the maximum depth will not be updated.
Only the depths of the object vertices have to be
calculated when finding the maximum depth, and it is
not necessary to calculate the depths of the points on the
edge. It is obvious that the maximum depth will coincide
with a vertex, because all edges are linear. If depth of a
point is searched along an edge, it will be increased or
decreased monotonously until the movement meets a
corner. Thus, the maximum depth will coincide with a
vertex. The next point is a3 and its depth is negative
because the y-value of a3 is larger than a03. Other vertices
on object A will also be considered one by one. Similarly,
the depths of the vertices on object B are determined by
subtracting the y-value of the projection point from the y-
value of the vertex, and calculated one by one.

By this way, the depth will be negative if the vertex is
outside of the other object, and it is not necessary to check
the vertex is inside the other object or not. The overlap
index will be negative if there is a gap between two
objects. A negative overlap index will be helpful for the
active-set SQP method. The maximum depth will be
negative but the overlap area is never negative. Therefore,
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Fig. 2. Depths between two objects.
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the maximum depth is more suitable for the active-set
SQP method, which will be described in the next section.

3.2. Placing strategy

The placing strategy in this study can be divided into
three steps. The first step is to place the different objects
as a cluster, and then to generate the nesting pattern
according to the cluster. Finally, the third step is to adjust
the orientation of the nesting pattern generated in the
second step to maximise the sheet stock utility rate.

3.2.1. First step—cluster

The cutting-stock problem is formulated as a standard
form of the constrained optimisation problem as follows:

cost function : minimise f ¼
XN�1

i¼1

XN

j¼iþ1

kOiOj

��!
k (1)

design variables : xi; yi; yi

i ¼ 1�N (2)

constraints : gi ¼ DMjk � 0

i ¼ 1�
NðN � 1Þ

2
j ¼ 1�ðN � 1Þ

k ¼ ðjþ 1Þ�N (3)

where N is the number of objects; kOiOj

��!
k is the norm of

vector OiOj

��!
, i.e., the distance between Oi and Oj; xi is the

x-coordinate value of the COG of object i; yi is the
y-coordinate value of the COG of object i; yi is the
orientation of object i; DMjk is the maximum depth
between object j and object k. The cost function is to
minimise the summation of distances between any two
objects, which means that the objects have to be as close
as possible. This cost function (the distance summation) is
more sensitive to the design variables than the number of
objects or the necessary sheet stock area. Therefore,
it is more suitable for the traditional SQP method.
The constraints are that the maximum depths of any
two objects cannot be larger than zero, i.e., one object can
only be far away or just contact the adjacent object.

As shown in Eq. (3), there are many constraints when
the number of objects is large, and reducing the number of
constraints is important in order to decrease the calcula-
tion effort. Because of the nature of this problem, the
constraints may not be reduced in physical ways, but they
can be reduced using mathematical methods. If the
solution satisfies the constraint, it will not be necessary
to consider whether or not the constraint still exists.
Therefore, the active-set SQP method is used to reduce the
considered constraints in this study.

A constraint will never be inactive when using the
overlap area as the constraint value because the overlap
area is never less than zero. Thus, the number of
constraints cannot be reduced. However, when using the
maximum depth to consider overlap, the maximum depth
will be negative if there is a gap between two objects, and
therefore the constraint becomes inactive. These con-
straints will be ignored and the computation effort will be
decreased.
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After formulating the problem as a constrained
optimisation problem, it can be solved by using the
active-set SQP method. The SQP method is a numerical
method for solving optimisation problem. The process of a
numerical method is an iterative process of finding
‘‘search direction’’ and ‘‘step size’’.To solve the optimiza-
tion problem by SQP method, the KKT conditions of the
Lagrange function is used. The Lagrange function is
defined as follows:

Lðd;mÞ ¼ f ðdÞ þ mT g (4)
Fig. 3. The flowchart
where m is the vector form of Lagrange multipliers, and d

is a collection of design variables, i.e. xi, yi, yi. The
numerical solving process of the KKT conditions is an
iterative process of calculating the new solution d(k+1)

dðkþ1Þ
¼ dðkÞ þ DdðkÞ (5)

where k is the iteration number, and Dd(k) is the change of
design variables. It is also the search direction of the SQP
method. The SQP method defines a QP subproblem to
calculate the search direction. The flowchart of SQP
of SQP method.
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method is shown in Fig. 3, and the process is described as
follows.
(1)
 Select an initial solution, and the initial solution is
d(0)
¼ 0 in this study. Set other parameters that will be

described later.

(2)
 Define the QP subproblem with the active-set strat-

egy. The QP subproblem is defined as follows:

minimize rf TDdþ 0:5DdT HDd (6)

subject to ATDd � b (7)

where H is the approximate Hessian matrix of
Lagrange function,

Aji ¼
@g0i
@dj

(8)

bi ¼ �g0iðdÞ. (9)

When defining the QP subproblem, only the active
and violated constraints need to be considered. The g0

is the vector form of active and violated constraints.
This is the so-called active-set strategy.
(3)
 After the QP subproblem is defined, the problem will be
normalised before solving (Arora, 1984). For normalising
the QP subproblem, the H is decomposed as

H ¼ UT U (10)

where U is an upper triangular matrix. A new variable
s is defined as

s ¼ UDd (11)

and the problem can be normalised as:

minimise LT
0sþ 0:5sT s (12)

subject to Ms � D (13)

where

L0 ¼
U�1T

rf

c0
(14)

c0 ¼ kU
�1T

rfk (15)

Di ¼
�g0i
ci

(16)

ci ¼ kU
�1T

rg0ik (17)

M ¼
U�1T

A

c0
(18)
(4)
y ¼ rLðd ;m Þ � rLðd ;m Þ (34)
Before solving the normalised QP subproblem, the
maximum value of constraints is compared with a
constant �c (Arora, 1984). If the maximum value of
constraints is less than the constant, i.e. the violation
is not serious, the solution will focus on reducing the
cost function. The solution is:

v ¼ v1 þ v2

s ¼ �s1 þ s2

where

v1 ¼ �B�1MTL0 (19)

v2 ¼ �B�1D (20)

B ¼ MT M (21)

s1 ¼ L0 þMv1 (22)

s2 ¼ �Mv2 (23)

If not, the solution focuses on correcting the con-
straints. The solution is:

v ¼ v2 (24)

s ¼ s2 (25)
(5)
 The solution of the original QP subproblem can be
obtained as (Arora, 1984):

mi ¼
c0v1 þ v2

ci
(26)

Dd ¼ U�1s (27)
(6)
 Check the stop condition. If kdðkÞk � � or k4kmax, stop
the process and the current solution is the final
solution. If not, continue the process. å is a small
number close to zero, and kmax is the maximum
iteration number set in the initialization step.
(7)
 Calculate the step size. The step size ak is set as

ak ¼ 0:5q q ¼ 0;1;2; . . . (28)

The minimum q make Fðdþ 0:5qDdÞ � FðdÞ (29)

is used to define ak where

FðdÞ ¼ f ðdÞ þ RkFðdÞ (30)

FðdÞ ¼maxf0; g01ðdÞ; :::; g
0
p0 ðdÞg (31)

Rk ¼ 0:5 Rk�1 þ
Xp0

i¼1

mi

 !
(32)
(8)
 Update the approximate Hessian matrix. The approx-
imate Hessian matrix is updated by BFGS strategy that
is described as follows:
Define three variables first.

zðkÞ ¼ akHðkÞDdðkÞ (33)

ðkÞ ðkþ1Þ ðkÞ ðkÞ ðkÞ
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and

wðkÞ ¼ yyðkÞ þ ð1� yÞzðkÞ (35)

where

y ¼ 1; if DdðkÞ
T

yðkÞ � DdðkÞ
T

zðkÞ

0:8; otherwise

(
(36)

Then, the approximate Hessian matrix is updated as

Hðkþ1Þ
¼ HðkÞ þ DðkÞ � EðkÞ (37)

where

DðkÞ ¼
wðkÞwðkÞ

T

akDdðkÞ
T

wðkÞ
(38)

EðkÞ ¼
zðkÞzðkÞ

T

akDdðkÞ
T

zðkÞ
(39)
(9)
 Update the solution as

dðkþ1Þ
¼ dðkÞ þ akDdðkÞ, (40)

and continue to define the QP subproblem.
Fig. 4. Process of finding the self-sliding no-fit polygon: (a) two objects

contact on a point; (b) first path of that the mover slides on the stator; (c)

first two path of that the mover slides on the stator; (d) the self-sliding

no-fit polygon.
All equations are shown above, and the derivation can
be found in Arora (2004) and Liao(1990). There are some
programs used the active-set SQP method to solve the
constrained optimisation problem, such as MOST (Tseng)
and IDESIGN (Arora).

3.2.2. Second step—nest

After the first step, the objects are placed at the
position (xi, yi) and with the orientation (yi), and are
treated as a ckuster in this step. This step uses the CNA
method (Cheng and Rao, 1999) to generate the nesting
pattern. The detailed process is introduced with penta-
gons as an example as follows.

At first, two objects are in contact to each other at a
point as shown in Fig. 4(a), and are called ‘‘stator’’ and
‘‘mover’’. The object S in Fig. 4(a) is the stator and the
object M is the mover. The bottom-left vertex of the object
is used to represent the object position, and is called a
‘‘reference point’’. Then M slides on S with a fixed
orientation in a counter-clockwise direction. At beginning,
m4 contacts with s1, and M will moves along s1s2

��!
until the

contact vertex m4 meet a corner or M contacts S on
another point as shown in Fig. 4(b). The point m4 meets a
corner when it contacts with s2, and then M will moves
along m5m4

���!
until the contact vertex s2 meet a corner or M

contacts S on another point as shown in Fig. 4(c). The self-
sliding process is complete when M moves to the initial
position, and the path of the bottom-left vertex of M is
recorded as a no-fit polygon as shown in Fig. 4(d). This
process is called ‘‘self-sliding’’ because the two objects are
identical and sliding relative to each other in the process.

After finding the no-fit polygon of self-sliding, the
mover is removed and the stator is called object P0 as
shown in Fig. 5(a). The reference point of another object
(object P1) is put at an arbitrary position of the self-sliding
no-fit polygon of P0 first. These two objects have their
self-sliding no-fit polygons, and the right interaction point
of these two no-fit polygons is the position of object P2.
The vector from the bottom-left vertex of object P0 to the
object P1 is called the ‘‘first nesting vector’’, and the vector
from the bottom-left vertex of object P0 to the object P2 is
the second nesting vector as shown in Fig. 5(b). The third
nesting vector is obtained by subtracting the first nesting
from the second nesting vector. These three nesting
vectors and their negative vectors will form a hexagon
as shown in Fig. 5(c), which is called a ‘‘nesting crystal’’.
Then, moving object P1 on the self-sliding no-fit polygon
of P0 will result in different nesting vectors and different
nesting crystals. The optimum nesting vectors are those
vectors that cause the minimum nesting crystal area
(Cheng and Rao, 1999).

3.2.3. Third step—improvement

Because the optimum nesting vectors in Fig. 5(b) might
not be parallel to the sheet stock edges, there will be four
corners that are not occupied by the nesting pattern after
the second step. Rotating the nesting vector parallel to any
axis will reduce this to two regions. Aligning three nesting
vectors parallel to the X- and Y-axis, respectively, will
result in six cases in this study to improve the nesting
pattern.

After having introduced the methods a case study is
given in the next section and the results are discussed.

4. Case study

The example used in this section was first introduced
by Cheng and Rao (1997, 1999, 2000). The profiles of
objects that will be nested are shown and numbered as in
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Fig. 6. Objects 2 and 3 have the same profile; objects 7 and
8 also have the same profile. The coordinate values are
shown with local coordinate systems in Table 1. The COGs
are set as the origins of the local coordinate systems, and
will be used to represent the positions of objects.
Fig. 5. The process of finding nesting vectors: (a) the object P1 on the self-slid

crystal.

Fig. 6. Profiles of objects for cutting: (a) object 1; (b) objects 2 and
In the first step, the design variables are the coordinate
values (xi, yi) and object orientations (yi). There are 24
design variables in this case because there are eight
objects and every object needs three design variables to
represent its position and orientation. The cost function is
ing no-fit polygon of the object P0; (b) nesting vectors; (c) the nesting

3; (c) object 4; (d) object 5; (e) object 6; (f) objects 7 and 8.
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Table 1
Vertices of objects.

Object no. Vertices (x, y)

1 (�0.18, �1.77); (0.82, �1.47); (�0.18, �0.47); (0.82, 0.53); (0.62, �0.47); (2.82, 0.53); (�0.18, 1.53); (�2.18, �0.47)

2 and 3 (�0.7, �1.14); (1.3, �0.74); (0.8, 0.86); (�0.7, 0.86); (�1.7, �0.14); (�0.7, �0.64); (�0.9, 0.16); (0.3, �0.14)

4 (�1.32, �0.78); (0.68, �1.38); (0.68, 1.62); (�1.32,0.62); (�0.12, 0.62); (�0.12, �0.38); (�1.32, �0.38)

5 (�1.16, �0.94); (0.84, �0.94); (0.34, 1.06); (�0.66, 1.56); (�0.16, 0.06)

6 (�0.55, �0.58); (0.45, �0.58); (0.45, 0.62); (�0.35, 0.62)

7 and 8 (�0.2, �0.44); (0.2, �0.44); (0.5, 0.06); (0, 0.56); (�0.5, 0.06)

Fig. 7. Considered iteration number.

Fig. 8. The placing pattern of iteration 7.

Table 2
The data of the first step result.

Object no. X coord. value y coord. value Orientation (degree)

1 0.305 �2.808 6.922

2 2.723 1.155 �49.388

3 �1.196 �0.911 52.126

4 �0.138 0.985 �3.821

5 1.737 �0.717 �11.513

6 0.973 0.707 5.641

7 0.451 �0.904 92.524

8 1.088 �0.346 106.560

M.T. Yu et al. / Int. J. Production Economics 121 (2009) 148–161156
to minimise the summation distances between objects
(as shown in Eq. (1)), and the 28 constraints are that no
two objects may overlap (as shown in Eq. (3)). This means
all objects have to be as close as possible without overlap.
Even if there are many constraints in this case, the inactive
constraints will be ignored in the active-set SQP solving
process when using the maximum depth to consider the
overlaps.

Deciding the initial solution is another problem in the
optimisation process, and different initial solutions will
lead to different local optimum solutions. The initial
solution in this study is set by the concept of initially
ignoring the constraints, and findings the best solution in
the new unconstrained problem. Then the best solution of
the unconstrained problem is set as the initial solution of
the constrained problem. Thus, the initial solution is set as
though all object positions are on the origin of the global
coordinate system. This is because the best solution
occurs when all objects overlap on the same position if
the constraints are ignored. The object orientations are set
as zero, i.e., the original orientation of objects, because
they do not affect the cost function but can improve the
constraints.

The object positions and orientation are adjusted to
improve the constraints in the solving process, resulting in
418 iterations in this case. The number of considered
constraints during the solving process is shown in Fig. 7.
At the beginning, 28 constraints are used, i.e., all
constraints are considered, but the number of considered
constraints is later reduced. For example, there are six
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pairs of objects that overlap one another in iteration 7.
The placing pattern is shown in Fig. 8. This means that
there are six considered constraint. The six pairs are
objects 1 and 6, objects 2 and 3, objects 2 and 5, objects 3
and 5, objects 4 and 8, and objects 7 and 8. Objects 2 and 3
Fig. 9. Result of the first step: (a) placing pattern of the first step; (b) the

cluster profile.

Table 3
Nesting vectors.

First nesting vector (1.917, �5.238)

Second nesting vector (5.586, 1.060)

Third nesting vector (3.669, 6.298)

Fig. 10. The nesting pattern of the secon
are almost overlapped completely, and look like
one object in the figure. The maximum depths of the
first, fifth, and sixth pair are very close to zero, and
cannot be observed in the figure. If all constraints
are considered in the solving process, there will be
11704 constraints (28�418). But the summation of the
number of considered constraints is 2670 by using
the active-set SQP method with maximum depth overlap
index. This amounts to a reduction of about 77.19% in this
case.

The result of the first step is shown in Table 2, and the
x- and y-coordinate values are the position of the objects’
COGs in the global coordinate system. The placing pattern
of the first step is shown in Fig. 9(a), and the objects
should be integrated before going into the second step.
The profile of the cluster with a highly concave character-
istic is shown in Fig. 9(b). This concave characteristic may
be used in the second step.

The second step uses CNA to nest. The self-sliding no-
fit polygon has to be found first. Then the position of the
objects is adjusted to find the optimum nesting vectors as
introduced above. The optimum nesting vectors are
shown in Table 3. The nesting pattern with these nesting
vectors has 60 clusters in a 50�50 sheet stock as shown
in Fig. 10. N1, N2, and N3 are the first, second, and third
optimum nesting vectors, respectively. As shown in
Table 3 and Fig. 10, the optimum nesting vectors are not
parallel to the X- or Y-axis. Therefore, the nesting pattern
can be improved in the third step.

In the third step, the three nesting vectors are aligned
to the X- and Y-axis, respectively, as shown in Fig. 11. The
d step on the 50�50 sheet stock.
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best case is when the third nesting vector is parallel to the
Y-axis, resulting in 66 clusters in a 50�50 sheet stock.

For evaluating the proposed method, three kinds of
sheet stocks were used, namely 50�50, 100�100, and
Fig. 11. Nesting patterns (a) N1 parallels X-axis; (b) N1 parallels Y-axis; (c) N2 par

Y-axis.
200�200. The cluster in the literature (Cheng and Rao,
2000) is shown in Fig. 12. Because the Genetic Algorithm
is a controlled random method, the improvement step
runs three times in every kind of sheet stock with the
allels X-axis; (d) N2 parallels Y-axis; (e) N3 parallels X-axis; (f) N3 parallels
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literature cluster, as shown in Table 4(a). The results of the
proposed method with these sheet stocks are shown in
Table 4(b). The comparison between these cases is shown
in Table 4(c). After integrating the multi-polygon as a
single object and nesting by CNA, there are 58 literature
clusters in the 50�50 sheet stock, while the proposed
method yields 60. Thus, the number of objects is improved
by 3.45%. In the 100�100 and 200�200 sheet stock, the
number of objects is improved by 5.28% and 4.91%
respectively. However, after improving the nesting pattern
by the Genetic Algorithm, there are up to 62 clusters in the
literature method, while there are 66 clusters in this study
after the third step. Thus, the number of objects is
improved by 6.45%. The proposed method improves the
Fig. 12. The cluster of the literature.

Table 4
Results: (a) results of CNA with Genetic Algorithm; (b) results of the proposed

(a)

The sheet stock size 50�50

CAN 58

Improving run 1 60

Improving run 2 62

Improving run 3 62

(b)

The sheet stock size

CAN

Paralleling X-axis First nesting vector

Second nesting vector

Third nesting vector

Paralleling Y-axis First nesting vector

Second nesting vector

Third nesting vector

(c)

The sheet stock size 50�50

The best of proposed method 66

The best of CNA with GA 62

Improvement ratio 6.45%
number of objects in these cases by between three and six
percent. Therefore, the proposed method has better
results for rotatable objects and requires less calculation
effort.

For testing the efficiency of the method, this study uses
other two cases called Dagli and Swim (http://paginas.
fe.up.pt/�esicup/tiki-index.php). The clusters are shown
in Fig. 13, and the information of the object can be found
in the ESICUP website. The stock sizes are selected
randomly, and the results are shown in Table 5 and 6.
The results by using this method are better than the CNA
with GA. Thus, the approach proposed in this study is a
good method not only for one special case.

5. Conclusions

The cutting-stock problem is considered in many
manufacturing industries, and the method for solving it
can be divided into two parts: the overlap consideration
method, and the placing strategy. The objects will not be
rotatable if using a sliding technique to avoid overlap,
while the calculation effort will be large if using real
overlap area as the overlap index. Using binary matrices to
represent objects can reduce the calculation effort, but the
objects may be deformed after rotation. The placing
strategies using different placing sequence in finding the
best placement for the multi-polygon cutting-stock
problem do not use gradient information or Hessian
information. Therefore, this study proposes:
(1)
meth

50

60

62

61

61

62

62

66
Using the maximum depth as the overlap index
instead of real overlap area to reduce the calculation
effort.
(2)
 By using the maximum depth as the overlap index, the
objects are not coded in binary matrices and they will
not deform in different orientations.
od; (c) comparing the results.

100�100 200�200

265 1140

269 1155

272 1150

277 1156

�50 100�100 200�200

279 1196

285 1215

279 1226

276 1216

286 1214

280 1225

284 1216

100�100 200�200

286 1226

277 1156

3.25% 6.06%

http://paginas.fe.up.pt/~esicup/tiki-index.php
http://paginas.fe.up.pt/~esicup/tiki-index.php
http://paginas.fe.up.pt/~esicup/tiki-index.php
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Fig. 13. The cluster of cases: (a) the cluster of case Dagli; (b) the cluster of case Swim.

Table 5
Results of case Dagli: (a) results of CNA with Genetic Algorithm; (b) results of the proposed method; (c) comparing the results.

(a)

The sheet stock size 851�1790 1681�1638 649�1490

CNA 1042 1927 647

Improving run 1 1109 2030 687

Improving run 2 1099 2032 695

Improving run 3 1099 2026 687

(b)

The sheet stock size 851�1790 1681�1638 649�1490

CNA 1109 2045 689

Paralleling X-axis First nesting vector 1131 2096 703

Second nesting vector 1113 2060 690

Third nesting vector 1124 2080 695

Paralleling Y-axis First nesting vector 1146 2092 690

Second nesting vector 1119 2082 687

Third nesting vector 1153 2064 707

(c)

The sheet stock size 851�1790 1681�1638 649�1490

The best of proposed method 1153 2096 707

The best of CNA with GA 1109 2032 695

Improvement ratio 3.97% 3.15% 1.73%

M.T. Yu et al. / Int. J. Production Economics 121 (2009) 148–161160
(3)
 The cutting-stock problem is formulated as a con-
strained optimisation problem, and can be solved by
the active-set SQP method in the first step of the
placing strategy. The active-set SQP method is a
Hessian-based method and will improve the efficiency
of searching for the optimum placing pattern.
(4)
 The summation of distances between objects is used
as the cost function, and is more sensitive than using
the necessary sheet stock area or the number of
objects placed in the sheet stock. It is more suitable
for the SQP method.
(5)
 The overlaps are the constraints of the cutting-stock
problem, and the constraint consideration will be
reduced by using the active-set SQP method with
the maximum depth as the overlap index. This is
because the constraints will be ignored if the overlap
indices are less than zero, i.e., the maximum depths
are less than zero and the constraints become inactive.
(6)
 The nesting pattern is improved easily in the third
step of the placing strategy by aligning the three
nesting vector with the X- and Y-axis, respectively, and
choosing the best one as the final nesting pattern.
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Table 6
Results of case Swim: (a) results of CNA with Genetic Algorithm; (b) results of the proposed method; (c) comparing the results.

(a)

The sheet stock size 144 202�124 029 48 817�71 275 69 834� 95 666

CAN 1259 223 451

Improving run 1 1277 230 462

Improving run 2 1282 229 471

Improving run 3 1277 230 468

(b)

The sheet stock size 144 202�124 029 48 817�71 275 69 834� 95 666

CNA 1335 238 477

Paralleling X-axis First nesting vector 1363 236 475

Second nesting vector 1365 250 486

Third nesting vector 1334 242 481

Paralleling Y-axis First nesting vector 1336 243 484

Second nesting vector 1330 249 484

Third nesting vector 1337 237 497

(c)

The sheet stock size 144 202�124 029 48 817�71 275 69 834� 95 666

The best of proposed method 1365 250 497

The best of CNA with GA 1282 230 471

Improvement ratio 6.47% 8.7% 5.52%

M.T. Yu et al. / Int. J. Production Economics 121 (2009) 148–161 161
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