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Abstract: The process of generating periodic optical waveforms includes 
the generation and phasing of several harmonics of a fundamental 
frequency. In this work, we show that simultaneous generation and phasing 
of the harmonics can be performed in a monolithic aperiodic optical 
superlattice (AOS). Stable periodic waveforms can thus be delivered to a 
predetermined location by simply sending a laser beam through a properly 
designed and fabricated AOS crystal. A detailed mathematical description 
for generating the domain pattern in such an AOS crystal is given and the 
process is numerically demonstrated. The waveform that is generated from a 
monolithic AOS is highly reproducible and phase stable. We also use 
propagation in air as an example to show how any predictable phase and 
amplitude modifications such as air dispersion that will alter the desired 
waveform can be pre-compensated in the design phase of the AOS crystal. 

©2009 Optical Society of America 

OCIS codes: (320.5540) Pulse shaping; (230.5298) Photonic crystals; (190.4160) 
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1. Introduction 

In recent years there is a lot of interest in the synthesis of arbitrary optical waveforms because 
of their potential application in telecommunication [1], quantum control [2], and ultrafast 
electronic processing [3]. It is now understood that there are two essential requirements 
toward achieving full control in the synthesis of periodic arbitrary optical waveforms. The 
first one is the generation of a broad spectrum consisting of a series of commensurate 
harmonic components. The generated frequency components serve as the building blocks of 
any desired waveform. The other requirement is to have the ability to manipulate the phase 
and amplitude of each harmonic to achieve the desired waveform. To obtain such a periodic 
waveform, the phase of each harmonic must be adjusted to satisfy the condition 

 ,
n CE m

nϕ ϕ ϕ= +  (1) 

where 
CE

ϕ  is the carrier-envelope phase and 
m

ϕ  is a uniform phase difference between 

adjacent components. When both requirements are satisfied, an arbitrary periodic waveform 
can be produced by superposition of the components of the series [4]. 

Generally these requirements are satisfied in consecutive steps. A phase coherent Fourier 
spectrum is first generated using methods such as self-phase modulation in nonlinear photonic 
crystal fiber [5], high harmonic generation from ultrafast lasers [6], molecular modulation [7], 
or multiple harmonics generation [8,9]. In some of these methods periodic ultrashort pulse 
trains are formed at the location where the phase-coherent spectrum is produced. Yet material 
dispersion and propagation phase shifts distort the waveform after exiting the generator. 
Hence generally the generation is followed by some form of a phase compensation scheme 
that employs grating pairs, prisms, and/or spatial light modulators to adjust the phase and 
amplitude of the series components to arrive at the desired result [10–12]. 

The optical Fourier synthesizer using multiple harmonics was first proposed by Hänsch 
[8], who phase-locked two lasers to construct a frequency comb, employing frequency mixing 
processes in nonlinear crystals. The frequency mixing process and the phase-locked lasers 
guarantee a stable phase difference between every pair of adjacent frequency components. 
Waveforms can then be synthesized subsequently by monitoring and shifting the phase of 
each frequency component. In this paper we describe an approach utilizing an aperiodic 
optical superlattice (AOS) to simultaneously generate and phase the spectrum such that 
periodic electromagnetic waveforms of any predetermined shape can be delivered to a 
specified location in a single setting. 

It is well-known that quasi-phase-matched nonlinear interaction can be achieved by 

periodically modulating the second order nonlinearity (2)
d  to create a nonlinear reciprocal 

lattice vector in a crystal that offsets the phase-mismatch of a nonlinear interaction in the 
medium [13]. By introducing aperiodic or quasi-periodic modulation Zhu and associates first 
showed that two lattice vectors can be created in one crystal to provide simultaneous quasi-
phase-matched second and third harmonic generation in a superlattice [14]. Recently, Shutov 
and Chirkin advanced the technique to show by simulation that several harmonics can be 
generated in an AOS to provide a broad comb of coherent frequencies [9]. They proposed 
AOS designs that optimize the efficiency of each harmonic generation stage to produce up to 
8 consecutive harmonics, the superposition of which gives pulses of ultimate duration at some 
fixed interaction length determined and limited by the dispersion properties of the AOS. 
However, additional steps are required to compensate any distortion to the pulse when 
delivering it to the location where it will be applied. Here we expand on the idea of using an 
AOS to propose and numerically demonstrate a device that allows the delivery of an ultrafast 
periodic waveform to a predetermined location. For example, a specific waveform can be 
delivered directly to a heterojunction of a nanoscale photoelectronic device where the ultrafast 
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dynamics of the electron and hole carriers are to be characterized. This is accomplished by 

engineering the phase and amplitude of (2)
d  of an AOS so that the AOS will provide the 

required comb of harmonics that Fourier synthesizes to the desired waveform at that location. 

2. Basic principle of the model 

We begin with the equation for second order nonlinear frequency conversion 

 
(2)

( )

( )
exp( ),

p q r

r r

p q rpq

r

E d z
i E E i k z

z cnω ω ω

ω

+ =

∂
= − − ∆

∂ ∑  (2) 

where 
, ,n r p q

E =  is the complex amplitude ( ) ni

n
E e

ϕ
z  of the time-dependent electric field 

( )
( , ) ( ) n n ni t k z

n n
E z t E z e

ω ϕ− += , z  is the direction of propagation, (2) ( )d z  is the second order 

nonlinear coefficient, 
n

ω  and 
n n n

k n cω=  are the frequency and wavevector of 
n

E , 
n

n  is 

refractive index, and 
( )rpq p q r

k k k k∆ = + −  is the photon momentum mismatch. 

Successful periodic waveform synthesis requires the formation of a commensurate series 

of harmonics that begins with the fundamental frequency 
1

ω  and the n th component is 

1n
nω ω= . These harmonics can be generated in a series of processes described by Eq. (2). To 

calculate the phase of each harmonic at z , we express Eq. (2) as 

 ( )

( )

,r r

rpq p q

rpq r

E
i d E E

z cn

ω∂
= −

∂ ∑ ɶ   (3) 

where the RHS is the sum of all possible channels 
p q r

ω ω ω+ →  which contribute to the 

generation of 
r

E , and 
( )rpq

dɶ  is defined as a channel specific effective second order nonlinear 

coefficient of the medium over a distance L , 

 
(2)

( ) ( ) ( )

1
( ) ( )exp( ) .rpq rpq rpqd d k d z i k z dz

L
≡ ∆ = − ∆∫ɶ ɶ  (4) 

In conventional quasi-phase-matched harmonic generation (2) ( )d z  is designed to optimize 

the generation efficiency so that 
( )rpq

dɶ  is real. By constructing 
( )rpq

dɶ  to have a nonzero phase, 

the output 
r

E  will carry an additional phase 
( )rpqd

ϕ
ɶ

. Hence through the design of (2) ( )d z  we 

can impose a phase that is required on each harmonic output to produce the designed 
waveform waveform. 

The connection between 
( )rpqd

ϕ
ɶ

 and the phase of each harmonic is shown as follows. While 

there can be many possible combinations of p  and q  in Eq. (4) we shall simplify the 

situation by choosing 1p =  and 1q r= − , that is 
1 1r r

ω ω ω−+ → , to be the dominating 

channels. With this choice, every harmonic is produced by sum mixing that includes 
1

E . The 

phase of the n th harmonic generated is given by: 

 ( ( 1)1)

( )

1 1

( )

1 1 1

,
2

,

n n

final

n n n n nd

final

π
ϕ ϕ φ ϕ ϕ ϕ φ

ϕ ϕ φ

−
−= + = − + + + +

= +

ɶ

 (5) 

where 
n

ϕ  is the phase of 
n

E  at the exit end of the crystal, ( )final

n
ϕ  is the required phase of 

n
E  

at the desired location and 
n
φ  represents the additional phase shift modulo to 2π  acquired by 

n
E  during propagation from the crystal exit to the final destination. In a periodic waveform, 
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the CEP is given by 
1 2 1 2 3

2
CE

ϕ ϕ ϕ ϕ ϕ ϕ= − = + − =… , therefore if we design (2) ( )d z  of a 

crystal such that 

 
( 211) (321)

1 2 1 2 32 ,
2 2d d

π π
ϕ φ φ ϕ φ φ φ− + − = − + + − =ɶ ɶ …  (6) 

then all the harmonics will be phase-coherent to give a CEP that equals 
( 211)

1 22
2 d

π
ϕ φ φ− + −ɶ . 

Note that the CEP is not affected by the absolute phase of the fundamental frequency 
1
ϕ . As 

can be seen from Eq. (5), phase fluctuation of the input laser, 
1 1 1
ϕ ϕ ϕ→ +∆ , will only result 

in a phase shift, 
1

n ϕ∆ , for the nth component, ( ) ( )

1

final final

n n
nϕ ϕ ϕ→ + ∆  and then a time shift 

1 1
/ϕ ω∆  to the overall synthesized waveform. Since ∆φ1 is less than 2π and ω1 is in the optical 

range, the shift is insignificant so long as the input consists of more than a few cycles. 

3. Design algorithm 

The design of an AOS that can deliver a desired waveform will amount to finding a solution 

for (2) ( )d z  by solving numerically Eq. (2) with an initial input of 
1

(0)E E=  and 0
n

E = , 

1i ≠  and a given set of final E field amplitudes and phases as the boundary conditions. 

Shutov describes a generalized sign function 

 
(2)

( ) ( ) ( )

( )

( ) sgn( sin( )),
N

rpq rpq rpq

rpq

d a k ζ∝ ∆ +∑z z  (7) 

where 
( )rpq

a  and 
( )rpq

ζ  are amplitude and phase parameters of the harmonic modulation. 

( )rpq
k∆  in the sine function is to include the quasi-phase-matching of the channel 

p q r
ω ω ω+ →  in the lattice periodicity to characterize the periodical dependence of (2) ( )d z  

for N  simultaneous QPM processes. We take into consideration that there is a minimum 

domain length that can reliably be fabricated in the AOS and modify Eq. (7) to include this 
minimum length. We further add a criterion that the width of each domain is equal to an 
integral multiple of this minimum width in the superlattice to arrive at the following design 
function for the crystal: 

 

/

(2)

( ) ( ) ( )

( )/ 1

( ) sgn( cos( ' ) '),

z l l N

rpq rpq rpq

rpqz l l

d z a k z dzζ
  

−  

∝ ∆ +∑∫  (8) 

where l  is the length of a block that equals to the minimum domain width, / l  z  is a floor 

function which returns the greatest integer less than or equal to / lz , and 
( )rpq

a  and 
( )rpq

ζ  are 

generation parameters which determine the amplitude and phase of the spectrum of the final 
poling sequence. The sum of all different frequency terms is integrated over the block length 

from / 1l l−  z  to / l l  z . The corresponding sign function returns the polarization 

direction of the block. 

By iteratively adjusting the values of 
( )rpq

a  and 
( )rpq

ζ , it is possible to produce a solution 

for (2) ( )d z  that will result in predetermined output electric field amplitudes and phases. In 

this algorithm the calculated amplitude 
( )rpq

dɶ  is mainly affected by 
( )rpq

a  and the phase 

( )rpqd
ϕ
ɶ

 by 
( )rpq

ζ . This can be seen by recognizing in Eq. (8) that inclusion of 
( )rpq

ζ  is 

equivalent to introducing an offset to the initial phase 
( )rpq

k∆ of the frequency components in 
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the domain pattern. This feature makes the algorithm very robust when searching for the final 
solution since the amplitude and phase of the output electric field can be considered 
separately. Note that the choice of the form of Eq. (8) is somewhat arbitrary. Any solution that 
has a basic sinusoidal form will work, as different forms of sinusoids will only result in a shift 

or a sign change between 
( )rpq

ζ  and the calculated value of 
( )rpqd

ϕ
ɶ

. For convenience we have 

chosen the cosine function so that the calculated 
( )rpqd

ϕ
ɶ

 will have the same sign as the 

generation parameters of the phase 
( )rpq

ζ . 

A numerical procedure based on simulated annealing algorism is used to generate the 
poling pattern of the crystal by first selecting a length for the domain block. The value of each 

( )rpqd
ϕ
ɶ

 can be estimated from the desired value of the final CEP using Eq. (6). The initial 

generation parameters 
( )rpq

a  are then arbitrarily chosen to calculate a (2) ( )d z  with Eq. (8). 

The (2) ( )d z  that results from this calculation is fed into Eq. (2) to obtain 
n

E  for comparison 

with the values of the fields of the desired waveform. If the root mean square of the difference 
of the calculated fields and the desired fields is larger than a prescribed value the procedure is 

repeated using a randomly chosen set of 
( )rpq

a  until the calculated and the desired E fields 

agree to within an acceptable value. 

4. Numerical examples 

We demonstrate the utility of the above procedure with a few numerical examples. We use 

lithium niobate at 100 �C as the nonlinear medium. In the first example we aim to produce a 
sawtooth waveform at the crystal exit by the superposition of the first five harmonics with 

channels: 
1 1 2

ω ω ω+ → , 
1 2 3

ω ω ω+ → , 
1 3 4

ω ω ω+ → , 
1 4 5

ω ω ω+ → . In correspondence to 

our previous work [11], we choose 2.406 µ m as the fundamental wavelength. The phase 

mismatch of each channel, 
( )rpq

k∆ , is listed in Table 1. 

Table 1. Phase mismatch of selected processesa 

Channel k∆  (1/ µ m) 2 / kπ ∆  ( µ m) 

1 1 2
ω ω ω+ →  0.22380283 28.074647 

1 2 3
ω ω ω+ →  0.31866532 19.717192 

1 3 4
ω ω ω+ →  0.53402295 11.765759 

1 4 5
ω ω ω+ →  0.89204589 7.0435673 

2 3 5
ω ω ω+ →  1.2022660 5.2261190 

2 5 7
ω ω ω+ →  3.7292894 1.6848211 

aIn lithium niobate at 100 C°  and 
( )

1
2.406vacuumλ =  µ m, calculated using 

refractive index data from Ref [15]. 

We choose to set the length of each block at 7.04 / 3 2.35=  µ m where 7.04 µ m is the 

smallest QPM period of all channels used in this process (as shown in the first four rows in 

Table 1), i.e., 
5 4 1

2 / ( )k k kπ − − . The total number of blocks is 2475. Hence the crystal length 

is approximately 6 mm. We use the plane wave approximation and assume a rectangular 

temporal input pulse with an intensity of 100 MW/cm 2  and assume the initial phase 
1

0ϕ = . 

After several iterations we obtain a set of generation parameters 
(211)

1.000a = , 
(321)

0.996a = , 

(431)
1.174a = , 

(541)
1.294a =  and 

(211) (321) (431) (541)
0ζ ζ ζ ζ= = = =  that results in a calculated 

(C) 2009 OSA 31 August 2009 / Vol. 17,  No. 18 / OPTICS EXPRESS  16346
#112976 - $15.00 USD Received 19 Jun 2009; revised 28 Jul 2009; accepted 28 Jul 2009; published 28 Aug 2009



  

field amplitude ratio of 1.000:0.501:0.340:0.252:0.194 for the 1st to 5th harmonics, which is 
close to the desired 1:1/2:1/3:1/4:1/5 for a square waveform. The absolute values of the 

corresponding effective second order nonlinear coefficients ( )d k∆ɶ  is calculated to be 42%, 

41%, 45% and 39% of a perfectly quasi-phase-matched periodic poled nonlinear crystal. The 

evolution of the E fields and the calculated spectrum of ( )d k∆ɶ  of the aperiodic pattern 

generated with this set of parameters are shown in Fig. 1. 

 

Fig. 1. (left frame) Absolute values of the normalized effective second order nonlinear 

coefficients ( )d k∆ɶ  calculated from Eq. (4) of the designed aperiodic optical superlattice and 

(right frame) simulation results of the electric field evolution in the designed AOS. 

From Eqs. (2) and (8) we expect that by setting all 
( )

0
rpq

ζ = , then all 
( )rpqd

ϕ
ɶ

 will be 0. The 

calculated values of 
( 211)d

ϕ
ɶ

, 
( 321)d

ϕ
ɶ

, 
( 431)d

ϕ
ɶ

, and 
( 541)d

ϕ
ɶ

 are 0.0002 π , 0.0003 π , 0.0061 π , 

−0.0022π , respectively, which match well with the expected values of 0 to within 0.006π . 

From Eq. (6) we get 0.5 0.5
CE d

ϕ π ϕ π= − =
ɶ

 and 
1

0.5
m CE

ϕ ϕ ϕ π= − = − . The predicted 

phases of the harmonics are 
2

0.5ϕ π= − , 
3

1.0ϕ π= − , 
4

1.5ϕ π= −  and 
5

2.0ϕ π= − . The 

actual simulation gives 
1

0.0007ϕ π= − , 
2

0.5019ϕ π= − , 
3

1.0030ϕ π= − , 
4

1.4983ϕ π= −  

and 
5

2.0123ϕ π= − , which also match well with the prediction. 

This algorithm works for any value of the CEP. We used several sets of values of 
( )rpq

ζ : 

( )rpq
ζ  equaling to 0, or / 2π , or π , or 3 / 2π  respectively and repeated the calculation. Note 

that each set of 
( )rpq

ζ  corresponds to a different AOS design. The phase evolution inside the 

lithium niobate crystal for each set of 
( )pqr

ζ  and the corresponding envelope and electric field 

intensity of the waveforms are shown in Fig. 2. We see that the phases converge rather 
quickly to a value that agrees with the desired values in all cases. 
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Fig. 2. (large frames) Simulation results of the phase evolution inside the designed AOS and 
(small frames) the corresponding waveforms (solid curve) and envelopes (dotted curve). (a) 

For AOS generation parameters of phase 
(211) (321) (431) (541)

0ζ ζ ζ ζ= = = = , simulation 

results agree with expected values 0.5
CE

ϕ π=  and 0.5
m

ϕ π= − .For 

(211) (321) (431) (541)
0.5ζ ζ ζ ζ π= = = = , 1.0π  and 1.5 π  from (b) to (d), the expected 

values are (b) 0
CE

ϕ = , 0
m

ϕ = , (c) 0.5
CE

ϕ π= − , 0.5
m

ϕ π= , (d) 1.0
CE

ϕ π= − , 

1.0
m

ϕ π= , respectively. In a stable periodic waveform, 
CE

ϕ  affects the shape of the 

waveform, and 
m

ϕ  produces a timeshift. This is confirmed with the results shown in the small 

frame figures on the right where the envelopes shift sequentially by 1/4 period from (a) to (d), 

which is due to the 0.5π  phase shift of 
m

ϕ  from one figure to the next. 

In the event the externally imposed phase shift 
n
φ  of the n th harmonics is not zero, we 

can compensate that by changing the values of 
( )rpq

ζ  in Eq. (8). This will be the case, for 

instance, if we want to have a sawtooth waveform 1 m away instead of right at the crystal exit. 
Assuming plane wave propagation in air, then using published data on the refractive index of 
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air [16], the phase evolution of the above harmonics are calculated to be −831484.366π , 

−1662970.062π , −24944584.580π , −33259510.110π , −41574493.192π , which correspond 

to 0.366
n
φ π= − , −0.062π , −0.580π , −0.110π , −1.192π , for 1n = , 2, 3, 4, 5, respectively. 

From Eq. (6) we can compensate this dispersion by shifting 
(211)

ζ  

by -0.366 2 ( 0.062 )π π× − − , 
(321)

ζ  by -0.366 0.062 ( 0.580 )π π π− − −  and so on. Solving Eq. 

(8) with this set of 
( )rpq

ζ  then results in a new AOS design that gives a sawtooth waveform 

located at 1 m away from the crystal, as shown in Fig. 3. The waveform at the crystal end 
immediately after the generation process has a very different form compared to Fig. 2. 

 

Fig. 3. Generated electromagnetic waveform (solid curve) and the corresponding envelope 
(dotted curve) which are (a) at the crystal exit and (b) at 1 m away from the crystal exit. The 

generation amplitude parameters are set to 
(211)

1.000a = , 
(321)

0.996a = , 

(431)
1.174a = , 

(541)
1.294a = , which are the same as those for calculating Fig. 2. The 

generation phase parameters are set to 
(211)

1.332ζ π= , 
(321)

0.030ζ π= , 

(431)
0.186ζ π= , 

(541)
1.942ζ π=  to compensate the phase distortion due to dispersion in 

air. 

The algorithm we have described indeed is very versatile. For many common waveforms 
such as the square wave or the triangular waveform, only a subset of the harmonics is needed 
to synthesize the desired waveform. A suitable generation path can be chosen with just the 
necessary harmonics to optimize the field power usage and remove the need to filter out 
unnecessary harmonics. To demonstrate the point, we designed an AOS pattern for generating 
a square wave. The Fourier components of a square wave have only odd frequency terms. For 

our example we employ a total of five harmonics 
n

ω , 1n = , 2, 3, 5, 7 with the channels 

1 1 2
ω ω ω+ → , 

1 2 3
ω ω ω+ → , 

2 3 5
ω ω ω+ → , 

2 5 7
ω ω ω+ → . 

2
ω  is required in order to 

generate the higher harmonics and is expected to exhaust its energy before propagating into 

free space. The phase mismatch 
( )rpq

k∆  of each channel is listed in Table 1. The simulation 

uses a lithium niobate crystal that has 104000 blocks. The block length is 0.6 µ m. The input 

fundamental intensity is 100 MW/cm
2
. After several iterations we obtain the generation 

amplitude parameters to be 
(211)

1.000a = , 
(321)

2.188a = , 
(532)

12.119a = , 
(752)

21.416a = . 

Simulation shows that the normalized amplitudes of the 1st, 2nd, 3rd, 5th and 7th harmonics 
at the output are 1.000, 0.002, 0.343, 0.204, 0.140, respectively. The generated 2nd harmonic 
amplitude is less than 0.2% of the fundamental, showing that it has been effectively converted 
to the higher odd harmonics for the square wave. The waveforms corresponding to a few 

different CEPs are plotted in Fig. 4. Note that only 0.5
CE

ϕ π=  gives a square waveform. 
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Fig. 4. Plots of simulated waveforms (solid curve) and envelopes (dotted curve). The 

generation amplitude parameters are set to 
(211)

1.000a = , 
(321)

2.188a = , 

(532)
12.119a = , 

(752)
21.416a =  and the generation phase parameters are set 

to
(211) (321) (431) (541)

0ζ ζ ζ ζ= = = = , 0.25π , 0.5π , 0.75π  from (a) to (d) respectively. 

From Eq. (8) and with 
1

0ϕ = , it can be predicted that 
CE

ϕ  will change from 0.5π  to 

−0.25 π . The expected values of the CEP are (a) 0.5
CE

ϕ π= , 0.5
m

ϕ π= − . (b) 

0.25
CE

ϕ π= , 0.25
m

ϕ π= − . (c) 0
CE

ϕ = , 0
m

ϕ = . (d) 0.25
CE

ϕ π= − , 

0.25
m

ϕ π= , which agree with above waveforms. 

5. Discussion 

Many physical processes are sensitive to the form of the electric field. Meanwhile the CEP 
affects the time evolution of the electric field waveforms. These waveforms will be time-
invariant if the CEP is constant. In general, electric fields experience phase shifts and 
amplitude modulations that distort the waveform. If the shifts and modulations are 
predictable, such as if they originate from propagation through a dispersive medium, Gouy 
phase shift, reflection from optics surfaces, etc. then they can be pre-compensated in the 
design phase of the AOS domain pattern by including the shifts and modulations in the 
iterative process. In this way we can deliver the desired waveform to any predetermined 
location. 

An advantage of employing the AOS is that all the necessary steps in waveform synthesis, 
including broadband frequency generation, and amplitude and phase modulation are all 
completed in a monolithic crystal so that the resulting waveform will be very stable and 
reproducible. One can conceive many important applications for such highly stable and 
reproducible waveforms. For example, measurements that are highly repetitious, correlation 
measurements that require an ultrafast standard or probe, and heterodyne measurements that 
use an ultrafast oscillator would all benefit from having stable waveforms generated from 
such an AOS. On the other hand, the AOS approach has the severe restriction that only one 
particular waveform can be obtained from each AOS design and for one input intensity. As 
such, stable, CW or quasi-CW high power lasers are preferred to provide the fundamental 
frequency input. Precise knowledge of the refractive index of the crystal and a tight 
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temperature control must be available for an accurate waveform. The maximum number of 
harmonics which can be generated simultaneously is limited by the transmission bandwidth of 
the crystal and the fact that the poling of crystal domain widths of less than 1 µm over any 
useful length is unrealistic with today’s poling technology. This last restriction can be 
somewhat mitigated by introducing high order QPM or using a longer fundamental 
wavelength. 

In summary we have described the synthesis of periodic waveforms using a monolithic 
AOS. An algorithm to design the AOS is proposed and verified by numerical simulation. The 
AOS will enable us to create a desired electric waveform and deliver it to a predetermined 
location. The approach offers a simple and compact solution to consistently and reliably 
producing such waveforms for many interesting applications. 

Acknowledgments 

We thank Chao-Kuei Lee for helpful discussions. This work was supported by the Academia 
Sinica and the National Science Council of the R.O.C. under the Nanoscience and Technology 
Program. 

(C) 2009 OSA 31 August 2009 / Vol. 17,  No. 18 / OPTICS EXPRESS  16351
#112976 - $15.00 USD Received 19 Jun 2009; revised 28 Jul 2009; accepted 28 Jul 2009; published 28 Aug 2009


