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Abstract

In recent years, with the radvanced technologiesdammunication
system, silicon-based transistors -have played gmonant role; especially,
for low-cost and highly-integration _system-on-apch(SOC). In the
development of such advanced devices, the analyssliability becomes
the most important concern. It is a question, & thC parameters of
reliability can guarantee the reliable operation R+ circuits? Or the
reliability issues should be considered more cdlsefo the RF parameters
than those in DC parameters. As to the devicelidtias, we are curious
about the interaction and the co-relation betweba DC degraded
parameters and the RF parameters.

We examined and analyzed the interesting religbibisues on the
silicon-based transistors; especially, for the Higlguency operation in this
thesis. As to the topic of silicon-based transstawe departed the main

discussions into two parts: one is about silicomygmium hetero-junction



bipolar transistors, and the other one is the M@B8sistors.

As discussed above, reliability stressing and barmf bipolar
transistors historically proceeds along two différepaths: reverse
emitter-base stress, which is used to inject hatieza (electrons or holes)
into the E-B spacer oxide, thereby introducing getien/recombination
(G/R) center traps, which lead to excess non-itb@ak current and hence
current gain degradation. The other one is forwanaent density, which is
as well as EB stressing, also results in curreint degradation under a high
voltage or a high current stressing. Recently, wuthe popularly used for
SiGe HBTs in RF power amplifiers, the biasing cdindi which is
simultaneously applying under a highg/voltage and a high collector
current density is a new.challenge to active devick new reliability
damage mechanism which. was termed: as mixed-modmadigpn was
reported in SiGe HBTs. It results from the simutans application of high
Jc and high \¢g and gets the hot carrier damage. In this theses,alg8o
discussed and analyzed this practical reliabiligchanism in SiGe HBTSs,
especially for its RF power applications.

Typical stressing like under the E-B reverse bm@siesults in some
traps near the E-B spacer oxide and interfacesstat&B junctions. Those
effects result in a non-ideal G/R base leakageeatirthus decrease the
output current gain. Since the hot carrier damdfgeta the base current but
remains the collector current unaffected of SiGeTsiBwe discussed the
different currents (constant land constantg) driving before and after
stressing. In addition, by using a small-signal elpdve extracted and
compared the parameters before and after E-B rearessing. Then, we

tried to find the co-relation and interaction betwethe DC parameter

\%



degradations and the degradations of RF figuresnait. As to the
mixed-mode stressing, a commercial large-signallGjBnodel is used to
examine the hot carrier damage on the high frequemaracteristics of
SiGe HBTs. We finally found that the device of SIBBT is more robust to
hot carrier damage on high frequency and RF powdopmnance when it is
under the driving of a constant collector current.

In another part of this thesis, we discussed armrdyaed the reliability
issues on the high frequency characteristics of Mi@fsistors. The
discussion and analysis of RF reliabilities in thisesis included the
hot-carrier damage and the critical gate oxide kteavn of MOS transistors.
In addition, the discussion covered the main smtibns of high frequency
applications of MOS transistors like. the cutoff goency, maximum
oscillation frequency, noise.figure, linearity, aR& power performance. In
this experiment, we finally found-that.the-DC rbllay parameters are lack
and can not fit and present.the -RF reliability degtions. So, a RF
reliability model is urgent and suggested to bestmicted, especially for the

future application of RF circuits.
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