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中文摘要 

 

近年來，隨著無線通訊技術的快速發展以及電路成本上的降低，矽

-基底之電晶體在實行系統整合於單一晶片的角色及運用也越來越趨成

熟。在開發先進元件的同時，可靠度的測試和分析也將會是一個重要的

議題。而傳統上直流所做的參數的可靠度測試，是否就能符合高頻電路

操作下的相對安全規格？亦或是高頻電路操作下，主動元件所需考量的

可靠度因素會比傳統上所做的直流測試更加嚴苛？這些考量的因素在

於直流測試以及高頻測試之間的關聯性又是如何？ 

本論文的研究方向和主題即是針對於這個有趣的議題在矽基底電

晶體的高頻操作運用上，做一個有系統並且完整的分析。論文中，針對

矽基底電晶體的部分則是包含兩大主題：矽鍺異質接面雙極性電晶體 
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(SiGe HBTs)、以及金氧半場效電晶體 (MOSFETs)。  

    傳統上，針對矽鍺異質接面雙極性電晶體的可靠度測試主要的方法

可再細分為兩種：反向偏壓的射極-基極接面(Reverse-biased 

Emitter-Base junctions, and left collector open)，與順向偏壓集

極電流(Forward-biased Collector current)，而相同的目的即是利用

相對較高的電壓或是電流的驅迫(Stressing)，來產生較大的電場以及

帶有較高能量的熱載子。近年來，由於矽鍺異質接面雙極性電晶體主要

運用於高頻電路中的功率電路(Power Amplifier)，而在接近實際操作

情況下，同時產生較高的輸出電流以及較高的輸出電壓，而這樣的偏壓

條件下，也對於元件的可靠度是一個新的挑戰。而所謂的混合驅迫

(Mixed-Mode Stressing)就是利用矽鍺異質接面雙極性電晶體在操作的

同時給於較高的電流密度以及高電壓下所造成的一種熱載子驅迫。這個

接近實際操作下的熱載子分析，也是本論中高頻可靠度分析的一項重要

主軸，尤其是在高頻功率上所造成的影響。 

    傳統的反向偏壓射極-基極接面驅迫所造成的熱載子會在靠近基極

和射極接面以及隔離基極-射極的絕緣層上產生接面陷阱(traps)和帶

電荷的接面能態(interface state)，而影響其直流特性上的電性反應。

譬如在基極電流上產生非理想的複合漏電流，而造成電流増益的下降。

這也會影響高頻操作時某些可預期的電性上的劣化反應。在此實驗中，
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由於熱載子對於基極電流和集極電流所造成的影響並不一致，所以我們

也針對於不同方式的電流驅動下(固定 IC 和 固定 IB)，完整地分析熱載

子對於矽鍺異質接面雙極性電晶體實際操作上，在其高頻特性以及功率

特性的影響。並以小訊號等效電路將其參數萃出作為分析比較以及尋找

出高頻參數的劣化與直流特性參數劣化之間的相關性。而在混合驅迫

下，熱載子對於矽鍺異質接面雙極性電晶體所造成的傷害，除了直流上

的變異，高頻操作下我們則是利用大訊號(VBIC)模型，將其相關的參數

萃出，並對於高頻特性、功率特性做一個完整的分析和功率放大器的模

擬。並且在這實驗的過程中，我們發現在固定集極電流驅動下的矽鍺異

質接面雙極性電晶體，受到熱載子傷害後，其高頻特性以及功率特性相

對地較不受到影響。 

    另一方面，本論文也針對金氧半場效電晶體的高頻操作下的可靠度

做了一個完整的分析。而本論文中，對於金氧半場效電晶體的可靠度的

討論則是包含了熱載子傷害以及閘極氧化層的崩潰。其中，我們分析探

討的範圍包含了高頻電路運用下的幾個主要規格，例如：截止頻率、最

大震盪頻率、雜訊指數、線性度以及高頻功率。並且在實驗的過程中，

我們發現一般直流劣化的參數並不足以提供和代表高頻操作下規格劣

化的指標。所以在我們這完整的分析裡，我們建議高頻可靠度的模型必

須重新被建立。 
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Abstract 

 

In recent years, with the advanced technologies in communication 

system, silicon-based transistors have played an important role; especially, 

for low-cost and highly-integration system-on-a-chip (SOC). In the 

development of such advanced devices, the analysis of reliability becomes 

the most important concern. It is a question, if the DC parameters of 

reliability can guarantee the reliable operation in RF circuits? Or the 

reliability issues should be considered more carefully in the RF parameters 

than those in DC parameters. As to the device reliabilities, we are curious 

about the interaction and the co-relation between the DC degraded 

parameters and the RF parameters.  

We examined and analyzed the interesting reliability issues on the 

silicon-based transistors; especially, for the high-frequency operation in this 

thesis. As to the topic of silicon-based transistors, we departed the main 

discussions into two parts: one is about silicon-germanium hetero-junction 
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bipolar transistors, and the other one is the MOS transistors.  

As discussed above, reliability stressing and burn-in of bipolar 

transistors historically proceeds along two different paths: reverse 

emitter-base stress, which is used to inject hot carriers (electrons or holes) 

into the E-B spacer oxide, thereby introducing generation/recombination 

(G/R) center traps, which lead to excess non-ideal base current and hence 

current gain degradation. The other one is forward-current density, which is 

as well as EB stressing, also results in current gain degradation under a high 

voltage or a high current stressing. Recently, due to the popularly used for 

SiGe HBTs in RF power amplifiers, the biasing condition which is 

simultaneously applying under a high VCB voltage and a high collector 

current density is a new challenge to active devices. A new reliability 

damage mechanism which was termed as mixed-mode degradation was 

reported in SiGe HBTs. It results from the simultaneous application of high 

JC and high VCB and gets the hot carrier damage. In this thesis, we also 

discussed and analyzed this practical reliability mechanism in SiGe HBTs, 

especially for its RF power applications. 

Typical stressing like under the E-B reverse biasing results in some 

traps near the E-B spacer oxide and interface states in EB junctions. Those 

effects result in a non-ideal G/R base leakage current thus decrease the 

output current gain. Since the hot carrier damage affects the base current but 

remains the collector current unaffected of SiGe HBTs, we discussed the 

different currents (constant IC and constant IB) driving before and after 

stressing. In addition, by using a small-signal model, we extracted and 

compared the parameters before and after E-B reverse stressing. Then, we 

tried to find the co-relation and interaction between the DC parameter 
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degradations and the degradations of RF figures-of-merit. As to the 

mixed-mode stressing, a commercial large-signal (VBIC) model is used to 

examine the hot carrier damage on the high frequency characteristics of 

SiGe HBTs. We finally found that the device of SiGe HBT is more robust to 

hot carrier damage on high frequency and RF power performance when it is 

under the driving of a constant collector current. 

In another part of this thesis, we discussed and analyzed the reliability 

issues on the high frequency characteristics of MOS transistors. The 

discussion and analysis of RF reliabilities in this thesis included the 

hot-carrier damage and the critical gate oxide breakdown of MOS transistors. 

In addition, the discussion covered the main specifications of high frequency 

applications of MOS transistors like the cutoff frequency, maximum 

oscillation frequency, noise figure, linearity, and RF power performance. In 

this experiment, we finally found that the DC reliability parameters are lack 

and can not fit and present the RF reliability degradations. So, a RF 

reliability model is urgent and suggested to be constructed, especially for the 

future application of RF circuits. 
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