
國 立 交 通 大 學

電子工程學系電子研究所

博 士 論 文

大鄰近層細胞非線性網路與比例式記憶細胞非線性

網路之設計與分析

THE DESIGN AND ANALYSIS OF

LARGE-NEIGHBORHOOD CELLULAR

NONLINEAR NETWORKS AND RATIO-MEMORY

CELLULAR NONLINEAR NETWORKS

 研 究 生：陳勝豪

 指導教授：吳重雨 博士

中華民國九十八年六月

大鄰近層細胞非線性網路與比例式記憶細胞

非線性網路之設計與分析

THE DESIGN AND ANALYSIS OF
LARGE-NEIGHBORHOOD CELLUNLAR

NONLINEAR NETWORK AND RATIO-MEMORY
CELLULAR NONLINEAR NETWORK

研 究 生：陳勝豪 Student: Sheng-Hao Chen

指導教授：吳 重 雨 博士 Advisor: Dr. Chung-Yu Wu

國立交通大學

電子工程系電子研究所

博士論文

A Dissertation

Submitted to

Department of Electronics Engineering and Institiute of Electronics

College of Electrical and Computer Engineering

National Chiao-Tung University

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

In

Electronics Engineering

June 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年六月

 i

大鄰近層細胞非線性網路與比例式記憶細胞非

線性網路之設計與分析

研究生：陳勝豪 指導教授：吳 重 雨 博士

國立交通大學電子工程系電子研究所

摘 要

此論文研究針對於類神經網路(細胞非線性網路)的研究與應用，細胞非線性

網路模仿神經聯結方式運算，可視為一類比式計算機處理單元陣列，適合運用在

影像處理，雖然目前數位式計算機處理單元可以達到數個GHz的處理速度，但在影

像處理方面，若以各個圖元分別作運算，仍需要大量的處理時間，因此若以細胞

非線性網路陣列平行運算，可達到高速運算的結果，並針對神經網路之特性與其

優缺點，以類比電路實現為主軸，分別實現以下兩個部分：

1. 設計分析一可程式化之大鄰近層細胞非線性網路通用機器核心部分。

2. 設計分析一可學習之免衰減比例式記憶細胞非線性網路與一反覆學習比例式

記憶細胞非線性網路。

目前細胞非線性網路通用機器僅能處理3x3的範本，即僅有鄰接的各圖元間有

係數的關聯，而大鄰近層細胞非線性網路的主要構想，在於若可將關聯推性廣至

更遠之細胞上，可增加細胞非線性網路的功能性；此外，亦有其他團隊針對將大

鄰近層細胞非線性網路的範本，分解成數個3x3的範本來達到相同的功能，因此若

能設計一大鄰近層細胞非線性網路，一步完成大鄰近層細胞非線性網路的功能，

可節省所需之處理時間與消耗功率；因為大鄰近層細胞非線性網路為一大型陣

列，電路設計方面主要考慮其功率消耗與面積大小，並以傳導式連結的電路架構，

使其可實現大鄰近層細胞非線性網路的功能，論文中許多大鄰近層細胞非線性網

 ii

路的範本，皆可在模擬中實現，而 所設計之大鄰近層細胞非線性網路陣列大小為

20 × 20，晶片大小為1543 μm × 1248 μm，功率消耗在待機時僅0.7 mW，一般操作

下為 18 mW，操作頻率為20 MHz，並在實現中驗證可實現人的錯覺範本。

可學習之比例式記憶細胞非線性網路目的在於學習各種樣本，並將含有雜訊

的樣本復原，原理是將兩個圖元間的關係，紀錄在比例式記憶體的電容中，並利

用其漏電的缺點強化圖元間的關係，並將各個圖元周圍的範本常態化(normalized)，

因此稱之為比例式記憶，藉此可提高其辨識率；然而，由於各個圖元間的差異，

若以相同的放電時間強化圖元間關係，可能會造成此關係被破壞或是強化不足，

因此各個關係改以與圖元周圍的關係平均來決定其值的去留，以此方式可節省除

法器的運用並簡化比例式記憶細胞非線性網路的複雜度。另外，從機率統計方面

亦可推論出臨界值範本的必要性，即為其臨界值範本(Threshold)，由此提出以遞迴

學習的方式，統計出雜訊與辨識後的臨界值，藉此可更加增加其辨識率。

本論文之主要貢獻為，建立一完整大鄰近層細胞非線性網路之架構，並以簡

單之電路實現，因此可達到小面積、低功率，經實驗量測可用於二元(binary)的影

像運算；另外不需放電之可學習之比例式記憶細胞非線性網路方式，亦簡化了電

路的複雜度，使其容易實現。亦討論了可學習比例式記憶細胞非線性網路之機率

統計模型，並依據推論結果，運用臨界值範本的學習，更增進其辨識率。

 iii

THE DESIGN AND ANALYSIS OF LARGE-
NEIGHBORHOOD CELLULAR

NONLINEAR NETWORK AND RATIO-
MEMORY CELLULAR NON-LINEAR NETWORK

Student: Sheng-Hao Chen Advisor: Dr. Chung-Yu Wu

Institute of Electronics Engineering
National Chiao-Tung University

Abstract

This dissertation focuses on the studies and applications of the cellular

neural/nonlinear networks (CNN). CNN is an analog CPU array which can imitate the

operations of neural connections which is suitable for image processing. Although the

speed of the recent digital CPUs can reach higher than several GHz, when the digital CPU

is applied on the image processing, it takes a lot of time to achieve the processing

separately. Hence, the advantage of parallel processing of CNN array is required to

achieve high speed processing. According to the properties of CNN, two major topics are

realized by using analog circuit design.

I. The design and analysis of a CMOS low-power, large-neighborhood CNN with

propagating connections

II. The design and analysis of a ratio memory CNN

Recently, cellular nonlinear network universal machine (CNNUM) can only

achieve the 3 × 3 templates of nearest connecting correlations. The main concept of

large-neighborhood cellular nonlinear network (LNCNN) is to extend the connecting

correlations and to increase the capability of CNN. Moreover, some studies have

 iv

decomposed the LNCNN templates into several 3 × 3 templates to realize the same

functions. However, this may take more cost to achieve one LNCNN function. Hence, it

is necessary to design a LNCNN for the templates larger than 3 × 3.

Because LNCNN is a very large scale array, the power consumption and chip area

are considered first. With the propagating connections, the functions of LNCNN are

realized by the designed 20 × 20 LNCNN array and the chip size is 1543 μm × 1248 μm.

The power consumption is 0.7 mW on standby and 18 mW in operation with a system

clock frequency of 20 MHz.

The purpose of the learnable ratio memory cellular nonlinear networks is to learn the

every kind of patterns and recover the learned noisy patterns. The concept is to store the

correlations of two neighboring cells on the capacitor in the ratio memories and use the

intrinsic leakage to enhance the common characteristics. Moreover, the templates are

normalized by the correlation with neighboring cells to increase the recognition rate and

thus, it is called ratio memory. However, due to the difference of any two cells, if the

same elapsed time for leakage is applied to enhance the characteristics, it may cause only

the self-feedback term to remain or the enhancement of common characteristics to be

smaller. Hence, the templates are decided by the correlation and the mean of the four

correlations around one cell. This can make the design much easier and the divider can be

abandoned. Besides, by the deviation of the statistics and probability, there exists a dc

term except for the templates. It is found that the threshold template is required and

learned by recursive learning to gather the information of the noisy patterns to increase

the recognition rate.

The main contribution of this dissertation is that the complete architecture of

large-neighborhood CNN has been established and realized by a simple circuit design.

Hence, a small-size, low-power LNCNN chip has been fabricated and measured.

According to the experimental result, the LNCNN chip can be applied on the binary

image processing. Moreover, the statistic and probability models of the learnable ratio

memory CNN has also been derived and, according to the results, the learning of the

threshold templates are used to increase the recognition rate. Furthermore, the learnable

 v

ratio memory CNN without elapsed time has also been proposed to simplify the

complexity of the circuits for realization.

 vi

致 謝

 首先感謝我的指導教授吳重雨教授，學術上循序漸進地細心指導，適時給予

建議，使我能順利的完成學業，而教授在生活上也時時刻刻關心，了解學生的想

法，因此不僅在研究方面，學習到老師嚴謹的態度，亦於待人處世上獲益良多；

另外也要感謝和藹可親的師母曾昭玲女士，謝謝她常常給予我關懷與打氣加油。

 感謝實驗室的學長姐、同學以及學弟妹的協助，使我在這六年來的博士班生

涯更加的豐富，也使得我的研究更加順遂。感謝鄭秋宏、黃冠勳、廖以義、施育

全、賴瑞麟、周忠昀、林俐如、虞繼堯、王文傑及蘇烜毅學長姐的經驗與教導，

不論是知識的啟發或是處事的方法上，皆幫助了我許多；也感謝楊文嘉、黃祖德、

陳煒明、雄霆等同期的同學，一同討論、聊天、發洩，共同做研究、傾洩攻讀博

士班的壓力；另外也感謝學弟妹們，幫忙處理事務以及計畫研究；感謝實驗室助

理卓慧貞小姐(蛤~~~)，以及中心助理何淳伶及小小黃瑋屏，在行政事務上的協

助；還有好朋友小邱跟小邱姐姐的鼓勵，常常一起去大潤發瞎拼發洩，我會好好

照顧妳們送的漂亮包包；有了學長姐、同學、學弟妹以及好朋友的幫助鼓勵下，

我的論文才得以順利完成，因此在此也祝福諸位學業上能順利畢業，事業上能一

帆風順。

 最後我要致上最深的的感謝，給我的父親陳振源先生與我的母親葉柳青女士，

由於您們的從小的教養以及支持鼓勵，讓我得以最大的力量，來完成博士班的學

業，感謝您們無怨無悔的付出，並且在我心情不好時承受了我的不滿，在此對您

們表示深深的歉意，我愛您們，我的爸媽。

陳 勝 豪

誌於 風城交大

九十八年夏

 vii

CONTENTS

ABSTRATE (CHINESE) ..i

ABSTRATE (ENGLISH).. iii

ACKNOWLEDGEMENTS..vi

CONTENTS ... vii

TABLE CAPTIONS...ix

FIGURE CAPTIONS ..x

CHAPTER 1 INTRODUCTION...1

1.1 BACKGROUND OF ARTIFICIAL NONLINEAR NETWORKS1

1.2 RESEARCHES ON CNNS AND THEIR APPLICATIONS..........................11

1.3 REVIEW OF LNCNNS AND RMCNNS ..14

1.4 RESEARCH MOTIVATION AND ORGANIZATION OF THIS

DISSERTATION..17

CHAPTER 2 THE DESIGN AND ANALYSIS OF A CMOS

LARGE-NEIGHBORHOOD CNN WITH PROPAGATING

CONNECTIONS...21

2.1 INTRODUCTIONS ..21

2.2 ARCHITECTURE AND MODELS ...23

2.3 CIRCUIT IMPLEMENTATION AND SIMULATION RESULTS..............30

2.4 EXPERIMENTAL RESULTS..49

2.5 SUMMARY..54

CHAPTER 3 THE DESIGN AND ANALYSIS OF A CMOS RATIO-MEMORY CNN

WITHOUT ELAPSED TIME ...56

3.1 INTRODUCTION ..56

3.2 ARCHITECTURE AND MODELS ...58

3.3 CIRCUIT IMPLEMENTATION WITH SIMULATION RESULTS65

3.4 EXPERIMENTAL RESULTS..79

3.5 SUMMARY..86

 viii

CHAPTER 4 THE ANALYSIS OF THE RECURSIVE LEARNING RMCNN..........87

4.1 INTRODUCTION ..87

4.2 MATHEMATICAL ...88

4.3 SIMULATION RESULTS..93

4.4 SUMMARY AND FUTURE WORK ...95

CHAPTER 5 CONCLUSIONS AND FUTURE WORK..98

5.1 CONCLUSIONS...98

5.2 FUTURE WORK..100

REFERENCES ..102

 ix

TABLE CAPTIONS

Table 2.1 DERIVED EQUATIONS OF TEMPLATE COEFFICIENTS AND

GAINS OF SYNAPSES ..29

Table 2.2 COMPARISON OF DEVICE NUMBERS AND

INTERCONNECTION LINES ...40

Table 2.3 COMPARISON OF LNCNN WITH CNNUC3 [132]-[133] AND

ACE16K [131]...53

Table 2.4 COMPARISON OF THE PROPOSED LNCNN AND LNCNN WITH

SYMMETRIC TEMPLATES..54

Table 3.1 THE COMPARISONS OF TEMPLATES A IN CELL(4, 5), CELL(5, 3),
CELL(8, 5), AND CELL(7, 5) BETWEEN RMCNN WITH AND

WITHOUT ELAPSED TIME..74

Table 3.2 THE DESCRIPTION OF EACH CONTROL SIGNAL................................80

Table 3.3 THE COMPARISON OF THE ABSOLUTE WEIGHTS A44 WITH

MATLAB AND HSPICE IN DIFFERENT CONDITIONS..........................84

Table 3.4 COMPARISON BETWEEN RMCNN AND RMCNN REQUIRING
NO ELAPSED TIME ..85

Table 4.1 THE REQUIRED ITERATIONS TO FIT THE CONSTRANS WHERE

7 PATTERNS ARE LEARNED..95

Table 4.2 THE REQUIRED ITERATIONS TO FIT THE CONSTRANS δ = 0.03

WHERE 6 AND 8 PATTERNS ARE LEARNED...96

 x

FIGURE CAPTIONS

Fig. 1.1 The simplest computational element or node which forms a weighted
sum of N inputs and passes the result through the nonlinearity.2

Fig. 1.2 The three common types of nonlinearity of (a) hard limiters, (b)
threshold logic elements, and (c) sigmoidal nonlinearities.2

Fig. 1.3 The biological model of a neuron cell which contains the cell body
(nucleus) and the I/O terminals of dendrites and axon terminals....................4

Fig. 1.4 The simplest architecture of an adaptive linear element where its
weights are determined by the normalized least mean square training
law by a preset desired output. ..6

Fig. 1.5 A perceptron with a sigmoidal activation function. The threshold value
w0 are initialized to small non-zero values. ..7

Fig. 1.6 A simple three-layer network which contains input, hidden, and output
layers..8

Fig. 1.7 Two-dimensional array of Kohonen’s self-organizing feature maps.9

Fig. 1.8 The RC circuit model of a CNN cell. ..10

Fig. 1.9 The core architecture of CNN with templates A and B.................................11

Fig. 2.1 The architecture of a LNCNN kernel unit. ..24

Fig. 2.2 The structure of the BODY in Fig. 2.1. ...25

Fig. 2.3 The large-neighborhood template generated by a LNCNN with
propagating connections. ...28

Fig. 2.4 The circuit diagram of the Neuron and PZ in Fig. 2.2.31

Fig. 2.5 The transfer characteristic of a neuron with different external bias
currents Ibias. ..32

Fig. 2.6 The circuit diagrams of (a) the synapses PL2, PR2, PD2, and PU2; (b)
the synapses PL1, PR1, PD1, and PU1; (c) the synapses PRU, PRD,
PLU, PLD, and PS; (d) the Sign Controller. ...35

 xi

Fig. 2.7 The HSPICE simulated Inouta vs. Inina diagram of the N-type synapse
in Fig. 2.6(a) with 16 different values for Vbiasn. ..36

Fig. 2.8 The range of (a) the N-type current gains and (b) the P-type current gain
of the synapses with an input current range from 300 nA to 500 nA............37

Fig. 2.9 The circuit diagram of the PSW. ...39

Fig. 2.10 The circuit diagram of the analog memory. ..41

Fig. 2.11 The architecture of the 20x20 LNCNN system. ..42

Fig. 2.12 The timing diagram of the controlled signals in LNCNN.............................43

Fig. 2.13 The 5 x 5 templates B, A and Z for Muller-Lyer illusion [40]......................44

Fig. 2.14 The extracted values of the diamond-shaped template from a HSPICE
post-layout simulation. ..45

Fig. 2.15 (a) The input patterns of Muller-Lyer illusion. (b) The resultant output
pattern of Muller-Lyer illusion from the HSPICE simulation result.............45

Fig. 2.16 The template B of 5x5 and diamond-shaped templates of (a) diffusion
[138] and (b) de-blurring [40]. ..47

Fig. 2.17 The input patterns and simulation results of (a) diffusion and (b)
de-blurring. ..48

Fig. 2.18 The input and output patterns of erosion with 3 × 3 neighborhood
templates [40] in two iterations and with diamond-shaped templates in
one iteration. ..49

Fig. 2.19 A photograph of the fabricated 20 × 20 LNCNN chip.50

Fig. 2.20 The experimental resultant output pattern of Muller-Lyer illusion...............51

Fig. 2.21 The experimental results of Pixel B with the signal Operation_Start.52

Fig. 3.1 The general architecture of the RMCNN. ...62

Fig. 3.2 (a) The input stage and neuron, (b) RM, and (c) comparator and counter
in the kernel unit of RMCNN..63

Fig. 3.3 (a) The circuits of the blocks VTI1 and Neuron. (b) The transfer
characteristic of the block VTI1. ...66

Fig. 3.4 (a) The circuit of the blocks VTI2 (with ME) and VTI3 (without ME) (b)
The transfer characteristic of the block VTI2 and VTI3.68

 xii

Fig. 3.5 The circuit of the block W...69

Fig. 3.6 The block diagram of the sign controller where the detector is composed
of two cascaded inverters. ...69

Fig. 3.7 The circuit of the block COMP. ..69

Fig. 3.8 The four absolute currents from VTI3 are averaged and compared with
the mean current. ...71

Fig. 3.9 Input patterns in the learning period..72

Fig. 3.11 The recognition rates by using proposed RMCNN and by being directly
amplified..73

Fig. 3.12 The comparison of the recognition rates by using proposed RMCNN
with self-feedback, without self-feedback of 50% tolerance and by
being directly amplified...74

Fig. 3.13 The comparison of recognition rates with 3 × 3 neighborhood templates
and large neighborhood diamond templates of r’=3......................................75

Fig. 3.14 The ratio weights of RMCNN with different elapsed time.76

Fig. 3.15 The recognition rates of (a) 3 × 3 neighborhood and large neighborhood
templates by repeating the operation of the proposed algorithm (marked
with ‘modified’) where 7 patterns are learned. ...78

Fig. 3.16 The modified circuits of block COMP that can realize the repeated
proposed algorithm..78

Fig. 3.17 The architecture of a 9x9 RMCNN without elapsed time chip.79

Fig. 3.18 The timing diagram of control signals...81

Fig. 3.19 The photograph of the RMCNN without elapsed time chip..........................81

Fig. 3.20 The uniform noisy patterns for measurement..82

Fig. 3.21 Experimental results of recognized patterns in the recognition period
after a set of patterns with noise level 0.25 are recognized...........................82

Fig. 3.22 Experimental output waveform of the third recognized pattern....................83

Fig. 3.23 The modified circuit of the block W. ..85

Fig. 4.1 The probability of the input uC1. ..89

 xiii

Fig. 4.2 The probability density of the input uC2...90

Fig. 4.3 The probability density of the state xC1 after recognition.90

Fig. 4.4 The error rates produced by the shadow part when the output of the pixel
C1 should be (a) 1 and (b) -1...92

Fig. 4.5 The procedure of the recursive learning algorithm.92

Fig. 4.6 The recursive learning of THR(i,j) in nth iteration..92

Fig. 4.7 The recognition rates of RMCNN requiring no elapsed time without and
with recursive learning of constrains 0.01, 0.03, and 0.05 where 7
patterns are learned..94

Fig. 4.9 The recognition rates where 6 patterns and 8 patterns are learned with
and without recursive learning. ...96

 1

C H A P T E R 1

INTRODUCTION

1.1 BACKGROUND OF ARTIFICIAL NONLINEAR

NETWORKS

Brain, one of the world’s best computers, makes human devoted to investigating it to

expose the source of powerful functions. With the analog neuron models, the artificial neural

networks (ANNs) proposed by Hopfield [1]-[5] and Chua et al. [6]-[8] have firstly been

implemented in circuitry [10]. Since then, ANNs have attracted strong interest of researchers

to explore their scientific and engineering applications. The models of ANNs [9], [5], [11]

which are based on the understanding of biological nervous systems, attempt to achieve good

performance by the dense interconnection of simple computational elements. Computational

elements or nodes are connected via weights that are typically adapted during the operation

such as Hopfield net [1]-[10], [11], Hamming net [11]-[15], et al. The simplest node sums N

weighted inputs and passes the result through the nonlinear function f(•) as shown in Fig. 1.1

[11], [16]. In Fig. 1.1, the output y can be illustrated as

⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

−

=

1

0

N

i
ii xwfy θ

(1.1).

 2

Fig. 1.1 The simplest computational element or node which forms a weighted sum of N inputs

and passes the result through the nonlinearity.

 (a) (b)

(c)

Fig. 1.2 The three common types of nonlinearity of (a) hard limiters, (b) threshold logic

elements, and (c) sigmoidal nonlinearities.

 3

where xi is the ith input, wi is the ith weight factor, and θ is the internal threshold. The node is

characterized by an internal threshold or offset θ and by the type of the nonlinearities. Fig.

1.2(a)-(c) illustrate three common types of nonlinearity: hard limiters (threshold functions),

piecewise linear functions, and sigmoidal nonlinearities. The common characteristic of these

three nonlinearities is that the output y is saturated at both ends. More complex nodes may

include temporal integration or other types of time dependencies and more complex

mathematical operations than summation.

For comparison, silicon devices have an intrinsic speed about 100,000 times faster than

that of natural neurobiological devices. However, in solving problems like face recognition,

the neurobiological system is more effective by a factor of 108 [17]. In the biological model of

a neuron cell as shown in Fig. 1.3, the neuron contains cell body (nucleus) and the synapses,

which are the I/O terminals of the neuron and can be classified as dendrites and axon terminals

by their essential functions, are illustrated. Dendrites can receive excitation or inhibition

signals from other neurons or external environment. Axon terminals can pass the excitation or

inhibition signals to next neurons. Through different functions, different intensities of the

excitation or inhibition signals can be transferred to next neurons. The second neuron next to

the first one receives the signals from the axon terminals of the first neuron and other neurons,

makes a decision by the sigmoidal nonlinearity, and sends another excitation or inhibition

signals to next neurons through axon terminals. By using the similar this architecture that a

brain-style computational device is richly connected to one another, an artificial neural or

nonlinear network is constructed. The function it computes is determined by the pattern of

connections. Based on the models of ANNs, many new topologies and algorithms are

developed.

 4

Fig. 1.3 The biological model of a neuron cell which contains the cell body (nucleus) and the

I/O terminals of dendrites and axon terminals.

 Work on the models of ANNs has a long history. Development of detailed mathematical

models has begun about 60 years ago in the work of McCullock and Pitts [18], Hebb [19],

Rosenblatt [20], Widrow [21], et al. In 1980s, the work by Hopfield [1]-[10], Rumelhart and

McClelland [22], Sejnowski [23], Feldman [9], Grossberg [24]-[25], et al. has led to a new

resurgence of the field. There seems to be five reasons for the rebirth. First, the faster and

faster computer makes it possible to simulate and experiment with much larger and more

 5

interesting networks than that in 1950s and 1960s. Second, it is believed that the faster

computers must be in parallel computation. However, it is generally easier to build parallel

computers than to find algorithms that are efficient. Third, the empirical tools of neuroscience

are expanding and more and more knowledge about how the neuron functions is learned.

Besides, it is hoped that the theoretical tools developed in the study of neural network

computational systems will allow for the modeling of the real neural networks. Fourth,

theoretically, Hopfield provides the mathematical foundation for understanding the dynamics

of the recurrent networks. The mathematical model has been extended and applied by Hinton

and Seinowski [26], Cohen and Grossberg [27], Smolensky [28] and a number of scientists to

provide more mathematical models and solve important problems such as optimization. Fifth,

with the extension of Rosenblatt, Widrow, and Hoff’s work dealing with learning in a

complex, multi-layer network [20]-[21], this provided a technique, known as the

back-propagation learning algorithm [29], is developed that multilayer perceptron-like

devices can be reliably trained.

The interest in ANNs comes from the networks’ ability to mimic human brain as well as its

ability to learn and respond. Adaptation or learning is a major focus of ANN research that

provides a degree of robustness to the ANN model. An adaptive linear element is a single

neuron of McCulloch-Pitts type, where its weights are determined by the normalized least

mean square (LMS) training law. The LMS learning algorithm was originally proposed by

Widrow and Hoff [21]. This learning rule is also referred to as the delta rule. It is a

well-established supervised training method that has been used over a wide range of diverse

applications [30]-[33]. The simplest architecture of an adaptive linear element is shown in Fig.

1.4. In the simplest adaptive linear element, the neuron with a linear activation function is used.

The weights are adjusted by the LMS error of comparing the output with the desired output.

 6

Fig. 1.4 The simplest architecture of an adaptive linear element where its weights are

determined by the normalized least mean square training law by a preset desired

output.

Once the weights are properly adjusted, the response of the trained unit can be tested by

applying various inputs which are not in the training set. If the network produces consistent

responses to a high degree with the test inputs, it is said that the network can generalize.

Therefore, the process of training and generalization are two important attributes of the

network. Similar to the adaptive linear element, the original idea of the perceptron has been

develop by Rosenblatt in the late 1950s along with a convergence procedure to adjust the

weights [20]. The original perceptron convergence procedure is developed by Minsky and

Papert [34] as shown in Fig. 1.5. The perceptron [20] by Rosenblatt is based on the

McCulloch-Pitts model of the neuron with the hard limitation activation function where the

inputs are binary and no bias is included. The perceptron of Minsky and Papert is similar to

that by by Rosenblatt except for the addition of an activation function and the non-zero value

of the threshold w0 [34].

 7

Fig. 1.5 A perceptron with a sigmoidal activation function. The threshold value w0 are

initialized to small non-zero values.

The perceptron convergence procedure and its variants are limited to simple one-layer

networks involving only input and output units. It maps similar input patterns to similar output

patterns. The similarity of patterns in the system is determined by their overlap which is

decided outside the learning system by whatever produces the patterns. Therefore, the

constraint of the system leads to an inability to learn certain mappings from input to output. In

a multilayer network, the information coming to the input units is re-coded into an internal

representation and the outputs are generated by the internal representation rather than by the

original pattern. Multi-layer perceptrons are feed-forward nets with one or more layers of

nodes between the input and output nodes called hidden layer. A simple two layer perceptron

with one layer of hidden units is shown in Fig. 1.6. Each node is a perceptron with hard

limiting nonlinearity. The hidden layer can be increased as the tasks are more complex. A

 8

Fig. 1.6 A simple three-layer network which contains input, hidden, and output layers.

single-layer perceptron can form half-plane decision regions whereas a two-layer perceptron

can form any, possibly unbounded, convex region in the space spanned by the inputs.

Moreover, a three-layer perceptron can form arbitrarily complex decision regions and can

separate the meshed classes. Hence, no more than three layers are required in perceptron-like

feed-forward nets. Similar behavior is exhibited by multi-layer perceptrons with multiple

output nodes when sigmoidal nonlinearities are used and the decision rule is to select the class

corresponding to the output node with largest output. The behavior of these nets is more

complex because decision regions are typically bounded by smooth curves instead of by

straight line segments and analysis is thus more difficult. As a result, these nets can be trained

with the new back-propagation training algorithm [29]. The back-propagation algorithm uses

a gradient search technique to minimize a cost function equal to the mean square difference

between the desired and the actual net outputs. The network is trained by initially selecting

 9

small random weights and internal thresholds and then presenting all training data repeatedly.

Weights are adjusted after every trial using side information specifying the correct class until

weights converge and the cost function is reduced to an acceptable value.

One important organizing principle of sensory pathways in the brain is that the placement

of neurons is orderly and often reflects some physical characteristics of the external stimulus

being sensed [35]. Kohonen presents the algorithm which produces the self-organizing feature

maps similar to those that occur in the brain [36] as shown in Fig. 1.7. Output nodes are

extensively interconnected with many local connections. The algorithm that form feature

maps requires a neighborhood to be defined around each node and the neighborhood slowly

decreases in size with time. With the algorithm, a speech recognizer as a vector quantizer is

proposed [37].

Fig. 1.7 Two-dimensional array of Kohonen’s self-organizing feature maps.

 10

Similar to Kohonen’s two dimension array of self-organizing feature maps, the cellular

neural/nonlinear network (CNN) has first been presented as a preferred implementation of

locally connected neural networks [6]-[7]. Unlike the former learning models, CNN involves a

large-scale nonlinear analogic architecture for real time processing. In 1993, a further

architecture of CNN universal machine is presented [38]-[39] and many researches are

verified by the cellular nonlinear network universal machine (CNNUM) [38]-[46]. CNN

consist of arrays of elementary processing units (cells) and each one is connected to a set of

adjacent cells. This local connection property makes CNN physical design easy, especially for

the translational invariant CNNs. Chua and Yang’s CNN cell circuit model [6]-[7], [40],

where the neuron is model by a resistor R shunt with a capacitor C, is shown in Fig. 1.8 and

can be presented by the equation

() ()[]∑
∈

+++−=
ijSkl

klklklklZ
ijij VuGbtVyGaI
R

tVx
t

Vx
C

d
d

(1.2)

Fig. 1.8 The RC circuit model of a CNN cell.

 11

where Vxij is the state voltage, Vyij is the output voltage, and Iz is the threshold current of

neuron cell (i, j). Gakl and Gbkl are the transconductance set that can multiply the state voltage

and the output voltage, and are called templates A and B, respectively. As a result, all the

currents are summed and introduce a voltage drop, state voltage, on the neuron of a resistor R

and a capacitor C. With the core architecture as shown in Fig. 1.9 [38]- [40] demonstrating such

a large-scale array of CNN and the further architecture with logic operational units and

memories of CNNUM, many algorithms and applications have been investigated and proposed

[38]-[46].

Fig. 1.9 The core architecture of CNN with templates A and B.

1.2 RESEARCHES ON CNNS AND THEIR APPLICATIONS

The cellular nonlinear/neural network (CNN) which was proposed by Chua and Yang in

1988 [6]-[7], [40] involves a large-scale nonlinear analogic architecture for real-time signal

processing. Similar to the composition of the cellular automata, it is comprised of a massive

aggregation of regularly spaced circuit clones, called cells, which communicate with each

 12

other directly and locally. In a basic CNN, each cell is connected to its nearest layer of

neighboring cells. Such a CNN, called a 3× 3 neighborhood CNN, is the most popular CNN

structure. Their local connectivity makes CNNs easy to be implemented in a VLSI design and

there is great tolerance to errors depends on templates. Some research results and their

applications are listed as following.

A. Autowaves, Chaotic, and oscillatory elements

The studies of dynamic phenomena in arrays composed of autowaves, chaotic, and

oscillatory elements are very important for understanding natural phenomena in biology,

chemistry, physics, etc [47]-[51]. Pattern formation and various types of autowaves, such as

excitability waves, concentration waves, and so on, are discussed [47]-[48], [52]-[58]. CNNs

are usually used as the approximations of the various types of nonlinear partial differential

equations [52]-[55]. Chaos engineering has also been steadily studied in Japan and many

applications are developed such as controlling power for the thawing function of microwave

ovens [56]. Moreover, it can be applied to associative memory networks that have been

intensively studied in the field of artificial neurocomputing [59]-[61] and some applied the

chaotic structure in solving combinatorial optimization.

B. Recognition

Neural networks have been used in a number of applications due to their ability to learn

and generalize. One application of the learning ability is to recognize different patterns such as

characters and sounds [41]-[42], [43], [62]-[70]. Dual cellular neural network architecture can

extract the global features of the handwriting and makes the decision [62]-[63]. Character

template learning operates with separated characters on a basis of the character patterns or

applies segmentation and recognition of text line image simultaneously via dynamic

programming [64]. Ratio-memory CNN (RMCNN) can learn correlations between cells and

 13

the features of images are stored in the ratio memories [65]-[67]. As a result, it can recognize

the noisy images with templates generated by ratio-memories. For the human immune systems,

sounds also can be recognized and detected [41]-[42]. The basic idea is to make a system

search video images for objects that are not supposed to be there and trigger an alarm message

when it occurs [43], [68]-[70].

C. Classification and Segmentation

Classification and segment are also the mainly functions of neural networks and

sometimes go along with recognition or detection [71]-[72]. Classification and segment can be

applied on the blind source separation [73], motion estimation for MPEG-4 encoder [74]-[78],

bubble-debris classification [71]-[72], DNA microarrays analysis [79]-[81], image

descreening [82]-[83], object-oriented segmentation [38]-[45], [84] etc. Genetic algorithm is

attempted to minimize the objective function or the cost function and use the independent

properties of initial conditions and the domain of applications combined with the implicit

parallelism [82]-[83]. For the algorithm, three kinds of different CNN templates (average,

inverse and time-interpolated templates) can be trained by GA [85], while ICA mixture

models are conditional independence model and unsupervised classification [73].

D. Image Processing

CNN has shown a vast computing power, especially for image processing [6]-[8], [39].

Early CNN implementation were designed to perform one specific function in image

processing such as edge detection, connected component detection, or hole filling. Recently,

the ability to change or program the template values [86]-[90] has made image processing

easily to be studied and verified. Filtering is one of the interested areas for image processing

[91]-[96]. Besides, some studies focus on color image or gray level image processing by using

the state of neuron and multilayer structure [97]-[98] and are applied on medical image

 14

processing, image restoration, and weather forecasting. Many other tasks can also be resolved

such as halftoning of digital images [99]-[100], image compression [101]-[102],

skeletonization etc.

There still many applications of CNN such as optimization [103]-[104], control systems

[105]-[109] etc. Furthermore, some has applied the fuzzy set theory into CNN architecture

[83], [110]-[113]. Fuzzy cellular nonlinear networks (FCNN) can be used as an interface

between the human expert and the classical CNN [114]. Meanwhile, there are some researches

studying the discrete-time CNN (DTCNN). DTCNN contains two categories: an analog-array

architecture and a digital-pipeline architecture. Both continuous-time CNN (CTCNN) and

DTCNN have powerful ability of parallel image processing. The growth of CNNUM and

DTCNN processor has made the studies on applications of CNN more easily.

1.3 REVIEW OF LNCNNs AND RMCNNs

A. LNCNNs

The cellular neural network proposed by Chua and Yang [6]-[8], [40], involves a

large-scale nonlinear analogic architecture for real-time signal processing. In 1992, a

programmable CNN universal machine (CNNUM) is proposed by Chua and Roska [115].

Many tasks can be resolved by CNNUM [38]-[45] and even now, many applications are

studied with CNNUM. However, in many CNN applications such as image halftoning [99]

and subcortical visual pathway [40], [116], the large-neighborhood templates are required.

Although the large-neighborhood template can be decomposed into 3 × 3 templates

[117]-[118], it needs more efforts and more iterations to deal with a task and, hence, more

energy is consumed. Hence, in 2001, a large neighborhood CNN with a compact

neuron-bipolar junction transistor (νBJT) is proposed by C. Y. Wu and W. C. Yen [119]. A

 15

device called lambda bipolar transistor [120] is applied to be a neuron called neuron-lambda

BJT (νλBJT), where the bipolar junction transistor is replaced by νBJT. In the Wu and Yen’s

LNCNN, one NMOS device is used to be a synaptic gain controller and makes the whole chip

smaller. Meanwhile, νλBJT is also used by C. Y. Wu and C. W. Hsiao [121] to implement a

LNCNN. In both LNCNNs, the structure is similar but the circuit implementation methods are

different and they can realize the templates with r > 1.

In Wu and Yen’s [119] LNCNN, there is only one single path to link cells and transfer the

signals one by one. Although single path can make the connections simple and implemented

easily, it also means that the two synaptic gain blocks for bridging cells attach the input of one

block to the output of the other. The loop gain of these two gain blocks makes complicated the

mapping between the gains of the synaptic blocks and the coefficients of the templates.

Because the degree of freedom is less than the coefficients of the LN templates, the

coefficients of second layer can not be determined arbitrarily under the constraint of

propagating connections. Hence, it cannot realize the LN templates arbitrarily due to the

architecture. However, in Wu and Hsiao’s LNCNN [121], the path is separated into

bi-direction but templates A and B in LNCNNs are separated and designed in the circuit. This

takes a large area to realize them separately. Moreover, because BJTs are used to generate LN

templates, the gain of the used BJTs is hard to be predicted and it still causes the coefficients

of a template to be asymmetric. Furthermore, in both design, νλBJT are used to realize the

neuron with a self-feedback, but the self-feedback term is not a fixed value and cannot be

adapted arbitrarily.

B. RMCNNs

The previous researches on the learning neural networks with associative memory have

been studied since 1995 [65]-[66] and still keep on going [67], [122]-[125]. The learning

 16

algorithm is based on Grossberg mathematical model called the outstar to realize the ratio of

the learned weights. The outstar as a classical conditioning learner can learn the related things

and be refreshed by reminding and memorize the relative strengths of the input pattern but not

the absolute values. The associative memory is also called ratio memory which is first

proposed by J. F. Lan and C. Y. Wu in 1995 [66] and implemented with an analog neural net

with on-chip learning.

In 2000, the ratio memory has been applied on cellular neural network called RMCNN

which is proposed by C. Y. Wu and C. H. Cheng. The ratio memory is incorporated with the

modified Hebbian learning and the ratio memory generates the absolute weights and

transforms them into template A to perform the image recognition. The ratio memory stores

the correlations of neighboring cells and the information of the correlations is enhanced on a

capacitor with a small leakage current. Hence, due to such a small leakage, a long storage time

can be achieved. By utilizing the leakage of the capacitor, an elapsed time is also applied to

extract or enhance the features with large correlations to recognize the noisy patterns.

Although the small leakage during an elapsed time can enhance the feature, the uncertain

leakage currents in cells may make the enhancement different from that with the ideal leakage

current. Moreover, a long elapsed time may destroy the correlation on capacitors.

An RMCNN chip where the learning circuitry is integrated on-chip makes the learning

task operate alone without other external aids. Moreover, the learning algorithm would

generate numerous space-variant templates. If the learning process were performed off-line, it

must take a long loading time for each cell. In 2002, the modified Hebbian learning algorithm

in RMCNN is re-modified. A self-feedback term is introduced to make the output of each cell

be stable at a saturated point and the RMCNN with a self-feedback term is called

 17

self-feedback RMCNN (SRMCNN). The feature enhancement effect of the ratio memory

remains during the operation of SRMCNN.

1.4 RESEARCH MOTIVATION AND ORGANIZATION OF

THIS DISSERTATION

It is believed that the large-neighborhood templates have more powerful functions and

higher efficiency even in discrete time CNN (DTCNN) [117]. Although the

large-neighborhood template can be decomposed into 3 × 3 templates, it takes more energy

and time and most of decomposition methods are implemented in DTCNN but not in CTCNN.

However, the connections of LNCNN are very complicated. Hence, several researches on

LNCNN have been developed. In [119], a single path along one row or one column is

constructed for simplification. The bi-directional signals pass through the single path. This

makes it unable to generate arbitrary templates and also makes the mapping between the gain

and the coefficients complicated. In [121], the paths are separated but the gain block is

designed by using BJTs. The bi-directional inputs in the gain block pass through different

numbers of BJTs due to the constraint of BJTs. Hence, it is hard to get a precise gain in the

design. In both design of [119] and [121], νλBJT is used to realize the activation function with

a self-feedback but the value of feedback cannot be determined.

Based upon the above description, the aim of this dissertation is to explore a new indirectly

connective LNCNN. In the designed LNCNN, the degree of freedom should be higher than

the coefficients of the LN templates so that the coefficients of second layer can be determined

arbitrarily under the constraint of propagating connections. Furthermore, the proposed

LNCNN chip, where the non-recurrent terms generated by templates B and Z are stored [126],

 18

is designed to decrease the synaptic path. The bi-directional characteristic of the propagating

connections is kept and is separated into two connectional nodes to prevent the closed loops.

Meanwhile, more synaptic blocks are added for all possible templates with the constraint of

propagating connections. An experimental chip has been designed and fabricated using

0.18-μm CMOS technology. The LNCNN chip with the array size of 20 × 20 can realize the

function of the diamond-shaped large-neighborhood templates. The total chip area is 1543 μm

× 1248 μm and the area of a single cell is 33.58 μm × 43.15 μm. The power is 0.7 mW on

standby and 18 mW in operation with a 1.8 V supply voltage and a system clock frequency of

20 MHz. With the LNCNN chip, the LN function of human illusion is realized successfully.

With regard to RMCNN [65]-[67], [122]-[125], the correlations are stored by a capacitor

and leaks in an elapsed time by an intrinsic leakage current. The leakage current makes the

smaller correlations disappear and enhances the large correlations. If the elapsed time is too

short, the performance of the enhancement cannot be obvious. However, long elapsed time

would make the correlations become 0 and cause the ratio weights generated by the

correlations to be meaningless. The templates are generated according to the correlations

between cells by using the modified Hebbian learning. However, how the ratio weights take

effect in the recognition period has not discussed. By analyzing the effect, it can be helpful to

the improvement of the recognition rates.

Hence, another aim of this dissertation is to design an RMCNN without elapsed time. In

the design, the method using elapsed time for generating the templates is replaced by that

using the comparator to approximate the result of original method. With this new method, the

ratio memory, which is realized by a divider, can be implemented by the comparator easily.

An RMCNN chip not requiring elapsed time has been designed and fabricated using TSMC

0.35-μm 2P4M mixed-signal technology. 3 Patterns are learned and recognized with the

 19

proposed architecture and the results are analyzed and discussed. The total chip area is 4560

μm × 3900 μm and the area of a single cell is 400 μm × 250 μm. The total power consumption

is 87 mW in operation with a supply voltage of 3 V with a system clock frequency of 10 HMz.

Moreover, the mathematical analysis by using Gaussian noise is also discussed in this

dissertation. It is found that the decision of the output does not locate at the optimum point

according to the statistic results. The results indicate the requiring of the threshold. The

proposed recursive learning [145] RMCNN can gather the information of the error probability

and increasing the recognition rates and number of learned patterns. With recursive learning,

the number of the learned patterns by RMCNN requiring no elapsed time is raised from 6 to 8.

Hence, recursive learning indeed can raise the recognition rates.

This dissertation contains five chapters, which include introductions, the design and

analysis of a CMOS large-neighborhood CNN with propagating connections, the design and

analysis of a CMOS ratio-memory CNN without elapsed time, the analysis of the recursive

learning RMCNN.

The rest of this dissertation is organized into 4 chapters. In chapter 2, the analysis and

design of large neighborhood CNN are indicated. In chapter 3, RMCNN requiring no elapsed

time is proposed and designed. In Chapter 4, the correlation between the templates of

RMCNN requiring or requiring no elapsed time and the noise is discussed. Finally the

conclusion is given in chapter 5. More details are illustrated as following.

In Chapter 2, the large-neighborhood CNN has been analyzed and designed. The

propagating connections are used to realize the diamond templates. With the diamond

templates, the Matlab simulations are also made to verify the large-neighborhood functions

and the results are compared with those of 5 × 5 templates. Otherwise, the low power and

simple design can make LNCNN suitable for large-scale array. The LNCNN chip has been

 20

fabricated with 0.18-μm 1P6M technology. The large neighborhood function of human

illusion is measured and it proves that the LNCNN chip can be applied on the binary image

processing.

In Chapter 3, RMCNN requiring no elapsed time is analyzed. In the original operation of

RMCNN, the long elapsed time is required. However, with a long elapsed time, some of the

correlations will be destroyed and the feature enhancement of the ratio weight, hence, cannot

take effect. As a result, RMCNN requiring no elapsed time has been proposed to avoid this

situation and, as well, the multiplier-divider is not required anymore and replaced with a

comparator and a counter. Therefore, the design of the RMCNN requiring no elapsed time

chip can be simpler. By using 0.35-μm 2P4M, the RMCNN requiring no elapsed time has

been fabricated and the measurement results are discussed. Moreover, large-neighborhood

RMCNN requiring no elapsed time is also simulated and the modified RMCNN requiring no

elapsed time is proposed.

In Chapter 4, the input of each pixel with a Gaussian noise is discussed when an assumed

RMCNN template is considered. According to the analysis of the output probability density,

the decision of the output is not located at an optimum point. Hence, the recursive learning

RMCNN is proposed to gather the error probability density of the pixel. With the error

probability density, the threshold values are decided to lower the error rate. To verify the

effect of the recursive learning, RMCNNs with or without recursive learning are simulated

and compared in this chapter.

Finally, the conclusion of this dissertation is summarized in Chapter 5. The future work

about the further implementation of CNNs and their applications is also addressed in this

chapter.

 21

C H A P T E R 2

THE DESIGN AND ANALYSIS OF A CMOS

LARGE-NEIGHBORHOOD CNN WITH

PROPAGATING CONNECTIONS

2.1 INTRODUCTIONS

The cellular nonlinear (neural) network (CNN) which was proposed by Chua and Yang in

1988 [6]-[7], [40] involves a large-scale nonlinear analogic architecture for real-time signal

processing. Similar to the composition of the cellular automata [127]-[128], it is composed of

a massive aggregation of regularly spaced circuit clones, called cells, which communicate

with each other directly and locally. In a basic CNN, each cell is connected to its nearest layer

of neighboring cells. Such a CNN, called a 3 × 3 neighborhood CNN, is the most popular CNN

structure. Their local connectivity makes CNNs easy to be implemented in a VLSI design. So

far, many 3 × 3 neighborhood CNN VLSI chips have demonstrated their capabilities in

realizing real-time signal and parallel processing functions [39], [119], [126], [129]-[135].

The CNN universal machine [38], [39] is a programmable CNN, which can perform

several complicated functions. Recently, research on the CNNUM has been conducted and

successfully implemented. Current CNNUMs are based on the 3 × 3 neighborhood CNN

 22

structures [126], [129]-[133] and 3 × 3 neighborhood templates. Some applications [136]-[137]

are verified by using the CNNUM. However, 3 × 3 neighborhood CNNs with the nearest

neighborhood are restricted in their ability to solve complex problems efficiently. Although a

large-neighborhood template can be transformed into several 3 × 3 neighborhood templates

[118], [138], the multiple operating steps with 3 × 3 neighborhood templates require more

time and more power.

It is more efficient to construct a large-neighborhood CNN (LNCNN), which can perform

functions using large-neighborhood templates. In an LNCNN, each cell is connected to more

than one layer of the neighboring cells. Generally, an LNCNN is difficult to be implemented

in a VLSI design through direct wire connections among the 3 × 3 neighborhood CNN cells.

Recently, however, a design for a LNCNN has been proposed and implemented by using a

new device called the neuron BJT (νBJT) [119]-[121]. Based on the νBJT, an LNCNN with

symmetric templates has been designed [119]-[121]. The LNCNN with asymmetric templates

has also been proposed with some limitations in realizing large-neighborhood templates

[119].

In this work, a new improved low-power CMOS compact LNCNN architecture with

propagating synaptic connections [139]-[140] is proposed and analyzed. In the proposed

kernel unit, only one layer of the neighboring cells is connected, but it can realize

large-neighborhood diamond-shaped templates in the first two neighboring layers. Thus,

complicated wire connections to farther cells can be avoided. The propagating synaptic

connections can be used not only in horizontal and vertical directions, but in diagonal

directions. As a result, the circular symmetric templates can be realized. Moreover, the

circuitry can be shared between templates A and B in the proposed architecture. This results in

a simpler architecture and smaller chip area. To realize the proposed architecture, the

 23

low-power neuron and synapses have been designed using CMOS current-mode circuits

without static current paths. In addition, an experimental chip has been designed and

fabricated using 0.18-μm CMOS technology. The LNCNN chip with the array size of 20 × 20

can realize the function of the diamond-shaped large-neighborhood templates. The LNCNN

functions of diffusion, de-blurring, and Muller-Lyer illusion has been verified successfully.

Meanwhile, the functions of erosion and dilation are expanded with the diamond-shaped LN

templates. The total chip area is 1543 μm × 1248 μm and the area of a single cell is 33.58 μm

× 43.15 μm. The power is 0.7 mW on standby and 18 mW in operation with a 1.8 V supply

voltage and a system clock frequency of 20 MHz. As a result, the proposed kernel unit has a

very simple structure, small dc power dissipation, and small chip area, which can be applied to

the CMOS implementation of an LNCNNUM with a huge kernel array size. Also, with the

hardware of the proposed LNCNN structure, many new the functions or new templates of

LNCNN can be explored.

In Section 2.2, the LNCNN model, the global architecture of the kernel unit of the

LNCNNUM and the components of each regular cell are described. In Section 2.3, the CMOS

circuits of the neuron, synapses, PSW, and analog memory in the proposed LNCNN are

described and HSPICE simulation results are presented to verify the circuit functions. The

overall chip architecture in the design is also illustrated. In Section 2.4, the measurement

results are shown and discussed. Finally, a concluding section is provided.

2.2 ARCHITECTURE AND MODELS

For a standard CNN, the state equation is written as [6]-[7], [40]

∑∑
∈∈

+++−=
ijklkl SC

klkl
C

klklijijij uByAZxx
ijS

&

 24

(2.1)

where xij, yij, and uij are the state, output, and input of the neuron cell Cij in a CNN array,

respectively; the coefficient Zij, called the template Z, is the threshold of the neuron cell Cij;

and, Akl and Bkl are the coefficients, called templates A and B, respectively, which are

multiplied with output ykl and input ukl of the cell Ckl, respectively in the sphere of influence

(Sij) of the neuron cell Cij. The two sets of products are accumulated over all the cells Ckl in the

sphere of influence (Sij) of the neuron cell Cij. Where there are non-zero coefficients for

templates A and B at the neighboring cells C(i±r)(j±r), r is an integer called neighborhood of

radius. If r is greater than 1, it is called a large-neighborhood CNN.

Fig. 2.1 The architecture of a LNCNN kernel unit.

 25

Fig. 2.2 The structure of the BODY in Fig. 2.1.

The architecture of the proposed LNCNN kernel unit is shown in Fig. 2.1 where the region

surrounded by the broken line represents one neural cell Cij defined by the coordinate. In Cij of

Fig. 2.1, the BODY shown in Fig. 2.2 consists of the neuron, analog memory, synapses, and

control circuits. The PU1, PD1, PL1, PR1, PRU, PRD, PLU, PLD, PU2, PD2, PL2, and PR2 are

all synapses, which can multiply input signals and result in different gains which are controlled

by the synaptic gain controlling signals. As a result, these synapses can be combined to realize

the coefficients of templates A and B, except the center coefficients Aij and Bij. Among these

synapses, PU2, PD2, PR2 and PL2 can propagate signals to the cells farther than the

neighboring cells. For example, the signal I(i+1, j) from C(i+1)j can pass through PL2, be

multiplied by the gain of the PL2, and then reach C(i-1)j. These connections used to realize

large-neighborhood templates are called the propagating connections. PLU, PLD, PRU, PRD,

 26

PL1, PD1, PR1, and PU1 are used to connect the neighboring cells directly. These connections

among the nearest neighboring cells are called direct connections. PSW is a current switch and

the gain of PSW is 1. The polarities of the signals sent out of the BODY in upward, downward,

leftward, and rightward directions are determined by the four PSWs. The output current of the

PSW is combined with that sent from the synapse of the propagating connections in the former

cell. Eventually, the resultant output is sent into the synapse of the next cell.

The DCS and CLK in Fig. 2.1 are digital controlling signals and clock signal, respectively,

to control logic circuits and switches in the kernel unit. The Pixel input signal of one cell is

connected to the Pixel output signal of the former cell. For example, the Pixel input of Cij comes

from the Pixel output of C(i-1)j. This signal transfers the input pattern to each cell and the output

pattern to the output pads in series. The arrows between the cells are connected to the relative

positions of each cell. For example, the arrow line from the PRU of Cij is connected to the

BODY of C(i+1) (j+1) and similarly, the arrow line from C(i+1) (j+1) into the BODY of Cij comes

from the PLD of C(i+1) (j+1).

In the structure of the BODY shown in Fig. 2.2, the switches S1-S4 are controlled by the

signals of DCS and CLK, and the switch S5 is controlled by a 5-bit decoder. The SRDA

contains one shift register, digital controlling logic, and a 1-bit D/A converter (DAC) inside.

The use of shift register makes chip implementation realizable. It is impracticable to implement

a large capacitor to store the analog signal in each cell during the overall operational period.

Because shift registers can be refreshed by sending a set of data into the chip, there is no

additional signal to reset shift registers. The Pixel input of Cij can be transferred to the next cell

by the SRDA. The SRDA provides the binary input signal uij or the initial state value xij(t = 0) of

each cell during the operation. After the operation, the SRDA can store the binary output of yij

from the neuron and the analog output yij can be read out by turning on the switch S5.

 27

In Fig. 2.2, the Neuron is a neuron with a standard piecewise linear ramp function:

() 1
2
11

2
1

−−+== ijijijij xxxfy .

(2.2)

The input of the BODY comes from the summation of the eight synaptic outputs as drawn in

Fig. 2.1 and the output of the BODY is duplicated eight times and sent to the four PSWs and

four corner synapses PRU, PRD, PLU, and PLD. The PZ generates the coefficient Zij where the

PS is the synapse that generates the center coefficients Aij and Bij of templates A and B,

respectively. The Analog Memory is used to store following equation:

∑
∈

+=
ijkl SC

klklijij uBZXm .

(2.3)

Before the Neuron, there is a Sign Controller which is used to adjust the polarities of the signals

from the nine synapses.

In the first step of the operation period, only the signal of Xmij in (2.3) is calculated,

sampled and stored by the Analog Memory. In addition, the digital code of the input uij is sent

from the Pixel input to the shift register in the SRDA and stored. Switches S2 and S3 are closed

and S1 and S4 are left open. At this time, all the synapses are set to certain gains to generate the

template B and the PZ is set to generate Zij. The piecewise linear ramp function of the neuron is

turned off. The input signal uij from the SRDA passes through the Neuron. At this moment, the

output of the neuron is the same with the input signal uij from the SRDA, multiplied with the

template B and combined with Zij to form Xmij, which is instilled into the Analog Memory.

After the switch S2 is opened, the Xmij is stored in the analog memory.

In the second step, the digital code of the initial state xij(t = 0) of the desired function is sent

from the Pixel input to the shift register in the SRDA and stored. S1 and S2 are open and S3 and

 28

S4 are closed. Xmij is read out and the neuron is set to the initial state xij(t = 0) provided by the

SRDA. Meanwhile, the gains of all the synapses are set to generate the template A. In the third

step of the operation period, the S1 switch is turned on and the S3 switch is turned off. A

feedback loop is constructed and then the calculation of (1) is started. After the operation is

completed, the readout period commences. The output yij is converted to binary form and the

binary output is sent to and stored at the shift register in the SRDA. As the input pattern of the

next operation is sent into the LNCNN, the output pattern of the former operation can be read

out from the Pixel output of the last cell.

Fig. 2.3 The large-neighborhood template generated by a LNCNN with propagating
connections.

 29

Fig. 2.3 shows a large-neighborhood template where symbols from the letters a to q

represent the template coefficients and the coefficients from a to m can be defined by the

proposed LNCNN. The neighborhood of radius r’ is redefined as shown in Fig. 2.3. Here, the

sphere of influence Sij of a large neighborhood is not considered as a 5 × 5 matrix, but is defined

as a diamond-shaped matrix in Fig. 2.3 with neighborhood of radius r’=2. Each coefficient can

be derived from the gains of the synapses in Fig. 2.1 and the PS in Fig. 2.2. The derived

equations are listed in Table 2.1 where the template coefficients in Fig. 2.3 are expressed by the

gains of the synapses and the gain of each synapse is expressed by the template coefficients.

Thus, the architecture in Fig. 2.1 and Fig. 2.2 can be used to generate the large-neighborhood

Table 2.1 DERIVED EQUATIONS OF TEMPLATE COEFFICIENTS AND GAINS OF

SYNAPSES

 30

templates with r’ = 2 shown in Fig. 2.3.

According to Table 2.1, the gains of the synapses PD2, PU2, PL2 and PR2 of propagating

connections should be less than 1 for each. If the synaptic gain of a propagating connection is

larger than or equal to 1, then the signal coming from the cells along one direction would

diverge. The gains of these synapses of propagating connections can be determined from the

template coefficients f, g, h, and i as listed in Table 2.1. Because of the propagating

connections, if the template coefficients f, g, h, and i are not equal to zero, the coefficients o, q,

n and p would not equal zero also, respectively. However, if the template coefficients n, o, q,

and p are to be set zero, the template values f, g, h and i would be small enough when compared

with the template values b, c, d and e, respectively.

The four corner coefficients j, k, l, and m are determined directly by the synapses PRD,

PLD, PRU, and PLU, respectively, of direct connections. Similarly, the coefficient a can be

generated directly by the PS in Fig. 2.2.

2.3 CIRCUIT IMPLEMENTATION AND SIMULATION

RESULTS

It has already been established that the current-mode signals can be easily combined. In

addition, current-mode circuits are faster and consume less power than voltage-mode circuits.

However, when the current signals need to be duplicated, more devices are required to mirror

the currents. In the design, the currents in fewer paths need to be duplicated. Therefore, the

proposed LNCNN has been implemented by using current-mode circuits. In all the

current-mode circuit realizations, the signals represented in Fig. 2.1 and Fig. 2.2 transferred

 31

inside the kernel unit are all in current mode except the DCS, CLK, synaptic gain controlling

signals, and the digital logic circuits signals.

Fig. 2.4 The circuit diagram of the Neuron and PZ in Fig. 2.2.

A. Neurons and PZ

Fig. 2.4 depicts the circuit of the PZ and the Neuron inside the BODY as indicated by dotted

lines in Fig. 2.2. The PZ is implemented by the devices MZ1 and MZ2. The gate bias voltages

VZP and VZN directly control the current through MZ1 and MZ2, respectively, to generate the

threshold current IZ. The circuitry of MN1-MN6 is the neuron core with the piecewise linear ramp

function. The gate bias voltages V1 and V2 are used not only to maintain the static current of

the neuron zero with the devices MN4 and MN3, respectively, but they are also used to limit the

currents through MN1 with MN2 and MN6 with MN5, respectively. Furthermore, MN3 and MN4

also act as the switch S1 in Fig. 2.2. The gate bias voltages V1 and V2 are controlled by the

external bias current Ibias. The transfer characteristic of the neuron is simulated as shown in

Fig. 2.5. The low and high limit currents of the piecewise linear ramp function range from 351.8

 32

nA to 487.8 nA and from 389.5 nA to 534.3 nA, respectively, when the external bias current

Ibias is in the range from 250 nA to 360 nA and the supply voltage is 1.8 V. When the neuron is

on standby or there is no input current, the leakage current is less than 1nA. In the first and

second steps of the operation period, S1 is turned off; that is, MN2-MN5 are turned off. In this

way, the neuron core acts as two current mirrors. As the input current Iu, shown in Fig. 2.4, is

provided by the SRDA in the first step, the current IXm is calculated and in the second step the

initial value Ix(t=0) is also introduced by the SRDA. Moreover, MN7 and MN8 are used to send

the binary outputs to the SRDA or to send the transient currents to the analog outputs through

S5.

Fig. 2.5 The transfer characteristic of a neuron with different external bias currents Ibias.

B. Synapses and Sign Controller

 33

The circuit diagrams of the synapses are shown in Fig. 2.6(a)-(c) and are indicated by

broken lines, whereas the circuit diagram of the Sign Controller is demonstrated by broken

lines in Fig. 2.6(d). The circuit of Fig. 2.6(a) is used to realize the synapses PL2, PR2, PD2, and

PR2 of propagating connections. There are two paths, N-type and P-type, in one synapse to deal

with the bi-directional current inputs. If a LNCNN is on standby or there are no input currents,

the synapses consume no power. The device pairs Msa1/ Msa3 and Msa2/ Msa4 can be seen as two

sets of current mirrors and the maximum gains are determined by the ratios of Msa1/ Msa3

andMsa2/ Msa4. Msa6 and Msa5 with gate bias voltages Vbiasp and Vbiasn are operated in the

linear region to control the current mirror gains of Msa1/ Msa3 and Msa2/ Msa4, respectively. All

the gate bias voltages Vbiasp and Vbiasn of synapses combined with the gate bias voltages VZP

and VZN of the PZ form the synaptic gain controlling signals as shown in Fig. 2.1. Furthermore,

the gate bias voltages Vbiasp and Vbiasn are generated by using an on-chip 4-bit DAC. There

are 16 different values for Vbiasp and Vbiasn. A HSPICE simulated Inouta vs. Inina diagram of

(a)

 34

(b)

(c)

 35

(d)

Fig. 2.6 The circuit diagrams of (a) the synapses PL2, PR2, PD2, and PU2; (b) the synapses
PL1, PR1, PD1, and PU1; (c) the synapses PRU, PRD, PLU, PLD, and PS; (d) the Sign
Controller.

the N-type synapse with differing gate bias voltages Vbiasn ranging from 34.4 mV to 737 mV is

shown in Fig. 2.7. The corresponding N-type and P-type current gains of the input current

ranging from 300 nA to 500 nA are illustrated in Fig. 2.8, where Msa1-Msa4 are operated in the

subthreshold region with a supply voltage of 1.8V. The N-type synaptic gains with different

Vbiasn values ranges from 0 to 1.54 in the input current range from 300 nA to 500 nA while the

P-type synaptic gains with different Vbiasp values ranges from 0 to 1.42. The N-type synaptic

gain has an average variation of ±6.38% and the P-type synaptic gain has that of ±7.72%, as

indicated by short bars over the input current range from 300 nA to 500 nA. It can be seen that

the synapses can generate the desired templates with a tolerable level of error by setting the

codes for the Vbiasn and Vbiasp voltages with proper values.

 36

Fig. 2.7 The HSPICE simulated Inouta vs. Inina diagram of the N-type synapse in Fig. 2.6(a)
with 16 different values for Vbiasn.

The circuits of the synapses of direct connections are shown in Fig. 2.6(b) and Fig. 2.6(c)

and it can be seen that the circuits and operations are similar to those of the synapses of

propagating connections. The circuit in Fig. 2.6(b) realizes the synapses PL1, PR1, PD1, and

PU1 while that in Fig. 2.6(c) realizes PLU, PLD, PRU, PRD, and PS. The P-type and N-type

synaptic gains of one synapse of direct connections can be set to different values to perform

more functions. The synapses shown in Fig. 2.6(b) share the two master devices Msa1/Msa2 with

the synapses of the propagating connections while those shown in Fig. 2.6(c) share MN1/MN6

with the Neuron. The output currents of Fig. 2.6(b) and Fig. 2.6(c) are sent to the Sign

Controller using the switches Sn and Sp to decide the polarities of the signals. The maximum

gains of the synapses PLU, PLD, PRU, and PRD are set to 2 and those of PL1, PR1, PU1, and

 37

(a)

(b)
Fig. 2.8 The range of (a) the N-type current gains and (b) the P-type current gain of the
synapses with an input current range from 300 nA to 500 nA.

 38

PD1 are set to 4 whereas the gain of the synapse PS is set to 8. Through this design, this

LNCNN can generate the templates as indicated in Fig. 2.3 where the center coefficient a is

smaller than 8 and the coefficients b, c, d, and e are smaller than 4, while the coefficients j, k, l,

and m are smaller than 2. The circuitry of the Sign Controller is shown in Fig. 2.6(d) where the

switches Sn and Sp of the 9 synapses used to adjust the polarity of the signals from the synapses

are also drawn. The devices Msd3 and Msd6 with gate bias voltages V3 and V4, respectively,

maintain the static current from Msd1 to Msd4 at zero level. Msd1/Msd2 and Msd4/Msd5 are the

current mirrors used to invert the direction of the current flow. If the polarity of the input signal

from synapses is negative, the Sp is turned off and the input signal enters the neuron or analog

memory through the switch Sn and Sign Controller. However, in the same situation if the input

signal is positive, the Sn is turned off and the signal enters the neuron through the Sp switch.

C. PSWs

Each of the synapses contains one pair of switches Sn and Sp to control the signal polarities

except the synapses of propagating connections. Hence, to confirm the output signals sent out

of the BODY and those sent out of the synapses of propagating connections have the same

polarities, the PSW has been added to achieve this purpose.

Fig. 2.9 depicts the circuit diagram of the PSW. The output currents of the neuron are

mirrored through Msw1 and Msw4 to generate the gate voltages on Msw2 and Msw3, respectively.

The current through Msw5, where the gate is connected to the gate of MN1 (Msw2), is opposite to

the current through Msw6, whose gate is connected to the gate of Msw3 (MN6). The polarity of the

output current in the PSW is selected using the switches Ssw1-Ssw4. For a positive (negative)

output of the PSW, the switches Ssw1 and Ssw4 (Ssw2 and Ssw3) are closed and, at the same time,

the switches Ssw2 and Ssw3 (Ssw1 and Ssw4) are opened. There are four PSWs containing the

 39

Fig. 2.9 The circuit diagram of the PSW.

switches Ssw1-Ssw4 and Msw5-Msw6 as drawn in Fig. 2.1 and these four PSWs share the circuits of

Msw1-Msw4.

A comparison of the device numbers and interconnection lines of the kernel unit between the

proposed structure and the LNCNN with direct connection using the circuit structure in [126] is

given in Table 2.2. As can be seen from Table 2.2, the LNCNN with direct connections needs

12 connections, including 4 connections to the farther neighboring cells. In the proposed

structure, more devices are required; however, as each cell only has 8 connections to the nearest

eight neighboring cells, this facilitates the IC implementation.

D. Analog Memory

Fig. 2.10 depicts the circuit diagram of the analog memory where MM1 and MM9 are used to

generate the gate voltages of MM6 and MM14, respectively, from the input current IXm. The gate

 40

Table 2.2 COMPARISON OF DEVICE NUMBERS AND INTERCONNECTION LINES

voltages are stored at the node A (B) by turning off MM11 (MM3) with the signal Vsample (with

the complementary signal of Vsample). After sampling, the signal Venable rises to high when

the current is accessed. MM4 and MM12 are used to compensate for the charge injections and the

clock feedthrough from MM3 and MM11, respectively. The devise size of MM4 and MM12 is half

of MM3 and MM11. MM5 and MM13 are used to increase the gate-source capacitance Cgs of MM6

and MM14, respectively, in order to suppress the sampling error. The current mirror MM7/MM8

(MM15/MM16) is used to isolate the storage node A (B) from the output node of analog memory

so that the stored voltage is not affected by the voltage change at the output node. As the analog

memory is read out, the signal Venable (the complementary signal of Venable) turns on MM17

(MM18) and, at the same time, it also turns on the compensational function of MM4 (MM12).

Furthermore, the devices MM2 and MM10 with gate bias voltages V6 and V5, respectively,

maintain the static current from MM9 to MM1 at zero level and also, act as the switch S2, as can

be seen in Fig. 2.2.

E. Overall Chip Architecture

Fig. 2.11 shows the architecture of the whole system where the size of the kernel unit array

 41

Fig. 2.10 The circuit diagram of the analog memory.

is 20 × 20. There are 5 × 54 shift registers to store the digital codes of synaptic gain controlling

signals. There is no additional signal to reset the shift registers. Shift registers can be refreshed

by input signals. The digital codes of each synaptic gain controlling signal are stored in a 4-bit

shift register for absolute value and a 1-bit shift register for polarity. However, one synapse

requires two synaptic gain controlling signals and the signals have different values when

templates A and B are generated. Hence, there are 5 × 52 shift registers required for templates A

and B. For the synaptic gain controlling signals of template Z, a 6-bit register is required for the

absolute value of template Z and a 1-bit shift register is used for its polarity. Thus, 5 × 2 1-bit

shift registers are required for template Z. The signal from the Digital Controlling Circuit

determines whether Generation Circuit for templates A, B and Z, which has 28 DACs,

generates synaptic gain controlling signals for either template A or for templates B and Z. The

external bias current Ibias generates the bias currents and voltages required in the system,

especially the bias voltages V1-V6 inside the Neuron, Sign Controller, and Analog Memory as

shown in Fig. 2.1. The signals Input_Enable and Weight_Enable with external clock signal

Ext_CLK are used to determine whether the external input signals are input and initial patterns

 42

Fig. 2.11 The architecture of the 20x20 LNCNN system.

or the digital codes of synaptic gain controlling signals, respectively. In the array, 5-bit binary

signals in one clock cycle are sent into the LNCNN and read out from the Pixel outputs. From

20 neuron analog output signals of one column selected by a 5-bit decoder, 3 real-time neuron

analog output signals can be read out using a 20-to-3 multiplexer.

The timing diagram is shown in Fig. 2.12. In the first step, both input pattern and digital

codes of the templates A, B, and Z are ready for operation, and the signal A/B is set to High first

to cause the template generate circuit to generate synaptic gain controlling signals of the

templates B and Z. Meanwhile, the function of the neuron in the kernel unit is turned off. The

signal Pattern goes to High in order to inject the input pattern into all the neurons. The result of

the first step is sent into the analog memory and stored after the signal Sample is enabled and

then the signal Pattern returns to Low.

In the second step, the pattern in the shift register of the SRDA is replaced by the initial

 43

Fig. 2.12 The timing diagram of the controlled signals in LNCNN

pattern of the desired function. The initial pattern in the shift register is then sent to the neurons

as the initial values by enabling the signal Pattern again. Meanwhile, the signal A/B is set to

Low so that the template A is generated by the synapses as the template generation circuit

generates the synaptic gain controlling signals of the templates A. In the third step, the signal

Operation_Start is enabled and the signal Pattern is disabled to turn off the initial values. The

function of the neurons is turned on to start the overall calculation of template A with the

signals read out from the analog memories. After the outputs are stable, the binary output

pattern can be stored in the SRDA as the signals Latch and Input_Enable are set to High. When

the next input pattern comes in, all the digital signals are disabled except the signal

Input_Enable and the output pattern can be read out from the 5-bit Pixel outputs.

F. Hspice Simulation Results

 44

The proposed LNCNN circuit was designed using CMOS 0.18-μm technology. The HSPICE

post-layout simulation was performed with a 20 × 20 kernel cell array to verify the circuit

functions. The function of Muller-Lyer illusion with the 5 × 5 large-neighborhood template

[40], as shown in Fig. 2.13 was adopted. According to the original 5 × 5 template, the predicted

signs of each diamond-shaped template are set in Fig. 2.14. Only the center coefficients Aij and

Bij are positive and the others are negative in Fig. 2.13, so it is reasonable that only the center

coefficients in the diamond-shaped template are set to positive. The input pattern of

Muller-Lyer illusion is shown in Fig. 2.15(a). After the HSPICE simulation, theresultant output

pattern is shown in Fig. 2.15(b), where the upper line with outward arrows becomes shorter

than the lower line with inward arrows after illusion. The function cannot be realized by a 3 × 3

neighborhood template. The coefficients of the diamond-shaped, large-neighborhood template

in Fig. 2.3 were extracted from the post-layout simulation results directly and are shown in Fig.

2.14, which has the same signs as those in Fig. 2.13.

The simulated standby power consumption is about 1.148 mW where a 1.8 V supply

voltage and a system clock frequency of 20 MHz are used. The external bias current is 360 nA.

The kernel unit array only consumes 1 μW, which accounts for about 0.087% of overall

Fig. 2.13 The 5 x 5 templates B, A and Z for Muller-Lyer illusion [40].

 45

Fig. 2.14 The extracted values of the diamond-shaped template from a HSPICE post-layout
simulation.

(a) (b)
Fig. 2.15 (a) The input patterns of Muller-Lyer illusion. (b) The resultant output pattern of
Muller-Lyer illusion from the HSPICE simulation result.

standby power consumption. As the array is extended to 128 × 128, the standby power

consumption is about 7.35 mW and is dominated by the peripheral circuits.

G. Software Simulations Results-CNN Visual Mouse Platform [141]

The published large-neighborhood templates are limited. Among the four published

LNCNN templates [40], [118], [138]. Only one template [118] cannot be implemented by using

 46

the proposed structure since it violates the constraint. Other LN templates for diffusion,

de-blurring, and Muller-Lyer illusion have been successfully verified. The 5 × 5 templates B of

diffusion [138] and de-blurring [40] are approximated by the proposed diamond-shaped

templates as shown in Fig. 2.16(a) and Fig. 2.16(b). The coefficients of templates A and Z are 0

for diffusion. For de-blurring, the center coefficient of template A of 5 × 5 template is 10 and

that of diamond-shaped template is 7. Both templates Z are 0. The input pattern and simulation

results of diffusion and de-blurring are shown in Fig. 2.17(a) and Fig. 2.17(b), respectively. It is

shown that the diamond-shaped template can realized the function of 5 × 5 templates correctly.

The diamond-shaped LN templates also can realize some operations of binary images in one

step which can be realized by the 3 × 3 neighborhood templates in two steps. The erosion and

dilation function with 3 × 3 neighborhood templates can contract and expand the edges of

images by one pixel, respectively. However, the diamond-shaped LN templates can reinforce

the functions to contract or expand the edges by two pixels. Fig. 2.18 demonstrates the function

of erosion where the boundary cells are set to be white (-1). For dilation, it can be realized by

the same templates of erosion by making template Z positive. Besides, these two functions with

the diamond-shaped LN templates cannot be achieved with 3 × 3 neighborhood templates in

one step. Two iterations with 3 × 3 neighborhood templates are required to realize the same

functions. Thus, it takes more time and energy.

 47

(a)

(b)
Fig. 2.16 The template B of 5x5 and diamond-shaped templates of (a) diffusion [138] and (b)
de-blurring [40].

 48

(a)

(b)
Fig. 2.17 The input patterns and simulation results of (a) diffusion and (b) de-blurring.

 49

Fig. 2.18 The input and output patterns of erosion with 3 × 3 neighborhood templates [40] in
two iterations and with diamond-shaped templates in one iteration.

2.4 EXPERIMENTAL RESULTS

An experimental LNCNN chip has been fabricated using 0.18 μm CMOS technology. The

whole chip area is 1543 μm × 1248 μm where the unit cell is 33.58 μm × 43.15 μm. Fig. 2.19

shows the photograph of the fabricated LNCNN chip.

 50

Fig. 2.19 A photograph of the fabricated 20 × 20 LNCNN chip.

The input image pattern in Fig. 2.15 (a) was used to verify the illusion function of the

fabricated LNCNN. The digital codes of the synaptic gain were adjusted to achieve the suitable

value. The binary output pattern was read out from the 5-bit pixel outputs as indicated in Fig.

2.11. The analog current-mode transients can be read out from the three real-time analog

 51

outputs in Fig. 2.11 using the transimpedance amplifiers outside of the chip. When the analog

output current is 0, the output voltage of the transimpedance amplifier is 0.9 V. Since most

pixels in the input pattern shown in Fig. 2.15(a) are in white and all the white pixels remain in

white after processing, the N-type synaptic gain of the PS is set to a larger value than P-type

synaptic gain in the measurement. In this way, the problems of variation in the process can be

overcome.

Fig. 2.20 The experimental resultant output pattern of Muller-Lyer illusion.

The measured binary output pattern is shown in Fig. 2.20. The experimental result is the

same with the post-layout simulation result except the Pixel A which is black in the simulation

results of Fig. 2.15(b). The reason for the error is that the bias current of the Pixel A is too small

 52

due to process variation. Thus, the self-feedback of the Pixel A cannot keep Pixel A in the black

state.

The measured analog output voltage of Pixel B through the transimpedance amplifier is

shown in Fig. 2.21. The step signal is the signal Operation_Start, as illustrated in Fig. 2.11. As

the signal Operation_Start rises, the analog output remains nearly at 0 V within about 1 μs.

Then it starts to rise and reaches 0.9 V at about 2 μs. Finally, it takes 3 μs to achieve the overall

operation from black state to white. The measured transient response time is 3 μs. From the

result of post simulation, the transient response operation time is less than 0.1μs without the

transimpedance amplifier. The difference is due to the large loading effect of the

transimpedance amplifier.

Fig. 2.21 The experimental results of Pixel B with the signal Operation_Start.

 53

In the experimental result, the overall power consumption was about 0.7 mW on standby

and 18 mW during the operation in the third step with a system clock frequency of 20 MHz. The

comparisons of power dissipation and energy consumption per cell in the proposed LNCNN

with those in CNNUC3 [132]-[133] and ACE16K [131] are listed in Table 2.3. As may be seen

in Table 2.3, the cell in the LNCNN has lower power dissipation and energy consumption. The

comparison between the LNCNN with symmetric templates and the proposed LNCNN is also

made. The quiescent power dissipation can be much lower but the single pixel area of LNCNN

with symmetric templates is much smaller. Because LNCNN with symmetric templates only

can realize symmetric and positive templates, these drawbacks, therefore, save much area but

cannot realize arbitrary templates. Furthermore, the tolerance to errors is based on the used

templates. The diamond templates of illusion where the input patterns are combined with

Gaussian noise of standard deviation 0.02 can be realized successfully by using CNN Visual

Mouse Platform.

Table 2.3 COMPARISON OF LNCNN WITH CNNUC3 [132]-[133] AND ACE16K [131]

This Work

with Propagating
Connection

1986 [10] 1987 [11]

Technology @ Supply 0.18 μm 6M-1P @
1.8V

0.5 μm 3M-1P @
3.3V

0.35 μm 5M-1P
@ 3.3V

Power Dissipation
(per cell) 45 μW 250 μW 180 μW

Processing Speed 20 MHz 10 MHz 30 MHz
Energy

Consumption
(per cell, per volt)

1.25 pJ/V 7.58 pJ/V 1.82 pJ/V

Cell Size 33.58 x 43.15 μm2 102.2 x 120 μm2 73.3 x 75.7 μm2

 54

Table 2.4 COMPARISON OF THE PROPOSED LNCNN AND LNCNN WITH

SYMMETRIC TEMPLATES

 LNCNN with symmetric
templates[65]-[66]

LNCNN with propagating
connections

Technology 0.6 mm 1P3M N-well
CMOS Technology

0.18 mm 1P6M Mixed-
Signal Process

Array Size 32 x 32 20 x 20
Single Pixel Area 22 mm x 25 mm 33.58 mm x 43.15 mm

Power Supply 3 V 1.8 V
Quiescent Power
Dissipation 60 m W 0.7 mW

Power Dissipation 65 mW 18 mW
Readout Time
(of one pixel) 1 μs 50 ns

Current gain of BJTs 17.5 A/A Not Required
Dynamic range of state

Xij 1.3 ~ 2.1 V - 0.5 ~ 0.5 μA

State transition time 0.8 μs 0.1 μs

2.5 SUMMARY

In this chapter, a new architecture of LNCNN has been proposed. In the proposed LNCNN,

the propagating connections are utilized to generate diamond-shaped large-neighborhood

templates. In such a connected network, each neuron cell only needs to contact the neighboring

cells without the need for farther interconnections. Therefore, such network architecture is

suitable for VLSI implementation. Moreover, by separating the synapses into N-type and

P-type parts without static currents, the static power dissipation can be reduced to a minimum

level. Moreover, during such an operation, the synapses of direct connections with different

N-type and P-type synaptic gains can also offer more functions. The connections can also be

implemented both in horizontal and vertical directions and in diagonal directions to realize the

circular symmetric templates. Furthermore, the LNCNN functions of diffusion, de-blurring,

 55

and Muller-Lyer illusion has also been verified successfully. With the proposed LNCNN

structure using propagating connections, many new applications and new LNCNN templates

can be explored.

A CMOS large-neighborhood CNN chip with a 20 × 20 kernel unit array has been

fabricated in 0.18-μm CMOS technology. From the experimental results of this study, it can be

seen that the 5 × 5 template of Muller-Lyer illusion is reconstructed into a diamond-shaped LN

template and the function has been successfully realized using the LNCNN and with a chip

power consumption of 0.7 mW on standby and the 18 mW in operation with a system clock

frequency of 20 MHz. The kernel unit of LNCNN can also perform input level of input patterns.

However, due to the used shift registers for image storage, only the binary patterns can be

operated with the LNCNN chip. Hence, there is great tolerance to errors due to binary signal

operation and accurate circuits based on current mirrors structure are not required.

Further research on the universal machine (UM) for LNCNN needs to be conducted for

various applications to be realized.

 56

C H A P T E R 3

THE DESIGN AND ANALYSIS OF A CMOS

RATIO-MEMORY CNN

WITHOUT ELAPSED TIME

3.1 INTRODUCTION

The cellular nonlinear (neural) network (CNN) which was proposed by Chua and Yang in

1988 [6]-[7], [40] involves a large-scale nonlinear analogic architecture for real-time signal

processing. Similar in composition to the cellular automata [127]-[128], it is comprised of a

massive aggregation of regularly spaced circuit clones, called cells, which communicate with

each other directly and locally. With local connectivity, CNN is quite suitable for very

large-scale integration (VLSI) implementation. The associated real-time and parallel-operating

properties also make it popular in image processing. To date, many CNN VLSI chips have

demonstrated their capabilities in realizing real-time signal and parallel processing functions

[39], [126], [129]-[130]. In these chips, the templates, which can control the communications

between cells, are programmable and the regular and local functions can be designed and

applied on the entire CNN array. However, for the recognition of images, the programmable

and space-invariant properties of CNN chips cannot realize the on-line learning directly

 57

because the templates are space-variant due to the different local characteristics of images. To

address this limitation, some algorithms that collect global image characteristics are proposed

[64], [142]-[143] to learn the images.

To realize an on-line learning CNN with local-computing advantage, a learning algorithm

called ratio-memory CNN (RMCNN) is proposed [65]-[67]. The ratio memory of the

Grossberg outstar structure [24]-[25], [144]-[145] has been used in both feedforward and

feedback neural network ICs for image processing. With the proposed RMCNN, no host

computer is needed to perform the learning task off-line. It can also evaluate the correlations

between cells and store these correlations on the capacitors. As a result, it no longer requires

template-weight storage time or equivalent pattern recognition time which is one of the

advantages of RM. The charge stored on the capacitors leaks out due to the junctions from the

source and drain of CMOS to the substrate. The RMCNN utilizes this leakage effect and takes

the ratio of the stored values to enhance the common characteristics of the learned patterns and

to raise the recognition rate. Therefore, a very long elapsed time about 850 seconds is required

after the learning period to make the weights of small correlations smaller or to approach zero

by the leakage in order to enhance large correlations [67]. However, the learned characteristics

in different local positions of the learned patterns are distinct and the learned values have

significant differences. In the proposed RMCNN, if the elapsed time is too long in its duration,

the most learned characteristics will be destroyed. However, if the elapsed time is too short in

its duration, the characteristics will not be enhanced. Furthermore, when the RMCNN is

utilized to learn and recognize the image patterns, the stored values keep on leaking during the

recognition time and this may, with time, alter the ratio weights of the RMCNN. Finally, as the

weights of cells are generated by ratio memories, a precise multiplier-divider is required.

 58

In this work, RMCNN architecture without elapsed time [125] is proposed and analyzed to

prevent the leakage effect and to simplify the circuitry. With the new algorithm, the feature

enhanced ratio weights can be generated immediately after the learning period without the

requirement of elapsed time and, therefore, the circuit to generate ratio weights could be very

simple and remove the need for multiplier-dividers in each ratio memory. An RMCNN chip not

requiring elapsed time has been designed and fabricated using TSMC 0.35-μm 2P4M

mixed-signal technology. Patterns are learned and recognized with the proposed architecture

and the results are analyzed and discussed. The total chip area is 4560 μm × 3900 μm and the

area of a single cell is 400 μm × 250 μm. The total power consumption is 87 mW in operation

with a supply voltage of 3 V and a system clock frequency of 10 MHz.

In Section II, the models and architecture of the RN-CNN not requiring elapsed time are

described. In Section III, the CMOS circuits of each block are illustrated and the HSPICE

simulation results are presented to verify the functions of the blocks. In Section IV, the

measurements obtained are presented and discussed. Finally, a concluding section is provided.

3.2 ARCHITECTURE AND MODELS

A. Model of RMCNN Requiring No Elapsed Time

For a standard CNN, the state equation is written as [6]-[7], [40]

∑∑
∈∈

+++−=
ijklkl SC

klkl
C

klklijijij uByAZxx
ijS

&

(3.1)

where xij, yij, and uij are the state, output, and input of the neuron cell Cij in a CNN array,

respectively; the coefficient Zij, called the template Z, is the threshold of the neuron cell Cij;

and, Akl and Bkl are the coefficients, called templates A and B, respectively, which are

 59

multiplied with output ykl and input ukl of the cell Ckl, respectively, in the sphere of influence

(Sij) of the neuron cell Cij. The two sets of products are accumulated over all the cells Ckl in Sij

of the neuron cell Cij. However, the state equation of RMCNN can be expressed as

()∑
∈

++−=
ijS

ET
klC

klijklijijij yAuxx&

(3.2)

where Sij and yij are defined in an M × N array as

{ }1,1,1,1,Mk1 ≤−+−≤≤≤≤≤≤≤≤= jlikNjMiNlCS ijij

(3.3)

and

1
2
11

2
1

−−+= ijijij xxy .

(3.4)

Template Aijkl(TE) is a space-variant template and is a function of elapsed period when an

elapsed time is applied. Therefore, the template Aij can be written as

()
() ()

() () () ()
() () ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

+

+−

−

0T0

T0T

0T0

T

E1

E1E1

E1

E

jiij

jijijiji

jiij

ij

a

aa

a

A

(3.5)

where aijkl(TE) is the template coefficient of the cell Cij to stimulate the cell Ckl and is generated

by using the equation

()
()

()
() () () (){ }jijijijikl

Ldtuu

Ldtuu
a

kl
lk

kl

m

p Tp

p
kl

p
ij

kl

m

p Tp

p
kl

p
ij

ijkl 1,1,1,1,

T

T
T

E
1

E
1

E ++−−∈

−⋅

−⋅

=

∑∑ ∑ ∫

∑ ∫

=

= .

(3.6)

 60

In (3.6), p
iju and p

klu are the inputs of the pixels in the learned pth pattern when m patterns

are learned in the learning period. In the learning period for the cell Cij as in (6), its input signal

is multiplied with the inputs of its four nearest cells and then these values are integrated with a

learning time Tp of each pattern, respectively, to generate one set of the correlations, called

correlated weights. The template coefficient is generated by the ratio of one correlated weight

and summation of the four absolute correlated weights. Lkl(TE) is the leakage in an elapsed time

TE. The leakage depends on the correlation between two cells and process parameters. When a

very long period of elapsed time is applied, the remnants in the four ratio memories around one

cell may be 0. However, when a short period of elapsed time is applied, the enhancement is

limited. As a response, a new template generating method is proposed. First, the mean Mij of the

learned absolute correlated weights is generated as

() () () (){ }jijijijikldtuuavgM
m

p Tp

p
kl

p
ij

kl
ij 1,1,1,1,

1
++−−∈

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅= ∑∫

=

.

(3.7)

where m is the number of learned patterns, Tp is the learning time of one pattern, and up
ij and up

kl

are the inputs of cell(i, j) and cell(k, l), respectively, in the learned pth pattern. The ratio weight

a’ijkl is then generated as following:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥⋅

<⋅

=′

∑ ∫

∑ ∫

=

=

ij

m

p Tp

p
kl

p
ij

ij

ij

m

p Tp

p
kl

p
ij

ijkl

Mdtuu

Mdtuu

a

1

1

if,PN
1

if,0

, () () () (){ }jijijijikl 1,1,1,1 ++−−∈

 (3.8)

,where PNij means the number of the absolute correlated weights which is larger than Mij. As

shown in (3.8), the template coefficient is generated by counting the number of the absolute

 61

correlated weights which is larger than the mean Mij. As a result the template value is set to

1/PNij when its absolute correlated weight is larger than the mean. This retains the overall

summation of absolute template coefficients a’ijkl of template A at 1 to avoid any divergence in

recognition.

To demonstrate why the coefficient which is larger than the mean is retained, a simple

model of the absolute ratio weight can be constructed as following:

() () () () LSLRLQLP
SRQP

P
LSLRLQLP

LP
>>>>

+++
>

−+−+−+−
− ,,,,

 (3.9)

where P, Q, R, and S represent the four absolute correlated weights generated in the learning

period, and L represents the average leakage in the elapsed period and, after that period, the

absolute ratio weight should be enlarged if the coefficient is retained. The condition to make

(3.9) valid can be derived as following:

LSLRLQLPMP
M
P

kLM
LP

k
>>>>>⋅>

−
−

⋅ ,,,,,11

(3.10)

where M is the mean of P, Q, R, and S and the coefficient k is 4. When P is larger than M, the

absolute ratio weight could be enlarged after a period of elapsed time. Hence, the coefficient is

retained by comparing it with the mean value. However, as the average leakage L is larger than

the correlation P, it is unreasonable to get a negative ratio weight value. The absolute ratio

weight should be larger than zero. As one absolute correlated weight leaks to zero, mean M is

evaluated using the residuary absolute correlated weights. In this situation, k is reduced to 3

because only three absolute correlated weights are averaged. Hence, if one of the correlated

weights leaks to 0, k should be reduced by 1. In the proposed algorithm, when P is larger

 62

(smaller) than or equal to M, the absolute ratio weight is chosen to be 1/k (0). This makes the

sum of the absolute ratio weights equal to 1 around one cell.

Fig. 3.1 The general architecture of the RMCNN.

B. Architecture of RMCNN Not Requiring Elapsed Time

The general architecture of RMCNN is shown in Fig. 3.1. The RM block is located at any

two of the nearest cells to evaluate and store the correlated weights. In each cell, the circuitry is

required to average the absolute correlated weights from the four peripheral RM blocks and to

compare the correlated weights with the mean value. Meanwhile, a counter is also required to

count the PN in (3.8) around the cell. With reference to the architecture, a 9 × 9 RMCNN chip

has been designed. The structure of the kernel unit of the RMCNN not requiring elapsed time,

 63

(a)

(b)

(c)
Fig. 3.2 (a) The input stage and neuron, (b) RM, and (c) comparator and counter in the kernel
unit of RMCNN.

 64

which is demonstrated in Fig. 3.1Fig. 3.1 by broken lines, is separated into three parts in Fig.

3.2(a)-Fig. 3.2(c). There are four RMs: up, down, and on the right, and left sides around one cell

and two neighboring cells around one RM. In Fig. 3.2(a), block Neuron is a neuron composed

of a resistor and capacitor and block VTI1 is a voltage-to-current converter with a sign detector

to convert the input voltage into current. Block VTI2 is a voltage-to-absolute-current converter

with a detector. It detects the sign of the current with an absolute current output. In Fig. 3.2(b),

block W is the synaptic gain block to multiply the absolute input current from VTI2 with a

chosen weight of 1/4, 1/3, 1/2, or 1 and the output sign is controlled by a sign controller. The

weight is controlled by block Counter_L in Fig. 3.2(c). Block COMP is a comparator that can

compare four absolute currents from RMs with the average of these four currents. Block

Counter_L counts how many currents are larger than the average current. Block Counter_L can

also generate the signals to control the weights of blocks W by the comparing and counting

results.

In the learning period, only switches sw1, sw2, sw4, and sw5 in Fig. 3.2(b) are open. When

pth pattern is learned, binary input uP
ij of cell(i, j) is sent into block VTI1 and the output current

is sent to block Neuron to generate the state voltage of cell(i, j). The positive or negative state of

cell(i, j) is detected by block VTI2 and the absolute current is extracted. The sign and the

absolute current of cell(i, j) are both sent to block W. In the learning period, the weight of block

W is set to 1/4. If the states of cell(i, j) and its neighboring cells are the same (different), it is

decided to charge (discharge) capacitor Cw with the absolute current multiplied by 1/4. The

learning time of one pattern can also be adjusted to prevent the voltage saturation of the

capacitor.

After all the patterns are learned, block VTI3 converts the voltage stored on capacitor Cw

into two absolute currents for the nearest two comparators. At the same time, the correlative

 65

signs are also been stored. There are four absolute currents from the neighboring RMs in one

cell. The comparator generates a mean current of the four absolute currents and compares the

four currents with the mean current. The comparisons are counted by block Counter_L to

decide the ratio weights of block W. When the N (4-N) currents in neighboring RMs are larger

(smaller) than the mean current, the weights of blocks W are set to 1/N (0) where N could be 1,

2, 3, or 4. The ratio weights are set at 1/4 for each block W only if the four currents are equal.

In the recognition period, the switches sw1, sw2, sw5, and sw6 in Fig. 3.2 (b) are closed.

The gray level input uij in Fig. 3.2(a) of the noisy pattern is sent into block Neuron and the

operation of recognition starts.

3.3 CIRCUIT IMPLEMENTATION WITH SIMULATION

RESULTS

A. Circuit Implementation with Simulation Results

Blocks VTI1 and Neuron are shown in Fig. 3.3(a). Block VTI1 is constructed using a

simple differential amplifier. M5-M6 are used to degenerate the transconductance of the

amplifier and to enlarge the linear operating range. Vref is set to 1.5 V and Vb2 at 2.5 V. Vb1 is

controlled by a mirror with a current of 5.5 μA. Block Neuron is simply composed of a

resistance and a capacitor. The resistance is constructed using MR1 and MR2 and the capacitor

is realized by the parasitic capacitance at node Xij. MR1 and MR2 are realized by PMOS

because the substrate of MR1 can be connected to source of MR1 to prevent body effect.

Hence, the state voltage Xij can be set to 1.5 V (1/2 VDD) initially. The transfer characteristic of

VTI1 is shown in Fig. 3.3(b). The transfer curve is linear as the input voltage Vuij is between 0.9

V and 2.1 V.

 66

(a)

(b)
Fig. 3.3 (a) The circuits of the blocks VTI1 and Neuron. (b) The transfer characteristic of the
block VTI1.

 67

Fig. 3.4(a) depicts blocks VTI2 and VTI3. The circuit represented in broken lines belongs

to the next stage, that is, block W or block COMP. Block VTI2 is similar to block VTI3 except

the device ME. VTI2 contains ME and Vpin_b is set to low, when the patterns are learned and

during the recognition period, in order to turn on the function of block VTI2. Vb1 is biased by a

mirror with a current of 5.5 μA and Vb2 is set to 2.5 V. Vb3 and Vref are each set to 1.5 V. The

combination of M9 with V2 and M10 with V3 can stop the static current. The difference (V2 –

V3) is smaller than the summation of the threshold voltages of M9 and M10. Hence, M9 and

M10 are turned off when there is no input current Iin. VTI2 and VTI3 each contain a differential

amplifier and an absolute current converter. The differential amplifier generates positive and

negative currents based on Vin. The positive (negative) current sent to the absolute current

converter turns on the device M10 (M9) and M9 (M10) is still turned off. The positive current is

inverted twice with two current mirrors, M11/M12 and M8/M13. The negative current is

(a)

 68

(b)
Fig. 3.4 (a) The circuit of the blocks VTI2 (with ME) and VTI3 (without ME) (b) The transfer
characteristic of the block VTI2 and VTI3.

inverted once with the current mirror M8/M13. As a result, the output current Iout is the

absolute current of Iin.

Fig. 3.5 shows the circuit of block W. Switches Swa-Swf are controlled by block Counter_L

to multiply the current with a gain of 1/4, 1/3, 1/2, or 1. Based on the signs of the patterns and

learned correlated weights in different periods, signal Sign_Con is set to a proper digital code to

decide the sign of block W, as shown in Fig. 3.6. The detector is constructed using two

cascaded inverters and amplifies the input signals to achieve a digital level. During the learning

period, only switch Swd1 is closed. Signal Sign_Con is determined by input voltage Vin in

 69

block VTI2 of cell(i,j) and input voltage Vu of the nearest neighboring cell(k,l) through an

exclusive gate.

Fig. 3.5 The circuit of the block W.

Fig. 3.6 The block diagram of the sign controller where the detector is composed of two
cascaded inverters.

Fig. 3.7 The circuit of the block COMP.

 70

During the recognition period, only switch Swd2 is closed. Signal Sign_Con is decided by input

voltage Vin in block VTI2 of cell(i,j) and input voltage of block VTI3, which is the correlation

between cell(i,j) and cell(k,l) stored on the capacitor Cw in Fig. 3.2 (b).

In block COMP in Fig. 3.7, the up, down, left, and right currents from blocks VTI3 are

gathered and averaged by the current mirror. The four directional currents from blocks VTI3

are compared with the averaged current IM and the comparing results are converted into digital

signals using two cascaded inverters. The four digital signals are counted by block Counter_L,

which is composed of two cascaded D-flip-flops and whose function it is to count the four

digital signals one at a time.

B. Operational Steps

The operation is separated into three periods: the learning, weight generating , and

recognition periods. In the learning period, blocks VTI1, Neuron, VIT2D, and W are active.

Input voltage Vuij of the learned pattern is transferred into the current signal and the current

signal is applied on block Neuron to produce an output state voltage Vxij. With state voltage

Vxij, block VTI2 generates the absolute current and this is multiplied by 1/4 through controlling

the switches Swa-Swf. The polarity of the output current of block W is controlled by signal

Sign_Con which is generated by the sign controller in Fig. 3.6 where only switch Swd1 is

closed. With the output current of block W, capacitor Cw is charged or discharged in an interval

Tp. After all the patterns are learned, the weight generating period starts.

In the weight generating period, the switches in Fig. 3.2(b) are all open. The voltage on Cw

is applied to VTI3 to generate two absolute currents while the sign is also detected,

simultaneously. With four absolute RM currents in four directions, mean current IM is

generated and compared with the four absolute currents as shown in Fig. 3.8. The four

comparators outputs are counted by block Counter_L, which sends the control signal to four

 71

Fig. 3.8 The four absolute currents from VTI3 are averaged and compared with the mean
current.

blocks W to generate corresponding weights. As a result, the RMCNN is ready for recognition.

In the third period, the noisy patterns are sent into the RMCNN. Switches sw1, sw2, sw5, and

sw6 in Fig. 3.2(b) are closed and so is Swd2 in Fig. 3.6. At the same time, device ME in Fig. 3.4

(a) is turned off to commence the operation of recognition. A set of patterns in Fig. 3.9 are

learned with Matlab by the proposed algorithm of a 9 × 9 RMCNN. The Gaussian noise

patterns with different standard deviation are recognized as shown in Fig. 3.10 where the

standard deviation is 0.3. The resultant recognition rate is shown in Fig. 3.11 which is

 72

Fig. 3.9 Input patterns in the learning period.

Fig. 3.10 Gaussian noise patterns with standard deviation of 0.3 to be recognized.

compared by directly amplifying the noisy patterns with an inverter where Gaussian noise is

applied with a standard deviation normalized to the binary state of 1 and -1. As can be seen

from Fig. 3.11, when the tolerance level is 50 %, the recognition rate is better than that of direct

amplification. However, when the tolerance is sterner, the recognition rate is reduced. Due to

the fact that template A is a non-self-feedback template, the recognized output patterns can not

be pulled to a saturated state and, hence, the recognition rate is degraded. The template values

of cell(4, 5), cell(5, 3), cell(8, 5), and cell(7, 5) are listed in Table 3.1 and are compared with

RMCNN with an elapsed time of 800 sec. As can be seen in Table 3.1, the templates are almost

the same except for some negligible coefficients.

The recognition rate is shown in Fig. 3.12 where the self-feedback RMCNN without

 73

Fig. 3.11 The recognition rates by using proposed RMCNN and by being directly amplified.

elapsed time is simulated and the result is compared with that of direct amplification. Since the

closed loop in the self-feedback RMCNN saturates the output, the recognition rate can be raised

and is better than that without self-feedback and that of direct amplification. In this paper, only

the test chip of the non-self-feedback RMCNN without elapsed time is designed and measured

to verify the proposed RMCNN algorithm not requiring elapsed time. A self-feedback RMCNN

not requiring elapsed time can be designed similarly.

C. Simulation Results with Large-Neighborhood Templates

The large-neighborhood diamond templates are also been applied to the proposed RMCNN

requiring no elapsed time. The RMCNN with large-neighborhood diamond templates are

simulated with Matlab. The tested image patterns of 18 × 18 array are learned and the

large-neighborhood templates are generated by using the proposed method. Fig. 3.13 shows the

 74

Table 3.1 THE COMPARISONS OF TEMPLATES A IN CELL(4, 5), CELL(5, 3), CELL(8, 5),

AND CELL(7, 5) BETWEEN RMCNN WITH AND WITHOUT ELAPSED TIME

Fig. 3.12 The comparison of the recognition rates by using proposed RMCNN with
self-feedback, without self-feedback of 50% tolerance and by being directly amplified.

 75

comparison of simulated recognition rates when the neighborhood of radius r’ are 1 and 3.

RMCNN requiring no elaped time with 3 × 3 neighborhood templates can learn 6 patterns. It

can be seen that the recognition rate with large neighborhood is worse than that with 3 × 3

neighborhood templates when 7 patterns are learned and recognized. The reason can be

explained by Fig. 3.14 that the smaller correlations are retained when a smaller elapsed time is

applied. That is, when the large neighborhood diamond templates are used in the proposed

algorithm, many smaller correlations are retained and these ratio weights of small correlations

raise the error rates. Hence, the proposed algorithm should be modified especially when the

large neighborhood diamond templates are used.

In order to generate a template as the former RMCNN with a longer elapsed time, the

procedure of the proposed algorithm is modified. By using the modified method, the

comparison of the correlations and their mean is repeated. The procedure is stopped when the

Fig. 3.13 The comparison of recognition rates with 3 × 3 neighborhood templates and large
neighborhood diamond templates of r’=3.

 76

Fig. 3.14 The ratio weights of RMCNN with different elapsed time.

redundant correlations are not smaller than their mean any more. As a result, the ratio weights

of smaller correlations can be depressed and the recognition rates are raised as shown in Fig.

3.15(a). As can be seen, the recognition rate of r’ = 5 is much better than that of r’ = 3. The

reason is that the large-neighborhood of r’ = 5 can gather more information between cells and

hence, it is highly possible to retain larger correlations. By using the repeated proposed

algorithm, the number of learned patterns is increased and it also shows that the use of large

neighborhood templates can increase the number of the learned patterns than that of single

neighborhood templates. In Fig. 3.15(b), it also shows larger neighborhood gives higher

recognition rate. However, as shown in Fig. 3.15(c), when the single neighborhood template is

used, the repeated algorithm gives no effects on the recognition rates. Hence, it can be inferred

that the repeat of the algorithm is only suitable for the large-neighborhood RMCNN requiring

 77

(a)

(b)

 78

(c)

Fig. 3.15 The recognition rates of (a) 3 × 3 neighborhood and large neighborhood templates by
repeating the operation of the proposed algorithm (marked with ‘modified’) where 7 patterns
are learned. (b) large neighborhood templates r’ = 5 and r’ = 7 where 9 patterns are learned. (c)
3 × 3 neighborhood by the operation of the proposed algorithm and repeating the operation of
the proposed algorithm where 7 patterns are learned.

Fig. 3.16 The modified circuits of block COMP that can realize the repeated proposed
algorithm.

 79

no elapsed time is implemented. The modified circuits for repeating the operation of the

proposed algorithm is also depicted in Fig. 3.16.

3.4 EXPERIMENTAL RESULTS

The architecture of a 9 × 9 non-self-feedback RMCNN not requiring elapsed time has been

designed as shown in Fig. 3.17. The input patterns for learning and recognition are sent serially

into 9 × 9 shift registers. The decoder can select the cells in the proposed RMCNN not requiring

elapsed time to be read out in series. The controlling signals are listed in Table 3.2 with a

controlling timing diagram shown in Fig. 3.18. The learning and recognition periods are

controlled by signals clk1 and clk2, respectively. Signal Reset is used to reset the charge on the

capacitor Cw. Signal newp enables the shift registers and then, signal DFF can trigger the

D-flip-flops in the shift registers to transfer the pixels of the input pattern in series. Signal pin

generates the patterns which are sent into the neural network. Signals Con_L and Con_G trigger

the local and global counters. The local counter counts the number of the currents which are

larger than the mean current in the cell. The global counter generates the signals to control

which comparative results in the cell should be counted by the local counter. Signal noi can

Fig. 3.17 The architecture of a 9x9 RMCNN without elapsed time chip.

 80

Table 3.2 THE DESCRIPTION OF EACH CONTROL SIGNAL

introduce the noise into the input patterns. With such architecture, an RMCNN chip not

requiring elapsed time has been designed and fabricated using TSMC 0.35-μm 2P4M

mixed-signal technology. Fig. 3.19 shows the photograph of the fabricated chip of an RMCNN

not requiring elapsed time.

During the learning period, the Chinese characters in Fig. 3.9 are learned. Because the noise

cannot be programmed individually, only uniform noise can be added into the correct patterns.

After the ratio weights are generated, these Chinese characters are sent again and combined

with a controllable uniform noise from 0 to 0.5 as shown in Fig. 3.20 where the noise level is set

t o

 81

Fig. 3.18 The timing diagram of control signals.

Fig. 3.19 The photograph of the RMCNN without elapsed time chip.

 82

Fig. 3.20 The uniform noisy patterns for measurement.

0.5. Because the noise cannot be programmed by pixels, the noise in each pattern is uniform.

For the first two Chinese characters, the correct patterns could be recognized. However, the last

Chinese character is recognized unsuccessfully as shown in Fig. 3.21 where the uniform noise

level is 0.25, and the output waveform is shown in Fig. 3.22. Channel 1 is the trigger signal

which is tied to low during the readout period. Channel 2 is LSB of the decoder and channel 3 is

the output waveform of the third pattern in Fig. 3.21. The output swing is between 0.2 V and 1.8

V and the output voltage is segmented into 256 gray levels. The gray level of 0.2 V is white and

that of 1.8 V is black. There are four stable pixels at the gray level as the third pattern is

recognized. To discuss the reason for this, the absolute weights of the post simulation at

cell(4,4), which is recognized unsuccessfully in the third pattern, are listed in Table 3.3 where

Fig. 3.21 Experimental results of recognized patterns in the recognition period after a set of
patterns with noise level 0.25 are recognized.

 83

Fig. 3.22 Experimental output waveform of the third recognized pattern.

the simulation with Matlab and two post simulations with HSPICE in different conditions are

compared. As can be seen, the ratio weights with Matlab and HSPICE (TT) are the same and

the noisy patterns can be recognized correctly. However, with HSPICE (FS), an incorrect ratio

weight is generated and leads to an unsuccessful result. Hence, even the third pattern with a

smaller noise is recognized, the resultant pattern is still incorrect because the incorrect

correlations are retained. When three patterns are learned, block W charges or discharges the

capacitor Cw according to the input pixel of two neighboring cells. During this time, the device

ME in Fig. 3.4 (a) of block VTI2 is turned off. However, when a new pattern is sent into the

chip after the former one is learned, device ME is turned on and the output current should be 0.

However, there is still a small output current due to the asymmetric structure and the mismatch.

Meanwhile, the input of the sign detector is connected to Vref because device ME is turned on

 84

Table 3.3 THE COMPARISON OF THE ABSOLUTE WEIGHTS A44 WITH MATLAB AND

HSPICE IN DIFFERENT CONDITIONS

and this makes it impossible to predict signal Sign_Con. As a result, the capacitor Cw is

charged or discharged unpredictably by the small current when the learned patterns are

transmitted to the 9 × 9 shift registers. Hence, the ideal absolute weights cannot be achieved.

To overcome the small output current from block VTI2, a new path can be inserted into block

W as shown in Fig. 3.23. Only one of switches Stra and Slearn is turned on and the other is turned

off. As the learned patterns are transmitted to the shift register, switch Stra is turned on. Hence,

capacitor Cw would not be charged or discharged by the small current from block VTI2. Switch

Slearn is turned on when the pattern in the shift register is sent to the neuron and can be learned or

recognized correctly. Dummy load Mdummy is the same with M5. This can cause the current

source M1-M4 to have a similar load and retain the current stable during switching.

The comparison between RMCNN [67] and RMCNN requiring no elapsed time is list in

Table 3.4. The total chip area is 4560 μm × 3900 μm and the area of a single cell is 400 μm ×

 85

250 μm. The total power consumption is 87 mW in operation with a supply voltage of 3 V

and a system clock frequency of 10 MHz.

Fig. 3.23 The modified circuit of the block W.

TABLE 3.4 COMPARISON BETWEEN RMCNN AND RMCNN REQUIRING NO

ELAPSED TIME

 RMCNN [67] RMCNN requiring no
elapsed time

Technology 0.35 μm 1P4M Mixed-
Signal Process

0.35 μm 2P4M Mixed-
Signal Process

Array Size 9 x 9 9 x 9
No. of RMs 144 144

Area of Single Pixel 350 μm x 350 μm 400 μm x 250 μm
Power Supply 3 V 3 V

Power Dissipation 120 mW 87 mW
Readout Time
(of one pixel) 1 ms 80 ns

Weight Generating Time
(Elapsed Time) 850 sec 1.7 μs

System Clock Frequency N/A 10 MHz
Dynamic Range of State

Xij (Vxij - Vref) -0.8 ~ 0.8 V -0.6 ~ 0.6 V

 86

3.5 SUMMARY

In this chapter, a new algorithm of a RNCNN not requiring elapsed time has been proposed.

In the proposed RMCNN, a new ratio weight generating method is also proposed. The use of

this method avoids a long period of elapsed time when the ratio weights are generated. By using

RMCNN requiring no elapsed time, 6 patterns can be learned and recognized. In this chapter,

the large-neighborhood RMCNNs of r’ = 3, r’ = 5, and r’ = 7 are also simulated. The results

suggest that the proposed algorithm to compare the correlations and their mean should be

repeated when the large-neighborhood templates are used. RMCNN requiring no elapsed time

is modified to be suitable for large-neighborhood application. It also suggests that RMCNN

with larger neighborhood templates can increase the recognition rates or the number of learned

patterns. However, the efficiency to increase r’ become lower when r’ is large.

An experimental chip of 9x9 RMCNN not requiring elapsed time has been implemented

and fabricated using TSMC 0.35-μm CMOS 2P4M technology. The weight generating time is

reduced to 1.7 ms while the elapsed time required by RMCNN is more than 800 seconds.

Further applications of the proposed RMCNN not requiring elapsed time will be developed

in the future.

 87

C H A P T E R 4

THE ANALYSIS OF THE RECURSIVE

LEARNING RMCNN

4.1 INTRODUCTION

By using the architecture of cellular nonlinear (neural) network (CNN) which was proposed

by Chua and Yang in 1988 [6]-[7], [40], the concept of RMCNN was first brought up by C. Y.

Wu and J. F. Lan in 1995 [65]-[67]. RMCNN works by a set of learned space-variant templates

according to the correlation of each learned patterns. With the ratio memory and a long period

of retrieving time (elapsed time), the common characteristic can be enhanced. Moreover, in the

past study, the algorithm of RMCNN without elapsed time is proposed and also discussed in

Chap. 3 where the templates are generated by comparing the correlations with the mean of

those four correlations around any one cell instead of being generated with a long elapsed time.

However, in the past study, the discussion on how the generated templates affect the

recognition rate is not mentioned. Hence, in this work, the Gaussian noise probability density is

considered and a simple situation of one pixel with a generated template is discussed. In the

situation, the asymmetric probability of the recognized pixel is considered and it causes the

asymmetric probability density of the output. Thus, the result shows the necessity of the

templates Z to depress the error rate. To gather the information of the threshold, the recursive

 88

learning technique [145] is applied. The recursive learning in [145] is used for the background

and foreground modeling as following:

() () () ()[]•⋅+•⋅−=• −Δ− 11 ;1 tttttt xH θαθβθ

(4.1)

whereθt(•) is the probability density function of each pixel at time t and updated by the local

kernel HΔ[xt; θt-1(•)], which is the learned target, and αt and βt are the learning rate and

forgetting rate. The learning rate αt is usually equal to 1/t where the forgetting rate βt is equal to

1-G‧αt and G is a coefficient smaller than 1. By using the recursive learning technique, the

probability density function of error function can be obtained and recovered by the template Z.

As a result, it can correct the asymmetric black and white probabilities of learned patterns and

also can be demonstrated by the results of simulations. By using the proposed method, the

simulations with different algorithm are made and compared.

In section 4.2, the mathematical analysis of one template generated by an RMCNN is

studied and the operating procedure of the recursive learning RMCNN is illustrated. In section

4.3, the simulation results are compared and discussed. Finally, the conclusion is given.

4.2 MATHEMATICAL ANALYSIS

The generated templates in any type of RMCNN are diamond templates and can be written

as

()

() ()

()
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

+

+−

−

00

0

00

1

11

1

jiij

jijijiji

jiij

ijkl

a

aa

a

A

(4.2)

 89

Fig. 4.1 The probability of the input uC1.

except the self-feedback term. Each coefficient in RMCNN is realized by the equation (3.6) and

in RMCNN requiring no elapsed time is by the equations (3.7)-(3.8). However, for

simplification, only one coefficient is considered and other coefficients are 0. Because the

summation of the all absolute coefficients is 1, the existent coefficient may be ±1. Here, we

choose the coefficient to 1 for example, and assume that the pixel C1 always has a correct input

and has a probability of 0.5 for black and white colors as shown in Fig. 4.1. Meanwhile, it is

assume that the pixel C2 has a noisy input with Gaussian noise and with asymmetric

probabilities of 0.4 and 0.6 for white and black colors, respectively, as demonstrated in Fig. 4.2.

After the recognition, the state xC1 can be shown in Fig. 4.3. As can be seen, the asymmetric

probabilities of black and white colors make the probability density of the state xC1. If RMCNN

requiring no elapsed time with a tolerance of 50% is taken into account, the error rate of the

 90

Fig. 4.2 The probability density of the input uC2.

Fig. 4.3 The probability density of the state xC1 after recognition.

 91

error can be depressed. With Matlab simulation, if there is a threshold value of -1, the error rate

pixel C1 can be calculated by the integration of the shadow in Fig. 4.4(a) and (b). However, it

can be observed that if the graph is shifted, the can be reduced from 0.4201 to 0.2935.

It can be proved that the error rate can be improved by the threshold term but it is dependent on

the probability of the input signals. Hence, a recursive learning technique is applied to learn the

error rate. The procedure is shown in Fig. 4.5 where the recursive learning is behind the

generating of ratio weights because the recursive learning algorithm is used to learn the error

rate after recognition in 5 iterations. After 5 iterations, the deviation of THR(i,j,k) is calculated.

If the deviation is smaller than the constrain δ, the recursive learning stops. Based on the

recursive learning in (4.1), a recursive learning of error rate probability is constructed as shown

in Fig. 4.6 where THR(i,j) where is equal to THR(i,j,k) after k iterations is the threshold value of

(a)

 92

(b)

Fig. 4.4 The error rates produced by the shadow part when the output of the pixel C1 should be
(a) 1 and (b) -1.

Fig. 4.5 The procedure of the recursive learning algorithm.

Fig. 4.6 The recursive learning of THR(i,j) in nth iteration.

 93

cell(i,j), THR_rate is the learning rate, Cor_u(i,j,n) and y(i,j,n) are the correct pattern and

recognized output, respectively, of cell(i,j) in the nth iterations. In the recursive learning period,

the difference of Cor_u(i,j,n) and y(i,j,n) is calculated in each iteration and update the error

probability density by [Cor_u(i,j,n) - y(i,j,n)]. Based on the equation (4.1), the recursive

learning of the templates can be written as:

() () ()[] () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×−+×−=

rateTHR
njiTHR

rateTHR
njiynjiuCornjiTHR

_
111,,

_
1,,,,_,, .

 (4.2)

where the learning rate αt is THR_rate, the forgetting rate is 1 - G·αt and the coefficient G is

chosen to be 1. Because even the chosen G is a coefficient smaller than 1, the equation can be

normalized by a factor. With equation (4.2), the average of [Cor_u(i,j,n) - y(i,j,n)] in k iterations

since the equation (4.2) can be derived as:

()
() ()

k

njiynjiuCor
kjiTHR

k

n
∑

=

−
= 1

,,,,_
,, .

(4.3)

Hence, the recursive learning is the learning of the average distance that the output y(i,j,n) is

away from the correct pattern Cor_u(i,j,n).

4.3 SIMULATION RESULTS

The simulation is made by using Matlab simulator. As shown in Fig. 4.7, 7 patterns are

learned by using RMCNN requiring no elapsed time without and with recursive learning. As

can be seen in Fig. 4.7, the recursive learning can raise the recognition rate and improve the

learning ability of RMCNN requiring no elapsed time. The simulations are made with recursive

learning of different constrains. It can be found that the recognition rate can be raised after the

 94

Fig. 4.7 The recognition rates of RMCNN requiring no elapsed time without and with recursive
learning of constrains 0.01, 0.03, and 0.05 where 7 patterns are learned

recursive learning of different constrains 0.01, 0.03, and 0.05. The recognition rates of

constrains 0.01 and 0.03 are almost the same when 7 patterns are learned but the recognition

rate of constrain 0.05 is a little lower. The required iterations are listed in Table 4.1. The

required iterations of constrain 0.01 is more than those of constrain 0.03 while the required

iterations of contrain 0.5 is a little fewer. Hence, constrain δ = 0.03 is chosen. It also can be seen

that when the standard deviation of the noise is large, the required iterations also become more.

The learned templates Z are also shown in Fig. 4.8.

The recognition rates where 6 patterns and 8 patterns are learned with or without recursive

learning are shown in Fig. 4.9. The constrain δ is set to 0.03 and the required iterations are listed

 95

Table 4.1 THE REQUIRED ITERATIONS TO FIT THE CONSTRANS WHERE 7

PATTERNS ARE LEARNED

Gaussian Noise (σ) 0.01 0.03 0.05
0 10 10 10

0.1 10 10 10
0.2 20 15 10
0.3 20 15 10
0.4 25 15 10
0.5 30 15 15
0.6 60 20 15

Fig. 4.8 The learned threshold Z where constrain δ is 0.03 and the standard deviation of
Gaussion noise is 0.6.

in Table 4.2. The recognition rates where 6 patterns are learned with and without recursive

learning are almost the same. However, when 8 patterns are learned, the recognition rate can be

raised with recursive learning. As a result, RMCNN requiring no elapsed time can learned 6

patterns while it can learned 8 patterns by using recursive learning with a constrain of δ = 0.03.

4.4 SUMMARY AND FUTURE WORK

In this chapter, with the concept of RMCNN, the effect of Gaussian noise has been

discussed. According to the analyzing results, the threshold is required to decrease the error rate

 96

Fig. 4.9 The recognition rates where 6 patterns and 8 patterns are learned with and without
recursive learning.

Table 4.2 THE REQUIRED ITERATIONS TO FIT THE CONSTRANS δ = 0.03 WHERE 6

AND 8 PATTERNS ARE LEARNED

Gaussian Noise
(s) 6 patterns 8 patterns

0 5 10
0.1 10 10
0.2 10 10
0.3 10 10
0.4 10 10
0.5 15 15

because of the asymmetric probability densities of the inputs. Hence, a recursive learning

technique is proposed to minimize the error rate due to this factor. With the recursive learning

technique, the probability density of errors is gathered during k iterations. The deviation of

templates Z is calculated per 5 iterations. As the deviation is smaller than the constrain δ, the

recursive learning stops. With the proposed recursive learning, the comparison of different

 97

applied algorithm is made by using Matlab simulations and the recognition rate and learned

patterns indeed can be improved with constrain δ = 0.03.

However, in this chapter only the mathematic analysis is discussed and the statistic

simulations are made. Hence, further research on the circuit design of the recursive learning

RMCNN needs to be conducted.

 98

C H A P T E R 5

CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS

In this dissertation, an LNCNN and new types of RMCNN have been proposed. In 3 × 3

neighborhood CNNs, their local connectivity is easy to be implemented in a VLSI design.

However, 3 × 3 neighborhood CNNs limit the realizable functions because they only generate 3

× 3 templates. When a large neighborhood function is realized, 3 × 3 neighborhood CNNs

cannot realize the function directly. Some of 5 × 5 templates can be decomposed into several 3

× 3 neighborhood templates. It takes more operation time and more power consumption to carry

out these 3 × 3 neighborhood templates in a task. By using the proposed LNCNN, the 5 × 5

templates can be approximated with the diamond templates and several functions like diffusion,

de-blurring, and Muller-Lyer illusion has been verified with Matlab simulation. In the kernel

unit of the proposed LNCNN, only the neighboring cells are connected to each other. The

propagating connections are used to deliver the stimulus from one cell to further cells expect for

the neighboring cells. Thus, the proposed LNCNN can realize large-neighborhood

diamond-shaped templates. By using the propagating connections, complicated wire

connections to farther cells can be avoided. In the proposed LNCNN, the analog memory is also

used to store the non-recurrent term produced by templates B and Z. As well, the simple

 99

current-mode circuits of the synapses and neuron cells are implemented by using current

mirrors. The circuits based on current mirror structure makes the implementation simple and

accurate current mirrors are not required in this design. Each cell can be implemented more

compactly and the diamond templates with constraints can be realized easily. An LNCNN chip

of 20 × 20 array has been fabricated. By using the LNCNN chip, the Muller-Lyer, which is the

function of 5 × 5 templates, has been successfully verified. The LN function has been

successfully verified by using the LNCNN chip with a power consumption of 0.7 mW on

standby and 18 mW in operation with a system clock frequency of 20 MHz.

In this dissertation, RMCNN without elapsed time has also been proposed. The

space-variant templates are learned and generated according to different local characteristics.

Same with RMCNN of former researches, RMCNN requiring no elapsed time stores the

correlations between cells and their neighboring cells. The elapsed time is taken off to avoid the

long weight generating time and to remove the effects of uncertain leakage. The device

multiplier-divider is also replaced with a comparator and a counter and this simplifies the

design. The correlations are compared with their mean, and the correlations, which are larger

than the mean, are counted. As a result, all the local correlations are compared with local

means. The local characteristics in different positions of the learned patterns can be enhanced

due to the local property. To verify the proposed algorithm, an RMCNN without elapsed time

chip of 9 × 9 array is designed, and the uniform noisy patterns have also been tested and

discussed. With the modified circuit, the RMCNN without elapsed time chip can recognize the

patterns successfully. The total chip area is 4560 μm × 3900 μm and the area of a single cell is

400 μm × 250 μm. The total power consumption is 87 mW in operation with a supply voltage of

3 V and a system clock frequency of 10 MHz.

 100

Finally, a recursive learning RMCNN is proposed. The statistic and probabilistic model is

not concerned before when the image is recognized. Hence, in this dissertation, a Gaussian

noise model is concerned and discussed when an assumed template is give. According to the

analysis, the decision is not located at an optimum point. Therefore, the recursive learning of

the threshold values is applied to RMCNN for further improvement. By using the recursive

learning, the error probability density of [Cor_u(i,j,n) - y(i,j,n)] is gathered. When the threshold

is applied with the mean of the term [Cor_u(i,j,n) - y(i,j,n)], the decision points can be located at

an optimum points. As a result, the recognition rate and the number of learned patterns can be

increased.

5.2 FUTURE WORK

In this dissertation, an LNCNN chip has been fabricated and verified successfully.

However, the applications of LNCNN are few because there are few studies on LNCNN due to

the lack of LNCNN hardwares. Hence, with the proposed LNCNN structure and hardware,

many researches on LNCNN templates and phenomenon can be studied and verified.

Furthermore, because the simple circuits are used in the proposed LNCNN chip for small area

and power consumption, the linearity of the templates is not the first priority of our

consideration. Hence, the linearity of the circuits can be further modified to get a more precise

control on the templates. Meanwhile, the goal of the LNCNN chip proposed in this dissertation

is to realize the core of the LNCNNUM. In the next phase, it is anxious to achieve an

LNCNNUM chip for many applications of LNCNN. Moreover, the applications of the diamond

templates and how to transfer the 5 × 5 templates into diamond templates are also interesting

researches. The tolerance of the diamond templates will be analyzed to generate a more robust

template.

 101

Furthermore, an RMCNN without elapsed time is also presented. In the structure of

RMCNN, the correlations are stored on the analog memories, that is, the capacitors. Although

the analog design is an intuitional method, it is also possible to operate the RMCNN in

digitalized mode or mixed-mode structure. Under analog mode, the operation is easier and

faster. However, under digital mode, it is more precise and more economic in power

consumption. Hence, how to design a most proper structure is the main target in the next

generation. Moreover, the learning of the large-neighborhood templates can also been applied

on RMCNN. The effects of the large-neighborhood templates could be analyzed and how to

implement the space-variant templates on RMCNN chip is a challenging topic.

As to the recursive learning RMCNN, the templates Z are learned recursively. With the

simulations, it is proved that the recognition rates can be improved as an RMCNN structure is

used. However, per 5 iterations, the deviation of the learned templates Z is calculated and the

recursive learning stops when the deviation is smaller than the constrain δ. The mathematical

model and derivation will be further studied in the future. Based on the proposed algorithm, a

recursive learning RMCNN chip will also be designed and implemented in 0.18 μm or better

CMOS technology. Further research on the efficiency of the learning templates Z will be

concerned and integrated.

Finally, the integration of RMCNN and LNCNN can make the whole chip powerful.

RMCNN is applied on learning where LNCNN is used for controlling and computing. As a

machine with RMCNN and LNCNN contains memories, controllable instructions, and

learnable abilities, it may achieve an artificial intelligence system with a proper design and

controlling codes.

 102

R E F E R E N C E S

[1] J. J. Hopfield, “ Neural networks and physical systems with emergent collective
computational abilities” in Proc. Natl. Acad. Sci. U.S.A., vol. 79, pp. 2554-2558, 1982.

[2] J. J. Hopfield, “Neurons with graded response have collective computational properties
like those of two-state neurons,” in Proc. Natl. Acad. Sci. U.S.A., vol. 81, pp. 3088-3092,

1984.

[3] J. J. Hopfield and D. W. Tank, “’Neural’ computation of decisions optimization problems,”

Biological Cybern., vol. 52, pp. 141-152, 1985.

[4] J. J. Hopfield and D. W. Tank, “’Computing with Neural Circuits: A Model,” Science, vol.

233, pp. 625-633, August 1986.

[5] J. J. Hopfield and D. W. Tank, “’Collective computation with continuous variables,” in

Disordered Systems and Biological Organization, Springer-Verlag, 1986.

[6] L. Chua and L. Yang, “Cellular neural network: Theory,” IEEE Trans. Circuits Syst., vol.

35, pp. 1257-1272, Oct. 1988.

[7] L. Chua and L. Yang, “Cellular neural network: Applications,” IEEE Trans. Circuits Syst.,

vol. 35, pp. 1273-1290, Oct. 1988.

[8] L. Chua and T. Roska, “The CNN paradigm,” IEEE Trans. Circuits Syst. I, vol. 40, pp.

147-156, Mar. 1993.

[9] J. A. Feldman and D. H. Ballard, “Connectionist Models and Their Properties,” Cognitive

Science, vol. 6, pp. 205-254, 1982.

[10] D. W. Tank and J. J. Hopfield, “Simple neural optimization networks: An A/D converter,
signal decision circuits, and a linear programming circuit,” IEEE Trans. Circuits Syst., vol.

33, pp. 533-544, May 1986.

[11] R. P. Lippman, “An Introduction to Computing with Neural Nets,” IEEE ASSP Magazine,

pp. 4-22, 1987.

[12] I. Aleksander, “Microcircuit learning nets: Hamming-distance behaviour,” Electronics
Letters, vol. 6, pp. 134-136, Mar. 1970.

 103

[13] A. Dembo, “On the capacity of associative memories with linear threshold functions,”
IEEE Transactions on information Theory, vol 35, pp. 709-720, Jul. 1989.

[14] P. Houselander and J. T. Taylor, “Improving the Hamming binary associative memory,”
Electornics Letters, vol. 26, pp. 705-707, May 1990.

[15] D. L. P. Aitken, J. M. Bishop, R. J. Mitchell, and S. E. Pepper, “Pattern separation in digital
learning net,” Electronics Letters, vol. 25, pp. 685-686, May 1989.

[16] D. E. Rumelhart, B. Widrow, and M. A. Lehr, “The basic ideas in neural networks,”
Communications of the ACM, vol. 37, pp. 87-92, Mar. 1994.

[17] J. J. Hopfield, “Artificial neural networks,” IEEE Circuits and Devices Magazine, vol. 4,
pp. 3-10, Sept. 1988.

[18] W. S. McCullock and W. Pitts, “A Logical Calculus of the Ideas Imminent in Nervous
Activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.

[19] D. O. Hebb, The Organization of Behavior: A Neurosychological Theory, John Wiley &
Sons, New York, 1949.

[20] F. Rosenblatt, Principles of Neurodynamics, New York, Spartan Books, 1959.

[21] B. Widrow and M. E. Hoff, “Adaptive Switching Circuits,” 1960 IRE WESCON Conv.
Record, Part 4, pp. 96-104, Aug. 1960.

[22] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, MIT Press, 1986.

[23] T. Sejnowski and C. R. Rosenberg, “NETtalk: A Parallel Network That Learns to Read
Aloud,” Johns Hopkins Univ. Technical Report JHU/EECS-86/01, 1986.

[24] S. Grossberg, The Adaptive Brain I: Cognition, Learning, Reinforcement, and Rhythm,
Elsevier/North-Holland, Amsterdam, 1986.

[25] S. Grossberg, The Adaptive Brain II: Vision, Speech, Language, and Motor Control,
Elsevier/North-Holland, Amsterdam, 1986.

[26] G. E. Hinton and T. J. Sejnowski, “Learning and relearning in Boltzmann machines”, in
Parallel Distributed Processing: Exploration in the Microstructure of Cognition, vol. 1:
Foundations, D. E. Rumerhart, J. L. McClelland, and the PDP research group, pp. 282-317,
MIT Press, Cambridge, MA., 1986.

[27] M. A. Cohen and S. Grossberg, "Absolute stability of global pattern formation and parallel
memory storage by competitive neural networks," IEEE Trans. on Systems, Man, and
Cybernetics, vol. 13, pp. 815-826, 1983.

 104

[28] P. Smolensky, “Information Processing in Dynamical Systems: Foundations of Harmony
Theory,” in Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, D.E. Rumelhart and J.L. McClelland, eds., vol. 1, 1986.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal Representations by
Error Propagation,” Parallel and Distributed Processing: Exploration in the
Microstructure of Cognition, Vol. 1, D. Rumelhart and J. McClelland (Eds.), MIT Press,
Cambridge, Massachusetts, 1986, pp. 318-362.

[30] L. V. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms And
Applications, Prentice-Hall, Englewood Cliffs, New Jersey, 1994.

[31] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle
River, New Jersey, 1999.

[32] F. Ham and I. Kostanic, Principles of Neurocomputing for Science and Engineering
McGraw Hill, Nw York, 2001.

[33] R. P. Lippmann, “An Introduction to Computing with Neural Network,” IEEE Acoustic,
Speech, and Signal Processing Magazine, vol. 61, pp. 4-22, Apr. 1987.

[34] M. Minsky and S. Papert, Perceptrons: An introduction to computational geometry, MIT
Press, Cambridge, MA, 1988

[35] E. R. Kandel and J. H. Schwartz, Principles of Neural Science, Elsevier, New York, 1985.

[36] T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag, Berlin, 1984.

[37] T. Kohonen, K. Masisara, and T. Saramaki, “Phonotopic Maps – Insightful Representation
of Phonological Features for Speech Representation,” In Proceedings IEEE 7th Inter. Conf.
on Pattern Recognition, Montreal, Canada, Jul. 1984, pp. 182-185.

[38] A. Stoffels, T. Roska, and L. O. Chua, “An object-oriented approach to video coding via
the CNN Universal Machine,” in Proceeding of 1996 Fourth IEEE Cellular Neural
Networks and their Applications, CNNA-96, vol. 43, Nov. 1996, pp. 948-952.

[39] T. Roska and L. O. Chua, “The CNN universal machine: An analogic array computer,”
IEEE Trans. Circuits Syst., vol. 40, pp. 163-172, Mar. 1993.

[40] L. O. Chua, CNN: A paradigm for complexity, World Scientific Series on Nonlinear
Science, vol. 31, 1998.

[41] J. Stolte, G. Cserey, ” Artificial immune systems based sound event detection with
CNN-UM,” in Proceedings of the 2005 European Conference on Circuit Theory and
Design, 2005, vol. 3, Aug. 2005, pp. 11-14.

 105

[42] G. Cserey and T. Roska, “Artificial immune systems based novelty detection with
CNN-UM,” IEEE Symposium on Foundations of Computational Intelligence, 2007. FOCI
2007., Apr. 2007, pp. 156-161.

[43] G. Cserey, A. Falus, W. Porod, and T. Roska, “An Artificial Immune System for Visual
Applications with CNN-UM”, in Proc. Of ISCAS 2004, Vancouver, 2004.

[44] A. Stoffels, T. Roska, and L. O. Chua, “Object-oriented image analysis for very-low-bitrate
video-coding systems using the CNN Universal Machine,” Int. J. Circuit Theory Appl., vol.
25, pp. 235-258, 1997.

[45] T. Sziranyi, K. Laszlo, L. Czuni, and F. Ziliani, “Object-oriented motion segmentation for
video compression in the CNN-UM,” J. VLSI Signal Process., vol. 23, pp. 479-496, 1999.

[46] L. O. Chua and T. Roska, Cellular neural networks and visual computing: Foundations and
applications, Cambridge University Press, 2005.

[47] L. Pivka, “Autowaves and spatio-temporal chaos in CNNs. I. A tutorial,” IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 42, pp.
638-649, Oct. 1995.

[48] L. Pivka, “Autowaves and spatio-temporal chaos in CNNs. II. A tutorial,” IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 42, pp.
650-664, Oct. 1995.

[49] Z. Yang, M. Yamauchi, Y. Nishio, and A. Ushida, “Relations between spatio-temporal
phenomena and eigenvalues in mutually coupled CNNs,” in Proceedings of the 2003
International Symposium on Circuits and Systems, 2003. ISCAS '03, vol. 3, May 2003, pp.
III-578-III581.

[50] A. M. Turing, “The chemical basis of morphogenesis,” Phil. Trans. Roy. Soc. Lond., pp.
37-72, 1952.

[51] J. D. Murray, Mathematical Biology. Springer-Verlag, Berlin, 1989.

[52] L. Goras and L. O. Chua, “Turing patterns in CNNs. I. Once over lightly,” IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 42, pp.
602-611, Oct. 1995.

[53] L. Goras and L. O. Chua, “Turing patterns in CNNs. II. Equations and behaviors,” IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 42, pp.
612-626, Oct. 1995.

 106

[54] L. Goras and L. O. Chua, “Turing patterns in CNNs. III. Computer simulation results,”
IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.
42, pp. 627-637, Oct. 1995.

[55] G. Manganaro, P. Arena, and L. Fortuna, Cellular Neural Networks: Chaos, Complexity
and VLSI Processing. Spring-Verlag, NewYork, 1999.

[56] K. Aihara, “Chaos engineering and its application to parallel distributed processing with
chaotic neural networks,” in Proceeding of the IEEE, vol. 90, May 2002, pp. 919-930.

[57] H. Lu, Y. He, and Z. He, “A chaos-generator: analyses of complex dynamics of a cell
equation in delayed cellular neural networks,” IEEE Transactions on Circuits and Systems
I: Fundamental Theory and Applications, vol. 45, pp. 178-181, Feb. 1998.

[58] L. Nemes and T. Roska, “A CNN model of oscillation and chaos in ant colonies: a case
study,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 42, pp. 741-745, Oct. 1995.

[59] J. A. Anderson, “A simple neural network generating interactive memory,” Math. Biosci.,
vol. 14, pp. 197-220, 1972.

[60] T. Kohonen, “Correlation matrix memories,” IEEE Trans. Comput., vol. C-21, pp.353-359,
Apr. 1972.

[61] K. Nakano, “Associatron-A model of associative memory,” IEEE Trans. Syst., Man,
Cybern., vol. SMC-2, pp. 381-388, 1972.

[62] T. Sziranyi, T. Roska, and Szolgay, P., “A cellular neural network embedded in a dual
computing structure (CNND) and its use for character recognition,” in Proceedings of 1990
IEEE International Workshop on Cellular Neural Networks and their Applications, Dec.
1990, pp. 92-99.

[63] T. Sziranyi and J. Csicsvari, “High-speed character recognition using a dual cellular neural
network architecture (CNND),” IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, vol. 40, pp. 223-231, Mar. 1993.

[64] E. David, P. Ungureanu, L. Goras, “On the Feature Extraction Performances of CNN
Gabor-Type Filters in Texture Recognition Applications,” 10th International Workshop on
Cellular Neural Networks and Their Applications, 2006. CNNA '06, Aug. 2006, pp. 1-6.

[65] C. Y. Wu and J. F. Lan, “CMOS current-mode neural associative memory design with
on-chip learning,” IEEE Trans. Neural Networks, vol. 7, no. 1, pp. 167-181, 1996.

[66] J. F. Lan and C. Y. Wu, “CMOS current-mode outstar neural networks with long-period
analog ratio memory,” in Proc. IEEE Int. Symposium on Circuits and Systems, ISCAS,
1995, vol. 3, pp. 1676-1679.

 107

[67] C. Y. Wu and C. H. Cheng, “A learnable cellular neural network structure with ratio
memory for image processing”, Circuits and Systems I: Fundamental Theory and
Applications, IEEE Transactions on, vol. 49, issue 12, pp. 1713-1723, Dec. 2002.

[68] G. Cserey, A. Falus, and T. Roska, “Immune Response Inspired CNN Algorithms for
Many-Target Detection”, in Proc. Of ECCTD ’03, Krakow, 2003.

[69] G. Cserey, A. Falus, W. Porod, and T. Roska, “Feature Extraction CNN Algorithms for
Artificial Immune Systems”, in Proc. Of ISCAS 2004, Vancouver, 2004.

[70] G. Cserey, W. Porod, and T. Roska, “An Artificial Immune System based Visual Analysis
Model and its Real-Time Terrain Surveillance Application”, ICARIS 2004,
Springer-Verlag, 2004, pp. 250-262.

[71] A. Schultz, C. Rekeczky, I. Szatmari, T. Roska, and L. O. Chua, “Spatio-temporal CNN
algorithm for object segmentation and object recognition,” in Proceedings of 1998 Fifth
IEEE International Workshop on Cellular Neural Networks and Their Applications, Apr.
1998, pp. 347-352.

[72] I. Szatmari, A. Schultz, C. Rekeczky, T. Kozek, T. Roska, and L. O.Chua, “Morphology
and autowave metric on CNN applied to bubble-debris classification,” IEEE Transactions
on Neural Networks, vol. 11, pp. 1385-1393, Nov. 2000.

[73] T. W. Lee, M. S. Lewicki, and T. J. Sejnowski, “ICA mixture models for unsupervised
classification of non-Gaussian classes and automatic context switching in blind signal
separation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp.
1078-1089, Oct. 2000.

[74] L. Koskinen, A. Paasio, A. Kananen, and K. Halonen, “MPEG-4 encoder architecture for a
shape segmentation CNN chip,” in Proceedings of Workshop and Exhibition on MPEG-4.
2001, Jun. 2001, pp. 41-44.

[75] L. Koskinen, A. Paasio, M. Laiho, and K. Halonen, “Effect of CNN shape segmentation on
MPEG-4 shape bit-rate,” IEEE International Symposium on Circuits and Systems, 2002.
ISCAS 2002, vol. 4, May 2002, pp. 552-555.

[76] L. Koskinen, M. Laiho, A. Paasio, and K. Halonen, “MPEG-4 based modifications for an
CNN segmentation chip” in Proceedings of the 2002 7th IEEE International Workshop on
Cellular Neural Networks and Their Applications, 2002. (CNNA 2002), Jul. 2002, pp.
71-71.

[77] L. Koskinen, A. Paasio, K. Halonen, “CNN shape segmentation advantages in MPEG-4
simple profile encoding,” in Proceedings of Seventh International Symposium on Signal
Processing and Its Applications, vol. 2, Jul. 2003, pp. 117-120.

 108

[78] L. Koskinen, A. Paasio, and K. A. I. Halonen, “Motion estimation computational
complexity reduction with CNN shape segmentation,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 15, pp. 771-777, Jun. 2005.

[79] P. Arena, L. Fortuna, and L. Occhipinti, “DNA chip image processing via cellular neural
networks,” The 2001 IEEE International Symposium on Circuits and Systems, 2001.
ISCAS 2001, vol. 3, May 2001, pp. 345-348.

[80] P. Arena, L. Fortuna, and L. Occhipinti, “A CNN algorithm for real time analysis of DNA
microarrays,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 49, pp. 335-340, Mar. 2002.

[81] P. Arena, M. Bucolo, L. Fortuna, and L. Occhipinti, “Cellular neural networks for real-time
DNA microarray analysis,” IEEE Engineering in Medicine and Biology Magazine, vol.21,
pp. 17-25, Mar. 2002.

[82] Y. W. Shou and C. T. Lin, “Image descreening by GA-CNN-based texture classification,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, pp. 2287-2299,
Nov. 2004.

[83] C. T. Lin, C. L. Chang, and J. F. Chung, “New horizon for CNN: with fuzzy paradigms for
multimedia,” IEEE Circuits and Systems Magazine, vol. 5, pp. 20-35, 2005.

[84] P. Arena, A. Basile, M. Bucolo, and L. Fortuna, “An object-oriented segmentation on
analog CNN chip,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., vol. 50, pp.
837-846, 2003.

[85] T. Sziranyi and M. Csapodi, “Texture classification and segmentation by cellular neural
networks using genetic algorithms,” Comp. Vis. Image Understand., vol. 71, pp. 255-270,
Sep. 1998.

[86] G. F. Betta, S. Graffi, Z. M. Kovacs, and G. Masetti, “CMOS implementation of an
analogically programmable cellular neural network,” IEEE Trans. Circuits Syst., Pt. II, vol.
40, pp. 206-215, Mar. 1993.

[87] P. Kinget and M. Steyaert, “A programmable analog cellular neural network CMOS chip
for high speed image processing,” IEEE J. Solid-State Circuits, vol. 30, pp. 235-243, Mar.
1995.

[88] M. Anguita, F. J. Pelayo, A. Prieto, and J. Ortega, “Analog CMOS implementation of a
discrete time CNN with programmable cloning templates,” IEEE Trans. Circuits Syst., Pt.
II, vol. 40, pp.215-218, Mar. 1993.

 109

[89] A. Rodriguez-Vazquez, R. Dominguez-Castro, and S. Espejo, “Design of CNN universal
chips: Trends and obstacles,” in Proc. CNNA’94, 1994, pp. 59-60.

[90] J. M. Cruz and L. O. Chua, “A fast, complex and efficient test implementation of the CNN
universal machine,” in Proc. IEEE CNNA’94, 1994, pp. 61-66.

[91] B. E. Shi, T. Roska, and L. O. Chua, “Design of linear cellular neural networks for motion
sensitive filtering,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 40, pp. 320-331, May, 1993.

[92] B. E. Shi and L. O. Chua, “Resistive grid image filtering: input/output analysis via the CNN
framework,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 39, pp. 531-548, Jul. 1992.

[93] B. E. Shi, “A one-dimensional CMOS focal plane array for Gabor-type image filtering,”
IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.
46, pp. 323-327, Feb. 1999.

[94] J. Kowalski, “0.8 /spl mu/m CMOS implementation of weighted-order statistic image filter
based on cellular neural network architecture,” IEEE Transactions on Neural Networks,
vol. 14, pp. 1366-1374, Sept. 2003.

[95] B. E. Shi, “Gabor-type filtering in space and time with cellular neural networks,” IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 45, pp.
121-132, Feb. 1998.

[96] K. Slot, J. Kowalski, A. Napieralski, and T. Kacprzak, “Analogue median/average image
filter based on cellular neural network paradigm,” Electronics Letters, vol. 35, pp.
1619-1620, Sept. 1999.

[97] L. Wang; J. P. De Gyvez, and E. Sanchez-Sinencio, “Time multiplexed color image
processing based on a CNN with cell-state outputs,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 6, pp. 314-322, Jun. 1998.

[98] C. C. Lee and J. P. de Gyvez, “Color image processing in a cellular neural-network
environment,” IEEE Transactions on Neural Networks, vol. 7, pp. 1086-1098, Sept. 1996.

[99] K. R. Crounse, T. Roska, and L. O. Chua, “Image halftoning with cellular neural
networks,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, vol. 40, pp. 267-283, Apr. 1993.

[100] P. R. Bakic, N. S. Vujovic, D. P. Brzakovic, P. D. Kostic, and B. D. Reljin, “CNN paradigm
based multilevel halftoning of digital images,” IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing, vol. 44, pp. 50-53, Jan. 1997.

 110

[101] P. L. Venetianer, F. Werblin, T. Roska, and L. O. Chua, “Analogic CNN algorithms for
some image compression and restoration tasks,” IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, vol. 42, pp. 278-284, May 1995.

[102] P. L. Venetianter and T. Roska, “Image compression by cellular neural networks,” IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 45, pp.
205-215, Mar. 1998.

[103] T. Kwok and K. A. Smith, “A unified framework for chaotic neural-network approaches to
combinatorial optimization,” IEEE Transactions on Neural Networks, vol. 10, pp. 978-981,
Jul. 1999.

[104] R. Fantacci, M. Forti, M. Marini, and L. Pancani, “Cellular neural network approach to a
class of communication problems,” IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, vol. 46, pp. 1457-1467, Dec. 1999.

[105] A. Zanela and S. Taraglio, “cellular neural network stereo vision system for autonomous
robot navigation,” in Proceedings of the 2000 6th IEEE International Workshop on
Cellular Neural Networks and Their Applications, 2000, (CNNA 2000), May 2000, pp.
117-122.

[106] A. Loncar, R. Kunz, and R. Tetzlaff, “SCNN 2000. I. Basic structure and features of the
simulation system for cellular neural networks,” in Proceedings of the 2000 6th IEEE

International Workshop on Cellular Neural Networks and Their Applications, 2000,
(CNNA 2000), May 2000, pp. 123-128.

[107] M. Takahashi, T. Narukawa, and K. Yoshida, “Intelligent transfer and stabilization control
to unstable equilibrium point of double inverted pendulum,” SICE 2003 Annual
Conference, vol. 2, Aug. 2003, pp. 1451-1456.

[108] P. Arena and L. Fortuna, “Analog cellular locomotion control of hexapod robots,” IEEE
Control Systems Magazine, vol. 22, pp. 21-36, Dec. 2002.

[109] L. F. C. Jeanmeure and W. B. J. Zimmerman, “A CNN video based control system for a
coal froth flotation,” in Proceedings of 1998 Fifth IEEE International Workshop on
Cellular Neural Networks and Their Applications, pp. 192-197, Apr. 1998.

[110] T. Yang and L. B. Yang, “Application of fuzzy cellular neural networks to Euclidean
distance transformation,” IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, vol. 44, pp. 242-246, Mar. 1997.

 111

[111] C. T. Lin, C. L. Chang, and W. C. Cheng, “A recurrent fuzzy cellular neural network
system with automatic structure and template learning,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 51, pp. 1024-1035, May 2004.

[112] C. L. Chang, K. W. Fan, I. F. Chung, and C. T. Lin, “A Recurrent Fuzzy Coupled Cellular
Neural Network System With Automatic Structure and Template Learning,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 53, pp. 602-606, Aug. 2006.

[113] A. Faro, D. Giordano, and C. Spampinato, “Evaluation of the Traffic Parameters in a
Metropolitan Area by Fusing Visual Perceptions and CNN Processing of Webcam
Images,” IEEE Transactions on Neural Networks, vol. 19, pp. 1108-1129, Jun. 2008.

[114] T. Yang, L. B. Yang, C. W. Wu, and L. O. Chua, “Fuzzy cellular neural networks:
applications,” in Proceedings of 1996 Fourth IEEE International Workshop on Cellular
Neural Networks and their Applications, 1996. CNNA-96, Jun. 1996, pp. 225-230.

[115] L. O.Chua and T. Roska, “The CNN universal machine. I. The architecture,” in

Proceedings of Second International Workshop on Cellular Neural Networks and their
Applications, 1992. CNNA-92, Oct. 1992, pp. 1-10.

[116] T. Roska, J. Hamori, E. Labos, K. Lotz, L. Orzo, J. Takacs, P. L. Venetianer, Z.
Vidnyanszky, A. Zarandy, “The use of CNN models in the subcortical visual pathway,”
IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.
40, pp. 182-195, Mar. 1993.

[117] M. H. ter Brugge, J. H. Stevens, J. A. G. Nijhuis, and L. Spaanenburg, “Efficient DTCNN
implementations for large-neighborhood functions,” in Proceedings of 1998 Fifth IEEE
International Workshop on Cellular Neural Networks and Their Applications, Apr. 1998,
pp. 88-93.

[118] K. Slot, “Large-neighborhood templates implementation in discrete-time CNN Universal
Machine with a nearest-neighbor connection pattern,” in Proceedings of the Third IEEE

International Workshop on Cellular Neural Networks and their Applications, 1994.
CNNA-94., Dec. 1994, pp. 213-218.

[119] C. Y. Wu and W. C. Yen, "A new compact neuron-bipolar junction transistor (νBJT),
cellular neural network (CNN) structure with programmable large neighborhood
symmetric templates for image processing," IEEE Transaction on Circuits and Systems I:
Fundamental Theory and Applications, vol. 48, No. 1, pp. 12-27, Jan. 2001.

[120] C. Y. Wu and C. Y. Wu, “An analysis and the fabrication technology of the lambda bipolar
transistor,” IEEE Transactions on Electron Devices, vol. 27, pp. 414-419, Feb. 1980.

 112

[121] C. W. Hsiao, A New CMOS Large-Neighborhood Cellular-Neural-Network(CNN) Cell
Structure for Large-Neighborhood CNN Universal Machine (CNNUM), NCTU, Hsin-Chu,
2001.

[122] C. Y. Wu, C. Y. Hsieh, S. H. Chen, C. Y. Hsieh, and C. R. Chen, “Non-saturated binary
image learning and recognition using the ratio-memory cellular neural network
(RMCNN),” in Proceedings of the 2002 7th IEEE International Workshop on Cellular
Neural Networks and Their Applications, 2002. (CNNA 2002), Jul. 2002, pp. 624-629.

[123] J. L. Lai and C. Y. Wu, “Architectural Design and Analysis of Learnable Self-Feedback
Ratio-Memory Cellular Nonlinear Network (SRMCNN) for Nanoelectronic Systems,”
IEEE Transactions on Vary Large Scale Integration (VLSI) Systems, vol. 12, pp.
1182-1191, Nov. 2004.

[124] C. Y. Wu and S. Y. Tsai, “Autonomous Ratio-Memory Cellular Nonlinear Network
(ARMCNN) for Pattern Learning and Recognition,” in Proceeding of the 10th IEEE
International Workshop on Cellular Neural Network and Their Applications, CNNA 2006,
pp. 137-141, Aug. 2006.

[125] C. Y. Wu and Y. Wu, "The Design of CMOS Non-Self-Feedback Ratio Memory Cellular
Nonlinear Network without Elapsed Operation for Pattern Learning and Recognition" in
Proceeding of the 2005 IEEE Cellular Neural Networks and their Application, CNNA
2005, Hsin-chu, Taiwan, May 28-30 , 2005, pp. 282-285.

[126] R. Dominguez-Castro, S. Espejo, A. Rodriguez-Vazquez, R. A. Carmona, P. Foldesy, A.
Zarandy, P. Szolgay, T. Sziranyi, and T. Roska, “A 0.8-μm CMOS two-dimensional
programmable mixed-signal focal-plane array processor with on-chip binary imaging and
instructions storage,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 1013-1026, Jul.
1997.

[127] D. Farmer, T. Toffoli, and S. Wolfrman, “Cellular Automata,” in Proc. Interdisciplinary
Workshop. New York: North-Holland Physics Pub. 1984

[128] T. Toffoli, Cellular Automata Machines: A New Environment for Modeling. Cambridge:
MIT Press, Series in Scientific Computation, 1987.

[129] T. Roska, “Analogic algorithms running on the CNN universal machine,” in Proc. Of the
3rd IEEE Int. Workshop on Cellular Neural Networks Appl. (CNNA-94), Rome, Italy, Dec.
1994, pp. 3–8.

 113

[130] S. Espejo, R. Carmona, R. Domínguez-Castro, and A. Rodríguez-Vázquez, “A CNN
universal chip in CMOS technology,” International Journal of Circuit Theory and
Applications, vol. 24, pp.93-109, Mar. 1996.

[131] A. Rodriguez-Vazquez, G. Linan-Cembrano, L. Carranza, E. Roca-Moreno, R.
Carmona-Galan, F. Jimenez-Garrido, R. Dominguez-Castro, and S. E. Meana, “ACE16k:
the third generation of mixed-signal SIMD-CNN ACE chips toward VSoCs,” IEEE Tran.
Circuits Syst., vol. 51, Issue 5, pp. 851 – 863, May 2004.

[132] G. Linan, S. Espejo, R. Dominguez-Castro, E. Roca, and A. Rodriguez-Vazquen,
“CNNUC3: a mixed-signal 64×64 CNN universal chip, “ in Proceedings of Conference on

the Seventh International Microelectronics for Neural, Fuzzy and Bio-Inspired Systems,
1999. (MicroNeuro '99), 7-9 April 1999, pp. 61 – 68.

[133] G. Linan, S. Espejo, R. Dominguez-Castro, and A. Rodriguez-Vazquen, “The CNNUC3:
an analog I/O 64x64 CNN universal machine chip prototype with 7-bit analog accuracy, “in
Proc. Of the 6rd IEEE Int. Workshop on Cellular Neural Networks Appl. (CNNA 2000),
23-25 May 2000, pp. 201 – 206.

[134] C. Y. Wu and W. C. Yen, “The neuron-bipolar junction transistor (v-BJT)-a new device
structure for VLSI neural network implementation,” IEEE International Conference on
Electronics, Circuits and Systems, vol.3, Sep. 1998, pp.277-270.

[135] W. C. Yen and C. Y. Wu, “The design of neuron-bipolar junction transistor (νBJT) cellular
neural network (CNN) structure with large neighborhood templates,” in Proc. Of the 6th
IEEE Int. Workshop on Cellular Networks and Their Applications, Catania, Italy, May
2000, pp. 195-200.

[136] G. Timar and C. Rekeczky, “A real-time multitarget tracking system with robust
multichannel CNN-UM algorithms”, IEEE Tran. Circuits Syst., vol. 52, issue 7, pp.
1358-1371, July 2005.

[137] Chin-Teng Lin, Chao-Hui Huang, Shi-An Chen, “CNN-Based Hybrid-Order Texture
Segregation as Early Vision Processing and Its Implementation on CNN-UM”, IEEE Tran.
Circuits Syst., vol. 54, issue 10, pp. 2277-2287, Oct. 2007.

[138] N. A. Fernandez, D. L. Valarino, V. M. Brea, and D. Cabello, “On the emulation of
large-neighborhood templates with binary CNN-based architectures,” 9th International
Workshop on Cellular Neural Networks and Their Applications 2005, 28-30 May 2005, pp.
274 – 277.

 114

[139] C.H. Cheng, S.H. Chen, L.J. Lin, K.H. Huang, and C.Y. Wu, "A new structure of
large-neighborhood cellular nonlinear network (LNCNN)," in Proc. Of IEEE Int. Joint
Conference on Neural Networks, 2003, pp. 1497-1501.

[140] S.H. Chen and C.Y. Wu, "A low power design on diffusive interconnection
large-neighborhood cellular nonlinear network for giga-scale system application," in Proc.
of the 11th IEEE Int. Conference on Electronics, Circuits and Systems, Dec. 2004,
pp.179-182.

[141] VisMouse-CNN Visual Mouse Platform for Windows, Reference Manual, Analogical and
Neural Computing Laboratory, Computer and Automation Institute (MTA SzTAKI) of the
Hungarian Academy of Sciences, Budapest, Hungary, 1998.

[142] K. Nakamura, K. Arimura, and T. Yoshikawa, “Recognition of object orientation and shape
by a rotation spreading associative neural network”, in Proceedings of IJCNN '01.
International Joint Conference on Neural Networks, 2001, vol. 1, 15-19 July 2001, pp.
565-570.

[143] M. Namba and Z. Zhang, “Cellular Neural Network for Associative Memory and Its
Application to Braille Image Recognition”, International Joint Conference on Neural
Networks, 2006. IJCNN '06, 16-21 July 2006, pp. 2409-2414.

[144] S. Grossberg, “Nonlinear difference-differential equations in prediction and learning
theory,” in Proc. Natl. Acad. Sci. USA, vol. 58, pp. 1329-1334, 1967.

[145] J. A. Feldman and D. H. Ballard, “Connectionist models and their properties,” Cognitive
Science, vol. 6, pp. 205-254, 1982.

 115

Publication List

(A) JOURNAL PAPERS

[1] Chung-Yu Wu and Sheng-Hao Chen, “The Design and Analysis of a CMOS

Low-Power, Large-Neighborhood CNN with Propagating Connections,” IEEE

Transactions on Circuits and Systems I, vol. 56, issue 2, pp. 440-452, Feb. 2009.

[2] Chung-Yu Wu, Sheng-Hao Chen, and Yu Wu, “The Design and Analysis of a CMOS

Ratio-Memory Cellular Nonlinear Network (RMCNN) without Elapsed Time,”

submitted to IEEE Transactions on Circuits and Systems I.

(B)CONFERENCE PAPERS

[1] Sheng-Hao Chen and Chung-Yu Wu, “A low power design on diffusive

interconnection large-neighborhood cellular nonlinear network for giga-scale system

application,” in Proceedings of the 2004 11th IEEE International Conference on

Electronics, Circuits and Systems, 2004. ICECS 2004, Dec. 2004, pp. 179-182.

[2] Chiu-Hung Cheng, Sheng-Hao Chen, Li-Ju Lin, Kuan-Hsun Huang, and Chung-Yu

Wu, “A new structure of large-neighborhood cellular nonlinear network

(LN-CNN),” in Proceedings of the International Joint Conference on Neural

Networks, 2003., Jul. 2003, pp. 1497-1501.

[3] Chung-Yu Wu, Chieh-Yu Hsieh, Sheng-Hao Chen, Brian Che-Yuan Hsieh, and

Cheng-Ruei Chen, “Non-saturated binary image learning and recognition using the

ratio-memory cellular neural network (RMCNN),” in Proceedings of the 2002 7th

IEEE International Workshop on Cellular Neural Networks and Their Applications,

2002. (CNNA 2002), Jul. 2002, pp. 624-629.

 116

簡 歷

姓 名 ︰陳勝豪

性 別 ︰男

出生年月日 ︰民 國69年07月28日

出 生 地 ︰台灣省彰化縣

地 址 ︰彰化縣和美鎮竹營里孝昌路19巷15號

學 歷 ︰ 國 立 交 通 大 學 電 子 工 程 學 系

 (87年9月 – 91年1月)

 國 立 交 通 大 學 電 子 研 究 所 碩 士 班

 (91年2月 – 92年7月)

 國 立 交 通 大 學 電 子 研 究 所 博 士 班

 (92年9月 – 98年7月)

