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THE DESIGN AND ANALYSIS OF LARGE-
NEIGHBORHOOD CELLULAR
NONLINEAR NETWORK AND RATIO-
MEMORY CELLULAR NON-LINEAR NETWORK

Student: Sheng-Hao Chen  Advisor: Dr. Chung-Yu Wu

Institute of Electronics Engineering
National Chiao-Tung University

Abstract

This dissertation focuses on the studies and applications of the cellular
neural/nonlinear networks (CNN). CNN is an analog CPU array which can imitate the
operations of neural connections which is suitable for image processing. Although the
speed of the recent digital CPUs can reach higher than several GHz, when the digital CPU
is applied on the image processing, it takes a lot of time to achieve the processing
separately. Hence, the advantage of parallel processing of CNN array is required to
achieve high speed processing. According to the properties of CNN, two major topics are

realized by using analog circuit design.

L. The design and analysis of a CMOS low-power, large-neighborhood CNN with
propagating connections

II.  The design and analysis of a ratio memory CNN

Recently, cellular nonlinear network universal machine (CNNUM) can only
achieve the 3 x 3 templates of nearest connecting correlations. The main concept of
large-neighborhood cellular nonlinear network (LNCNN) is to extend the connecting

correlations and to increase the capability of CNN. Moreover, some studies have
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decomposed the LNCNN templates into several 3 x 3 templates to realize the same
functions. However, this may take more cost to achieve one LNCNN function. Hence, it
is necessary to design a LNCNN for the templates larger than 3 x 3.

Because LNCNN is a very large scale array, the power consumption and chip area
are considered first. With the propagating connections, the functions of LNCNN are
realized by the designed 20 x 20 LNCNN array and the chip size is 1543 pm x 1248 pm.
The power consumption is 0.7 mW on standby and 18 mW in operation with a system
clock frequency of 20 MHz.

The purpose of the learnable ratio memory cellular nonlinear networks is to learn the
every kind of patterns and recover the learned noisy patterns. The concept is to store the
correlations of two neighboring cells on the capacitor in the ratio memories and use the
intrinsic leakage to enhance the common characteristics. Moreover, the templates are
normalized by the correlation with neighboring cells to increase the recognition rate and
thus, it is called ratio memory. However, due to the difference of any two cells, if the
same elapsed time for leakage is applied to enhance the characteristics, it may cause only
the self-feedback term to remain or the enhancement of common characteristics to be
smaller. Hence, the templates are decided by the correlation and the mean of the four
correlations around one cell. This can make the design much easier and the divider can be
abandoned. Besides, by the deviation of the statistics and probability, there exists a dc
term except for the templates. It is found that the threshold template is required and
learned by recursive learning to gather the information of the noisy patterns to increase
the recognition rate.

The main contribution of this dissertation is that the complete architecture of
large-neighborhood CNN has been established and realized by a simple circuit design.
Hence, a small-size, low-power LNCNN chip has been fabricated and measured.
According to the experimental result, the LNCNN chip can be applied on the binary
image processing. Moreover, the statistic and probability models of the learnable ratio
memory CNN has also been derived and, according to the results, the learning of the

threshold templates are used to increase the recognition rate. Furthermore, the learnable
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ratio memory CNN without elapsed time has also been proposed to simplify the

complexity of the circuits for realization.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF ARTIFICIAL NONLINEAR

NETWORKS

Brain, one of the world’s best computers, makes human devoted to investigating it to
expose the source of powerful functions. With the analog neuron models, the artificial neural
networks (ANNSs) proposed by Hopfield [1]-[5] and Chua et al. [6]-[8] have firstly been
implemented in circuitry [10]. Since then, ANNs have attracted strong interest of researchers
to explore their scientific and engineering applications. The models of ANNs [9], [5], [11]
which are based on the understanding of biological nervous systems, attempt to achieve good
performance by the dense interconnection of simple computational elements. Computational
elements or nodes are connected via weights that are typically adapted during the operation
such as Hopfield net [1]-[10], [11], Hamming net [11]-[15], et al. The simplest node sums N
weighted inputs and passes the result through the nonlinear function f(e) as shown in Fig. 1.1

[11], [16]. In Fig. 1.1, the output y can be illustrated as
N-1

y= f[ZWixi —6’}
i=0

(1.1).



Fig. 1.1 The simplest computational element or node which forms a weighted sum of N inputs

and passes the result through the nonlinearity.

£, £00)
A A
+1
» X 5 » X
-1
(a) (b)
f(x)
A

A

(c)
Fig. 1.2 The three common types of nonlinearity of (a) hard limiters, (b) threshold logic

elements, and (c) sigmoidal nonlinearities.



where ¥X; is the it input, W; is the it weight factor, and € is the internal threshold. The node is
characterized by an internal threshold or offset € and by the type of the nonlinearities. Fig.
1.2(a)-(c) illustrate three common types of nonlinearity: hard limiters (threshold functions),
piecewise linear functions, and sigmoidal nonlinearities. The common characteristic of these
three nonlinearities is that the output y is saturated at both ends. More complex nodes may
include temporal integration or other types of time dependencies and more complex
mathematical operations than summation.

For comparison, silicon devices have an intrinsic speed about 100,000 times faster than
that of natural neurobiological devices. However, in solving problems like face recognition,
the neurobiological system is more effective by a factor of 10%[17]. In the biological model of
a neuron cell as shown in Fig. 1.3, the neuron contains cell body (nucleus) and the synapses,
which are the 1/0 terminals of the neuron and can be classified as dendrites and axon terminals
by their essential functions, are illustrated. Dendrites can receive excitation or inhibition
signals from other neurons or external environment. Axon terminals can pass the excitation or
inhibition signals to next neurons. Through different functions, different intensities of the
excitation or inhibition signals can be transferred to next neurons. The second neuron next to
the first one receives the signals from the axon terminals of the first neuron and other neurons,
makes a decision by the sigmoidal nonlinearity, and sends another excitation or inhibition
signals to next neurons through axon terminals. By using the similar this architecture that a
brain-style computational device is richly connected to one another, an artificial neural or
nonlinear network is constructed. The function it computes is determined by the pattern of
connections. Based on the models of ANNs, many new topologies and algorithms are

developed.
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TRANSMITTER
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Fig. 1.3 The biological model of a neuron cell which contains the cell body (nucleus) and the

1/O terminals of dendrites and axon terminals.

Work on the models of ANNSs has a long history. Development of detailed mathematical
models has begun about 60 years ago in the work of McCullock and Pitts [18], Hebb [19],
Rosenblatt [20], Widrow [21], et al. In 1980s, the work by Hopfield [1]-[10], Rumelhart and
McClelland [22], Sejnowski [23], Feldman [9], Grossberg [24]-[25], et al. has led to a new
resurgence of the field. There seems to be five reasons for the rebirth. First, the faster and

faster computer makes it possible to simulate and experiment with much larger and more
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interesting networks than that in 1950s and 1960s. Second, it is believed that the faster
computers must be in parallel computation. However, it is generally easier to build parallel
computers than to find algorithms that are efficient. Third, the empirical tools of neuroscience
are expanding and more and more knowledge about how the neuron functions is learned.
Besides, it is hoped that the theoretical tools developed in the study of neural network
computational systems will allow for the modeling of the real neural networks. Fourth,
theoretically, Hopfield provides the mathematical foundation for understanding the dynamics
of the recurrent networks. The mathematical model has been extended and applied by Hinton
and Seinowski [26], Cohen and Grossberg [27], Smolensky [28] and a number of scientists to
provide more mathematical models and solve important problems such as optimization. Fifth,
with the extension of Rosenblatt, Widrow, and Hoff’s work dealing with learning in a
complex, multi-layer network [20]-[21], this provided a technique, known as the
back-propagation learning algorithm [29], 1s developed that multilayer perceptron-like
devices can be reliably trained.

The interest in ANNs comes from the networks’ ability to mimic human brain as well as its
ability to learn and respond. Adaptation or learning is a major focus of ANN research that
provides a degree of robustness to the ANN model. An adaptive linear element is a single
neuron of McCulloch-Pitts type, where its weights are determined by the normalized least
mean square (LMS) training law. The LMS learning algorithm was originally proposed by
Widrow and Hoff [21]. This learning rule is also referred to as the delta rule. It is a
well-established supervised training method that has been used over a wide range of diverse
applications [30]-[33]. The simplest architecture of an adaptive linear element is shown in Fig.
1.4. In the simplest adaptive linear element, the neuron with a linear activation function is used.

The weights are adjusted by the LMS error of comparing the output with the desired output.



y -

\
Error f
)y

A

Desired
Output

Fig. 1.4 The simplest architecture of an adaptive linear element where its weights are
determined by the normalized least mean square training law by a preset desired

output.

Once the weights are properly adjusted, the response of the trained unit can be tested by
applying various inputs which are not in the training set. If the network produces consistent
responses to a high degree with the test inputs, it is said that the network can generalize.
Therefore, the process of training and generalization are two important attributes of the
network. Similar to the adaptive linear element, the original idea of the perceptron has been
develop by Rosenblatt in the late 1950s along with a convergence procedure to adjust the
weights [20]. The original perceptron convergence procedure is developed by Minsky and
Papert [34] as shown in Fig. 1.5. The perceptron [20] by Rosenblatt is based on the
McCulloch-Pitts model of the neuron with the hard limitation activation function where the
inputs are binary and no bias is included. The perceptron of Minsky and Papert is similar to
that by by Rosenblatt except for the addition of an activation function and the non-zero value

of the threshold wy [34].
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Fig. 1.5 A perceptron with a sigmoidal activation function. The threshold value wy are

initialized to small non-zero values.

The perceptron convergence procedure and its variants are limited to simple one-layer
networks involving only input and output units. It maps similar input patterns to similar output
patterns. The similarity of patterns in the system is determined by their overlap which is
decided outside the learning system by whatever produces the patterns. Therefore, the
constraint of the system leads to an inability to learn certain mappings from input to output. In
a multilayer network, the information coming to the input units is re-coded into an internal
representation and the outputs are generated by the internal representation rather than by the
original pattern. Multi-layer perceptrons are feed-forward nets with one or more layers of
nodes between the input and output nodes called hidden layer. A simple two layer perceptron
with one layer of hidden units is shown in Fig. 1.6. Each node is a perceptron with hard

limiting nonlinearity. The hidden layer can be increased as the tasks are more complex. A
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Fig. 1.6 A simple three-layer network which contains input, hidden, and output layers.

single-layer perceptron can form half-plane decision regions whereas a two-layer perceptron
can form any, possibly unbounded, convex region in the space spanned by the inputs.
Moreover, a three-layer perceptron can form arbitrarily complex decision regions and can
separate the meshed classes. Hence, no more than three layers are required in perceptron-like
feed-forward nets. Similar behavior is exhibited by multi-layer perceptrons with multiple
output nodes when sigmoidal nonlinearities are used and the decision rule is to select the class
corresponding to the output node with largest output. The behavior of these nets is more
complex because decision regions are typically bounded by smooth curves instead of by
straight line segments and analysis is thus more difficult. As a result, these nets can be trained
with the new back-propagation training algorithm [29]. The back-propagation algorithm uses
a gradient search technique to minimize a cost function equal to the mean square difference

between the desired and the actual net outputs. The network is trained by initially selecting



small random weights and internal thresholds and then presenting all training data repeatedly.
Weights are adjusted after every trial using side information specifying the correct class until
weights converge and the cost function is reduced to an acceptable value.

One important organizing principle of sensory pathways in the brain is that the placement
of neurons is orderly and often reflects some physical characteristics of the external stimulus
being sensed [35]. Kohonen presents the algorithm which produces the self-organizing feature
maps similar to those that occur in the brain [36] as shown in Fig. 1.7. Output nodes are
extensively interconnected with many local connections. The algorithm that form feature
maps requires a neighborhood to be defined around each node and the neighborhood slowly
decreases in size with time. With the algorithm, a speech recognizer as a vector quantizer is

proposed [37].

Input units

Fig. 1.7 Two-dimensional array of Kohonen’s self-organizing feature maps.



Similar to Kohonen’s two dimension array of self-organizing feature maps, the cellular
neural/nonlinear network (CNN) has first been presented as a preferred implementation of
locally connected neural networks [6]-[ 7]. Unlike the former learning models, CNN involves a
large-scale nonlinear analogic architecture for real time processing. In 1993, a further
architecture of CNN universal machine is presented [38]-[39] and many researches are
verified by the cellular nonlinear network universal machine (CNNUM) [38]-[46]. CNN
consist of arrays of elementary processing units (cells) and each one is connected to a set of
adjacent cells. This local connection property makes CNN physical design easy, especially for
the translational invariant CNNs. Chua and Yang’s CNN cell circuit model [6]-[7], [40],
where the neuron is model by a resistor R shunt with a capacitor C, is shown in Fig. 1.8 and
can be presented by the equation

VX.. VX..
C Vi _ _ X”(t)+ I, + > [Ga,Vy,(t)+Gb,Vu,]
dt R kleS;

(1.2)

»

Z Ga,\Vy, G, Vu,,

= kles,
kl#ij k/#l/ 1
+ +
C +
Vul.j — Vi, =R Vy,
g GoVu, | - Ga,Vy, 1 7
® _T_ f (xlj) -

Fig. 1.8 The RC circuit model of a CNN cell.
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where VXijj is the state voltage, Vyjj is the output voltage, and 1z is the threshold current of
neuron cell (i, j). Gay and Gby are the transconductance set that can multiply the state voltage

and the output voltage, and are called templates A and B, respectively. As a result, all the
currents are summed and introduce a voltage drop, state voltage, on the neuron of a resistor R
and a capacitor C. With the core architecture as shown in Fig. 1.9 [38]- [40] demonstrating such
a large-scale array of CNN and the further architecture with logic operational units and
memories of CNNUM, many algorithms and applications have been investigated and proposed

[38]-[46].
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Fig. 1.9 The core architecture of CNN with templates A and B.

1.2 RESEARCHES ON CNNS AND THEIR APPLICATIONS

The cellular nonlinear/neural network (CNN) which was proposed by Chua and Yang in
1988 [6]-[7], [40] involves a large-scale nonlinear analogic architecture for real-time signal
processing. Similar to the composition of the cellular automata, it is comprised of a massive

aggregation of regularly spaced circuit clones, called cells, which communicate with each
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other directly and locally. In a basic CNN, each cell is connected to its nearest layer of
neighboring cells. Such a CNN, called a 3x 3 neighborhood CNN, is the most popular CNN
structure. Their local connectivity makes CNNs easy to be implemented in a VLSI design and
there is great tolerance to errors depends on templates. Some research results and their
applications are listed as following.
A. Autowaves, Chaotic, and oscillatory elements

The studies of dynamic phenomena in arrays composed of autowaves, chaotic, and
oscillatory elements are very important for understanding natural phenomena in biology,
chemistry, physics, etc [47]-[51]. Pattern formation and various types of autowaves, such as
excitability waves, concentration waves, and so on, are discussed [47]-[48], [52]-[58]. CNNs
are usually used as the approximations of the various types of nonlinear partial differential
equations [52]-[55]. Chaos engineering has also been steadily studied in Japan and many
applications are developed such as controlling power for the thawing function of microwave
ovens [56]. Moreover, it can be applied to associative memory networks that have been
intensively studied in the field of artificial neurocomputing [59]-[61] and some applied the
chaotic structure in solving combinatorial optimization.

B. Recognition

Neural networks have been used in a number of applications due to their ability to learn
and generalize. One application of the learning ability is to recognize different patterns such as
characters and sounds [41]-[42], [43], [62]-[70]. Dual cellular neural network architecture can
extract the global features of the handwriting and makes the decision [62]-[63]. Character
template learning operates with separated characters on a basis of the character patterns or
applies segmentation and recognition of text line image simultaneously via dynamic

programming [64]. Ratio-memory CNN (RMCNN) can learn correlations between cells and
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the features of images are stored in the ratio memories [65]-[67]. As a result, it can recognize
the noisy images with templates generated by ratio-memories. For the human immune systems,
sounds also can be recognized and detected [41]-[42]. The basic idea is to make a system
search video images for objects that are not supposed to be there and trigger an alarm message
when it occurs [43], [68]-[70].
C. Classification and Segmentation

Classification and segment are also the mainly functions of neural networks and
sometimes go along with recognition or detection [71]-[72]. Classification and segment can be
applied on the blind source separation [73], motion estimation for MPEG-4 encoder [74]-[78],
bubble-debris classification [71]-[72], DNA microarrays analysis [79]-[81], image
descreening [82]-[83], object-oriented segmentation [38]-[45], [84] etc. Genetic algorithm is
attempted to minimize the objective function or the cost function and use the independent
properties of initial conditions and the domain of applications combined with the implicit
parallelism [82]-[83]. For the algorithm, three kinds of different CNN templates (average,
inverse and time-interpolated templates) can be trained by GA [85], while ICA mixture
models are conditional independence model and unsupervised classification [73].

D. Image Processing

CNN has shown a vast computing power, especially for image processing [6]-[8], [39].
Early CNN implementation were designed to perform one specific function in image
processing such as edge detection, connected component detection, or hole filling. Recently,
the ability to change or program the template values [86]-[90] has made image processing
easily to be studied and verified. Filtering is one of the interested areas for image processing
[91]-[96]. Besides, some studies focus on color image or gray level image processing by using

the state of neuron and multilayer structure [97]-[98] and are applied on medical image
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processing, image restoration, and weather forecasting. Many other tasks can also be resolved
such as halftoning of digital images [99]-[100], image compression [101]-[102],
skeletonization etc.

There still many applications of CNN such as optimization [103]-[104], control systems
[105]-[109] etc. Furthermore, some has applied the fuzzy set theory into CNN architecture
[83], [110]-[113]. Fuzzy cellular nonlinear networks (FCNN) can be used as an interface
between the human expert and the classical CNN [114]. Meanwhile, there are some researches
studying the discrete-time CNN (DTCNN). DTCNN contains two categories: an analog-array
architecture and a digital-pipeline architecture. Both continuous-time CNN (CTCNN) and
DTCNN have powerful ability of parallel image processing. The growth of CNNUM and

DTCNN processor has made the studies on applications of CNN more easily.

1.3  REVIEW OF LNCNNs AND RMCNNs

A. LNCNNs

The cellular neural network proposed by Chua and Yang [6]-[8], [40], involves a
large-scale nonlinear analogic architecture for real-time signal processing. In 1992, a
programmable CNN universal machine (CNNUM) is proposed by Chua and Roska [115].
Many tasks can be resolved by CNNUM [38]-[45] and even now, many applications are
studied with CNNUM. However, in many CNN applications such as image halftoning [99]
and subcortical visual pathway [40], [116], the large-neighborhood templates are required.
Although the large-neighborhood template can be decomposed into 3 x 3 templates
[117]-[118], it needs more efforts and more iterations to deal with a task and, hence, more
energy is consumed. Hence, in 2001, a large neighborhood CNN with a compact

neuron-bipolar junction transistor (vBJT) is proposed by C. Y. Wu and W. C. Yen [119]. A
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device called lambda bipolar transistor [120] is applied to be a neuron called neuron-lambda
BJT (vABIJT), where the bipolar junction transistor is replaced by vBJT. In the Wu and Yen’s
LNCNN, one NMOS device is used to be a synaptic gain controller and makes the whole chip
smaller. Meanwhile, VABJT is also used by C. Y. Wu and C. W. Hsiao [121] to implement a
LNCNN. In both LNCNN:Ss, the structure is similar but the circuit implementation methods are
different and they can realize the templates with r > 1.

In Wu and Yen’s [119] LNCNN, there is only one single path to link cells and transfer the
signals one by one. Although single path can make the connections simple and implemented
easily, it also means that the two synaptic gain blocks for bridging cells attach the input of one
block to the output of the other. The loop gain of these two gain blocks makes complicated the
mapping between the gains of the synaptic blocks and the coefficients of the templates.
Because the degree of freedom is less than the coefficients of the LN templates, the
coefficients of second layer can not be determined arbitrarily under the constraint of
propagating connections. Hence, it cannot realize the LN templates arbitrarily due to the
architecture. However, in Wu and Hsiao’s LNCNN [121], the path is separated into
bi-direction but templates A and B in LNCNN s are separated and designed in the circuit. This
takes a large area to realize them separately. Moreover, because BJTs are used to generate LN
templates, the gain of the used BJTs is hard to be predicted and it still causes the coefficients
of a template to be asymmetric. Furthermore, in both design, vABJT are used to realize the
neuron with a self-feedback, but the self-feedback term is not a fixed value and cannot be
adapted arbitrarily.

B. RMCNNSs
The previous researches on the learning neural networks with associative memory have

been studied since 1995 [65]-[66] and still keep on going [67], [122]-[125]. The learning
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algorithm is based on Grossberg mathematical model called the outstar to realize the ratio of
the learned weights. The outstar as a classical conditioning learner can learn the related things
and be refreshed by reminding and memorize the relative strengths of the input pattern but not
the absolute values. The associative memory is also called ratio memory which is first
proposed by J. F. Lan and C. Y. Wu in 1995 [66] and implemented with an analog neural net
with on-chip learning.

In 2000, the ratio memory has been applied on cellular neural network called RMCNN
which is proposed by C. Y. Wu and C. H. Cheng. The ratio memory is incorporated with the
modified Hebbian learning and the ratio memory generates the absolute weights and
transforms them into template A to perform the image recognition. The ratio memory stores
the correlations of neighboring cells and the information of the correlations is enhanced on a
capacitor with a small leakage current. Hence, due to such a small leakage, a long storage time
can be achieved. By utilizing the leakage of the capacitor, an elapsed time is also applied to
extract or enhance the features with large correlations to recognize the noisy patterns.
Although the small leakage during an elapsed time can enhance the feature, the uncertain
leakage currents in cells may make the enhancement different from that with the ideal leakage
current. Moreover, a long elapsed time may destroy the correlation on capacitors.

An RMCNN chip where the learning circuitry is integrated on-chip makes the learning
task operate alone without other external aids. Moreover, the learning algorithm would
generate numerous space-variant templates. If the learning process were performed off-line, it
must take a long loading time for each cell. In 2002, the modified Hebbian learning algorithm
in RMCNN is re-modified. A self-feedback term is introduced to make the output of each cell

be stable at a saturated point and the RMCNN with a self-feedback term is called
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self-feedback RMCNN (SRMCNN). The feature enhancement effect of the ratio memory

remains during the operation of SRMCNN.

1.4 RESEARCH MOTIVATION AND ORGANIZATION OF

THIS DISSERTATION

It is believed that the large-neighborhood templates have more powerful functions and
higher efficiency even in discrete time CNN (DTCNN) [117]. Although the
large-neighborhood template can be decomposed into 3 x 3 templates, it takes more energy
and time and most of decomposition methods are implemented in DTCNN but not in CTCNN.
However, the connections of LNCNN are very complicated. Hence, several researches on
LNCNN have been developed. In [119], a single path along one row or one column is
constructed for simplification. The bi-directional signals pass through the single path. This
makes it unable to generate arbitrary templates and also makes the mapping between the gain
and the coefficients complicated. In [121], the paths are separated but the gain block is
designed by using BJTs. The bi-directional inputs in the gain block pass through different
numbers of BJTs due to the constraint of BJTs. Hence, it is hard to get a precise gain in the
design. In both design of [119] and [121], vABJT is used to realize the activation function with
a self-feedback but the value of feedback cannot be determined.

Based upon the above description, the aim of this dissertation is to explore a new indirectly
connective LNCNN. In the designed LNCNN, the degree of freedom should be higher than
the coefficients of the LN templates so that the coefficients of second layer can be determined
arbitrarily under the constraint of propagating connections. Furthermore, the proposed

LNCNN chip, where the non-recurrent terms generated by templates B and Z are stored [126],
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is designed to decrease the synaptic path. The bi-directional characteristic of the propagating
connections is kept and is separated into two connectional nodes to prevent the closed loops.
Meanwhile, more synaptic blocks are added for all possible templates with the constraint of
propagating connections. An experimental chip has been designed and fabricated using
0.18-um CMOS technology. The LNCNN chip with the array size of 20 x 20 can realize the
function of the diamond-shaped large-neighborhood templates. The total chip area is 1543 um
x 1248 um and the area of a single cell is 33.58 um x 43.15 um. The power is 0.7 mW on
standby and 18 mW in operation with a 1.8 V supply voltage and a system clock frequency of
20 MHz. With the LNCNN chip, the LN function of human illusion is realized successfully.

With regard to RMCNN [65]-[67], [122]-[125], the correlations are stored by a capacitor
and leaks in an elapsed time by an intrinsic leakage current. The leakage current makes the
smaller correlations disappear and enhances the large correlations. If the elapsed time is too
short, the performance of the enhancement cannot be obvious. However, long elapsed time
would make the correlations become 0 and cause the ratio weights generated by the
correlations to be meaningless. The templates are generated according to the correlations
between cells by using the modified Hebbian learning. However, how the ratio weights take
effect in the recognition period has not discussed. By analyzing the effect, it can be helpful to
the improvement of the recognition rates.

Hence, another aim of this dissertation is to design an RMCNN without elapsed time. In
the design, the method using elapsed time for generating the templates is replaced by that
using the comparator to approximate the result of original method. With this new method, the
ratio memory, which is realized by a divider, can be implemented by the comparator easily.
An RMCNN chip not requiring elapsed time has been designed and fabricated using TSMC

0.35-um 2P4M mixed-signal technology. 3 Patterns are learned and recognized with the
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proposed architecture and the results are analyzed and discussed. The total chip area is 4560
um x 3900 um and the area of a single cell is 400 um x 250 um. The total power consumption
is 87 mW in operation with a supply voltage of 3 V with a system clock frequency of 10 HMz.

Moreover, the mathematical analysis by using Gaussian noise is also discussed in this
dissertation. It is found that the decision of the output does not locate at the optimum point
according to the statistic results. The results indicate the requiring of the threshold. The
proposed recursive learning [145] RMCNN can gather the information of the error probability
and increasing the recognition rates and number of learned patterns. With recursive learning,
the number of the learned patterns by RMCNN requiring no elapsed time is raised from 6 to 8.
Hence, recursive learning indeed can raise the recognition rates.

This dissertation contains five chapters, which include introductions, the design and
analysis of a CMOS large-neighborhood CNN with propagating connections, the design and
analysis of a CMOS ratio-memory CNN without elapsed time, the analysis of the recursive
learning RMCNN.

The rest of this dissertation is organized into 4 chapters. In chapter 2, the analysis and
design of large neighborhood CNN are indicated. In chapter 3, RMCNN requiring no elapsed
time is proposed and designed. In Chapter 4, the correlation between the templates of
RMCNN requiring or requiring no elapsed time and the noise is discussed. Finally the
conclusion is given in chapter 5. More details are illustrated as following.

In Chapter 2, the large-neighborhood CNN has been analyzed and designed. The
propagating connections are used to realize the diamond templates. With the diamond
templates, the Matlab simulations are also made to verify the large-neighborhood functions
and the results are compared with those of 5 x 5 templates. Otherwise, the low power and

simple design can make LNCNN suitable for large-scale array. The LNCNN chip has been
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fabricated with 0.18-um 1P6M technology. The large neighborhood function of human
illusion is measured and it proves that the LNCNN chip can be applied on the binary image
processing.

In Chapter 3, RMCNN requiring no elapsed time is analyzed. In the original operation of
RMCNN, the long elapsed time is required. However, with a long elapsed time, some of the
correlations will be destroyed and the feature enhancement of the ratio weight, hence, cannot
take effect. As a result, RMCNN requiring no elapsed time has been proposed to avoid this
situation and, as well, the multiplier-divider is not required anymore and replaced with a
comparator and a counter. Therefore, the design of the RMCNN requiring no elapsed time
chip can be simpler. By using 0.35-um 2P4M, the RMCNN requiring no elapsed time has
been fabricated and the measurement results are discussed. Moreover, large-neighborhood
RMCNN requiring no elapsed time is also simulated and the modified RMCNN requiring no
elapsed time is proposed.

In Chapter 4, the input of each pixel with a Gaussian noise is discussed when an assumed
RMCNN template is considered. According to the analysis of the output probability density,
the decision of the output is not located at an optimum point. Hence, the recursive learning
RMCNN is proposed to gather the error probability density of the pixel. With the error
probability density, the threshold values are decided to lower the error rate. To verify the
effect of the recursive learning, RMCNNs with or without recursive learning are simulated
and compared in this chapter.

Finally, the conclusion of this dissertation is summarized in Chapter 5. The future work
about the further implementation of CNNs and their applications is also addressed in this

chapter.
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CHAPTER 2

THE DESIGN AND ANALYSIS OF A CMOS
LARGE-NEIGHBORHOOD CNN WITH
PROPAGATING CONNECTIONS

2.1 INTRODUCTIONS

The cellular nonlinear (neural) network (CNN) which was proposed by Chua and Yang in
1988 [6]-[7], [40] involves a large-scale nonlinear analogic architecture for real-time signal
processing. Similar to the composition of the cellular automata [127]-[128], it is composed of
a massive aggregation of regularly spaced circuit clones, called cells, which communicate
with each other directly and locally. In a basic CNN, each cell is connected to its nearest layer
of neighboring cells. Such a CNN, called a 3 x 3 neighborhood CNN, is the most popular CNN
structure. Their local connectivity makes CNNs easy to be implemented in a VLSI design. So
far, many 3 x 3 neighborhood CNN VLSI chips have demonstrated their capabilities in
realizing real-time signal and parallel processing functions [39], [119], [126], [129]-[135].

The CNN universal machine [38], [39] is a programmable CNN, which can perform
several complicated functions. Recently, research on the CNNUM has been conducted and

successfully implemented. Current CNNUMSs are based on the 3 x 3 neighborhood CNN

21



structures [126], [129]-[133] and 3 x 3 neighborhood templates. Some applications [136]-[137]
are verified by using the CNNUM. However, 3 x 3 neighborhood CNNs with the nearest
neighborhood are restricted in their ability to solve complex problems efficiently. Although a
large-neighborhood template can be transformed into several 3 x 3 neighborhood templates
[118], [138], the multiple operating steps with 3 x 3 neighborhood templates require more
time and more power.

It is more efficient to construct a large-neighborhood CNN (LNCNN), which can perform
functions using large-neighborhood templates. In an LNCNN, each cell is connected to more
than one layer of the neighboring cells. Generally, an LNCNN is difficult to be implemented
in a VLSI design through direct wire connections among the 3 x 3 neighborhood CNN cells.
Recently, however, a design for a LNCNN has been proposed and implemented by using a
new device called the neuron BJT (vBJT) [119]-[121]. Based on the vBJT, an LNCNN with
symmetric templates has been designed [119]-[121]. The LNCNN with asymmetric templates
has also been proposed with some limitations in realizing large-neighborhood templates
[119].

In this work, a new improved low-power CMOS compact LNCNN architecture with
propagating synaptic connections [139]-[140] is proposed and analyzed. In the proposed
kernel unit, only one layer of the neighboring cells is connected, but it can realize
large-neighborhood diamond-shaped templates in the first two neighboring layers. Thus,
complicated wire connections to farther cells can be avoided. The propagating synaptic
connections can be used not only in horizontal and vertical directions, but in diagonal
directions. As a result, the circular symmetric templates can be realized. Moreover, the
circuitry can be shared between templates A and B in the proposed architecture. This results in
a simpler architecture and smaller chip area. To realize the proposed architecture, the
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low-power neuron and synapses have been designed using CMOS current-mode circuits
without static current paths. In addition, an experimental chip has been designed and
fabricated using 0.18-pum CMOS technology. The LNCNN chip with the array size of 20 x 20
can realize the function of the diamond-shaped large-neighborhood templates. The LNCNN
functions of diffusion, de-blurring, and Muller-Lyer illusion has been verified successfully.
Meanwhile, the functions of erosion and dilation are expanded with the diamond-shaped LN
templates. The total chip area is 1543 pum x 1248 um and the area of a single cell is 33.58 um
x 43.15 um. The power is 0.7 mW on standby and 18 mW in operation with a 1.8 V supply
voltage and a system clock frequency of 20 MHz. As a result, the proposed kernel unit has a
very simple structure, small dc power dissipation, and small chip area, which can be applied to
the CMOS implementation of an LNCNNUM with a huge kernel array size. Also, with the
hardware of the proposed LNCNN structure, many new the functions or new templates of
LNCNN can be explored.

In Section 2.2, the LNCNN model, the global architecture of the kernel unit of the
LNCNNUM and the components of each regular cell are described. In Section 2.3, the CMOS
circuits of the neuron, synapses, PSW, and analog memory in the proposed LNCNN are
described and HSPICE simulation results are presented to verify the circuit functions. The
overall chip architecture in the design is also illustrated. In Section 2.4, the measurement

results are shown and discussed. Finally, a concluding section is provided.

2.2  ARCHITECTURE AND MODELS

For a standard CNN, the state equation is written as [6]-[7], [40]

Xj ==X +Z; + zAm Yu t z ByUy

Ci eS;; Cues;
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2.1)

where X;j, Yij, and Uj; are the state, output, and input of the neuron cell C;; in a CNN array,
respectively; the coefficient Z;;, called the template Z, is the threshold of the neuron cell Cj;
and, Ay and By are the coefficients, called templates A and B, respectively, which are
multiplied with output yy and input Uy of the cell Cyy, respectively in the sphere of influence
(S;j)) of the neuron cell Cj;. The two sets of products are accumulated over all the cells Cy; in the
sphere of influence (S;) of the neuron cell Cj. Where there are non-zero coefficients for
templates A and B at the neighboring cells Cgiyyj+n, r 1s an integer called neighborhood of

radius. If r is greater than 1, it is called a large-neighborhood CNN.
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Fig. 2.1 The architecture of a LNCNN kernel unit.
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Fig. 2.2 The structure of the BODY in Fig. 2.1.

The architecture of the proposed LNCNN kernel unit is shown in Fig. 2.1 where the region
surrounded by the broken line represents one neural cell C;; defined by the coordinate. In Cj; of
Fig. 2.1, the BODY shown in Fig. 2.2 consists of the neuron, analog memory, synapses, and
control circuits. The PU1, PD1, PL1, PR1, PRU, PRD, PLU, PLD, PU2, PD2, PL2, and PR2 are
all synapses, which can multiply input signals and result in different gains which are controlled
by the synaptic gain controlling signals. As a result, these synapses can be combined to realize
the coefficients of templates A and B, except the center coefficients Ajj and Bj;. Among these
synapses, PU2, PD2, PR2 and PL2 can propagate signals to the cells farther than the
neighboring cells. For example, the signal I+, j) from Cg1) can pass through PL2, be
multiplied by the gain of the PL2, and then reach Ci.;). These connections used to realize
large-neighborhood templates are called the propagating connections. PLU, PLD, PRU, PRD,
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PL1, PDI, PR1, and PU1 are used to connect the neighboring cells directly. These connections
among the nearest neighboring cells are called direct connections. PSW is a current switch and
the gain of PSW is 1. The polarities of the signals sent out of the BODY in upward, downward,
leftward, and rightward directions are determined by the four PSWs. The output current of the
PSW is combined with that sent from the synapse of the propagating connections in the former
cell. Eventually, the resultant output is sent into the synapse of the next cell.

The DCS and CLK in Fig. 2.1 are digital controlling signals and clock signal, respectively,
to control logic circuits and switches in the kernel unit. The Pixel input signal of one cell is
connected to the Pixel output signal of the former cell. For example, the Pixel input of C;; comes
from the Pixel output of Cy.y);. This signal transfers the input pattern to each cell and the output
pattern to the output pads in series. The arrows between the cells are connected to the relative
positions of each cell. For example, the arrow line from the PRU of Cj; is connected to the
BODY of Ci+1)j+1) and similarly, the arrow line from Cgi+1) +1y into the BODY of Cj; comes
from the PLD of C+1) (+1).

In the structure of the BODY shown in Fig. 2.2, the switches S1-S4 are controlled by the
signals of DCS and CLK, and the switch S5 is controlled by a 5-bit decoder. The SRDA
contains one shift register, digital controlling logic, and a 1-bit D/A converter (DAC) inside.
The use of shift register makes chip implementation realizable. It is impracticable to implement
a large capacitor to store the analog signal in each cell during the overall operational period.
Because shift registers can be refreshed by sending a set of data into the chip, there is no
additional signal to reset shift registers. The Pixel input of C;j can be transferred to the next cell
by the SRDA. The SRDA provides the binary input signal uj; or the initial state value X;j(t = 0) of
each cell during the operation. After the operation, the SRDA can store the binary output of yj;

from the neuron and the analog output y;; can be read out by turning on the switch S5.
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In Fig. 2.2, the Neuron is a neuron with a standard piecewise linear ramp function:
1 1
yy = f (Xij ): E‘Xij + 1‘ _E‘Xij - 1‘ :

(2.2)

The input of the BODY comes from the summation of the eight synaptic outputs as drawn in
Fig. 2.1 and the output of the BODY is duplicated eight times and sent to the four PSWs and
four corner synapses PRU, PRD, PLU, and PLD. The PZ generates the coefficient Zj; where the
PS is the synapse that generates the center coefficients Ajj and Bjj of templates A and B,

respectively. The Analog Memory is used to store following equation:

Xmy =Z;+ D Buy.

CueSy

(2.3)
Before the Neuron, there is a Sign Controller which is used to adjust the polarities of the signals
from the nine synapses.

In the first step of the operation period, only the signal of Xm; in (2.3) is calculated,
sampled and stored by the Analog Memory. In addition, the digital code of the input ujj is sent
from the Pixel input to the shift register in the SRDA and stored. Switches S2 and S3 are closed
and S1 and S4 are left open. At this time, all the synapses are set to certain gains to generate the
template B and the PZ is set to generate Zjj. The piecewise linear ramp function of the neuron is
turned off. The input signal u;; from the SRDA passes through the Neuron. At this moment, the
output of the neuron is the same with the input signal uj; from the SRDA, multiplied with the
template B and combined with Zjj to form Xm;;, which is instilled into the Analog Memory.
After the switch S2 is opened, the Xmj; is stored in the analog memory.

In the second step, the digital code of the initial state Xj(t = 0) of the desired function is sent

from the Pixel input to the shift register in the SRDA and stored. S1 and S2 are open and S3 and
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S4 are closed. Xmj; is read out and the neuron is set to the initial state X;(t = 0) provided by the
SRDA. Meanwhile, the gains of all the synapses are set to generate the template A. In the third
step of the operation period, the S1 switch is turned on and the S3 switch is turned off. A
feedback loop is constructed and then the calculation of (1) is started. After the operation is
completed, the readout period commences. The output y;; is converted to binary form and the
binary output is sent to and stored at the shift register in the SRDA. As the input pattern of the
next operation is sent into the LNCNN, the output pattern of the former operation can be read

out from the Pixel output of the last cell.

°
°
°
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ol [o] [o] [g] [o] [o] [o
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\\\ rj:é
0 0 0 n 0 0 0

Fig. 2.3 The large-neighborhood template generated by a LNCNN with propagating
connections.
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Fig. 2.3 shows a large-neighborhood template where symbols from the letters a to q
represent the template coefficients and the coefficients from a to m can be defined by the
proposed LNCNN. The neighborhood of radius 1’ is redefined as shown in Fig. 2.3. Here, the
sphere of influence S;; of a large neighborhood is not considered as a 5 x 5 matrix, but is defined
as a diamond-shaped matrix in Fig. 2.3 with neighborhood of radius r'=2. Each coefficient can
be derived from the gains of the synapses in Fig. 2.1 and the PS in Fig. 2.2. The derived
equations are listed in Table 2.1 where the template coefficients in Fig. 2.3 are expressed by the
gains of the synapses and the gain of each synapse is expressed by the template coefficients.

Thus, the architecture in Fig. 2.1 and Fig. 2.2 can be used to generate the large-neighborhood

Table 2.1DERIVED EQUATIONS OF TEMPLATE COEFFICIENTS AND GAINS OF

SYNAPSES
Connection Template Coefficients  Gain of Each Synapse
Type Constructed by the Gains by Template
of Synapses Coefficients
Direct a="PS, b =PUI PS=a, PUIl=b

Connection  -=pp]1, d=PR1  PDIl=c, PRI1=d
e=PL1, j=PRD PLl=e, PRD=j
k=PLD, [=PRU  PLD=k PRU=/

m=PLU PLU =m
Propagating f'= PUIXPU2 h
Connection g =PDIXPD2 PR2 = 7 1

h =PRIXPR2 pLo— i <]

i = PLIXPL2 e

n =PRIXPR2 pU2 L <1

— 2 b

o = PUIXPU2

p =PLIXPL2? g 4

g = PDIXPD2 PD2 =
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templates with r’ = 2 shown in Fig. 2.3.

According to Table 2.1, the gains of the synapses PD2, PU2, PL2 and PR2 of propagating
connections should be less than 1 for each. If the synaptic gain of a propagating connection is
larger than or equal to 1, then the signal coming from the cells along one direction would
diverge. The gains of these synapses of propagating connections can be determined from the
template coefficients f, g, h, and i as listed in Table 2.1. Because of the propagating
connections, if the template coefficients f, g, h, and i are not equal to zero, the coefficients 0, g,
n and p would not equal zero also, respectively. However, if the template coefficients n, 0, g,
and p are to be set zero, the template values f, g, h and i would be small enough when compared
with the template values b, ¢, d and e, respectively.

The four corner coefficients j, k, |, and m are determined directly by the synapses PRD,
PLD, PRU, and PLU, respectively, of direct connections. Similarly, the coefficient a can be

generated directly by the PS in Fig. 2.2.

2.3 CIRCUIT IMPLEMENTATION AND SIMULATION

RESULTS

It has already been established that the current-mode signals can be easily combined. In
addition, current-mode circuits are faster and consume less power than voltage-mode circuits.
However, when the current signals need to be duplicated, more devices are required to mirror
the currents. In the design, the currents in fewer paths need to be duplicated. Therefore, the
proposed LNCNN has been implemented by using current-mode circuits. In all the

current-mode circuit realizations, the signals represented in Fig. 2.1 and Fig. 2.2 transferred
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inside the kernel unit are all in current mode except the DCS, CLK, synaptic gain controlling

signals, and the digital logic circuits signals.
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Fig. 2.4 The circuit diagram of the Neuron and PZ in Fig. 2.2.

A. Neurons and PZ

Fig. 2.4 depicts the circuit of the PZ and the Neuron inside the BODY as indicated by dotted
lines in Fig. 2.2. The PZ is implemented by the devices Mz; and Mz,. The gate bias voltages
Vzp and Vyy directly control the current through Mz; and My, respectively, to generate the
threshold current I;. The circuitry of Mx;-Mxygs is the neuron core with the piecewise linear ramp
function. The gate bias voltages V1 and V2 are used not only to maintain the static current of
the neuron zero with the devices Mns and Mys, respectively, but they are also used to limit the
currents through My; with My, and Myg with Mys, respectively. Furthermore, My3; and Mg
also act as the switch S1 in Fig. 2.2. The gate bias voltages V1 and V2 are controlled by the
external bias current Ibias. The transfer characteristic of the neuron is simulated as shown in

Fig. 2.5. The low and high limit currents of the piecewise linear ramp function range from 351.8
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nA to 487.8 nA and from 389.5 nA to 534.3 nA, respectively, when the external bias current
Ibias is in the range from 250 nA to 360 nA and the supply voltage is 1.8 V. When the neuron is
on standby or there is no input current, the leakage current is less than 1nA. In the first and
second steps of the operation period, S1 is turned off; that is, Mn,-Mys are turned off. In this
way, the neuron core acts as two current mirrors. As the input current Iu, shown in Fig. 2.4, is
provided by the SRDA in the first step, the current Ix,, is calculated and in the second step the
initial value I,(t=0) is also introduced by the SRDA. Moreover, My7 and Myg are used to send
the binary outputs to the SRDA or to send the transient currents to the analog outputs through

SS.

88‘7 1 Ll 1 T I I T T T

6e-7 1

4e-7

2e-7

0

Iyij (A)

-2e-7

-4e-7

-6e-7 f | =——— VDD = 1.8V, Ibias = 360 nA .
— —— VDD= 138V, Ibias = 300 nA
8e-7 [ | m=—=—- VDD = 1.8 V, Ibias = 250 nA .

_le_6 1 1 1 1 1 1 1 ] 1
-le-6 -8e-7 -6e-7 -4e-7 -2e-7 0 2e-7 4de-7 6e-7 8e-7 le-0

Ix; (A)

Fig. 2.5 The transfer characteristic of a neuron with different external bias currents Ibias.

B. Synapses and Sign Controller
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The circuit diagrams of the synapses are shown in Fig. 2.6(a)-(c) and are indicated by
broken lines, whereas the circuit diagram of the Sign Controller is demonstrated by broken
lines in Fig. 2.6(d). The circuit of Fig. 2.6(a) is used to realize the synapses PL2, PR2, PD2, and
PR2 of propagating connections. There are two paths, N-type and P-type, in one synapse to deal
with the bi-directional current inputs. If a LNCNN is on standby or there are no input currents,
the synapses consume no power. The device pairs Mg,/ Mg,z and Mg,/ Mgaa can be seen as two
sets of current mirrors and the maximum gains are determined by the ratios of Mg,/ Mga3
andMs,»/ M. Mgy and Mg,s with gate bias voltages Vbiasp and Vbiasn are operated in the
linear region to control the current mirror gains of Mg,/ M3 and Mga/ Mgaa, respectively. All
the gate bias voltages Vbiasp and Vbiasn of synapses combined with the gate bias voltages Vzp
and Vyx of the PZ form the synaptic gain controlling signals as shown in Fig. 2.1. Furthermore,
the gate bias voltages Vbiasp and Vbiasn are generated by using an on-chip 4-bit DAC. There

are 16 different values for Vbiasp and Vbiasn. A HSPICE simulated Inouta vs. Inina diagram of

From PL2, PR2,
PD2, or PU2 of
former cell

S
PL2, PR2, PD2, or b

PU2 of next cell
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Fig. 2.6 The circuit diagrams of (a) the synapses PL2, PR2, PD2, and PU2; (b) the synapses
PL1, PRI, PDI, and PUI; (c) the synapses PRU, PRD, PLU, PLD, and PS; (d) the Sign
Controller.

the N-type synapse with differing gate bias voltages Vbiasn ranging from 34.4 mV to 737 mV is
shown in Fig. 2.7. The corresponding N-type and P-type current gains of the input current
ranging from 300 nA to 500 nA are illustrated in Fig. 2.8, where Mg,1-Mga4 are operated in the
subthreshold region with a supply voltage of 1.8V. The N-type synaptic gains with different
Vbiasn values ranges from 0 to 1.54 in the input current range from 300 nA to 500 nA while the
P-type synaptic gains with different Vbiasp values ranges from 0 to 1.42. The N-type synaptic
gain has an average variation of £6.38% and the P-type synaptic gain has that of £7.72%, as
indicated by short bars over the input current range from 300 nA to 500 nA. It can be seen that
the synapses can generate the desired templates with a tolerable level of error by setting the
codes for the Vbiasn and Vbiasp voltages with proper values.
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Fig. 2.7 The HSPICE simulated Inouta vs. Inina diagram of the N-type synapse in Fig. 2.6(a)
with 16 different values for Vbiasn.

The circuits of the synapses of direct connections are shown in Fig. 2.6(b) and Fig. 2.6(c)
and it can be seen that the circuits and operations are similar to those of the synapses of
propagating connections. The circuit in Fig. 2.6(b) realizes the synapses PL1, PR1, PDI, and
PU1 while that in Fig. 2.6(c) realizes PLU, PLD, PRU, PRD, and PS. The P-type and N-type
synaptic gains of one synapse of direct connections can be set to different values to perform
more functions. The synapses shown in Fig. 2.6(b) share the two master devices Mg,1/Msa2 with
the synapses of the propagating connections while those shown in Fig. 2.6(c) share Mn;/Mng
with the Neuron. The output currents of Fig. 2.6(b) and Fig. 2.6(c) are sent to the Sign
Controller using the switches Sn and Sp to decide the polarities of the signals. The maximum

gains of the synapses PLU, PLD, PRU, and PRD are set to 2 and those of PL1, PR1, PU1, and
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Fig. 2.8 The range of (a) the N-type current gains and (b) the P-type current gain of the
synapses with an input current range from 300 nA to 500 nA.
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PD1 are set to 4 whereas the gain of the synapse PS is set to 8. Through this design, this
LNCNN can generate the templates as indicated in Fig. 2.3 where the center coefficient a is
smaller than 8 and the coefficients b, , d, and e are smaller than 4, while the coefficients j, k, |,
and m are smaller than 2. The circuitry of the Sign Controller is shown in Fig. 2.6(d) where the
switches Sn and Sp of the 9 synapses used to adjust the polarity of the signals from the synapses
are also drawn. The devices Mgy and M4 with gate bias voltages V3 and V4, respectively,
maintain the static current from Mgy to Mggsa at zero level. Mgq1/Msg2 and Mgga/Mygs are the
current mirrors used to invert the direction of the current flow. If the polarity of the input signal
from synapses is negative, the Sp is turned off and the input signal enters the neuron or analog
memory through the switch Sn and Sign Controller. However, in the same situation if the input
signal is positive, the Sn is turned off and the signal enters the neuron through the Sp switch.
C. PSWs

Each of the synapses contains one pair of switches Sn and Sp to control the signal polarities
except the synapses of propagating connections. Hence, to confirm the output signals sent out
of the BODY and those sent out of the synapses of propagating connections have the same
polarities, the PSW has been added to achieve this purpose.

Fig. 2.9 depicts the circuit diagram of the PSW. The output currents of the neuron are
mirrored through Mg, and Mgy to generate the gate voltages on Mg, and Myys, respectively.
The current through My,s, where the gate is connected to the gate of My (Msw2), 1S opposite to
the current through M,ye, whose gate is connected to the gate of Mgy3 (Mng). The polarity of the
output current in the PSW is selected using the switches Sqyi-Sswa. For a positive (negative)
output of the PSW, the switches Sqy1 and Sqwa (Ssw2 and Sgy3) are closed and, at the same time,

the switches Sqy, and Sgyws (Sswi and Sgwa) are opened. There are four PSWs containing the
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Fig. 2.9 The circuit diagram of the PSW.

switches Sqwi1-Sswa and Mgws-Mgwe as drawn in Fig. 2.1 and these four PSWs share the circuits of
Mgwi-Mgwa.
A comparison of the device numbers and interconnection lines of the kernel unit between the
proposed structure and the LNCNN with direct connection using the circuit structure in [126] is
given in Table 2.2. As can be seen from Table 2.2, the LNCNN with direct connections needs
12 connections, including 4 connections to the farther neighboring cells. In the proposed
structure, more devices are required; however, as each cell only has 8 connections to the nearest
eight neighboring cells, this facilitates the IC implementation.

D. Analog Memory

Fig. 2.10 depicts the circuit diagram of the analog memory where My; and My are used to

generate the gate voltages of Mye and M4, respectively, from the input current Ixm. The gate
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Table 2.2COMPARISON OF DEVICE NUMBERS AND INTERCONNECTION LINES

LN-CNN (7 =2) with
Direct Connection Using
the Circuit Structure in [9]

This Work
with Propagating Connection

Synapse of.Dlrect 8.67 2
Connections
Synapse of Propagating 13 i
Device Connections
Number Neuron Core 8 10
Neuron Cell 130 104
Int tion Li
nterconnection Lines g 12

cross One Cell

voltages are stored at the node A (B) by turning off My (My3) with the signal Vsample (with
the complementary signal of Vsample). After sampling, the signal Venable rises to high when
the current is accessed. Mms and My 2 are used to compensate for the charge injections and the
clock feedthrough from My;3 and My, respectively. The devise size of My and My, is half
of Myz and Myyp1. Mys and My 3 are used to increase the gate-source capacitance Cgs of Myg
and My4, respectively, in order to suppress the sampling error. The current mirror My7/Mys
(Mm1s/Mmie) 1s used to isolate the storage node A (B) from the output node of analog memory
so that the stored voltage is not affected by the voltage change at the output node. As the analog
memory is read out, the signal Venable (the complementary signal of Venable) turns on My;7
(Mwms) and, at the same time, it also turns on the compensational function of Mys (Mm2).
Furthermore, the devices My, and Myjp with gate bias voltages V6 and V5, respectively,
maintain the static current from My to My at zero level and also, act as the switch S2, as can
be seen in Fig. 2.2.
E. Overall Chip Architecture

Fig. 2.11 shows the architecture of the whole system where the size of the kernel unit array
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Fig. 2.10 The circuit diagram of the analog memory.

1s 20 x 20. There are 5 x 54 shift registers to store the digital codes of synaptic gain controlling
signals. There is no additional signal to reset the shift registers. Shift registers can be refreshed
by input signals. The digital codes of each synaptic gain controlling signal are stored in a 4-bit
shift register for absolute value and a 1-bit shift register for polarity. However, one synapse
requires two synaptic gain controlling signals and the signals have different values when
templates A and B are generated. Hence, there are 5 x 52 shift registers required for templates A
and B. For the synaptic gain controlling signals of template Z, a 6-bit register is required for the
absolute value of template Z and a 1-bit shift register is used for its polarity. Thus, 5 x 2 1-bit
shift registers are required for template Z. The signal from the Digital Controlling Circuit
determines whether Generation Circuit for templates A, B and Z, which has 28 DACs,
generates synaptic gain controlling signals for either template A or for templates B and Z. The
external bias current Ibias generates the bias currents and voltages required in the system,
especially the bias voltages V1-V6 inside the Neuron, Sign Controller, and Analog Memory as
shown in Fig. 2.1. The signals Input_Enable and Weight_Enable with external clock signal

Ext CLK are used to determine whether the external input signals are input and initial patterns
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Fig. 2.11 The architecture of the 20x20 LNCNN system.

or the digital codes of synaptic gain controlling signals, respectively. In the array, 5-bit binary
signals in one clock cycle are sent into the LNCNN and read out from the Pixel outputs. From
20 neuron analog output signals of one column selected by a 5-bit decoder, 3 real-time neuron
analog output signals can be read out using a 20-to-3 multiplexer.

The timing diagram is shown in Fig. 2.12. In the first step, both input pattern and digital
codes of the templates A, B, and Z are ready for operation, and the signal A/B is set to High first
to cause the template generate circuit to generate synaptic gain controlling signals of the
templates B and Z. Meanwhile, the function of the neuron in the kernel unit is turned off. The
signal Pattern goes to High in order to inject the input pattern into all the neurons. The result of
the first step is sent into the analog memory and stored after the signal Sample is enabled and
then the signal Pattern returns to Low.

In the second step, the pattern in the shift register of the SRDA is replaced by the initial
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Fig. 2.12 The timing diagram of the controlled signals in LNCNN

pattern of the desired function. The initial pattern in the shift register is then sent to the neurons
as the initial values by enabling the signal Pattern again. Meanwhile, the signal A/B is set to
Low so that the template A is generated by the synapses as the template generation circuit
generates the synaptic gain controlling signals of the templates A. In the third step, the signal
Operation_Start is enabled and the signal Pattern is disabled to turn off the initial values. The
function of the neurons is turned on to start the overall calculation of template A with the
signals read out from the analog memories. After the outputs are stable, the binary output
pattern can be stored in the SRDA as the signals Latch and Input_Enable are set to High. When
the next input pattern comes in, all the digital signals are disabled except the signal
Input_Enable and the output pattern can be read out from the 5-bit Pixel outputs.

F. Hspice Simulation Results
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The proposed LNCNN circuit was designed using CMOS 0.18-um technology. The HSPICE
post-layout simulation was performed with a 20 x 20 kernel cell array to verify the circuit
functions. The function of Muller-Lyer illusion with the 5 x 5 large-neighborhood template
[40], as shown in Fig. 2.13 was adopted. According to the original 5 x 5 template, the predicted
signs of each diamond-shaped template are set in Fig. 2.14. Only the center coefficients Ajj and
Bjj are positive and the others are negative in Fig. 2.13, so it is reasonable that only the center
coefficients in the diamond-shaped template are set to positive. The input pattern of
Muller-Lyer illusion is shown in Fig. 2.15(a). After the HSPICE simulation, theresultant output
pattern is shown in Fig. 2.15(b), where the upper line with outward arrows becomes shorter
than the lower line with inward arrows after illusion. The function cannot be realized by a 3 x 3
neighborhood template. The coefficients of the diamond-shaped, large-neighborhood template
in Fig. 2.3 were extracted from the post-layout simulation results directly and are shown in Fig.
2.14, which has the same signs as those in Fig. 2.13.

The simulated standby power consumption is about 1.148 mW where a 1.8 V supply
voltage and a system clock frequency of 20 MHz are used. The external bias current is 360 nA.

The kernel unit array only consumes 1 uW, which accounts for about 0.087% of overall

0.1 [-0.1 [-0.1 [-0.1 [-0.1 0|00 ]| 0] o0
0.1 [-0.1 [-0.1 [-0.1 |-0.1 0|00 ]| 0] o0

B: | 01 [-01] 13 [-01]-01 Azl o | o |13 0] 0 Z:|-28
0.1 [-0.1 [-0.1 [-0.1 [-0.1 0|00 ]| 0] o0
0.1 [-0.1 [-0.1 [-0.1 [-0.1 0|00 ]| 0] o0

Fig. 2.13 The 5 x 5 templates B, A and Z for Muller-Lyer illusion [40].
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Fig. 2.14 The extracted values of the diamond-shaped template from a HSPICE post-layout
simulation.

il
L
N

" u
L

u "

(@) (b)
Fig. 2.15 (a) The input patterns of Muller-Lyer illusion. (b) The resultant output pattern of
Muller-Lyer illusion from the HSPICE simulation result.

standby power consumption. As the array is extended to 128 x 128, the standby power
consumption is about 7.35 mW and is dominated by the peripheral circuits.

G. Software Simulations Results-CNN Visual Mouse Platform [141]

The published large-neighborhood templates are limited. Among the four published

LNCNN templates [40], [118], [138]. Only one template [118] cannot be implemented by using
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the proposed structure since it violates the constraint. Other LN templates for diffusion,
de-blurring, and Muller-Lyer illusion have been successfully verified. The 5 x 5 templates B of
diffusion [138] and de-blurring [40] are approximated by the proposed diamond-shaped
templates as shown in Fig. 2.16(a) and Fig. 2.16(b). The coefficients of templates A and Z are 0
for diffusion. For de-blurring, the center coefficient of template A of 5 x 5 template is 10 and
that of diamond-shaped template is 7. Both templates Z are 0. The input pattern and simulation
results of diffusion and de-blurring are shown in Fig. 2.17(a) and Fig. 2.17(b), respectively. It is
shown that the diamond-shaped template can realized the function of 5 x 5 templates correctly.
The diamond-shaped LN templates also can realize some operations of binary images in one
step which can be realized by the 3 x 3 neighborhood templates in two steps. The erosion and
dilation function with 3 x 3 neighborhood templates can contract and expand the edges of
images by one pixel, respectively. However, the diamond-shaped LN templates can reinforce
the functions to contract or expand the edges by two pixels. Fig. 2.18 demonstrates the function
of erosion where the boundary cells are set to be white (-1). For dilation, it can be realized by
the same templates of erosion by making template Z positive. Besides, these two functions with
the diamond-shaped LN templates cannot be achieved with 3 x 3 neighborhood templates in
one step. Two iterations with 3 x 3 neighborhood templates are required to realize the same

functions. Thus, it takes more time and energy.
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Fig. 2.16 The template B of 5x5 and diamond-shaped templates of (a) diffusion [138] and (b)
de-blurring [40].
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Fig. 2.17 The input patterns and simulation results of (a) diffusion and (b) de-blurring.
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Fig. 2.18 The input and output patterns of erosion with 3 x 3 neighborhood templates [40] in
two iterations and with diamond-shaped templates in one iteration.

2.4 EXPERIMENTAL RESULTS

An experimental LNCNN chip has been fabricated using 0.18 pum CMOS technology. The
whole chip area is 1543 um x 1248 um where the unit cell is 33.58 um x 43.15 pum. Fig. 2.19

shows the photograph of the fabricated LNCNN chip.

49



H L

Fig. 2.19 A photograph of the fabricated 20 x 20 LNCNN chip.

The input image pattern in Fig. 2.15 (a) was used to verify the illusion function of the
fabricated LNCNN. The digital codes of the synaptic gain were adjusted to achieve the suitable
value. The binary output pattern was read out from the 5-bit pixel outputs as indicated in Fig.

2.11. The analog current-mode transients can be read out from the three real-time analog
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outputs in Fig. 2.11 using the transimpedance amplifiers outside of the chip. When the analog
output current is 0, the output voltage of the transimpedance amplifier is 0.9 V. Since most
pixels in the input pattern shown in Fig. 2.15(a) are in white and all the white pixels remain in
white after processing, the N-type synaptic gain of the PS is set to a larger value than P-type
synaptic gain in the measurement. In this way, the problems of variation in the process can be

overcome.

"n “u
| "n

Fig. 2.20 The experimental resultant output pattern of Muller-Lyer illusion.

The measured binary output pattern is shown in Fig. 2.20. The experimental result is the
same with the post-layout simulation result except the Pixel A which is black in the simulation

results of Fig. 2.15(b). The reason for the error is that the bias current of the Pixel A is too small
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due to process variation. Thus, the self-feedback of the Pixel A cannot keep Pixel A in the black

state.

The measured analog output voltage of Pixel B through the transimpedance amplifier is
shown in Fig. 2.21. The step signal is the signal Operation_Start, as illustrated in Fig. 2.11. As
the signal Operation_Start rises, the analog output remains nearly at 0 V within about 1 pus.
Then it starts to rise and reaches 0.9 V at about 2 us. Finally, it takes 3 us to achieve the overall
operation from black state to white. The measured transient response time is 3 ps. From the
result of post simulation, the transient response operation time is less than 0.1us without the
transimpedance amplifier. The difference is due to the large loading effect of the

transimpedance amplifier.

Voltage (V)

_]0 1 1 1 1 1 1 1 1 1
-le-6 O le-6 2e-6 3e-6 4e-6 5e-6 6e-6 Te-6 8e-6 9¢e-6

Time (sec)

Fig. 2.21 The experimental results of Pixel B with the signal Operation_Start.
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In the experimental result, the overall power consumption was about 0.7 mW on standby
and 18 mW during the operation in the third step with a system clock frequency of 20 MHz. The
comparisons of power dissipation and energy consumption per cell in the proposed LNCNN
with those in CNNUC3 [132]-[133] and ACE16K [131] are listed in Table 2.3. As may be seen
in Table 2.3, the cell in the LNCNN has lower power dissipation and energy consumption. The
comparison between the LNCNN with symmetric templates and the proposed LNCNN is also
made. The quiescent power dissipation can be much lower but the single pixel area of LNCNN
with symmetric templates is much smaller. Because LNCNN with symmetric templates only
can realize symmetric and positive templates, these drawbacks, therefore, save much area but
cannot realize arbitrary templates. Furthermore, the tolerance to errors is based on the used
templates. The diamond templates of illusion where the input patterns are combined with
Gaussian noise of standard deviation 0.02 can be realized successfully by using CNN Visual

Mouse Platform.

Table 2.3COMPARISON OF LNCNN WITH CNNUC3 [132]-[133] AND ACE16K [131]

This Work
with Propagating 1986 [10] 1987 [11]
Connection
0.18 um 6M-1P 0.5 um 3M-1P 0.35 um 5SM-1P
Technology @ Supply i 1.8V @ o 3.3V @ @33.3\/
Powzglszi%a“on 45 uW 250 uW 180 uW
Processing Speed 20 MHz 10 MHz 30 MHz
Energy
Consumption 1.25 pJ/V 7.58 pJ/V 1.82 pJ/V
(per cell, per volt)
Cell Size 33.58 x43.15um’>  102.2x 120 pum®> 733 x 75.7 um’
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Table 2.4 COMPARISON OF THE PROPOSED LNCNN AND LNCNN WITH

SYMMETRIC TEMPLATES
LNCNN with symmetric LNCNN with propagating
templates[65]-[66] connections
Technolo 0.6 mm 1P3M N-well 0.18 mm 1P6M Mixed-
&y CMOS Technology Signal Process
Array Size 32x32 20 x 20
Single Pixel Area 22 mm x 25 mm 33.58 mm x 43.15 mm
Power Supply 3V 1.8V
Qu} escent Power 60 m W 0.7 mW
Dissipation
Power Dissipation 65 mW 18 mW
Readout Time | 50 1
(of one pixel) HS
Current gain of BJTs 17.5 A/A Not Required
Dynaml;ﬁmge of state 13~21V 20.5~0.5 uA
State transition time 0.8 ps 0.1 ps

2.5 SUMMARY

In this chapter, a new architecture of LNCNN has been proposed. In the proposed LNCNN,
the propagating connections are utilized to generate diamond-shaped large-neighborhood
templates. In such a connected network, each neuron cell only needs to contact the neighboring
cells without the need for farther interconnections. Therefore, such network architecture is
suitable for VLSI implementation. Moreover, by separating the synapses into N-type and
P-type parts without static currents, the static power dissipation can be reduced to a minimum
level. Moreover, during such an operation, the synapses of direct connections with different
N-type and P-type synaptic gains can also offer more functions. The connections can also be
implemented both in horizontal and vertical directions and in diagonal directions to realize the

circular symmetric templates. Furthermore, the LNCNN functions of diffusion, de-blurring,
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and Muller-Lyer illusion has also been verified successfully. With the proposed LNCNN
structure using propagating connections, many new applications and new LNCNN templates
can be explored.

A CMOS large-neighborhood CNN chip with a 20 x 20 kernel unit array has been
fabricated in 0.18-um CMOS technology. From the experimental results of this study, it can be
seen that the 5 x 5 template of Muller-Lyer illusion is reconstructed into a diamond-shaped LN
template and the function has been successfully realized using the LNCNN and with a chip
power consumption of 0.7 mW on standby and the 18 mW in operation with a system clock
frequency of 20 MHz. The kernel unit of LNCNN can also perform input level of input patterns.
However, due to the used shift registers for image storage, only the binary patterns can be
operated with the LNCNN chip. Hence, there is great tolerance to errors due to binary signal
operation and accurate circuits based on current mirrors structure are not required.

Further research on the universal machine (UM) for LNCNN needs to be conducted for

various applications to be realized.
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CHAPTER 3

THE DESIGN AND ANALYSIS OF A CMOS
RATIO-MEMORY CNN
WITHOUT ELAPSED TIME

3.1 INTRODUCTION

The cellular nonlinear (neural) network (CNN) which was proposed by Chua and Yang in
1988 [6]-[7], [40] involves a large-scale nonlinear analogic architecture for real-time signal
processing. Similar in composition to the cellular automata [127]-[128], it is comprised of a
massive aggregation of regularly spaced circuit clones, called cells, which communicate with
each other directly and locally. With local connectivity, CNN is quite suitable for very
large-scale integration (VLSI) implementation. The associated real-time and parallel-operating
properties also make it popular in image processing. To date, many CNN VLSI chips have
demonstrated their capabilities in realizing real-time signal and parallel processing functions
[39], [126], [129]-[130]. In these chips, the templates, which can control the communications
between cells, are programmable and the regular and local functions can be designed and
applied on the entire CNN array. However, for the recognition of images, the programmable

and space-invariant properties of CNN chips cannot realize the on-line learning directly
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because the templates are space-variant due to the different local characteristics of images. To
address this limitation, some algorithms that collect global image characteristics are proposed
[64], [142]-[143] to learn the images.

To realize an on-line learning CNN with local-computing advantage, a learning algorithm
called ratio-memory CNN (RMCNN) is proposed [65]-[67]. The ratio memory of the
Grossberg outstar structure [24]-[25], [144]-[145] has been used in both feedforward and
feedback neural network ICs for image processing. With the proposed RMCNN, no host
computer is needed to perform the learning task off-line. It can also evaluate the correlations
between cells and store these correlations on the capacitors. As a result, it no longer requires
template-weight storage time or equivalent pattern recognition time which is one of the
advantages of RM. The charge stored on the capacitors leaks out due to the junctions from the
source and drain of CMOS to the substrate. The RMCNN utilizes this leakage effect and takes
the ratio of the stored values to enhance the common characteristics of the learned patterns and
to raise the recognition rate. Therefore, a very long elapsed time about 850 seconds is required
after the learning period to make the weights of small correlations smaller or to approach zero
by the leakage in order to enhance large correlations [67]. However, the learned characteristics
in different local positions of the learned patterns are distinct and the learned values have
significant differences. In the proposed RMCNN, if the elapsed time is too long in its duration,
the most learned characteristics will be destroyed. However, if the elapsed time is too short in
its duration, the characteristics will not be enhanced. Furthermore, when the RMCNN is
utilized to learn and recognize the image patterns, the stored values keep on leaking during the
recognition time and this may, with time, alter the ratio weights of the RMCNN. Finally, as the

weights of cells are generated by ratio memories, a precise multiplier-divider is required.
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In this work, RMCNN architecture without elapsed time [125] is proposed and analyzed to
prevent the leakage effect and to simplify the circuitry. With the new algorithm, the feature
enhanced ratio weights can be generated immediately after the learning period without the
requirement of elapsed time and, therefore, the circuit to generate ratio weights could be very
simple and remove the need for multiplier-dividers in each ratio memory. An RMCNN chip not
requiring elapsed time has been designed and fabricated using TSMC 0.35-um 2P4M
mixed-signal technology. Patterns are learned and recognized with the proposed architecture
and the results are analyzed and discussed. The total chip area is 4560 um x 3900 um and the
area of a single cell is 400 um x 250 um. The total power consumption is 87 mW in operation
with a supply voltage of 3 V and a system clock frequency of 10 MHz.

In Section II, the models and architecture of the RN-CNN not requiring elapsed time are
described. In Section III, the CMOS circuits of each block are illustrated and the HSPICE
simulation results are presented to verify the functions of the blocks. In Section IV, the

measurements obtained are presented and discussed. Finally, a concluding section is provided.

3.2  ARCHITECTURE AND MODELS

A. Model of RMCNN Requiring No Elapsed Time

For a standard CNN, the state equation is written as [6]-[7], [40]

Xj =—X; +Z; + ZAM Y + szlukl

CueS; CueS;

(3.1)
where Xij, Yij, and Ujj are the state, output, and input of the neuron cell C; in a CNN array,
respectively; the coefficient Zj;, called the template Z, is the threshold of the neuron cell Cj;

and, Agy and By are the coefficients, called templates A and B, respectively, which are
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multiplied with output Y, and input uy of the cell Cy;, respectively, in the sphere of influence
(S;) of the neuron cell Cj;. The two sets of products are accumulated over all the cells Cy in Sj;

of the neuron cell C;;. However, the state equation of RMCNN can be expressed as

j =X +U; + ZAUM ykl

Cyi S5

(3.2)
where S;; and yj; are defined in an M x N array as
S, ={Cy[lsk<Mi<I<N]I<i< <1}
(3.3)
and
Vi = s 413 1.
(3.4)

Template Ajj(Tg) is a space-variant template and is a function of elapsed period when an

elapsed time is applied. Therefore, the template Aj; can be written as

0 alj(l—l)j(TE) 0
AIJ (TE)_ aIJI(J l)(TE) 0 aljl(]+l)(TE)
0 aj(l+1)j(TE) 0

(3.5)
where ajju(TE) is the template coefficient of the cell C;; to stimulate the cell Cy and is generated
by using the equation

> j u?-uldt—L,(T,)

a (Te)=——= CMeli-Di iG-1 G i)
ZZjui?'uﬁdt_;le(TE)

kI | p=lTp

(3.6)
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In (3.6), uy and uy are the inputs of the pixels in the learned p™ pattern when m patterns

are learned in the learning period. In the learning period for the cell Cjj as in (6), its input signal
is multiplied with the inputs of its four nearest cells and then these values are integrated with a
learning time Tp of each pattern, respectively, to generate one set of the correlations, called
correlated weights. The template coefficient is generated by the ratio of one correlated weight
and summation of the four absolute correlated weights. Li(Tk) is the leakage in an elapsed time
Tg. The leakage depends on the correlation between two cells and process parameters. When a
very long period of elapsed time is applied, the remnants in the four ratio memories around one
cell may be 0. However, when a short period of elapsed time is applied, the enhancement is
limited. As a response, a new template generating method is proposed. First, the mean M;; of the

learned absolute correlated weights is generated as

ki

i]ui}’-uk’id"} Kle{i-1)j, i(i-1) i(j+1). [+

p=1T1p

Mij = avg[

(3.7)
where m is the number of learned patterns, Ty is the learning time of one pattern, and Upij and UPy
are the inputs of cell(i, J) and cell(k, I), respectively, in the learned p™" pattern. The ratio weight

&’jju 1s then generated as following:

0 , if

1 .
/4Nu’ if

<Mij

Zm:juif -uidt

p=1Tp

,kle{i-1)j, i(j-1), i(j+1), (+1)j}

> M,

Qg =

ijug’ -u/jdt

p=1 Tp

(3.8)
,where PNjj means the number of the absolute correlated weights which is larger than M;;. As

shown in (3.8), the template coefficient is generated by counting the number of the absolute
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correlated weights which is larger than the mean Mj;. As a result the template value is set to
1/PNj; when its absolute correlated weight is larger than the mean. This retains the overall
summation of absolute template coefficients a’jq of template A at 1 to avoid any divergence in
recognition.

To demonstrate why the coefficient which is larger than the mean is retained, a simple
model of the absolute ratio weight can be constructed as following:

P-L P
(F>—|_)+(Q_—L)+(R—|_)+(S—|_)> P+Q+R+S

,P>LQO>LR>LS>L

(3.9)
where P, Q, R, and S represent the four absolute correlated weights generated in the learning
period, and L represents the average leakage in the elapsed period and, after that period, the
absolute ratio weight should be enlarged if the coefficient is retained. The condition to make
(3.9) valid can be derived as following:

1 P-L
k M-L

>%5 ,LP>M,P>LQ>LR>LS>L

(3.10)
where M is the mean of P, Q, R, and S and the coefficient k is 4. When P is larger than M, the
absolute ratio weight could be enlarged after a period of elapsed time. Hence, the coefficient is
retained by comparing it with the mean value. However, as the average leakage L is larger than
the correlation P, it is unreasonable to get a negative ratio weight value. The absolute ratio
weight should be larger than zero. As one absolute correlated weight leaks to zero, mean M is
evaluated using the residuary absolute correlated weights. In this situation, K is reduced to 3
because only three absolute correlated weights are averaged. Hence, if one of the correlated

weights leaks to 0, k should be reduced by 1. In the proposed algorithm, when P is larger
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(smaller) than or equal to M, the absolute ratio weight is chosen to be 1/k (0). This makes the

sum of the absolute ratio weights equal to 1 around one cell.

Cell

Cell

Cell

Cell

HES R s

Fig. 3.1 The general architecture of the RMCNN.

B. Architecture of RMCNN Not Requiring Elapsed Time

The general architecture of RMCNN is shown in Fig. 3.1. The RM block is located at any
two of the nearest cells to evaluate and store the correlated weights. In each cell, the circuitry is
required to average the absolute correlated weights from the four peripheral RM blocks and to
compare the correlated weights with the mean value. Meanwhile, a counter is also required to
count the PN in (3.8) around the cell. With reference to the architecture, a 9 x 9 RMCNN chip
has been designed. The structure of the kernel unit of the RMCNN not requiring elapsed time,
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Fig. 3.2 (a) The input stage and neuron, (b) RM, and (c) comparator and counter in the kernel
unit of RMCNN.
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which is demonstrated in Fig. 3.1Fig. 3.1 by broken lines, is separated into three parts in Fig.
3.2(a)-Fig. 3.2(c). There are four RMs: up, down, and on the right, and left sides around one cell
and two neighboring cells around one RM. In Fig. 3.2(a), block Neuron is a neuron composed
of a resistor and capacitor and block VTI1 is a voltage-to-current converter with a sign detector
to convert the input voltage into current. Block VTI2 is a voltage-to-absolute-current converter
with a detector. It detects the sign of the current with an absolute current output. In Fig. 3.2(b),
block W is the synaptic gain block to multiply the absolute input current from VTI2 with a
chosen weight of 1/4, 1/3, 1/2, or 1 and the output sign is controlled by a sign controller. The
weight is controlled by block Counter L in Fig. 3.2(c). Block COMP is a comparator that can
compare four absolute currents from RMs with the average of these four currents. Block
Counter L counts how many currents are larger than the average current. Block Counter L can
also generate the signals to control the weights of blocks W by the comparing and counting
results.

In the learning period, only switches swl, sw2, sw4, and sw5 in Fig. 3.2(b) are open. When
pth pattern is learned, binary input UPij of cell(i, ) is sent into block VTII and the output current
is sent to block Neuron to generate the state voltage of cell(i, ). The positive or negative state of
cell(i, j) is detected by block VTI2 and the absolute current is extracted. The sign and the
absolute current of cell(i, j) are both sent to block W. In the learning period, the weight of block
W is set to 1/4. If the states of cell(i, j) and its neighboring cells are the same (different), it is
decided to charge (discharge) capacitor Cw with the absolute current multiplied by 1/4. The
learning time of one pattern can also be adjusted to prevent the voltage saturation of the
capacitor.

After all the patterns are learned, block VTI3 converts the voltage stored on capacitor Cw

into two absolute currents for the nearest two comparators. At the same time, the correlative
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signs are also been stored. There are four absolute currents from the neighboring RMs in one
cell. The comparator generates a mean current of the four absolute currents and compares the
four currents with the mean current. The comparisons are counted by block Counter L to
decide the ratio weights of block W. When the N (4-N) currents in neighboring RMs are larger
(smaller) than the mean current, the weights of blocks W are set to 1/N (0) where N could be 1,
2, 3, or 4. The ratio weights are set at 1/4 for each block W only if the four currents are equal.
In the recognition period, the switches swl, sw2, sw5, and sw6 in Fig. 3.2 (b) are closed.
The gray level input ujj in Fig. 3.2(a) of the noisy pattern is sent into block Neuron and the

operation of recognition starts.

3.3 CIRCUIT IMPLEMENTATION WITH SIMULATION

RESULTS

A. Circuit Implementation with Simulation Results

Blocks VTII and Neuron are shown in Fig. 3.3(a). Block VTII is constructed using a
simple differential amplifier. M5-M6 are used to degenerate the transconductance of the
amplifier and to enlarge the linear operating range. Vrefis setto 1.5 Vand Vb2 at 2.5 V. Vbl is
controlled by a mirror with a current of 5.5 pA. Block Neuron is simply composed of a
resistance and a capacitor. The resistance is constructed using MR1 and MR2 and the capacitor
is realized by the parasitic capacitance at node Xj;. MR1 and MR2 are realized by PMOS
because the substrate of MR1 can be connected to source of MRI1 to prevent body effect.
Hence, the state voltage Xj; can be setto 1.5 V (1/2 VDD) initially. The transfer characteristic of
VTII is shown in Fig. 3.3(b). The transfer curve is linear as the input voltage Vu; is between 0.9

Vand 2.1 V.
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Fig. 3.3 (a) The circuits of the blocks VTII1 and Neuron. (b) The transfer characteristic of the
block VTII.
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Fig. 3.4(a) depicts blocks VTI2 and VTI3. The circuit represented in broken lines belongs
to the next stage, that is, block W or block COMP. Block VTI2 is similar to block VTI3 except
the device ME. VTI2 contains ME and Vpin_b is set to low, when the patterns are learned and
during the recognition period, in order to turn on the function of block VTI2. Vbl is biased by a
mirror with a current of 5.5 pA and Vb2 is set to 2.5 V. Vb3 and Vref are each setto 1.5 V. The
combination of M9 with V2 and M10 with V3 can stop the static current. The difference (V2 —
V3) is smaller than the summation of the threshold voltages of M9 and M10. Hence, M9 and
M10 are turned off when there is no input current [in. VTI2 and VTI3 each contain a differential
amplifier and an absolute current converter. The differential amplifier generates positive and
negative currents based on Vj,. The positive (negative) current sent to the absolute current
converter turns on the device M10 (M9) and M9 (M10) is still turned off. The positive current is

inverted twice with two current mirrors, M11/M12 and M8/M13. The negative current is

____________________

L o =
VDD E M13 i
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= .
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Fig. 3.4 (a) The circuit of the blocks VTI2 (with ME) and VTI3 (without ME) (b) The transfer
characteristic of the block VTI2 and VTI3.

inverted once with the current mirror M8/M13. As a result, the output current Iout is the
absolute current of Iin.

Fig. 3.5 shows the circuit of block W. Switches Swa-Swf are controlled by block Counter L
to multiply the current with a gain of 1/4, 1/3, 1/2, or 1. Based on the signs of the patterns and
learned correlated weights in different periods, signal Sign_Con is set to a proper digital code to
decide the sign of block W, as shown in Fig. 3.6. The detector is constructed using two
cascaded inverters and amplifies the input signals to achieve a digital level. During the learning

period, only switch Swdl is closed. Signal Sign_Con is determined by input voltage Vi, in
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block VTI2 of cell(i,j) and input voltage Vu of the nearest neighboring cell(k,l) through an

exclusive gate.

\ 4 —@
M1| M2| M3| M4 MS MO VDD

o—qt—4t—at—d[ b i
- VsTvIvzaL|5wb\ SWCL‘SWd\ '—I M10

SignECon To Neuron
Swe Swf or Cw
Ml11
| [ |
[ T |
M5 Me6 M7 VSS
2
Fig. 3.5 The circuit of the block W.
Viny 5, O—— Detector —
N Exclusive .
VuVTIl(k,l) O— Detector — OR ——©O Sign Con
Swd2
Ving 13400, 0—1 Detector —

Fig. 3.6 The block diagram of the sign controller where the detector is composed of two
cascaded inverters.

Absolute current
I, ¢ from VTI3

'

M1 ® M3
Counter L
M2 ® M4
VSS

Fig. 3.7 The circuit of the block COMP.
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During the recognition period, only switch Swd2 is closed. Signal Sign_Con is decided by input
voltage Vi, in block VTI2 of cell(i,j) and input voltage of block VTI3, which is the correlation
between cell(i,j) and cell(k,l) stored on the capacitor Cw in Fig. 3.2 (b).

In block COMP in Fig. 3.7, the up, down, left, and right currents from blocks VTI3 are
gathered and averaged by the current mirror. The four directional currents from blocks VTI3
are compared with the averaged current Iy and the comparing results are converted into digital
signals using two cascaded inverters. The four digital signals are counted by block Counter L,
which is composed of two cascaded D-flip-flops and whose function it is to count the four
digital signals one at a time.

B. Operational Steps

The operation is separated into three periods: the learning, weight generating , and
recognition periods. In the learning period, blocks VTI1, Neuron, VIT2D, and W are active.
Input voltage Vuj; of the learned pattern is transferred into the current signal and the current
signal is applied on block Neuron to produce an output state voltage Vx;.. With state voltage
Vxj;, block VTI2 generates the absolute current and this is multiplied by 1/4 through controlling
the switches Swa-Swf. The polarity of the output current of block W is controlled by signal
Sign_Con which is generated by the sign controller in Fig. 3.6 where only switch Swdl is
closed. With the output current of block W, capacitor Cw is charged or discharged in an interval
Tp. After all the patterns are learned, the weight generating period starts.

In the weight generating period, the switches in Fig. 3.2(b) are all open. The voltage on Cw
is applied to VTI3 to generate two absolute currents while the sign is also detected,
simultaneously. With four absolute RM currents in four directions, mean current Iy is
generated and compared with the four absolute currents as shown in Fig. 3.8. The four

comparators outputs are counted by block Counter L, which sends the control signal to four
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VTI3(i+1, j)

VTI3(-1, j)

VTI3(@, j-1)

VTI3(, j+1)

Fig. 3.8 The four absolute currents from VTI3 are averaged and compared with the mean
current.

blocks W to generate corresponding weights. As a result, the RMCNN is ready for recognition.
In the third period, the noisy patterns are sent into the RMCNN. Switches swl, sw2, sw5, and
swb6 in Fig. 3.2(b) are closed and so is Swd2 in Fig. 3.6. At the same time, device ME in Fig. 3.4
(a) 1s turned off to commence the operation of recognition. A set of patterns in Fig. 3.9 are
learned with Matlab by the proposed algorithm of a 9 x 9 RMCNN. The Gaussian noise

patterns with different standard deviation are recognized as shown in Fig. 3.10 where the

standard deviation is 0.3. The resultant recognition rate is shown in Fig. 3.11 which is
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Fig. 3.9 Input patterns in the learning period.

Bl ™

Fig. 3.10 Gaussian noise patterns with standard deviation of 0.3 to be recognized.

compared by directly amplifying the noisy patterns with an inverter where Gaussian noise is
applied with a standard deviation normalized to the binary state of 1 and -1. As can be seen
from Fig. 3.11, when the tolerance level is 50 %, the recognition rate is better than that of direct
amplification. However, when the tolerance is sterner, the recognition rate is reduced. Due to
the fact that template A is a non-self-feedback template, the recognized output patterns can not
be pulled to a saturated state and, hence, the recognition rate is degraded. The template values
of cell(4, 5), cell(5, 3), cell(8, 5), and cell(7, 5) are listed in Table 3.1 and are compared with
RMCNN with an elapsed time of 800 sec. As can be seen in Table 3.1, the templates are almost
the same except for some negligible coefficients.

The recognition rate is shown in Fig. 3.12 where the self-feedback RMCNN without
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Fig. 3.11 The recognition rates by using proposed RMCNN and by being directly amplified.

elapsed time is simulated and the result is compared with that of direct amplification. Since the
closed loop in the self-feedback RMCNN saturates the output, the recognition rate can be raised
and is better than that without self-feedback and that of direct amplification. In this paper, only
the test chip of the non-self-feedback RMCNN without elapsed time is designed and measured
to verify the proposed RMCNN algorithm not requiring elapsed time. A self-feedback RMCNN
not requiring elapsed time can be designed similarly.

C. Simulation Results with Large-Neighborhood Templates

The large-neighborhood diamond templates are also been applied to the proposed RMCNN
requiring no elapsed time. The RMCNN with large-neighborhood diamond templates are
simulated with Matlab. The tested image patterns of 18 x 18 array are learned and the

large-neighborhood templates are generated by using the proposed method. Fig. 3.13 shows the
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Table 3.1THE COMPARISONS OF TEMPLATES A IN CELL(4, 5), CELL(5, 3), CELL(S, 5),

AND CELL(7,5) BETWEEN RMCNN WITH AND WITHOUT ELAPSED TIME

Templates A With Elapsed Time Without Elapsed Time

0 -05 0 0 -05 0 )

A, ;(800s)= 0 0 0 A,;(800s)= 0 0 0
g 0 05 0 B g 0 05 0 _
0 0944 0 "0 1 0

A,(B009= (0018 0 0.018]| A,®0= | 0 0 0
9x9 \0 -0.018 0/ \0 0 0/
RMCNN — = — Z

r=1 0 0 0 0 0 0

A= | 05 0 05 || AeGB009= [ 05 0 05

0 033 O 0 033 O
A 8009= | 033 0 033 || A.B009= [033 0 033

0 0 0 0 0 0

~ —~ “~ -

—— Directly Amplified
--------- 50% tolerance without Self-feedback
——— 1% tolerance with Self-feedback

100

80

60

40

Recognition Rate (%)

20

0 1 1
0.0 02 0.4 06 0.8

Standard Deviation ()

Fig. 3.12 The comparison of the recognition rates by using proposed RMCNN with
self-feedback, without self-feedback of 50% tolerance and by being directly amplified.
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comparison of simulated recognition rates when the neighborhood of radius r’ are 1 and 3.
RMCNN requiring no elaped time with 3 x 3 neighborhood templates can learn 6 patterns. It
can be seen that the recognition rate with large neighborhood is worse than that with 3 x 3
neighborhood templates when 7 patterns are learned and recognized. The reason can be
explained by Fig. 3.14 that the smaller correlations are retained when a smaller elapsed time is
applied. That is, when the large neighborhood diamond templates are used in the proposed
algorithm, many smaller correlations are retained and these ratio weights of small correlations
raise the error rates. Hence, the proposed algorithm should be modified especially when the
large neighborhood diamond templates are used.

In order to generate a template as the former RMCNN with a longer elapsed time, the
procedure of the proposed algorithm is modified. By using the modified method, the

comparison of the correlations and their mean is repeated. The procedure is stopped when the

Directly Amplified

6 Learned Patterns with 3 x 3 Neighborhood
—————— 7 Learned Patterns with 3 x 3 Neighborhood
—.-—--—-- 7 Learned Patterns with Large Neighborhood r' = 3

Recognition Rate (%)

0 1 1 1 1 i
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Standard Deviation (o)

Fig. 3.13 The comparison of recognition rates with 3 x 3 neighborhood templates and large
neighborhood diamond templates of r’=3.
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Fig. 3.14 The ratio weights of RMCNN with different elapsed time.

redundant correlations are not smaller than their mean any more. As a result, the ratio weights
of smaller correlations can be depressed and the recognition rates are raised as shown in Fig.
3.15(a). As can be seen, the recognition rate of r” = 5 is much better than that of r’ = 3. The
reason is that the large-neighborhood of 1’ = 5 can gather more information between cells and
hence, it is highly possible to retain larger correlations. By using the repeated proposed
algorithm, the number of learned patterns is increased and it also shows that the use of large
neighborhood templates can increase the number of the learned patterns than that of single
neighborhood templates. In Fig. 3.15(b), it also shows larger neighborhood gives higher
recognition rate. However, as shown in Fig. 3.15(c), when the single neighborhood template is
used, the repeated algorithm gives no effects on the recognition rates. Hence, it can be inferred

that the repeat of the algorithm is only suitable for the large-neighborhood RMCNN requiring
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—— 7 Learned Patterns with 3 x 3 Neighborhood
------ 7 Learned Patterns with 3 x 3 Neighborhood (modified)

100 T T T ! I
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40 |

Recognition Rate (%)
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0.0 0.1 0.2 0.3 0.4 0.5 0.6

Standard Deviation (o)

(c)
Fig. 3.15 The recognition rates of (a) 3 x 3 neighborhood and large neighborhood templates by
repeating the operation of the proposed algorithm (marked with ‘modified’) where 7 patterns
are learned. (b) large neighborhood templates r” =5 and r’ = 7 where 9 patterns are learned. (c)
3 x 3 neighborhood by the operation of the proposed algorithm and repeating the operation of
the proposed algorithm where 7 patterns are learned.

Anocther three sets One set of
of circuits in COMP circuits in COMP

VDD

4 4L

Fig. 3.16 The modified circuits of block COMP that can realize the repeated proposed
algorithm.
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no elapsed time is implemented. The modified circuits for repeating the operation of the

proposed algorithm is also depicted in Fig. 3.16.

3.4 EXPERIMENTAL RESULTS

The architecture of a 9 x 9 non-self-feedback RMCNN not requiring elapsed time has been
designed as shown in Fig. 3.17. The input patterns for learning and recognition are sent serially
into 9 x 9 shift registers. The decoder can select the cells in the proposed RMCNN not requiring
elapsed time to be read out in series. The controlling signals are listed in Table 3.2 with a
controlling timing diagram shown in Fig. 3.18. The learning and recognition periods are
controlled by signals clkl and clk2, respectively. Signal Reset is used to reset the charge on the
capacitor Cw. Signal newp enables the shift registers and then, signal DFF can trigger the
D-flip-flops in the shift registers to transfer the pixels of the input pattern in series. Signal pin
generates the patterns which are sent into the neural network. Signals Con_L and Con_G trigger
the local and global counters. The local counter counts the number of the currents which are
larger than the mean current in the cell. The global counter generates the signals to control

which comparative results in the cell should be counted by the local counter. Signal noi can

Input patterns
1N Series 9x9. Shift > 9x9 RMCNN w/0 > Ouput
registers Elapsed Time Stage
X l
Controlling Output
signals ¢ Decoder patterns in
series

Fig. 3.17 The architecture of a 9x9 RMCNN without elapsed time chip.
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Table 3.2THE DESCRIPTION OF EACH CONTROL SIGNAL

Control signal Description
High : Learning period starts
clkl . .
Low : Learning period stops
High : Reset the capacitor in the block RM
Reset .
Low : Normal Operation
DEF Trigger the D-flip-flop in shift register (negative
triggered) used to stored the patterns.
ow High : Enable the transfer of the shift register
newp Low : Disable the transfer of the shift register
in High : The pattern in shift register is sent to neural
P cells
Cou L Trigger the block Counter L in each cell
Cou G Trigger the global counter for controlling the
- blocks COMP and Counter L
Ik High : Recognition period starts
Low : Recognition period stops
noi High : Make the pattern in shift register noisy

introduce the noise into the
requiring elapsed time has been designed and fabricated using TSMC 0.35-um 2P4M

mixed-signal technology. Fig. 3.19 shows the photograph of the fabricated chip of an RMCNN

not requiring elapsed time.

During the learning period, the Chinese characters in Fig. 3.9 are learned. Because the noise
cannot be programmed individually, only uniform noise can be added into the correct patterns.
After the ratio weights are generated, these Chinese characters are sent again and combined

with a controllable uniform noise from 0 to 0.5 as shown in Fig. 3.20 where the noise level is set

t

input patterns. With such architecture, an RMCNN chip not
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Learning period

Ratio weight ~ Recognition
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Fig. 3.18 The timing diagram of control signals.
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Fig. 3.19 The photograph of the RMCNN without elapsed time chip.
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Fig. 3.20 The uniform noisy patterns for measurement.

0.5. Because the noise cannot be programmed by pixels, the noise in each pattern is uniform.
For the first two Chinese characters, the correct patterns could be recognized. However, the last
Chinese character is recognized unsuccessfully as shown in Fig. 3.21 where the uniform noise
level is 0.25, and the output waveform is shown in Fig. 3.22. Channel 1 is the trigger signal
which is tied to low during the readout period. Channel 2 is LSB of the decoder and channel 3 is
the output waveform of the third pattern in Fig. 3.21. The output swing is between 0.2 V and 1.8
V and the output voltage is segmented into 256 gray levels. The gray level of 0.2 V is white and
that of 1.8 V is black. There are four stable pixels at the gray level as the third pattern is
recognized. To discuss the reason for this, the absolute weights of the post simulation at

cell(4,4), which is recognized unsuccessfully in the third pattern, are listed in Table 3.3 where

Fig. 3.21 Experimental results of recognized patterns in the recognition period after a set of
patterns with noise level 0.25 are recognized.
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Fig. 3.22 Experimental output waveform of the third recognized pattern.

the simulation with Matlab and two post simulations with HSPICE in different conditions are
compared. As can be seen, the ratio weights with Matlab and HSPICE (TT) are the same and
the noisy patterns can be recognized correctly. However, with HSPICE (FS), an incorrect ratio
weight is generated and leads to an unsuccessful result. Hence, even the third pattern with a
smaller noise is recognized, the resultant pattern is still incorrect because the incorrect
correlations are retained. When three patterns are learned, block W charges or discharges the
capacitor Cw according to the input pixel of two neighboring cells. During this time, the device
ME in Fig. 3.4 (a) of block VTI2 is turned off. However, when a new pattern is sent into the
chip after the former one is learned, device ME is turned on and the output current should be 0.
However, there is still a small output current due to the asymmetric structure and the mismatch.

Meanwhile, the input of the sign detector is connected to Vref because device ME is turned on
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Table 3.3 THE COMPARISON OF THE ABSOLUTE WEIGHTS A4 WITH MATLAB AND

HSPICE IN DIFFERENT CONDITIONS

Simulator | Absolute weight of Mean ratio weight of
(Xondition) cell(4,4) cell(4,4)
0 033 0 0 0 0
Matlab  [4,,= 033 0 033 | 05 A,= 0 0 0
0 1 0 0 1 0
0 015 0 0 0 0
HSTPITCE 4,= 028 0 028 | 03725 | 4,=
(TT) 0 078 0 0 1 0
0 0.116 0 0O 0 0
HSII:ISCE A,= 041 0 041 | 0409 | 4,= 033 0 033
(FS) 0 070 0 0 033 0

and this makes it impossible to predict signal Sign_Con. As a result, the capacitor Cw is
charged or discharged unpredictably by the small current when the learned patterns are
transmitted to the 9 x 9 shift registers. Hence, the ideal absolute weights cannot be achieved.
To overcome the small output current from block VTI2, a new path can be inserted into block
W as shown in Fig. 3.23. Only one of switches Sy, and Sieam 1S turned on and the other is turned
off. As the learned patterns are transmitted to the shift register, switch S, is turned on. Hence,
capacitor Cw would not be charged or discharged by the small current from block VTI2. Switch
Siearn 18 turned on when the pattern in the shift register is sent to the neuron and can be learned or
recognized correctly. Dummy load Maymmy 1S the same with MS5. This can cause the current
source M1-M4 to have a similar load and retain the current stable during switching.

The comparison between RMCNN [67] and RMCNN requiring no elapsed time is list in

Table 3.4. The total chip area 1s 4560 um x 3900 um and the area of a single cell is 400 um x
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250 um. The total power consumption is 87 mW in operation with a supply voltage of 3 V

and a system clock frequency of 10 MHz.

’J M’J IJ M4 M8 M9 VDD
GI GIH L b q

\ Sw bi SWC\ SWdi M10

Swe Swf Sign_Con B }—O Tooi\lg:i’ron

leam
M1 1]

M
dummy M5 M6 M71 VSS
&

From VTI

Fig. 3.23 The modified circuit of the block W.

TABLE 3.4 COMPARISON BETWEEN RMCNN AND RMCNN REQUIRING NO

ELAPSED TIME
RMCNN [67] RMCNN requiring no
elapsed time
Technolo 0.35 um 1P4M Mixed- 0.35 um 2P4M Mixed-
&y Signal Process Signal Process
Array Size 9x9 9x9
No. of RMs 144 144
Area of Single Pixel 350 pum x 350 um 400 um x 250 pm
Power Supply 3V 3V
Power Dissipation 120 mW 87 mW
Readout Time
. I ms 80 ns
(of one pixel)
Weight Generating Time
(Elapsed Time) 850 sec 1.7 us
System Clock Frequency N/A 10 MHz
Dynamic Range of State
X;; (Vx; - Vref) -0.8~0.8V -0.6~0.6V
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3.5 SUMMARY

In this chapter, a new algorithm of a RNCNN not requiring elapsed time has been proposed.
In the proposed RMCNN, a new ratio weight generating method is also proposed. The use of
this method avoids a long period of elapsed time when the ratio weights are generated. By using
RMCNN requiring no elapsed time, 6 patterns can be learned and recognized. In this chapter,
the large-neighborhood RMCNNs of " = 3, 1’ = 5, and r’ = 7 are also simulated. The results
suggest that the proposed algorithm to compare the correlations and their mean should be
repeated when the large-neighborhood templates are used. RMCNN requiring no elapsed time
is modified to be suitable for large-neighborhood application. It also suggests that RMCNN
with larger neighborhood templates can increase the recognition rates or the number of learned
patterns. However, the efficiency to increase 1’ become lower when 1’ is large.

An experimental chip of 9x9 RMCNN not requiring elapsed time has been implemented
and fabricated using TSMC 0.35-um CMOS 2P4M technology. The weight generating time is
reduced to 1.7 ms while the elapsed time required by RMCNN is more than 800 seconds.

Further applications of the proposed RMCNN not requiring elapsed time will be developed

in the future.
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CHAPTER 4

THE ANALYSIS OF THE RECURSIVE
LEARNING RMCNN

4.1 INTRODUCTION

By using the architecture of cellular nonlinear (neural) network (CNN) which was proposed
by Chua and Yang in 1988 [6]-[7], [40], the concept of RMCNN was first brought up by C. Y.
Wu and J. F. Lan in 1995 [65]-[67]. RMCNN works by a set of learned space-variant templates
according to the correlation of each learned patterns. With the ratio memory and a long period
of retrieving time (elapsed time), the common characteristic can be enhanced. Moreover, in the
past study, the algorithm of RMCNN without elapsed time is proposed and also discussed in
Chap. 3 where the templates are generated by comparing the correlations with the mean of
those four correlations around any one cell instead of being generated with a long elapsed time.

However, in the past study, the discussion on how the generated templates affect the
recognition rate is not mentioned. Hence, in this work, the Gaussian noise probability density is
considered and a simple situation of one pixel with a generated template is discussed. In the
situation, the asymmetric probability of the recognized pixel is considered and it causes the
asymmetric probability density of the output. Thus, the result shows the necessity of the

templates Z to depress the error rate. To gather the information of the threshold, the recursive
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learning technique [145] is applied. The recursive learning in [145] is used for the background
and foreground modeling as following:
0,(¢)=(1=5,)- 00, (0)+ e, - H,[x:6,,(¢)]

4.1)
where (o) is the probability density function of each pixel at time t and updated by the local
kernel Ha[Xy; &-.1(®)], which is the learned target, and o and f are the learning rate and
forgetting rate. The learning rate o is usually equal to 1/t where the forgetting rate / is equal to
1-G « or and G is a coefficient smaller than 1. By using the recursive learning technique, the
probability density function of error function can be obtained and recovered by the template Z.
As a result, it can correct the asymmetric black and white probabilities of learned patterns and
also can be demonstrated by the results of simulations. By using the proposed method, the
simulations with different algorithm are made and compared.

In section 4.2, the mathematical analysis of one template generated by an RMCNN is
studied and the operating procedure of the recursive learning RMCNN is illustrated. In section

4.3, the simulation results are compared and discussed. Finally, the conclusion is given.

4.2 MATHEMATICAL ANALYSIS

The generated templates in any type of RMCNN are diamond templates and can be written

as

Aijkl = aiji(j—l) 0 aiji(j+1)

(4.2)
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Fig. 4.1 The probability of the input uc;.

except the self-feedback term. Each coefficient in RMCNN is realized by the equation (3.6) and
in RMCNN requiring no elapsed time is by the equations (3.7)-(3.8). However, for
simplification, only one coefficient is considered and other coefficients are 0. Because the
summation of the all absolute coefficients is 1, the existent coefficient may be 1. Here, we
choose the coefficient to 1 for example, and assume that the pixel C1 always has a correct input
and has a probability of 0.5 for black and white colors as shown in Fig. 4.1. Meanwhile, it is
assume that the pixel C2 has a noisy input with Gaussian noise and with asymmetric
probabilities of 0.4 and 0.6 for white and black colors, respectively, as demonstrated in Fig. 4.2.
After the recognition, the state x¢; can be shown in Fig. 4.3. As can be seen, the asymmetric
probabilities of black and white colors make the probability density of the state xc;. f RMCNN

requiring no elapsed time with a tolerance of 50% is taken into account, the error rate of the

89



10 ' T T T T

E:‘f 08 | f(ue,=1)
e B f(ug,=-1)
2 0.6 |

2]

c

S

> 047

%

§ 02

o

0.0

Fig. 4.2 The probability density of the input uc;.
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Fig. 4.3 The probability density of the state xc; after recognition.
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error can be depressed. With Matlab simulation, if there is a threshold value of -1, the error rate
pixel C1 can be calculated by the integration of the shadow in Fig. 4.4(a) and (b). However, it
can be observed that if the graph is shifted, the can be reduced from 0.4201 to 0.2935.

It can be proved that the error rate can be improved by the threshold term but it is dependent on
the probability of the input signals. Hence, a recursive learning technique is applied to learn the
error rate. The procedure is shown in Fig. 4.5 where the recursive learning is behind the
generating of ratio weights because the recursive learning algorithm is used to learn the error
rate after recognition in 5 iterations. After 5 iterations, the deviation of THR(i,},K) is calculated.
If the deviation is smaller than the constrain 0, the recursive learning stops. Based on the
recursive learning in (4.1), a recursive learning of error rate probability is constructed as shown

in Fig. 4.6 where THR(i,j) where is equal to THR(i,},k) after k iterations is the threshold value of

05 T T T T T

03 J

Probability density

state of C1
(a)
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Fig. 4.4 The error rates produced by the shadow part when the output of the pixel C1 should be

(a) 1 and (b) -1.
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Fig. 4.5 The procedure of the recursive learning algorithm.
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Fig. 4.6 The recursive learning of THR(i,j) in n™ iteration.
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cell(i,j), THR_rate is the learning rate, Cor_u(i,j,n) and y(i,j,n) are the correct pattern and
recognized output, respectively, of cell(i,j) in the ™ iterations. In the recursive learning period,
the difference of Cor_u(i,j,n) and y(i,j,n) is calculated in each iteration and update the error
probability density by [Cor_u(i,j,n) - y(i,j,n)]. Based on the equation (4.1), the recursive

learning of the templates can be written as:

.. .. . 1 .. 1
THR(I,j,n)—[COI‘_u(I,j,n)—y(l,j,n)]xm+THR(l,j,n—l)x[l—m)

4.2)
where the learning rate oz is THR_rate, the forgetting rate is 1 - G ‘o and the coefficient G is
chosen to be 1. Because even the chosen G is a coefficient smaller than 1, the equation can be
normalized by a factor. With equation (4.2), the average of [Cor_u(i.j,n) - y(i,j,n)] in K iterations

since the equation (4.2) can be derived as:

k
> Cor _u(i, j,n)-y(i, j,n)
THR(i, j, k)= "

(4.3)
Hence, the recursive learning is the learning of the average distance that the output y(i,j,n) is

away from the correct pattern Cor_u(i,j,n).

4.3 SIMULATION RESULTS

The simulation is made by using Matlab simulator. As shown in Fig. 4.7, 7 patterns are
learned by using RMCNN requiring no elapsed time without and with recursive learning. As
can be seen in Fig. 4.7, the recursive learning can raise the recognition rate and improve the
learning ability of RMCNN requiring no elapsed time. The simulations are made with recursive

learning of different constrains. It can be found that the recognition rate can be raised after the
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Fig. 4.7 The recognition rates of RMCNN requiring no elapsed time without and with recursive
learning of constrains 0.01, 0.03, and 0.05 where 7 patterns are learned

recursive learning of different constrains 0.01, 0.03, and 0.05. The recognition rates of
constrains 0.01 and 0.03 are almost the same when 7 patterns are learned but the recognition
rate of constrain 0.05 is a little lower. The required iterations are listed in Table 4.1. The
required iterations of constrain 0.01 is more than those of constrain 0.03 while the required
iterations of contrain 0.5 is a little fewer. Hence, constrain & = 0.03 is chosen. It also can be seen
that when the standard deviation of the noise is large, the required iterations also become more.
The learned templates Z are also shown in Fig. 4.8.

The recognition rates where 6 patterns and 8 patterns are learned with or without recursive

learning are shown in Fig. 4.9. The constrain d is set to 0.03 and the required iterations are listed

94



Table 4.1 THE REQUIRED ITERATIONS TO FIT THE CONSTRANS WHERE 7

PATTERNS ARE LEARNED
Gaussian Noise (o) 0.01 0.03 0.05

0 10 10 10
0.1 10 10 10
0.2 20 15 10
0.3 20 15 10
0.4 25 15 10
0.5 30 15 15
0.6 60 20 15

-0.14 -0.03 -0.04 -0.04 -0.01 -0.04 -0.09 -0.06 -0.15 -0.05 -0.02 -0.06 -0.07 -0.05 -0.03 -0.01
-0.08 -0.12 -0.15 -0.05 -0.01 -0.08 -0.01 -0.07 -0.63 -0.01 -0.22 -0.04 -0.04 -0.19 -0.11 -0.05
-0.26 -0.12 -0.01 -0.15 -0.13 -0.03 -0.05 -0.01 -0.03 -0.02 -0.03 -0.34 -0.07 -0.16 -0.04 -0.04
-0.15 -0.13 -0.09 -0.41 -0.44 -0.06 0.03 0.04 0.00 0.04 0.03 -0.08 -0.05 -0.01 -0.10 -0.09
-0.06 -0.03 -0.01 -0.03 -0.01 -0.09 0.01 0.04 0.06 0.36 0.00 -0.16 0.03 -0.04 0.00 -0.08
-0.05 -0.08 -0.01 0.00 0.04 0.00 -0.03 0.92 0.29 0.11 1.06 0.00 -0.05 -0.03 0.06 -0.12
-0.16 0.01 -0.03 -0.05 -0.03 -0.06 0.1 0.00 0.00 0.02 0.03 -0.03 0.00 0.03 0.02 -0.02
-0.03 -0.02 -0.04 0.03 0.07 -0.06 -0.10 0.05 0.01 0.07 0.05 0.02 0.02 0.02 -0.04 -0.03
-0.04 -0.02 -0.03 0.00 -0.03 0.07 -0.16 0.07 0.09 0.01 0.02 -0.03 0.09 -0.01 0.00 -0.03
-0.05 -0.01 -0.04 -0.03 -0.10 -0.04 -0.48 0.11 0.04 0.08 0.03 -0.28 0.01 -0.02 -0.01 -0.02
-0.02 -0.03 0.01 -0.01 -0.25 -0.18 -0.15 -0.03 0.01 0.04 -0.02 -0.33 -0.06 0.00 -0.02 -0.01
-0.05 -0.02 -0.01 -0.04 -0.02 -0.04 -0.11 -0.03 0.05 0.01 0.01 -0.39 -0.02 -0.15 -0.06 -0.02
-0.04 -0.02 0.00 0.01 -0.04 -0.05 -0.06 0.00 0.10 0.04 0.01 -0.04 -0.07 0.36 -0.10 -0.01
-0.06 0.12 0.02 0.11 0.03 0.13 0.30 -0.09 0.04 0.03 0.06 0.00 0.03 0.01 021 -0.01
-0.09 0.09 0.05 0.00 0.1 0.09 0.05 0.04 0.07 0.10 0.03 -0.02 0.03 0.05 0.06 0.00
-0.02 0.01 -0.03 0.02 0.13 0.14 0.01 0.01 0.08 0.04 0.18 0.03 0.02 0.07 -0.01 0.02
-0.04 -0.03 -0.08 -0.04 -0.02 -0.04 -0.02 -0.05 0.21 0.23 -0.07 -0.10 -0.01 -0.20 -0.06 -0.02
-0.12 -0.05 -0.04 -0.06 -0.04 -0.04 -0.04 -0.04 -0.05 -0.11 -0.03 -0.06 -0.01 -0.05 -0.04 -0.14

Fig. 4.8 The learned threshold Z where constrain & is 0.03 and the standard deviation of
Gaussion noise is 0.6.

in Table 4.2. The recognition rates where 6 patterns are learned with and without recursive
learning are almost the same. However, when 8 patterns are learned, the recognition rate can be
raised with recursive learning. As a result, RMCNN requiring no elapsed time can learned 6

patterns while it can learned 8 patterns by using recursive learning with a constrain of 6 = 0.03.

4.4 SUMMARY AND FUTURE WORK

In this chapter, with the concept of RMCNN, the effect of Gaussian noise has been

discussed. According to the analyzing results, the threshold is required to decrease the error rate
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Fig. 4.9 The recognition rates where 6 patterns and 8 patterns are learned with and without
recursive learning.

Table 4.2THE REQUIRED ITERATIONS TO FIT THE CONSTRANS 6 =0.03 WHERE 6

AND 8 PATTERNS ARE LEARNED

Gausmér)l Noise 6 patterns 8 patterns
0 5 10
0.1 10 10
02 10 10
03 10 10
04 10 10
05 15 D

because of the asymmetric probability densities of the inputs. Hence, a recursive learning
technique is proposed to minimize the error rate due to this factor. With the recursive learning
technique, the probability density of errors is gathered during K iterations. The deviation of
templates Z is calculated per 5 iterations. As the deviation is smaller than the constrain J, the

recursive learning stops. With the proposed recursive learning, the comparison of different
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applied algorithm is made by using Matlab simulations and the recognition rate and learned
patterns indeed can be improved with constrain & = 0.03.
However, in this chapter only the mathematic analysis is discussed and the statistic

simulations are made. Hence, further research on the circuit design of the recursive learning

RMCNN needs to be conducted.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS

In this dissertation, an LNCNN and new types of RMCNN have been proposed. In 3 x 3
neighborhood CNN:ss, their local connectivity is easy to be implemented in a VLSI design.
However, 3 x 3 neighborhood CNNs limit the realizable functions because they only generate 3
x 3 templates. When a large neighborhood function is realized, 3 x 3 neighborhood CNNs
cannot realize the function directly. Some of 5 x 5 templates can be decomposed into several 3
x 3 neighborhood templates. It takes more operation time and more power consumption to carry
out these 3 x 3 neighborhood templates in a task. By using the proposed LNCNN, the 5 x 5
templates can be approximated with the diamond templates and several functions like diffusion,
de-blurring, and Muller-Lyer illusion has been verified with Matlab simulation. In the kernel
unit of the proposed LNCNN, only the neighboring cells are connected to each other. The
propagating connections are used to deliver the stimulus from one cell to further cells expect for
the neighboring cells. Thus, the proposed LNCNN can realize large-neighborhood
diamond-shaped templates. By using the propagating connections, complicated wire
connections to farther cells can be avoided. In the proposed LNCNN, the analog memory is also

used to store the non-recurrent term produced by templates B and Z. As well, the simple
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current-mode circuits of the synapses and neuron cells are implemented by using current
mirrors. The circuits based on current mirror structure makes the implementation simple and
accurate current mirrors are not required in this design. Each cell can be implemented more
compactly and the diamond templates with constraints can be realized easily. An LNCNN chip
of 20 x 20 array has been fabricated. By using the LNCNN chip, the Muller-Lyer, which is the
function of 5 x 5 templates, has been successfully verified. The LN function has been
successfully verified by using the LNCNN chip with a power consumption of 0.7 mW on
standby and 18 mW in operation with a system clock frequency of 20 MHz.

In this dissertation, RMCNN without elapsed time has also been proposed. The
space-variant templates are learned and generated according to different local characteristics.
Same with RMCNN of former researches, RMCNN requiring no elapsed time stores the
correlations between cells and their neighboring cells. The elapsed time is taken off to avoid the
long weight generating time and to remove the effects of uncertain leakage. The device
multiplier-divider is also replaced with a comparator and a counter and this simplifies the
design. The correlations are compared with their mean, and the correlations, which are larger
than the mean, are counted. As a result, all the local correlations are compared with local
means. The local characteristics in different positions of the learned patterns can be enhanced
due to the local property. To verify the proposed algorithm, an RMCNN without elapsed time
chip of 9 x 9 array is designed, and the uniform noisy patterns have also been tested and
discussed. With the modified circuit, the RMCNN without elapsed time chip can recognize the
patterns successfully. The total chip area is 4560 um x 3900 um and the area of a single cell is
400 pm x 250 um. The total power consumption is 87 mW in operation with a supply voltage of

3 V and a system clock frequency of 10 MHz.
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Finally, a recursive learning RMCNN is proposed. The statistic and probabilistic model is
not concerned before when the image is recognized. Hence, in this dissertation, a Gaussian
noise model is concerned and discussed when an assumed template is give. According to the
analysis, the decision is not located at an optimum point. Therefore, the recursive learning of
the threshold values is applied to RMCNN for further improvement. By using the recursive
learning, the error probability density of [Cor_u(i,j,n) - y(i.j,n)] is gathered. When the threshold
is applied with the mean of the term [Cor_u(i,j,n) - y(i,J,n)], the decision points can be located at
an optimum points. As a result, the recognition rate and the number of learned patterns can be

increased.

5.2  FUTURE WORK

In this dissertation, an LNCNN chip has been fabricated and verified successfully.
However, the applications of LNCNN are few because there are few studies on LNCNN due to
the lack of LNCNN hardwares. Hence, with the proposed LNCNN structure and hardware,
many researches on LNCNN templates and phenomenon can be studied and verified.
Furthermore, because the simple circuits are used in the proposed LNCNN chip for small area
and power consumption, the linearity of the templates is not the first priority of our
consideration. Hence, the linearity of the circuits can be further modified to get a more precise
control on the templates. Meanwhile, the goal of the LNCNN chip proposed in this dissertation
is to realize the core of the LNCNNUM. In the next phase, it is anxious to achieve an
LNCNNUM chip for many applications of LNCNN. Moreover, the applications of the diamond
templates and how to transfer the 5 x 5 templates into diamond templates are also interesting
researches. The tolerance of the diamond templates will be analyzed to generate a more robust

template.
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Furthermore, an RMCNN without elapsed time is also presented. In the structure of
RMCNN, the correlations are stored on the analog memories, that is, the capacitors. Although
the analog design is an intuitional method, it is also possible to operate the RMCNN in
digitalized mode or mixed-mode structure. Under analog mode, the operation is easier and
faster. However, under digital mode, it is more precise and more economic in power
consumption. Hence, how to design a most proper structure is the main target in the next
generation. Moreover, the learning of the large-neighborhood templates can also been applied
on RMCNN. The effects of the large-neighborhood templates could be analyzed and how to
implement the space-variant templates on RMCNN chip is a challenging topic.

As to the recursive learning RMCNN, the templates Z are learned recursively. With the
simulations, it is proved that the recognition rates can be improved as an RMCNN structure is
used. However, per 5 iterations, the deviation of the learned templates Z is calculated and the
recursive learning stops when the deviation is smaller than the constrain 8. The mathematical
model and derivation will be further studied in the future. Based on the proposed algorithm, a
recursive learning RMCNN chip will also be designed and implemented in 0.18 pum or better
CMOS technology. Further research on the efficiency of the learning templates Z will be
concerned and integrated.

Finally, the integration of RMCNN and LNCNN can make the whole chip powerful.
RMCNN is applied on learning where LNCNN is used for controlling and computing. As a
machine with RMCNN and LNCNN contains memories, controllable instructions, and
learnable abilities, it may achieve an artificial intelligence system with a proper design and

controlling codes.
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