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大鄰近層細胞非線性網路與比例式記憶細胞非

線性網路之設計與分析 

 

研究生：陳勝豪 指導教授：吳 重 雨  博士 

國立交通大學電子工程系電子研究所 

摘     要 

此論文研究針對於類神經網路(細胞非線性網路)的研究與應用，細胞非線性

網路模仿神經聯結方式運算，可視為一類比式計算機處理單元陣列，適合運用在

影像處理，雖然目前數位式計算機處理單元可以達到數個GHz的處理速度，但在影

像處理方面，若以各個圖元分別作運算，仍需要大量的處理時間，因此若以細胞

非線性網路陣列平行運算，可達到高速運算的結果，並針對神經網路之特性與其

優缺點，以類比電路實現為主軸，分別實現以下兩個部分： 

1. 設計分析一可程式化之大鄰近層細胞非線性網路通用機器核心部分。 

2. 設計分析一可學習之免衰減比例式記憶細胞非線性網路與一反覆學習比例式

記憶細胞非線性網路。 

 

目前細胞非線性網路通用機器僅能處理3x3的範本，即僅有鄰接的各圖元間有

係數的關聯，而大鄰近層細胞非線性網路的主要構想，在於若可將關聯推性廣至

更遠之細胞上，可增加細胞非線性網路的功能性；此外，亦有其他團隊針對將大

鄰近層細胞非線性網路的範本，分解成數個3x3的範本來達到相同的功能，因此若

能設計一大鄰近層細胞非線性網路，一步完成大鄰近層細胞非線性網路的功能，

可節省所需之處理時間與消耗功率；因為大鄰近層細胞非線性網路為一大型陣

列，電路設計方面主要考慮其功率消耗與面積大小，並以傳導式連結的電路架構，

使其可實現大鄰近層細胞非線性網路的功能，論文中許多大鄰近層細胞非線性網
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路的範本，皆可在模擬中實現，而 所設計之大鄰近層細胞非線性網路陣列大小為

20 × 20，晶片大小為1543 μm × 1248 μm，功率消耗在待機時僅0.7 mW，一般操作

下為 18 mW，操作頻率為20 MHz，並在實現中驗證可實現人的錯覺範本。 

 

可學習之比例式記憶細胞非線性網路目的在於學習各種樣本，並將含有雜訊

的樣本復原，原理是將兩個圖元間的關係，紀錄在比例式記憶體的電容中，並利

用其漏電的缺點強化圖元間的關係，並將各個圖元周圍的範本常態化(normalized)，

因此稱之為比例式記憶，藉此可提高其辨識率；然而，由於各個圖元間的差異，

若以相同的放電時間強化圖元間關係，可能會造成此關係被破壞或是強化不足，

因此各個關係改以與圖元周圍的關係平均來決定其值的去留，以此方式可節省除

法器的運用並簡化比例式記憶細胞非線性網路的複雜度。另外，從機率統計方面

亦可推論出臨界值範本的必要性，即為其臨界值範本(Threshold)，由此提出以遞迴

學習的方式，統計出雜訊與辨識後的臨界值，藉此可更加增加其辨識率。 

 

本論文之主要貢獻為，建立一完整大鄰近層細胞非線性網路之架構，並以簡

單之電路實現，因此可達到小面積、低功率，經實驗量測可用於二元(binary)的影

像運算；另外不需放電之可學習之比例式記憶細胞非線性網路方式，亦簡化了電

路的複雜度，使其容易實現。亦討論了可學習比例式記憶細胞非線性網路之機率

統計模型，並依據推論結果，運用臨界值範本的學習，更增進其辨識率。 
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Abstract 

This dissertation focuses on the studies and applications of the cellular 

neural/nonlinear networks (CNN). CNN is an analog CPU array which can imitate the 

operations of neural connections which is suitable for image processing. Although the 

speed of the recent digital CPUs can reach higher than several GHz, when the digital CPU 

is applied on the image processing, it takes a lot of time to achieve the processing 

separately. Hence, the advantage of parallel processing of CNN array is required to 

achieve high speed processing. According to the properties of CNN, two major topics are 

realized by using analog circuit design. 

 

I. The design and analysis of a CMOS low-power, large-neighborhood CNN with 

propagating connections 

II. The design and analysis of a ratio memory CNN 

 

Recently, cellular nonlinear network universal machine (CNNUM) can only 

achieve the 3 × 3 templates of nearest connecting correlations. The main concept of 

large-neighborhood cellular nonlinear network (LNCNN) is to extend the connecting 

correlations and to increase the capability of CNN. Moreover, some studies have 
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decomposed the LNCNN templates into several 3 × 3 templates to realize the same 

functions. However, this may take more cost to achieve one LNCNN function. Hence, it 

is necessary to design a LNCNN for the templates larger than 3 × 3.  

Because LNCNN is a very large scale array, the power consumption and chip area 

are considered first. With the propagating connections, the functions of LNCNN are 

realized by the designed 20 × 20 LNCNN array and the chip size is 1543 μm × 1248 μm. 

The power consumption is 0.7 mW on standby and 18 mW in operation with a system 

clock frequency of 20 MHz.  

The purpose of the learnable ratio memory cellular nonlinear networks is to learn the 

every kind of patterns and recover the learned noisy patterns. The concept is to store the 

correlations of two neighboring cells on the capacitor in the ratio memories and use the 

intrinsic leakage to enhance the common characteristics. Moreover, the templates are 

normalized by the correlation with neighboring cells to increase the recognition rate and 

thus, it is called ratio memory. However, due to the difference of any two cells, if the 

same elapsed time for leakage is applied to enhance the characteristics, it may cause only 

the self-feedback term to remain or the enhancement of common characteristics to be 

smaller. Hence, the templates are decided by the correlation and the mean of the four 

correlations around one cell. This can make the design much easier and the divider can be 

abandoned. Besides, by the deviation of the statistics and probability, there exists a dc 

term except for the templates. It is found that the threshold template is required and 

learned by recursive learning to gather the information of the noisy patterns to increase 

the recognition rate.  

The main contribution of this dissertation is that the complete architecture of 

large-neighborhood CNN has been established and realized by a simple circuit design. 

Hence, a small-size, low-power LNCNN chip has been fabricated and measured. 

According to the experimental result, the LNCNN chip can be applied on the binary 

image processing. Moreover, the statistic and probability models of the learnable ratio 

memory CNN has also been derived and, according to the results, the learning of the 

threshold templates are used to increase the recognition rate. Furthermore, the learnable 
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ratio memory CNN without elapsed time has also been proposed to simplify the 

complexity of the circuits for realization.  
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C H A P T E R  1  

INTRODUCTION 

1.1 BACKGROUND OF ARTIFICIAL NONLINEAR 

NETWORKS 

Brain, one of the world’s best computers, makes human devoted to investigating it to 

expose the source of powerful functions. With the analog neuron models, the artificial neural 

networks (ANNs) proposed by Hopfield [1]-[5] and Chua et al. [6]-[8] have firstly been 

implemented in circuitry [10]. Since then, ANNs have attracted strong interest of researchers 

to explore their scientific and engineering applications. The models of ANNs [9], [5], [11] 

which are based on the understanding of biological nervous systems, attempt to achieve good 

performance by the dense interconnection of simple computational elements. Computational 

elements or nodes are connected via weights that are typically adapted during the operation 

such as Hopfield net [1]-[10], [11], Hamming net [11]-[15], et al. The simplest node sums N 

weighted inputs and passes the result through the nonlinear function f(•) as shown in Fig. 1.1 

[11], [16]. In Fig. 1.1, the output y can be illustrated as  

⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

−

=

1

0

N

i
ii xwfy θ  

(1.1). 
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Fig. 1.1 The simplest computational element or node which forms a weighted sum of N inputs 

and passes the result through the nonlinearity.  
 

  

 (a) (b) 

 

(c) 

Fig. 1.2 The three common types of nonlinearity of (a) hard limiters, (b) threshold logic 

elements, and (c) sigmoidal nonlinearities. 
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where xi is the ith input, wi is the ith weight factor, and θ is the internal threshold. The node is 

characterized by an internal threshold or offset θ and by the type of the nonlinearities. Fig. 

1.2(a)-(c) illustrate three common types of nonlinearity: hard limiters (threshold functions), 

piecewise linear functions, and sigmoidal nonlinearities. The common characteristic of these 

three nonlinearities is that the output y is saturated at both ends. More complex nodes may 

include temporal integration or other types of time dependencies and more complex 

mathematical operations than summation. 

For comparison, silicon devices have an intrinsic speed about 100,000 times faster than 

that of natural neurobiological devices. However, in solving problems like face recognition, 

the neurobiological system is more effective by a factor of 108 [17]. In the biological model of 

a neuron cell as shown in Fig. 1.3, the neuron contains cell body (nucleus) and the synapses, 

which are the I/O terminals of the neuron and can be classified as dendrites and axon terminals 

by their essential functions, are illustrated. Dendrites can receive excitation or inhibition 

signals from other neurons or external environment. Axon terminals can pass the excitation or 

inhibition signals to next neurons. Through different functions, different intensities of the 

excitation or inhibition signals can be transferred to next neurons. The second neuron next to 

the first one receives the signals from the axon terminals of the first neuron and other neurons, 

makes a decision by the sigmoidal nonlinearity, and sends another excitation or inhibition 

signals to next neurons through axon terminals. By using the similar this architecture that a 

brain-style computational device is richly connected to one another, an artificial neural or 

nonlinear network is constructed. The function it computes is determined by the pattern of 

connections. Based on the models of ANNs, many new topologies and algorithms are 

developed. 
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Fig. 1.3 The biological model of a neuron cell which contains the cell body (nucleus) and the 

I/O terminals of dendrites and axon terminals. 
 

 Work on the models of ANNs has a long history. Development of detailed mathematical 

models has begun about 60 years ago in the work of McCullock and Pitts [18], Hebb [19], 

Rosenblatt [20], Widrow [21], et al. In 1980s, the work by Hopfield [1]-[10], Rumelhart and 

McClelland [22], Sejnowski [23], Feldman [9], Grossberg [24]-[25], et al. has led to a new 

resurgence of the field. There seems to be five reasons for the rebirth. First, the faster and 

faster computer makes it possible to simulate and experiment with much larger and more 
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interesting networks than that in 1950s and 1960s. Second, it is believed that the faster 

computers must be in parallel computation. However, it is generally easier to build parallel 

computers than to find algorithms that are efficient. Third, the empirical tools of neuroscience 

are expanding and more and more knowledge about how the neuron functions is learned. 

Besides, it is hoped that the theoretical tools developed in the study of neural network 

computational systems will allow for the modeling of the real neural networks. Fourth, 

theoretically, Hopfield provides the mathematical foundation for understanding the dynamics 

of the recurrent networks. The mathematical model has been extended and applied by Hinton 

and Seinowski [26], Cohen and Grossberg [27], Smolensky [28] and a number of scientists to 

provide more mathematical models and solve important problems such as optimization. Fifth, 

with the extension of Rosenblatt, Widrow, and Hoff’s work dealing with learning in a 

complex, multi-layer network [20]-[21], this provided a technique, known as the 

back-propagation learning algorithm [29], is developed that multilayer perceptron-like 

devices can be reliably trained.  

The interest in ANNs comes from the networks’ ability to mimic human brain as well as its 

ability to learn and respond. Adaptation or learning is a major focus of ANN research that 

provides a degree of robustness to the ANN model. An adaptive linear element is a single 

neuron of McCulloch-Pitts type, where its weights are determined by the normalized least 

mean square (LMS) training law. The LMS learning algorithm was originally proposed by 

Widrow and Hoff [21]. This learning rule is also referred to as the delta rule. It is a 

well-established supervised training method that has been used over a wide range of diverse 

applications [30]-[33]. The simplest architecture of an adaptive linear element is shown in Fig. 

1.4. In the simplest adaptive linear element, the neuron with a linear activation function is used. 

The weights are adjusted by the LMS error of comparing the output with the desired output.  
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Fig. 1.4 The simplest architecture of an adaptive linear element where its weights are 

determined by the normalized least mean square training law by a preset desired 

output. 
 

Once the weights are properly adjusted, the response of the trained unit can be tested by 

applying various inputs which are not in the training set. If the network produces consistent 

responses to a high degree with the test inputs, it is said that the network can generalize. 

Therefore, the process of training and generalization are two important attributes of the 

network. Similar to the adaptive linear element, the original idea of the perceptron has been 

develop by Rosenblatt in the late 1950s along with a convergence procedure to adjust the 

weights [20]. The original perceptron convergence procedure is developed by Minsky and 

Papert [34] as shown in Fig. 1.5. The perceptron [20] by Rosenblatt is based on the 

McCulloch-Pitts model of the neuron with the hard limitation activation function where the 

inputs are binary and no bias is included. The perceptron of Minsky and Papert is similar to 

that by by Rosenblatt except for the addition of an activation function and the non-zero value 

of the threshold w0 [34]. 
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Fig. 1.5 A perceptron with a sigmoidal activation function. The threshold value w0 are 

initialized to small non-zero values. 
 

The perceptron convergence procedure and its variants are limited to simple one-layer 

networks involving only input and output units. It maps similar input patterns to similar output 

patterns. The similarity of patterns in the system is determined by their overlap which is 

decided outside the learning system by whatever produces the patterns. Therefore, the 

constraint of the system leads to an inability to learn certain mappings from input to output. In 

a multilayer network, the information coming to the input units is re-coded into an internal 

representation and the outputs are generated by the internal representation rather than by the 

original pattern. Multi-layer perceptrons are feed-forward nets with one or more layers of 

nodes between the input and output nodes called hidden layer. A simple two layer perceptron 

with one layer of hidden units is shown in Fig. 1.6. Each node is a perceptron with hard 

limiting nonlinearity. The hidden layer can be increased as the tasks are more complex. A  
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Fig. 1.6 A simple three-layer network which contains input, hidden, and output layers. 
 

single-layer perceptron can form half-plane decision regions whereas a two-layer perceptron 

can form any, possibly unbounded, convex region in the space spanned by the inputs. 

Moreover, a three-layer perceptron can form arbitrarily complex decision regions and can 

separate the meshed classes. Hence, no more than three layers are required in perceptron-like 

feed-forward nets. Similar behavior is exhibited by multi-layer perceptrons with multiple 

output nodes when sigmoidal nonlinearities are used and the decision rule is to select the class 

corresponding to the output node with largest output. The behavior of these nets is more 

complex because decision regions are typically bounded by smooth curves instead of by 

straight line segments and analysis is thus more difficult. As a result, these nets can be trained 

with the new back-propagation training algorithm [29]. The back-propagation algorithm uses 

a gradient search technique to minimize a cost function equal to the mean square difference 

between the desired and the actual net outputs. The network is trained by initially selecting 
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small random weights and internal thresholds and then presenting all training data repeatedly. 

Weights are adjusted after every trial using side information specifying the correct class until 

weights converge and the cost function is reduced to an acceptable value.  

One important organizing principle of sensory pathways in the brain is that the placement 

of neurons is orderly and often reflects some physical characteristics of the external stimulus 

being sensed [35]. Kohonen presents the algorithm which produces the self-organizing feature 

maps similar to those that occur in the brain [36] as shown in Fig. 1.7. Output nodes are 

extensively interconnected with many local connections. The algorithm that form feature 

maps requires a neighborhood to be defined around each node and the neighborhood slowly 

decreases in size with time. With the algorithm, a speech recognizer as a vector quantizer is 

proposed [37].  

 

 

Fig. 1.7 Two-dimensional array of Kohonen’s self-organizing feature maps. 
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Similar to Kohonen’s two dimension array of self-organizing feature maps, the cellular 

neural/nonlinear network (CNN) has first been presented as a preferred implementation of 

locally connected neural networks [6]-[7]. Unlike the former learning models, CNN involves a 

large-scale nonlinear analogic architecture for real time processing. In 1993, a further 

architecture of CNN universal machine is presented [38]-[39] and many researches are 

verified by the cellular nonlinear network universal machine (CNNUM) [38]-[46]. CNN 

consist of arrays of elementary processing units (cells) and each one is connected to a set of 

adjacent cells. This local connection property makes CNN physical design easy, especially for 

the translational invariant CNNs. Chua and Yang’s CNN cell circuit model [6]-[7], [40], 

where the neuron is model by a resistor R shunt with a capacitor C, is shown in Fig. 1.8 and 

can be presented by the equation 

( ) ( )[ ]∑
∈
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Fig. 1.8 The RC circuit model of a CNN cell. 
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where Vxij is the state voltage, Vyij is the output voltage, and Iz is the threshold current of 

neuron cell (i, j). Gakl and Gbkl are the transconductance set that can multiply the state voltage 

and the output voltage, and are called templates A and B, respectively. As a result, all the 

currents are summed and introduce a voltage drop, state voltage, on the neuron of a resistor R 

and a capacitor C. With the core architecture as shown in Fig. 1.9 [38]- [40] demonstrating such 

a large-scale array of CNN and the further architecture with logic operational units and 

memories of CNNUM, many algorithms and applications have been investigated and proposed 

[38]-[46]. 

 

 

Fig. 1.9 The core architecture of CNN with templates A and B. 
 

1.2 RESEARCHES ON CNNS AND THEIR APPLICATIONS 

The cellular nonlinear/neural network (CNN) which was proposed by Chua and Yang in 

1988 [6]-[7], [40] involves a large-scale nonlinear analogic architecture for real-time signal 

processing. Similar to the composition of the cellular automata, it is comprised of a massive 

aggregation of regularly spaced circuit clones, called cells, which communicate with each 
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other directly and locally. In a basic CNN, each cell is connected to its nearest layer of 

neighboring cells. Such a CNN, called a 3× 3 neighborhood CNN, is the most popular CNN 

structure. Their local connectivity makes CNNs easy to be implemented in a VLSI design and 

there is great tolerance to errors depends on templates. Some research results and their 

applications are listed as following. 

A. Autowaves, Chaotic, and oscillatory elements 

The studies of dynamic phenomena in arrays composed of autowaves, chaotic, and 

oscillatory elements are very important for understanding natural phenomena in biology, 

chemistry, physics, etc [47]-[51]. Pattern formation and various types of autowaves, such as 

excitability waves, concentration waves, and so on, are discussed [47]-[48], [52]-[58]. CNNs 

are usually used as the approximations of the various types of nonlinear partial differential 

equations [52]-[55]. Chaos engineering has also been steadily studied in Japan and many 

applications are developed such as controlling power for the thawing function of microwave 

ovens [56]. Moreover, it can be applied to associative memory networks that have been 

intensively studied in the field of artificial neurocomputing [59]-[61] and some applied the 

chaotic structure in solving combinatorial optimization.  

B. Recognition 

Neural networks have been used in a number of applications due to their ability to learn 

and generalize. One application of the learning ability is to recognize different patterns such as 

characters and sounds [41]-[42], [43], [62]-[70]. Dual cellular neural network architecture can 

extract the global features of the handwriting and makes the decision [62]-[63]. Character 

template learning operates with separated characters on a basis of the character patterns or 

applies segmentation and recognition of text line image simultaneously via dynamic 

programming [64]. Ratio-memory CNN (RMCNN) can learn correlations between cells and 
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the features of images are stored in the ratio memories [65]-[67]. As a result, it can recognize 

the noisy images with templates generated by ratio-memories. For the human immune systems, 

sounds also can be recognized and detected [41]-[42]. The basic idea is to make a system 

search video images for objects that are not supposed to be there and trigger an alarm message 

when it occurs [43], [68]-[70].  

C. Classification and Segmentation 

Classification and segment are also the mainly functions of neural networks and 

sometimes go along with recognition or detection [71]-[72]. Classification and segment can be 

applied on the blind source separation [73], motion estimation for MPEG-4 encoder [74]-[78], 

bubble-debris classification [71]-[72], DNA microarrays analysis [79]-[81], image 

descreening [82]-[83], object-oriented segmentation [38]-[45], [84] etc. Genetic algorithm is 

attempted to minimize the objective function or the cost function and use the independent 

properties of initial conditions and the domain of applications combined with the implicit 

parallelism [82]-[83]. For the algorithm, three kinds of different CNN templates (average, 

inverse and time-interpolated templates) can be trained by GA [85], while ICA mixture 

models are conditional independence model and unsupervised classification [73]. 

D. Image Processing 

CNN has shown a vast computing power, especially for image processing [6]-[8], [39]. 

Early CNN implementation were designed to perform one specific function in image 

processing such as edge detection, connected component detection, or hole filling. Recently, 

the ability to change or program the template values [86]-[90] has made image processing 

easily to be studied and verified. Filtering is one of the interested areas for image processing 

[91]-[96]. Besides, some studies focus on color image or gray level image processing by using 

the state of neuron and multilayer structure [97]-[98] and are applied on medical image 
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processing, image restoration, and weather forecasting. Many other tasks can also be resolved 

such as halftoning of digital images [99]-[100], image compression [101]-[102], 

skeletonization etc.  

There still many applications of CNN such as optimization [103]-[104], control systems 

[105]-[109] etc. Furthermore, some has applied the fuzzy set theory into CNN architecture 

[83], [110]-[113]. Fuzzy cellular nonlinear networks (FCNN) can be used as an interface 

between the human expert and the classical CNN [114]. Meanwhile, there are some researches 

studying the discrete-time CNN (DTCNN). DTCNN contains two categories: an analog-array 

architecture and a digital-pipeline architecture. Both continuous-time CNN (CTCNN) and 

DTCNN have powerful ability of parallel image processing. The growth of CNNUM and 

DTCNN processor has made the studies on applications of CNN more easily. 

1.3 REVIEW OF LNCNNs AND RMCNNs 

A. LNCNNs 

The cellular neural network proposed by Chua and Yang [6]-[8], [40], involves a 

large-scale nonlinear analogic architecture for real-time signal processing. In 1992, a 

programmable CNN universal machine (CNNUM) is proposed by Chua and Roska [115]. 

Many tasks can be resolved by CNNUM [38]-[45] and even now, many applications are 

studied with CNNUM. However, in many CNN applications such as image halftoning [99] 

and subcortical visual pathway [40], [116], the large-neighborhood templates are required. 

Although the large-neighborhood template can be decomposed into 3 × 3 templates 

[117]-[118], it needs more efforts and more iterations to deal with a task and, hence, more 

energy is consumed. Hence, in 2001, a large neighborhood CNN with a compact 

neuron-bipolar junction transistor (νBJT) is proposed by C. Y. Wu and W. C. Yen [119]. A 
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device called lambda bipolar transistor [120] is applied to be a neuron called neuron-lambda 

BJT (νλBJT), where the bipolar junction transistor is replaced by νBJT. In the Wu and Yen’s 

LNCNN, one NMOS device is used to be a synaptic gain controller and makes the whole chip 

smaller. Meanwhile, νλBJT is also used by C. Y. Wu and C. W. Hsiao [121] to implement a 

LNCNN. In both LNCNNs, the structure is similar but the circuit implementation methods are 

different and they can realize the templates with r > 1.  

In Wu and Yen’s [119] LNCNN, there is only one single path to link cells and transfer the 

signals one by one. Although single path can make the connections simple and implemented 

easily, it also means that the two synaptic gain blocks for bridging cells attach the input of one 

block to the output of the other. The loop gain of these two gain blocks makes complicated the 

mapping between the gains of the synaptic blocks and the coefficients of the templates. 

Because the degree of freedom is less than the coefficients of the LN templates, the 

coefficients of second layer can not be determined arbitrarily under the constraint of 

propagating connections. Hence, it cannot realize the LN templates arbitrarily due to the 

architecture. However, in Wu and Hsiao’s LNCNN [121], the path is separated into 

bi-direction but templates A and B in LNCNNs are separated and designed in the circuit. This 

takes a large area to realize them separately. Moreover, because BJTs are used to generate LN 

templates, the gain of the used BJTs is hard to be predicted and it still causes the coefficients 

of a template to be asymmetric. Furthermore, in both design, νλBJT are used to realize the 

neuron with a self-feedback, but the self-feedback term is not a fixed value and cannot be 

adapted arbitrarily. 

B. RMCNNs 

The previous researches on the learning neural networks with associative memory have 

been studied since 1995 [65]-[66] and still keep on going [67], [122]-[125]. The learning 
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algorithm is based on Grossberg mathematical model called the outstar to realize the ratio of 

the learned weights. The outstar as a classical conditioning learner can learn the related things 

and be refreshed by reminding and memorize the relative strengths of the input pattern but not 

the absolute values. The associative memory is also called ratio memory which is first 

proposed by J. F. Lan and C. Y. Wu in 1995 [66] and implemented with an analog neural net 

with on-chip learning.  

In 2000, the ratio memory has been applied on cellular neural network called RMCNN 

which is proposed by C. Y. Wu and C. H. Cheng. The ratio memory is incorporated with the 

modified Hebbian learning and the ratio memory generates the absolute weights and 

transforms them into template A to perform the image recognition. The ratio memory stores 

the correlations of neighboring cells and the information of the correlations is enhanced on a 

capacitor with a small leakage current. Hence, due to such a small leakage, a long storage time 

can be achieved. By utilizing the leakage of the capacitor, an elapsed time is also applied to 

extract or enhance the features with large correlations to recognize the noisy patterns. 

Although the small leakage during an elapsed time can enhance the feature, the uncertain 

leakage currents in cells may make the enhancement different from that with the ideal leakage 

current. Moreover, a long elapsed time may destroy the correlation on capacitors. 

An RMCNN chip where the learning circuitry is integrated on-chip makes the learning 

task operate alone without other external aids. Moreover, the learning algorithm would 

generate numerous space-variant templates. If the learning process were performed off-line, it 

must take a long loading time for each cell. In 2002, the modified Hebbian learning algorithm 

in RMCNN is re-modified. A self-feedback term is introduced to make the output of each cell 

be stable at a saturated point and the RMCNN with a self-feedback term is called 
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self-feedback RMCNN (SRMCNN). The feature enhancement effect of the ratio memory 

remains during the operation of SRMCNN.  

1.4 RESEARCH MOTIVATION AND ORGANIZATION OF 

THIS DISSERTATION 

It is believed that the large-neighborhood templates have more powerful functions and 

higher efficiency even in discrete time CNN (DTCNN) [117]. Although the 

large-neighborhood template can be decomposed into 3 × 3 templates, it takes more energy 

and time and most of decomposition methods are implemented in DTCNN but not in CTCNN. 

However, the connections of LNCNN are very complicated. Hence, several researches on 

LNCNN have been developed. In [119], a single path along one row or one column is 

constructed for simplification. The bi-directional signals pass through the single path. This 

makes it unable to generate arbitrary templates and also makes the mapping between the gain 

and the coefficients complicated. In [121], the paths are separated but the gain block is 

designed by using BJTs. The bi-directional inputs in the gain block pass through different 

numbers of BJTs due to the constraint of BJTs. Hence, it is hard to get a precise gain in the 

design. In both design of [119] and [121], νλBJT is used to realize the activation function with 

a self-feedback but the value of feedback cannot be determined. 

Based upon the above description, the aim of this dissertation is to explore a new indirectly 

connective LNCNN. In the designed LNCNN, the degree of freedom should be higher than 

the coefficients of the LN templates so that the coefficients of second layer can be determined 

arbitrarily under the constraint of propagating connections. Furthermore, the proposed 

LNCNN chip, where the non-recurrent terms generated by templates B and Z are stored [126], 
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is designed to decrease the synaptic path. The bi-directional characteristic of the propagating 

connections is kept and is separated into two connectional nodes to prevent the closed loops. 

Meanwhile, more synaptic blocks are added for all possible templates with the constraint of 

propagating connections. An experimental chip has been designed and fabricated using 

0.18-μm CMOS technology. The LNCNN chip with the array size of 20 × 20 can realize the 

function of the diamond-shaped large-neighborhood templates. The total chip area is 1543 μm 

× 1248 μm and the area of a single cell is 33.58 μm × 43.15 μm. The power is 0.7 mW on 

standby and 18 mW in operation with a 1.8 V supply voltage and a system clock frequency of 

20 MHz. With the LNCNN chip, the LN function of human illusion is realized successfully. 

With regard to RMCNN [65]-[67], [122]-[125], the correlations are stored by a capacitor 

and leaks in an elapsed time by an intrinsic leakage current. The leakage current makes the 

smaller correlations disappear and enhances the large correlations. If the elapsed time is too 

short, the performance of the enhancement cannot be obvious. However, long elapsed time 

would make the correlations become 0 and cause the ratio weights generated by the 

correlations to be meaningless. The templates are generated according to the correlations 

between cells by using the modified Hebbian learning. However, how the ratio weights take 

effect in the recognition period has not discussed. By analyzing the effect, it can be helpful to 

the improvement of the recognition rates. 

Hence, another aim of this dissertation is to design an RMCNN without elapsed time. In 

the design, the method using elapsed time for generating the templates is replaced by that 

using the comparator to approximate the result of original method. With this new method, the 

ratio memory, which is realized by a divider, can be implemented by the comparator easily. 

An RMCNN chip not requiring elapsed time has been designed and fabricated using TSMC 

0.35-μm 2P4M mixed-signal technology. 3 Patterns are learned and recognized with the 
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proposed architecture and the results are analyzed and discussed. The total chip area is 4560 

μm × 3900 μm and the area of a single cell is 400 μm × 250 μm. The total power consumption 

is 87 mW in operation with a supply voltage of 3 V with a system clock frequency of 10 HMz. 

Moreover, the mathematical analysis by using Gaussian noise is also discussed in this 

dissertation. It is found that the decision of the output does not locate at the optimum point 

according to the statistic results. The results indicate the requiring of the threshold. The 

proposed recursive learning [145] RMCNN can gather the information of the error probability 

and increasing the recognition rates and number of learned patterns. With recursive learning, 

the number of the learned patterns by RMCNN requiring no elapsed time is raised from 6 to 8. 

Hence, recursive learning indeed can raise the recognition rates. 

This dissertation contains five chapters, which include introductions, the design and 

analysis of a CMOS large-neighborhood CNN with propagating connections, the design and 

analysis of a CMOS ratio-memory CNN without elapsed time, the analysis of the recursive 

learning RMCNN.  

The rest of this dissertation is organized into 4 chapters. In chapter 2, the analysis and 

design of large neighborhood CNN are indicated. In chapter 3, RMCNN requiring no elapsed 

time is proposed and designed. In Chapter 4, the correlation between the templates of 

RMCNN requiring or requiring no elapsed time and the noise is discussed. Finally the 

conclusion is given in chapter 5. More details are illustrated as following. 

In Chapter 2, the large-neighborhood CNN has been analyzed and designed. The 

propagating connections are used to realize the diamond templates. With the diamond 

templates, the Matlab simulations are also made to verify the large-neighborhood functions 

and the results are compared with those of 5 × 5 templates. Otherwise, the low power and 

simple design can make LNCNN suitable for large-scale array. The LNCNN chip has been 
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fabricated with 0.18-μm 1P6M technology. The large neighborhood function of human 

illusion is measured and it proves that the LNCNN chip can be applied on the binary image 

processing.  

In Chapter 3, RMCNN requiring no elapsed time is analyzed. In the original operation of 

RMCNN, the long elapsed time is required. However, with a long elapsed time, some of the 

correlations will be destroyed and the feature enhancement of the ratio weight, hence, cannot 

take effect. As a result, RMCNN requiring no elapsed time has been proposed to avoid this 

situation and, as well, the multiplier-divider is not required anymore and replaced with a 

comparator and a counter. Therefore, the design of the RMCNN requiring no elapsed time 

chip can be simpler. By using 0.35-μm 2P4M, the RMCNN requiring no elapsed time has 

been fabricated and the measurement results are discussed. Moreover, large-neighborhood 

RMCNN requiring no elapsed time is also simulated and the modified RMCNN requiring no 

elapsed time is proposed. 

In Chapter 4, the input of each pixel with a Gaussian noise is discussed when an assumed 

RMCNN template is considered. According to the analysis of the output probability density, 

the decision of the output is not located at an optimum point. Hence, the recursive learning 

RMCNN is proposed to gather the error probability density of the pixel. With the error 

probability density, the threshold values are decided to lower the error rate. To verify the 

effect of the recursive learning, RMCNNs with or without recursive learning are simulated 

and compared in this chapter. 

Finally, the conclusion of this dissertation is summarized in Chapter 5. The future work 

about the further implementation of CNNs and their applications is also addressed in this 

chapter.  
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C H A P T E R  2  

THE DESIGN AND ANALYSIS OF A CMOS 

LARGE-NEIGHBORHOOD CNN WITH 

PROPAGATING CONNECTIONS 

2.1 INTRODUCTIONS 

The cellular nonlinear (neural) network (CNN) which was proposed by Chua and Yang in 

1988 [6]-[7], [40] involves a large-scale nonlinear analogic architecture for real-time signal 

processing. Similar to the composition of the cellular automata [127]-[128], it is composed of 

a massive aggregation of regularly spaced circuit clones, called cells, which communicate 

with each other directly and locally. In a basic CNN, each cell is connected to its nearest layer 

of neighboring cells. Such a CNN, called a 3 × 3 neighborhood CNN, is the most popular CNN 

structure. Their local connectivity makes CNNs easy to be implemented in a VLSI design. So 

far, many 3 × 3 neighborhood CNN VLSI chips have demonstrated their capabilities in 

realizing real-time signal and parallel processing functions [39], [119], [126], [129]-[135]. 

The CNN universal machine [38], [39] is a programmable CNN, which can perform 

several complicated functions. Recently, research on the CNNUM has been conducted and 

successfully implemented. Current CNNUMs are based on the 3 × 3 neighborhood CNN 
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structures [126], [129]-[133] and 3 × 3 neighborhood templates. Some applications [136]-[137] 

are verified by using the CNNUM. However, 3 × 3 neighborhood CNNs with the nearest 

neighborhood are restricted in their ability to solve complex problems efficiently. Although a 

large-neighborhood template can be transformed into several 3 × 3 neighborhood templates 

[118], [138], the multiple operating steps with 3 × 3 neighborhood templates require more 

time and more power. 

It is more efficient to construct a large-neighborhood CNN (LNCNN), which can perform 

functions using large-neighborhood templates. In an LNCNN, each cell is connected to more 

than one layer of the neighboring cells. Generally, an LNCNN is difficult to be implemented 

in a VLSI design through direct wire connections among the 3 × 3 neighborhood CNN cells. 

Recently, however, a design for a LNCNN has been proposed and implemented by using a 

new device called the neuron BJT (νBJT) [119]-[121]. Based on the νBJT, an LNCNN with 

symmetric templates has been designed [119]-[121]. The LNCNN with asymmetric templates 

has also been proposed with some limitations in realizing large-neighborhood templates 

[119]. 

In this work, a new improved low-power CMOS compact LNCNN architecture with 

propagating synaptic connections [139]-[140] is proposed and analyzed. In the proposed 

kernel unit, only one layer of the neighboring cells is connected, but it can realize 

large-neighborhood diamond-shaped templates in the first two neighboring layers. Thus, 

complicated wire connections to farther cells can be avoided. The propagating synaptic 

connections can be used not only in horizontal and vertical directions, but in diagonal 

directions. As a result, the circular symmetric templates can be realized. Moreover, the 

circuitry can be shared between templates A and B in the proposed architecture. This results in 

a simpler architecture and smaller chip area. To realize the proposed architecture, the 
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low-power neuron and synapses have been designed using CMOS current-mode circuits 

without static current paths. In addition, an experimental chip has been designed and 

fabricated using 0.18-μm CMOS technology. The LNCNN chip with the array size of 20 × 20 

can realize the function of the diamond-shaped large-neighborhood templates. The LNCNN 

functions of diffusion, de-blurring, and Muller-Lyer illusion has been verified successfully. 

Meanwhile, the functions of erosion and dilation are expanded with the diamond-shaped LN 

templates. The total chip area is 1543 μm × 1248 μm and the area of a single cell is 33.58 μm 

× 43.15 μm. The power is 0.7 mW on standby and 18 mW in operation with a 1.8 V supply 

voltage and a system clock frequency of 20 MHz. As a result, the proposed kernel unit has a 

very simple structure, small dc power dissipation, and small chip area, which can be applied to 

the CMOS implementation of an LNCNNUM with a huge kernel array size. Also, with the 

hardware of the proposed LNCNN structure, many new the functions or new templates of 

LNCNN can be explored.  

In Section 2.2, the LNCNN model, the global architecture of the kernel unit of the 

LNCNNUM and the components of each regular cell are described. In Section 2.3, the CMOS 

circuits of the neuron, synapses, PSW, and analog memory in the proposed LNCNN are 

described and HSPICE simulation results are presented to verify the circuit functions. The 

overall chip architecture in the design is also illustrated. In Section 2.4, the measurement 

results are shown and discussed. Finally, a concluding section is provided. 

2.2 ARCHITECTURE AND MODELS 

For a standard CNN, the state equation is written as [6]-[7], [40] 
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(2.1) 

where xij, yij, and uij are the state, output, and input of the neuron cell Cij in a CNN array, 

respectively; the coefficient Zij, called the template Z, is the threshold of the neuron cell Cij; 

and, Akl and Bkl are the coefficients, called templates A and B, respectively, which are 

multiplied with output ykl and input ukl of the cell Ckl, respectively in the sphere of influence 

(Sij) of the neuron cell Cij. The two sets of products are accumulated over all the cells Ckl in the 

sphere of influence (Sij) of the neuron cell Cij. Where there are non-zero coefficients for 

templates A and B at the neighboring cells C(i±r)(j±r), r is an integer called neighborhood of 

radius. If r is greater than 1, it is called a large-neighborhood CNN.  

 

Fig. 2.1 The architecture of a LNCNN kernel unit. 
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Fig. 2.2 The structure of the BODY in Fig. 2.1. 
 

The architecture of the proposed LNCNN kernel unit is shown in Fig. 2.1 where the region 

surrounded by the broken line represents one neural cell Cij defined by the coordinate. In Cij of 

Fig. 2.1, the BODY shown in Fig. 2.2 consists of the neuron, analog memory, synapses, and 

control circuits. The PU1, PD1, PL1, PR1, PRU, PRD, PLU, PLD, PU2, PD2, PL2, and PR2 are 

all synapses, which can multiply input signals and result in different gains which are controlled 

by the synaptic gain controlling signals. As a result, these synapses can be combined to realize 

the coefficients of templates A and B, except the center coefficients Aij and Bij. Among these 

synapses, PU2, PD2, PR2 and PL2 can propagate signals to the cells farther than the 

neighboring cells. For example, the signal I(i+1, j) from C(i+1)j can pass through PL2, be 

multiplied by the gain of the PL2, and then reach C(i-1)j. These connections used to realize 

large-neighborhood templates are called the propagating connections. PLU, PLD, PRU, PRD, 
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PL1, PD1, PR1, and PU1 are used to connect the neighboring cells directly. These connections 

among the nearest neighboring cells are called direct connections. PSW is a current switch and 

the gain of PSW is 1. The polarities of the signals sent out of the BODY in upward, downward, 

leftward, and rightward directions are determined by the four PSWs. The output current of the 

PSW is combined with that sent from the synapse of the propagating connections in the former 

cell. Eventually, the resultant output is sent into the synapse of the next cell. 

The DCS and CLK in Fig. 2.1 are digital controlling signals and clock signal, respectively, 

to control logic circuits and switches in the kernel unit. The Pixel input signal of one cell is 

connected to the Pixel output signal of the former cell. For example, the Pixel input of Cij comes 

from the Pixel output of C(i-1)j. This signal transfers the input pattern to each cell and the output 

pattern to the output pads in series. The arrows between the cells are connected to the relative 

positions of each cell. For example, the arrow line from the PRU of Cij is connected to the 

BODY of C(i+1) (j+1) and similarly, the arrow line from C(i+1) (j+1) into the BODY of Cij comes 

from the PLD of C(i+1) (j+1). 

In the structure of the BODY shown in Fig. 2.2, the switches S1-S4 are controlled by the 

signals of DCS and CLK, and the switch S5 is controlled by a 5-bit decoder. The SRDA 

contains one shift register, digital controlling logic, and a 1-bit D/A converter (DAC) inside. 

The use of shift register makes chip implementation realizable. It is impracticable to implement 

a large capacitor to store the analog signal in each cell during the overall operational period. 

Because shift registers can be refreshed by sending a set of data into the chip, there is no 

additional signal to reset shift registers. The Pixel input of Cij can be transferred to the next cell 

by the SRDA. The SRDA provides the binary input signal uij or the initial state value xij(t = 0) of 

each cell during the operation. After the operation, the SRDA can store the binary output of yij 

from the neuron and the analog output yij can be read out by turning on the switch S5.  
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In Fig. 2.2, the Neuron is a neuron with a standard piecewise linear ramp function: 

( ) 1
2
11

2
1

−−+== ijijijij xxxfy . 

(2.2) 

The input of the BODY comes from the summation of the eight synaptic outputs as drawn in 

Fig. 2.1 and the output of the BODY is duplicated eight times and sent to the four PSWs and 

four corner synapses PRU, PRD, PLU, and PLD. The PZ generates the coefficient Zij where the 

PS is the synapse that generates the center coefficients Aij and Bij of templates A and B, 

respectively. The Analog Memory is used to store following equation: 

∑
∈

+=
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(2.3) 

Before the Neuron, there is a Sign Controller which is used to adjust the polarities of the signals 

from the nine synapses. 

In the first step of the operation period, only the signal of Xmij in (2.3) is calculated, 

sampled and stored by the Analog Memory. In addition, the digital code of the input uij is sent 

from the Pixel input to the shift register in the SRDA and stored. Switches S2 and S3 are closed 

and S1 and S4 are left open. At this time, all the synapses are set to certain gains to generate the 

template B and the PZ is set to generate Zij. The piecewise linear ramp function of the neuron is 

turned off. The input signal uij from the SRDA passes through the Neuron. At this moment, the 

output of the neuron is the same with the input signal uij from the SRDA, multiplied with the 

template B and combined with Zij to form Xmij, which is instilled into the Analog Memory. 

After the switch S2 is opened, the Xmij is stored in the analog memory.  

In the second step, the digital code of the initial state xij(t = 0) of the desired function is sent 

from the Pixel input to the shift register in the SRDA and stored. S1 and S2 are open and S3 and 
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S4 are closed. Xmij is read out and the neuron is set to the initial state xij(t = 0) provided by the 

SRDA. Meanwhile, the gains of all the synapses are set to generate the template A. In the third 

step of the operation period, the S1 switch is turned on and the S3 switch is turned off. A 

feedback loop is constructed and then the calculation of (1) is started. After the operation is 

completed, the readout period commences. The output yij is converted to binary form and the 

binary output is sent to and stored at the shift register in the SRDA. As the input pattern of the 

next operation is sent into the LNCNN, the output pattern of the former operation can be read 

out from the Pixel output of the last cell. 

 

Fig. 2.3 The large-neighborhood template generated by a LNCNN with propagating 
connections. 
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Fig. 2.3 shows a large-neighborhood template where symbols from the letters a to q 

represent the template coefficients and the coefficients from a to m can be defined by the 

proposed LNCNN. The neighborhood of radius r’ is redefined as shown in Fig. 2.3. Here, the 

sphere of influence Sij of a large neighborhood is not considered as a 5 × 5 matrix, but is defined 

as a diamond-shaped matrix in Fig. 2.3 with neighborhood of radius r’=2. Each coefficient can 

be derived from the gains of the synapses in Fig. 2.1 and the PS in Fig. 2.2. The derived 

equations are listed in Table 2.1 where the template coefficients in Fig. 2.3 are expressed by the 

gains of the synapses and the gain of each synapse is expressed by the template coefficients. 

Thus, the architecture in Fig. 2.1 and Fig. 2.2 can be used to generate the large-neighborhood 

 

Table 2.1 DERIVED EQUATIONS OF TEMPLATE COEFFICIENTS AND GAINS OF 

SYNAPSES 
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templates with r’ = 2 shown in Fig. 2.3. 

According to Table 2.1, the gains of the synapses PD2, PU2, PL2 and PR2 of propagating 

connections should be less than 1 for each. If the synaptic gain of a propagating connection is 

larger than or equal to 1, then the signal coming from the cells along one direction would 

diverge. The gains of these synapses of propagating connections can be determined from the 

template coefficients f, g, h, and i as listed in Table 2.1. Because of the propagating 

connections, if the template coefficients f, g, h, and i are not equal to zero, the coefficients o, q, 

n and p would not equal zero also, respectively. However, if the template coefficients n, o, q, 

and p are to be set zero, the template values f, g, h and i would be small enough when compared 

with the template values b, c, d and e, respectively. 

The four corner coefficients j, k, l, and m are determined directly by the synapses PRD, 

PLD, PRU, and PLU, respectively, of direct connections. Similarly, the coefficient a can be 

generated directly by the PS in Fig. 2.2.  

 

2.3 CIRCUIT IMPLEMENTATION AND SIMULATION 

RESULTS 

It has already been established that the current-mode signals can be easily combined. In 

addition, current-mode circuits are faster and consume less power than voltage-mode circuits. 

However, when the current signals need to be duplicated, more devices are required to mirror 

the currents. In the design, the currents in fewer paths need to be duplicated. Therefore, the 

proposed LNCNN has been implemented by using current-mode circuits. In all the 

current-mode circuit realizations, the signals represented in Fig. 2.1 and Fig. 2.2 transferred 
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inside the kernel unit are all in current mode except the DCS, CLK, synaptic gain controlling 

signals, and the digital logic circuits signals. 

 

Fig. 2.4 The circuit diagram of the Neuron and PZ in Fig. 2.2.  
 

A. Neurons and PZ 

Fig. 2.4 depicts the circuit of the PZ and the Neuron inside the BODY as indicated by dotted 

lines in Fig. 2.2. The PZ is implemented by the devices MZ1 and MZ2. The gate bias voltages 

VZP and VZN directly control the current through MZ1 and MZ2, respectively, to generate the 

threshold current IZ. The circuitry of MN1-MN6 is the neuron core with the piecewise linear ramp 

function. The gate bias voltages V1 and V2 are used not only to maintain the static current of 

the neuron zero with the devices MN4 and MN3, respectively, but they are also used to limit the 

currents through MN1 with MN2 and MN6 with MN5, respectively. Furthermore, MN3 and MN4 

also act as the switch S1 in Fig. 2.2. The gate bias voltages V1 and V2 are controlled by the 

external bias current Ibias. The transfer characteristic of the neuron is simulated as shown in 

Fig. 2.5. The low and high limit currents of the piecewise linear ramp function range from 351.8 
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nA to 487.8 nA and from 389.5 nA to 534.3 nA, respectively, when the external bias current 

Ibias is in the range from 250 nA to 360 nA and the supply voltage is 1.8 V. When the neuron is 

on standby or there is no input current, the leakage current is less than 1nA. In the first and 

second steps of the operation period, S1 is turned off; that is, MN2-MN5 are turned off. In this 

way, the neuron core acts as two current mirrors. As the input current Iu, shown in Fig. 2.4, is 

provided by the SRDA in the first step, the current IXm is calculated and in the second step the 

initial value Ix(t=0) is also introduced by the SRDA. Moreover, MN7 and MN8 are used to send 

the binary outputs to the SRDA or to send the transient currents to the analog outputs through 

S5. 

 

Fig. 2.5 The transfer characteristic of a neuron with different external bias currents Ibias. 
 

B. Synapses and Sign Controller 
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The circuit diagrams of the synapses are shown in Fig. 2.6(a)-(c) and are indicated by 

broken lines, whereas the circuit diagram of the Sign Controller is demonstrated by broken 

lines in Fig. 2.6(d). The circuit of Fig. 2.6(a) is used to realize the synapses PL2, PR2, PD2, and 

PR2 of propagating connections. There are two paths, N-type and P-type, in one synapse to deal 

with the bi-directional current inputs. If a LNCNN is on standby or there are no input currents, 

the synapses consume no power. The device pairs Msa1/ Msa3 and Msa2/ Msa4 can be seen as two 

sets of current mirrors and the maximum gains are determined by the ratios of Msa1/ Msa3 

andMsa2/ Msa4. Msa6 and Msa5 with gate bias voltages Vbiasp and Vbiasn are operated in the 

linear region to control the current mirror gains of Msa1/ Msa3 and Msa2/ Msa4, respectively. All 

the gate bias voltages Vbiasp and Vbiasn of synapses combined with the gate bias voltages VZP 

and VZN of the PZ form the synaptic gain controlling signals as shown in Fig. 2.1. Furthermore, 

the gate bias voltages Vbiasp and Vbiasn are generated by using an on-chip 4-bit DAC. There 

are 16 different values for Vbiasp and Vbiasn. A HSPICE simulated Inouta vs. Inina diagram of 

 
(a) 
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(b) 

 
(c) 
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(d) 

Fig. 2.6 The circuit diagrams of (a) the synapses PL2, PR2, PD2, and PU2; (b) the synapses 
PL1, PR1, PD1, and PU1; (c) the synapses PRU, PRD, PLU, PLD, and PS; (d) the Sign 
Controller. 
 
the N-type synapse with differing gate bias voltages Vbiasn ranging from 34.4 mV to 737 mV is 

shown in Fig. 2.7. The corresponding N-type and P-type current gains of the input current 

ranging from 300 nA to 500 nA are illustrated in Fig. 2.8, where Msa1-Msa4 are operated in the 

subthreshold region with a supply voltage of 1.8V. The N-type synaptic gains with different 

Vbiasn values ranges from 0 to 1.54 in the input current range from 300 nA to 500 nA while the 

P-type synaptic gains with different Vbiasp values ranges from 0 to 1.42. The N-type synaptic 

gain has an average variation of ±6.38% and the P-type synaptic gain has that of ±7.72%, as 

indicated by short bars over the input current range from 300 nA to 500 nA. It can be seen that 

the synapses can generate the desired templates with a tolerable level of error by setting the 

codes for the Vbiasn and Vbiasp voltages with proper values. 
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Fig. 2.7 The HSPICE simulated Inouta vs. Inina diagram of the N-type synapse in Fig. 2.6(a) 
with 16 different values for Vbiasn. 
 

The circuits of the synapses of direct connections are shown in Fig. 2.6(b) and Fig. 2.6(c) 

and it can be seen that the circuits and operations are similar to those of the synapses of 

propagating connections. The circuit in Fig. 2.6(b) realizes the synapses PL1, PR1, PD1, and 

PU1 while that in Fig. 2.6(c) realizes PLU, PLD, PRU, PRD, and PS. The P-type and N-type 

synaptic gains of one synapse of direct connections can be set to different values to perform 

more functions. The synapses shown in Fig. 2.6(b) share the two master devices Msa1/Msa2 with 

the synapses of the propagating connections while those shown in Fig. 2.6(c) share MN1/MN6 

with the Neuron. The output currents of Fig. 2.6(b) and Fig. 2.6(c) are sent to the Sign 

Controller using the switches Sn and Sp to decide the polarities of the signals. The maximum 

gains of the synapses PLU, PLD, PRU, and PRD are set to 2 and those of PL1, PR1, PU1, and 
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(a) 

 

(b) 
Fig. 2.8 The range of (a) the N-type current gains and (b) the P-type current gain of the 
synapses with an input current range from 300 nA to 500 nA. 
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PD1 are set to 4 whereas the gain of the synapse PS is set to 8. Through this design, this 

LNCNN can generate the templates as indicated in Fig. 2.3 where the center coefficient a is 

smaller than 8 and the coefficients b, c, d, and e are smaller than 4, while the coefficients j, k, l, 

and m are smaller than 2. The circuitry of the Sign Controller is shown in Fig. 2.6(d) where the 

switches Sn and Sp of the 9 synapses used to adjust the polarity of the signals from the synapses 

are also drawn. The devices Msd3 and Msd6 with gate bias voltages V3 and V4, respectively, 

maintain the static current from Msd1 to Msd4 at zero level. Msd1/Msd2 and Msd4/Msd5 are the 

current mirrors used to invert the direction of the current flow. If the polarity of the input signal 

from synapses is negative, the Sp is turned off and the input signal enters the neuron or analog 

memory through the switch Sn and Sign Controller. However, in the same situation if the input 

signal is positive, the Sn is turned off and the signal enters the neuron through the Sp switch. 

C. PSWs 

Each of the synapses contains one pair of switches Sn and Sp to control the signal polarities 

except the synapses of propagating connections. Hence, to confirm the output signals sent out 

of the BODY and those sent out of the synapses of propagating connections have the same 

polarities, the PSW has been added to achieve this purpose. 

Fig. 2.9 depicts the circuit diagram of the PSW. The output currents of the neuron are 

mirrored through Msw1 and Msw4 to generate the gate voltages on Msw2 and Msw3, respectively. 

The current through Msw5, where the gate is connected to the gate of MN1 (Msw2), is opposite to 

the current through Msw6, whose gate is connected to the gate of Msw3 (MN6). The polarity of the 

output current in the PSW is selected using the switches Ssw1-Ssw4. For a positive (negative) 

output of the PSW, the switches Ssw1 and Ssw4 (Ssw2 and Ssw3) are closed and, at the same time, 

the switches Ssw2 and Ssw3 (Ssw1 and Ssw4) are opened. There are four PSWs containing the  
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Fig. 2.9 The circuit diagram of the PSW. 
 

switches Ssw1-Ssw4 and Msw5-Msw6 as drawn in Fig. 2.1 and these four PSWs share the circuits of 

Msw1-Msw4. 

A comparison of the device numbers and interconnection lines of the kernel unit between the 

proposed structure and the LNCNN with direct connection using the circuit structure in [126] is 

given in Table 2.2. As can be seen from Table 2.2, the LNCNN with direct connections needs 

12 connections, including 4 connections to the farther neighboring cells. In the proposed 

structure, more devices are required; however, as each cell only has 8 connections to the nearest 

eight neighboring cells, this facilitates the IC implementation.  

D. Analog Memory 

Fig. 2.10 depicts the circuit diagram of the analog memory where MM1 and MM9 are used to 

generate the gate voltages of MM6 and MM14, respectively, from the input current IXm. The gate 
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Table 2.2 COMPARISON OF DEVICE NUMBERS AND INTERCONNECTION LINES 

 

 

voltages are stored at the node A (B) by turning off MM11 (MM3) with the signal Vsample (with 

the complementary signal of Vsample). After sampling, the signal Venable rises to high when 

the current is accessed. MM4 and MM12 are used to compensate for the charge injections and the 

clock feedthrough from MM3 and MM11, respectively. The devise size of MM4 and MM12 is half 

of MM3 and MM11. MM5 and MM13 are used to increase the gate-source capacitance Cgs of MM6 

and MM14, respectively, in order to suppress the sampling error. The current mirror MM7/MM8 

(MM15/MM16) is used to isolate the storage node A (B) from the output node of analog memory 

so that the stored voltage is not affected by the voltage change at the output node. As the analog 

memory is read out, the signal Venable (the complementary signal of Venable) turns on MM17 

(MM18) and, at the same time, it also turns on the compensational function of MM4 (MM12). 

Furthermore, the devices MM2 and MM10 with gate bias voltages V6 and V5, respectively, 

maintain the static current from MM9 to MM1 at zero level and also, act as the switch S2, as can 

be seen in Fig. 2.2. 

E. Overall Chip Architecture 

Fig. 2.11 shows the architecture of the whole system where the size of the kernel unit array 
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Fig. 2.10 The circuit diagram of the analog memory. 
 

is 20 × 20. There are 5 × 54 shift registers to store the digital codes of synaptic gain controlling 

signals. There is no additional signal to reset the shift registers. Shift registers can be refreshed 

by input signals. The digital codes of each synaptic gain controlling signal are stored in a 4-bit 

shift register for absolute value and a 1-bit shift register for polarity. However, one synapse 

requires two synaptic gain controlling signals and the signals have different values when 

templates A and B are generated. Hence, there are 5 × 52 shift registers required for templates A 

and B. For the synaptic gain controlling signals of template Z, a 6-bit register is required for the 

absolute value of template Z and a 1-bit shift register is used for its polarity. Thus, 5 × 2 1-bit 

shift registers are required for template Z. The signal from the Digital Controlling Circuit 

determines whether Generation Circuit for templates A, B and Z, which has 28 DACs, 

generates synaptic gain controlling signals for either template A or for templates B and Z. The 

external bias current Ibias generates the bias currents and voltages required in the system, 

especially the bias voltages V1-V6 inside the Neuron, Sign Controller, and Analog Memory as 

shown in Fig. 2.1. The signals Input_Enable and Weight_Enable with external clock signal 

Ext_CLK are used to determine whether the external input signals are input and initial patterns  
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Fig. 2.11 The architecture of the 20x20 LNCNN system. 
 
or the digital codes of synaptic gain controlling signals, respectively. In the array, 5-bit binary 

signals in one clock cycle are sent into the LNCNN and read out from the Pixel outputs. From 

20 neuron analog output signals of one column selected by a 5-bit decoder, 3 real-time neuron 

analog output signals can be read out using a 20-to-3 multiplexer. 

The timing diagram is shown in Fig. 2.12. In the first step, both input pattern and digital 

codes of the templates A, B, and Z are ready for operation, and the signal A/B is set to High first 

to cause the template generate circuit to generate synaptic gain controlling signals of the 

templates B and Z. Meanwhile, the function of the neuron in the kernel unit is turned off. The 

signal Pattern goes to High in order to inject the input pattern into all the neurons. The result of 

the first step is sent into the analog memory and stored after the signal Sample is enabled and 

then the signal Pattern returns to Low. 

In the second step, the pattern in the shift register of the SRDA is replaced by the initial 
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Fig. 2.12 The timing diagram of the controlled signals in LNCNN 
 

pattern of the desired function. The initial pattern in the shift register is then sent to the neurons 

as the initial values by enabling the signal Pattern again. Meanwhile, the signal A/B is set to 

Low so that the template A is generated by the synapses as the template generation circuit 

generates the synaptic gain controlling signals of the templates A. In the third step, the signal 

Operation_Start is enabled and the signal Pattern is disabled to turn off the initial values. The 

function of the neurons is turned on to start the overall calculation of template A with the 

signals read out from the analog memories. After the outputs are stable, the binary output 

pattern can be stored in the SRDA as the signals Latch and Input_Enable are set to High. When 

the next input pattern comes in, all the digital signals are disabled except the signal 

Input_Enable and the output pattern can be read out from the 5-bit Pixel outputs.  

F. Hspice Simulation Results 
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The proposed LNCNN circuit was designed using CMOS 0.18-μm technology. The HSPICE 

post-layout simulation was performed with a 20 × 20 kernel cell array to verify the circuit 

functions. The function of Muller-Lyer illusion with the 5 × 5 large-neighborhood template 

[40], as shown in Fig. 2.13 was adopted. According to the original 5 × 5 template, the predicted 

signs of each diamond-shaped template are set in Fig. 2.14. Only the center coefficients Aij and 

Bij are positive and the others are negative in Fig. 2.13, so it is reasonable that only the center 

coefficients in the diamond-shaped template are set to positive. The input pattern of 

Muller-Lyer illusion is shown in Fig. 2.15(a). After the HSPICE simulation, theresultant output 

pattern is shown in Fig. 2.15(b), where the upper line with outward arrows becomes shorter 

than the lower line with inward arrows after illusion. The function cannot be realized by a 3 × 3 

neighborhood template. The coefficients of the diamond-shaped, large-neighborhood template 

in Fig. 2.3 were extracted from the post-layout simulation results directly and are shown in Fig. 

2.14, which has the same signs as those in Fig. 2.13. 

The simulated standby power consumption is about 1.148 mW where a 1.8 V supply 

voltage and a system clock frequency of 20 MHz are used. The external bias current is 360 nA. 

The kernel unit array only consumes 1 μW, which accounts for about 0.087% of overall 

 

 

Fig. 2.13 The 5 x 5 templates B, A and Z for Muller-Lyer illusion [40]. 
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Fig. 2.14 The extracted values of the diamond-shaped template from a HSPICE post-layout 
simulation. 
 

    

(a)                                    (b) 
Fig. 2.15 (a) The input patterns of Muller-Lyer illusion. (b) The resultant output pattern of 
Muller-Lyer illusion from the HSPICE simulation result. 
 

standby power consumption. As the array is extended to 128 × 128, the standby power 

consumption is about 7.35 mW and is dominated by the peripheral circuits. 

G. Software Simulations Results-CNN Visual Mouse Platform [141] 

The published large-neighborhood templates are limited. Among the four published 

LNCNN templates [40], [118], [138]. Only one template [118] cannot be implemented by using 
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the proposed structure since it violates the constraint. Other LN templates for diffusion, 

de-blurring, and Muller-Lyer illusion have been successfully verified. The 5 × 5 templates B of 

diffusion [138] and de-blurring [40] are approximated by the proposed diamond-shaped 

templates as shown in Fig. 2.16(a) and Fig. 2.16(b). The coefficients of templates A and Z are 0 

for diffusion. For de-blurring, the center coefficient of template A of 5 × 5 template is 10 and 

that of diamond-shaped template is 7. Both templates Z are 0. The input pattern and simulation 

results of diffusion and de-blurring are shown in Fig. 2.17(a) and Fig. 2.17(b), respectively. It is 

shown that the diamond-shaped template can realized the function of 5 × 5 templates correctly. 

The diamond-shaped LN templates also can realize some operations of binary images in one 

step which can be realized by the 3 × 3 neighborhood templates in two steps. The erosion and 

dilation function with 3 × 3 neighborhood templates can contract and expand the edges of 

images by one pixel, respectively. However, the diamond-shaped LN templates can reinforce 

the functions to contract or expand the edges by two pixels. Fig. 2.18 demonstrates the function 

of erosion where the boundary cells are set to be white (-1). For dilation, it can be realized by 

the same templates of erosion by making template Z positive. Besides, these two functions with 

the diamond-shaped LN templates cannot be achieved with 3 × 3 neighborhood templates in 

one step. Two iterations with 3 × 3 neighborhood templates are required to realize the same 

functions. Thus, it takes more time and energy. 
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(a) 

 

(b) 
Fig. 2.16 The template B of 5x5 and diamond-shaped templates of (a) diffusion [138] and (b) 
de-blurring [40]. 
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(a) 

 

(b) 
Fig. 2.17 The input patterns and simulation results of (a) diffusion and (b) de-blurring. 
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Fig. 2.18 The input and output patterns of erosion with 3 × 3 neighborhood templates [40] in 
two iterations and with diamond-shaped templates in one iteration. 
 

2.4 EXPERIMENTAL RESULTS 

An experimental LNCNN chip has been fabricated using 0.18 μm CMOS technology. The 

whole chip area is 1543 μm × 1248 μm where the unit cell is 33.58 μm × 43.15 μm. Fig. 2.19 

shows the photograph of the fabricated LNCNN chip.  
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Fig. 2.19 A photograph of the fabricated 20 × 20 LNCNN chip. 
 

The input image pattern in Fig. 2.15 (a) was used to verify the illusion function of the 

fabricated LNCNN. The digital codes of the synaptic gain were adjusted to achieve the suitable 

value. The binary output pattern was read out from the 5-bit pixel outputs as indicated in Fig. 

2.11. The analog current-mode transients can be read out from the three real-time analog 
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outputs in Fig. 2.11 using the transimpedance amplifiers outside of the chip. When the analog 

output current is 0, the output voltage of the transimpedance amplifier is 0.9 V. Since most 

pixels in the input pattern shown in Fig. 2.15(a) are in white and all the white pixels remain in 

white after processing, the N-type synaptic gain of the PS is set to a larger value than P-type 

synaptic gain in the measurement. In this way, the problems of variation in the process can be 

overcome. 

 

Fig. 2.20 The experimental resultant output pattern of Muller-Lyer illusion. 
 

The measured binary output pattern is shown in Fig. 2.20. The experimental result is the 

same with the post-layout simulation result except the Pixel A which is black in the simulation 

results of Fig. 2.15(b). The reason for the error is that the bias current of the Pixel A is too small 
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due to process variation. Thus, the self-feedback of the Pixel A cannot keep Pixel A in the black 

state.  

The measured analog output voltage of Pixel B through the transimpedance amplifier is 

shown in Fig. 2.21. The step signal is the signal Operation_Start, as illustrated in Fig. 2.11. As 

the signal Operation_Start rises, the analog output remains nearly at 0 V within about 1 μs. 

Then it starts to rise and reaches 0.9 V at about 2 μs. Finally, it takes 3 μs to achieve the overall 

operation from black state to white. The measured transient response time is 3 μs. From the 

result of post simulation, the transient response operation time is less than 0.1μs without the 

transimpedance amplifier. The difference is due to the large loading effect of the 

transimpedance amplifier. 

 

Fig. 2.21 The experimental results of Pixel B with the signal Operation_Start. 
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In the experimental result, the overall power consumption was about 0.7 mW on standby 

and 18 mW during the operation in the third step with a system clock frequency of 20 MHz. The 

comparisons of power dissipation and energy consumption per cell in the proposed LNCNN 

with those in CNNUC3 [132]-[133] and ACE16K [131] are listed in Table 2.3. As may be seen 

in Table 2.3, the cell in the LNCNN has lower power dissipation and energy consumption. The 

comparison between the LNCNN with symmetric templates and the proposed LNCNN is also 

made. The quiescent power dissipation can be much lower but the single pixel area of LNCNN 

with symmetric templates is much smaller. Because LNCNN with symmetric templates only 

can realize symmetric and positive templates, these drawbacks, therefore, save much area but 

cannot realize arbitrary templates. Furthermore, the tolerance to errors is based on the used 

templates. The diamond templates of illusion where the input patterns are combined with 

Gaussian noise of standard deviation 0.02 can be realized successfully by using CNN Visual 

Mouse Platform. 

 

Table 2.3 COMPARISON OF LNCNN WITH CNNUC3 [132]-[133] AND ACE16K [131] 

 
This Work 

with Propagating 
Connection 

1986 [10] 1987 [11] 

Technology @ Supply 0.18 μm 6M-1P @ 
1.8V 

0.5 μm 3M-1P @ 
3.3V 

0.35 μm 5M-1P 
@ 3.3V 

Power Dissipation 
(per cell) 45 μW 250 μW 180 μW 

Processing Speed 20 MHz 10 MHz 30 MHz 
Energy 

Consumption 
(per cell, per volt)  

1.25 pJ/V 7.58 pJ/V 1.82 pJ/V 

Cell Size 33.58 x 43.15 μm2 102.2 x 120 μm2 73.3 x 75.7 μm2
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Table 2.4  COMPARISON OF THE PROPOSED LNCNN AND LNCNN WITH 

SYMMETRIC TEMPLATES 

 LNCNN with symmetric 
templates[65]-[66] 

LNCNN with propagating 
connections 

Technology 0.6 mm 1P3M N-well 
CMOS Technology 

0.18 mm 1P6M Mixed- 
Signal Process 

Array Size 32 x 32 20 x 20 
Single Pixel Area 22 mm x 25 mm 33.58 mm x 43.15 mm 

Power Supply 3 V 1.8 V 
Quiescent Power 
Dissipation 60 m W 0.7 mW 

Power Dissipation 65 mW 18 mW 
Readout Time 
(of one pixel) 1 μs 50 ns 

Current gain of BJTs 17.5 A/A Not Required 
Dynamic range of state 

Xij 1.3 ~ 2.1 V - 0.5 ~ 0.5 μA 

State transition time 0.8 μs 0.1 μs 
 

2.5 SUMMARY 

In this chapter, a new architecture of LNCNN has been proposed. In the proposed LNCNN, 

the propagating connections are utilized to generate diamond-shaped large-neighborhood 

templates. In such a connected network, each neuron cell only needs to contact the neighboring 

cells without the need for farther interconnections. Therefore, such network architecture is 

suitable for VLSI implementation. Moreover, by separating the synapses into N-type and 

P-type parts without static currents, the static power dissipation can be reduced to a minimum 

level. Moreover, during such an operation, the synapses of direct connections with different 

N-type and P-type synaptic gains can also offer more functions. The connections can also be 

implemented both in horizontal and vertical directions and in diagonal directions to realize the 

circular symmetric templates. Furthermore, the LNCNN functions of diffusion, de-blurring, 
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and Muller-Lyer illusion has also been verified successfully. With the proposed LNCNN 

structure using propagating connections, many new applications and new LNCNN templates 

can be explored.  

A CMOS large-neighborhood CNN chip with a 20 × 20 kernel unit array has been 

fabricated in 0.18-μm CMOS technology. From the experimental results of this study, it can be 

seen that the 5 × 5 template of Muller-Lyer illusion is reconstructed into a diamond-shaped LN 

template and the function has been successfully realized using the LNCNN and with a chip 

power consumption of 0.7 mW on standby and the 18 mW in operation with a system clock 

frequency of 20 MHz. The kernel unit of LNCNN can also perform input level of input patterns. 

However, due to the used shift registers for image storage, only the binary patterns can be 

operated with the LNCNN chip. Hence, there is great tolerance to errors due to binary signal 

operation and accurate circuits based on current mirrors structure are not required. 

Further research on the universal machine (UM) for LNCNN needs to be conducted for 

various applications to be realized. 
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C H A P T E R  3  

THE DESIGN AND ANALYSIS OF A CMOS 

RATIO-MEMORY CNN                              

WITHOUT ELAPSED TIME 

3.1 INTRODUCTION 

The cellular nonlinear (neural) network (CNN) which was proposed by Chua and Yang in 

1988 [6]-[7], [40] involves a large-scale nonlinear analogic architecture for real-time signal 

processing. Similar in composition to the cellular automata [127]-[128], it is comprised of a 

massive aggregation of regularly spaced circuit clones, called cells, which communicate with 

each other directly and locally. With local connectivity, CNN is quite suitable for very 

large-scale integration (VLSI) implementation. The associated real-time and parallel-operating 

properties also make it popular in image processing. To date, many CNN VLSI chips have 

demonstrated their capabilities in realizing real-time signal and parallel processing functions 

[39], [126], [129]-[130]. In these chips, the templates, which can control the communications 

between cells, are programmable and the regular and local functions can be designed and 

applied on the entire CNN array. However, for the recognition of images, the programmable 

and space-invariant properties of CNN chips cannot realize the on-line learning directly 
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because the templates are space-variant due to the different local characteristics of images. To 

address this limitation, some algorithms that collect global image characteristics are proposed 

[64], [142]-[143] to learn the images. 

To realize an on-line learning CNN with local-computing advantage, a learning algorithm 

called ratio-memory CNN (RMCNN) is proposed [65]-[67]. The ratio memory of the 

Grossberg outstar structure [24]-[25], [144]-[145] has been used in both feedforward and 

feedback neural network ICs for image processing. With the proposed RMCNN, no host 

computer is needed to perform the learning task off-line. It can also evaluate the correlations 

between cells and store these correlations on the capacitors. As a result, it no longer requires 

template-weight storage time or equivalent pattern recognition time which is one of the 

advantages of RM. The charge stored on the capacitors leaks out due to the junctions from the 

source and drain of CMOS to the substrate. The RMCNN utilizes this leakage effect and takes 

the ratio of the stored values to enhance the common characteristics of the learned patterns and 

to raise the recognition rate. Therefore, a very long elapsed time about 850 seconds is required 

after the learning period to make the weights of small correlations smaller or to approach zero 

by the leakage in order to enhance large correlations [67]. However, the learned characteristics 

in different local positions of the learned patterns are distinct and the learned values have 

significant differences. In the proposed RMCNN, if the elapsed time is too long in its duration, 

the most learned characteristics will be destroyed. However, if the elapsed time is too short in 

its duration, the characteristics will not be enhanced. Furthermore, when the RMCNN is 

utilized to learn and recognize the image patterns, the stored values keep on leaking during the 

recognition time and this may, with time, alter the ratio weights of the RMCNN. Finally, as the 

weights of cells are generated by ratio memories, a precise multiplier-divider is required.  
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In this work, RMCNN architecture without elapsed time [125] is proposed and analyzed to 

prevent the leakage effect and to simplify the circuitry. With the new algorithm, the feature 

enhanced ratio weights can be generated immediately after the learning period without the 

requirement of elapsed time and, therefore, the circuit to generate ratio weights could be very 

simple and remove the need for multiplier-dividers in each ratio memory. An RMCNN chip not 

requiring elapsed time has been designed and fabricated using TSMC 0.35-μm 2P4M 

mixed-signal technology. Patterns are learned and recognized with the proposed architecture 

and the results are analyzed and discussed. The total chip area is 4560 μm × 3900 μm and the 

area of a single cell is 400 μm × 250 μm. The total power consumption is 87 mW in operation 

with a supply voltage of 3 V and a system clock frequency of 10 MHz.  

In Section II, the models and architecture of the RN-CNN not requiring elapsed time are 

described. In Section III, the CMOS circuits of each block are illustrated and the HSPICE 

simulation results are presented to verify the functions of the blocks. In Section IV, the 

measurements obtained are presented and discussed. Finally, a concluding section is provided. 

3.2 ARCHITECTURE AND MODELS 

A. Model of RMCNN Requiring No Elapsed Time 

For a standard CNN, the state equation is written as [6]-[7], [40] 

∑∑
∈∈
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ijklkl SC

klkl
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ijS

&  

(3.1) 

where xij, yij, and uij are the state, output, and input of the neuron cell Cij in a CNN array, 

respectively; the coefficient Zij, called the template Z, is the threshold of the neuron cell Cij; 

and, Akl and Bkl are the coefficients, called templates A and B, respectively, which are 
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multiplied with output ykl and input ukl of the cell Ckl, respectively, in the sphere of influence 

(Sij) of the neuron cell Cij. The two sets of products are accumulated over all the cells Ckl in Sij 

of the neuron cell Cij. However, the state equation of RMCNN can be expressed as 

( )∑
∈

++−=
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(3.2) 

where Sij and yij are defined in an M × N array as 
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Template Aijkl(TE) is a space-variant template and is a function of elapsed period when an 

elapsed time is applied. Therefore, the template Aij can be written as 
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where  aijkl(TE) is the template coefficient of the cell Cij to stimulate the cell Ckl and is generated 

by using the equation 
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In (3.6), p
iju  and p

klu  are the inputs of the pixels in the learned pth pattern when m patterns 

are learned in the learning period. In the learning period for the cell Cij as in (6), its input signal 

is multiplied with the inputs of its four nearest cells and then these values are integrated with a 

learning time Tp of each pattern, respectively, to generate one set of the correlations, called 

correlated weights. The template coefficient is generated by the ratio of one correlated weight 

and summation of the four absolute correlated weights. Lkl(TE) is the leakage in an elapsed time 

TE. The leakage depends on the correlation between two cells and process parameters. When a 

very long period of elapsed time is applied, the remnants in the four ratio memories around one 

cell may be 0. However, when a short period of elapsed time is applied, the enhancement is 

limited. As a response, a new template generating method is proposed. First, the mean Mij of the 

learned absolute correlated weights is generated as 
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where m is the number of learned patterns, Tp is the learning time of one pattern, and up
ij and up

kl 

are the inputs of cell(i, j) and cell(k, l), respectively, in the learned pth pattern. The ratio weight 

a’ijkl is then generated as following: 
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,where PNij means the number of the absolute correlated weights which is larger than Mij. As 

shown in (3.8), the template coefficient is generated by counting the number of the absolute 
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correlated weights which is larger than the mean Mij. As a result the template value is set to 

1/PNij when its absolute correlated weight is larger than the mean. This retains the overall 

summation of absolute template coefficients a’ijkl of template A at 1 to avoid any divergence in 

recognition.  

To demonstrate why the coefficient which is larger than the mean is retained, a simple 

model of the absolute ratio weight can be constructed as following: 

( ) ( ) ( ) ( ) LSLRLQLP
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 (3.9) 

where P, Q, R, and S represent the four absolute correlated weights generated in the learning 

period, and L represents the average leakage in the elapsed period and, after that period, the 

absolute ratio weight should be enlarged if the coefficient is retained. The condition to make 

(3.9) valid can be derived as following: 
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where M is the mean of P, Q, R, and S and the coefficient k is 4. When P is larger than M, the 

absolute ratio weight could be enlarged after a period of elapsed time. Hence, the coefficient is 

retained by comparing it with the mean value. However, as the average leakage L is larger than 

the correlation P, it is unreasonable to get a negative ratio weight value. The absolute ratio 

weight should be larger than zero. As one absolute correlated weight leaks to zero, mean M is 

evaluated using the residuary absolute correlated weights. In this situation, k is reduced to 3 

because only three absolute correlated weights are averaged. Hence, if one of the correlated 

weights leaks to 0, k should be reduced by 1. In the proposed algorithm, when P is larger 
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(smaller) than or equal to M, the absolute ratio weight is chosen to be 1/k (0). This makes the 

sum of the absolute ratio weights equal to 1 around one cell. 

 

Fig. 3.1 The general architecture of the RMCNN. 
 

B. Architecture of RMCNN Not Requiring Elapsed Time 

The general architecture of RMCNN is shown in Fig. 3.1. The RM block is located at any 

two of the nearest cells to evaluate and store the correlated weights. In each cell, the circuitry is 

required to average the absolute correlated weights from the four peripheral RM blocks and to 

compare the correlated weights with the mean value. Meanwhile, a counter is also required to 

count the PN in (3.8) around the cell. With reference to the architecture, a 9 × 9 RMCNN chip 

has been designed. The structure of the kernel unit of the RMCNN not requiring elapsed time,  
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(a) 

 

(b) 

 

(c) 
Fig. 3.2 (a) The input stage and neuron, (b) RM, and (c) comparator and counter in the kernel 
unit of RMCNN. 
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which is demonstrated in Fig. 3.1Fig. 3.1 by broken lines, is separated into three parts in Fig. 

3.2(a)-Fig. 3.2(c). There are four RMs: up, down, and on the right, and left sides around one cell 

and two neighboring cells around one RM. In Fig. 3.2(a), block Neuron is a neuron composed 

of a resistor and capacitor and block VTI1 is a voltage-to-current converter with a sign detector 

to convert the input voltage into current. Block VTI2 is a voltage-to-absolute-current converter 

with a detector. It detects the sign of the current with an absolute current output. In Fig. 3.2(b), 

block W is the synaptic gain block to multiply the absolute input current from VTI2 with a 

chosen weight of 1/4, 1/3, 1/2, or 1 and the output sign is controlled by a sign controller. The 

weight is controlled by block Counter_L in Fig. 3.2(c). Block COMP is a comparator that can 

compare four absolute currents from RMs with the average of these four currents. Block 

Counter_L counts how many currents are larger than the average current. Block Counter_L can 

also generate the signals to control the weights of blocks W by the comparing and counting 

results.  

In the learning period, only switches sw1, sw2, sw4, and sw5 in Fig. 3.2(b) are open. When 

pth pattern is learned, binary input uP
ij of cell(i, j) is sent into block VTI1 and the output current 

is sent to block Neuron to generate the state voltage of cell(i, j). The positive or negative state of 

cell(i, j) is detected by block VTI2 and the absolute current is extracted. The sign and the 

absolute current of cell(i, j) are both sent to block W. In the learning period, the weight of block 

W is set to 1/4. If the states of cell(i, j) and its neighboring cells are the same (different), it is 

decided to charge (discharge) capacitor Cw with the absolute current multiplied by 1/4. The 

learning time of one pattern can also be adjusted to prevent the voltage saturation of the 

capacitor. 

After all the patterns are learned, block VTI3 converts the voltage stored on capacitor Cw 

into two absolute currents for the nearest two comparators. At the same time, the correlative 
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signs are also been stored. There are four absolute currents from the neighboring RMs in one 

cell. The comparator generates a mean current of the four absolute currents and compares the 

four currents with the mean current. The comparisons are counted by block Counter_L to 

decide the ratio weights of block W. When the N (4-N) currents in neighboring RMs are larger 

(smaller) than the mean current, the weights of blocks W are set to 1/N (0) where N could be 1, 

2, 3, or 4. The ratio weights are set at 1/4 for each block W only if the four currents are equal. 

In the recognition period, the switches sw1, sw2, sw5, and sw6 in Fig. 3.2 (b) are closed. 

The gray level input uij in Fig. 3.2(a) of the noisy pattern is sent into block Neuron and the 

operation of recognition starts. 

3.3 CIRCUIT IMPLEMENTATION WITH SIMULATION 

RESULTS 

A. Circuit Implementation with Simulation Results 

Blocks VTI1 and Neuron are shown in Fig. 3.3(a). Block VTI1 is constructed using a 

simple differential amplifier. M5-M6 are used to degenerate the transconductance of the 

amplifier and to enlarge the linear operating range. Vref is set to 1.5 V and Vb2 at 2.5 V. Vb1 is 

controlled by a mirror with a current of 5.5 μA. Block Neuron is simply composed of a 

resistance and a capacitor. The resistance is constructed using MR1 and MR2 and the capacitor 

is realized by the parasitic capacitance at node Xij. MR1 and MR2 are realized by PMOS 

because the substrate of MR1 can be connected to source of MR1 to prevent body effect. 

Hence, the state voltage Xij can be set to 1.5 V (1/2 VDD) initially. The transfer characteristic of 

VTI1 is shown in Fig. 3.3(b). The transfer curve is linear as the input voltage Vuij is between 0.9 

V and 2.1 V.  
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(a) 

 

(b) 
Fig. 3.3 (a) The circuits of the blocks VTI1 and Neuron. (b) The transfer characteristic of the 
block VTI1. 
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Fig. 3.4(a) depicts blocks VTI2 and VTI3. The circuit represented in broken lines belongs 

to the next stage, that is, block W or block COMP. Block VTI2 is similar to block VTI3 except 

the device ME. VTI2 contains ME and Vpin_b is set to low, when the patterns are learned and 

during the recognition period, in order to turn on the function of block VTI2. Vb1 is biased by a 

mirror with a current of 5.5 μA and Vb2 is set to 2.5 V. Vb3 and Vref are each set to 1.5 V. The 

combination of M9 with V2 and M10 with V3 can stop the static current. The difference (V2 – 

V3) is smaller than the summation of the threshold voltages of M9 and M10. Hence, M9 and 

M10 are turned off when there is no input current Iin. VTI2 and VTI3 each contain a differential 

amplifier and an absolute current converter. The differential amplifier generates positive and 

negative currents based on Vin. The positive (negative) current sent to the absolute current 

converter turns on the device M10 (M9) and M9 (M10) is still turned off. The positive current is 

inverted twice with two current mirrors, M11/M12 and M8/M13. The negative current is  

 

 

(a) 
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(b) 
Fig. 3.4 (a) The circuit of the blocks VTI2 (with ME) and VTI3 (without ME) (b) The transfer 
characteristic of the block VTI2 and VTI3. 
 

inverted once with the current mirror M8/M13. As a result, the output current Iout is the 

absolute current of Iin. 

Fig. 3.5 shows the circuit of block W. Switches Swa-Swf are controlled by block Counter_L 

to multiply the current with a gain of 1/4, 1/3, 1/2, or 1. Based on the signs of the patterns and 

learned correlated weights in different periods, signal Sign_Con is set to a proper digital code to 

decide the sign of block W, as shown in Fig. 3.6. The detector is constructed using two 

cascaded inverters and amplifies the input signals to achieve a digital level. During the learning 

period, only switch Swd1 is closed. Signal Sign_Con is determined by input voltage Vin in 
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block VTI2 of cell(i,j) and input voltage Vu of the nearest neighboring cell(k,l) through an 

exclusive gate.  

 

Fig. 3.5 The circuit of the block W. 
 

 

Fig. 3.6 The block diagram of the sign controller where the detector is composed of two 
cascaded inverters. 

 

 

Fig. 3.7 The circuit of the block COMP. 
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During the recognition period, only switch Swd2 is closed. Signal Sign_Con is decided by input 

voltage Vin in block VTI2 of cell(i,j) and input voltage of block VTI3, which is the correlation 

between cell(i,j) and cell(k,l) stored on the capacitor Cw in Fig. 3.2 (b). 

In block COMP in Fig. 3.7, the up, down, left, and right currents from blocks VTI3 are 

gathered and averaged by the current mirror. The four directional currents from blocks VTI3 

are compared with the averaged current IM and the comparing results are converted into digital 

signals using two cascaded inverters. The four digital signals are counted by block Counter_L, 

which is composed of two cascaded D-flip-flops and whose function it is to count the four 

digital signals one at a time. 

B. Operational Steps 

The operation is separated into three periods: the learning, weight generating , and 

recognition periods. In the learning period, blocks VTI1, Neuron, VIT2D, and W are active. 

Input voltage Vuij of the learned pattern is transferred into the current signal and the current 

signal is applied on block Neuron to produce an output state voltage Vxij. With state voltage 

Vxij, block VTI2 generates the absolute current and this is multiplied by 1/4 through controlling 

the switches Swa-Swf. The polarity of the output current of block W is controlled by signal 

Sign_Con which is generated by the sign controller in Fig. 3.6 where only switch Swd1 is 

closed. With the output current of block W, capacitor Cw is charged or discharged in an interval 

Tp. After all the patterns are learned, the weight generating period starts. 

In the weight generating period, the switches in Fig. 3.2(b) are all open. The voltage on Cw 

is applied to VTI3 to generate two absolute currents while the sign is also detected, 

simultaneously. With four absolute RM currents in four directions, mean current IM is 

generated and compared with the four absolute currents as shown in Fig. 3.8. The four 

comparators outputs are counted by block Counter_L, which sends the control signal to four  



 

 71

 

Fig. 3.8 The four absolute currents from VTI3 are averaged and compared with the mean 
current. 

 

blocks W to generate corresponding weights. As a result, the RMCNN is ready for recognition. 

In the third period, the noisy patterns are sent into the RMCNN. Switches sw1, sw2, sw5, and 

sw6 in Fig. 3.2(b) are closed and so is Swd2 in Fig. 3.6. At the same time, device ME in Fig. 3.4 

(a) is turned off to commence the operation of recognition. A set of patterns in Fig. 3.9 are 

learned with Matlab by the proposed algorithm of a 9 × 9 RMCNN. The Gaussian noise 

patterns with different standard deviation are recognized as shown in Fig. 3.10 where the 

standard deviation is 0.3. The resultant recognition rate is shown in Fig. 3.11 which is  
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Fig. 3.9 Input patterns in the learning period. 
 

 

Fig. 3.10 Gaussian noise patterns with standard deviation of 0.3 to be recognized. 
 

compared by directly amplifying the noisy patterns with an inverter where Gaussian noise is 

applied with a standard deviation normalized to the binary state of 1 and -1. As can be seen 

from Fig. 3.11, when the tolerance level is 50 %, the recognition rate is better than that of direct 

amplification. However, when the tolerance is sterner, the recognition rate is reduced. Due to 

the fact that template A is a non-self-feedback template, the recognized output patterns can not 

be pulled to a saturated state and, hence, the recognition rate is degraded. The template values 

of cell(4, 5), cell(5, 3), cell(8, 5), and cell(7, 5) are listed in Table 3.1 and are compared with 

RMCNN with an elapsed time of 800 sec. As can be seen in Table 3.1, the templates are almost 

the same except for some negligible coefficients.  

The recognition rate is shown in Fig. 3.12 where the self-feedback RMCNN without 
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Fig. 3.11 The recognition rates by using proposed RMCNN and by being directly amplified. 
 

elapsed time is simulated and the result is compared with that of direct amplification. Since the 

closed loop in the self-feedback RMCNN saturates the output, the recognition rate can be raised 

and is better than that without self-feedback and that of direct amplification. In this paper, only 

the test chip of the non-self-feedback RMCNN without elapsed time is designed and measured 

to verify the proposed RMCNN algorithm not requiring elapsed time. A self-feedback RMCNN 

not requiring elapsed time can be designed similarly. 

C. Simulation Results with Large-Neighborhood Templates 

The large-neighborhood diamond templates are also been applied to the proposed RMCNN 

requiring no elapsed time. The RMCNN with large-neighborhood diamond templates are 

simulated with Matlab. The tested image patterns of 18 × 18 array are learned and the 

large-neighborhood templates are generated by using the proposed method. Fig. 3.13 shows the 
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Table 3.1 THE COMPARISONS OF TEMPLATES A IN CELL(4, 5), CELL(5, 3), CELL(8, 5), 

AND CELL(7, 5) BETWEEN RMCNN WITH AND WITHOUT ELAPSED TIME 

 

 

Fig. 3.12 The comparison of the recognition rates by using proposed RMCNN with 
self-feedback, without self-feedback of 50% tolerance and by being directly amplified. 
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comparison of simulated recognition rates when the neighborhood of radius r’ are 1 and 3. 

RMCNN requiring no elaped time with 3 × 3 neighborhood templates can learn 6 patterns. It 

can be seen that the recognition rate with large neighborhood is worse than that with 3 × 3 

neighborhood templates when 7 patterns are learned and recognized. The reason can be 

explained by Fig. 3.14 that the smaller correlations are retained when a smaller elapsed time is 

applied. That is, when the large neighborhood diamond templates are used in the proposed 

algorithm, many smaller correlations are retained and these ratio weights of small correlations 

raise the error rates. Hence, the proposed algorithm should be modified especially when the 

large neighborhood diamond templates are used.  

In order to generate a template as the former RMCNN with a longer elapsed time, the 

procedure of the proposed algorithm is modified. By using the modified method, the 

comparison of the correlations and their mean is repeated. The procedure is stopped when the 

 

Fig. 3.13 The comparison of recognition rates with 3 × 3 neighborhood templates and large 
neighborhood diamond templates of r’=3. 
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Fig. 3.14 The ratio weights of RMCNN with different elapsed time. 
 

redundant correlations are not smaller than their mean any more. As a result, the ratio weights 

of smaller correlations can be depressed and the recognition rates are raised as shown in Fig. 

3.15(a). As can be seen, the recognition rate of r’ = 5 is much better than that of r’ = 3. The 

reason is that the large-neighborhood of r’ = 5 can gather more information between cells and 

hence, it is highly possible to retain larger correlations. By using the repeated proposed 

algorithm, the number of learned patterns is increased and it also shows that the use of large 

neighborhood templates can increase the number of the learned patterns than that of single 

neighborhood templates. In Fig. 3.15(b), it also shows larger neighborhood gives higher 

recognition rate. However, as shown in Fig. 3.15(c), when the single neighborhood template is 

used, the repeated algorithm gives no effects on the recognition rates. Hence, it can be inferred 

that the repeat of the algorithm is only suitable for the large-neighborhood RMCNN requiring  
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(a) 

 
(b) 
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(c) 

Fig. 3.15 The recognition rates of (a) 3 × 3 neighborhood and large neighborhood templates by 
repeating the operation of the proposed algorithm (marked with ‘modified’) where 7 patterns 
are learned. (b) large neighborhood templates r’ = 5 and r’ = 7 where 9 patterns are learned. (c) 
3 × 3 neighborhood by the operation of the proposed algorithm and repeating the operation of 
the proposed algorithm where 7 patterns are learned. 
 

 

Fig. 3.16 The modified circuits of block COMP that can realize the repeated proposed 
algorithm. 
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no elapsed time is implemented. The modified circuits for repeating the operation of the 

proposed algorithm is also depicted in Fig. 3.16. 

3.4 EXPERIMENTAL RESULTS 

The architecture of a 9 × 9 non-self-feedback RMCNN not requiring elapsed time has been 

designed as shown in Fig. 3.17. The input patterns for learning and recognition are sent serially 

into 9 × 9 shift registers. The decoder can select the cells in the proposed RMCNN not requiring 

elapsed time to be read out in series. The controlling signals are listed in Table 3.2 with a 

controlling timing diagram shown in Fig. 3.18. The learning and recognition periods are 

controlled by signals clk1 and clk2, respectively. Signal Reset is used to reset the charge on the 

capacitor Cw. Signal newp enables the shift registers and then, signal DFF can trigger the 

D-flip-flops in the shift registers to transfer the pixels of the input pattern in series. Signal pin 

generates the patterns which are sent into the neural network. Signals Con_L and Con_G trigger 

the local and global counters. The local counter counts the number of the currents which are 

larger than the mean current in the cell. The global counter generates the signals to control 

which comparative results in the cell should be counted by the local counter. Signal noi can 

 

 

Fig. 3.17 The architecture of a 9x9 RMCNN without elapsed time chip. 
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Table 3.2 THE DESCRIPTION OF EACH CONTROL SIGNAL 

 

 

introduce the noise into the input patterns. With such architecture, an RMCNN chip not 

requiring elapsed time has been designed and fabricated using TSMC 0.35-μm 2P4M 

mixed-signal technology. Fig. 3.19 shows the photograph of the fabricated chip of an RMCNN 

not requiring elapsed time.  

During the learning period, the Chinese characters in Fig. 3.9 are learned. Because the noise 

cannot be programmed individually, only uniform noise can be added into the correct patterns. 

After the ratio weights are generated, these Chinese characters are sent again and combined 

with a controllable uniform noise from 0 to 0.5 as shown in Fig. 3.20 where the noise level is set 

t o  
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Fig. 3.18 The timing diagram of control signals. 
 

 

Fig. 3.19 The photograph of the RMCNN without elapsed time chip. 
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Fig. 3.20 The uniform noisy patterns for measurement. 
 
0.5. Because the noise cannot be programmed by pixels, the noise in each pattern is uniform. 

For the first two Chinese characters, the correct patterns could be recognized. However, the last 

Chinese character is recognized unsuccessfully as shown in Fig. 3.21 where the uniform noise 

level is 0.25, and the output waveform is shown in Fig. 3.22. Channel 1 is the trigger signal 

which is tied to low during the readout period. Channel 2 is LSB of the decoder and channel 3 is 

the output waveform of the third pattern in Fig. 3.21. The output swing is between 0.2 V and 1.8 

V and the output voltage is segmented into 256 gray levels. The gray level of 0.2 V is white and 

that of 1.8 V is black. There are four stable pixels at the gray level as the third pattern is 

recognized. To discuss the reason for this, the absolute weights of the post simulation at 

cell(4,4), which is recognized unsuccessfully in the third pattern, are listed in Table 3.3 where 

 

 

Fig. 3.21 Experimental results of recognized patterns in the recognition period after a set of 
patterns with noise level 0.25 are recognized. 
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Fig. 3.22 Experimental output waveform of the third recognized pattern. 
 

the simulation with Matlab and two post simulations with HSPICE in different conditions are 

compared. As can be seen, the ratio weights with Matlab and HSPICE (TT) are the same and 

the noisy patterns can be recognized correctly. However, with HSPICE (FS), an incorrect ratio 

weight is generated and leads to an unsuccessful result. Hence, even the third pattern with a 

smaller noise is recognized, the resultant pattern is still incorrect because the incorrect 

correlations are retained. When three patterns are learned, block W charges or discharges the 

capacitor Cw according to the input pixel of two neighboring cells. During this time, the device 

ME in Fig. 3.4 (a) of block VTI2 is turned off. However, when a new pattern is sent into the 

chip after the former one is learned, device ME is turned on and the output current should be 0. 

However, there is still a small output current due to the asymmetric structure and the mismatch. 

Meanwhile, the input of the sign detector is connected to Vref because device ME is turned on 
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Table 3.3 THE COMPARISON OF THE ABSOLUTE WEIGHTS A44 WITH MATLAB AND 

HSPICE IN DIFFERENT CONDITIONS 

 

 

and this makes it impossible to predict signal Sign_Con. As a result, the capacitor Cw is 

charged or discharged unpredictably by the small current when the learned patterns are 

transmitted to the 9 × 9 shift registers. Hence, the ideal absolute weights cannot be achieved.  

To overcome the small output current from block VTI2, a new path can be inserted into block 

W as shown in Fig. 3.23. Only one of switches Stra and Slearn is turned on and the other is turned 

off. As the learned patterns are transmitted to the shift register, switch Stra is turned on. Hence, 

capacitor Cw would not be charged or discharged by the small current from block VTI2. Switch 

Slearn is turned on when the pattern in the shift register is sent to the neuron and can be learned or 

recognized correctly. Dummy load Mdummy is the same with M5. This can cause the current 

source M1-M4 to have a similar load and retain the current stable during switching. 

The comparison between RMCNN [67] and RMCNN requiring no elapsed time is list in 

Table 3.4. The total chip area is 4560 μm × 3900 μm and the area of a single cell is 400 μm × 
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250 μm. The total power consumption is 87 mW in operation with a supply voltage of 3 V 

and a system clock frequency of 10 MHz.  

 

 

Fig. 3.23 The modified circuit of the block W. 
 

TABLE 3.4  COMPARISON BETWEEN RMCNN AND RMCNN REQUIRING NO 

ELAPSED TIME 

 RMCNN [67] RMCNN requiring no 
elapsed time 

Technology 0.35 μm 1P4M Mixed- 
Signal Process 

0.35 μm 2P4M Mixed- 
Signal Process 

Array Size 9 x 9 9 x 9 
No. of RMs 144 144 

Area of Single Pixel 350 μm x 350 μm 400 μm x 250 μm 
Power Supply 3 V 3 V 

Power Dissipation 120 mW 87 mW 
Readout Time 
(of one pixel) 1 ms 80 ns 

Weight Generating Time 
(Elapsed Time) 850 sec 1.7 μs 

System Clock Frequency N/A 10 MHz 
Dynamic Range of State 

Xij (Vxij - Vref) -0.8 ~ 0.8 V -0.6 ~ 0.6 V 
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3.5 SUMMARY 

In this chapter, a new algorithm of a RNCNN not requiring elapsed time has been proposed. 

In the proposed RMCNN, a new ratio weight generating method is also proposed. The use of 

this method avoids a long period of elapsed time when the ratio weights are generated. By using 

RMCNN requiring no elapsed time, 6 patterns can be learned and recognized. In this chapter, 

the large-neighborhood RMCNNs of r’ = 3, r’ = 5, and r’ = 7 are also simulated. The results 

suggest that the proposed algorithm to compare the correlations and their mean should be 

repeated when the large-neighborhood templates are used. RMCNN requiring no elapsed time 

is modified to be suitable for large-neighborhood application. It also suggests that RMCNN 

with larger neighborhood templates can increase the recognition rates or the number of learned 

patterns. However, the efficiency to increase r’ become lower when r’ is large.  

An experimental chip of 9x9 RMCNN not requiring elapsed time has been implemented 

and fabricated using TSMC 0.35-μm CMOS 2P4M technology. The weight generating time is 

reduced to 1.7 ms while the elapsed time required by RMCNN is more than 800 seconds. 

Further applications of the proposed RMCNN not requiring elapsed time will be developed 

in the future. 
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C H A P T E R  4  

THE ANALYSIS OF THE RECURSIVE 

LEARNING RMCNN 

4.1 INTRODUCTION 

By using the architecture of cellular nonlinear (neural) network (CNN) which was proposed 

by Chua and Yang in 1988 [6]-[7], [40], the concept of RMCNN was first brought up by C. Y. 

Wu and J. F. Lan in 1995 [65]-[67]. RMCNN works by a set of learned space-variant templates 

according to the correlation of each learned patterns. With the ratio memory and a long period 

of retrieving time (elapsed time), the common characteristic can be enhanced. Moreover, in the 

past study, the algorithm of RMCNN without elapsed time is proposed and also discussed in 

Chap. 3 where the templates are generated by comparing the correlations with the mean of 

those four correlations around any one cell instead of being generated with a long elapsed time.  

However, in the past study, the discussion on how the generated templates affect the 

recognition rate is not mentioned. Hence, in this work, the Gaussian noise probability density is 

considered and a simple situation of one pixel with a generated template is discussed. In the 

situation, the asymmetric probability of the recognized pixel is considered and it causes the 

asymmetric probability density of the output. Thus, the result shows the necessity of the 

templates Z to depress the error rate. To gather the information of the threshold, the recursive 
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learning technique [145] is applied. The recursive learning in [145] is used for the background 

and foreground modeling as following:  

( ) ( ) ( ) ( )[ ]•⋅+•⋅−=• −Δ− 11 ;1 tttttt xH θαθβθ  

(4.1) 

whereθt(•) is the probability density function of each pixel at time t and updated by the local 

kernel HΔ[xt; θt-1(•)], which is the learned target, and αt and βt are the learning rate and 

forgetting rate. The learning rate αt is usually equal to 1/t where the forgetting rate βt is equal to 

1-G‧αt and G is a coefficient smaller than 1. By using the recursive learning technique, the 

probability density function of error function can be obtained and recovered by the template Z. 

As a result, it can correct the asymmetric black and white probabilities of learned patterns and 

also can be demonstrated by the results of simulations. By using the proposed method, the 

simulations with different algorithm are made and compared.  

In section 4.2, the mathematical analysis of one template generated by an RMCNN is 

studied and the operating procedure of the recursive learning RMCNN is illustrated. In section 

4.3, the simulation results are compared and discussed. Finally, the conclusion is given. 

4.2 MATHEMATICAL ANALYSIS 

The generated templates in any type of RMCNN are diamond templates and can be written 

as 
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Fig. 4.1 The probability of the input uC1. 
 

except the self-feedback term. Each coefficient in RMCNN is realized by the equation (3.6) and 

in RMCNN requiring no elapsed time is by the equations (3.7)-(3.8). However, for 

simplification, only one coefficient is considered and other coefficients are 0. Because the 

summation of the all absolute coefficients is 1, the existent coefficient may be ±1. Here, we 

choose the coefficient to 1 for example, and assume that the pixel C1 always has a correct input 

and has a probability of 0.5 for black and white colors as shown in Fig. 4.1. Meanwhile, it is 

assume that the pixel C2 has a noisy input with Gaussian noise and with asymmetric 

probabilities of 0.4 and 0.6 for white and black colors, respectively, as demonstrated in Fig. 4.2. 

After the recognition, the state xC1 can be shown in Fig. 4.3. As can be seen, the asymmetric 

probabilities of black and white colors make the probability density of the state xC1. If RMCNN 

requiring no elapsed time with a tolerance of 50% is taken into account, the error rate of the  
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Fig. 4.2 The probability density of the input uC2. 
 

 

Fig. 4.3 The probability density of the state xC1 after recognition. 
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error can be depressed. With Matlab simulation, if there is a threshold value of -1, the error rate 

pixel C1 can be calculated by the integration of the shadow in Fig. 4.4(a) and (b). However, it 

can be observed that if the graph is shifted, the can be reduced from 0.4201 to 0.2935.  

It can be proved that the error rate can be improved by the threshold term but it is dependent on 

the probability of the input signals. Hence, a recursive learning technique is applied to learn the 

error rate. The procedure is shown in Fig. 4.5 where the recursive learning is behind the 

generating of ratio weights because the recursive learning algorithm is used to learn the error 

rate after recognition in 5 iterations. After 5 iterations, the deviation of THR(i,j,k) is calculated. 

If the deviation is smaller than the constrain δ, the recursive learning stops. Based on the 

recursive learning in (4.1), a recursive learning of error rate probability is constructed as shown 

in Fig. 4.6 where THR(i,j) where is equal to THR(i,j,k) after k iterations is the threshold value of  

 

 
(a) 
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(b) 

Fig. 4.4 The error rates produced by the shadow part when the output of the pixel C1 should be 
(a) 1 and (b) -1. 
 

 

Fig. 4.5 The procedure of the recursive learning algorithm. 
 

 

Fig. 4.6 The recursive learning of THR(i,j) in nth iteration. 
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cell(i,j), THR_rate is the learning rate, Cor_u(i,j,n) and y(i,j,n) are the correct pattern and 

recognized output, respectively, of cell(i,j) in the nth iterations. In the recursive learning period, 

the difference of Cor_u(i,j,n) and y(i,j,n) is calculated in each iteration and update the error 

probability density by [Cor_u(i,j,n) - y(i,j,n)]. Based on the equation (4.1), the recursive 

learning of the templates can be written as: 

( ) ( ) ( )[ ] ( ) ⎟⎟
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where the learning rate αt is THR_rate, the forgetting rate is 1 - G·αt and the coefficient G is 

chosen to be 1. Because even the chosen G is a coefficient smaller than 1, the equation can be 

normalized by a factor. With equation (4.2), the average of [Cor_u(i,j,n) - y(i,j,n)] in k iterations 

since the equation (4.2) can be derived as: 
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(4.3) 

Hence, the recursive learning is the learning of the average distance that the output y(i,j,n) is 

away from the correct pattern Cor_u(i,j,n). 

4.3 SIMULATION RESULTS 

The simulation is made by using Matlab simulator. As shown in Fig. 4.7, 7 patterns are 

learned by using RMCNN requiring no elapsed time without and with recursive learning. As 

can be seen in Fig. 4.7, the recursive learning can raise the recognition rate and improve the 

learning ability of RMCNN requiring no elapsed time. The simulations are made with recursive 

learning of different constrains. It can be found that the recognition rate can be raised after the  
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Fig. 4.7 The recognition rates of RMCNN requiring no elapsed time without and with recursive 
learning of constrains 0.01, 0.03, and 0.05 where 7 patterns are learned  
 
recursive learning of different constrains 0.01, 0.03, and 0.05. The recognition rates of 

constrains 0.01 and 0.03 are almost the same when 7 patterns are learned but the recognition 

rate of constrain 0.05 is a little lower. The required iterations are listed in Table 4.1. The 

required iterations of constrain 0.01 is more than those of constrain 0.03 while the required 

iterations of contrain 0.5 is a little fewer. Hence, constrain δ = 0.03 is chosen. It also can be seen 

that when the standard deviation of the noise is large, the required iterations also become more. 

The learned templates Z are also shown in Fig. 4.8. 

The recognition rates where 6 patterns and 8 patterns are learned with or without recursive 

learning are shown in Fig. 4.9. The constrain δ is set to 0.03 and the required iterations are listed  
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Table 4.1  THE REQUIRED ITERATIONS TO FIT THE CONSTRANS WHERE 7 

PATTERNS ARE LEARNED 

Gaussian Noise (σ) 0.01 0.03 0.05 
0 10 10 10 

0.1 10 10 10 
0.2 20 15 10 
0.3 20 15 10 
0.4 25 15 10 
0.5 30 15 15 
0.6 60 20 15 

 

 
Fig. 4.8 The learned threshold Z where constrain δ is 0.03 and the standard deviation of 
Gaussion noise is 0.6. 
 
in Table 4.2. The recognition rates where 6 patterns are learned with and without recursive 

learning are almost the same. However, when 8 patterns are learned, the recognition rate can be 

raised with recursive learning. As a result, RMCNN requiring no elapsed time can learned 6 

patterns while it can learned 8 patterns by using recursive learning with a constrain of δ = 0.03. 

4.4 SUMMARY AND FUTURE WORK 

In this chapter, with the concept of RMCNN, the effect of Gaussian noise has been 

discussed. According to the analyzing results, the threshold is required to decrease the error rate  
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Fig. 4.9 The recognition rates where 6 patterns and 8 patterns are learned with and without 
recursive learning. 
 

Table 4.2 THE REQUIRED ITERATIONS TO FIT THE CONSTRANS δ = 0.03 WHERE 6 

AND 8 PATTERNS ARE LEARNED 

Gaussian Noise 
(s) 6 patterns 8 patterns 

0 5 10 
0.1 10 10 
0.2 10 10 
0.3 10 10 
0.4 10 10 
0.5 15 15 

 

 

because of the asymmetric probability densities of the inputs. Hence, a recursive learning 

technique is proposed to minimize the error rate due to this factor. With the recursive learning 

technique, the probability density of errors is gathered during k iterations. The deviation of 

templates Z is calculated per 5 iterations. As the deviation is smaller than the constrain δ, the 

recursive learning stops. With the proposed recursive learning, the comparison of different 
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applied algorithm is made by using Matlab simulations and the recognition rate and learned 

patterns indeed can be improved with constrain δ = 0.03.  

However, in this chapter only the mathematic analysis is discussed and the statistic 

simulations are made. Hence, further research on the circuit design of the recursive learning 

RMCNN needs to be conducted.  
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C H A P T E R  5  

CONCLUSIONS AND FUTURE WORK 

5.1 CONCLUSIONS 

In this dissertation, an LNCNN and new types of RMCNN have been proposed. In 3 × 3 

neighborhood CNNs, their local connectivity is easy to be implemented in a VLSI design. 

However, 3 × 3 neighborhood CNNs limit the realizable functions because they only generate 3 

× 3 templates. When a large neighborhood function is realized, 3 × 3 neighborhood CNNs 

cannot realize the function directly. Some of 5 × 5 templates can be decomposed into several 3 

× 3 neighborhood templates. It takes more operation time and more power consumption to carry 

out these 3 × 3 neighborhood templates in a task. By using the proposed LNCNN, the 5 × 5 

templates can be approximated with the diamond templates and several functions like diffusion, 

de-blurring, and Muller-Lyer illusion has been verified with Matlab simulation. In the kernel 

unit of the proposed LNCNN, only the neighboring cells are connected to each other. The 

propagating connections are used to deliver the stimulus from one cell to further cells expect for 

the neighboring cells. Thus, the proposed LNCNN can realize large-neighborhood 

diamond-shaped templates. By using the propagating connections, complicated wire 

connections to farther cells can be avoided. In the proposed LNCNN, the analog memory is also 

used to store the non-recurrent term produced by templates B and Z. As well, the simple 



 

 99

current-mode circuits of the synapses and neuron cells are implemented by using current 

mirrors. The circuits based on current mirror structure makes the implementation simple and 

accurate current mirrors are not required in this design. Each cell can be implemented more 

compactly and the diamond templates with constraints can be realized easily. An LNCNN chip 

of 20 × 20 array has been fabricated. By using the LNCNN chip, the Muller-Lyer, which is the 

function of 5 × 5 templates, has been successfully verified. The LN function has been 

successfully verified by using the LNCNN chip with a power consumption of 0.7 mW on 

standby and 18 mW in operation with a system clock frequency of 20 MHz. 

In this dissertation, RMCNN without elapsed time has also been proposed. The 

space-variant templates are learned and generated according to different local characteristics. 

Same with RMCNN of former researches, RMCNN requiring no elapsed time stores the 

correlations between cells and their neighboring cells. The elapsed time is taken off to avoid the 

long weight generating time and to remove the effects of uncertain leakage. The device 

multiplier-divider is also replaced with a comparator and a counter and this simplifies the 

design. The correlations are compared with their mean, and the correlations, which are larger 

than the mean, are counted. As a result, all the local correlations are compared with local 

means. The local characteristics in different positions of the learned patterns can be enhanced 

due to the local property. To verify the proposed algorithm, an RMCNN without elapsed time 

chip of 9 × 9 array is designed, and the uniform noisy patterns have also been tested and 

discussed. With the modified circuit, the RMCNN without elapsed time chip can recognize the 

patterns successfully. The total chip area is 4560 μm × 3900 μm and the area of a single cell is 

400 μm × 250 μm. The total power consumption is 87 mW in operation with a supply voltage of 

3 V and a system clock frequency of 10 MHz. 
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Finally, a recursive learning RMCNN is proposed. The statistic and probabilistic model is 

not concerned before when the image is recognized. Hence, in this dissertation, a Gaussian 

noise model is concerned and discussed when an assumed template is give. According to the 

analysis, the decision is not located at an optimum point. Therefore, the recursive learning of 

the threshold values is applied to RMCNN for further improvement. By using the recursive 

learning, the error probability density of [Cor_u(i,j,n) - y(i,j,n)] is gathered. When the threshold 

is applied with the mean of the term [Cor_u(i,j,n) - y(i,j,n)], the decision points can be located at 

an optimum points. As a result, the recognition rate and the number of learned patterns can be 

increased. 

5.2 FUTURE WORK 

In this dissertation, an LNCNN chip has been fabricated and verified successfully. 

However, the applications of LNCNN are few because there are few studies on LNCNN due to 

the lack of LNCNN hardwares. Hence, with the proposed LNCNN structure and hardware, 

many researches on LNCNN templates and phenomenon can be studied and verified. 

Furthermore, because the simple circuits are used in the proposed LNCNN chip for small area 

and power consumption, the linearity of the templates is not the first priority of our 

consideration. Hence, the linearity of the circuits can be further modified to get a more precise 

control on the templates. Meanwhile, the goal of the LNCNN chip proposed in this dissertation 

is to realize the core of the LNCNNUM. In the next phase, it is anxious to achieve an 

LNCNNUM chip for many applications of LNCNN. Moreover, the applications of the diamond 

templates and how to transfer the 5 × 5 templates into diamond templates are also interesting 

researches. The tolerance of the diamond templates will be analyzed to generate a more robust 

template. 
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Furthermore, an RMCNN without elapsed time is also presented. In the structure of 

RMCNN, the correlations are stored on the analog memories, that is, the capacitors. Although 

the analog design is an intuitional method, it is also possible to operate the RMCNN in 

digitalized mode or mixed-mode structure. Under analog mode, the operation is easier and 

faster. However, under digital mode, it is more precise and more economic in power 

consumption. Hence, how to design a most proper structure is the main target in the next 

generation. Moreover, the learning of the large-neighborhood templates can also been applied 

on RMCNN. The effects of the large-neighborhood templates could be analyzed and how to 

implement the space-variant templates on RMCNN chip is a challenging topic. 

As to the recursive learning RMCNN, the templates Z are learned recursively. With the 

simulations, it is proved that the recognition rates can be improved as an RMCNN structure is 

used. However, per 5 iterations, the deviation of the learned templates Z is calculated and the 

recursive learning stops when the deviation is smaller than the constrain δ. The mathematical 

model and derivation will be further studied in the future. Based on the proposed algorithm, a 

recursive learning RMCNN chip will also be designed and implemented in 0.18 μm or better 

CMOS technology. Further research on the efficiency of the learning templates Z will be 

concerned and integrated.  

Finally, the integration of RMCNN and LNCNN can make the whole chip powerful. 

RMCNN is applied on learning where LNCNN is used for controlling and computing. As a 

machine with RMCNN and LNCNN contains memories, controllable instructions, and 

learnable abilities, it may achieve an artificial intelligence system with a proper design and 

controlling codes. 
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