
NCTUns 4.0: An Integrated Simulation Platform for
Vehicular Traffic, Communication, and Network

Researches
S.Y. Wang, C.L. Chou, Y.H. Chiu, Y.S. Tzeng, M.S. Hsu, Y.W. Cheng, W.L. Liu, and T.W. Ho

Department of Computer Science
National Chiao Tung University

Hsinchu, Taiwan
shieyuan@cs.nctu.edu.tw

Abstract—In this paper, we present an integrated simulation
platform, called NCTUns, for vehicular traffic, communication,
and network researches. This platform combines the capabilities
supported by a network simulator and those supported by a
traffic simulator. With these simulation capabilities, NCTUns can
be used to design protocols for Intelligent Transportation Systems
(ITS) communication networks such as a wireless vehicular
communication network. Besides, the novel architecture of the
platform enables the real-world Linux protocol stack and any
real-world application to be used in simulations of such networks.
In this paper, we present the design of NCTUns for supporting
ITS researches and show its scalability.

I. INTRODUCTION

Wireless vehicular communications, covering Vehicle-to-
Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-
to-Person (V2P) communications, aim to increase road safety
and transport efficiency, and provide ubiquitous wireless con-
nectivity to the Internet. Via these different means of commu-
nication, drivers and pedestrians can obtain useful and/or emer-
gent traffic information (e.g., route guidance, collision avoid-
ance, non-line-of-sight event detection, etc.) on the road. For
this reason, wireless vehicular communications has become a
very important part of intelligent transportation systems (ITS).

Several outdoor wireless communication technologies have
been proposed or under development with capabilities to
operate in the vehicular environment, such as GPRS, IEEE
802.16 (also called WirelessMAN or WiMax), IEEE 802.11p,
and so on. Based on these technologies, applications providing
immediate and/or reliable traffic information can be proposed.
In general, before being deployed on the road, an application
must be tested thoroughly. This means that many field trials
under different settings have to be carried out to verify
the feasibility of an application in the real-life environment.
According to the results obtained from each test, the design of
a given technology or application might need to be repeatedly
revised for achieving acceptable performances.

Conducting many large-scale vehicular field trials is very
costly in terms of time, money, and experimenters’ personal
safety. Many communication equipments, vehicles, and ex-
perimenters need to be purchased, rented, and employed,
respectively, for the trials. Besides, when carrying out trials

with a specifically-designed scenario, the experimenters may
face potential dangers such as collisions with vehicles or
pedestrians. To reduce these costs, it is highly desirable to
use software simulation to perform indoor evaluations prior to
outdoor field trials.

Software simulators adopted for vehicular communication
researches can be roughly classified into two categories: net-
work simulators and traffic simulators. In general, network
simulators are used to predict the behaviors of network proto-
cols and applications under different situations. One can use
them to see how his/her protocols (e.g., routing protocols,
medium access control protocols, transport protocols, etc.)
and applications (e.g., HTTP, FTP, VoIP, etc.) would perform
under various network conditions. On the other hand, traffic
simulators are used to simulate drivers’ driving behavior (e.g.,
car following, lane changing, overtaking, etc.) when driving
on different kinds of road networks (e.g., freeways, urban
areas, etc.). One usually uses them on the research areas of
transportation engineering, such as transportation planning and
traffic engineering.

Mostly, a network simulator is dedicated only to the studies
of network protocols and applications, while a traffic simulator
only to the studies of transportation engineering. However, in
order to satisfy the special requirement of combined simulation
capabilities from both simulators, an integrated simulation
platform is greatly needed. For example, some intelligent
transportation systems aim to add information and communi-
cation technologies into transport infrastructures and vehicles
to improve safety and reduce vehicle wear, transportation time
and fuel cost.

In this paper, we introduce an integrated simulation plat-
form, called NCTUns, for vehicular traffic, communication,
and network researches. NCTUns 1.0 was originally developed
as a network simulator [1] and released as an open source
package. The current released version is NCTUns 3.0 [2]
and the latest version, called NCTUns 4.0, will be released
soon. NCTUns 4.0 combines its unique network simulation
capabilities with some traffic simulation capabilities, such as
road network construction, automatic vehicle driving, etc. As
such, it can be used to simulate microscopic vehicular wireless

1-4244-0264-6/07/$25.00 ©2007 IEEE 2081

communication networks.
The rest of the paper is organized as follows. In Section II,

we survey related works about network simulators and traffic
simulators. In Section III, we describe the simulation environ-
ment of our integrated platform. In addition, the simulation
performances of the platform are evaluated in Section IV.
Finally, we conclude the paper in Section V.

II. RELATED WORK

Several network simulators (e.g., [3]–[6], etc.) and traffic
simulators (e.g., [7]–[9], etc.) have been developed. Some of
them are commercial products while some of them are free
and/or open source softwares. We choose some of them as
examples and list them below with brief introduction.

• ns-2 [3] is a user-level and discrete-event network sim-
ulator. It provides support for the simulations of TCP,
routing, and multicast protocols over wired and wireless
networks.

• The QualNet [4] is a commercial software that can be
used to develop new communication technologies through
network modeling and simulation.

• The cnet is a network simulator [5] that enables exper-
imentation with various data-link layer, network layer,
routing and transport layer protocols in networks con-
sisting of various combination of point-to-point links and
IEEE 802.3 Ethernet segment.

• The OPNET Modeler [6] is a software environment
for network modeling and simulation. It allows users
to design and study communication networks, devices,
protocols, and applications.

• VISSIM [7] is a microscopic, behavior-based vehicular
traffic simulation program. It offers a wide variety of
urban and highway applications, integrating public and
private transportation.

• The TransModeler [8] is a traffic simulation package
applicable to a wide array of traffic planning and mod-
eling tasks. It can simulate many kinds of road networks
ranging from freeways to downtown areas.

• The SUMO [9] is an open source microscopic road traffic
simulation package. It was primarily designed for urban
street networks, but it may also be used for highway
traffic simulations.

Each simulator listed above is either a network simulator
or a traffic simulator. However, TraNS (Traffic and Network
Simulation Environment) [10] is a simulation environment that
integrates both a traffic simulator (say, SUMO) and a network
simulator (say, ns-2). The main design principle of TraNS is
that it provides facilities for file format translation from the
moving-trace file of SUMO to that of ns-2. Thus, ns-2 can
replay the vehicular moving paths generated by SUMO. The
usage of TraNS is to first use SUMO for producing moving
trace records for each vehicle moving on user-specified road
networks. After translating the format of moving trace records
into the format readable by ns-2, TraNS dumps the records into
a file. Later on, ns-2 reads this file for simulating each vehicle’s

moving path. Because the simulation output produced by ns-
2 cannot be passed back to SUMO in the current version
of TraNS, close interactions between a road network and a
communication network cannot be supported in TraNS.

In contrast, the NCTUns software presented in this paper is
a highly integrated simulation platform. It fully supports close
interactions between a road network and a communication
network. As such, it can be used to study many advanced ITS
research problems that require this capability. Unlike TraNS,
which loosely combines two independent simulators, NCTUns
provides a single, integrated, complete simulation environment
in which users can handle their simulation works (e.g., code
writing and modifying, event passing, output data sharing, etc.)
more easily and efficiently.

III. INTEGRATED SIMULATION PLATFORM

In this section, we introduce NCTUns by presenting its
major components and some application program interfaces
(APIs) used among them. This section presents the architecture
of this platform and shows how to use this platform to carry
out researches.

A. Platform Architecture

Fig. 1 shows the architecture of the platform. One sees
that the architecture consists of four major components: GUI,
SE, Car Agent(s), and Signal Agent(s). The roles of these
components and their functionalities are described below.

• GUI (Graphic User Interface) The GUI provides users
with an environment where they can easily construct
their desired road networks. For example, road segment
construction/connection can be specified in a few steps
of mouse operation. In addition, network protocol selec-
tion/replacement and network system parameter setting
can also be done in just a few operations. After all the
settings of the road and network subsystems have been
done, the GUI will automatically generate all configura-
tion files for the other components. The GUI saves users
much time in specifying a simulation case with many
vehicles and roads. The GUI can play back animations
of packet transmission and vehicle movement. This visual
display of simulation results greatly help users check the
correctness of their network protocol designs and vehicle
movement behavior.

• SE (Simulation Engine) The SE is responsible for
simulating transport-layer and network-layer protocols.
Besides, it stores some car and signal information for
servicing the requests issued by a car agent or a signal
agent.

• Car Agent A car agent is run on each car and it consists
of four components, which are (1) the agent logic, (2)
a road map database, (3) socket interfaces, and (4)
car/signal information APIs. The agent logic controls the
automatic driving behavior of the vehicle node on which
the car agent is run. The road map database stores the
location/direction of roads. The socket interfaces provide
TCP/UDP Internet connections for vehicles to exchange

2082

Signal
Agent

Information
Signal

Database
Information

Database

Car
Protocol

Stacks

SE

Agent
Logic

GUI

Car Agent

Signal
Information

APIs
Socket

Interface

Agent
Logic

Database
Road Map

APIs
Information
Car / Signal

Signal Agent

TCP
TCP TCPTCP/

UDPTCP/
UDP

TCP

Car Agent

APIs

Fig. 1. The integrated platform architecture

their information on the road. The car/signal information
APIs are the functions that the agent logic can call to
access the car and signal information databases located
in the SE. These API functions internally use TCP/IP IPC
(Inter-Process Communication) connections to exchange
information between the car agent and the SE.

• Signal Agent A signal agent is run up for each cross-
road. It controls the changing of the signal state of the
four traffic lights located at the crossroad. It has two
components: the signal logic and the signal information
APIs. The signal logic governs when signal state should
be changed. The signal information APIs are called by
the signal agent to update the signal information database
stored in the SE.

B. Road Types

NCTUns 4.0 supports different types of roads, including
single-lane roads, multi-lane roads, crossroads, T-shape roads,
and lane-merging roads. After constructing the desired road
networks, users can obtain the road map configuration file
generated automatically by the GUI. When a simulation starts,
each car agent will read in this file and store the road map
information into its own road map database for later uses.
Fig. 2 shows a screenshot of the GUI.

C. Vehicle Movement Controls

Two approaches of vehicle movement control are supported
by NCTUns 4.0. The first one is the pre-specified approach
and the second is the autopilot approach. In the pre-specified
approach, a user needs to specify the moving path and speed
of each vehicle before a simulation starts. During simulation,
each vehicle will move along its pre-specified moving path at
the pre-specified moving speed(s) on a road network. In this
approach, the car agent running on each vehicle does not con-
trol the movement behavior of the vehicle. In contrast, in the

Fig. 2. A screenshot of the GUI

autopilot approach, a user need not specify each vehicle’s exact
moving path/speed. Instead, he/she just needs to specify each
vehicle’s moving parameters (e.g., initial speed, maximum
speed, initial acceleration, maximum acceleration, maximum
deceleration, etc.) for the car agent. During simulation, the car
agent will automatically control the moving behavior of the
vehicle based on these specified parameters. Each vehicle will
dynamically determine its moving path and speed according
to its current surrounding traffic and road conditions.

The intelligent driving behaviors coded in the agent logic of
a car agent include car following, lane changing, overtaking,
turning, and traffic light obeying. The intelligence used to
control the first three behaviors considers the relationships
between the speed and location of a given vehicle and those
of each of its surrounding vehicles. The intelligence used to
control the other behaviors considers the road conditions and
the traffic light signal states ahead of the vehicle. On top of
the default autopilot intelligence, a user can easily add more
intelligence into the agent logic of a car agent. A user can
also easily replace the default autopilot intelligence with more
advanced autopilot intelligence.

D. Application Program Interfaces

From Fig.1, one sees that some intra- or inter-process APIs
are provided to deliver requests and/or replies. These APIs can
be classified into three categories as follows.

1) The intra-process APIs in a car agent are called by
the agent logic to access the road map database. These
APIs help the agent logic obtain the road configura-
tions/conditions for making driving decisions. For ex-
ample, the agent logic obtains the direction of a road
ahead of the vehicle so that the vehicle can move in
the correct direction. Another example is that the agent
logic obtains the information of neighboring lanes so
that the vehicle can safely change lanes and/or overtake
other vehicles. Yet another example is that the agent

2083

logic obtains the information of the crossroad ahead of
the vehicle so that the vehicle can make a turn smoothly.

2) The signal information APIs in a signal agent are used
by the agent logic to update the newest signal states onto
the signal information database located in the SE. For
the sake of reliability, the update data are transfered over
TCP connections.

3) The car/signal information APIs in a car agent are called
by the agent logic to update/access the car and signal
information databases located in the SE. For each vehi-
cle, its moving states are stored in the car information
database. These states include current moving direction,
current speed, current acceleration, current location, etc.
Through the car information API functions, an agent
logic regularly updates the states of its vehicle in the
database and fetches the states of surrounding vehicles
from the database. With these information, a vehicle can
perform car following, lane changing, and overtaking
without colliding with other vehicles. Through the signal
information API functions, an agent logic can fetch the
current states of some signals (e.g., traffic light) from
the signal information database. With these information,
a vehicle can either drive across a crossroad when the
traffic light is green or stop at a crossroad when the
traffic light is red. To ensure that these information are
exchanged reliably between a car/signal agent and the
SE, these information are transfered over TCP connec-
tions.

E. Network Protocol Simulations

In Fig. 1, one sees that different car agents exchange Internet
packets with each other over TCP or UDP connections. These
TCP/UDP connections are set up by the car agents using
the standard POSIX socket APIs. Fig. 3 shows how network
protocol stacks and Internet connections are simulated on
NCTUns 4.0. In the example, two vehicles moves on the
road and they exchange Internet packets with each other. To
simulate this case, two car agents are run up to control these
two vehicles (one for each vehicle) and the SE is run up to
simulate the MAC and PHY layers of the protocol stacks.
Suppose that the left car agent sends a packet to the right car
agent, the detailed packet delivery process is described below.

1) The agent logic of the left car agent uses the standard
POSIX socket system calls (e.g., sendto, write, etc.) to
write a segment of data into the socket send buffer in
the kernel.

2) The data segment will first reach the TCP/UDP layer
(which is defined as the transport layer in the OSI
model). After being encapsulated with a TCP/UDP
header, this TCP/UDP packet is then passed to the IP
layer (which is defined as the network layer).

3) The TCP/UDP packet will be encapsulated again with a
IP header and then be written into a tunnel interface.

4) Later on, the user-level SE will retrieve the IP packet
from the tunnel interface.

TCP/UDP

IP

Tunnel

TCP/UDP

IP

Tunnel

Interface
Socket

Agent
Logic

Car Agent

Interface
Socket

Agent
Logic

Car Agent

MAC

PHY

MAC

PHY

SE

User Level

Kernel Level

Fig. 3. The architecture of network protocol simulation

5) The media access control (MAC) protocol (which is
defined as the datalink layer in the OSI model) and
the physical (PHY) protocol (which is defined as the
physical layer) are simulated in the SE. The fetched IP
packet will be encapsulated again with a MAC header
and then sent from the sending PHY to the receiving
PHY under the control of the MAC protocol.

6) The MAC header of the MAC packet will be stripped
off when the packet arrives at the receiving MAC. The
SE then writes the packet into another tunnel interface
in the kernel.

7) The kernel then delivers the IP packet from the tunnel
interface to the IP layer. Although this packet is received
from the (pseudo) tunnel interface, the kernel processes
it in exactly the same way as it processes a packet
received from a (real) network interface. The IP header
of the IP packet is then stripped off at the IP layer, and
then the packet is passed up to the TCP/UDP layer.

8) At the TCP/UDP layer, the TCP/UDP header of the
TCP/UDP packet is stripped off and the remaining data
segment is then stored into the socket receive buffer.

9) Finally, the agent logic of the right car agent uses the
standard POSIX socket system calls (e.g., recvfrom,
read, etc.) to read the data segment from the socket
receive buffer.

From the above descriptions, one sees that NCTUns uses
the real-life TCP/UDP/IP protocol stack in the Linux kernel to
deliver packets among car agents. As such, NCTUns generates
realistic TCP/UDP/IP protocol stack simulations results for
wireless vehicular communication networks. Besides, one sees
that a car agent is an independent user-level application
program using the standard POSIX system calls to get ser-
vices from the operating system. This means that it can be
easily and quickly deployed in the real world without any
modification once its functions have been verified in simulated
environments.

2084

TABLE I
ELAPSED TIME AND TOTAL PHYSICAL MEMORY USAGE IN EACH CASE

WITH DIFFERENT NUMBER OF ROADS

Number of Roads 150 200 250 300 350 400
Elapsed Time (min) 18.9 20.8 21.9 19.6 21.1 22.3

Total
Physical Memory 132 133.3 134.2 135 136.7 138

Usage (MB)

IV. PERFORMANCE EVALUATIONS

Due to the paper length limit, only the effects of two
important system parameters are studied in this paper: the
number of roads and the number of vehicles deployed in
a simulated traffic network. For each simulation case, we
observe the elapsed time for the simulation and the total
physical memory usage.

The simulation machine used in our evaluations is an ASUS
A8Jseries notebook, which is equipped with a 1.83 GHz CPU
and 1 GB RAM. The simulated road topology is a rectangular
single-lane highway with 6 Km of length and 6 Km of width,
regardless of the number of roads deployed in a simulation
case. This special arrangement of roads ensures that the vehicle
density on the highway remains the same regardless of the
number of roads. This property is important to fix the AODV
routing protocol overhead.

Regarding the network communication scenario, no matter
how many vehicles are deployed, all the car agents of these
vehicles are programmed to send a 1084-byte UDP packet
(1056 bytes for the data payload, 20 bytes for the IP header,
and 8 bytes for the UDP header) to each of the other vehicles
once per second. The AODV routing protocol [11] is used in
the protocol stack of each vehicle to build packet routing paths
among all vehicles. The total time to be simulated for each
case is set to 500 seconds. Regarding the vehicle movement
parameters, the initial speed is set to 10 m/s, the maximum
speed is set to 18 m/s, the initial acceleration is set to 1 m/s2,
the maximum acceleration is set to 1.4 m/s2, and the maximum
deceleration is set to 4.5 m/s2 for each deployed vehicle.

A. Number of Roads

In the first evaluation, in total 100 vehicles are deployed
in each of the six simulation cases. In each case, we deploy
a different number of roads — 150, 200, 250, 300, 350, and
400, respectively.

Because the total length of the deployed highway is kept the
same in all cases, the density of vehicles on the highway is also
the same in all cases. This makes the simulation overhead of
the AODV routing protocol and the UDP packet transmissions
similar in all cases. Since increasing the number of roads will
increase the size of the road map database, we expect to see
increased total physical memory usage and increased time for
running the simulation (i.e., the elapsed time).

The results shown in TABLE I confirm the above expecta-
tions. One sees that the elapsed time increases slightly with the
number of roads. In addition, as expected, the total physical
memory usage increases slightly with the number of roads.

TABLE II
ELAPSED TIME AND TOTAL PHYSICAL MEMORY USAGE IN EACH CASE

WITH DIFFERENT NUMBER OF VEHICLES

Number of Vehicles 100 125 150 175 200 225
Elapsed Time (min) 22.3 32.2 47.4 65.6 84.3 105.1

Total
Physical Memory 138 175 207 241 276 313

Usage (MB)

B. Number of Vehicles

In the second evaluation, in total 400 roads are deployed in
each of the six simulation cases. In each case, we deploy a
different number of vehicles — 100, 125, 150, 175, 200, and
225, respectively.

Because the total number of roads is the same in all cases,
the overhead of road map database in terms of access time
and total physical memory usage is the same in all cases.
Since increasing the number of vehicles will increase the
vehicle density on the highway, it is expected to see increased
overhead of the AODV routing protocol and the UDP packet
transmissions, which should be reflected by increased elapsed
time. Besides, since a car agent needs to be run up on
every vehicle and each car agent needs to store the road
map database, the total physical memory usage is expected
to increase with the number of vehicles.

The results shown in TABLE II confirm the above expec-
tations. One sees that the elapsed time and the total physical
memory usage increase with the number of vehicles.

V. CONCLUSION

In this paper, we present an integrated simulation plat-
form, called NCTUns, for vehicular traffic, communication,
and network researches. NCTUns combines the simulation
capabilities provided by both a network simulator and a traffic
simulator. As such, it can simulate microscopic vehicular wire-
less communication networks for advanced ITS researches.
The scalability of NCTUns under different numbers of roads
and vehicles is also presented.

REFERENCES

[1] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang, C.C.
Chiou, and C.C. Lin, “The Design and Implementation of the NCTUns
1.0 Network Simulator,” Computer Networks, Vol. 42, Issue 2, June
2003, pp. 175-197.

[2] The NCTUns 3.0, available at http://nsl10.csie.nctu.edu.tw/.
[3] The Network Simulator - ns-2, available at http://www.isi.edu/nsnam/ns.
[4] The QualNet software, available at http://www.scalable-networks.com/.
[5] The cnet network simulator, available at http://www.csse.uwa.edu.au/

cnet/.
[6] The OPNET modeler, available at http://www.opnet.com/.
[7] The ptv simulation - VISSIM, whose reference link is http://www.

english.ptv.de/cgi-bin/traffic/traf vissim.pl.
[8] The TransModeler traffic simulator, whose reference link is http://www.

caliper.com/transmodeler/.
[9] The SUMO traffic simulation package, available at http://sumo.

sourceforge.net/index.shtml.
[10] The TraNS (Traffic and Network Simulation Environment), available at

http://wiki.epfl.ch/trans.
[11] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance

Vector (AODV) Routing,” IETF Internet draft, draft-ietf-manet-aodv-
12.txt, November 2002.

2085

