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Abstract

High speed data converter has been applied for many electrical. With the channel

length of MOS transistor is smaller and the parasitic is also reduced. These character-

istics make the transistor be able to be operated in higher frequency and lower power

dissipation. However, non-ideal effects aslo occur in the short channel device and the

analog design becomes more and more difficult.

A timing skew calibration technique for multi-phase system will be introduced in the

thesis and we will apply it on the time-interleavd ADCs. In this thesis, the mathematical

model for proposed calibration technique will be analyzed and simulated for optimization

of design parameters of calibration scheme.

With optimized design parameters, a 6-bit, 16GHz time-interleaved ADC has been de-

mostrated with 65nm CMOS technology. With proposed calibration scheme, the timing

iii



skew error has been minimized. With input signal is about 3GHz, sampling rate 16GHz,

the SNDR of output signal has been improved from 19dB to 28dB. The distortion har-

monic tones due to timing skew has been improved from -28dB to -49dB.
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Chapter 1

Introduction

1.1 Motivation

A multi-phase clock generator generates a set of clocks that have identical frequency but

different phases [1][2]. Many applications, such as time-interleaved analog-to-digital con-

verters (TI ADCs)[3][?], require the clock phases to be uniformly spread over one clock

period. Figure 1.1 shows a M-channel sampling system including a multi-phase clock

generator. The M-phase clocks are generated using a delay line consisting of M cascaded

delay units with equal delay, Uj, where 1 ≤ j ≤ M . The delay of Uj is usually controlled

by a phase-locked loop or a delay-locked loop. For each j, the Bj buffer is connected to

the output of Uj and generates the φj clock that drives the SAHj sample-and-hold circuit.

For a TI ADC, the time interval between two consecutive samplings must remain constant.

Any timing skew in the multi-phase sampling clocks can yield sampling interval variation

[4][5] and degrade the overall signal-to-distortion-plus-noise ratio (SNDR) performance

of the ADC. The timing skews are caused by the device mismatches in the delay units and

the clock buffers, as well as the mismatches among clock signal routes. For an 8-channel

6-bit 16 GS/s TI ADC as Figure 2.6, the skew must be less than 0.31 psec so that the

ADC can attain 37 dB SNDR. This skew requirement is difficult to achieve even for chips

fabricated by today’s advanced integrated-circuit technologies.

There are calibration techniques to correct the timing skews. A useful calibration

scheme must be able to detect the timing skew first and then make the necessary correc-

1
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Figure 1.1: A multi-phase sampling system.

Figure 1.2: Signal-to-distortion ratio degradation due to timing skew.
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tion. Most timing-skew detection techniques acquire the timing information from a refer-

ence signal. For TI ADCs, if the reference is narrow-band so that it does not cause alias-

ing in each analog-to-digital (A/D) channel, digital signal processing algorithms, such as

Fourier transform [6] or cross correlation [7, 8], can be applied for skew detection. If the

reference is well-defined and rich in timing information, such as a ramp signal, the skew

can be detected without complex signal processing [9, 10]. However, a high-speed high-

precision reference is difficult to generate. All the above skew detection techniques need

to use the multi-bit A/D channels in the TI ADC to digitize the reference. Thus, it is not

trivial to perform the calibration in the background without interrupting the normal A/D

operation. To enable background calibration, the scheme of [9] adds a ramp reference to

the ADC’s input. This precise signal summation is difficult to implement and degrades

signal dynamic range. On the other hand, the scheme of [10] requires an additional A/D

channel and employs complex channel switching.

The timing skew can also be detected by counting the rising (or falling) edges of

an asynchronous reference [11, 12, 13]. The scheme needs only simple hardware, such

as flip-flops and adders. Its fundamental principle was expanded as zero-crossing de-

tection [14]. Although stringent specifications for the references are not required, these

techniques are sensitive to the input-referred offsets of the comparators used in the zero-

crossing detectors. In some schemes, flip-flops serve as the comparators.

There are calibration schemes for TI ADCs that directly use the input of the ADC as

the reference for timing-skew detection [7, 14]. Those schemes inherently operate in the

background. The scheme of [7] restricts the input to be narrow-band so that it cannot

cause aliasing in each A/D channel. This narrow-band restriction can be lifted by the

clock-phase random-chopping technique [14]. However, the required clock choppers are

difficult to implement. The mismatches among clock choppers can degrade the effective-

ness of the technique. Furthermore, the effectiveness of these input-reference schemes

depends on the richness of timing information residing in the inputs. For example, a dc

input contains no timing information. No timing-skew calibration can function under such

an input condition.

This thesis describes 6-bit, 16GHz time-interleaved ADC with a proposed timing-

skew calibration technique whose clocking architecture is shown in Figure 1.3. For each
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Figure 1.3: Proposed architecture for multi-phase timing-skew calibration.
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j where 1 ≤ j ≤ M , the SAHj sample-and-hold circuit is driven by the φj clock from a

multi-phase clock generator. The SAHj receives the x(t) reference signal and produces the

xj[k] sampling sequence. From the sampling sequences, x1[k] · · · xM[k], the timing-skew

calibration processor detects the timing skews between neighboring sampling channels.

The Tj[k] digital control signal from the calibration processor adjusts the delay of the Bj

clock buffer. The objective is to equalize all sampling intervals defined by the multi-phase

clocks. The timing-skew detection is based on the principle of zero-crossing (ZC) detec-

tion [14]. The ZC detection does not demand stringent specification for the x(t) reference.

It requires only one comparator per sampling channel. A new ZC detection scheme is pro-

posed to reduce its sensitivity to comparators’ offsets. Excluding comparators, the entire

calibration processor can be realized by standard digital circuits.

The time-interleaved ADC in thesis contains M = 8 multi-phase clocks. Each clock

has a clock period of Tc and a clock frequency of fc = 1/Tc. Thus, the ADC’s effective

sampling interval is Ts = Tc/8 and the effective sampling rate is fs = 8fc. The ADC

has an input range between ±1, therefore, its magnitude resolution is defined as VLSB =

2/26 = 2−5. In addition, this time-interleaved (TI) ADC requires a timing resolution on

the order of TLSB = Ts/26.

1.2 Organization

The organization of the thesis is described as follow:

Chapter 2 draws the overview of multi-phase system, which includes fundamental

function of system, and how the timing skew affects the system. Chapter 3 describes

the techniques of timing skew detection. Frist draws the prior arts, and then introduce

the principle of ZC detection technique. It demonstrates the mathematical equation to

show the relation between zero crossing event and timing skew error. It aslo shows the

constraint on zero crossing detection.

Chapter 4 shows the ZC-based timing skew calibration on TIADC. With mathematical

analysis, the calibration settling time, system error after calibration can be evaluated, thus

the optimized system design parameters can be calculated.

To verify the timing skew calibration configuration described in Chapter 4, a 65nm
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6-bit 16GS/s time-interleaved flash ADC was demonstrated in Chapter 5. A background

comparator offset calibration technique [15] has been applied to achieve a high perfor-

mance single channel flash ADC.

Finally, conclusions and recommendations for future works will be given in Chapter 6.



Chapter 2

Multi-Phase System

2.1 Multi-Phase System

Shown in the Figure 2.1 is a multi-phsae sampling system. The signal s(t) has been

sampled by the multi-phases φ1, φ2, · · · ,φM and the respective sampled signals are S1[k],

S2[k],· · · , Sn[k], where k is the timing index in digital domain. The following MUX

collects the signal Sj[k], where j = 1, 2, · · · ,M and generates the output signal S[n],

where n is the upsampling timing index in the digital domain and n = M × k + j. With

the uniform timing space between each adjacent phase φj and φj+1, the sampling rate

can be improved by M times. However, mismatch occurs in the analog building block

shown in Figure 2.2, which leads the non-uniform timing space, or timing skew error,

then causes the sampling error as shown in Figure 2.3 and Figure 2.4. With the higher

frequency signal, the sampling error is larger since the slope of signal is larger. The

following section will describe the effect of timing skew error in detail.

7
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Figure 2.1: Multi-phase sampling system.

2φφ1

φ1

2φ

2φ

φ2

φM

φ1

2s  [k]

φ M
Mismatches exist 
in each analog block

sT

Ideal

With Mismatch

τ1

MUX

Ms   [k]

s[n]

s  [k]1

Clock Generator

s(t)

Figure 2.2: Timing skew periodically occurs when mismatches exist in the analog building
block.
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Figure 2.3: Timing skew in the multi-phase system.

2.2 Timing Skew on Multi-Phase (Time-Interleaved) Sys-

tem

Considering that fc as single channel clock rate as described in the above section, the

sampling time instant can be written as

tm = mTs + τj (2.1)

where j = 1, 2, · · ·M , and Ts = 1/(Mfc) = 1/fs, and −Ts/2 < τj < Ts/2 shows the

timing skew error among each channel. Assuming the analog input signal s(t) to have the

spectrum Sa(ω), the digital spectrum of the time-interleaved system can be expressed as

(2.2)

S(ω) =
1
Ts

∞
∑

k=−∞

(

1
M

M
∑

m=1

e−j
(

ω−k 2π
MTs

)

τme−jmk
2π
M

)

Sa

(

ω − k
2π
MTs

)

(2.2)

With no timing skew errors, τj = 0 and (2.2) can be written as

Sideal(ω) =
1
Ts

∞
∑

k=−∞

Sa(ω − 2πk) (2.3)
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Figure 2.4: Timing skew causes the sampling error.
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which corresponds to a siganl sampled at sampling rate Ts.

However, τm 6= 0, m = 1, 2, ·,M , the timing skew error occurs. Considering a si-

nusoidal input signal with an amplitude of 1, angular frequency ω0 = 2πf0, the digital

spectrum of output is

Sskew(ω) =
1
Ts

∞
∑

k=−∞

A(k) · jπ
(

δ

(

ω + ω0 −
2πk
MTs

)

− δ

(

ω − ω0 −
2πk
MTs

))

(2.4)

where

A(k) =
1
M

M
∑

m=1

(

1
M

e−jω0τm

)

· e−j
2πkm
M (2.5)

The above equation shows that A(k) includes the frequency components of 1/M, 2/M, · · · .,

and the distortion tone for timing skew error will appears at signal frequency

f0 +
m

MTs

, f0 −
m

MTs

, m = 1, 2, · · · ,M − 1 (2.6)

where the corresponding frequency shows the tune frequency of distortion. Morefurther,

(2.4) also implies the timing skew error forms a sequence with repeating τj, and it has

been modulated as phase modulation with carrier frequency f0. If the timing skew errors

are treated as Gaussian random variable with zero mean and a variance of σ2
τ , the distortion

power defines the timing skew requirement as following equation

Pd,skew = 2π2f 2
0σ

2
τ <

V 2
LSB

12
(2.7)

where the factor 12 is calculated by asuuming that signal around each ADC code is

a uniform distribution over the range from −0.5VLSB to +0.5VLSB. Thus we have defined

the specification of timing skew errors.

Also we test the timing skew errors in time-interleaved ADC, where the resolution of

ADC is 6-bit. The simulation result is shown in Figure 2.5, where the timing skew errors

are zero mean and 0.05Ts standard deviation. The input signal is still a sine wave with

frequency about 0.09 in digital domain. the distortion tone frequency occurs at 1/8 +

0.09, 2/8 + 0.09, · · · , which is the same as the result described in above mathematical

equation. [?][16][17][18]

Shown in the Figure 2.6 draws how the timing skew affects the signal-to-distortion

ratio when input frequency increases. For an 8-channel 6-bit 16 GS/s TI ADC, the skew
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Figure 2.5: Time-interleaved output spectrum with timing skew errors.
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Figure 2.6: Signal-to-disortion ratio due to timing skew under different input frequency.

must be less than 0.31 psec so that the ADC can attain 37 dB SNDR. This skew require-

ment is difficult to achieve even for chips fabricated by today’s advanced integrated-circuit

technologies.

As the describe in the last chapter, since the timing skew error degrades the output

signal performance acutely and it is hard to achieve the 0.3 psec timign skew specification

in pure analog method, the timing skew detection and calibration is required. Figure 2.7

draws that the multi-phase system requires a timing skew detector to trim the timing delay,

thus the performance of output signal can be improved.
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Figure 2.7: A timing skew detection is required in the multi-phase system.



Chapter 3

Timing Skew Detection

3.1 Prior Arts

In this section, the some timing skew detection techniques will be introduced. First is

the FFT test, the second is the correlation based technique, following is the detection by

reference signal and final is using edge detection technique to detect the timing skew.

3.1.1 FFT Testing

Shown in the Figure 3.1 is the FFT based timing skew detection technique. The reference

signal x(t) has been sampled by multiphase clocks, then obtains the sampled siganl x1[k],

x2[k],· · · . With given sine wave signal of x(t), using FFT of each subchannel signal xj[k],

then the amplitude and phase of each x(t) can be extracted. Therefore, by comparing the

phase difference between each adjacent channels, the timign spacing can be measured and

the timing skew has been detected. However, we should define the x(t) as the narrow band

φ2φ1 φM
FFT

Amplitude
phase

FFT
Amplitude

phase

φ

φ

j

j+1
j+1

jx  [k]

x      [k] Clock Generator

x(t)

Figure 3.1: FFT testing in the multi-phase system.
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x  [k] = x(t   +(j−1)   T   +k    MT   )s s

x      [k] = x(t   +j    T  +k    MT    +     )
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x(t)

x(t)

Figure 3.2: Sampling sequence in the multi-phase system.

signal such as sine wave. Besides, the multi-bits ADC and FFT module are required in

this system.

3.1.2 Correlation Based Technique

Figure 3.2 shows the simple multi-phase system. The reference signal x(t) has been

sampled by φj, where j = 1, 2, · · · ,M . The following sampled signal is xj[k]:

xj[k] = x
(

t0 + j × Ts + k ×MTs + τj
)

(3.1)

where t0 is the initial time value, Ts is the ideal timing space between each adjacent chan-

nels. To simplify the mathematical derivation, considering that x(t) = cos(2πfint) only

and then evaluating the expected value E
(

xj[k] × xj+1[k]
)

by the following equation:
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E
(

xj[k] × xj+1[k]
)

= E (cos (2πfinTs(Mn + j)) × cos (2πfinTs(Mn + j + 1)))

= E

(

cos (2πfinTs(2Mn + 2j + 1))
2

+
cos (2πfinTs)

2

)

=
cos (2πfinTs)

2

(3.2)

With timing skew error τj:

E
(

xj[k] × xj+1[k]
)

=
cos
(

2πfin(Ts + τj)
)

2
(3.3)

With above equation, the timing skew error can be detected by evaluating the mean of

product xj[k]×xj+1[k] since the variable τj in the Equation (3.3) is a monotonic function

[7].

However, the mean of product xj[k] × xj+1[k] may be not a monotonic function of τj
when the bandwidth of s(t) is too large. To understand this issue, considering Figure 3.3,

the aliasing occurs when the bandwidth of s(t) is larger than fc/2. Since the data sequence

the sampling clock of S[Mn + j] is fc, with bandwidth of s(t) larger than fc/2, aliasing

occurs and the digital signal processing calculating will fail and the timing skew detection

fail. We can define that the bandwidth of reference is small to overcome this problem.

However, we still need a good enough ADCs to quantize ths reference signal and digital

multiplier to evaluate the timing skew error.

3.1.3 Reference Signal Technique

Shown in the Figure 3.4 is an exmaple of timing skew detection using refernce signal[9].

The period of ramp signal x(t) is Tc. Considering the input signal s(t) is zero mean, the

input signal s(t) + x(t) of channel j has the mean value xj. Since the reference signal is

well known, when timing skew occurs, the average value of s(t) + x(t) is different from

ideal value, thus the timing skew can be detected by using the measured xj+1 substractes

the adjacent channel’s value xj. Since with zero timing skew, the differences between

each adjacent channels are the same. The difference between xj+1 − xj with different j

implies the timing skew error.
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Figure 3.3: Aliasing of s(t) with the downsampling clock fc.
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However, the ramp signal is hard to generate perfectly, any non-ideal effect on ramp

signal will cause the error of timing skew detection. Besides, the ramp siganl reduceds

the dynamic range of s(t) and the function of analog addition also produces the nor-ideal

effect.

3.1.4 Edge Detection Technique

Figure 3.5 uses clock signal to detect the edge of reference signal. The reference signal

x(t) is a square wave and asynchronous to the clock signal φj. When the reference signal

x(t) has been sampled by the adjacent clocks φj and φj+1, the following NOR gate can

detect if the rising edge of x(t) occurs. When the NOR gate output signal bin=1, the

implies edge of x(t) occurs between the adjacent clocks φj and φj+1. Since the reference

signal x(t) is asynchronous to clock φj signal, the probability density of reference siganl

x(t) edge occurrence is a uniform distribution. Therefore, as shown in Figure 3.6, assum-

ing that the period of x(t) is larger than clock source, and the difference is ∆T the large

timing space among tap j + 1 and j leads large probability of x(t) edge occurrence, and

we can compare the accumulation of each edge occurrence among each channel to detect

the timing skew error.

There are also many timing skew calibration method, such as [19] and [20] use analog

phase detector to minimized the timing skew error and [21] use local phase detector in

delay-locked loop to suppress the timing skew error.

3.2 Zero-Crossing (ZC)

Consider the M-channel sampling system shown in Figure 1.1. For each j where 1 ≤ j ≤

M , the SAHj sampler triggered by the φj clock samples the x(t) input and produces the

xj[k] sampling sequence, where k is a discrete time index. Both x(t) and xj[k] for M = 4

are illustrated in Figure 3.7. If SAHj is ideal, then xj[k] can be expressed as

xj[k] = x
(

t0 + (j − 1) × Ts + k ×MTs + τj
)

(3.4)

In Equation (3.4), Ts is the nominal time interval between two consecutive samplings.

The sampling rate for the entire system is fs = 1/Ts. The time period of the φj clock
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Figure 3.5: Edge detection of x(t) using flip-flop and simple logic.
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Figure 3.6: Illustration of timing skew detection using edge detector.

is Tc = M × Ts. Its clock frequency is fc = 1/Tc. The time position of x(t) relative

to the multi-phase clocks is represented by t0, which is the sampling time of x1[0]. The

possible value of t0 is between 0 and Tc. Lastly, τj is the individual timing offset of

the φj clock. The value of t0 is defined in such a way that the mean of τj is zero, i.e.,

τ1 + τ2 + · · ·+ τM = 0. A timing skew occurs between the clocks φj and φj+1 if τj 6= τj+1.

Consider a x(t) signal that is continuous in time and in magnitude. As time progresses,

a zero crossing (ZC) occurs if x(t) changes its polarity from positive to negative or from

negative to positive. For example, in Figure 3.7, there is a ZC between x2[0] and x3[0],

and another ZC between x2[1] and x3[1]. There exists at least one ZC between xj[k] and

xj+1[k] if xj[k] × xj+1[k] < 0. If x(t) is a stationary Gaussian process with zero mean,

then the probability of xj[k] × xj+1[k] < 0 for an arbitrary k is [22, 23, 24]

P z
j,j+1 =

1
2
−

1
π

sin−1 ρj,j+1 (3.5)

with

ρj,j+1 =
E
{

xj[k] × xj+1[k]
}

σj × σj+1
(3.6)
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Figure 3.7: x(t) and xj[k] sampled signal.
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Figure 3.8: Zero-crossing density.

and

σj =
√

E[x2
j ] σj+1 =

√

E[x2
j+1] (3.7)

where σj and σj+1 are the standard deviations of xj[k] and xj+1[k] respectively. Further-

more, ρj,j+1 denotes the cross-correlation between xj[k] and xj+1[k]. The value of ρj,j+1

is between +1 and −1. If x(t) is a dc signal, then both xj[k] and xj+1[k] are constant,

xj[k] = xj+1[k], ρj,j+1 = 1, and P z
j,j+1 = 0. Therefore, there is no ZC for a dc x(t). If

x(t) is a single-tone sinewave with frequency at 1/(2Ts), then both xj[k] and xj+1[k] are

also constant, but xj[k] = −xj+1[k], ρj,j+1 = −1, and P z
j,j+1 = 1, i.e., a ZC always occurs

between xj[k] and xj+1[k] for every k.

Consider two sampling sequences, xa[k] and xb[k], as illustrated in Figure 3.8. Both

sequences have an identical clock period of Tc. The sampling interval between xa[k]

and xb[k] is ts. The sampling time for xa[0] is t0. For a generic x(t) input, the cross-

correlation of Equation (A.59) between xa[k] and xb[k] is denoted as ρa,b(t0, Tc, ts). Note

that ρa,b(t0, Tc, ts) is a periodic function of t0 and has a period of Tc. From Equation (3.5),

the corresponding ZC probability between the two sampling sequences is P z
a,b(t0, Tc, ts).
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The ZC density, defined as the ZC probability per unit ts time, can be expressed as

ZR(t0, Tc) ≡ lim
ts→0

P z
a,b(t0, Tc, ts)

ts

=
1
π
×

√

−
∂2ρa,b(t0, Tc, ts)

∂t2s

∣

∣

∣

∣

∣

∣

ts=0

(3.8)

For the sampling system of Figure 1.1, the ZC probability between xj[k] and xj+1[k] can

be expressed as

P z
j,j+1 =

∫ tj+Ts

tj

ZR(t0, Tc)dt0 (3.9)

where tj = t0 + (j − 1) × Ts.

Consider x(t) = A sin (2πfit). The sinewave input has a frequency of fi and an

amplitude of A. The corresponding ρa,b(t0, Tc, ts) is cos(2πfits), and the corresponding

ZR(t0, Tc) is

ZR(t0, Tc) =



















2fi
fi
fc

6= p
q

2
q

∑p−1
n=0 δ

(

t0 − n × Tc
p

)

fi
fc

= p
q

q is even
1
q

∑2p−1
n=0 δ

(

t0 − n × Tc
2p

)

fi
fc

= p
q

q is odd

(3.10)

where fc = 1/Tc is the clock frequency, and p and q are two mutually prime positive

integers. As shown in Figure 3.9, if the fi/fc ratio is irrational, i.e., x(t) is asynchronous

to the fc clock, then ZR is equal to 2fi and independent of t0 and Tc. If fi/fc = p/q, then

x(t) is synchronous with the fc clock. In a synchronous case, ZCs occur only at certain

instants if all clock periods are folded as one. There are p possible uniformly-spaced ZC

instants if q is even. On the other hand, there are 2p possible uniformly-spaced ZC instants

if q is odd.

The timing-skew calibration scheme proposed in this paper requires a x(t) reference

signal whose ZR is nonzero and independent of t0. One example is an asynchronous

sinewave whose ZR is 2fi as described in Equation (A.67). As illustrated in Figure 3.10,

if ZR is constant, then the ZC probability between xj[k] and xj+1[k] is proportional to the

Ts sampling interval, i.e., P z
j,j+1 = ZR×Ts. If timing skew occurs and the sampling interval

becomes Ts+∆τj, the ZC probability is deviated by an amount of ∆P z
j,j+1 = ZR×∆τj. By

comparing P z
j,j+1 and P z

j+1,j+2, one can determine whether the sampling interval between
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Figure 3.9: Zero crossing density of sine wave.
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Figure 3.11: A simple zero-crossing detector (ZCD1).

xj[k] and xj+1[k] is larger or smaller than the sampling interval between xj+1[k] and

xj+2[k].

The x(t) reference signal required by the proposed calibration scheme is not restricted

to single-tone sinewaves. Any x(t) signal can have a ZR independent of t0 if it is narrow-

band and asynchronous to the sampling clocks. Referring to Figure 3.8, assume both xa[k]

and xb[k] are sampling sequences with Tc = 1/fc sampling interval. If the bandwidth of

x(t) is less than fc/2 so that it does not cause aliasing, then both xa[k] and xb[k] observe

the same signal but with different delays. As a result, ρa,b(t0, Tc, ts) is only a function of

the ts delay difference. From Equation (A.63), the corresponding ZR is independent of t0.

A x(t) signal is said to be synchronous with the sampling clocks if it consists of only

single-tone sinewaves that are synchronous with the sampling clocks. Its ZR(t0, Tc) will

comprise δ-functions similiar to those in Equation (A.67). Under the synchronous x(t)

condition, the proposed calibration scheme can still function if the ZR(t0, Tc)’s δ-functions

have the same magnitude and are uniformly spread over one Tc period. The spacing

between the δ-functions must be smaller than the desired calibration timing resolution.

3.3 Zero-Crossing (ZC) Detection

3.3.1 Simple ZC Detector (ZCD1)

Figure 3.11 shows a simple zero-crossing detector (ZCD1) to determine if a ZC occurs

between xj[k] and xj+1[k]. Both samples are compared with a zero reference to determine

their polarities. If the xj[k]’s polarity is different from the xj+1[k]’s polarity, then the
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detector issues zj[k] = 1, otherwise, zj[k] = 0. The probability of zj[k] = 1 is the P z
j,j+1

of Equation (3.5) or Equation (A.65). This ZC detection scheme is simple but sensitive

to comparators’ offsets. Detailed analysis is provided in Appendix A.1. Assume the

two comparators exhibit the input-referred offsets Oj and Oj+1 respectively, as shown in

Figure A.1. The resulting P z
j,j+1 is deviated from Equation (3.5) by an amount of ∆P z

j,j+1,

which can be approximated by

∆P z
j,j+1 ≈

ρj,j+1

2π
√

1 − ρ2
j,j+1

(

O2
j

σ2
j

+
O2

j+1

σ2
j+1

−
2

ρj,j+1

Oj

σj

Oj+1

σj+1

)

(3.11)

The ∆P z
j,j+1 variation depends not only on the normalized offsets, Oj/σj and Oj+1/σj+1,

but also on the cross-correlation, ρj,j+1. For a slow-varying x(t), ρj,j+1 ≈ 1, σj ≈ σj+1,

then ∆P z
j,j+1 is proportional to

(

Oj − Oj+1
)2

. The resulting P z
j,j+1 probability is sensitive to

the offset mismatch. For a single-tone x(t) with frequency close to 1/(2Ts), ρj,j+1 ≈ −1,

σj ≈ σj+1, then ∆P z
j,j+1 is proportional to

(

Oj + Oj+1
)2

. The offset sensitivity is reduced

when large x(t) is applied, since large x(t) leads to large σj and σj+1.

When using a ZCD1 to measure the sampling interval between xj[k] and xj+1[k] of

the sampling system shown in Figure 1.1, the ∆P z
j,j+1 due to offsets can lead to skew

measurement error, ∆τj,os. The relationship can be expressed as

∆P z
j,j+1 = ZR(t0, Tc) × ∆τj,os (3.12)

where ZR(t0, Tc) is the ZC density defined in Equation (A.63). Consider the 8-channel

6-bit TI ADC defined in Chapter 1. Assume the input x(t) = sin(2πfit) is a full-

range single-tone sinewave asynchronous to the fc clock. To illustrate a low fi case, let

fi ≈ 0.25fc, then we have ZR = 2fi ≈ 0.5fc, ρj,j+1 = +0.98, and σ2
j = 1/2. The resulting

∆τj,os versus |Oj − Oj+1| is shown in Figure 3.12. The solid line is obtained using Equa-

tion (3.11) and Equation (3.12). The black circles are time-domain simulation results. In

the simulations, a sinewave with fi frequency is served as the x(t) input. In each simula-

tion, P z
j,j+1 is obtained by calculating the ratio of the number of times zj[k] = 1 to the total

number of k. In Figure 3.12, ∆τj,os and |Oj − Oj+1| are normalized with TLSB and VLSB

respectively, where TLSB and VLSB are defined in Chapter 1. To achieve ∆τj,os < 1 TLSB,

the offset requirement for the ZCD1 is |Oj − Oj+1| < 1.27 VLSB. On the other hand, to
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Figure 3.12: Skew measurement error due to comparators’ offsets. Low-frequency case
with fi ≈ 0.25fc. The ZCD2 curve is plotted with Oj+1 = 0 so that Oj−Oj+1 = Oj+Oj+1.
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Figure 3.13: Skew measurement error due to comparators’ offsets. High-frequency case
with fi ≈ 3.75fc.
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Figure 3.14: A pseudo zero-crossing detector (ZCD2).

illustrate a high fi case, let fi ≈ 3.75fc, then we have ZR = 2fi ≈ 7.5fc, ρj,j+1 = −0.98,

and σ2
j = 1/2. The resulting ∆τj,os versus |Oj +Oj+1| is shown in Figure 3.13. To achieve

∆τj,os < 1 TLSB, the offset requirement for the ZCD1 is |Oj + Oj+1| < 2.4 VLSB. Although

its offset requirement is more stringent than that of a high fi case, a low fi case is usu-

ally preferred. A lower fi frequency implies a slower circuit for realizing the x(t) signal

generator. In addition, the x(t) signal leakage due to capacitor coupling is less severe if a

lower fi is chosen.

Previous analyses assume that the mean value of the x(t) signal is zero. The effect

of x(t)’s dc offset is also analyzed in Appendix A.1. As described in Equation (A.9) and

Equation (A.10), both P z
j,j+1 and ZR are reduced by the dc offset, Ox. Since its effect

is identical to all ZC detectors in the proposed timing-skew detection scheme, the Ox

does not affect its accuracy. As described in the next section, timing skew is detected by

measuring the P z
j,j+1 difference between the ZC detectors. The absolute value of P z

j,j+1 is

irrelevant.

3.3.2 Pseudo ZC Detector (ZCD2)

Figure 3.14 shows the proposed pseudo ZC detector (ZCD2). Two 1−z−1 high-pass filters

are added after the comparators to reduce the detection sensitivity to comparators’ offsets.
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Outputs from the comparators are cj[k] and cj+1[k]. Their binary values are {0, 1}. Thus,

the outputs of the filters, rj[k] and rj+1[k], have triple values {−1, 0,+1}. The ZC logic

determines the zj[k] output as follows. The output zj[k] = 1 if rj[k] × rj+1[k] ≤ 0,

otherwise zj[k] = 0. In other words, zj[k] = 0 if both rj[k] and rj+1[k] are +1 or both are

−1.

To gain an insight of the ZCD2 operation, one can approximate the comparators as

linear amplifiers with random quantization noises. Thus, the ZCD2 becomes a ZC detector

that detects the ZC in the x(t) − x(t − Tc) signal. The comparators’ offsets are removed

by the 1 − z−1 operation, resulting in a reduced ZC detection sensitivity to offsets.

Unlike the ZCD1, whose output follows the ZC probability P z
j,j+1 of Equation (3.5) and

the ZC density ZR(t0, Tc) of Equation (A.63), it is difficult to derive the explicit P z
j,j+1 and

ZR(t0, Tc) expressions for the ZCD2. The ZCD2 detection is no longer a simple detection

of ZC in x(t). It detects certain events that cause zj[k] = 1. A simplified analysis for

the cases with low fi frequency is provided in Appendix A.2. In such cases, ρj,j+1 ≈ 1,

and the probability for zj[k] = 1 can be approximated by Equation (A.19). As explained

in Appendix A.2, the ZR(t0, Tc) of Equation (A.63) can be used to analyze the behaviors

of both ZCD1 and ZCD2 in the low-fi scenario of the proposed timing-skew detection

scheme. The effect of comparators’ offsets on the ZCD2 is also analyzed in Appendix A.2.

When offsets appear, the ZC probability P z
j,j+1 is deviated from Equation (A.19) by an

amount of ∆P z
j,j+1. Its upper bound can be expressed as

∆P z
j,j+1 ≤

1
4π

(

Oj

σj
+

Oj+1

σj+1

)2

(3.13)

Figure 3.12 and Figure 3.13 also show the ZCD2 timing skew measurement error due

to the Oj and Oj+1 offsets. It is clear from both figures that the ZCD2 is less sensitive

to offsets. For the low-fi scenario with fi ≈ 0.25fc, the ZCD2 requires |Oj + Oj+1| <

3.1 VLSB to achieve a skew measurement error less than 1 TLSB.
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Chapter 4

Timing Skew Calibration

Consider the M-phase sampling system of Figure 1.1. It samples the x(t) reference and

generates the xj[k] of Equation (3.4), where 1 ≤ j ≤ M . Its nominal sampling interval is

Ts. However, each φj clock has its own timing offset, τj. If two adjacent clocks, φj and

φj+1, have different timing offset, i.e., τj 6= τj+1, then a timing skew occurs. The sampling

interval between xj[k] and xj+1[k] becomes Ts− τj + τj+1. Figure 1.3 shows the proposed

multi-phase timing-skew calibration architecture. A multi-phase timing-skew calibration

processor (TSCP) is used to detect the timing skew between every adjacent clock pairs.

For each j, the delay of the Bj clock buffer is controlled by the Tj[k] output from the

TSCP, such that

τj[k] = τj,0 + µt × Tj[k] (4.1)

where µt is the step size for the timing control and τj,0 is the timing offset of the φj clock

when Tj[k] = 0. The TSCP measures the timing skew between φj and φj+1, then adjusts

Tj+1[k] to minimize the skew.

Figure 4.1 shows the TSCP’s block diagram. It includes M ZC detectors, which

are deployed to measure the sampling intervals. Either the ZCD1 of Figure 3.11 or the

ZCD2 of Figure 3.14 can be used as the ZC detectors. The x(t) reference is assumed

to be a narrow-band signal. Its center frequency fi is near 0.25fc in order to establish

a low-fi scenario. For the j-th calibration channel, its ZC detector senses any ZC be-

tween xj[k] and xj+1[k], and generates a binary output, zj[k] ∈ {0, 1}. The probability of

zj[k] = 1 is P z
j,j+1, which can be calculated from the ZC density ZR(t0, Tc) using Equa-

33



34 CHAPTER 4. TIMING SKEW CALIBRATION

Σ Σ

Σ Σ
T3

T2

T1
T1

TM

x1

x3

x2

xM

xM
z1
z2

zM

R[k]

m[k]

R[k]

m[k]

z2

U[k]

U[k]

zM

z1

m[k]

BPD
ZC

Detector

BPD
ZC

Detector

ZC
Detector

[k]

[k]

[k]
[k] = 0

[k]

[k]

[k]

[k]

[k]

[k−1] [k]
[k]

[k]

S[k]
ACC1 ACC2

reset

S[k]
ACC1 ACC2

[k]

reset

[k]

[k] ZC
Recorder

Figure 4.1: A multi-phase timing-skew calibration processor (TSCP).



35

z1
z2

zM
m[k]

M

[k]
[k]

[k] M

a[k]

CLK

Figure 4.2: The ZC recorder.

tion (A.65). From Equation (A.67), a narrow-band asynchronous x(t) reference has an

uniform ZR(t0, Tc) close to 2fi. Thus, the P z
j,j+1 probability is proportional to the sam-

pling interval between xj[k] and xj+1[k], which is denoted the j-interval. In Figure 4.1,

the zj[k] sequence is integrated onto an ACC1 accumulator. The accumulator’s output

represents the average of zj[k], which is also proportional to the j-interval.

For each j, the TSCP compares the j-interval with the nominal sampling interval. The

difference between the two intervals is the timing skew. The TSCP then adjusts Tj+1[k]

to minimize the skew. The nominal sampling interval is defined as the average of all j-

interval where 1 ≤ j ≤ M . In Figure 4.1, the timing skew is calculated as the difference

between the accumulation of zj[k] and the accumulation of m[k]. The m[k] sequence

represents the average of the ZC occurrences among all sampling intervals. The m[k] is

generated from the ZC recorder shown in Figure 4.2. The recorder accumulates every

ZC from all ZC detectors. A comparator compares the accumulation result a[k] with M ,

and generates a binary m[k] ∈ {0, 1} for every clock cycle. Whenever a[k] ≥ M , the

comparator issues m[k] = 1, and an amount of M is subtracted from the accumulation

result during the following clock cycle. Note that m[k] is a sequence of 0 and 1. Its

mean value represents the nominal sampling interval. The operation of m[k] averaging

is provided by the ACC1 accumulator in each calibration channel. The proposed ZC

recorder is simple and its hardware cost is low.

In the j-th calibration channel, the timing skew is calculated as U [k] = m[k] − zj[k].
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A simple calibration loop can be formed by applying Tj+1[k + 1] = Tj+1[k] + µ × U [k]

with µ < 1. However, the resulting fluctuation in Tj+1[k] is large unless a very small µ is

chosen. In Figure 4.1, an additional accumulator is added to reduce the Tj+1[k] fluctuation.

The ACC1 accumulator integrates the U [k] sequence, and generates the R[k] output. A

bilateral peak detector, BPD, monitors the value of R[k] and generates a corresponding

triple-valued output, S[k] ∈ {+1, 0,−1}. The BPD has two thresholds, +NC and −NC .

Whenever R[k] ≥ +NC , S[k] = +1. Whenever R[k] ≤ −NC , S[k] = −1. Otherwise,

S[k] = 0. In addition, the ACC1 accumulator is reset to zero whenever S[k] = +1 or

S[k] = −1. Thus, −NC ≤ R[k] ≤ +NC . Each time S[k] is either +1 or −1, it can

retain in such state for only one clock cycle. Finally, the ACC2 accumulator integrates

the S[k] sequence, and generates the Tj+1[k] output. By adding the integration-and-dump

operation of ACC1 and BPD, the fluctuation in Tj+1[k] is reduced.

In the proposed calibration scheme, the φ1 clock in Figure 1.3 is a designated reference

phase. It is no need to adjust the corresponding T1[k] control. Thus, T1[k] is preset to 0

in the TSCP of Figure 4.1.

The proposed calibration scheme contains two system parameters, µt and NC . To

simplify analysis, we assume each calibration channel in the TSCP of Figure 4.1 employs

identical µt and NC . Together with the ZR of x(t), they affect calibration behaviors, such

as calibration converging speed and timing fluctuation. In general, large µt and small

NC result in fast converging speed but large timing fluctuation. On the other hand, small

µt and large NC result in small timing fluctuation but also slow converging speed. The

following two subsections give detailed analyses.

4.1 Convergent Speed

Consider the j-th calibration channel in Figure 4.1. Its ZC detector measures the sampling

interval between the φj and φj+1 clocks. According to Equation (3.4), the φj and φj+1

clocks have the timing offsets τj and τj+1 respectively. In Figure 4.1, the U [k] signal is

the difference between zj[k] and m[k], representing the timing skew τj−τj+1. The U [k] is

used to update the Tj+1[k] signal, which controls the τj+1[k] timing offset. In most cases,

this calibration loop can be modeled as a continuous-time single-pole feedback system
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like

dτj+1 = µt ×
(τj − τj+1) ·ZR · dk

NC

The above equation states that, to update τj+1 by one µt step, it takes dk sampling intervals

during which the τj − τj+1 timing skew causes NC zero crossings. Thus, we obtain the

following differential equation for τj+1[k]

dτj+1[k]
dk

= −
τj+1[k] − τj[k]

τc
(4.2)

where the system time constant τc is

τc =
NC

µt

×
1
ZR

(4.3)

For a M-channel system, Equation (4.2) with 1 ≤ j ≤ M −1 can be expanded into M −1

coupled equations. In most practical case, τc is much larger than 1. Thus, by treating

τj[k] as a constant, the transient behavior of τj+1[k] can be approximated by a simple

exponential function with the τc time constant.

4.2 Timing Fluctuation

Consider the τj[k] of Equation (A.62). The TSCP measures the sampling interval be-

tween the φj−1 and φj clocks, and then adjusts Tj[k]. Assume Tj−1[k] remains constant

and φj−1 is fixed. The TSCP adjusts only Tj[k] to force τj[k] moving toward 0. As the

process converges, the behavior of τj[k] becomes a discrete random fluctuation around

zero. Figure 4.3 illustrates a probability mass function for τj, M (τj). The discrete values

for τj is τj,0, τj,±1, τj,±2, . . . , with τj,0 being closest to zero. The distance between two adja-

cent discrete values is µt. The value of τj,0 is between −0.5µt and +0.5µt. The calibration

loop forces the maximum value of M (τj) to occur at τj,0. A mathematical treatment of

M (τj) is included in Appendix A.3. The resulting standard deviation of τj, averaged over

possible value of τj,0, can be found as

σ2(τ) =
1
6
µ2
t +

4Ts

3NC

µt (4.4)

Obviously, smaller µt and larger NC can reduce σ2(τ).
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Figure 4.3: Probability mass function of τj, M (τj).

For the multi-phase calibration system shown in Figure 1.3 and Figure 4.1, the φ1

clock with T1[k] = 0 is chosen as the designated reference phase. All other clocks are

adjusted by the TSCP to achieve uniform phase spacing. The timing skew between φ1

and φ2 is minimized by adjusting the delay of the φ2 clock buffer through T2[k]. The

timing skew between φ2 and φ3 is minimized by adjusting the delay of the φ3 clock buffer

through T3[k]. This calibration arrangement repeats for φ4, φ5, etc, and is referred as the

linear referencing arrangement illustrated in Figure 4.4. Note that φ1 does not fluctuate.

The timing fluctuation of φ2 is summarized by Equation (4.4). The timing fluctuation of

φ3 is larger than Equation (4.4), since it uses the fluctuating φ2 as its phase reference.

In fact, the timing fluctuation is accumulated along the reference chain. The standard

deviation of the φj’s timing fluctuation can be expressed as

σ2(τj) = (j − 1) × σ2(τ) j ≥ 2 (4.5)

To reduce the overall timing fluctuation, the circular referencing arrangement shown in

Figure 4.4 is suggested. In this scheme, both φ2 and φ8 use φ1 as the reference for timing-

skew calibration. Then φ3 and φ7 use φ2 and φ8 as the references respectively. In this

arrangement, the maximum σ2(τj) is reduced by half. The overall averaged timing fluctu-
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Figure 4.4: Referencing schemes for multi-phase clocks.
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ation is

σ2(τT ) ≡
1
M

M
∑

j=1

σ2(τj) =
M

4
σ2(τ) =

M

24
µ2
t +

MTs

3NC

µt (4.6)

where M is assumed to be an even number. For this multi-phase calibration system,

σ2(τT ) is proportional to the number of phases, M .

To realize the circular referencing arrangement shown in Figure 4.4, the calibration

processor of Figure 4.1 is modified as follows. The calibration channel that generates

the T8[k] output takes x1[k] and x8[k] as its inputs. The calibration channel that gen-

erates the T7[k] output takes x8[k] and x7[k] as its inputs. The calibration channel that

generates the T6[k] output takes x7[k] and x6[k] as its inputs. The calibration channels

for T1[k], · · · , T5[k] remain unchanged. The extra ZC detector at the upper-left corner of

Figure 4.1 now receives x5[k] and x6[k] as its inputs and generates the z5[k] output.

4.3 An 8-channel Time-Interleaved ADC System Simula-

tion

Figure 4.5 shows an 8-channel time-interleaved ADC that employs the timing-skew cal-

ibration scheme described in Chapter 4. There are 8 A/D channels, i.e., ADCj where

1 ≤ j ≤ 8. Each A/D channel samples and quantizes the s(t) input and produces a cor-

responding sj[k] sequence. The sj[k] sequences from all channels are then multiplexed

to generate the final s[l] digital output. In the j-th channel, there are two samplers driven

by the same φj clock. One sampler samples the s(t) input to be quantized into sj[k]. The

succeeding quantizer (QTZ) has 6-bit resolution and an input range between ±1. The

other sampler receives the x(t) reference and generates the xj[k] sequence. The xj[k]

sequence is sent to the timing-skew calibration processor shown in Figure 4.1. Its Tj[k]

output controls the Bj clock buffer shown in Figure 1.3. For the 8-phase clock generator,

the nominal timing interval between two adjacent phases is Ts. Each φj clock has a period

of Tc = 8Ts and a frequency of fc = 1/Tc. The entire system is equivalent to a 6-bit

ADC with a sampling rate of fs = 1/Ts = 8fc. As in Chapter 1, we define the magnitude

resolution as VLSB = 2/26 = 2−5 and the timing resolution as TLSB = Ts/26.
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Figure 4.5: An 8-channel time-interleaved ADC.
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Figure 4.6: Timing fluctuation, σ(τ), versus NC and µt for the TI ADC example.

In Figure 4.5, each A/D channel includes a s(t) sampler and a x(t) sampler to enable

the robust background timing-skew calibration. The two samplers driven by the same

clock must have the same sampling instant. To minimize mismatch, the two samplers

should be placed in close proximity in the chip layout. The signal routes of s(t) and

x(t) may also have to be matched. Furthermore, the clock edges that define the sampling

instants should be made as steep as necessary.

For timing-skew calibration, the narrow-band x(t) reference has a center frequency at

fi ≈ 0.25fc, which meets the low-fi scenario described in Section 3.3. From (A.67), the

x(t) reference has a ZC density of ZR = 2fi ≈ 0.5fc. The resulting timing fluctuation

variance averaged over the 8-phase clocks, σ2(τT ), can be calculated using Equation (4.6).

Figure 4.6 shows the relationship between σ(τT ) and NC at various µt values. For this 6-

bit ADC example, µt = Ts/28 and NC = 210 are chosen to achieve σ(τT ) = 0.26 TLSB.
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Figure 4.7: Settling behavior of σs(τT ). The comparators in ZCD1 and ZCD2 are ideal.

Figure 4.8: Settling behavior of σs(τT ). The comparators in ZCD1 and ZCD2 have ran-
dom offsets. The standard deviation of the offsets is σ(VOS) = 3VLSB.
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The behavior of this TI ADC is simulated using a C program. To illustrate that the

proposed calibration scheme does not require a well-defined sinwave, the x(t) reference

used in the simulation is a full-swing phase-modulated sinwave

x(t) = sin [2πfit + 0.1 sin(2πfmt)] (4.7)

where fi ≈ 0.25fc and fm ≈ 0.14fc. Both the ZCD1 and the ZCD2 described in

Section 3.3 are tested. Figure 4.7 shows the settling behavior of the ADC’s timing-

skew spatial standard deviation, σs(τT ). For this figure, ideal comparators without off-

sets are deployed in the ZC detectors. Note that σs(τT ) is the standard deviation of

the (τ1, τ2, · · · , τ8) data set at a given time. For 1 ≤ j ≤ 8, τj is the timing offset of

the φj clock. A random number generator selects the initial value of τj. The σs(τT ) is

6.3 TLSB before calibration, and settles toward 0.22 TLSB as calibration progressing. The

0.22 TLSB value is obtained by averaging σs(τT ) over a period from 250 × 105 × Tc to

400 × 105 × Tc. Without comparator offsets, ZCD1 and ZCD2 exhibit similar behavior.

Also shown in the figure is the transient response of a single-pole model with a time con-

stant τc = 41.9 × 105 Tc, which is calculated from Equation (A.66). Figure 4.8 shows

the effect of comparators’ offsets. Random offsets generated from a random number gen-

erator are added to the comparators in ZCD1 and ZCD2. The standard deviation of the

offsets is σ(VOS) = 3 VLSB. For the calibration using ZCD1, the σs(τT ) can only settle

to 2.86 TLSB. On the other hand, the σs(τT ) can settle to 0.21 TLSB by using ZCD2. The

comparators’ offsets have little effect on ZCD2. Note that the σs(τT ) performance from

simulations is better than the prediction of Equation (4.6). The timing fluctuation theory

described in Appendix A.3 is derived from random process, which assumes a scenario

more random than those used in the simulations.



Chapter 5

A 6-Bit 16 GS/s Time-Interleaved Flash

ADC

5.1 Introduction

A 65nm 435-mW 6-bit 16-GS/s time-interleaved flash ADC was presented in this chapter.

The calibration technique in previous chapter has been applied on this ADC. The circuit

architectre and measurement results are shown in the follow sections. A simple logic

calibration processor minimizes the timing skew error. Besides, a background offset cal-

ibrated comparator has been applied on sub-channel ADC. With the proposed calibration

technique, the ADC can achieve ERBW 3GHz. At the frequency near ERBW, the SND is

improved from 19.8dB to 28.0dB by timing skew calibration.

5.2 Time-Interleaved ADC Architecture

The ADC block diagram is shown in Figure 5.1. It consists of 8 time-interleaved identical

A/D channels, ADC1 to ADC8. The A/D channels are driven respectivelly by 8 different

clock with equally-spaced phase, φ1 to φ8. The clocks are generated from an on-chip

delay-locked loop(DLL). The DLL can get better noise performance since there is no

jitter accumulation in the loop. The ADC analog input is s(t). It is sequentially sampled

and digitized by each A/D channel to produce a 6-bit digital stream. The flash typed ADC

45
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Figure 5.1: Time-interleaved ADC block diagram.
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Figure 5.2: Reference voltage sharing in time-interleaved ADC.

has been adopt for high speed single channel A/D. The clock of each phase frequency is

fc. The digital streams from the 8 A/D channels, s1[k] to s8[k], are then multiplexed to

generate the final ADC digital output, s[l]. The ADC equivalent sampling rate is 8 × fc.

For a time-interleaved ADC in this thesis, the reference voltage of flash ADC has been

shared for minimization of gain errors shown in Figure 5.2. Besides, the background com-

parator’s offset calibration technique [15] has been applied on the flash ADC. Therefore,

the offset of single channel ADC will be calibrated to zero, thus the offset among each

A/D channel can be neglected. Therefore, the time-interleaved suffered the timing skew

error significantly.

To minimize the mismatches among sampling intervals. In a high speed design, the

sampling intervals are sensitvie to mismatches among clock driver and clock routes. In

Figure 5.1, the delays of clock drivers, B1 to B8, can be independently adjusted by the

digital control signals, T1 to T8. The resolution for the delay control is 0.4psec. The
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control signals are generated from an on-chip timing-skew calibration processor (TSCP).

An on-chip oscillator generates a testing signal x(t). It is sampled and quantized in each

A/D channel to produce 8 1-bit digital streams, c1[k] to c8[k]. From those digital streams,

the TSCP continuous counts the zero-crossing (ZC) occurences in every sampling interval

as described in Chapter 4. In each A/D channel, the x(t) signal path consists of only a

replica sampler and a comparator, and is separated from the s(t) signal path, which is

the same as described in Chapter 4. The x(t) is generator is a simplie ring oscillator

which shown in Figure 5.3 free running about 400MHz with controlled voltage 1.2V, the

frequency range is from 200MHz to 400MHz. This frequency is suitable for timing skew

calibration since it is not very large, thus avoiding large coupling effect. It is also large

enough to gain the timing information for timing skew calibration. In this system, we can

also modulate the control voltage of oscillator to avoid the clock source is synchronous to

reference signal. By analysis of x(t) from TSCP, the optimized digital code T1 to T8 have

been applied on the clock drivers to minimized the timing skew error. For saving power

consumption, the downsampling clock fc/64 has been applied in TSCP.

5.3 Circuit Implementation

5.3.1 Delay-Locked Loop

The delay-locked loop (DLL) shown in Figure 5.4, the input clock propagates into delay

cell. With replica delay cell the phase detector judges the lead or lag of output phase

compared with input phase, then generates the up or down pulse to control charge pump

and the controlled voltage of delay cell[25][20][4][26][1]. With the negative feedback of
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delay locked system, the output phase will be lag 360o from input phase, and the each

phase φ1 to φ8 gets equally spacing. However, the dead lock occurs when the wide range

delay cell has been applied. In this work, the clock rate is about 2GHz. Therefore, we can

design the power on sequence on controlled voltage of DLL. When power goes to high,

the controlled voltage has been tied to high, and then turn off the tie high switch and lets

the DLL lock the controlled voltage.

Shown in Figure 5.5 is delay cell, the signal ”pc” turn on after power ready, forces the

fast dealy in the delay cell. Then the ”pc” turn off and the DLL controls the voltage Vcn

by itself. The MBN, MBP degenerate the speed of MP, MN for the required operating

frequecny (2GHz), the MTN,MTP lowering the effect of MBN and MBP for low gain

delay cell. The differential-to-single circuit converts the non-full-swing signal to the full

swing, and passes to the variable delay line (VDL) shown in Figure 5.6. The digital-

delay-controlled cell can be taken as clock buffer. Since the clock buffer is needed in each

single A/D, the VDL can easily be embeded in the clock buffer of A/D. The simulated

delay step in Figure 5.7 of VDL is about 0.4psec. The small jump of transfer function of

VDL can not affect the proposed calibration scheme since the calibration scheme requirs

only global monotoncity.
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Figure 5.5: Delay Cell.
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Figure 5.6: Digital controlled delay cell.
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Figure 5.7: Transfer funtion of VDL.

in+ in−

up dn
np nn

Figure 5.8: Phase detector of DLL.
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Figure 5.9: Charge pump of DLL.
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Figure 5.10: Single channel flash ADC.

The phase detector (PD) has been implemented by the arbiter architecture as shown in

Figure 5.8. The input clock and output clock of DLL are applied on the input differnetial

pair of PD. When the input and output clock is low, the gate tied ground PMOS will

tie the node np and nn to VDD, thus makes the NMOS with largest Vds for maximum

transconductance. When the lead phase comes, the postive feedback of NMOS will latch

the node np and nn, then the following digital latch will generate the signal up, dn for

the charge pump as shown in Figure 5.9. The up/dn signal turn on or turn off the switch,

charges or discharges the controlled voltage Vc for delay cell. When up phase is active

and dn phase is deactive, the current source of NMOS will be turned off, this makes the

jitter be larger since dn need more time to active the NMOS current source. Therefore,

the replica with inverted phsae of up/dn path makes the current sources always turn on,

the OP buffer makes Vcb is the same Vc, thus keeps the balance of charge pump system.

Finally, the bandwidth of DLL is about 5MHz to filter the noise from delay cell.

5.3.2 Flash ADC

Figure 5.10 shows the block diagram of a single flash A/D channel. It consists 64 background-

calibrated comparators (BCC) [15]. Prceeding the comparators is a p-channel MOSFET

M1 that functions as a sample-and-hold for the ADC. The comparators’ output are con-
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Figure 5.11: Background calibrated comparator (BCC).

nected to a thermometer-code edge detector (TCED), which is an array of 3-input AND

gates. In normal operation, only on of the TCED outputs is active under low compara-

tors’ offset, and it indicates the location of the 1 to 0 transition in the input thermometer

code. The TCED is the address decoder ofr the encoder ROM that genertaes the ADC

output, s[k]. The TCED output, Dc,1 to Dc,64, is also used by the corresponding BCC for

the offset calibration. A binary pseudo random sequence q1 is applied to the odd-number

BCCs, and uncorrelated random sequence q2 is applied to the even-number BCCs. The

uncorrelated random sequences can avoid the interlocking of calibration procedures that

may occur between the neighboring BCCs.

Figure 5.11 shows the BCC block diagram. It consists of a random-chopping latch

(RCL) and a digital calibration processor (CP). In the RCL, the two choppers CHP1 and

CHP2 are ontrolled by a binary random sequence q[k]. The comparator is a 3 stages, cas-

caded latches to minimize the meta-stability effect. The pseudo random sequence changes

the comparators’ offset by the sequence, thus the offset has been spreaded in frequency

domain by q[k] by CHP1. CHP2 de-spreads the spreaded signal, Dc[k] for ADC en-

coder. The De[k] generated by TCED and Dc[k], is the spreaded siganl, but the offeset of

comparator still keeps a DC value, thus we can apply the accumulate-and-reset (AAR) to

extract the offset polarity. AAR accumulates De[k]× q[k], and detects if the accumulated

result reaches +16 or −16, the B[k] = +1 or B[k] = −1 when the accumulated result is
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Figure 5.12: Latch schematic.

+16 or −16, then reset its content for removing memory effect. The offset can be adjust

by T [k], which is accumulated from B[k] by accumulator (ACC).

The first stage of latch in comparator shown in Figure 5.12. The clock signal CK

enable the bias current to improve the PSRR. The four input differential pairs amplify the

signal and then the back-to-back inverter latches the output. The phase CK = 0 pulls

up the Va1 and Va2 to VDD to enlarge the Vds of NMOS for large transconductance, thus

minimizes the offset. For the offset adjustment, the coarse adjustment is provided by tge

cyrrent switch, MC1 and MC2. The fine adjustment is provided by the capacitor pai, MF1

and MF2. The possible values for both digital control signal pairs, (Tca, Tcb and Tfa, Tfb

are (0, 0), (0, 1), (1, 0). There are 4 identical current switches, providing a total of 9 offset

coarse step, and each step is 32mV. The fine step is generated by 16 identical capacitor

pairs, providing a total of 33 fine offset steps, and each step is 3.2mV.

The comparators’ offset have been calibrated by coarse tune during the power-on state,

then the background calibration controls only fine offset. Noted that the timing skew

calibration is independent of the offset calibration since the TSCP takes the signal of x(t)
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Figure 5.13: Testing enviornment of time-interleaved ADC.

for calibration.

5.4 Measurement Results

The testing setup is shown in Figure 5.13. The Analog input is generated by HP 8648C

and the clk source is generated by Agilent E4438C. To ensure the signal quality of the

analog source, the output of 8648C passes by a power splitter and bias-Tee to achieve

single-to-differential conversion. The clk source generates sinesoide waveform and its

frequency is fc. The opreg in chip controlled by PC print-port, sets the option register in

the ADC to adjust the function of ADC.

The ADC chip was fabricated using 65nm CMOS technoloy, where Figure 5.14 shows

its micrograph. The active area is 0.93 × 1.58mm2. The supply voltage is 1.5V. The

operating frequency is fc = 2GHz, with 16GS/s equivalent sampling rate, the ADC

consmes 435mW of power, excluding I/O. Each A/D channel consumes 54mW. The chip

is mounted directly on a circuit board. The original ADC digital output down-sampled to

1/64.125 of fc frequency when delivered off-chip.

Figure 5.15 shows the measured DNL and INL for a single channel ADC. Before
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Figure 5.14: Diephoto of ADC.

activation the calibration, the DNL is -1.0/+4.9 LSB and the INL is -4.3/+5.4 LSB. There

are missing codes. After activating the offset calibration, the DNL becomes -0.5/+0.6

LSB and the INL is reduced to -0.4/+0.7 LSB.

Figure 5.16 shows the measured output spectrum, where the input freqeucny is about

3GHz. Without timing skew calibration, the maximum distortion tone is about -28dB,

which shows that timing skew error actuely degrades the overall performance. However,

with timing skew calibration, the distortion tone from timing skew error has been sup-

pressed to -49dB, and samplle-and-hold switches dominante the 2nd, 3rd, and more high

order distortion tones.

Figure 5.18 shows the measured SNDR versus input frequency for the time-interleaved

ADC. The equivalent sampling rate is 16GS/s. The effective resolution bandwidth (ERBW)

is 3GHz, which is limited by the bandwidth of the sample-and-hold switches. At the

frequency near ERBW, the SNDR is improved from 19.8dB to 28.0dB by the timing

skew calibration. Figure 5.19 shows the measured SNDR versus sampling frequency,

where the input signal frequency is 61MHz. The figure-of-merit (FOM), defined as

power/(2ENOB × 2×ERBW for this ADC is 2.6pJ/conversion-step. If the sampling rate is
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Figure 5.15: Measured DNL and INL of a single A/D channel.
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Figure 5.16: Measured specturm without timing skew calibration, where the input fre-
quency is about 3GHz.
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Figure 5.17: Measured specturm with timing skew calibration, where the input frequency
is about 3GHz.
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Figure 5.18: Measured SNDR versus input frequency.
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Figure 5.19: Measured SNDR versus sampling frequency. The input signal frequency is
61MHz.
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Year This Work V’09[27] I’08[28] I’06[29] I’04[30] I’03[31]
Technology (nm) 65 90 90 180 180 180

Supply (V) 1.5 1.2 1.0 1.8 1.8 NA
Power (mW) 435 1600 1200 619 900 9000
Fs (GHz) 16 10.3 24 4 1.65 20

ERBW (GHz) 3 3.9 6 0.8 0.9 2
ENOB (bit@DC) 4.9 5.6 5 3.8 3 6
FOM (pJ/Step) 2.6 4.23 3.13 27.7 2.76 11.7

Table 5.1: Benchmark of very high speed ADCs.

reduced to 12GS/s, with ERBW=3GHz, the ADC FOM becomes 2.0pJ/conversion-step.

The following table is the benchmark between each very high speed ADCs. The self-

calibration is always on, which can overcome the variation due to temperature.

5.5 Summary

A 435-mW 6-bit 16-GS/s time-interleaved ADC was fabricated using 65 nm CMOS tech-

nology. The ADC demonstrates a new timing skew calibration technique, which corrects

timing skew error among each channel. The calibration technique is robust and immune

to device mismatches. The timing skew calibration uses only simple counter and logic,

which lowering the hardware complexity and power. In this work, the SNDR at 3GHz

has been improved from 19.8dB to 28.0dB by the timing skew calibration and the the

FOM is 2.6pJ/conversion-step. The distortion harmonic tones due to timing skew has

been improved from -28dB to -49dB.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

Time-interleaved architecture can increase the sampling rate by increase the number of

channels. The timing skew among each A/D channel limits the overall performance when

the sampling rate is around GHz order. The proposed timing-skew calibration technique

described in this thesis is based on zero-crossing (ZC) detection. Although the ZC de-

tection is a nonlinear operation, the ZC probability is related to the cross-correlation of

the calibration reference. We have made theoretical study on the ZC detection principle

and proved its robustness. The ZCD2 with digital high-pass filters provides a detection

technique that is less sensitive to comparators’ offsets. With proper reference input, the

ZC detectors can be used to measure the phase spacing among multi-phase clocks. The

ZC probability is proportional to the phase spacing. Based on this fact, we propose a dig-

ital calibration processor (CP). It receives outputs from the ZC detectors and adjusts the

delays of clock buffers to equalize the phase spacings between adjacent clock pairs. We

have also analyzed the CP’s behaviors, including converging speed and timing fluctuation.

Although the proposed calibration scheme needs an extra reference signal, the require-

ment for this reference is loose. The reference does not need to have an accurate frequency

or an exact waveform shape. It can be easily generated on a chip using simple circuitry.

Most of the calibration procedures are performed in the digital domain, and require only

adders and registers. An 8-channel 6-bit 16GS/s time-interleaved ADC has been demon-

65
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strated with the proposed calibration technique. The SNDR is improved from 19.8dB to

28.0dB by the proposed TSCP. The distortion harmonic tones due to timing skew has been

improved from -28dB to -49dB.

6.2 Recommendations for Future Investigation

This section presents several suggestions for future investigations in high performance

time-interleaved ADC design.

• The delay locked loop does not accumulate jitter, thus gets the better noise perfor-

mance than PLL. However the clean, high speed clock source is hard to generate.

L-C tank oscillator can achieve higher noise performance, but the power consump-

tion and area is large. The high speed and low noise clock generator is an important

issue on high speed time-interleaved ADC design.

• The timing skew calibration processor requires a reference signal to get the timing

information. [14] shows the timing skew calibration without reference signal, but

the clock chopper is hard to generate in high speed circuit design. Therefore, a

flexible modulation technique on input signal for detection of timing skew is an

interesting topic.

• A high speed with high linearity sample-and-hold (SHA) or track-and-hold (THA)

circuit is another important topic. In the very high speed application, linearity de-

grades acutely when operating at high frequency. In the deep sub-micron technol-

ogy, low supply voltage is used to prevent the high-voltage stress on the thin gate

oxide, thus the linearity of SHA or THA is more harder to achieve since the bias

circuit is hard to mantain for large input voltage swing.
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Appendix

A.1 Mathematical Analysis of ZCD1

Figure A.1 shows a ZCD1 whose two comparators exhibit Oj and Oj+1 offsets respec-

tively. The xj[k] and xj+1[k] are two x(t) sampling sequences corresponding to the φj

and φj+1 sampling clocks respectively. Let x(t) be a stationary Gaussian process with

zero mean. Then xj[k] and xj+1[k] form a bivariate normal distribution. Its probability

density function is [22, 23]

pb =
exp
[

−γ/[2(1 − ρ2
j,j+1)]

]

2π
√

1 − ρ2
j,j+1 × σjσj+1

(A.1)
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Figure A.1: ZCD1 with comparators’ offsets.
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with

γ =
x2
j

σ2
j

+
x2
j+1

σ2
j+1

−
2ρj,j+1 · xjxj+1

σjσj+1
(A.2)

where σj and σj+1 are standard deviations as defined in Equation (3.7) and ρj,j+1 the cross

correlation between xj[k] and xj+1[k] as defined in Equation (A.59).

In Figure A.1, the comparators’ outputs, cj[k] and cj+1[k], are determined by the

xj[k] − Oj polarity and xj+1[k] − Oj+1 polarity respectively. The zj[k] output is 1 only if

(1) xj[k] > Oj and xj+1[k] < Oj+1; or (2) xj[k] < Oj and xj+1[k] > Oj+1. The probability

of the first condition is

P1 =
∫Oj

−∞

∫∞

Oj+1

pbdxj+1dxj (A.3)

=
∫ 0

−∞

∫∞

0
pbdxj+1dxj

+
(

∫Oj

0

∫∞

0
−
∫ 0

−∞

∫Oj+1

0
−
∫Oj

0

∫Oj+1

0

)

pbdxj+1dxj (A.4)

In the last equation, the first term on the right-hand side is the probability with Oj =

Oj+1 = 0, and the second term is the effect of offsets. Similarly, the probability of the

second condition is

P2 =
∫∞

Oj

∫Oj+1

−∞
pbdxj+1dxj (A.5)

=
∫∞

0

∫ 0

−∞
pbdxj+1dxj

+
(

−
∫Oj

0

∫ 0

−∞
+
∫∞

0

∫Oj+1

0
−
∫Oj

0

∫Oj+1

0

)

pbdxj+1dxj (A.6)

Thus, the total probability of zj[k] = 1 is

P z
j,j+1(Oj, Oj+1) = P1 + P2 = P z

j,j+1 + ∆P z
j,j+1 (A.7)

where P z
j,j+1 as defined in Equation (3.5) is the ideal ZC probability, and

∆P z
j,j+1 ≈

ρj,j+1

2π
√

1 − ρ2
j,j+1

(

O2
j

σ2
j

+
O2

j+1

σ2
j+1

−
2

ρj,j+1

Oj

σj

Oj+1

σj+1

)

(A.8)
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Equation (A.8), as repeated in Equation (3.11), is the effect of offsets.

Consider a x(t) signal having a non-zero dc component. It is equivalent to the case

that both comparators in ZCD1 exhibit identical offsets, i.e., Oj = Oj+1 = Ox. From

Equation (A.7) and Equation (A.8), the corresponding ZC probability becomes

P z
j,j+1 ≈

1
2
−

1
π

sin−1 ρj,j+1 −
1 − ρj,j+1

π
√

1 − ρ2
j,j+1

O2
x

σ2
j

(A.9)

And the zero crossing rate becomes

ZR(t0, Tc) =
1
π

(

1 −
O2

x

2σ2
j

)

√

−
∂2ρa,b(t0, Tc, ts)

∂t2s

∣

∣

∣

∣

∣

∣

ts=0

(A.10)

Both P z
j,j+1 and ZR are reduced by O2

x.

A.2 Mathematical Analysis of ZCD2

Consider the ZCD2 shown in Figure 3.14. To simplify denotation, define xj[k] = x1,

xj[k − 1] = x2, xj+1[k] = x3, and xj+1[k − 1] = x4.

First consider the case of three random variables x1, x2, and x3. Assume they form the

trivariate normal distribution with given cross correlation ρi,j as defined Equation (A.59),

where {i, j} ∈ 1, 2, 3. Define Pa, Pb, Pc, and Pd probabilities as

Pa ≡ P (x1 < 0, x2 < 0, x3 < 0) = P (x1 > 0, x2 > 0, x3 > 0)

Pb ≡ P (x1 < 0, x2 > 0, x3 < 0) = P (x1 > 0, x2 < 0, x3 > 0)

Pc ≡ P (x1 > 0, x2 < 0, x3 < 0) = P (x1 < 0, x2 > 0, x3 > 0)

Pd ≡ P (x1 > 0, x2 > 0, x3 < 0) = P (x1 < 0, x2 < 0, x3 > 0)

(A.11)

Obviously, Pa + Pb + Pc + Pd = 1/2, and

Pa + Pb = P (x1 < 0, x3 < 0) =
1
4
+

sin−1 ρ1,3

2π

Pa + Pc = P (x2 < 0, x3 < 0) =
1
4
+

sin−1 ρ2,3

2π

Pa + Pd = P (x1 < 0, x2 < 0) =
1
4
+

sin−1 ρ1,2

2π

(A.12)
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where ρ1,3, ρ2,3, and ρ1,2 are correlations between x1 and x3, x2 and x3, and x1 and x2

respectively. The above equations can be solved to give

Pa =
1
8
+

1
4π
(

sin−1 ρ1,2 + sin−1 ρ1,3 + sin−1 ρ2,3
)

Pb =
1
8
+

1
4π
(

− sin−1 ρ1,2 + sin−1 ρ1,3 − sin−1 ρ2,3
)

Pc =
1
8
+

1
4π
(

− sin−1 ρ1,2 − sin−1 ρ1,3 + sin−1 ρ2,3
)

Pd =
1
8
+

1
4π
(

sin−1 ρ1,2 − sin−1 ρ1,3 − sin−1 ρ2,3
)

(A.13)

Now consider the case of four random variables, x1, x2, x3, and x4. It is difficult to

solve the probabilities in the form of Equation (A.13). Simplified solution is provided for

the low-frequency case as follows. Define PA, PB, and Pc as

PA ≡ P (x1 < 0, x2 > 0, x3 < 0, x4 > 0)

PB ≡ P (x1 < 0, x2 > 0, x3 > 0, x4 < 0)

PC ≡ P (x1 < 0, x2 > 0, x3 > 0, x4 > 0)

(A.14)

From Equation (A.13), we have

PA + PC = P (x1 < 0, x2 > 0, x4 > 0)

=
1
8
+

1
4π
(

− sin−1 ρ1,2 − sin−1 ρ1,4 + sin−1 ρ2,4
)

(A.15)

PB + PC = P (x1 < 0, x2 > 0, x3 > 0)

=
1
8
+

1
4π
(

− sin−1 ρ1,2 − sin−1 ρ1,3 + sin−1 ρ2,3
)

(A.16)

For the low-frequency case, ρ1,3 = ρ2,4 ≈ 1 and PB ≈ 0. As a result, we can solve the

above equations and obtain

PA = −
1

4π
(

sin−1 ρ1,4 + sin−1 ρ2,3 − sin−1 ρ1,3 − sin−1 ρ2,4
)

(A.17)

Then, the probability of zj[k] = 1 is

P z
j,j+1 = 1 − 2PA

= 1 +
1

2π
(

sin−1 ρ1,4 + sin−1 ρ2,3 − sin−1 ρ1,3 − sin−1 ρ2,4
)

(A.18)



A.2. MATHEMATICAL ANALYSIS OF ZCD2 71

The above equation can be rewritten as

P z
j,j+1 =

1
π

sin−1 ρa,b(t0, Tc, ts)
∣

∣

ts=Tc
+
∫ tj+Ts

tj

ZR(t0, Tc)dt0 (A.19)

where ZR(t0, Tc) is defined in Equation (A.63). The ZR(t0, Tc) is identical to the ZR(t0, Tc)

for ZCD1. Note that the first term on the right-hand side of Equation (A.19) is inde-

pendent of Ts. Only the second term containing ZR(t0, Tc) is relevant in the proposed

timing-skew detection scheme. Thus, we state that both ZCD1 and ZCD2 show identi-

cal ZR(t0, Tc) behavior in the proposed timing-skew detection scheme under the low-fi

scenario.

Now consider a ZCD2 with internal comparators exhibiting offsets. The following

assumption is made in order to simplify analysis. There are two different cases regarding

the relationship between xj[k] and xj[k + 1]: weak correlation and strong correlation.

For the weak-correlation case, we can assume that the probability of x1 = xj[k] < 0

and x3 = xj+1[k] < 0 is independent of the probability of x2 = xj[k − 1] > 0 and

x4 = xj+1[k − 1] > 0. Thus

PA ≡ P (x1 < 0, x2 > 0, x3 < 0, x4 > 0)

≈ P (x1 < 0, x3 < 0) × P (x2 > 0, x4 > 0)
(A.20)

Define probabilities P1,3 ≡ P (x1 < 0, x3 < 0) and P2,4 ≡ P (x2 > 0, x4 > 0). When the

comparators exhibit offsets, the corresponding probabilities becomes PO
1,3 = P1,3 + ∆P1,3

and PO
2,4 = P2,4 + ∆P2,4, where

∆P1,3 = P (x1 < Oj, x3 < Oj+1) − P (x1 < 0, x3 < 0)
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(A.21)

and

∆P2,4 = P (x2 > Oj, x4 > Oj+1) − P (x2 > 0, x4 > 0)

≈ −
1

2
√

2π

(

Oj

σj
+

Oj+1

σj+1

)

= −∆P1,3

(A.22)
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Note that P1,3 = P2,4. From Equation (A.20) and using P z
j,j+1 = 1 − 2PA, the P z

j,j+1

probability for ZCD2 is deviated from Equation (A.19) by

∆P z
j,j+1 = 2(∆P1,3)2 =

1
4π

(

Oj

σj
+

Oj+1

σj+1

)2

(A.23)

The above equation is repeated in Equation (3.13).

For the strong-correlation case, we assume that, under the zj[k] = 1 condition, the

relationship between x1 and x2 is similar to the relationship between x3 and x4. Further-

more, x1 ≈ x3 or x1 ≈ −x3, and x2 ≈ x4 or x2 ≈ −x4. Thus,

PA ≡ P (x1 < 0, x2 > 0, x3 < 0, x4 > 0)

≈ P (x1 < 0, x2 > 0)
(A.24)

The probability variation due to Oj is

∆PA,Oj
≡ P (x1 < Oj, x2 > Oj) − P (x1 < 0, x2 > 0)

or ≡ P (x1 > Oj, x2 < Oj) − P (x1 > 0, x2 < 0)

=
1
π

√

1 − ρ1,2

1 + ρ1,2
×

O2
j

σ2
j

(A.25)

The probability variation due to Oj+1 is

∆PA,Oj+1 ≡ P (x3 < Oj+1, x4 > Oj+1) − P (x3 < 0, x4 > 0)

or ≡ P (x3 > Oj+1, x4 < Oj+1) − P (x3 > 0, x4 < 0)

=
1
π

√

1 − ρ3,4

1 + ρ3,4
×

O2
j+1

σ2
j+1

(A.26)

Thus, the total probability variation due to the offsets is

∆P z
j,j+1 = ∆PA,Oj

+ ∆PA,Oj+1

=
1
π

√

1 − ρ1,2

1 + ρ1,2
×

O2
j

σ2
j

+
1
π

√

1 − ρ3,4

1 + ρ3,4
×

O2
j+1

σ2
j+1

(A.27)

Comparing Equation (A.27) with Equation (A.23), the weak-correlation case shows larger

probability variation than the strong-correlation case. Thus, we choose Equation (A.23)

as the upper bound for ∆P z
j,j+1.
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Figure A.2: Relationship between PR[n] and PU [n].

A.3 Timing Fluctuation Due to Skew Calibration

Consider the (j − 1)-th calibration channel in the CP of Figure 4.1. It receives the xj−1[k]

and xj[k] sequences and generates the Tj[k] output to adjust τj. Its ACC1 accumulator

takes U [k] = m[k]−zj−1[k] and generates R[k]. Define PU [n] as the probability function

of U [k] = n and PR[n] as the probability function of R[k] = n, where n is an integer.

Since zj[k] ∈ {0, 1} and m[k] ∈ {0, 1}, PU [n] = 0 for n > 1 or n < −1. R[k] is

generated by accumulating the U [k] sequence. It is reset to 0 whenever R[k] ≥ +NC or

R[k] ≤ −NC . Thus, PR[n] = 0 for n > +NC or n < −NC . We can derive the relationship

between PR[n] and PU [n] as follows. At k = 1, let U [1] = R[1] = n, then the probability

mass function (PMF) of R[1] = n is the same as the PMF of U [1] = n. At k = 2, the

condition for R[2] = 1 is U [1] = 1 & U [2] = 0 or U [1] = 0 & U [2] = 1. Thus the

probability of R[2] = 1 is PU [+1] × PU [0] + PU [0] × PU [+1] = 2PU [+1] × PU [0]. From

the same reasoning, the probability mass function of R[2] = n is PU [n] ∗ PU [n], where

∗ is a convolution operator. As shown in Figure A.2, we can also derive that PR[n] is a

consecutive k times convolution of PU [n], i.e.,

PR[n] = PU [n] ∗ PU [n] ∗ · · · ∗ PU [n] (A.28)
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When the calibration loop converges, it implies k → ∞ and PR[n] ∗ PU [n] = PR[n].

However, the BPD following the ACC1 accumulator reset R[k] to zero whenever R[k] =

+NC or −NC . This means PR[n] = 0 for n > +NC or n < −NC . The probability of

PR[+NC + 1] = PR[+NC] × PU [+1] is reset to zero and added to PR[0]. The probability

of PR[−NC − 1] = PR[−NC] × PU [−1] is also reset to zero and added to PR[0]. We can

find PR[n] by solving the following recursive difference equations

PR[+NC] = PR[+NC − 1]PU [+1] (A.29)

PR[−NC] = PR[−NC + 1]PU [−1] (A.30)

PR[+NC − 1] = PR[+NC − 2]PU [+1] + PR[+NC − 1]PU [0] (A.31)

PR[−NC + 1] = PR[−NC + 2]PU [−1] + PR[−NC + 1]PU [0] (A.32)

PR[n] = PR[n − 1]PU [+1] + PR[n]PU [0] + PR[n + 1]PU [−1] (A.33)

where −NC + 2 ≤ n ≤ NC − 2.

The characteristic equation is

y = PU [+1] + PU [0]y + PU [−1]y2 (A.34)

where y is the characteristic value for the above recursive equations. Solving the charac-

teristic equation gives y = 1 or

y =
PU [+1]
PU [−1]

≡ yr (A.35)

With this and PU [0] + PU [+1] + PU [−1] = 1, the general form of PR[n] can be written as

PR[n] = A + B(yr)n (A.36)

The above recursive difference equations can be summarized as

PR[n] =
PR[+NC]

PU [+1](y−1
r − 1)

(

−1 + y
−NC+n
r

)

(A.37)

and
PR[+NC]
PR[−NC]

=
−1 + y

+NC
r

+1 − y
−NC
r

≡ η (A.38)

where −NC + 2 ≤ n ≤ NC − 2 and yr 6= 1. PR[+NC] shows the probability of τj being

increased and PR[−NC] shows the probability of τj being decreased. The y
+NC
r and y

−NC
r
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terms in Equation (A.38) imply that the PR[+NC]/PR[−NC] ratio is either very large

or close to 0 if NC is large. The above statement is still valid even when the difference

between PU [+1] and PU [−1] is small.

When the timing-skew calibration loop converges, yr is close to 1, Define yr = 1+∆y.

From Equation (A.38), we have

PR[+NC]
PR[−NC]

≈

{

NC∆y if ∆y > 0

−1/(NC∆y) if ∆y < 0
(A.39)

Note that

lim
∆y→0+

PR[+NC]
PR[−NC]

6= lim
∆y→0−

PR[+NC]
PR[−NC]

6=
PR[+NC]
PR[−NC]

∣

∣

∣

∣

∆y=0

(A.40)

The case with ∆y > 0 is symmetical to the case with ∆y < 0. To ease discussion, only

the ∆y > 0 case is considered below. We have

PR[+NC] =
∆P

NC − 1
(A.41)

PR[−NC] =
∆P

NC (NC − 1)∆y
(A.42)

where ∆P = PU [+1] − PU [−1] is a function of the τj timing skew.

Consider a x(t) signal that has an uniform ZC density of ZR. Let τj,0 = ∆y0Ts. When

the calibration loop converges, we have PU [+1] = ZR(1 + ∆y0) and PU [−1] = ZR.

Furthermore, the probability of τj jumping from τj,i to τj,i+1 is equal to the probability of

τj jumping from τj,i+1 to τj,i [15], where i is an integer and τj,i is a discrete value of τj.

Therefore,

M (τj,0)
∆P (τj,0)
NC − 1

= M (τj,−1)
∆P (µt − τj,0)

NC − 1
(A.43)

M (τj,0)
∆P (τj,0)

NC (NC − 1)∆y0
= M (τj,+1)

∆P (µt + τj,0)
NC − 1

(A.44)

M (τj,−2)
∆P (2µt − τj,0)

NC − 1
= M (τj,−1)

∆P (µt − τj,0)
NC (NC − 1)(µt/Ts − ∆y0)

(A.45)

M (τj,1)
∆P (µt + τj,0)

NC (NC − 1)(µt/Ts + ∆y0)
= M (τj,2)

∆P (2µt + τj,0)
NC − 1

(A.46)
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Note that
∑∞

i=−∞ M (τj,i) = 1. If NC is large, only M (τj,0), M (τj,−1), M (τj,1), M (τj,−2)

and M (τj,2) are significant. We have

M (τj,−1) =
τj,0

µt − τj,0
M (τj,0) (A.47)

M (τj,1) =
Ts

NC (µt + τj,0)
M (τj,0) (A.48)

M (τj,−2) =
∆t × Ts

NC (µt − τj,0) × (2µt − τj,0)
M (τj,0) (A.49)

M (τj,2) =
T 2
s

N2
C (2µt + τj,0)(µt + τj,0)

M (τj,0) (A.50)

Then, M (τj,i) can be approximated by

M (τj,0) =
µt − τj,0

µt

(A.51)

M (τj,−1) =
τj,0

µt

(A.52)

M (τj,1) =
Ts

NCµt(µt + τj,0)
(

µt − τj,0
)

(A.53)

M (τj,−2) =
τj,0 × Ts

NCµt(2µt − τj,0)
(A.54)

M (τj,2) =
T 2
s

N2
C (2µt + τj,0)(µt + τj,0)

µt − τj,0

µt

(A.55)

The mean variance of τj,i is

σ2(τ) ≡
1
µt

∫+µt/2

−µt/2

+∞
∑

i=−∞

[

M (τj,i) × (τj,0 + iµt)2] dτj,0

=
2
µt

∫+µt/2

0

+∞
∑

i=−∞

[

M (τj,i) × (τj,0 + iµt)2] dτj,0

≈
1
6
µ2
t +

4Ts

3NC

µt

(A.56)

The above equation is repeated in Equation (4.4). We can ignore the case with yr = 1. In

this case, τj,0 = 0, thus the integration in the above equation is zero, i.e.,
∫ 0

0 (any function)dτj,0 =

0.
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Figure A.3: A time-interleaved ADC architecture.

A.4 Timing Skew Calibration Using Clock Chopper

In this section, we will introduce the timing skew calibration using clock chopper. The

concept of two-channel calibration technique will be described and it can be applied in

multi-channel time-interleaved ADCs.
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A.4.1 Timing-Skew Detection

Assuming all A/D channels shown in Figure A.3 are linear and without gain and offset

errors, the digital output of the ADC j can be expressed as:

Sj[k] = s
(

(M × k + j) Ts + t0 + τj
)

(A.57)

where Ts = 1/fs is the nominal sampling interval. The t0 represents the initial sampling

time at k = 0 for the ADC 1. The t0 has a value between 0 and M × Ts. The τj is

the timing difference between the clock generator and the j-th SHA caused by routing.

The t0 is defined in such a way that the mean of τj, for j = 1, 2, · · ·M , is zero, i.e.,

τ1 + τ2 + · · · + τM = 0. A timing skew occurs when τa 6= τb for a 6= b. Notable,

the sampling interval for each A/D channel is Tc = M × Ts, and the clock frequency is

fc = 1/Tc. Equation (A.57) neglects the effects of amplitude quantization.

First assume that the sampling rate, fs, is larger than the Nyquist sampling frequency

of the s(t) input, i.e., larger than twice the s(t)’s bandwidth. Since s(t) is continuous

in time and in amplitude, there is one and only one moment between two consecutive

sampling instant that the s(t) crosses over the zero if the input’s values sampled by the

corresponding A/D channels, ADC j and the subsequent ADC j+1, have opposite signs,

i.e., sj[k] × sj+1[k] < 0. Second, assume that the s(t) is a stationary Gaussian process

with zero mean. Then, the probability of a zero crossing between ADC j and ADC j+1,

P z
j,j+1, is a bivariate normal distribution [22] [23], and can be expressed as:

P z
j,j+1 =

1
2
−

1
π

sin−1 ρj,j+1 (A.58)

with

ρj,j+1 =
E[sj × sj+1]
σj × σj+1

(A.59)

where σj and σj+1 are the standard deviations of the sj and sj+1 random variables respec-

tively. The ρj,j+1 of Equation (A.59) denotes the cross-correlation between sj and sj+1.

The upper half of Figure A.4 illustrates the proposed timing-skew detection scheme.

Two choppers, a clock chopper and a data chopper, are placed at the outputs of clock

generator and at the outputs of the A/D channels. The two choppers are controlled by

a binary-valued random sequence, q[k] ∈ {−1,+1}. When q[k] = +1, the choppers’
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Figure A.4: Timing-skew detection and calibration for two channels.

outputs are the same as its corresponding inputs. When q[k] = −1, the choppers’ outputs

are exchanged. Thus, the sampling interval between the ADC j and the ADC j+1 can be

expressed as:

∆Tj,j+1 = Ts + q[k] × (τj − τj+1) (A.60)

As manifested by Equation (A.63) and Equation (A.64) shown later, the P z
j,j+1 is a mono-

tonic function of ∆Tj,j+1 for an x(t) input with limited bandwidth. Thus, the polarity of

the timing skew, τj − τj+1, can be detected by observing the change in P z
j,j+1 whenever

q[k] changes. The q[k] is chosen to be random to minimize the input dependence of the

detection scheme. To ensure the detection accuracy, it is critical that the clock chopper in

Figure A.4 does not introduce additional timing skew.

A.4.2 Two-Channel Timing-Skew Calibration

The bottom half of Figure A.4 shows the block diagram of the proposed timing-skew

calibration processor (CP) between the two adjacent A/D channels, ADC j and ADC j+1.
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Since only the polarity of the τj − τj+1 timing skew can be detected, this CP empolys

a similiar approach used in a comparator offset calibration scheme [15]. For the zero-

crossing detector (ZC Det), its output z[k] = 1 whenever xj[k] × xj+1[k] < 0, otherwise

z[k] = 0. The z[k] sequence is then correlated with the q[k] sequence and integrated

on the ACC1 accumulator. The ACC1’s output is R[k]. The rate of long-term change in

R[k] is proportional to the probability difference, ∆P z
j,j+1,

∆P z
j,j+1 = P z

j,j+1

∣

∣

q[k]=+1
− P z

j,j+1

∣

∣

q[k]=−1
(A.61)

The bilateral peak detector (BPD) monitors the value of R[k] and generates a corre-

sponding triple-valued output, S[k] ∈ {+1, 0,−1}. The BPD has two thresholds, +NC

and −NC . When R[k] > +NC , S[k] = +1. When R[k] < −NC , S[k] = −1. Otherwise,

S[k] = 0. In addition, the ACC1 accumulator is reset to zero whenever S[k] = +1 or

S[k] = −1. Thus, −(NC + 1) ≤ R[k] ≤ +(NC + 1), and S[k] can only remain as +1 or

−1 for one clock cycle. The S[k] sequence is integrated by the ACC2 accumulator. Its

output, Tj+1[k], controls the digitally-controlled τj+1 delay unit, such that:

τj+1[k] = τj+1,0 + µt × Tj+1[k] (A.62)

where µt is the delay unit’s step size for digital control and τj+1,0 is the time delay of τj+1

when Tj+1[k] = 0. The CP adjusts τj+1 automatically to minimize the difference between

τj and τj+1.

There are two design parameters in this calibration scheme, µt and NC . Together with

P z
j,j+1 and ∆P z

j,j+1, they affect the calibration behaviors, such as the converging speed and

the sampling jitter due to the disturbance of the x(t) input. Detailed analyses have been

given in [15]. Generally, large µt and small NC result in fast converging speed but large

timing jitter in τj+1. On the other hand, small and large NC result in small timing jitter but

also slow converging speed.

The calibration behaviors strongly depend on the property of the x(t) input. For a

generic x(t) input, the cross-correlation of Equation (A.59) between two periodic sam-

pling sequences, xa[k] = x(ktc + t0) and xb[k] = x(ktc + ts + t0), can be expressed as

ρ(t0, ts, tc). The tc is the sampling interval for each of the sampling sequence, the ts is

the sampling time difference between the two sequences, and the t0 is the initial sampling
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time for xa[0]. Notably, the ρ(t0, ts, tc) is a periodic function of t0 with a period of tc. In

the case of a time-interleaved ADC, we also have ts ≤ tc/2. From Equation (A.58), the

corresponding zero-crossing probability between the two sampling sequences can be ex-

pressed as P z(t0, ts, tc). Analogous to the probability density function, the zero-crossing

density, defined as the zero-crossing probability per unit ts time, can be expressed as:

ZR(t0, tc) ≡ lim
ts→0

P z(t0, ts, tc)
ts

=
1
π
×
[

−
∂2ρ(t0, ts, tc)

∂t2s

]1/2
∣

∣

∣

∣

∣

ts=0

(A.63)

For a M-channel time-interleaved ADC with Ts sampling interval between the adjacent

channels, the single-channel sampling interval is Tc = M × Ts. Assume the timing skew

between the ADC j and the ADC j+1 is small, i.e., ∆τj ≡ τj − τj+1 � Ts, the probability

difference, ∆P z
j,j+1, can then be approximated by:

∆P z
j,j+1 = [ZR(t0, Tc) +ZR(t0 + Ts, Tc)] × ∆τj (A.64)

From Equation (A.63), it can be shown that ZR(t0, tc) ≥ 0. Thus, ∆P z
j,j+1 has the same

polarity as ∆τj. Furthermore, the zero-crossing probability can be expressed as:

P z
j,j+1 =

∫ t0+Ts

t0

ZR(t, Tc)dt (A.65)

Both P z
j,j+1 and ∆P z

j,j+1 are required in estimating the converging speed and timing jitter

of the calibration process [15].

Consider the the system shown in Figure A.4. If ∆P z
j,j+1/∆τj = ZR(t0, Tc) +ZR(t0 +

Ts, Tc) is a constant, then the system’s transient behavior can be modeled as a single-pole

system with a time constant expressed as [15]:

τc =
NC

µt

×
2

ZR(t0, Tc) +ZR(t0 + Ts, Tc)
(A.66)

As an example, let x(t) be a single-tone sine wave, i.e., x(t) = A sin (2πfit), which

has a frequency of fi and a constant amplitude of A. Its corresponding ρ(t0, ts, tc) is

cos(2πfits), and the corresponding ZR(t0, tc) can be expressed as:

ZR(t0, tc) =















2fi
fi
fc

6= a
b

∑a−1
n=0

2
b
δ
(

t0 − n · tc
a

) fi
fc

= a
b

b is even.
∑2a−1

n=0
1
b
δ
(

t0 − n · tc
2a

) fi
fc

= a
b

b is odd.

(A.67)
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Figure A.5: Full-system timing-skew calibration.

where fc = 1/Tc is the sampling rate for a single channel, and a and b are two mutually

prime positive integers. If the fi/fc ratio is irrational, i.e., fi/fc 6= a/b, the zero-crossing

density, ZR, is equal to 2fi, and independent of t0 and tc. If fi/fc = a/b, the input sine

wave synchronizes with the fc sampling clock. Thus, within any time period of the fc

clock, there are only a finite number of instants at which the zero-crossings can occur.

If b is even, there are a possible uniformly-spaced zero-crossing instants. On the other

hand, if b is odd, there are 2a possible uniformly-spaced zero-crossing instants. The

proposed timing-skew calibration scheme cannot function properly with a synchronous

input, unless the coressponding a is sufficiently large so that the time interval between the

zero-crossings is smaller than the required timing resolution.
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Figure A.6: Proposed pairing scheme for an 8-channel system.

A.5 Multi-Channel Timing-Skew Calibration With Clock

Chopper

Figure A.5 shows the calibration scheme for the entire M-channel time-interleaved ADC.

The clock generator produces M clocks with an identical frequency of fc and equally-

spaced phases. The clocks pass through the clock choppers and the digitally-controlled

delay units to generate CK1, CK2, . . . , CKM which control the sampling timing of ADC

1, ADC 2, . . . , ADC M repectively. The calibration processor (CP) adjusts the digitally-

controlled delay units to minimize the timing skews among the A/D channels. The timing

skews are caused by mismatches among the clock routes from the outputs of clock chop-

pers to the sample-to-hold amplifiers in the A/D channels. The CP is pure digital and

operate at a clock rate of fc. It consists of only comparators, adders and registers, and

requires no multi-bit multiplier.

A pairing scheme is proposed so that (1) the two-channel timing-skew calibration can

be executed simultaneously on the selected pairs of A/D channels; (2) each clock chopper

only swaps the sampling clocks of adjacent A/D channels; and (3) timing skews of all A/D

channels are minimized relative to a single reference channel. As shown in Figure A.5,

there are two independent random sequences, p[k] ∈ {−1,+1} and q[k] ∈ {−1,+1}

for the control of the clock choppers and the data choppers. Figure A.6 illustrates the

proposed pairing scheme for an 8-channel time-interleaved ADC. When p[k] = +1, the

following calibration pairs are selected for simultaneous calibration: (1, 2), (3, 4), (8, 7),

(6, 5). For each calibration pair, (a, b), the q[k] sequence toggles the corresponding chop-

pers to altenerate the sampling sequence of ADC a and ADC b. The CP then adjusts the
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b-th delay unit to minimized the timing skew between the two channels. When p[k] = −1,

the following calibration pairs are selected for simultaneous calibration: (2, 3), (4, 5),

(1, 8), (7, 6). This pairing scheme assigns ADC 1 as the reference channel. For other A/D

channel, its corresponding delay unit is ajusted so that its timing skew with the reference

channel is eventually minimized.

In the above pairing scheme, the sampling interval of each individual A/D channel

is no longer a constant MTs, due to the reordering of the sampling sequence. The two

random sequences, p[k] and q[k], are operated at the fc clock, and they can change state

only after the present state has been applied to all A/D channels. If p[k] is restricted

to change only during q[k] = +1, the sampling interval for each A/D channel can be

confined to vary between (M − 1)Ts and (M + 1)Ts.

Consider only the timing jitter caused by the calibration process using the pairing

scheme just described. Let ADC 1 be the reference channel in a M-channel ADC, and all

calibration pairs employ identical µt and NC parameters. Since ADC 1 is the reference

channel, the corresponding τ1 is not adjusted, thus its jitter standard deviation σ(τ1) =

0. For ADC 2, the corresponding τ2 is adjusted toward τ1, resulting in a jitter standard

deviation of σ(τ2). For ADC 3, the corresponding τ3 is adjusted toward τ2, resulting

in a jitter standard deviation of
√

2σ(τ2). In general, for ADC j+1 where j ≥ 2, the

corresponding τj+1 is adjusted toward τj, and its jitter standard deviation can be expressed

as:

σ(τj+1) =
√

j × σ(τ2) (A.68)

On the other side of ADC 1, ADC M has the same jitter standard deviation as ADC 2, ADC

M−1 has the same jitter standard deviation as ADC 3, and etc. In the 8-channel example,

the ADC 5 has largest timing jitter. To reduce σ(τj+1), the CP can use larger NC value

when calibrating the timing skew of the ADC j+1.

In the proposed pairing sheme for multi-channel calibration, the use of the p random

sequence increases the response time of the system by a factor of two. If ∆P z
j,j+1/∆τj =

ZR(t0, Tc) +ZR(t0 + Ts, Tc) is a constant, then the system’s transient behavior can also be

modeled as a single-pole system with a time constant expressed as:

τs = 2τc (A.69)



A.5. MULTI-CHANNEL TIMING-SKEW CALIBRATION WITH CLOCK CHOPPER85

where τc is defined in Equation (A.66).

It is imperative to carefully choose the timing of p[k] and q[k] for controlling the clock

choppers, so that undesirable glitches are not generated in the clocks when the choppers

are toggled.
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