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摘摘摘摘    要要要要 

本論文研究探討多輸入輸出系統之球體解碼（sphere decoding）與低密度奇

偶校驗碼（low-density parity-check code, 簡稱 LDPC code）解碼方式，藉由建立

機率模型之理論分析與推導，經過電腦模擬驗證，提出適用於硬體實現之高效能

低複雜度演算法。 

球體解碼（Sphere Decoding）可描述為一個樹狀圖上找尋最佳路徑之問題，

其中 K-best algorithm 為一常見之簡化演算法，其固定計算量之特色適合硬體實

作。但為了維持與傳統 sphere decoding相當之效能，需要大量排序運算，造成硬

體實作時複雜度大幅增加。因此我們提出了低複雜度排序法與路徑刪除（early 

pruning）技巧，論文中所提出之路徑刪除技巧可及早在樹狀圖上刪去對應較低

機率之路徑。路徑刪除條件與相關參數，可藉由建立與通道統計特性、路徑函數

（path metric）以及系統錯誤率等所對應機率模型獲得；其平均計算量亦可依循

此機率模型經由理論推導得到。根據理論分析之平均計算量，我們提出

early-pruned multi-K-best algorithm，以進一步提升解碼速度。利用電腦模擬一



64-QAM 4×4 MIMO系統，在維持與傳統 sphere decoding相當之效能時，上述之

方法可達到約 90%計算複雜度之改進。 

信度傳播（Log belief-propagation algorithm, 簡稱 Log-BP algorithm）是常見

LDPC碼解碼方法，其中需要之非線性運算通常以查表法或 min-sum algorithm實

現。前者需要大量硬體成本，且大量查表造成電路之時間延遲，故在設計高速解

碼器多採用後者。為了減少 min-sum algorithm由 Log-BP algorithm簡化所造成之

效能損失，我們探討並提出動態補償方法，此補償量可描述為解碼器輸入，通道

雜訊，與解碼疊代次數之函數。我們進一步利用 order statistic與 density evolution

等技巧分析並推導出此動態補償量函數，並依此提出三類可在硬體上實現之動態

補償法。我們以此方法模擬 DVB-S2系統，min-sum algorithm加上此動態補償僅

造成 5%之面積增加，最多可得到 1.0dB之 SNR改善。 

論文最後探討MIMO接收端訊號偵測與通道解碼之相互影響。當系統採用

如 LDPC 碼等需要以信度傳播作為解碼，sphere decoder 需要修正為 list sphere 

decoder，並產生一清單(candidate list)以計算通道解碼器需要之可靠度資訊。研

究過程中發現，疊代解碼（iterative decoding）的收斂情形在MIMO環境中受到

前級輸出之影響甚劇，當 candidate過少時將造成嚴重 error floor。然而，直接利

用 sphere decoding algorithm產生較大的 candidate list所需要之複雜度過高，因此

我們提出一種增加 candidate 之方式，相形之下需要之運算較少。最後我們模擬

IEEE802.11n LDPC碼在 64-QAM 4×4 MIMO通道之效能，採用我們提出之清單

擴增方法，搭配路徑刪除法，在降低 error floor的同時，最多可再減少 94%之計

算複雜度。 
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Abstract 

   This dissertation presents algorithm designs for sphere decoders and low-density parity 

check (LDPC) code decoders in multi-input multi-output (MIMO) systems from 

implementation point of view. Based on statistical techniques, complexity reduction schemes 

are proposed. Sphere decoders of hard-decision outputs and LDPC decoding algorithms in 

AWGN channel are discussed first. Then the sphere decoders with soft-decision outputs for 

channel-coded MIMO systems are investigated. 

   Sphere decoding algorithm is one realization of maximum likelihood signal detection for 

MIMO systems, and the computation can vary with channel due to the fading phenomena. 

Among several modified algorithms, K-best algorithm is suitable for hardware implementation 

for the constant computation and predictable hardware complexity. However, K-best algorithm 

has to be realized with the assumption of worst channel condition in order to maintain the 

system performance. For complexity reduction, an early pruning scheme combined with 

K-best algorithm is presented. According to the system model and channel statistics the 

expected complexity can be analyzed as well. Based on the complexity analysis, an 

early-pruned multi-K-best algorithm is proposed by which the lowest decoding speed can be 

further improved. The simulation results in 64-QAM 4 × 4 MIMO channel show that 90% 

complexity can be reduced with imperceptible degradation in both symbol error rate and bit 



 

iv 

error rate above 10
−5

.  

   For decoding LDPC codes, min-sum algorithm is one common simplification of Log-BP 

algorithm, but there is a performance gap due to the approximation inaccuracy. Normalization 

schemes are investigated to compensate the approximation error. Moreover, the normalization 

factor can be described by a function of the decoder inputs, noise variance, and the decoding 

iteration number. The data-dependent correction terms can be analyzed and derived by order 

statistic and density evolution. Simulated in DVB-S2 system, the dynamic normalization 

schemes effectively mend the SNR loss from Log-BP algorithm to min-sum algorithm with 

few normalization overheads, and 1.0dB SNR improvement, which is about 95% of the SNR 

loss from Log-BP to min-sum algorithm, can be achieved. 

   For channel coded MIMO systems, a sphere decoder is modified to a list sphere decoder 

that generates a candidate list for computing the soft inputs. Under iterative message passing 

decoding, the candidate list and the soft value generation impact the decoding convergence. 

Sufficiently large candidate list is required to avoid error floor. Thus, a path augmentation 

technique is proposed by which a larger and distinct list can be employed in computing the 

probabilistic information of each received bit. Compared with directly generating a larger list, 

path augmentation performs comparatively less operations. In our simulation based on a 

64-QAM 4×4 MIMO system with LDPC codes defined in IEEE802.11n, the proposed 

augmented-list sphere decoder based on 64-best algorithm achieves the lowest error floor and 

saves about 50% computations, if compared to the standard list sphere decoder which is based 

on 128-best algorithm. Moreover, by the proposed early pruning scheme and multi-K-best 

algorithm, 94% reduction in sorting complexity can be achieved.  
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ỹ Complex received symbol vector

y Equivalent real received symbol vector

q 2Nr × 1 received symbol vector after preprocessing
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γ Path augmentation factor; only the best γ in L are expended

n0 Number of paths in L conducting to x = 0

n1 Number of paths in L conducting to x = 1
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Chapter 1

Introduction

The communication engineering is to convey information through specific channels as cor-

rectly as possible. In 1948, Claude E. Shannon proved the existence of the transmission limit,

which is termed channel capacity [1,2]. It was stated that quasi-error-free transmission could

be guaranteed with information rate under the channel capacity. For decades, researchers

devoted much effort to approach this limit. With the advances in source coding and chan-

nel coding technology, some theoretically capacity-approaching communications have been

shown achievable.

Figure 1.1 presents a general communication system block diagram where the upper

and lower parts correspond to the transmitter and the receiver. Information source is first

compressed by a source encoder that removes the redundancy. Subsequently specific re-

dundant data, often referred to parity, is added on the compressed data for error-control.

The deterministic relation between the source data and parity, algebraic structures for ex-

ample, assists the receiver to detect and recover the errors occurred during transmission.

All transmit medium between the transmitter and the receiver can be regarded as channels,

which can be storage equipments, cables in wireline transmission, or radio links in wireless

transmission. The transmitted data undergoes different corruption and interference through

different channels. Thus, various modulation techniques are applied before transmitting; the

data are reformed for better transmission efficiency and immunity to channel distortions. At
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the receiver site, the signal detection demodulates the received signals [3]; equalization [4,5]

is sometimes required to compensate the channel effects. Provided with demodulated data

or probabilistic information of received data, the channel decoder then corrects the erroneous

symbols after signal detection.

Source 

Encoder

Channel 

Encoder
Modulation

Channel

Signal 

Detection

Channel 

Decoder

Source 

Decoder

Information 

Source

Information  

Sink

Figure 1.1: Communication system.

1.1 Channel Coding

Channel coding, or also termed error control coding, is an essential technology for reliable

transmission. After the invention of turbo codes [6] and the rediscovery of low-density

parity check (LDPC) codes [7–9], Shannon capacity (in additive white Gaussian noise,

AWGN channel) is proved achievable by iterative decoding process [10–13]. The inher-

ent parallelism in belief-propagation (BP) algorithm [7, 9, 14] for decoding LDPC codes

facilitates high-speed LDPC decoder designs. Therefore, many advanced systems such as

digital television broadcasting (DVB-S2 [15], DMB-TH [16]), wireless local area network

(IEEE802.11n [17]), wireless metropolitan network (IEEE802.16e [18]), and 10G BASE-T

Eithernet (IEEE802.3an [19]), all employ LDPC codes as the forward error correction (FEC)

technique.

By taking logarithm of the decoder inputs, the BP algorithm is transformed to the
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equivalent Log-BP decoding algorithm, and the computations can be reduced since the

multiplications are transformed to additions in the logarithm domain. However, an nonlinear

operation is introduced, leading to implementation difficulity. Alternatively, the min-sum

algorithm [20, 21] avoids the nonlinear function but leads to performance degradation. The

gap between the min-sum algorithm and the Log-BP algorithm can be reduced by a constant

correction term, either normalization or offset [22–30]. Indeed, the normalization factor can

be represented as a function of the decoder inputs, channel statistics, and the decoding

iteration number. To further improve the error performance, we did an analysis based on

the order statistic [31,32] and density evolution [33] to derive dynamic normalization factors.

With little overheads in circuit implementation, we present several dynamic normalization

schemes by which the normalization factors are determined on the fly.

1.2 MIMO Detection

For wireless communication, fading phenomenon [34] impacts transmission efficiency and

system performance. Utilizing the fading nature of wireless channels, multi-input multi-

output (MIMO) systems have emerged as powerful technologies for reliable and high-data-

rate wireless transmission. The inherent diversity gain provided by the multiple channels

significantly improves the signal quality and boosts the system capacity [34, 35]. However,

maximum achievable diversity gain is determined by the signal detection approach [36].

Among various linear and non-linear MIMO detection schemes [34, 35, 37–43], maximum

likelihood (ML) detection is shown to be capable of attaining full diversity gain. ML de-

tection often transforms the detection to solve an integer least-squared of linear equations,

which has been proved to be NP hard [44, 45].

Sphere decoding algorithm [42, 43, 46, 47] is one applicable approach to realize ML de-
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tection for MIMO systems. Described by closest-point-search or tree-search problems, the

sphere decoding can be classified into two major categories, depth-first search and breadth-

first search. The computation of the former is channel-dependent, and the resulted non-

constant decoding throughput makes hardware implementation more difficult. Due to the

constant computations, the sub-optimum breadth-first search is more practicable for im-

plementation, where parallel processing or pipelining techniques can be applied for high-

throughput decoder designs. K-best algorithm [48–51] is the very representative breadth-

first search realization. At each layer of the search tree, K best candidates are kept before

the algorithm proceeds to the next layer. In the worst channel condition, large K is required

for complicated modulation, 64-QAM for example, to maintain error performance similar

to the depth-first search decoders, resulting in unmanageable sorting complexity in circuit

implementation. Each of the two search strategy has its own advantages, and therefore

we consider a hybrid strategy, by which a pruning scheme is applied to the breadth-first

algorithms. Similar to depth-first decoders, the proposed pruning criterions are based on a

set of statistically derived radii. Given the channel model and design parameters (ex. error

tolerance), distinct radius constraint for each layer can be computed. Moreover, the statisti-

cal model for deriving the pruning criterions can be employed in analyzing the computation

complexity of the proposed early-pruned sphere decoders.

1.3 Channel Coded MIMO System

For a channel-coded MIMO system in Figure 1.2, sphere decoding algorithm needs to be

modified to list sphere decoding that generates a candidate list when probabilistic informa-

tion, also termed soft values, are required as the subsequent channel decoder input. The

list size is a tradeoff between error performance and computation complexity. The decoder
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fails in computing the soft values when there is no sufficient candidates, and estimation for

soft values is required. Path augmentation techniques [38, 49] were proposed to provide an

equivalently larger list that reduces the probability of failing to compute the soft values.

According to our simulation result, the candidate list size impacts the LDPC decoding con-

vergence. Thus, we present an augmented-list sphere decoder that guarantees the augmented

list always capable of delivering the soft values.

1.4 Thesis Organization

Algorithm level complexity reduction for designing sphere decoders and LDPC decoders are

the focus of this dissertation. By statistical techniques, essential parameters and complex-

ity can be analyzed, at design time, with improved simulation efficiency. The dissertation

can be organized as follows. In Chapter 2, MIMO system models are introduced, and sev-

eral MIMO signal detection methods are briefly reviewed. Then, the early-pruned sphere

decoding algorithms are presented in Chapter 3, including parameters derivations and com-

plexity analysis. Dynamic normalization techniques for normalized min-sum algorithm in

decoding LDPC codes are presented in Chapter 4, wherein an order-statistic-based analysis

combined with density evolution technique for deriving the dynamic factors is given as well.

Subsequently, list sphere decoder designed for channel codes decoded by iterative algorithm

is discussed; an augmented list sphere decoding with compensation is proposed. Finally,

Chapter 6 concludes this work.
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Figure 1.2: Channel Coded MIMO system.
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Chapter 2

MIMO System

MIMO technology has emerged as a promising technique for reliable and high-data-rate

wireless applications due to the spatial multiplexing and diversity gains. The term diversity

gain refers to the slope of the error probability vesus SNR plot in a Log-Log scale. The

radio links between the transmit and the receive antennas provide multiple channels and

thus boost the system capacity. Thanks to the fading nature of the multiple channels, the

signal replicas at the receiver can be combined, and the resulted diversity gain improves

the received signal in terms of signal noise power ratio (SNR) and signal quality. Indeed,

the maximum achievable diversity gain is determined by the signal detection schemes as

the system spatial multiplexing strategy is given [36]. Maximum likelihood (ML) signal

detection is one nonlinear, and also optimum, detection approach that fully exploits the

system spatial diversity with the cost of much higher computation complexity as compared

to linear schemes such as zero-forcing, minimum mean square error (MMSE) detections or

successive cancellation [34, 35, 37]. In the following, a brief review of the system and the

channel models will be given first, and MIMO detection schemes will be introduced later.

Accordingly, in Chapter 3 and Chapter 5, the models will be applied and simulated for the

study of sphere decoding algorithms, an efficient means to realize ML detection. .

10



2.1 System Model
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Figure 2.1: Simplified MIMO system

Figure 2.1 illustrates a simplified Nr×Nt MIMO system with Nt transmit and Nr receive

antennas. The information bits x(t) = [x
(t)
1,1, x

(t)
1,2, . . . , x

(t)
1,2Mc

, . . . , x
(t)
Nt,1

, . . . , x
(t)
Nt,2Mc

]T are first

converted to the complex signals s̃(t) = [s̃
(t)
1 , s̃

(t)
2 , . . . , s̃

(t)
Nt

]T via M̃(·) before spatial mapping,

where t is the transmit time index and s̃k = M̃(x
(t)
k,1, x

(t)
k,2, . . . , x

(t)
k,2Mc

). The MIMO channel

is often described by matrix H̃(t, τ) and

H̃(t, τ) =



















h̃1,1(t, τ) h̃1,2(t, τ) · · · h̃1,Nt(t, τ)

h̃2,1(t, τ) h̃2,2(t, τ) · · · h̃2,Nt(t, τ)

...
...

...
...

h̃Nr ,1(t, τ) h̃Nr ,2(t, τ) · · · h̃Nr ,Nt(t, τ)



















. (2.1)

Note that τ refers to the propagation delay and h̃i,j(t, τ) models the channel response between

the j-th transmit and i-th receive antennas. Represented by the superposition of ns resolvable

paths between each link, the channel matrix can be further described as

H̃(t, τ) =

ns−1
∑

k=0

H̃(t)
τk

δ(τ − τk), (2.2)
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where H̃
(t)
τk contributes to the channel matrix of the k-th delay path. Thus the received

signals ỹ(t, τ) can be represented by

ỹ(t, τ) =



















ỹ1(t, τ)

ỹ2(t, τ)

· · ·

ỹ1(t, τ)



















=

ns−1
∑

k=0

H̃(t)
τk

s̃(t)δ(τ − τk). (2.3)

Each element in the matrix H̃
(t)
τk is usually determined by several factors in physical propaga-

tion such as antenna patterns, antenna spacing, and directions of signal arrival(or departure),

etc. More channel models are detailed in [34, 52], and uncorrelated flat fading is one com-

mon and simple MIMO channel model among them. The channel response between the

j-th transmit antenna and the i-th receive antenna is modeled as a single-path narrow band

Rayleigh fading channel. That is, ns = 1 in (2.2) and each hi,j(t, τ) can be modeled by

a circular Gaussian random variable CN (0, 1) [34, 53]. As a result, the channel model is

irrelevant to the delay τ , and (2.1) is reduced to

H̃(t, τ) = H̃(t) =



















h̃
(t)
1,1 h̃

(t)
1,2 · · · h̃

(t)
1,Nt

h̃
(t)
2,1 h̃

(t)
2,2 · · · h̃

(t)
2,Nt

...
...

...
...

h̃
(t)
Nr ,1 h̃

(t)
Nr ,2 · · · h̃

(t)
Nr ,Nt



















(2.4)

where all h̃
(t)
i,j are independent, identically distributed ( i.i.d.) circular Gaussian random

variables. Accordingly, the relation between the transmit and receive signals becomes

ỹ(t) = H̃(t)s̃(t). (2.5)

12



Note that (2.5) only considers the impacts on signal propagation, a more general model

should be

ỹ(t) = H̃(t)s̃(t) + ṽ(t), (2.6)

where ṽ(t) = [ṽ
(t)
1 , ṽ

(t)
2 , . . . , ṽ

(t)
Nr

]T is the receiver additive noise vector and the ṽ
(t)
k ’s are i.i.d.

circular Gaussian random variables CN (0, σ2
v).

Equation (2.6) applies to many linear space-time codes. Besides, ỹ and ṽ can be further

replaced by an Nr ×Tc matrix, and s̃ by an Nt ×Tc matrix, to denote block transmission for

Tc time interval. The system model (2.6) is still applicable as long as the channel remains

unchanged during the Tc time slots. For simplicity, the symbol time index t will be omitted

henceforth. The spatial mapping will be referred to pure spatial multiplexing by which the

complex signal s̃k will be directed to the k-th transmit antenna. Furthermore, the channel

matrix H̃ is assumed to have full rank and to be perfectly estimated at the receiver.

2.2 MIMO Signal Detection Algorithms

MIMO signal detection can be classified into linear detection and nonlinear detection [34,37],

and both approaches are often reduced to finding the integer least-squared solution for Nr

sets of Nt-dimensional linear equations. Linear equalization and successive interference can-

cellation are two representative approaches in the linear category, by which an unconstraint

least-squared solution is found and then quantized to the nearest integer values. For non-

linear detection, maximum-likelihood detection can achieve optimum performance with the

expense of higher computation complexity. In addition, iterative detection and channel de-

coding should be another category [38–41]. Either linear or non-linear detection can be

applied to provide the probabilistic information for iterative process between the MIMO

13



detector and the channel decoder.

2.2.1 Linear Equalization

In an SISO system, impaired received signal can be compensated by equalizing the channel

response. Zero-forcing and minimum mean-squared error (MMSE) equalizations are the

two most common linear schemes. The same concept can also be applied to MIMO signal

detection; the transmitted s̃ can be recovered from ỹ by directly equalizing the channel

effects.

By singular value decomposition [54], the channel matrix H̃ can be factorized into

H̃ = UΣVH , (2.7)

where Σ is an Nr×Nt matrix with elements σj,j =
√

λj for j = 1, 2, . . . , Nr, and λj is the j-th

eiganvalue of HHH. U and V have dimensions Nr×Nr and Nt×Nt respectively; the columns

of U are the eiganvetors of HHH and the columns of V are eiganvectors of HHH . Note that

UHU = INr and VVH = INt . The pseudo-inverse channel matrix H̃+ = (H̃HH̃)−1H̃H can

be derived by

H̃+ = VΣ+UH , (2.8)

where Σ+ can be computed by transposing Σ then replacing the diagonal with 1
σj,j

. More-

over, Σ+Σ = INt ; when Nr = Nt, H̃+ = H̃−1, i.e. the inverse of the channel matrix.

Zero-forcing (ZF) equalization can be realized by directly multiply the received vector ỹ
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by H̃+; as a result,

H̃+ỹ = (VΣ+UH)(H̃)s̃ + (VΣ+UH)ṽ

= (VΣ+UH)(UΣVH)s̃ + (VΣ+UH)ṽ

= s̃ + H̃+ṽ. (2.9)

The ZF solution can be derived by quantizing H̃+ỹ to its nearest integers. As shown in

(2.9), the noise is scaled by H̃+. The effective noise power can be computed by

E[(H̃+ṽ)H(H̃+ṽ)] = (H̃H̃H)−1E[ṽH ṽ]

= σ2
v(H̃

HH̃)−1 (2.10)

The potentially reduced SNR and degradation from the resulted noise enhancement limits

the system performance. Moreover, it can be shown that the maximum achievable diversity

gain is Nr − Nt + 1 [36], provided that Nr ≥ Nt and very high probability of H̃ having full

rank.

MMSE equalization aims to substitute the H̃+ in (2.9) by other compensation matrix

such that the average enhanced noise power is minimized, which is equivalent to maximizing

the detector output SNR. Given ρ as the received SNR, the MMSE equalization estimates s̃

by multiplying ỹ with

DMSSE =

(

INr

ρ
+ H̃HH̃

)−1

H̃H . (2.11)

When the receive SNR ρ is high, the DMSSE (2.11) approaches to (H̃HH̃)−1H̃H = H̃+.

That is, the MMSE detection reduces to zero forcing at high SNR region. MMSE detection

improves the error performance at low SNR region, but has the same diversity gain of
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the zero-forcing equalization, which is at most Nr − Nt + 1. Moreover, MMSE equalizer

requires accurate received SNR estimation for deriving ρ in (2.11) and computation of matrix

inversion, leading to higher hardware complexity.

2.2.2 Successive Interference Cancelling

The MIMO system described in (2.6) can be rewritten as

ỹ =

Nt
∑

j=1

h̃j s̃j + ṽ

= h̃ks̃k +
Nt
∑

j=1,j 6=k

h̃j s̃j + ṽ, (2.12)

where h̃j denotes the j-th column of the channel matrix H̃. The second term of (2.12) can

be regarded as interference to s̃k. Subtracting the partially detected symbols from ỹ makes

it easier to detect the rest undetected symbols, provided that the probability of correctly

estimating these partial symbols is very high. Similar to decision-feedback equalization in

an SISO system, probability of correctly estimating the rest undetected symbols increases

since some of the interference are removed. Besides, the computation complexity of jointly

decoding the whole vector could be much higher than that of estimating partial symbols. By

this divide-and-conquer strategy, successive interference cancelling (SIC) reduces the compu-

tation of decoding one high-dimensional vector to several less complicated operations. SIC

could suffer from severe error propagation if the first few symbols are detected incorrectly.

Thus, proper ordering is required for SIC to achieve better error performance [55, 56]. The

symbols with larger signal strength should be detected earlier. After ordering, SIC completes

the detecting in Nt stages. At the k-th stage, the s̃k can be detected after the following two
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steps:

• Interference cancellation: Let ŝ1, ŝ2, . . . , ŝk−1 be the estimates of s̃1, s̃2, . . . , s̃k−1.

By subtracting them from ỹ, the less interfered received vector ỹ(k) will be

ỹ(k) = ỹ −
k−1
∑

j=1

ŝjh̃j + ṽ. (2.13)

Moreover, it can be verified that

ỹ(k) = ỹ(k−1) − ŝk−1h̃k−1. (2.14)

• Interference nulling: After the previous step, the interference from s̃1, s̃2, . . . , s̃k−1 is

removed. Interference nulling will suppress the interference from s̃k+1, s̃k+2, . . . , s̃Nt to

derive ŝk. The nulling process is equivalent to solving Nr sets of (Nt−k+1)-dimensional

linear equations, and thus, the aforementioned zero-forcing or MMSE equalization

approaches can be applied. Since only one symbol is decoded at this stage, the nulling

process only requires the k-th row of the zero-forcing pseudo-inverse matrix, denoted

by Z+
k , or the MMSE matrix, which is

(

INr

ρ
+ ZH

k Zk

)−1

ZH
k , for computing ŝk. This

row vector will be referred as nulling vector. Then ŝk can be obtained by computing

the inner product of ỹ(k) and the nulling vector. Note that Zk is derived by replacing

the first k − 1 rows of H̃ by zero, and Z+
k is the pseudo-inverse matrix of Zk.

Another common approach to suppress the interference is to subtract the projection

of ỹ(k) on bk+1,bk+2, . . . ,bNt , where bk+1,bk+2, . . . ,bNt are the orthonormal basis of

the subspaces created by h̃k+1, h̃k+2, . . . , h̃Nt . The orthonormal basis can be derived

via Gram-Schmidt orthonormalization procedure [54]. Accordingly, the resulted vector
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ŷ(k) for deriving ŝk can be obtained through

ŷ(k) = ỹ(k) −
Nr
∑

j=k+1

< ỹ(k),bj > bj , (2.15)

where < a1, a2 > denotes inner products of vectors a1 and a2. Subsequently, detecting

s̃k from ŷ(k) becomes a SIMO detection problem, maximum ratio combining or equal-

gain combining schemes can be applied to obtain ŝk [34, 37].

For k > 1 , the effective channel matrix that an SIC detector deals with has smaller dimension

than H̃ does, the enhanced noise power is smaller, leading to better error performance. Bell

Lab layerd space-time (BLAST) architectures [35, 57–59] can be categorized in this type.

Moreover, the diversity gain has been proved to be greater than Nr − Nt + 1. In fact, the

maximum achievable diversity gain varies with k, which is Nr − Nt + k.

2.2.3 Maximum-likelihood Signal Detection

Based on the system model ỹ = H̃s̃+ ṽ described in (2.6), maximum-likelihood (ML) signal

detection estimates the transmit vector s̃ by searching for a vector ŝ that maximizes the

conditional probability

ŝ = arg max
s′∈Ω̃Nt

Pr(ỹ|s′), (2.16)

where Ω̃ denotes all possible constellation points of the mapping function M̃(·). Following

the Gaussian noise in channel model (2.6), (2.16) can be further reduced to a closest-lattice-

point searching problem [47],

ŝ = arg min
s′∈Ω̃Nt

‖ỹ − H̃s′‖2, (2.17)
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where each s′ denotes an Nt-dimensional lattice point of the lattice generated by H̃. Note

that ‖a‖2 =
∑N

k=1 a2
k represents Euclidean-norm of the N -dimensional vector a, and Ω̃Nt =

Ω̃ × Ω̃ × · · · × Ω̃, the Nt times Cartesian product of Ω̃. ML detection has been proved

to be one MIMO detection scheme that fully utilizes the benefit of diversity, and has been

applied to analyze performance of many systems and space-time codes. However, it is

perceived in (2.17) that the computation complexity increases exponentially with Nt × |Ω̃|.

Thus, efficient searching algorithms to realize ML detection are desired for high performance

MIMO systems. Sphere decoding algorithm [42, 43] and sequential detection [38] are two

applicable approaches. However, the efficiency of these algorithms depends on the searching

strategy, which is still challenging in hardware implementation.
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Chapter 3

Sphere Decoding Algorithm

For all the schemes introduced in Chapter 2, the computation complexity are ranked in an

ascending order by ZF, MMSE, ZF-SIC, MMSE-SIC, ML, and the order is the same for

the error performance and the achievable diversity gain. Realization of ML detection for a

high performance system is still very challenging, exhaustively searching for the minimizer

in (2.17) or the maximizer in (2.16) is infeasible. In fact, ML detection often transforms the

detection to solving an integer least-squared of linear equations, which has been proved to

be NP hard [44, 45]. Alternatively, sphere decoding algorithm was proposed and proved to

have tractable polynomial complexity [42, 43, 46, 47, 60, 61]. Thus real-tim ML detection is

still applicable. However, the complexity depends on the efficiency of the search strategy.

Several variation of sphere decoding algorithm will be introduced in the following.
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3.1 Sphere Decoding Algorithm

The complex system model in (2.6) is often rearranged into the real-valued form by

y =







<{ỹ}

={ỹ}







=







<{H̃} −={H̃}

={H̃} <{H̃}













<{s̃}

={s̃}






+







<{ṽ}

={ṽ}







= Hs + v, (3.1)

where <{·} and ={·} respectively refer to the real and the imaginary parts of a complex

signal. The complex modulation M̃(·) also is decomposed into two real-valued signal map-

ping M(·). For instance, M2-QAM mapping is transformed two M-PAM modulation. Then

(2.17) becomes

ŝML = arg min
s′∈Ω2Nt

‖y − Hs′‖2. (3.2)

A sphere decoder searches for the minimizer in the hypersphere ‖y − Hs′‖2 < C, and the

ML solution can be obtained by

ŝML ≈ ŝSD = arg min
s′∈Ω2Nt ,‖y−Hs′‖2≤C

‖y − Hs′‖2, (3.3)

provided that the radius is properly selected such that the sphere contains at least one lattice

point.

Preprocessing on y can further transform the problem into a tree-search problem. With

QR-decomposition [54], for instance, the channel matrix is decomposed to H = QR. Mul-
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tiplying y by QT , we can transform (3.3) to

ŝSD = arg min
s′∈Ω2Nt ,‖q−Rs′‖2≤C

‖q − Rs′‖2, (3.4)

where q = [q1, q2, . . . , q2Nt ] = QTy.

The path metric defined on Euclidean-norm of each lattice point s′ can be calculated by

‖q − Rs′‖2 =
2Nt
∑

i=1

(

qi −
2Nt
∑

j=i

Ri,js
(i)
j

)2

(3.5)

=
2Nt
∑

i=1

e(s(i)), (3.6)

where the partial path s(i) is a subset of s′ and s(i) = [si, si+1, . . . , s2Nt ]. Moreover, the partial

Euclidean distance (PED) of s(i), T (s(i)), is defined by

T (s(i)) =

2Nt
∑

i′=i

(

qi′ −
2Nt
∑

j=i′

Ri′,jsj

)2

=

2Nt
∑

i′=i+1

(

qi′ −
2Nt
∑

j=i′

Ri′,jsj

)2

+

(

qi −
2Nt
∑

j=i

Ri,jsj

)2

(3.7)

= T (s(i+1)) + e(s(i)).

Accordingly, the search algorithm starts from the 2Nt-th layer of the tree, which will be

termed root node, to the 1-st layer of the tree, which will be termed leaf node. Each element

of every s′ refers to a distinct node of the tree. The number of nodes visited during the

searching procedure determines the computation complexity.
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3.1.1 Depth-First Search and Breadth-First Search

From (3.4) and (3.5), the lattice points in the hypersphere should satisfy the following

constraint

C ≥ (q2Nt − Rr2Nt,2Nts2Nt)
2

+ (q2Nt−1 − R2Nt−1,2Nt−1s2Nt−1 − R2Nt−1,2Nts2Nt)
2

...

+ (q1 − R1,1s1 − R1,2s2 − · · · − R1,2Nts2Nt)
2. (3.8)

Therefore, C ≥ (q2Nt − R2Nt,2Nts2Nt)
2 and s2Nt is confined in the range

⌈

−C + q2Nt

R2Nt,2Nt

⌉

≤ s2Nt ≤

⌊

C + q2Nt

R2Nt,2Nt

⌋

(3.9)

by the lower bound

LB2Nt(s2Nt) =

⌈

−C + q2Nt

R2Nt,2Nt

⌉

(3.10)

and the upper bound

UB2Nt(s2Nt) =

⌊

C + q2Nt

R2Nt,2Nt

⌋

. (3.11)

Subsequently, for any s2Nt of this range, the range for s2Nt−1 will be derived similarly, and

so are the ranges of the nodes extended from them. That is,

LBk(sk|s
(k+1)) =

⌈

−Ck(s
(k+1)) + qk|k+1

Rk,k

⌉

≤ sk

≤

⌊

Ck(s
(k+1)) + qk|k+1

Rk,k

⌋

= UBk(sk|s
(k+1))

(3.12)
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where sk|s(k+1) denotes the node on the k-th layer extended from the partial path s(k+1),

qk|k+1 is defined by

qk|k+1 , qk −
2Nt
∑

i=k+1

Ri,is
(k+1)
i , (3.13)

and Ck(s
(k+1)) is the partial radius for s(k+1), i.e.,

Ck(s
(k+1)) = C − T (s(k+1)). (3.14)

According to the notations introduced above, the original Fincke and Pohst [42] searching

algorithm can be described as

• Input: q,R, C, Ω = {ω1, ω2, . . . , ωM}, where ωl < ωl+1 and Ω−1(ωl) = l for all l =

1, 2, . . . , M − 1.

• Step0 (Initialization): k = 2Nt, d
2
k = C, qk|k+1 = q2Nt .

• Step1 (Computing the range): LBk =
⌈

−Ck+qk|k+1

Rk,k

⌉

, UBk =
⌊

Ck+qk|k+1

Rk,k

⌋

, and lk =

Ω−1(LBk) − 1, sk = ωl.

• Step2 (Radius check): lk = lk + 1, sk = ωlk . If sk ≤ UBk, go to Step 4; else, go to

Step3.

• Step3 (Move to upper layer): k = k + 1. If k = 2Nt + 1, terminate algorithm; else, go

to Step2.

• Step4 (Move to lower layer): k = k − 1. If k = 0, go to Step5; else, qk|k+1 =

qk −
∑2Nt

j=k+1 Rk,js
(k+1)
j , Ck = C − T (s(k+1)), then go to Step1.

• Step5 (One candidate found): Record the s and its corresponding T (s). Then Go to

Step2.
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As we can observe in the above algorithm, the algorithm starts from a root node, and the

search moves upward if the the current path metric exceeds the upper bound UBk; otherwise,

the search proceeds downward. The search direction goes back and forth, and therefore the

algorithm is also referred to as depth-first search.

Efficient hardware implementation of depth-first sphere decoding algorithm becomes dif-

ficult since the computation highly depends on the channel, and the non-constant compu-

tation restricts the decoder throughput. Moreover, the two-way searching direction makes

it more challenging to apply parallel computing or pipelining techniques [62] to improve

decoder throughput. Consequently, K-best algorithm [48,49] similar to the M-algorithm in

sequential decoding [63] was proposed. K-best algorithm modified the original algorithm by

its search direction. The K-best algorithm starts from the root-layer, and only the nodes

corresponding to the K smallest PEDs are kept before the algorithm proceeds to the sub-

sequent lower layer. When the search moves to the subsequent lower layer, each one of the

retained K best partial paths (parent nodes) is expanded to Mc paths (child nodes), and

totally Mc × K partial paths’ PEDs will be computed and compared for the new K best

PEDs. The same operations continues until the first layer is reach. Hence, the search in the

algorithm becomes uni-direction, which is referred to as breadth-first search. Because the

modified algorithm only searches for local minimas at each layer, the K-best decoder may

not always returns the true minimizer in (3.3), leading to performance degradation when K

is too small. However, the constant computation at each layer and the recursively derived

path metric described in (3.6) and (3.7) make K-best algorithm more suitable for VLSI

implementation [49–51].
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3.1.2 Complexity Reduction Techniques

It is perceived that the computation complexity for a depth-first sphere decoding depends

on the channel, i.e. R and the noise variance, as well as the radius C selection of the

hypersphere. The computation complexity of a bread-first sphere decoder is dominated by

the value K and the sorting operations for keeping the K best PEDs.

For depth-first strategy, if the chosen radius C is too large, too many nodes will be

examined, leading to much redundant computation. But if C is chosen too small, chances

are all the nodes will be pruned during the search process. In this case, C should be modified

to a larger value and the algorithm will start over. Therefore, the computation complexity

is highly related to the selection of the radius. One straightforward choice of the initial

radius is the Euclidean norm corresponding to the Babai point [47], which is denoted by

ŝB = [ŝB1 , q̂B2 , . . . , q̂B2Nt
, ]T and can be derived by

q̂B2Nt
= Ω−1

q

(

q2Nt

R2Nt,2Nt

, Ω

)

q̂B2Nt−1
= Ω−1

q

(

q2Nt−1 − R2Nt−1,2Nt ŝB2Nt

R2Nt−1,2Nt−1

, Ω

)

· · ·

q̂B1 = Ω−1
q

(

q1 −
∑2Nt

j=2 R1,j ŝBj

R1,1

, Ω

)

, (3.15)

where the function Ω−1
q (x, Ω) returns the constellation point in Ω which is nearest to x.

Thus, the radius C should be

C = ‖q − RŝB‖
2. (3.16)

In fact, the radius can vary throughout decoding. When a leaf node is reached, its path

metric never exceeds C. Therefore, we can always update the radius to the current path
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metric whenever a new lattice point satisfying the sphere constraint is found. As a result,

the radius shrinks each time the searching proceeds to a leaf node, allowing more paths to

be pruned. With this radius updating concept, Schnorr and Euchnorr made a small but

significant modification to the original Fincke-Pohst search strategy [46]. Unlike the Fincke-

Pohst strategy checking the nodes on the k-th layer, within the range LBk and UBk, with

the order

ωl, ωl+1, . . . ,

the Schnorr-Euchnorr approach checks the nodes with an ascending order of

ŝk, ŝk − 1, ŝk + 1, ŝk − 2, ŝk + 2, . . . ,

with

ŝk = Ω−1
q

(

qk −
∑2Nt

j=k+1 Rk,j ŝj

Rk,k
, Ω

)

. (3.17)

That is, the nodes corresponding to smaller PEDs will be examined earlier, and the search

is quaranteed to reache the leaf nodes more quickly. Moreover, the radius shrinks in a faster

rate, resulting in more early-pruned nodes. Other radius shrinking techniques to accelerate

the algorithm convergence rate can be further referred to [64–66],

For bread-first search such as K-best algorithm, computation remains constant if K is

constant throughout decoding. The sorting operation directly relates to the complexity, and

choosing smaller K is a straightforward approach to reduce complexity; however, the error

performance may degrade. Since the K-best algorithm only searches for local minimums at

each layer, the probability of the ML-path being discarded increases when the channel in

low SNR conditions. It was pointed out in [67] that an adaptive K can effectively reduce

the computation complexity. With a signal quality indicator that is defined by the ratio of
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the second minimum and the minimum of the PEDs, a larger K is employed when the ratio

exceeds some threshold; otherwise, a smaller K-value is applied.

Statistic pruning, similar to the T -algorithm [63] in sequential decoding, is another type

of complexity reduction technique and can be applied to both depth-first and breadth-first

searching strategies. The paths with PEDs exceeding some thresholds will be ignored. More

details about the pruning schemes can be referred to [68–72].

3.2 Early-Pruned Breadth-First Sphere Decoding

Algorithm

Constant throughput and predictable complexity is the major advantages of breadth-first

sphere decoding algorithms, however, the decoder is often designed based on the worst

channel assumption to avoid performance degradation. In K-best algorithm, to achieve a

high probability of finding the minimizer in (3.3) by searching for the local minima, the

value K is usually large for complicated (dense) constellations, 64-QAM for instance. When

the received signals are severely impaired, which results in many small PEDs, large K can

prevent dropping the ML path, and therefore the average computation of K-best algorithm

is usually higher.

Pruning less likely pathes is one effective approach for complexity reduction. A depth-

first decoder inherently performs tree-pruning by its radius constraint. We can employ the

similar technique to a breadth-first decoder by setting an upper bound at each layer for the

PEDs. Although the computation is no longer constant, the single-direction data flow of the

breadth-first nature still corresponds to manageable complexity. With K-best algorithm,

the computation complexity remains predictable.
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In the following, a K-best sphere decoder with radius constraints will be presented,

including the derivation of the radius for each layer. Based on the statistical model, an

early-pruned multi-K-best sphere decoder, where distinct K’s are assigned to each decoding

layer, is presented to improve the decoding efficiency. Since the radii equivalently exhibit

the data dynamic range of the PEDs, a coarse-granularity sorting strategy can be applied

for further complexity reduction.

3.2.1 Pruning Criterion

Let n = 2Nt be the dimension of s, we wish to find a set of radii C(n), C(n−1), . . . , C(1) for

a breadth-first decoder such that the i-th layer nodes are pruned when their corresponding

PEDs exceed C(i). The radius C(i) is derived according to the error tolerance ε(i) for

Pr(T
(i)
ML > C(i)) ≤ ε(i), (3.18)

where T
(i)
ML = T (s

(i)
ML) is the PED corresponds to the ML path defined in (3.7). Thus, when

the distribution of the ML path is known, the radii C(i) can be derived under the error

tolerance ε(i) for i = 1, 2, . . . , n.

Corollary 3.1. If v is an i.i.d. Gaussian vector of dimension n and vi ∼ N (0, σ2) for

i = 1, 2, . . . , n, Q is an n×m unitary matrix, then r = QTv is also an i.i.d. Gaussian vector

with ri ∼ N (0, σ2) for i = 1, 2, . . . , n.

Corollary 3.2. If v is an i.i.d. Gaussian vector of dimension d and vi ∼ N (0, σ2) for

i = 1, 2, . . . , d, then r = vTv is chi-square distributed with degree d. The probability

density function (pdf), denoted by f (d)(r, σ), and the cumulated distribution function (cdf),

29



denoted by F (d)(r, σ), of r are

f (d)(r, σ) =















1
2d/2Γ(d/2)

(

r
σ2

)d/2−1

e−r/σ2
, for r > 0

0, for r ≤ 0

(3.19)

F (d)(r, σ) =
γ
(

d
2
, r

2σ2

)

Γ(d/2)
. (3.20)

where Γ(x) is the gamma function

Γ(x) =

∫ ∞

0

tx−1e−xdt (3.21)

and γ(a, x) is the lower incomplete Gamma function

γ(a, x) =

∫ x

0

ta−1e−tdt. (3.22)

From the Gaussian channel model, Corollary 3.1 and Corollary 3.2, we know that

‖q − Rs‖2 is chi-square distributed with degree n, and the PED of the ML path s
(i)
ML is a

chi-square random variable of degree d = n − i + 1. When σ is given, the minimum C(i) is

the inverse of F (d)(ε(i)). That is, it can be derived by finding the C(i) which satisfies

F (d)
(

C(i),
σv

2

)

> 1 − ε(i), (3.23)

for i = 1, 2, . . . , n.

The radius C(i) obtained from (3.23) for the constraint (3.18) requires the knowledge of

the noise variance σ2. However, it is difficult to acquire this value during decoding, and

real-time comput the radii C(1), C(2), . . . , C(n) results in huge computation overheads. Thus,
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not only the error tolerance ε(i)’s, but σ2 should be treated as a design parameter as well.

For example, σ2 can be selected according to SNRmin, defined as the SNR value where ML

detection achieves some specific error performance. When the received SNR is lower than

SNRmin, the transmit information is usually severely impaired and irrecoverable. Thus,

only the SNR above SNRmin should be concerned. Consequently, σ2
max, the noise variance

corresponding to SNRmin, is regarded as an upper bound of the σ2 in (3.23). As Figure 3.1

shows, the value C(i) increases with σ2 for some fixed ε. Replacing σ2 with σ2
max, we can

determine the radii at design time and remains constants during decoding. Equivalently,

these radii provide looser radius constraints without effect on the error performance, but

could lead to computation complexity increase since more paths are retained.
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Figure 3.1: CDF of chi-square distribution of different degree of freedom and various σ2.

We have presented the approach to obtain the radii, ie. the upper bounds, of the PEDs
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at each decoding layer. The derivation is based on the Gaussian noise assumption and the

path metric is computed by Euclidean distances. When the path metric is defined differently,

the same constraint (3.18) still applies as long as the cdf of the path metric is given.

Replacing the path metric T (s(i)) defined in (3.7) by taking the absolute value is one

common simplification in hardware implementation. That is, (3.7) is simplified to

T (s(i)) =
n
∑

i′=i

∣

∣

∣

∣

qi′ −
n
∑

j=i′

Ri′,js
(i′)
j

∣

∣

∣

∣

=
n
∑

i′=i+1

∣

∣

∣

∣

qi′ −
2Nt
∑

j=i′

Ri′,js
(i′)
j

∣

∣

∣

∣

+

∣

∣

∣

∣

qi −
n
∑

j=i

Ri,js
(i)
j

∣

∣

∣

∣

(3.24)

= T (s(i+1)) + e(s(i)).

In the following, derivation of the radii for the path metric (3.24) will be described by an

example.

Corollary 3.3. Given a random variable X with pdf gX(x), the pdf of |X| can be derived

by

g|x|(x) =











gX(x) + gX(−x), for x ≥ 0;

0, for x < 0.
(3.25)

Corollary 3.4. For i.i.d. randmon variables v1, v2, . . . , vd with pdf fi, the pdf of
∑d

i=1 vi,

denoted by fs , can be derived by

fs = f1 ⊗ f2 ⊗ · · · ⊗ fd, (3.26)

where the operator ⊗ represents linear convolution.
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From Corollary3.3, the pdf of |vi| = |qi −
∑n

j=i Ri,js
(i)
j |, denoted by ĝ(v), should be

ĝ(v) =











2√
2πσ

exp(−v2

2σ2 ), for v > 0,

0, for v ≤ 0;
(3.27)

for vi = qi −
∑n

j=i Ri,js
(i)
j is Gaussian distributed. Let f (1)(v) be the pdf of T (s

(n)
ML).

Since T (s
(n)
ML) = |qn − Rn,ns

(n)
ML| = |vn|, f (1)(v) equals to ĝ(v) defined in (3.27). Follow-

ing Corollary3.4, f (d)(v), the pdf of T (s
(i)
ML) = |vi| + T (s

(i+1)
ML ), can be derived recursively

from

f (d)(v) = f (d−1)(v) ⊗ f (1)(v) (3.28)

for d = n − i + 1.

The aforementioned approach to derive the radii can be applied to other variations of

path metric as long as the recursive form (3.7) or (3.24) holds. Similarly, the radii can be

determined at design time and independent of the channel.

3.2.2 Multi-K-Best Algorithm with Radius Constraint

The radius constraints introduced in Section 3.2.1 allow the decoder to prune less likely

paths before it proceeds the computation of the next layer. Similar to the depth-first de-

coders, the computation also varies. To maintain predictable, manageable complexity, and

decoding speed, a maximum number of the retained paths at each layer should be set.

The combination of the radius constraints and K-best algorithm brings on an adequate

approach benefiting from both depth-first and breadth-first search strategies. At each layer,

the decoder first keeps all paths satisfying the radius constraint. Only the K paths corre-

sponding to the K smallest PEDs are preserved if the number of the retained paths exceeds
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K. Similar to K-best algorithm, a sorter is required to distinguish the K best paths, and the

sorting operation dominates the decoding computation complexity. If a constant K value is

chosen for each decoding layer, the suitable K value can be easily obtained by simulation. If

each decoding layer corresponds to a distinct K value, the resulted multi-K-best algorithm

facilitates computationally efficient and high-throughput decoder designs. However, empir-

ically deriving the multiple K values from a vast combinations is very time-consuming and

almost infeasible.

Instead of determining the multiple K’s by simulation, we analyze the expected number

of paths retained by the radius constraint of each layer, and the multiple K values can be

set according to the expected retained path number.

Let s
(i)
a be the ambiguous path of the i-th layer that also satisfies the radius constraints:

T (s(n)
a ) ≤ C(n)

T (s(n−1)
a ) ≤ C(n−1)

...

T (s(i)
a ) ≤ C(i). (3.29)

Let ξ(i) = T (s
(i)
a ) − T (s

(i+1)
a ) denote the path increment of sa from layer-(i + 1) to layer-i,

and the following increment constraints must hold:

ξ(n) = T (s(n)
a ) ≤ C(n)

ξ(n−1) = T (s(n−1)
a ) − T (s(n)

a ) ≤ C(n−1) − α(n−1)C(n)

· · ·

ξ(i) = T (s(i+1)
a ) − T (s(i)

a ) ≤ C(i) − α(i)C(i+1) (3.30)
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for 0 < α(i) ≤ 1. Furthermore, s
(i)
a is ‖∆(i)‖2 away from the ML path s

(i)
ML. That is,

s(i)
a = s

(i)
ML − ∆(i), (3.31)

where ∆(i) = [∆
(i)
i , ∆

(i)
i−1, . . . , ∆

(i)
n ]T and ∆j ∈ {±δ,±2δ, . . . ,±(M − 1)δ} for M-PAM signal

mapping. Thus, the path matric of s
(i)
a is

T (s(i)
a ) = ‖q(i) − R(i)s(i)

a ‖2

= ‖q(i) − R(i)s
(i)
ML + R(i)∆(i)‖2

= ‖v(i) + R(i)∆(i)‖2, (3.32)

where R(i) represents the last i-th rows of the channel matrix R. Note that

ξ(i) =

(

vi +
n
∑

j=i

Ri,j∆
(i)
j

)2

= η2
i (3.33)

which is also chi-square distributed with degree of freedom 1 and

ηi ∼ N

(

0,
1

2

(

σ2 +

n
∑

j=i

(∆
(i)
j )2

)

)

(3.34)

is a zero-mean Gaussian variable of variance 1
2

(

σ2 +
∑n

j=i(∆
(i)
j )2

)

= 1
2
(σ2 + ‖∆(i)‖2). Let

us define λ(i) , 1
δ2

∑n
j=i(∆

(i)
j )2 which can be conducted to the recursive form

λ(i) = λ(i+1) +
(∆

(i)
i )2

δ2
. (3.35)

Let FΞ(ξ(i)|λ(i)) be the cdf of ξ(i) for λ(i) is given. Figure 3.2 is an illustrative example of
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FΞ(C(i) − α(i)C(i+1)|λ(i)) for i = 7 of a 4 × 4 64-QAM system at SNR = 25dB, where the

noise variance σ2 is 0.0032 and the constellation spacing δ is 0.0119. Note that FΞ(C(i) −

α(i)C(i+1)|λ(i)) decreases as λ(i) increases. In other wards, a farther s
(i)
a from s

(i)
ML has lower

probability satisfying the radius constraints.
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Figure 3.2: CDF of the χ2 variable ξ(∆(i)) given various λ = 1
δ2

∑n
j=i(∆

(i)
j )2

Moreover, since all the elements in R are i.i.d. Gassian random variables, ηi and ηj are

also independent Gaussian random variables for all i 6= j. It follows that ξ(i) and ξ(j) are
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independent chi-square random variables. Therefore,

Pr
(

T (s(i)
a ) ≤ C(i), T (s(i+1)

a ) ≤ C(i+1), . . . , T (s(n)
a ) ≤ C(n) |λ(i)

)

= Pr
(

ξ(i) ≤ C(i) − α(i)C(i+1), ξ(i+1) ≤ C(i+1) − α(i)C(i+2), . . . , ξ(n) ≤ C(n) | λ(i)
)

=

n
∏

j=i

FΞ

(

C(j) − α(j)C(j+1) |λ(i)
)

. (3.36)

Furthermore, the independency among the transmitted symbols s1, s2, . . . , sn leads to

Pr
(

∆(i) = a
)

=
n
∏

j=i

Pr
(

∆
(i)
j = a2

j

)

(3.37)

for aj ∈ {0,±δ,±2δ, . . . ,±(M − 1)δ}. Besides, each ∆(i) corresponds to a dinstint s(i) over

all Mn−i+1 possible points in the (n−i+1)-dimensional sphere. With equal prior probability

assumption, we can have Pr
(

∆(i) = a
)

= 1
Mn−i+1 and then

Pr
(

λ(i) = λ
)

=







λ

m2
i , m

2
i+1, . . . , m

2
n






Pr
(

∆(i) = a
)

=







λ

m2
i , m

2
i+1, . . . , m

2
n







1

Mn−i+1
, (3.38)

where the integers

mj =
aj

δ
(3.39)

for j = 1, 2, . . . , n and







λ

m2
i , m

2
i+1, . . . , m

2
n






denotes the number of distinct {m2

i , m
2
i+1, . . . , m

2
n}

resulting in λ =
∑n

j=i m
2
j ,

Subsequently, let K(i) be the maximum number of retained paths of the i-th layer, and
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N̄ (i) be the average number of s(i) satisfying the increment constraints in (3.30). By defini-

tion, N̄ (i) can be expressed by

N̄ (i) = Mn−i+1Pr
(

T (s(i)) ≤ C(i), T (s(i+1)) ≤ C(i+1), . . . , T (s(n)) ≤ C(n)
)

= Mn−i+1
∑

λ

Pr
(

λ(i) = λ
)

×Pr
(

T (s(i)) ≤ C(i), T (s(i+1)) ≤ C(i+1), . . . , T (s(n)) ≤ C(n)|λ(i) = λ
)

. (3.40)

From(3.36)and (3.38), (3.40) becomes

N̄ (i) =
∑

m2
i ,m2

i+1,...,m2
n







λ

m2
i , m

2
i+1, . . . , m

2
n







n
∏

j=i

FΞ

(

C(j) − α(j)C(j+1)

∣

∣

∣

∣

λ(j) =

n
∑

j′=j

m2
j′

)

=

M−1
∑

mi=0

M−1
∑

mi+1=0

· · ·
M−1
∑

mn=0

n
∏

j=i

FΞ

(

C(j) − α(j)C(j+1)

∣

∣

∣

∣

λ(j) =

n
∑

j′=j

m2
j′

)

,

(3.41)

and K(i) will be determined as a function of N̄ (i).

K(i) =
⌈

βN̄ (i)
⌉

(3.42)

could be one simpliest form; the function dxe returns the smallest integer that is greater

than or equal to x.

The goal of employing multi-K-best algorithm is to reduced the complexity of the K-

best algorithm while remaining similar error performance. Thus we can confine β so that

max{K(i)|i = 1, 2, . . . , n} ≤ K. Moreover, the number of preserved paths decreases with i

because there are less paths that meets all the radius constraints from layer n to layer i. An
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intuitive guess of the K(i)’s could be

K(i) < K, when i is small;

K(i) ≈ K, when i is close to n.

The K(i)’s can be determined by

K(i) =











K, if i ≥ n − nK

⌈

βN̄ (i)
⌉

, if i < n − nK .
(3.43)

for β > 0, 0 ≤ nK ≤ n and K is parameter for the conventional K-best algorithm. Note

that β is a tradeoff between complexity and performance. Now the problem of finding a set

of suitable n-dimensional K values is reduced to searching for a suitable 1-dimensional β

factor, which can be easily derived empirically.

Note that N̄ (i) derived in (3.41) is dependent of α(i), α(i+1), . . . , α(n), which are difficult

to be obtained. Thus we approximate all the α(i) by a constant α for i = 1, 2, . . . , n. It can

be observed in Figure 3.2 that the cdf FΞ(C(i) −αC(i+1)|λ) is a non-increasing function of α.

Larger α equivalently provides a smaller estimate of N̄ (i); smaller α results to over-estimate

of N̄ (i), and 0 < α ≤ 1. Fig.3.3 illustrates the expected retained path N̄ (i) for n = 8 when

approximated by a constant α. It is observed that α is comparatively less related to N̄ (i)

for low SNR scenarios, whereas for higher SNR environments N̄ (i) explodes when α is too

small; consequently, little information can be delivered. According to the results in Fig.3.3,

a reasonable guess of α for the SNR above 20dB can be 0.9 < α ≤ 1.0.

Approximated by α = 1.0, the expected number of retained paths N̄ (i) for n = 8 is

shown in Fig.3.4. It is perceived that N̄ (i) increases exponentially with the dimension, which
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Figure 3.3: The expected retained path N̄ (i) for n = 8 and 0 < α(i) ≤ 1.

is n − i + 1, of each decoding layer for low SNR values. For higher SNR, N̄ (i) approaches

to some constant values, inferring that the early-pruning technique can provide significant

reduction in computation complexity when received signal strength is high.

For other path metric definitions, the same analysis techniques can be applied. By

modifying the distributions in (3.33) and (3.34), K(i)’s and N̄ (i) can be derived.
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Figure 3.4: The expected number of retained paths N̄ (i) for n = 8 and α(i) = 1.0.

3.2.3 Coarse-Granularity Sorting

Whether K-best algorithm or the aforesaid multi-K-best algorithm, sorting operation always

dominates the computation complexity. In fact, at each layer the decoder only requires the

K best values, which means the order among the K best values is unnecessary. Therefore, if

we can replace the strictly sorting by other approximately sorting schemes, the computation

complexity can be greatly reduced.

Since the radius constraint equivalently reveals the range of the retained paths, a coarse-
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granularity sorting strategy can be applied. First, the range of all the i-th layer path metrics,

which is (0, C(i)] , is partitioned into L regions, and an index l′ is assigned to the path metric

T (s(i)) by

l′ =











l, if l−1
L

C(i) < T (s(i)) ≤ l
L
C(i);

L + 1, if T (s
(i)
k ) > C(i).

(3.44)

Let ki denotes the number of paths with index l′ = l, the decoder first finds the minimum lmax

such that k1 + k2 + · · · klmax > K and k1 + k2 + · · ·+ klmax−1 < K. The k1 + k2 + · · · klmax−1

paths in region (0, lmax−1
L

C(i)] are then selected and kept. Finally, the decoder randomly

chooses K − k1 − k2 − · · · − klmax−1 from region ( lmax−1
L

C(i), lmax

L
C(i)]. As a result, sorting

can be approximated by a few comparators. Note that when there is no path satisfying

the radius constraint, i.e, all the l′ = L + 1, the decoder has to search for the path with

minimum path metric. In this case, the number of retained path is 1. Figure 3.5 illustrates

a K = 6 example, and the balls in the l-th bucket denote the paths path metrics within

( lmax−1
L

C(i), lmax

L
C(i)].

K=6: Randomly choose 3 paths at group 2

Figure 3.5: Coarse-granularity sorting for K = 6.
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3.3 Complexity Analysis

The computation complexity of sphere decoders can be measured by the number of floating

point operations, including multiplication, addition, and subtraction. For depth-first search,

complexity is often evaluated by the term expected complexity exponent [61], which is defined

as

EC ,
log Q(n, σ2, C)

log n
, (3.45)

where σ2 is the noise variance and Q(n, σ2, C) represents the expected number of floating

point operations corresponding to an n-dimensional hypersphere with radius C. By defini-

tion, Q(n, σ2, C) can be expressed by

Q(n, σ2, C) = (expected number of nodes in the sphere)

×(number of floating point operations per node). (3.46)

In [61], Ec ≈ n
log n

for large σ2; when σ2 < 1, Ec is almost constant for a wide range of n,

leading to the polynomial complexity that is expected.

The expected complexity exponent for breadth-first decoders can be defined in the same

manner. For conventional K-best algorithm that possesses constant computation, the ex-

pected complexity exponent is independent of σ2 and

ECK
≈

log (K
∑n

i=1 2(n − i + M))

log n
, (3.47)

which approaches to log K
log n

+ 2 as n � M . Similarly, Ec of multi-K-best algorithm is

ECMK
≈

log
(
∑n

i=1 K(i)2(n − i + M)
)

log n
. (3.48)
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Applying the radius constraints, the expected complexity expopnent of the aforemen-

tioned early-pruned breadth-first sphere decoding algorithm will be upper-bounded by (3.47)

or (3.48). Similar to the depth-first searching strategy, the complexity depends on the noise

variance σ2.

3.3.1 Expected Complexity Exponent

By definition, the Q(n, σ2, C) in (3.46) of the proposed early-pruned breadth-first sphere

decoder will be modified to

Q(n, σ2, ε) =

n
∑

i=1

N̄ (i)(ε(i))2(n − i + M), (3.49)

where ε = [ε(1), ε(2), . . . , ε(n)]T determines the radii {C(1), C(2), . . . , C(n)} and N̄ (i)(ε(i)) is the

resulted expected number of nodes in the (n− i + 1)-dimensional sphere of radius C(i). The

expected complexity excponent, denoted by ECEP
, is

ECEP
≈

log
(
∑n

i=1 N̄ (i)(ε(i), α)2(n − i + M)
)

log n
. (3.50)

Fig.3.6 illustrates the EC versus the sphere of degree n for the 8-PAM signal mapping

where the radii C(1), C(2), . . . , C(8) are determined by ε(1) = ε(2) = · · · = ε(8) = 0.0001 and

α(1) = α(2) = · · · = α(8) = 1.0. Besides, the EC of the conventional 64-best algorithm is

illustrated for reference. It is observed that the expected complexity exponent increases

with the degree n when SNR is small. For larger SNR condition (SNR = 30dB in this

example), EC tends to be a constant. Moreover, the Ec of 64-best algorithm approaches

to some constant as well, indicating that the complexity of the two algorithms are both

polynomial with n in high SNR scenarios. Besides, the smaller Ec shows the early-pruning
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scheme results in lower average computation complexity as compared to 64-best algorithm.
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Figure 3.6: Expected complexity exponents (Ec) of early-pruned breadth-first sphere de-
coders.

3.3.2 Expected Computation Complexity

The concept of the expected complexity exponent was first introduced for depth-first sphere

decoders, and only the complexity of addition and multiplication are evalutated. In fact,

sorting complexity, which dominates the computation of breadth-first decoders, should be

considered as well.

Comparison is the basic operation for sorting, among several sorting algorithms, the

number of comparisons executed by an N -input sorter ranges from N log2 N to N2. In the

best case, it takes about
n
∑

i=1

MK(i) log2(MK(i)) (3.51)
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comparisons to decode one n-dimensional M-PAM mapped signal by the multi-K-best algo-

rithm. Replaced by the coarse-granularity sorting introduced in previous section, the sorter

requires about K(i)M × L comparisons at the i-th layer, and the comparision number can

be reduced to K(i)M log2 L if binary-search is employed.

For strictly sorters, the sorting complexity of the early-pruned multi-K-best algorithm

is about
n−1
∑

i=1

(

PK(i)N̄ (i)(ε(i))M + (1 − PK(i))K(i)M log2(K
(i)M)

)

, (3.52)

where PK(i) is the probabililty that the number of paths satisfying the radius constraint at

layer-i is less than K(i) and no sorting is required. For coarse-granularity sorting approach,

the sorting complexity will be reduced to a linear function of N̄ (i)(ε(i)), which is

M

(

n−1
∑

i=1

N̄ (i+1)(ε(i+1)) + 1

)

+ L

n
∑

i=1

N̄ (i)(ε(i)) (3.53)

or

M

(

n−1
∑

i=1

N̄ (i+1)(ε(i+1)) + 1

)

+ (log2 L)
n
∑

i=1

N̄ (i)(ε(i)). (3.54)

Note that the first term in (3.53) and (3.54) is contributed by checking the radius constraints,

and the second term is resulted from the coarse-granularity sorting.

Furthermore, due to the regular computation of the path metric and the breadth-first

search nature, all the operations performed by the early-pruned sphere decoder can be easily

predicted by N̄ (i)(ε(i)), providing more explicit complexity analysis. That is, the number of

additions and multiplications performed by early-pruned sphere decoder can be estimated

by
n
∑

i=1

N̄ (i)(ε(i))(n − i + M). (3.55)
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3.4 Simulation Results

A 4×4 MIMO system was simulated. Random binary data with equal prior probability was

mapped by 64-QAM signaling and transmitted in an uncorrelated flat fading plus AWGN

channel. The results of error performance and average computation complexity are given in

the following.

3.4.1 Error Performance

Figure 3.7 and Figure 3.8 illustrate the symbol error rate and bit error rate of several

detection schemes. The ML detection is realized by Schnorr-Euchnorr sphere decoding

algorithm. All the C(i) are derived with ε(i) = 0.0001 at minimum working SNR as 25

dB.

First, we can observe obvious diversity gain provided by the ML detection as compared

to the zero-forcing approach. Moreover, degradation occurs when the K value of the K-best

algorithm is small. It is perceived that K should be greater than 32 for this system, and the

error performance of the 64-best algorithm is nearly the same as the ML detection. Thus,

K = 64 is chosen for the early-pruned K-best algorithm, which is represented by EP-64-best

henceforth. Accordingly, with α = 1.0, nK = 3, and β = 4.5; the resulted K(i)’s for the

multi-K-best algorithm are derived as 21, 25, 29, 32, 34, 64, 64, 8, from the first to the

eighth layer. Furthermore, the sorting operation of both EP-64-best and EP-multi-K-best

are realized by the coarse-granularity sorting where the range (0, C(i)] is partitioned into 16

regions, i.e., L = 16.

As it is shown in these two figures, the degradation resulted from the three schemes

(early-pruned, multi-K, and coarse-granularity sort) is hardly recognized for SER and BER

above 10−5. In fact, it will be shown in subsequent that the computation complexity can be
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greatly reduced.
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Figure 3.7: Symbol error rate of 4 × 4 64-QAM MIMO system.

3.4.2 Computation Complexity

The computation complexity of a sphere decoder is determined by the number of nodes

visited during the tree-search process. Fig.3.9 illustrates the simulated probability of the

early-pruned sphere decoder combined with 64-best algorithm (EP-64-best). The probability

of k paths retained is truncated at k = 64, wherein the spikes shown in the four subfigures

of Fig.3.9. Moreover, for k > 20 in each of the four subfigures the probability becomes

small, which is about 10−3 or smaller. The low probability reveals that the average number

of retained paths should be very small. Moreover, since the radii are derived by setting
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Figure 3.8: Bit error rate of 4 × 4 64-QAM MIMO system.

the minimum working SNR as 25dB, the shapes of the simulated probabilities tend to be

sharper for SNR lower than 25dB for the radii becomes too strict. Similarly, the shapes of

the probabilities become wider for SNR higher than 25dB since the radii becomes a looser

restriction. Furthermore, we can observe that the probabilities corresponding to smaller

layer index i is sharper. This can be explained by regarding the early-pruning scheme as a

filter that filters out the less likely paths at each layer. The decoder proceeds from the 8-th

layer to the first layer. As a results, the number of paths satisfying all the radius constraints

becomes fewer when i is small. Thus it is perceived in the figures that the probability

corresponding to i = 1 has the sharpest shape for all SNR values.

Similar phenomenon can be observed in Figure 3.10, which is the simulated probability of
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the early-pruned sphere decoder combined multi-K best algorithm (EP-multi-K-best) where

the K(i) for multi-K algorithm is 21, 25, 29, 32, 34, 64, 64, 8, from the first to the eighth

layer.

Figure 3.11 and Figure 3.12 present the average number of retained paths at each layer

for EP-64-best and EP-multi-K-best for different SNR values. The solid lines in both figures

are the expected number of paths derived by (3.41) with SNR equals to 30dB, α = 1.0, and

ε(i) = 0.0001. First, let us compare the results corresponding to SNR = 30dB. The expected

values are derived based on the radius constraints only, and the simulated average values are

derived with additional 64-best or multi-K-best restrictions. Thus the values derived from

simulation should be smaller than the theoretically derived values. The two figures show that

(3.41) can give a tight upper bound in estimating the expected number of retained paths.

Furthermore, the simulation results also shows that setting α(i) = α = 1.0 can provide a

quite accurate approximation in computing (3.41).

Next, let us examine the results of SNR at 26dB and 30dB, which are higher than the

minimum working SNR (25dB). Since the radii become even looser constraints for the case

of 30dB, the number of retained paths is a little larger as compared to the results of SNR

at 26dB. Similarly, the radii are stricter restrictions for lower SNR values. As a result, it is

perceived in the two figures that the case of SNR at 16dB always has the smallest value for

the same layer index i.

Table 3.1 shows the average number of operations performed for SNR at 30dB. Conven-

tional 64-best algorithm is presented as a reference, to which the results of other schemes

are normalized. It is perceived that by early-pruning and coarse-granularity sorting, more

than 90% of the computations, which are comparisons, multiplications, and additions , can

be saved. Furthermore, it can be observed in Figure 3.7 and Figure 3.8 that the degradation
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Table 3.1: Computation complexity

Operation/Method
Conventional EP (Theoretical) EP-64-best EP-multi-K-best

64-best (L = 16) (L = 16) (L = 16)

Comparison
27648 545 425 401

(100%) (1.98%) (1.55%) (1.46%)

Multiplication
5440 545 415 390

(100%) (10.02%) (7.63%) (7.17%)

Addition
5440 545 415 390

(100%) (10.02%) (7.63%) (7.17%)

at this SNR value is nearly imperceptible. Besides, although complexity reduction shown in

Table 3.1 from 64-best algorithm to multi-K-best algorithm is not significant, the benefit will

become more obvious in hardware implementation. On average, the number of paths satis-

fying the radius constraints is far less than 64, therefore the average decoder throughputs of

EP-64-best and EP-multi-K-best are similar. However, when the path number exceeds K,

the decoder reaches its lowest decoding speed. Since multi-K best with K(i) smaller than

34 for i < 6 in this case, the corresponding worst decoding speed can be nearly doubled as

compared to EP-64-best algorithm.

3.5 Summary

In this chapter, early-pruning technique for breadth-first sphere decoders are proposed. A

set of distinct radii can be derived theoretically based on the error tolerance and the received

data statistics. Combining with K-best algorithm and the coarse-granularity sorting strat-

egy, computation complexity can be significantly reduced. Moreover, theoretical complexity
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analysis of is presented, 1 providing the design parameters for early-pruned multi-K-best al-

gorithm. The analysis also shows that the computation complexity of the proposed schemes

is polynomial with the sphere degree.

1Acknowledgements are dedicated to Chien Ching Lin for his considerable contribution on the analysis
for Fig.3.3, Fig.3.4, Figure 3.6, Figure 3.11, and Figure 3.12.
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(a) SNR = 16dB
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(b) SNR = 20dB
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(c) SNR = 26dB
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(d) SNR = 30dB

Figure 3.9: Simulated probability of retained paths for EP-64-best algorithm.
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Figure 3.10: Simulated probability of retained paths for EP-multi-K-best algorithm.
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Figure 3.11: Average number of path retained at each layer for EP-64-best algorithm.
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Figure 3.12: Average number of path retained at each layer for EP-multi-K-best algorithm.
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Chapter 4

Low Density Parity Check Code

Decoder

In 1963, Gallager [7] first introduced and proved low-density parity-check (LDPC) code

as a powerful error control scheme. Until the advances in VLSI technology, LDPC codes

were almost forgotten in the subsequent thirty years. Rediscovered by Mackay [8, 9] and

then shown to be capacity-approaching [10–13], interests in LDPC codes eventually rose in

the late 1990s. The simple arithmetic computations and implicit parallelism of the LDPC

decoding algorithms facilitate low-complexity and high-speed hardware implementations.

Now, many advanced communication systems such as digital television broadcasting (DVB-

S2 [15], DMB-TH [16]), wireless local area network (IEEE802.11n [17]), wireless metropolitan

network (IEEE802.16e [18]), and 10G BASE-T Eithernet (IEEE802.3an [19]), employ LDPC

codes as the forward error correction (FEC) technique.

Being linear block codes, an LDPC code can be characterized by a sparse parity check

matrix H which has only a small fraction of non-zero entries. The sparseness of H inherently

reduces the computations in decoding. Moreover, H has a graphical representation [14, 73]

where the rows and columns are associated to check nodes and bit nodes, respectively. The

number of non-zero entries of each row or column is related to the degree of the corresponding

check node or bit node. An LDPC code has the same check node degree and bit node degree

is called a regular LDPC code. Otherwise, it will be referred to an irregular LDPC code.

Message-passing algorithm, also named belief-propagation (BP) algorithm [7, 9, 14], de-
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codes LDPC codes by iteratively exchanging probabilistic information between check nodes

and bit nodes. Moreover, the messages passed around are often represented by log-likelihood

ratios (LLR) where the multiplications are transformed to additions, leading to reduction

in computation complexity. However, some nonlinear operations are introduced. In this

chapter, approximations for the nonlinear operation in decoding LDPC codes are discussed.

A dynamic normalization technique will be introduced. Besides, analysis based on order

statistics [31, 32] and density evolution [33] will be presented for deriving the normalization

factors.

4.1 LDPC Decoding Algorithm

An N -bit LDPC code can be defined by an M×N parity check matrix H = [hmn], where hmn

denotes the entry on the m-th row and n-th column of H for 1 ≤ m ≤ M and 1 ≤ n ≤ N .

Note that only binary LDPC codes will be considered hereafter. Same as every linear block

code, each valid LDPC codeword x = [x1, x2, . . . , xN ]T satisfies the parity check equations

of Hx = 0. Maximum likelihood (ML) decoding is equivalent to searching for the most

likely codeword subject to Hx = 0. However, exhaustive search is infeasible when codeword

length N is large. Belief-propagation (BP) algorithm [7, 14] is one common approach to

decode LDPC codes.

Tanner graph [73], which is also a bipartite graph [74], is one common graphical rep-

resentation for the parity checks of an LDPC code. Figure 4.1 is an illustrative example

of a 3 × 6 parity check matrix H and its corresponding Tanner graph. There are six

bit nodes, BN1, BN2, . . . , BN6, representing the 6-bit codeword x = [x1, x2, . . . x6]
T and

three check nodes, CN1, CN2, and CN3, representing the three parity check equations of

H . Moreover, M(n) = {m : hmn = 1} is the set that check nodes connected to BNn, and
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N(m) = {n : hmn = 1} denotes the bit nodes connected to CNm. The number of edges

connected to a node is referred to the degree of the node. By definition, a regular LDPC

code has equal check node degree and bit node degree, whereas the ones with different check

node and bit node degrees are referred to irregular LDPC codes.
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Figure 4.1: The parity check matrix and the corresponding Tanner graph

Let Sm be the event that the parity check equations of CNm are satisfied. In each decoding

iteration, the check node CNm updates its outgoing message by the probability P (Sm|xn′ =

b), for all n′ ∈ N(m) and b ∈ {0, 1}. After the bit node BNn receives all the messages from

the check nodes in M(n), the bit node updates its message according to the probability

P (xn = b|Sm′ , yn), where m′ ∈ M(n) and yn is the value received from the channel. Each

bit node can accumulate more reliable information from the others by iteratively exchanging

information between bit nodes and check nodes. The iterative decoding process proceeds

until a valid codeword is found or the decoding iteration exceeds a predefined number. If

the probabilistic messages are represented by log-likelihood ratios (LLR), Log-BP algorithm

can be described as follows.
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1. Initialization Under the assumption of equal priori, P (xn = 0) = P (xn = 1) = 0.5,

the decoder calculates pn, the intrinsic information of BNn, by

pn = log
P (yn|xn = 0)

P (yn|xn = 1)
.

The message from BNn to CNm, denoted by qnm, is initialized by qnm = pn, while the

message from CNm to BNn, denoted by rmn, is set to zero.

2. Iterative Decoding

a) Bit Node Updating

BNn updates the message to CNm by

qnm = pn +
∑

m′∈{M(n)\m}
rm′n, (4.1)

where the set {M(n)\m} contains all elements in M(n) excluding m. Meanwhile BNn

decodes the n-th bit x̂n by

x̂n =











0, if pn +
∑

m′∈M(n) rm′n ≥ 0;

1, otherwise.

The iterative process terminates when a valid codeword x̂ = [x̂1, x̂2, . . . , x̂N ]T is found,

i.e. Hx̂ = 0, otherwise the Check Node Updating continues. If the iteration number

exceeds a predefined value, the decoder claims a decoding failure and terminates the

decoding procedure.

b) Check Node Updating

CNm updates rmn, the message sent to BNn, according to the messages received from
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{N(m) \ n} in which n is excluded:

rmn =
∏

n′∈{N(m)\n}
sgn (qn′m) × Ψ−1

(

∑

n′∈{N(m)\n}
Ψ(|qn′m|)

)

, (4.2)

where

Ψ(a) = Ψ−1(a) = log
1 + e−a

1 − e−a
. (4.3)

As it is shown in (4.2), the nonlinear function Ψ(·) is the most complicated operation

in computing rmn. Figure 4.2 illustrates the magnitude part of (4.2), where q1, q2, . . . , qdc

represent the dc check node input magnitudes. The nonlinear function Ψ(·) not only increases

the implementation complexity, extensive quantization loss resulted from finite-precision

representing Ψ(·) limits the error performance of the decoder. Thus, some approximation

schemes had been proposed to facilitate circuit implementation.�������
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Figure 4.2: The architecture of the magnitude part of BP algorithm in (4.2)

Min-sum algorithm [20,21] discards the (dc − 2) smaller terms in the summation of (4.2)

and approximates the check node updating by

rmn ≈
∏

n′∈{N(m)\n}
sgn(qn′m) min

n′∈{N(m)\n}
{|qn′m|}. (4.4)
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However, there exists a performance gap between min-sum algorithm and Log-BP al-

gorithm since min-sum algorithm always over-estimates the check node output magnitude.

Several low-complexity approximations using a correction factor have then been introduced

to compensate the performance loss [22–30, 75]. The compensation modifies the min-sum

algorithm into the forms:

rmn ≈
∏

n′∈{N(m)\n}
sgn(qn′m) ×

(

min
n′∈{N(m)\n}

{|qn′m|} − a

)

(4.5)

or

rmn ≈
∏

n′∈{N(m)\n}
sgn(qn′m) ×

(

min
n′∈{N(m)\n}

{|qn′m|} × β

)

, (4.6)

where a and β are correction factors with a > 0 and 0 < β ≤ 1.

Recently, shuffled decoding [76,77] has been proposed for better decoding convergence in

the iterative process. The major difference between a standard BP decoder and a shuffled

BP decoder lies in the message updating. The up-to-date messages computed at current

iteration are used in shuffled BP algorithm, whereas the messages computed in previous

iteration is used for standard BP algorithms.

Not only decoding convergence, the storage requirement in implementation can also

be reduced by shuffled BP decoding. Two memory blocks are required for standard BP

decoding; one is for the messages computed in the previous iteration and the other is for

recording the messages computed at current iteration. But the two memory can be shared if

applying shuffled BP decoding algortihm. Furthermore, potential improved decoding speed

can be another benefit. Since the intra-iteration nd the inter-iteration no longer exist, about

twice of the decoder throughput can be achieved by directly replacing standard BP with

shuffled BP decoding.
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However, shuffled BP decoding can be applied only in partially parallel or serial decoding

scheduling. Otherwise, the messages are updated concurrently in a fully parallel decoder,

and shuffled BP decoding will reduce to standard BP decoding.

4.2 Min-Sum algorithm with Dynamic Compensation

If a constant correction term in (4.5) or (4.6) is applied, they can be derived either empiri-

cally (by simulation) or theoretically (by analyzing statistics of the message distributions).

For LDPC codes of long block length, density evolution [11, 23, 27–30, 33, 78] can be ap-

plied to determine the correction factor that is optimized for the channel parameters, noise

variance for example. Except density evolution, averaging the difference between the min-

sum approximation and the BP decoding is an alternatively intuitive approach. In [25],

the normalization factors is determined by averaging the ratio of messages in min-sum and

Log-BP algorithms; in [26], the correction factor is chosen such that the mean square error

of approximation is minimized.

The derivations above only consider constant correction factors, however, constant factors

are not always to provide sufficient performance improvement. Although [30] suggests two-

dimensional normalization to reduce the performance gap between the constant normalized

min-sum and Log-BP algorithms, each of the bit node and check node output messages are

normalized by a constant still.

In fact, the normalization factor can be expressed as a function of the check node inputs,

and more accurate approximation can be expected. In the following, we will present an anal-

ysis based on order statistics and density evolution for deriving the dynamic normalization

factors.
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4.2.1 Dynamic Normalization Factors

It can be easily verified that the magnitude part in (4.6) is equivalent to

|rmn| =











m1β1, if |qnm| 6= m1 ;

m2β2, otherwise.
(4.7)

m1 and m2 are the minimum and second minimum among the check node input massage

magnitudes. Note that each of m1 and m2 has a distinct normalization factor, β1 and

β2. Let q1, q2, . . . , qdc represent the dc magnitudes of a degree-dc check node, Figure 4.3

illustrates computation of (4.7). Subsequently, let mj be the j-th order statistic [31,32], i.e.,

m1 ≤ m2 ≤ · · · ≤ mdc . If the normalized min-sum algorithm (4.7) accurately represents

Log-BP algorithm in (4.2), we must have

Ψ−1

(

∑

n′∈{N(m)\n}
Ψ(|qn′m|)

)

≈ Ψ−1

(

dc
∑

i=1

Ψ(mi)

)

= m1β1

(4.8)

if |qnm| 6= m1, and

Ψ−1

(

∑

n′∈{N(m)\n}
Ψ(|qn′m|)

)

= Ψ−1

(

dc
∑

i=2

Ψ(mi)

)

= m2β2

(4.9)
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for |qnm| = m1. The normalization factors are defined by

β1 ,
Ψ−1(

∑dc

j=1 Ψ(mj))

m1
; (4.10)

β2 ,
Ψ−1(

∑dc

j=2 Ψ(mj))

m2
. (4.11)

That is, β1 and β2 are distinct functions of the check node inputs. Thus, the data-dependent

normalization factors can provide a more accurate approximation. As Figure 4.4 shows, the

function Ψ(m) decays rapidly with m. As a result, for all Ψ(mK+1), Ψ(mK+2), . . . , Ψ(mdc)

that are relatively smaller than Ψ(mK), dc-dimensional functions (4.10) and (4.11) can be

simplified to K-dimensional functions as

β1(m1, m2, . . . , mK) ≈
Ψ−1(

∑K
j=1 Ψ(mj) +

∑dc

j=K+1 E[Ψ(mj)|mK ]

m1
; (4.12)

β2(m2, m3, . . . , mK+1) ≈
Ψ−1(

∑K+1
j=2 Ψ(mj) +

∑dc

j=K+2 E[Ψ(mj)|mK+1]

m2
. (4.13)

All the Ψ(mj)’s are approximated by the conditional expected values E[Ψ(mj)|mK ] for

j = K, K + 1, . . . , dc.

For LDPC codes of relatively large codeword length, q1, q2, . . . , qdc can be regarded i.i.d.

with f(m) and F (m) as the pdf and cdf. Then fj(m), the pdf of j-th order statistic mj ,

is [31, 32]

fj(m) =
dc!

(j − 1)!(dc − j)!
[F (m)]j−1 × [1 − F (m)]dc−jf(m), (4.14)

for all j = 1, 2, . . . , dc. Consequently, E[Ψ(mj)|mK ] and E[Ψ(mj)|mK+1] in (4.12) and (4.13)
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can be computed by

E[Ψ(mj)|mK ] = E[Ψ(mj)|mj ≥ mK ]

=

∫∞
mK

Ψ(m)fj(m)dm
∫∞

mK
fj(m)dm

,
(4.15)

and

E[Ψ(mj)|mK+1] = E[Ψ(mj)|mj ≥ mK+1]

=

∫∞
mK+1

Ψ(m)fj(m)dm
∫∞

mK+1
fj(m)dm

.
(4.16)
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Figure 4.3: Realizing normalized min-sum algorithm of (4.6) by sorting.

4.2.2 Message Distribution under Iterative Decoding

The K-dimensional normalization factors defined in (4.12) and (4.13) can be computed by

(4.15) and (4.16) when the degree and the input distributions are known. However, the check

node input distributions vary with the decoding iteration under message-passing algorithm.

Moreover, the distribution of first iteration is also determined according to the channel
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Figure 4.4: The Ψ(m) function and Ψ(m) decays rapidly as m increases.

statistics.

Density evolution is a technique to trace the message distribution under iterative decoding

and can be applied here for analyzing the dynamic normalization factors. Because the sign

and the magnitude of a check node can be updated separately, it is more convenient to

represent the pdfs of the messages qn′m and rm′n in (4.1) and (4.2) by the sign-magnitude

representation. That is, the message pdfs fQ(q) and fR(r) corresponding to a bit node and a

check node will be represented by two-dimensional quantities [SQ, f|Q| (q)] and [SR, f|R| (r)],

where the notation q and r stand for all qn′m and rm′n. The terms SQ and SR represent the

probability of q and r having positive signs, which are calculated by

SQ =

∫ ∞

0

fQ(q)dq (4.17)
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and

SR =

∫ ∞

0

fR(r)dr. (4.18)

The second term f|Q|(q) and f|R|(r) are the pdfs of the magnitude of q and r, which can be

derived by

f|Q|(q) = fQ(q) + fQ(−q) (4.19)

and

f|R|(r) = fR(r) + fR(−r), (4.20)

for q ≥ 0 and r ≥ 0.

It has been proved that the performance of an LDPC decoder is independent of the

codeword as long as the symmetry conditions are satisfied [10]. Hence we assume an all-zero

codeword x = 0 is transmitted to reduce the computation complexity of the following anal-

ysis. Without loss of generality, randomly and equal prior data are transmitted in binary

phase-shift keying (BPSK) signaling. Beside, a zero vector is assumed to be transmitted

through an additive white Gaussian noise (AWGN) channel and corrupted by a noise vector

v, a sequence of independent Gaussian random variables with variance σ2 and zero mean.

Thus, the received signal y = 1 + v is also a sequence of independent Gaussian random

variables with unity-mean and variance σ2. Furthermore, the initial message of bit node

BNn becomes pn = log P (yn|xn=0)
P (yn|xn=1)

= 2
σ2 yn, a Gaussian random variable with mean and vari-

ance equal to 2
σ2 and 4

σ2 . With these assumptions, the distribution of messages and the

normalization factors of the l-th decoding iteration can be acquired recursively through the

following procedure.

Corollary 4.1. For two independent random variables Θ1 and Θ2 with pdfs fΘ1(θ)1, fΘ2(θ)2
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and sign-magnitude pdf pairs

Ῡ1 = [SΘ1 , f|Θ1| (θ1)]

Ῡ2 = [SΘ2 , f|Θ2| (θ2)],

the pdf of Φ = Θ1 + Θ2 is

fΦ(φ) = SΘ1SΘ2

∫

|θ1|+|θ2|=φ

f|Θ1|(θ1)f|Θ2|(θ2)dθ

+ (1 − SΘ1)SΘ2

∫

−|θ1|+|θ2|=φ

f|Θ1|(θ1)f|Θ2|(θ2)dθ

+ SΘ1(1 − SΘ2)

∫

|θ1|−|θ2|=φ

f|Θ1|(θ1)f|Θ2|(θ2)dθ,

for φ < 0; (4.21)

fΦ(φ) = (1 − SΘ1)(1 − SΘ2) ×

∫

−|θ1|−|θ2|=φ

f|Θ1|(θ1)f|Θ2|(θ2)dθ

+ (1 − SΘ1)SΘ2

∫

−|θ1|+|θ2|=φ

f|Θ1|(θ1)f|Θ2|(θ2)θ

+ SΘ1(1 − SΘ2)

∫

|θ1|−|θ2|=φ

f|Θ1|(θ1)f|Θ2|(θ2)θ,

for φ ≥ 0. (4.22)

Moreover, the sign-magnitude pdf pair

[SΦ, f|Φ| (Φ)], (4.23)

can be derived by

SΦ =

∫ ∞

0

fΦ(φ)dφ (4.24)
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and

f|Φ| (φ) = fΦ (φ) + fΦ (−φ) (4.25)

for φ ≥ 0.

Corollary 4.2. Let fΘi
(θi) and Ῡi = [SΘi

, f|Θi| (θi)], for i = 1, 2, . . . , N , be the pdf and

the equivalent sign-magnitude pdf pair of N independent random variables Θ1, Θ2, . . . , ΘN .

The sign-magnitude representation for the pdf of

Φ =
N
∑

i=1

Θi (4.26)

can be derived recursively by

A
(

· · ·A
(

A
(

Ῡ1, Ῡ2

)

, Ῡ3

)

, · · · , ῩN

)

, (4.27)

where

Ῡi = [SΘi
, f|Θi| (θi)] (4.28)

and A(·) represent the process of deriving the sign-magnitude pdf pair of θi + θj based on

Corollary4.1.

Corollary 4.3. Let Ῡi = [SΘi
, f|Θi| (θi)] denote the sign-magnitude representation of the pdf

of a random variable Θi, i.e fΘi
(θi). Then, the corresponding sign-magnitude representation

for the mixture of the pdfs
N
∑

i=1

ρifΘi
(θi)

will be
N
∑

i=1

ρiῩi =

[

N
∑

i=1

ρiSΘi
,

N
∑

i=1

ρif|Θi|(θi)

]

. (4.29)
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Corollary 4.4. M1, M2, . . . , MK are independent random variables and β is a K-dimensional

function of M1, M2, . . . , MK . Let the pdfs and cdfs of Mj , j = 1, 2, . . . , K, be denoted as

fj(m) and Fj(m). The pdf of the random variable R = M1β(M1, M2, . . . , MK) will be

derived in the following.

Let R = r, M1 = m1, M2 = m2, . . . , MK = mK be one set of the solutions to

R = M1β(M1, M2, . . . , MK). (4.30)

Thus, for m2, m3, . . . , mK are fixed, r is a function of m1 only. Then, for all m1 and the

given m2, m3, . . . , mK , the pdf of R can be expressed by the pdf of M1 as

fR(r|m2, m3, . . . , mK) =
∑

m1

fM1(m1)

∣

∣

∣

∣

dr

dm1

∣

∣

∣

∣

−1

=
∑

m1

fM1(m1)

×

∣

∣

∣

∣

β(m1, m2, . . . , mK) + m1β
′(m1, m2, . . . , mK)

∣

∣

∣

∣

−1

, (4.31)

where

β ′(m1, m2, . . . , mK) =
d

dm1
β(m1, m2, . . . , mK). (4.32)

Therefore, for all solutions to

r = m1β(m1, m2, m3, . . . , mK), (4.33)
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the pdf fR(r) will be

fR(r) =
∑

m1

∑

m2

· · ·
∑

mK

F ′
M2

(m2)F
′
M3

(m3) · · ·F
′
MK

(mK)

× fM1(m1)

∣

∣

∣

∣

β(m1, m2, . . . , mK) + m1β
′(m1, m2, . . . , mK)

∣

∣

∣

∣

−1

Based on Corollary 4.1 to Corollary 4.4 and density evolution technique, the pdfs of

the messages can be derived recursively as follows.

• Step 1 [Output distribution of a bit node]:

Let the random variable Qi represent the input message of a bit node of degree-i,

and [S
(l)
Qi

, f
(l)
|Qi|] be the equivalent sign-magnitude represented pdf pair. By (4.1), the

output distribution can be calculated from its input distribution [S
(l−1)
R , f

(l−1)
|R| ], which

is also the overall output distribution of the check nodes at the (l − 1)-th iteration.

Then, the sign-magnitude pdf pair of the output message can be derived according to

Corollary 4.2.

• Step 2 [Input distribution of the check nodes]:

The pdf of the check node’s input, denoted by f
(l)
Q , is a mixture of the pdfs f

(l)
Qi

derived

from Step 1, and

f
(l)
Q =

∑

i

ρif
(l)
Qi

(4.34)

where ρi denotes the probability that the check node’s inputs are sent from a bit

node of degree i, and
∑

i ρi = 1. According to Corollary 4.3, the sign-magnitude

representation of f
(l)
Q will be

[S
(l)
Q , f

(l)
|Q|] =

[

∑

i

ρiS
(l)
Qi

,
∑

i

ρif
(l)
|Qi|

]

. (4.35)
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• Step 3 [Output distribution of a check node]:

The output distribution of a check node will be calculated after its input distribution

[S
(l)
Q , f

(l)
|Q|] is derived at Step 2. For a check node of degree i, the sign of the check

node’s output is determined according to the sign operation in (4.2), and all the inputs

are assumed to be i.i.d. random variables, the probability S
(l)
Ri

that the output sign is

positive will be

S
(l)
Ri

=
∑

j:even

(

i

j

)

(1 − S
(l)
Q )j(S

(l)
Q )i−j

=
1

2
[(1 − S

(l)
Q + S

(l)
Q )i + (1 − S

(l)
Q − S

(l)
Q )i]

=
1

2
[1 + (1 − 2S

(l)
Q )i−1]. (4.36)

According to (4.7), the check node has only two output magnitudes

Ri1 = M1β1(M1, M2, . . . , MK) (4.37)

and

Ri2 = M2β2(M2, M3, . . . , MK+1). (4.38)

Then the pdfs of Ri1 and Ri2, denoted by fRi1
(r) and fRi2

(r), will be expressed by the
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pdfs f
(l)
M1

(m), f
(l)
M2

(m); and the cdfs F
(l)
Mj

(m) for j = 2, 3, . . . , K + 1. That is,

f
(l)
Ri1

(r) =

∑

x1,x2,...,xK

F ′
M2

(x2)F
′
M3

(x3) · · ·F
′
MK

(xK)f
(l)
M1

(x1)

×

∣

∣

∣

∣

β
(l)
1 (x1, x2, . . . , xK) + x1

d

dx1
β

(l)
1 (x1, x2, . . . , xK)

∣

∣

∣

∣

−1

(4.39)

and

F ′
Mj

(xj) =
d

dm
F

(l)
Mj

(m)

∣

∣

∣

∣

m=xj

, j = 2, 3, . . . , K (4.40)

for all x1, x2, . . . , xK such that

x1β1(x1, x2, . . . , xK) = r;

and

f
(l)
Ri2

(r) =
∑

x2,x3,...,xK+1

F ′
M3

(x3)F
′
M4

(x4) · · ·

× F ′
MK+1

(xK+1)f
(l)
M2

(x2)

×

∣

∣

∣

∣

β
(l)
2 (x2, . . . , xK+1) + x2

d

dx2
β

(l)
2 (x2, . . . , xK+1)

∣

∣

∣

∣

−1

(4.41)

F ′
Mj

(xj) =
d

dm
F

(l)
Mj

(m)

∣

∣

∣

∣

m=xj

, j = 3, 4, . . . , K + 1 (4.42)
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for all x2, x3, . . . , xK+1 such that

x2β2(x2, x3, . . . , xK+1) = r. (4.43)

Note that f
(l)
Ri1

(r) and f
(l)
Ri2

(r) can be derived by Corollary 4.4. Furthermore, we can

see from (4.7) that only one of the output messages will have magnitude Ri2, and the

others will have magnitude Ri1. The check node output magnitude |Ri| will have the

distribution

f
(l)
|Ri|(r) =

i − 1

i
f

(l)
Ri1

(r) +
1

i
f

(l)
Ri2

(r). (4.44)

• Step 4 [Input distribution of the bit nodes]:

The input distribution of a bit node can be calculated by a mixture of the pdfs for

check nodes of different degrees. That is f
(l)
R =

∑

i λif
(l)
Ri

where f
(l)
Ri

is the output

distribution of a check node of degree i, λi denotes the probability of the messages

coming from a check node of degree i, and
∑

i λi = 1. Based on Appendix B, the input

distribution of a bit node can be calculated by [S
(l)
R , f

(l)
|R|] = [

∑

i λiS
(l)
Ri

,
∑

i λif
(l)
|Ri|], and

can be used for the analysis of the (l + 1)-th iteration.

Subsequently, repeat from Step 1 to Step 4, the distribution of the messages and the nor-

malization factors of each decoding iteration can be derived.

As the channel condition is given, the normalization factors of a specific LDPC code

can be analyzed by (4.12)-(4.16) and the 4-step procedure as mentioned above. Figure 4.5

and Figure 4.6 illustrate the normalization factors of the 64,800-bit, R = 3
5

LDPC code

specified in DVB-S2 [15] BPSK signaling under AWGN channel. Figure 4.5 illustrates β for

K = 1 at different decoding iteration and SNR while Figure 4.6 plots β for K = 2 at the

first iteration and SNR = 2.2 dB. Note that large m1 or m2 will require larger normalization
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factors. Furthermore, it can also be observed in Figure 4.5 that β increases with the iteration

number and the channel SNR.

4.3 Implementation of Dynamic Normalization

So far, we have presented a means to estimate the normalization factors for each decoding

iteration. Although the distributions are analyzed at design time, the K-dimensional forms

derived from (4.12) to (4.16) are still complicated. Considering the implementation com-

plexity, further simplification on the normalization factors are required. Applying different

normalization factors at different decoding iteration will be costly in hardware implementa-

tion. Averaging the normalization factors over several iteration is a straightforward approach

to realize the dynamic normalization, by which the normalization factors become iteration-

irrelative. When given the channel SNR, the normalization factors become functions of the

(K + 1) smallest check node input magnitudes m1, m2, . . . , mK+1

βm1 =

∑

l β
(l)
1 (m1, m2, . . . , mK)P (l)(m1, m2, . . . , mK)

∑

l P
(l)(m1, m2, . . . , mK)

(4.45)

and

βm2 =

∑

l β
(l)
2 (m2, m3, . . . , mK+1)P

(l)(m2, m3, . . . , mK+1)
∑

l P
(l)(m2, m3, . . . , mK+1)

(4.46)

where β
(l)
1 (m1, m2, . . . , mK) and β

(l)
2 (m2, m3, . . . , mK+1) are the normalization factors for the

l-th decoding iteration; P (l)(m1, m2, . . . , mK) and P (l)(m2, m3, . . . , mK+1) are the probabili-

ties of the check node having its (K+1) smallest input magnitudes equaling to m1, m2, . . . , mK+1

at the l-th decoding iteration. Figure 4.7 illustrates the averages of (4.45) and (4.46) cor-

responding to Figure 4.5. Based on (4.45) and (4.46), three normalization approaches with

different complexities will be presented.
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Figure 4.5: 1-D (K = 1) normalization factors β1(m1) and β2(m2) of the rate 3
5
, 64,800-bit

LDPC code specified in DVB-S2.
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Figure 4.6: 2-D (K = 2) normalization factors β1(m1, m2) and β2(m2, m3) at the first
decoding iteration for the rate 3

5
, 64,800-bit LDPC code specified in DVB-S2.
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Figure 4.7: The averaged normalization factors in Figure 4.5.
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4.3.1 Direct mapping approach

As Figure 4.8(a) shows, the normalization is implemented by two look-up tables (LUT) where

m1, m2, . . . , mK+1 are directly mapped onto m1βm1 and m2βm2 . This approach provides a

straightforward and highly precise approximation of the nonlinear function. However, there

exists overhead of storage requirement for the look-up tables.

4.3.2 Adaptive-β approach

This scheme confines the choice of βm1 and βm2 to NR candidates, which are denoted as

βm1j
and βm2j

for j = 1, 2, . . . , NR. Moreover, let Γ1 and Γ2 denote the range of the check

node input magnitudes, which are also partitioned into NR parts where Γ1 =
⋂NR

j=1 Γ1j

and Γ2 =
⋂NR

j=1 Γ2j . For all [m1, m2, . . . , mK ] ∈ Γ1j , and [m2, m3, . . . , mK+1] ∈ Γ2j , the

corresponding βm1 and βm2 will be assigned as β1j and β2j which minimize the average

scaling error

εs =

NR
∑

j=1

∣

∣

∣

∣

1 −

(

dc − 1

dc

βm1j

βm1

+
1

dc

βm2j

βm2

)∣

∣

∣

∣

, (4.47)

where x denotes the average of x. In fact, it will be shown by our simulation results that

K = 1 can provide a quite accurate approximation for (4.2). Let us define single-β approach

for K = 1, NR = 1 and double-β approach K = 1, NR = 2. For double-β approach, the

normalization factors βm1 and βm2 can be determined by

βm1 =











β11, if m1 ≤ T1,

β12, otherwise;
(4.48)

βm2 =











β21, if m2 ≤ T2,

β22, otherwise,
(4.49)
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where T1 and T2 can be derived by uniformly partitioning the input range and adjusting

empirically after the normalization factors are determined.

4.3.3 Annealing approach

Sometimes the min-sum algorithm could be compensated incorrectly due to the finite preci-

sion and limited candidates of normalization factors. On one hand, the normalization factors

in (4.45) and (4.46) are averaged to the iteration number. However, the normalization fac-

tors tend to increase with iteration, the check node outputs may be over-normalized and

the messages are equivalently scaled by a smaller factor. On the other hand, min-sum algo-

rithm always over-estimates the check node updating; the check node output is equivalent to

scaling by a factor that is greater than 1. To prevent error accumulating with decoding iter-

ation, normalization may not be necessarily required every iteration. That is, normalization

can be applied intermittently. For example, given an integer L and the iteration number l,

normalization is applied only when (l mod L) 6= L−1. It is equivalent to scaling the correct

check node outputs by another factor γs, γs ≥ 1, when (l mod L) = L− 1. For a check node

of degree dc, γs can be estimated to be

γs =
dc − 1

dc
×

1

NR

NR
∑

j=1

1.0

βm1j

+
1

dc
×

1

NR

NR
∑

j=1

1.0

βm2j

, (4.50)

where NR is the number of available β’s.

Besides, this annealing approach equivalently provides more choices of β in finite precision

representation; we can derive other normalization factors by properly defining r and L when

βm1 and βm2 are given. That is, the effect of scaling by γs should be balanced by the following

L − 1 iterations. Therefore the normalization factors at the L − 1 iterations are equivalent
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to β̃m1 and β̃m2 , where

β̃m1 = βm1 × γ
− 1

L−1
s (4.51)

and

β̃m2 = βm2 × γ
− 1

L−1
s , (4.52)

for all L > 1. When L = 1, γs = 1, then β̃m1 = βm1 and β̃m2 = βm2 . Accordingly, more

choices of β are available by varying L when β is restricted to finite number of candidates.

Thus, a finer resolution of β can be realized without increasing the message bit-widths. More-

over, the annealing normalization reduces computation and facilitates a more power-efficient

implementation. Figure 4.8(c) illustrates this annealing approach where the controller de-

cides if the dynamic normalization should be applied according to the current iteration

number l.

The following example demonstrates βm1 and βm2 derivation for different realization

approaches. To further reduce the implementation complexity, the values βm1 and βm2 are

restricted to
∑

i 2
i such that the normalization circuits can be implemented by few shifters

and adders.

Example: The R-3
5
, 64,800-bit LDPC code in DVB-S2 [15]:

1. Parameters for analyzing the normalization factors:

There are 64800 × 2
5

= 25920 check nodes. Only one of the check node has degree 10

and the rest 25919 check nodes have degree 11. Let λi denote the probability that a

messages coming from a check node of degree i. Then λ11 ≈ 1.0 and λ10 ≈ 0. Moreover,

the probability of a bit node connecting to i check nodes is represented by Bi =
NBi

N
,

where NBi
is the number of bit node of degree i, N is the total number of bit nodes,
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Figure 4.8: Architectures of different realization of dynamic normalization
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and
∑

i Bi = 1. Hence, the probability ρi defined in section III can be calculated by

ρi =
NiBi

N
∑

i iBi

=
iBi
∑

i iBi

.

In this example, N = 64800 and i = {12, 3, 2}. Therefore NB12 = 12, 960, NB3 =

25, 920, and NB2 = 25, 920, leading to the following results: B12 = 0.2, B3 = 0.4,

B2 = 0.4, and ρ12 = 0.545, ρ3 = 0.273, ρ2 = 0.182. Therefore, the normalization

factors can be derived for different iterations based on the analysis in section III, and

averaged to the decoding iteration according to (4.45) and (4.46). Moreover, we only

consider the case K = 1 in this example.

2. Determine the normalization factors:

The normalization factors will be restricted in the set {1
8
, 2

8
, . . . , 1} for simple im-

plementation. Besides, we only consider finite precision message representation that

represents the maximum magnitude by 4.0.

(a) Single-β approach: βm1 = 0.625 and βm2 = 0.875.

(b) Double-β approach: The input is uniformly divided into two regions. Thus the

threshold T1 = 2.0 and T2 = 2.0. Then the normalization factors that minimize

(4.47) will be β11 = 0.5, β12 = 0.75, β21 = 0.75, β22 = 1.0.

(c) Annealing, single-β approach: γs = 1.558 for L = 3. By (4.51) and (4.52), β̃m1 and

β̃m2 can then be determined to be 0.625×(1.558)−
1
2 = 0.501 and 0.75×(1.558)−

1
2 =

0.701, which will be modified into 0.5 and 0.75.

(d) Annealing, double-β approach: γs = 1.621 for L = 3. Similarly, β̃11, β̃12, β̃21, and

β̃22 will be 0.375, 0.625, 0.625, and 0.75 respectively.
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For the Annealing approach with single-β and L = 3, γs is 1.558 according to (4.50)

where βm1 = 0.625, βm2 = 0.875 and NR = 1. With (4.51) and (4.52), β̃m1 and β̃m2

can then be determined to be 0.625× (1.558)−
1
2 = 0.501 and 0.75× (1.558)−

1
2 = 0.701

and modified into 0.5 and 0.75, the closest candidates in Ω. Furthermore, the γs of

the Annealing double-β approach is 1.621 according to (4.50), and the normalization

factors, β̃11, β̃12, β̃21, and β̃22 will be 0.375, 0.625, 0.625, and 0.75 respectively.

Figure 4.9 illustrates two implementation approach for this example, the direct-mapping

approach and the double-β normalization. The normalization scheme in Figure 4.9(a) is

realized by a 2-dimensional (2-D) look-up-table (LUT), whereas the constant multiplications

in Figure 4.9(b), ×1
2

and ×1
4
, are performed by shifters.

In terms of area and timing, Fig.4.10 compares the circuit overheads in Figure 4.9(a) and

Figure 4.9(b) to that of min-sum algorithm. The check node unit that has degree 11 and

5-bit messages is synthesized with the 0.13-µm cell library in either area critical or timing

critical conditions. The gray portions in Figure 4.10 also present the additional gate count

and timing contributed by the normalization circuit. Both figures show that the 2-D LUT

direct-mapping normalization occupies about 50% of the gate count and 30% of the critical

path delay due to the large LUT growing in quadratic with the bit-width of the messages.

However, the double-β approach requires only additional shifters and adders, leading to 5%

area (with 68 and 107 additional gates for each constraint) and 17% delay increases. It

will be shown in next section that similar error performance can be achieved by these two

schemes, however.
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Figure 4.9: Architectures of the direct-mapping and the double-β approach for rate 3
5
, 64800-

bit LDPC code in DVB-S2
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4.4 Simulation Results

In the following, simulations based on 64,800-bit LDPC codes defined in DVB-S2 [15] are

presented. More than 3000 frames of LDPC codes, which equals to 3000 × 64800 × Rate =

1.944 × Rate × 108 bits, were simulated for each point. Moreover, belief-propagation al-

gorithm with floating-point messages, abbreviated to BP-FP, is simulated as the baseline

performance. Several aforementioned normalization approaches are compared. In the fol-

lowing, the adaptive-β approach with K = 1, NR = 1 will be referred to single-β approach;

the adaptive-β approach with K = 1, NR = 2 will be referred as double-β approach; nor-

malization by a constant will be referred to fixed-β approach.

The simulation channel is modeled as AWGN, and the randomly generated binary data

is modulated by QPSK signaling before transmission, where the LDPC decoder can be

initialized by the same method of BPSK. The maximum decoding iteration number is limited

to 50. Except BP-FP, all the messages for different normalization approaches are represented

by finite-precision; the bit-width of all messages are quantized to 6 bits. Considering low-

complexity implementation, the normalization factors are restricted in the set {1
8
, 2

8
, . . . 1}

such that only few shifters and adders will be required.

4.4.1 Comparison of BP-FP and Min-Sum Algorithm

Table 4.1 compares the minimum working SNRs of BP-FP and min-sum algorithms, defined

by the minimum SNR for bit error rate (BER) below 10−5. Note that the signal to noise

power ratio, SNR, is defined as

SNR =
Eb

N0

+ 10 log10(2Mc × Rate), (4.53)
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Table 4.1: The minimum working SNR of BP-FP and min-sum algorithm

Rate 1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5

5
6

8
9

9
10

BP-FP (dB) -2.55 -1.35 -0.45 0.9 2.15 3.05 3.95 4.6 5.1 6.15 6.35

Min-Sum (dB) -2.05 -0.6 0.55 1.7 3.15 3.3 4.25 4.9 5.35 6.35 6.55

∆MS−BP (dB) 0.5 0.75 1.0 0.8 1.0 0.25 0.3 0.3 0.25 0.2 0.2

where 2Mc bits are mapped to one complex symbol. The finite precision formate (a, b) means

that (a + b + 1) bits represent one message; where a bits are for the integer part and b bits

are for the fractional part, and the one extra bit is for the sign of the message. Different

combinations for (a, b) for a+b+1 = 6 has been simulated and the (3, 2) format will contribute

to the lowest error rate for min-sum algorithm for all rates. The term ∆MS−BP is the SNR

difference between the min-sum and BP-FP algorithms. According to Table 4.1, ∆MS−BP

is kept within 0.3dB for R ≥ 2
3

since the codes work in better channel conditions such that

min-sum algorithm yields a good approximation. However, more accurate approximation is

necessary to improve the performance when R < 2
3
. The proposed dynamic normalization

will effectively reduce the performance loss caused by min-sum algorithm for those codes

working at low SNR environments.

4.4.2 Comparison of Dynamic Normalization Approaches

As it is shown in Table 4.1, R = 2
5

and R = 3
5

correspond to the largest SNR loss. Therefore

a discussion focused on the R = 3
5

LDPC code will be presented since there is larger room

for improvement. The resulted BER versus SNR for different normalization approaches are

compared in Figure 4.11. All the corresponding parameters resulting in the best working

SNR for different approaches are listed in Table 4.2 and Table 4.3. Note that the 2-D LUT
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direct-mapping approach outperforms all the other normalization schemes, but has a great

storage overhead. The double-β approach in Fig.4.11 has a comparable performance while

requiring few additional logics for normalization.

In Figure 4.12, the limited maximum decoding iteration for different normalization ap-

proaches are compared. When the iteration number exceeds this maximum value, the iter-

ative decoding terminates whether the codeword is decoded correctly or not. The proposed

double-β normalization outperforms the fixed-β approach while the former requires max-

imum 20 decoding iterations and the latter requires maximum 50 decoding iterations to

achieve BER = 10−5 at similar SNR. Moreover, comparing the double-β normalization with

min-sum algorithm, the former requires maximum 12 iterations and the later requires maxi-

mum 50 iterations to achieve BER = 10−5 under the same SNR condition. Figure 4.12 shows

that when the decoding complexity and speed are both critical, the proposed dynamic nor-

malization improves the decoding speed of fixed-β and min-sum algorithm by about 60%

and 76%, respectively.

In Table 4.4, the performance of several normalization schemes are compared for all codes

with R < 2
3
. The measurement of improvement is defined as

IPR =

(

1 −
∆NBP−BP

∆MS−BP

)

× 100%,

where ∆NBP−BP is the difference of the minimum working SNR (SNRmin) between these

normalized-BP algorithms and BP-FP, which results from the approximation inaccuracy and

the quantization noise. Similarly, ∆MS−BP is that between min-sum algorithm and BP-FP.

For R = 1
4

code that should work in low SNR condition, there is no suitable β in the set

{1
8
, 2

8
, . . . , 1} for the fixed-β approach, leading to IPR = 0. On the contrary, all the other

dynamic normalizations in this case can still compensate about 40% SNR loss. The average
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Table 4.2: Parameters of fixed-β and adaptive-β approaches

Rate
Fixed-β Single-β Double-β

β (a.b) βm1 βm2 (a.b) β11 β12 T1 β21 β22 T2 (a.b)
1
4

0.875 (3.2) 0.75 1.0 (3.2) 0.5 0.75 0.5 1.0 1.0 — (3.2)
1
3

0.875 (2.3) 0.75 1.0 (2.3) 0.625 0.75 0.625 0.875 1.0 2.0 (2.3)
2
5

0.875 (2.3) 0.625 1.0 (2.3) 0.5 0.75 1.25 0.75 1.0 1.25 (2.3)
1
2

0.75 (3.2) 0.625 0.875 (2.3) 0.625 0.875 1.5 0.75 0.875 1.625 (2.3)
3
5

0.75 (3.2) 0.625 0.875 (2.3) 0.5 0.75 2.0 0.75 1.0 2.0 (2.3)

Table 4.3: Parameters of the Annealing Adaptive-β approaches

Rate
Single-β Double-β

βm1 βm2 L (a.b) β11 β12 T1 β21 β22 T2 L (a.b)
1
4

0.75 1.0 3 (3.2) 0.375 0.5 0.5 0.75 0.75 — 3 (3.2)
1
3

0.625 0.875 2 (2.3) 0.625 0.75 2.0 0.75 0.875 1.5 3 (3.2)
2
5

0.625 0.75 3 (3.2) 0.5 0.625 1.5 0.625 0.875 1.125 3 (2.3)
1
2

0.5 0.75 2 (2.3) 0.5 0.625 1.75 0.625 0.75 2.0 2 (2.3)
3
5

0.5 0.75 3 (2.3) 0.375 0.625 2.0 0.625 0.75 1.0 3 (2.3)

degradation ∆̄NBP−BP and the average improvement IPR are also given in Table 4.4. It

shows that the double-β approach outperforms the others on average. The average SNR

loss, ∆̄NBP−BP , is reduced to 0.2dB while ∆̄NBP−BP of the fixed-β approach is 0.5dB. The

average improvement of double-β approach is 72.9%, which is more than twice averaged

IPR of the fixed-β approach.

90



Table 4.4: Comparisons of different normalization approaches

Rate Measure BP-FP Min-Sum Fixed-β
Annealing Annealing

Single-β Double-β
Single-β Double-β

1
4

SNRmin(dB) -2.55 -2.05 -2.05 -2.25 -2.25 -2.2 -2.25

IPR(%) 100 NA 0 44.4 44.4 33.3 44.4

1
3

SNRmin(dB) -1.35 -0.6 -0.9 -1.0 -1.0 -1.05 -1.1

IPR(%) 100 NA 40.0 53.3 53.3 60.0 66.7

2
5

SNRmin(dB) -0.45 0.55 0.25 0.0 -0.1 -0.2 -0.2

IPR(%) 100 NA 30.0 55.0 60.0 75.0 75.0

1
2

SNRmin(dB) 0.9 1.7 1.3 1.1 1.1 1.05 0.95

IPR(%) 100 NA 50.0 75.0 75.0 81.3 93.4

3
5

SNRmin(dB) 2.15 3.15 2.65 2.45 2.4 2.35 2.3

IPR(%) 100 NA 50.0 70.0 75.0 80.0 85.0

Average
∆̄NBP−BP 0 0.81 0.5 0.32 0.29 0.25 0.2

IPR(%) 100 0 34 59.54 61.54 65.92 72.9
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4.5 Summary

In this chapter, compensation schemes for approximation loss from Log-BP to min-sum

algorithms are discussed. The correction factors of normalized min-sum algorithm are shown

to be data-dependent. Based on order statistics and density evolution, the normalization

factors can be described as a function of channel statistics (ex. SNR), decoder input, and

decoding iteration number. Accordingly, several dynamic normalization approaches that

are applicable in hardware implementation are introduced. The simulation results based

on DVB-S2 show that the dynamic normalization is an efficient means to provide precise

compensation and preserve simple hardware implementation.
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Figure 4.10: Implementation results (one check node unit) of the 2-D LUT, double-β ap-
proach, and min-sum algorithm for rate 3

5
, 64,800-bit LDPC code. The gray portion is the

overhead introduced by the normalization circuit.

93



2 2.2 2.4 2.6 2.8 3 3.2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
it 

E
rr

or
 P

ro
ba

bi
lit

y

floating point
1−D LUT direct−mapping
2−D LUT direct−mapping
Single−β
Double−β
Annealing−single−β
Annealing−double−β
Fixed−β
Min−sum

Figure 4.11: BER comparisons for rate 3
5
, 64800-bit LDPC with different normalizing tech-
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code applied with different normalizing techniques. The simulation parameters and finite-
precision message formats can be referred to Table 4.2.
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Chapter 5

Channel-Coded MIMO Receiver

In Chapter 3, sphere decoding algorithm has been shown to be an efficient and applicable

approach to realize ML detection for MIMO systems, and several techniques can be applied

to further improve the computational efficiency. Combined with channel coding scheme, the

additional coding gain allows the system work better in lower SNR environment. Instead

of hard-decision inputs, many advanced channel coding schemes, turbo codes [6] or low-

density parity check codes [7, 9] for instance, require the received data to have probabilistic

information as soft value inputs. The sphere decoding algorithms introduced in Chapter 3

should be modified to generate the soft values (probabilistic information), and consequently

list sphere decoding algorithms can be employed.

Modified from a sphere decoder, a list sphere decoder (LSD) performs almost the same

operations but generates different output format. Not only the best guess of ML solution, a

candidate list containing other symbols which have high probabilities of being ML solution

is also delivered for computing the probabilistic information.

In the follow-up chapter, derivation of soft values from a list sphere decoder will be

introduced first. Under message-passing decoding, the influences of soft value generation

schemes are discussed, and low-complexity techniques for performance improvement will be

proposed.
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5.1 List Sphere Decoding Algorithm

Figure 5.1 illustrates soft-output MIMO detection realized by a list sphere decoder (LSD)

where L is the candidate list of size |L|. As the figure shows, an LSD primarily comprises

two parts, candidate list generation and soft value generation. Generally, the candidate list

generation can be realized by the sphere decoders introduced in Chapter 3, or by various

sequential detection schemes [38,79]. The list size |L| dominates the computation complexity

of the detector, thus it can be usually regarded as a parameter determined at design time.

QR-Decomposition
Candidate List 

Generation

Soft Value 

GenerationH

y
q

R

T
Q

L ,( )k jL x

Figure 5.1: Soft-Output MIMO Detector.

5.1.1 Candidate List Generation and Soft Value Generation

An LSD differs from the conventional sphere decoder in the output format and the number of

the outputs. A candidate list will be generated and the soft values are computed accordingly.

If depth-first search is applied, the radius updating strategy needs to be modified as well.

Since the sphere decoder is required to generate a candidates list with size |L|, the radius

will be fixed until the list is full. When the number of the retained paths exceeds |L|, the

path with the largest PED will be excluded from L, and the radius will be updated to the

currently largest PED in L. Therefore, sorting for the maximum PED is performed whenever

a new candidate is added into the list. As a result, sorting and radius-updating strategy
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dominate the computation complexity. For breadth-first search with radius constraints,

the same radius-updating philosophy should be employed. Considering constant decoding

speed and computation, K-best algorithm is inherently suitable for candidate list generation.

Moreover, the sorted K-best PEDs at the sphere decoder output can further reduce some

computations in soft value generation. However, achieving low-error-rate and low-error-floor

still requires a large K value.

For binary data, log likelihood ratio (LLR) is one of the most common description of

the probabilistic information for the received data. The LLR of the bit xj,k is defined by its

a posteriori probabilities, which is

L(xk,j) = log
Pr(xk,j = 0|y)

Pr(xk,j = 1|y)

= log
Pr(xk,j = 0)

Pr(xk,j = 1)
+ log

Pr(y|xk,j = 0)

Pr(y|xk,j = 1)
. (5.1)

The first term in (5.1) is the a priori information. This term is zero for ML detection or can

be computed by the extrinsic information provided by the channel decoder in an iterative

detection-decoding process [39]. Let M(·) denote the M-PAM mapping function such that

sk = M(xk,1, xk,2, . . . , xk,Mc). With Gaussian noise assumption, the second term in (5.1) can

be computed by

log
Pr(y|xk,j = 0)

Pr(y|xk,j = 1)

= log

∑

s′∈Ωj,0
Pr(y|s′)

∑

s′∈Ωj,1
Pr(y|s′)

(5.2)

≈
1

2σ2

(

min
s′∈Ωj,1

‖y − Hs′‖2 − min
s′∈Ωj,0

‖y − Hs′‖2

)

, (5.3)

≈
1

2σ2

(

min
s′∈Ωj,1∩L

‖y − Hs′‖2 − min
s′∈Ωj,0∩L

‖y −Hs′‖2

)

, (5.4)
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where σ2 is the noise variance, and Ωj,b is the the set of all s′ having xk,j = b for b = 0, 1.

When preprocessing is performed, that is, q = QTy and H = QR, (5.4) will be

1

2σ2

(

min
s′∈Ωj,1∩L

‖q − Rs′‖2 − min
s′∈Ωj,0∩L

‖q − Rs′‖2

)

. (5.5)

5.1.2 Dynamic Compensation

In order to further improve the approximation accuracy for the channel decoder soft inputs,

an additive correction term that dynamically compensates the loss from (5.3) to (5.5) can

be introduced.

Let n0 and n1 denote the sizes of Ωj,0 ∩ L and Ωj,1 ∩ L respectively, and n0 + n1 = |L|.

Moreover, let

m0 = min
s′∈Ωj,0

‖q − Rs′‖2 (5.6)

and

m1 = min
s′∈Ωj,1

‖q −Rs′‖2. (5.7)

Then we can express (5.3) as follows:

log

∑

s′∈Ωj,0
Pr(y|s′)

∑

s′∈Ωj,1
Pr(y|s′)

= log

∑

s′∈Ωj,0
Pr(q|s′)

∑

s′∈Ωj,1
Pr(q|s′)

=
(m1 − m0)

2σ2
+ log

(1 +
∑n0−1

i=1 e
−1

2σ2 (ai−m0))

(1 +
∑n1−1

i=1 e
−1

2σ2 (bi−m1))
(5.8)

≤
1

2σ2

(

m1 − m0 + log
n0

n1

)

, (5.9)

where {m0, a1, a2, ..., an0−1} = {T (s′)}|∀s′ ∈ Ωj,0 ∩ L}, {m1, b1, b2, ..., bn1−1} = {T (s′)}|∀s′ ∈
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Ωj,1 ∩ L}, are the path metric of the paths in Ωj,0 ∩ L and Ωj,1 ∩ L. Note that

log
(1 +

∑n0−1
i=1 e

−1

2σ2 (ai−m0))

(1 +
∑n1−1

i=1 e
−1

2σ2 (bi−m1))
≤ log

n0

n1

(5.10)

can be regarded as a correction term. Moreover, for sufficiently large list size,

log
n0

n1

≈ log
Pr(xj = 0)

Pr(xj = 1)
, (5.11)

which is the intrinsic information required by an maximum a posteriori (MAP) detector.

As a result, the correction term and the intrinsic information can be combined as

β log
1 + n0

1 + n1
, log

(1 +
∑n0−1

i=1 e
−1
2σ2 (ai−m0))

(1 +
∑n1−1

i=1 e
−1
2σ2 (bi−m1))

+ log
Pr(xj = 0)

Pr(xj = 1)
. (5.12)

Notice that n0

n1
is modified to 1+n0

1+n1
to avoid logarithm of zero or infinity. Ultimately, the soft

value will be

L(xk,j) ≈
1

2σ2

(

m1 − m0 + β log
1 + n0

1 + n1

)

, (5.13)

where β is a normalization factor, and n1 = |L|−n0. From (5.13), the compensation overhead

resulted from the dynamic compensation β log 1+n0

1+n1
are one multiplication, two logarithms,

and at most |L| + 1 additions for accumulating n0.

5.2 Augmented-List Sphere Decoding Algorithm

Let us take a closer look at (5.4) and (5.5). Chances are Ωj,0 ∩ L = ∅ or Ωj,1 ∩ L = ∅, it

is impossible for us to find the minimizer in an empty set. In [39], it is suggested that the

minima can be approximated by a predefined large constant in case of empty sets. Figure 5.2
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is an illustrative examples for the empty set mentioned above. Ωj,0 and Ωj,1 equally partition

the space of the valid constellation points. In Figure 5.2(a), we can always find minimizers in

both Ωj,0∩L and Ωj,1∩L according to the given L. An empty set is shown in Figure 5.2(b),

and the list contains only the symbols in Ωj,1. Then we can infer that xk,j has stronger

confidence in 1, which corresponds to a smaller cost function, i.e. Euclidean norm. In other

words, the weaker confidence in 0 should be represented by a large cost function. As a result,

a large constant Euclidean norm is assigned.

5.2.1 Dealing with the Empty-Set Issue

Although we can assume |L| is large enough so the empty set rarely occurs, and [39] fur-

ther suggested a list size larger than 512 is sufficient to maintain the desired error perfor-

mance. However, |L| = 512 is too large a list size for hardware implementation. Take

512-best algorithm for example, the average comparison operations per decoding layer will

be 4608×M + log2 M (approximated by 512M × log2(512M)) for M-PAM mapping. More-

over, Figure 5.3 shows the rate of empty set versus the K value when K-best algorithm is

employed for generating the candidate list. It is perceived that the empty set rate decreases

much slower when K ≥ 64 for 16-QAM and K ≥ 128 for 64-QAM. In fact, this figure shows

the improvement from enlarging the list size becomes limited eventually.

When approximated by a constant, the probabilistic information derived from (5.4) or

(5.5) is equivalently added by an interference. Being the soft inputs to the subsequent

channel decoder, the additional interference resulted from the approximation inaccuracy can

hurt the error performance. Although the degradation can be mitigated by increasing the

list size such that the probability of Ωj,0 ∩ L (or Ωj,1 ∩ L) being an empty set reduces, the

computation complexity in generating the candidate list also increases.
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Figure 5.2: Illustration of the empty set issue

In [38,49], path augmentation techniques were proposed to expand L to a larger candidate

list L′ before soft value generation. Since |L′| > |L|, the probability of failing in finding

the minimizers in L′ is reduced. In general, the computation overhead resulted from list

expansion is smaller as compared to directly generating a larger candidate list.

Although the path augmentation technique equivalently provides a larger list, we still

have to estimate the minimas since Ωj,0 ∩L′ or Ωj,1 ∩L′ could still be an empty set. When

this is the case, the simplest estimation of the minima is the the maximum path metric in

L′. This simple approach also applies to the conventional LSD where path-augmentation

technique is not employed. That is, we can estimate the minima by the maximum path

metric in L.

5.2.2 Path Augmentation

Not only computation complexity, efficient path augmentation should also guarantee a low

probability of failing in finding the minimizers. In the following, a path augmentation scheme

is proposed. The candidate list L is expanded to distinct Lk for different xk,j such that

we can always find the minimizers. Figure 5.4 shows the proposed augmented-list sphere
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Figure 5.3: Empty set rates for 16-QAM and 64-QAM 4 × 4 system, the candidate list
generation is realized by K-best algorithm.

decoder (A-LSD) in which the path augmentation can be treated as an enhancement; no

modifications are required for the candidate list generation (sphere decoder) and the soft

value generation.

When computing L(xk,j), each path s′ in L will be expanded to M paths by first du-

plicating s′ M − 1 times. Each the k-th element of the M identical paths is replaced by a

distinct ωj from Ω = {ωj|j = 0, 1, . . . , M − 1}, the M symbols of M-PAM constellation.

This duplicating-and-replacing procedure continues until all the paths in L are examined.

As a result, L is expended to Lk and |Lk| = M × |L|. Although identical paths may be

found in Lk, Ωj,0∩Lk or Ωj,1∩Lk will never be empty sets since the augmented list contains

all constellation points at the k-th layer. Figure 5.6 shows the augmented candidate list.
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Figure 5.4: Augmented list sphere decoder.

Compared with Fig.5.2(b), the empty set in Figure 5.6(b) is now covered by the expanded

Lk. Besides, L is believed to be more reliable, and the augmented list is supposed to be

reliable as well. It can be inferred that

min
s′∈Ωj,0

‖y −Hs′‖2 ≈ min
s′∈Ωj,0∩Lk

‖y − Hs′‖2 (5.14)

and

min
s′∈Ωj,1

‖y − Hs′‖2 ≈ min
s′∈Ωj,1∩Lk

‖y − Hs′‖2. (5.15)

Moreover, the path metric of the j-th expanded path from s′ can be computed by

T (s′) + (∆jΣk)
2 + 2∆j

√

Σk, (5.16)

where ∆j = sk − ωj for j = 0, 1, . . . , M − 1 and Σk =
∑2Nt

k′=k Rk′k is the k-th column

summation of the channel matrix R.

Figure 5.5 illustrates an example of the proposed path augmentation scheme for com-

puting L(x5,0) and L(x5,1) in a 16-QAM 4× 4 A-LSD. The equivalent 4-PAM 8-layered tree

can be represented by an 8-stage trellis diagram. Each s′ in L corresponds to a distinct

path in the trellis. In this example, s′ = {+1,−1,−1, +1, +3,−1,−3,−1}, M = 4, and
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Ω = {−3,−1, +1, +3}. s′ is first expanded to the four distinct path that contains all con-

stellation points of s5 by duplicating-and-replacing procedure. Accordingly, Ω0,0, Ω0,1, and

Ω1,0, Ω1,1 can be constructed.

As Figure 5.6 shows, the augmented list Lk equally partitions Ωj,0 and Ωj,1. Note that

when the dynamic compensation β log 1+n0

1+n1
in (5.13) is applied, n0 and n1 will be computed

from the original list L.
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Table 5.1: Average number of operations per bit for A-LSD

Operation
K-best Path Soft Value Dynamic

Algorithm Augmentation Generation Compensation

CMP MK
Mc

log2(MK) 0 γMK 0

MUL K
2Mc

∑2Nt

i=1 (2Nt − i + M) 2MKγ
Mc

0 1

ADD K
2Mc

∑2Nt

i=1 (2Nt − i + M) MKγ+Nt

2NtMc
1 ≤ γK + 1

SQR 0 MKγ
Mc

0 0

SQRT 0 Kγ
Mc

0 0

Log 0 0 0 2

Note: CMP, MUL, ADD, SQR, and SQRT stand for comparing,

multiplication, addition, square, and square root operations, respectively.

5.2.3 Complexity Analysis

The aforementioned procedure needs to be performed 2Nt times for decoding s, and (5.16)

is the major computation overhead. Since ∆j have limited values and ranges, they can

be realized by a simple look up table or a decoder. Considering the overhead from path

augmentation, Lk can be augmented partially; the soft values are generated by the |L| × γ,

the most reliable paths for 0 < γ ≤ 1. The value γ provides a tradeoff between complexity

and error performance.

TABLE 5.1 shows the average operation per bit for the proposed augmented-list sphere

decoder where candidate list is generated by K-best algorithm. Note that the number of

comparisons in the soft value generation increases since the |L| is now expanded to γMK.
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5.3 Simulation Results

An LDPC-Coded 64-QAM 4× 4 MIMO system was simulated. Randomly generated binary

data are encoded by (1944, 972) LDPC code defined in IEEE 802.11n [17]. By direct spatial

mapping the coded information is transmitted via an uncorrelated flat fading channel. The

probabilistic information is generated by various list sphere decoders.

Subsequently, the LDPC codewords are decoded by Horizontal shuffled scheduling [76]

combined with normalized min-sum algorithm. Constant normalization factor is 0.875. At

most 10 iterations are performed to decode each LDPC codeword. For conventional list

sphere decoders without path augmentation, the log belief-propagation (Log-BP) algorithm

described in Chapter 4 is inapplicable due to the sensitivity to inaccurate input probabilis-

tic information. Slight interference resulted from inaccurate soft value estimation can be

amplified by the non-linear check node updating in the Log-BP decoding. As a result, the

erroneous messages traverse and spread through the iterative process, leading to poor con-

vergence and performance degradation. For fair comparisons among different list sphere

decoders, only linear decoding, min-sum algorithm for example, is employed.

5.3.1 Error Performance

The bit error rate (BER) in Fig.5.7 shows the influences of the aforementioned path aug-

mentation and dynamic compensation. Note that the minima in (5.5) will be set to D when

Ωj,0 ∩ L = ∅ or Ωj,1 ∩ L = ∅. If dynamic compensation is applied, the normalization factor

β = 1 are derived empirically. All the solid lines and dotted lines stand for the cases whether

dynamic compensation (5.13) is applied.

First, let us compare the performance of the conventional list sphere decoders without

compensation. As the figure shows, significant improvement is perceived when K, i.e. the
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list size, increases. To achieve BER below 10−5, K should be larger than 128, otherwise

error floor arises. This coincides with Fig. 5.3 that the rate of the empty set decreases slowly

after k ≥ 128 for the 64-QAM curve.

Fig. 5.7 also shows that the dynamic compensation improves the error performance at

low SNR region for all K values. However, the error flow presents still. Subsequently,

comparing 64-best LSD with 64-best A-LSD, a significant improvement is perceived when

path augmentation is applied. Not only the waterfall region, but the performance at the

error-floor region improves. It shows that 64-best A-LSD even outperforms the conventional

128-LSD. In fact, it will be shown that the overhead resulted from path augmentation is

far less than directly increasing K from 64 to 128. Furthermore, degradation of reducing γ

from 1 to 0.25 is less than 0.1dB at the waterfall region. At the error-floor region, similar

performance for γ = 0.25 and γ = 1 can be reached.

For other channel coding scheme, similar results can be obtained. Fig. 5.8 and Fig. 5.9

present the simulated bit error rates when the channel coding in the system is replaced by

the (648, 324) LDPC code in in IEEE 802.11n [17] and the rate-1
3

480-bit convolutional

turbo code in IEEE 802.16e, which is also termed as WiMAX CTC. The LDPC code is

decoded by the same algorithm as the (1944, 972) LDPC code; the turbo code is decoded by

Max-log MAP algorithm [79]. Since the block length of the LDPC code and the turbo code

are comparatively shorter, the waterfall region is less obvious. But the two figures both show

that dynamic compensation and path augmentation provides significant improvements.

Although the results in Fig. 3.7 and Fig. 3.8 show imperceptible difference on the per-

formance at SNR smaller than 20dB, which is the SNR region where the channel decoder

works. However, Fig. 5.7 to Fig. 5.9 demonstrate the error performance is highly dependent

on the list size K. The simulation results show that the K value of the conventional K-best
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algorithm can be reduced to half, at least, when the proposed techniques are applied.

5.3.2 Influence of Candidate List Generation

Fig 5.10 illustrates the BER variation resulted from different candidate list generation

schemes for an augmented list sphere decoder. Dynamic compensation is applied for all

cases, and γ = 1 for all cases. When the path metric ‖q − Rs‖2 is replaced by

2Nt
∑

i=1

∣

∣

∣

∣

∣

qi −
2Nt
∑

j=i

Ri,jsj

∣

∣

∣

∣

∣

, (5.17)

the PED computed at i-th layer is also modified to

T (s(i)) =

2Nt
∑

i′=i

∣

∣

∣

∣

∣

qi −
2Nt
∑

j=i

Ri,jsj

∣

∣

∣

∣

∣

, (5.18)

then (5.1) is further simplified. Compared with
∑2Nt

i′=i(qi −
∑2Nt

j=i Ri,jsj)
2, (5.18) has smaller

dynamic data range. As a result, the retained K best paths are not necessarily the same

as that derived from the conventional K-best algorithm, and a different candidate list can

be deduced. Due to the smaller dynamic rage, the probability of eliminating ML path dur-

ing breadth-first search increases. Compared with the 64-best A-LSD of Euclidean norm,

64-best A-LSD with (5.18) as the path metric has slight degradation at the waterfall re-

gion. However, thanks to the smaller data range, the simplification (5.17) and (5.18) lead

to better performance at the error-floor region. The A-LSD output distribution in Fig. 5.11

illustrates the difference between the two path metric computation. The smaller data rage

of the simplified path metric form means smaller variance, which will lead to faster con-

vergence under message-passing algorithm. Besides, it is explained in Chapter 4 that the
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normalization factor for min-sum decoding is a function of the LDPC decoder input. As a

result, constant normalization, referred to fixed-β approach in Chapter 4, works better when

input distribution has smaller data range.

Fig. 5.10 also shows the BER when K-best algorithm is replaced by the early-pruning K-

best algorithm (EP-K-best) presented in Chapter 3, and the strict sorting is approximated

by the coarse-granularity sorting for L = 16. Besides, the K values for the multi-K-best

algorithm are further reduced to 16, 16, 16, 16, 32, 64, 64 (the first to the eighth layer) in

order to reduce the sorting complexity. For BER above 10−4, we can observe that absolute

difference approximation results to about 0.6dB SNR degradation, which is almost the same

SNR loss caused by the early pruning scheme. Then an extra 0.4dB loss is introduced by

the multiple K reduction. However, the path metric definition impacts the BER at the error

floor region, i.e. BER below 10−4.

Although the pruning scheme guarantees a high probability of finding ML path, other

potential candidates may be dropped by the radius constraints. Thus the deduced list size

may be far less than K, leading to higher error floor as Euclidean norm is employed in

computing the path metric. Fig. 5.12(a) shows the simulated probability of the list size

resulted from EP-64-best algorithm, where 18.62% of the lists having size smaller than 63,

and 11.76% are smaller than 48. Compared with Fig. 5.12(b), Only 4.39% of the deduced

candidate list has size smaller than 48, providing a sufficiently large list for computing the

soft values.

Fig. 5.10 to Fig. 5.12 briefly concludes the influence of candidate list generation. Simpli-

fied computations influence the waterfall region performance; the candidate list size impacts

the error floor performance.
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Table 5.2: Computation of LSD and A-LSD

Method 128-best LSD 64-best A-LSD (γ = 1) 64-best A-LSD (γ = 0.25)

Oper. SD SVG+DC Total SD PA SVG+DC Total SD PA SVG+DC Total

CMP 3414 128+0 3542 (100%) 1536 0 512+0 2048 (57.8%) 1536 0 128+0 1664 (46.9%)

MUL 1964 0+1 1965 (100%) 982 342 0+1 1325 (67.4%) 982 86 0+1 1069 (54.5%)

ADD 1964 1+129 2094 (100%) 982 171 1+65 1219 (58.2%) 982 43 1+17 1043 (49.8%)

Note: SD, PA, SVG are abreviated for sphere decoding, path augmentation, soft value generation.

Table 5.3: Average number of comparing (CMP) operations per bit for (1944, 972) LDPC
coded 64-QAM 4 × 4 system

Candidate List Generation
Average CMP Operation SNR (dB) SNR (dB)

@ SNR = 18dB @ BER = 10−4 @ BER = 10−6

128-best LSD (Euclidean norm) 3542 (100%) 16.3 18.0

64-best A-LSD (γ = 1, Euclidean norm) 2048 (57.80%) 15.95 17.20

64-best A-LSD (γ = 1, absolute difference) 2048 (57.80%) 16.55 17.35

64-best A-LSD (γ = 0.25, Euclidean norm) 1664 (46.9%) 16.00 17.20

EP-64-best A-LSD (absolute difference, L = 16) 668 (18.9%) 16.55 17.45

EP-64-best A-LSD (Euclidean norm, L = 16) 636 (18.0%) 16.70 NA

EP-multi-K-best A-LSD (absolute difference, L = 16) 199 (5.6%) 16.95 17.7

5.3.3 Computation Complexity

So far, we have shown path augmentation scheme equivalently provides a larger candidate

list. A 64-best A-LSD can even outperforms 128-best LSD. Not only the error performance,

A-LSD also saves computation complexity. In Table 5.2, the computation complexity of

various list sphere decoders are compared. Note that 128-best LSD is the reference. For

64-best A-LSD with γ = 1, at least 33% computations of the 128-best LSD are reduced.

Furthermore, when γ is reduced to 0.25, about 50% of the computations can be saved. Since

the comparing operation in sorting is most dominating, the sorting complexity is further

compared and presented in Table 5.3. It is perceived that early-pruning scheme can further

reduce the sorting complexity; 80% to 94% comparing operations can be reduced .
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5.4 Summary

In this chapter, techniques to reduce computation complexity of list sphere decoders are

presented. The path augmentation technique equivalently provides a larger and distinct list

for each data bit, leading to reduced complexity and improved error floor performance. Ac-

cording to the simulation results, the K value of the conventional K-best algorithm can be

reduced to half, at least. Besides, an additive correction term is introduced to dynamically

compensate the simplification loss in computing the soft values. These scheme are appli-

cable to many sphere decoding algorithms which are employed in generating the candidate

list. Combined with the early-pruning K-best algorithm presented in Chapter 3, significant

reduction in the computation complexity can be achieved.
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Figure 5.5: Path augmentation in a 16-QAM 4 × 4 A-LSD.
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Chapter 6

Conclusion

The thesis presents two essential parts in capacity-approaching MIMO receiver designs:

sphere decoders and LDPC decoders that remarkably improve system performance but of-

ten demand costly hardware implementation. This work intends to reduce complexity in

algorithm-leve and provide efficient solutions for the decoder.

6.1 Summary

Sphere decoding is one applicable realization for maximum likelihood (ML) signal detec-

tion in MIMO systems. Described as a closest-point-search problem, sphere decoding avoids

exhaustive search in the entire signal space by confining a search range in a hypersphere.

Sphere decoding can be further transformed to a tree-search problem and the search strate-

gies can be categorized into depth-first and breadth-first. K-best algorithm is one popular

realization of the latter by which constant computation and predictable complexity are guar-

anteed. Due to the fading phenomenon in propagation channels, a large K is required while

considering the worst case scenario that the received signals are in deep fades. However,

large K results in enormous computations, especially the sorting complexity. Consequently,

we present an early pruning scheme that discard the less likely candidates during the search.

Applying to breadth-first sphere decoders, the proposed pruning scheme distinguishes

the ML path from other paths by distinct radius constraints at each layer of the search tree.
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Given the system model and the channel statistics, the pruning criterion, i.e. the radii, can

be derived according to the desired error tolerance. Moreover, the expected computation

complexity is analyzed. Although the computation is non-constant, the proposal ensures

the manageable complexity by combining the pruning scheme with K-best algorithm. In

fact, the algorithm will become conventional K-best algorithm when the number of the

retained paths at each layer exceeds K, where the decoder reaches its lowest decoding speed.

Besides, since the radii equivalently exhibits the dynamic ranges for the representation of ML

path, the sorting complexity of the early-pruned K-best algorithm can be further reduced

by coarse-granularity sorting approach. The presented analysis techniques also provide an

approach to acquire parameters for multi-K-best algorithm by which each layer corresponds

to a distinct K value. The lowest decoding speed can be improved by the multiple K’s since

some of the K values are smaller. Simulated in a 64-QAM 4× 4 MIMO system, about twice

improvement in the lowest decoding speed can be achieved when the early-pruned 64-best

algorithm is modified to early-pruned multi-K-best algorithm. Moreover, both early-pruned

64-best and early-pruned multi-K-best algorithms can achieve similar error performance of

the conventional 64-best algorithm. The degradation in SNR is almost imperceptible for

BER above 10−5 while more than 90% computations are diminished.

After the MIMO detection process, the signals are passed to the channel decoder for error

correction, and the LDPC code is one of the powerful and also popular coding techniques.

Min-sum algorithm is often employed in implementing LDPC decoders for simplicity. The

non-linear operations in the original decoding algorithm, Log-BP algorithm, is approximated

by searching for the minima; however, significant performance loss may arise. Convention-

ally a constant offset or a normalization term can be applied to compensate the degradation,

whereas in some cases constant factors can not accurately compensation the approximation
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error. Thus, we investigate the parameters for normalized min-sum algorithms; the normal-

ization factors can be represented as a function of decoder inputs and channel statistics.

Consequently, dynamic normalization schemes are proposed. Based on order statistics and

density evolution the data-dependent correction terms can be analyzed. The dynamic nor-

malization preserves simple hardware implementation, and the resulted overheads in circuit

complexity is less than 5% of the conventional min-sum algorithm. To reveal the effect of dy-

namic normalization, we apply the logn LDPC code defined in DVB-S2 system. Simulation

results shown that the proposed techniques can provide as much as 1dB SNR improvement

for min-sum algorithm.

Many of the research on LDPC decoding algorithms are based on AWGN channel model.

In MIMO systems, however, the decoder convergence under iterative decoding is highly

dependent on the input soft values. Sphere decoding algorithms are modified to list sphere

decoding algorithm that generates a candidate list for computing the soft inputs to the LDPC

decoder. We found that the list size impacts the error performance, and insufficient candidate

can result in sever error floor. Since producing a large candidate list can be computation-

demanding, a path augmentation technique is proposed to to enlarge the candidate list. As

a result, computation complexity can be reduced while the error floor can be alleviated. The

path augmentation technique can be regarded as performance enhancement and applied to

many list sphere decoding algorithms. We simulated LDPC codes in IEEE802.11n system

under 4 × 4 spatial multiplexing, the path augmentation scheme combined with the early-

pruning multi-K-best algorithm can achieve the lower computation complexity as well as

the lower error floor. About 94% complutation in the sorter can be saved as compared to

the list sphere decoders based on 128-best algorithm.
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6.2 Futurework

Complexity reduction techniques for sphere decoders are presented in this dissertation, how-

ever, the preprocessing part is not considered. Under finite precision data representation,

various QR decomposition algorithms (Householder transformation, Givens Rotation, and

Gram-Schmidt for example [54]), lead to different data stability. Moreover, similar complex-

ity reduction techniques can apply to preprocessing and the path metric computation. The

truncation error of the multiplications and additions can be analyzed and compensated ac-

cordingly, and some of the multiplications can be further replaced by the low-error reduced-

width multipliers [80–86]. Furthermore, the K values of the early-pruning multi-K-best

algorithm presented in Chapter 3 is determined empirically. Because they are determined

according to the expected complexity, statistically derived K values should be feasible. On

the other hand, computing the average complexity by (3.41) is very time-consuming when

the sphere degree (n) is larger than 12. Besides, as described in Chapter 5, several factors

impact the error floor. More complicated and realistic models should be considered, and

approximations are required for more efficient and quick analysis.

For LDPC decoding, the analysis for the dynamic factors in Chapter 4 is based on stan-

dard Log-BP decoding algorithm, while the LDPC convergence behavior is different under

shuffled decoding. Similar analyzing techniques still apply but require some modification.
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