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Abstract

This dissertation presents algorithm designs for sphere decoders and low-density parity
check (LDPC) code decoders in multi-input multi-output (MIMO) systems from
implementation point of view. Based on statistical techniques, complexity reduction schemes
are proposed. Sphere decoders of hard-decision outputs and LDPC decoding algorithms in
AWGN channel are discussed first. Then the sphere decoders with soft-decision outputs for
channel-coded MIMO systems are investigated.

Sphere decoding algorithm is one realization of maximum likelihood signal detection for
MIMO systems, and the computation can vary with channel due to the fading phenomena.
Among several modified algorithms, K-best algorithm is suitable for hardware implementation
for the constant computation and predictable hardware complexity. However, K-best algorithm
has to be realized with the assumption of worst channel condition in order to maintain the
system performance. For complexity reduction, an early pruning scheme combined with
K-best algorithm is presented. According to the system model and channel statistics the
expected complexity can be analyzed as well. Based on the complexity analysis, an
early-pruned multi-K-best algorithm is proposed by which the lowest decoding speed can be
further improved. The simulation results in 64-QAM 4 x 4 MIMO channel show that 90%

complexity can be reduced with imperceptible degradation in both symbol error rate and bit

iii



error rate above 107,

For decoding LDPC codes, min-sum algorithm is one common simplification of Log-BP
algorithm, but there is a performance gap due to the approximation inaccuracy. Normalization
schemes are investigated to compensate the approximation error. Moreover, the normalization
factor can be described by a function of the decoder inputs, noise variance, and the decoding
iteration number. The data-dependent correction terms can be analyzed and derived by order
statistic and density evolution. Simulated in DVB-S2 system, the dynamic normalization
schemes effectively mend the SNR loss from Log-BP algorithm to min-sum algorithm with
few normalization overheads, and 1.0dB SNR improvement, which is about 95% of the SNR
loss from Log-BP to min-sum algorithm, can be achieved.

For channel coded MIMO systems, a sphere decoder is modified to a list sphere decoder
that generates a candidate list for computing the soft inputs. Under iterative message passing
decoding, the candidate list and the soft value generation impact the decoding convergence.
Sufficiently large candidate list is required to avoid error floor. Thus, a path augmentation
technique is proposed by which a larger and distinct list can be employed in computing the
probabilistic information of each received bit. Compared with directly generating a larger list,
path augmentation performs comparatively less operations. In our simulation based on a
64-QAM 4x4 MIMO system with LDPC codes defined in IEEE802.11n, the proposed
augmented-list sphere decoder based on 64-best algorithm achieves the lowest error floor and
saves about 50% computations, if compared to the standard list sphere decoder which is based
on 128-best algorithm. Moreover, by the proposed early pruning scheme and multi-K-best

algorithm, 94% reduction in sorting complexity can be achieved.
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Chapter 1

Introduction

The communication engineering is to convey information through specific channels as cor-
rectly as possible. In 1948, Claude E. Shannon proved the existence of the transmission limit,
which is termed channel capacity [1,2]. It was stated that quasi-error-free transmission could
be guaranteed with information rate under the channel capacity. For decades, researchers
devoted much effort to approach this limit. With the advances in source coding and chan-
nel coding technology, some theoretically capacity-approaching communications have been
shown achievable.

Figure 1.1 presents a general communication system block diagram where the upper
and lower parts correspond to the transmitter and the receiver. Information source is first
compressed by a source encoder that removes the redundancy. Subsequently specific re-
dundant data, often referred to parity, is added on the compressed data for error-control.
The deterministic relation between the source data and parity, algebraic structures for ex-
ample, assists the receiver to detect and recover the errors occurred during transmission.
All transmit medium between the transmitter and the receiver can be regarded as channels,
which can be storage equipments, cables in wireline transmission, or radio links in wireless
transmission. The transmitted data undergoes different corruption and interference through
different channels. Thus, various modulation techniques are applied before transmitting; the

data are reformed for better transmission efficiency and immunity to channel distortions. At



the receiver site, the signal detection demodulates the received signals [3]; equalization [4,5]
is sometimes required to compensate the channel effects. Provided with demodulated data
or probabilistic information of received data, the channel decoder then corrects the erroneous

symbols after signal detection.

Information | Source .| Channel » Modulation
Source "| Encoder "l Encoder i’
Y.
Channel
Information | Source |, Channel |, Signal
Sink o Decoder | Decoder | Detection |

Figure 1.1: Communication system.

1.1 Channel Coding

Channel coding, or also termed error control coding, is an essential technology for reliable
transmission. After the invention of turbo codes [6] and the rediscovery of low-density
parity check (LDPC) codes [7-9], Shannon capacity (in additive white Gaussian noise,
AWGN channel) is proved achievable by iterative decoding process [10-13]. The inher-
ent parallelism in belief-propagation (BP) algorithm (7,9, 14] for decoding LDPC codes
facilitates high-speed LDPC decoder designs. Therefore, many advanced systems such as
digital television broadcasting (DVB-S2 [15], DMB-TH [16]), wireless local area network
(IEEE802.11n [17]), wireless metropolitan network (IEEE802.16e [18]), and 10G BASE-T
Eithernet (IEEE802.3an [19]), all employ LDPC codes as the forward error correction (FEC)
technique.

By taking logarithm of the decoder inputs, the BP algorithm is transformed to the

b}



equivalent Log-BP decoding algorithm, and the computations can be reduced since the
multiplications are transformed to additions in the logarithm domain. However, an nonlinear
operation is introduced, leading to implementation difficulity. Alternatively, the min-sum
algorithm [20,21] avoids the nonlinear function but leads to performance degradation. The
gap between the min-sum algorithm and the Log-BP algorithm can be reduced by a constant
correction term, either normalization or offset [22-30]. Indeed, the normalization factor can
be represented as a function of the decoder inputs, channel statistics, and the decoding
iteration number. To further improve the error performance, we did an analysis based on
the order statistic [31,32] and density evolution [33] to derive dynamic normalization factors.
With little overheads in circuit implementation, we present several dynamic normalization

schemes by which the normalization factors are determined on the fly.

1.2 MIMO Detection

For wireless communication, fading phenomenon [34] impacts transmission efficiency and
system performance. Utilizing the fading nature of wireless channels, multi-input multi-
output (MIMO) systems have emerged as powerful technologies for reliable and high-data-
rate wireless transmission. The inherent diversity gain provided by the multiple channels
significantly improves the signal quality and boosts the system capacity [34,35]. However,
maximum achievable diversity gain is determined by the signal detection approach [36].
Among various linear and non-linear MIMO detection schemes [34, 35, 37—43], maximum
likelihood (ML) detection is shown to be capable of attaining full diversity gain. ML de-
tection often transforms the detection to solve an integer least-squared of linear equations,
which has been proved to be NP hard [44,45].

Sphere decoding algorithm [42,43,46,47] is one applicable approach to realize ML de-



tection for MIMO systems. Described by closest-point-search or tree-search problems, the
sphere decoding can be classified into two major categories, depth-first search and breadth-
first search. The computation of the former is channel-dependent, and the resulted non-
constant decoding throughput makes hardware implementation more difficult. Due to the
constant computations, the sub-optimum breadth-first search is more practicable for im-
plementation, where parallel processing or pipelining techniques can be applied for high-
throughput decoder designs. K-best algorithm [48-51] is the very representative breadth-
first search realization. At each layer of the search tree, K best candidates are kept before
the algorithm proceeds to the next layer. In the worst channel condition, large K is required
for complicated modulation, 64-QAM for example, to maintain error performance similar
to the depth-first search decoders, resulting in unmanageable sorting complexity in circuit
implementation. Each of the two search strategy has its own advantages, and therefore
we consider a hybrid strategy, by which a pruning scheme is applied to the breadth-first
algorithms. Similar to depth-first decoders, the proposed pruning criterions are based on a
set of statistically derived radii. Given the channel model and design parameters (ex. error
tolerance), distinet radius constraint for each layer can be computed. Moreover, the statisti-
cal model for deriving the pruning criterions can be employed in analyzing the computation

complexity of the proposed early-pruned sphere decoders.

1.3 Channel Coded MIMO System

For a channel-coded MIMO system in Figure 1.2, sphere decoding algorithm needs to be
modified to list sphere decoding that generates a candidate list when probabilistic informa-
tion, also termed soft values, are required as the subsequent channel decoder input. The

list size is a tradeoff between error performance and computation complexity. The decoder



fails in computing the soft values when there is no sufficient candidates, and estimation for
soft values is required. Path augmentation techniques [38,49] were proposed to provide an
equivalently larger list that reduces the probability of failing to compute the soft values.
According to our simulation result, the candidate list size impacts the LDPC decoding con-
vergence. Thus, we present an augmented-list sphere decoder that guarantees the augmented

list always capable of delivering the soft values.

1.4 Thesis Organization

Algorithm level complexity reduction for designing sphere decoders and LDPC decoders are
the focus of this dissertation. By statistical techniques, essential parameters and complex-
ity can be analyzed, at design time, with improved simulation efficiency. The dissertation
can be organized as follows. In Chapter 2, MIMO system models are introduced, and sev-
eral MIMO signal detection methods are briefly reviewed. Then, the early-pruned sphere
decoding algorithms are presented in Chapter 3, including parameters derivations and com-
plexity analysis. Dynamic normalization techniques for normalized min-sum algorithm in
decoding LDPC codes are presented in Chapter 4, wherein an order-statistic-based analysis
combined with density evolution technique for deriving the dynamic factors is given as well.
Subsequently, list sphere decoder designed for channel codes decoded by iterative algorithm
is discussed; an augmented list sphere decoding with compensation is proposed. Finally,

Chapter 6 concludes this work.






Chapter 2
MIMO System

MIMO technology has emerged as a promising technique for reliable and high-data-rate
wireless applications due to the spatial multiplexing and diversity gains. The term diversity
gain refers to the slope of the error probability vesus SNR plot in a Log-Log scale. The
radio links between the transmit and the receive antennas provide multiple channels and
thus boost the system capacity. Thanks to the fading nature of the multiple channels, the
signal replicas at the receiver can be combined, and the resulted diversity gain improves
the received signal in terms of signal noise power ratio (SNR) and signal quality. Indeed,
the maximum achievable diversity gain is determined by the signal detection schemes as
the system spatial multiplexing strategy is given [36]. Maximum likelihood (ML) signal
detection is one nonlinear, and also optimum, detection approach that fully exploits the
system spatial diversity with the cost of much higher computation complexity as compared
to linear schemes such as zero-forcing, minimum mean square error (MMSE) detections or
successive cancellation [34,35,37]. In the following, a brief review of the system and the
channel models will be given first, and MIMO detection schemes will be introduced later.
Accordingly, in Chapter 3 and Chapter 5, the models will be applied and simulated for the

study of sphere decoding algorithms, an efficient means to realize ML detection. .
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2.1 System Model
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Figure 2.1: Simplified MIMO system

Figure 2.1 illustrates a simplified NV, x N; MIMO system with N; transmit and N, receive

antennas. The information bits x(*) = [xgt)l, x%, . x% oy :L’g\t,i N ,x%g w, )T are first
converted to the complex signals §®) [sgt), §§ ), w0 Y N T via M(-) before spatial mapping,
where ¢ is the transmit time index and §; = ./\;l(:r,(f)l, x,(fé, s x,(fé v.)- The MIMO channel

is often described by matrix H(t,7) and

El,l(t, ’7') ing(t, T) e El,Ni (t, 7')
. h iy h B el h A, T
ey |2 Raalt. o) o, (1, 7) o
| Ao (87) hwoo(t,7) - haw(ET) |

Note that 7 refers to the propagation delay and iLl ;(t, 7) models the channel response between
the j-th transmit and i-th receive antennas. Represented by the superposition of n, resolvable

paths between each link, the channel matrix can be further described as

ng—1

Z H 1 — %), (2.2)
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where I:I%) contributes to the channel matrix of the k-th delay path. Thus the received

signals y(t,7) can be represented by

gl (tv T)
Uo(t, T ns—l
y(t,7)= Balt,7) = H(T’;)é(t)é(T — Tk). (2.3)
PR k::O
L gl(th) i

%) is usually determined by several factors in physical propaga-

Each element in the matrix H
tion such as antenna patterns, antenna spacing, and directions of signal arrival(or departure),
etc. More channel models are detailed in [34, 52|, and uncorrelated flat fading is one com-
mon and simple MIMO channel model among them. The channel response between the
7-th transmit antenna and the i-th receive antenna is modeled as a single-path narrow band
Rayleigh fading channel. That is, ny = 1 in (2.2) and each h;;(¢,7) can be modeled by

a circular Gaussian random variable CA/(0,1) [34,53]. As a result, the channel model is

irrelevant to the delay 7, and (2.1) is reduced to

AONAC 7 (t
R by
y . ACEAD A0
H(t,7) = HY = 21 2,2 £ (2.4)
i) 7 (t
| P BN e RN

where all izz(t]) are independent, identically distributed ( ii.d.) circular Gaussian random

variables. Accordingly, the relation between the transmit and receive signals becomes

12



Note that (2.5) only considers the impacts on signal propagation, a more general model
should be

y© =HOsO 4 3O (2.6)

where v(*) = [17?), 175“, o ,@%Z]T is the receiver additive noise vector and the 17,(:)’5 are i.i.d.

circular Gaussian random variables CA (0, o2).

Equation (2.6) applies to many linear space-time codes. Besides, ¥ and v can be further
replaced by an N, x T, matrix, and s by an /N; x T, matrix, to denote block transmission for
T. time interval. The system model (2.6) is still applicable as long as the channel remains
unchanged during the 7, time slots. For simplicity, the symbol time index ¢ will be omitted
henceforth. The spatial mapping will be referred to pure spatial multiplexing by which the
complex signal §; will be directed to the k-th transmit antenna. Furthermore, the channel

matrix H is assumed to have full rank and to be perfectly estimated at the receiver.

2.2 MIMO Signal Detection Algorithms

MIMO signal detection can be classified into linear detection and nonlinear detection [34,37],
and both approaches are often reduced to finding the integer least-squared solution for N,
sets of N;-dimensional linear equations. Linear equalization and successive interference can-
cellation are two representative approaches in the linear category, by which an unconstraint
least-squared solution is found and then quantized to the nearest integer values. For non-
linear detection, maximum-likelihood detection can achieve optimum performance with the
expense of higher computation complexity. In addition, iterative detection and channel de-
coding should be another category [38-41]. Either linear or non-linear detection can be

applied to provide the probabilistic information for iterative process between the MIMO
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detector and the channel decoder.

2.2.1 Linear Equalization

In an SISO system, impaired received signal can be compensated by equalizing the channel
response. Zero-forcing and minimum mean-squared error (MMSE) equalizations are the
two most common linear schemes. The same concept can also be applied to MIMO signal
detection; the transmitted § can be recovered from y by directly equalizing the channel
effects.

By singular value decomposition [54], the channel matrix H can be factorized into
H=UxZV (2.7)

where X is an [V, X N; matrix with elements o ; = \/)\7 forj =1,2,...,N,, and ), is the j-th
eiganvalue of HYH. U and V have dimensions N, x N, and N, x N, respectively; the columns
of U are the eiganvetors of H¥H and the columns of V are eiganvectors of HH” . Note that
UYU =1, and VV¥ = Iy,. The pseudo-inverse channel matrix H* = (H”H)"'"H" can
be derived by

H" = vZtu, (2.8)

where X can be computed by transposing ¥ then replacing the diagonal with Ui More-
7]
over, ©t3 = I,; when N, = N,, HT = H!, i.e. the inverse of the channel matrix.

Zero-forcing (ZF) equalization can be realized by directly multiply the received vector y

14



by H*: as a result,

H'y = (VETU")(H)s+ (VETUT)v
= (vEtUf)(Uuzvihs + (VZtuf)v

= s+HV. (2.9)

The ZF solution can be derived by quantizing I:I+$f to its nearest integers. As shown in

(2.9), the noise is scaled by H. The effective noise power can be computed by

E[(H')"(H'V)] = (HA") B[]

= BT (2.10)

The potentially reduced SNR and degradation from the resulted noise enhancement limits
the system performance. Moreover, it can be shown that the maximum achievable diversity
gain is N, — Ny + 1 [36], provided that N, > N; and very high probability of H having full
rank.

MMSE equalization aims to substitute the H* in (2.9) by other compensation matrix
such that the average enhanced noise power is minimized, which is equivalent to maximizing
the detector output SNR. Given p as the received SNR, the MMSE equalization estimates §

by multiplying y with

I o\ T
Disse = ( N +HHH) HY. (2.11)
p

When the receive SNR p is high, the Dygsp (2.11) approaches to (H7H)'H? = H*.
That is, the MMSE detection reduces to zero forcing at high SNR region. MMSE detection

improves the error performance at low SNR region, but has the same diversity gain of
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the zero-forcing equalization, which is at most N, — N; + 1. Moreover, MMSE equalizer
requires accurate received SNR estimation for deriving p in (2.11) and computation of matrix

inversion, leading to higher hardware complexity.

2.2.2 Successive Interference Cancelling

The MIMO system described in (2.6) can be rewritten as

= Ipd+ Y h5+9, (2.12)

where flj denotes the j-th column of the channel matrix H. The second term of (2.12) can
be regarded as interference to §x. Subtracting the partially detected symbols from y makes
it easier to detect the rest undetected symbols, provided that the probability of correctly
estimating these partial symbols is very high. Similar to decision-feedback equalization in
an SISO system, probability of correctly estimating the rest undetected symbols increases
since some of the interference are removed. Besides, the computation complexity of jointly
decoding the whole vector could be much higher than that of estimating partial symbols. By
this divide-and-conquer strategy, successive interference cancelling (SIC) reduces the compu-
tation of decoding one high-dimensional vector to several less complicated operations. SIC
could suffer from severe error propagation if the first few symbols are detected incorrectly.
Thus, proper ordering is required for SIC to achieve better error performance [55,56]. The
symbols with larger signal strength should be detected earlier. After ordering, SIC completes

the detecting in N, stages. At the k-th stage, the S, can be detected after the following two
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steps:

Interference cancellation: Let §;,8,,...,5,_1 be the estimates of 51,59,...,5,_1.

By subtracting them from ¥, the less interfered received vector ¥*) will be

k—1
y® =5 -3 §h; +v. (2.13)
j=1
Moreover, it can be verified that
y® =5*D _ 5 hy_ . (2.14)
Interference nulling: After the previous step, the interference from sy, So, ..., 51 is
removed. Interference nulling will suppress the interference from Sgi1, Skyo,...,5n, to

derive $;. The nulling process is equivalent to solving V.. sets of (N;—k+1)-dimensional
linear equations, and thus, the aforementioned zero-forcing or MMSE equalization
approaches can be applied. Since only one symbol is decoded at this stage, the nulling
process only requires the k-th row of the zero-forcing ps$udo—inverse matrix, denoted
by Z;, or the MMSE matrix, which is (I% + ZkHZk)_ Z1 for computing ;. This
row vector will be referred as nulling vector. Then §; can be obtained by computing
the inner product of ¥*) and the nulling vector. Note that Z,, is derived by replacing

the first & — 1 rows of H by zero, and Z} is the pseudo-inverse matrix of Zj.

Another common approach to suppress the interference is to subtract the projection

of ) on b1, bpys, ..., by,, where b1, biia, ..., by, are the orthonormal basis of

t

the subspaces created by flkH, flk+2, ceey let. The orthonormal basis can be derived

via Gram-Schmidt orthonormalization procedure [54]. Accordingly, the resulted vector
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y(*) for deriving §, can be obtained through

Ny
yH =3® — 3" <§W b, > b, (2.15)
Jj=k+1
where < aj, a; > denotes inner products of vectors a; and as. Subsequently, detecting
5 from y*) becomes a SIMO detection problem, maximum ratio combining or equal-

gain combining schemes can be applied to obtain §; [34,37].

For k > 1, the effective channel matrix that an SIC detector deals with has smaller dimension
than H does, the enhanced noise power is smaller, leading to better error performance. Bell
Lab layerd space-time (BLAST) architectures [35,57-59] can be categorized in this type.
Moreover, the diversity gain has been proved to be greater than N, — N; + 1. In fact, the

maximum achievable diversity gain varies with k, which is N, — N; + k.

2.2.3 Maximum-likelihood Signal Detection

Based on the system model ¥ = HS +¥ described in (2.6), maximum-likelihood (ML) signal
detection estimates the transmit vector s by searching for a vector § that maximizes the
conditional probability

§ = arg max Pr(yls), (2.16)

s'€QNt
where Q denotes all possible constellation points of the mapping function M (). Following
the Gaussian noise in channel model (2.6), (2.16) can be further reduced to a closest-lattice-
point searching problem [47],

§ = arg min |y — Hs'|?, (2.17)

eVt
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where each s’ denotes an N,-dimensional lattice point of the lattice generated by H. Note
that ||a]|?> = S 5, a? represents Euclidean-norm of the N-dimensional vector a, and QN =
QX x-x Q, the N; times Cartesian product of Q. ML detection has been proved
to be one MIMO detection scheme that fully utilizes the benefit of diversity, and has been
applied to analyze performance of many systems and space-time codes. However, it is
perceived in (2.17) that the computation complexity increases exponentially with N, x |€|.
Thus, efficient searching algorithms to realize ML detection are desired for high performance
MIMO systems. Sphere decoding algorithm [42,43] and sequential detection [38] are two
applicable approaches. However, the efficiency of these algorithms depends on the searching

strategy, which is still challenging in hardware implementation.
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Chapter 3

Sphere Decoding Algorithm

For all the schemes introduced in Chapter 2, the computation complexity are ranked in an
ascending order by ZF, MMSE, ZF-SIC, MMSE-SIC, ML, and the order is the same for
the error performance and the achievable diversity gain. Realization of ML detection for a
high performance system is still very challenging, exhaustively searching for the minimizer
in (2.17) or the maximizer in (2.16) is infeasible. In fact, ML detection often transforms the
detection to solving an integer least-squared of linear equations, which has been proved to
be NP hard [44,45]. Alternatively, sphere decoding algorithm was proposed and proved to
have tractable polynomial complexity [42,43,46,47,60,61]. Thus real-tim ML detection is
still applicable. However, the complexity depends on the efficiency of the search strategy.

Several variation of sphere decoding algorithm will be introduced in the following.
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3.1 Sphere Decoding Algorithm

The complex system model in (2.6) is often rearranged into the real-valued form by

Ri5)
y =
st
_ R{H} —S{H} R{s} N R{v}
_%{ﬁ} R{H} S{s} S{v}
= Hs+v, (3.1)

where R{-} and I{-} respectively refer to the real and the imaginary parts of a complex
signal. The complex modulation M() also is decomposed into two real-valued signal map-
ping M(-). For instance, M2-QAM mapping is transformed two M-PAM modulation. Then
(2.17) becomes

Sy = arg min ||y — Hs'||%. (3.2)

s’ €2Vt
A sphere decoder searches for the minimizer in the hypersphere ||y — Hs'||? < C, and the

ML solution can be obtained by

o . T2
Smr R Sgp = arg s’eﬂth,rHr}lrl—an’H?gC lly — Hs'||%, (3.3)

provided that the radius is properly selected such that the sphere contains at least one lattice
point.
Preprocessing on y can further transform the problem into a tree-search problem. With

@ R-decomposition [54], for instance, the channel matrix is decomposed to H = QR. Mul-
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tiplying y by Q' we can transform (3.3) to

A o : . 112
Sgp = arg s/GQQNt,IHI(l:PRs’HQgC la — Rs'||%, (3.4)

where q = [¢1,¢2, - - -, 2nv,] = QL.

The path metric defined on Euclidean-norm of each lattice point s’ can be calculated by

2Ny 2Ny
la=Re|? = Z(qz ZRM) (3.5)
2Ny

= Z e(s®), (3.6)

where the partial path s is a subset of s’ and s = [s;, s;11, ..., 82x,]. Moreover, the partial

Euclidean distance (PED) of s®), T'(s®), is defined by

=) = %( %RZ ]s])

e -
— Z ( ZRZ Js]> ( ZRJSJ) (3.7)
i =i+1 P

= T (st 4 e(s?).

Accordingly, the search algorithm starts from the 2/N;-th layer of the tree, which will be
termed root node, to the 1-st layer of the tree, which will be termed leaf node. Each element
of every s’ refers to a distinct node of the tree. The number of nodes visited during the

searching procedure determines the computation complexity.
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3.1.1 Depth-First Search and Breadth-First Search

From (3.4) and (3.5), the lattice points in the hypersphere should satisfy the following

constraint

C Z (QQNt - RTQNt,QNtSQNt)Q

2
+ (gan,—1 — Ran,—1,2N,—152N,—1 — Ron,—1,2n, 52N,

+ (qu — Ri151 — Ri280 — - — Rian, Sam,)>. (3.8)

Therefore, C' > (gan, — Ran, an,52n,)> and say, is confined in the range

Ron,on, | — g e .

by the lower bound

e e g
LB2Nt($2Nt) = ’VRtiN—‘ (3.10)
2N;,2N;
and the upper bound
C + q2n,
UBsni(san,) = {RﬂJ i (3.11)
2N;,2N;

Subsequently, for any soy, of this range, the range for syn, 1 will be derived similarly, and

so are the ranges of the nodes extended from them. That is,

—C, (sk+D)
LBk(Sk‘S(k-l—l)) _ [ k(s )+ qk|k+1w <s
Ry x

< {Ck(s(kﬂ)) + Qrlk+1
- Ry 1

(3.12)

J = UBk(Sk‘S(k-H))
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where s;|s**1) denotes the node on the k-th layer extended from the partial path s**+1

Qi|k+1 1s defined by
2N,

Qhkr1 = Q — Z Ris™*Y, (3.13)
i—k+1

and Cy,(s**Y) is the partial radius for s*+1) ie.,
Cip(s®D) = ¢ — T(s*+D)), (3.14)

According to the notations introduced above, the original Fincke and Pohst [42] searching

algorithm can be described as

e Input: q,R,C,Q = {wy,ws,...,w}, where w; < w1y and Q7 Hw;) = [ for all [ =

1,2, M—1.
e StepO (Initialization): k = 2N, di = C, qyje+1 = Gon, -

e Stepl (Computing the range): LBj = [%—‘, UB;, = L%J, and [, =

Qfl(LBk) — 1,5, = wy.
e Step2 (Radius check): I = lp + 1,5, = wy,. If s < UBg, go to Step 4; else, go to

Step3.

e Step3 (Move to upper layer): k = k+ 1. If k = 2N, + 1, terminate algorithm; else, go

to Step2.

e Step4 (Move to lower layer): k = k — 1. If £ = 0, go to Step5; else, qupi1 =
g — SN Riyst Y, O = € = T(s+D), then go to Stepl.

e Step5 (One candidate found): Record the s and its corresponding 7'(s). Then Go to

Step2.
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As we can observe in the above algorithm, the algorithm starts from a root node, and the
search moves upward if the the current path metric exceeds the upper bound U By; otherwise,
the search proceeds downward. The search direction goes back and forth, and therefore the
algorithm is also referred to as depth-first search.

Efficient hardware implementation of depth-first sphere decoding algorithm becomes dif-
ficult since the computation highly depends on the channel, and the non-constant compu-
tation restricts the decoder throughput. Moreover, the two-way searching direction makes
it more challenging to apply parallel computing or pipelining techniques [62] to improve
decoder throughput. Consequently, K-best algorithm [48,49] similar to the M-algorithm in
sequential decoding [63] was proposed. K-best algorithm modified the original algorithm by
its search direction. The K-best algorithm starts from the root-layer, and only the nodes
corresponding to the K smallest PEDs are kept before the algorithm proceeds to the sub-
sequent lower layer. When the search moves to the subsequent lower layer, each one of the
retained K best partial paths (parent nodes) is expanded to M, paths (child nodes), and
totally M. x K partial paths’ PEDs will be computed and compared for the new K best
PEDs. The same operations continues until the first layer is reach. Hence, the search in the
algorithm becomes uni-direction, which is referred to as breadth-first search. Because the
modified algorithm only searches for local minimas at each layer, the K-best decoder may
not always returns the true minimizer in (3.3), leading to performance degradation when K
is too small. However, the constant computation at each layer and the recursively derived
path metric described in (3.6) and (3.7) make K-best algorithm more suitable for VLSI

implementation [49-51].
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3.1.2 Complexity Reduction Techniques

It is perceived that the computation complexity for a depth-first sphere decoding depends
on the channel, i.e. R and the noise variance, as well as the radius C' selection of the
hypersphere. The computation complexity of a bread-first sphere decoder is dominated by
the value K and the sorting operations for keeping the K best PEDs.

For depth-first strategy, if the chosen radius C' is too large, too many nodes will be
examined, leading to much redundant computation. But if C' is chosen too small, chances
are all the nodes will be pruned during the search process. In this case, C' should be modified
to a larger value and the algorithm will start over. Therefore, the computation complexity
is highly related to the selection of the radius. Omne straightforward choice of the initial

radius is the Euclidean norm corresponding to the Babai point [47], which is denoted by

$8 = [8B,,(Byy -+ Bay,- ] and can be derived by
R —1 d2N;,
4B = Q ( JQ)
. 7\ Ran, 2N,
Gong—1 — Lon,—1,2N,5B
! i t t—1,2N¢° Bon,
g . Ron,—1,2N,-1 ’
2N; .
A o= 2052 Ruyse,
D () ( ;2 L-O (3.15)
1,1

where the function Q" (z,Q) returns the constellation point in € which is nearest to x.
Thus, the radius C' should be
C = |lq — Rsp|* (3.16)

In fact, the radius can vary throughout decoding. When a leaf node is reached, its path

metric never exceeds C. Therefore, we can always update the radius to the current path
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metric whenever a new lattice point satisfying the sphere constraint is found. As a result,
the radius shrinks each time the searching proceeds to a leaf node, allowing more paths to
be pruned. With this radius updating concept, Schnorr and Euchnorr made a small but
significant modification to the original Fincke-Pohst search strategy [46]. Unlike the Fincke-
Pohst strategy checking the nodes on the k-th layer, within the range LBj and U By, with

the order

Wy Wity -+

the Schnorr-Euchnorr approach checks the nodes with an ascending order of

 — -

with

8 = Q! (q'“ = Z%VZ“ Hics®s , Q) . (3.17)
k,k

That is, the nodes corresponding to smaller PEDs will be examined earlier, and the search

is quaranteed to reache the leaf nodes more quickly. Moreover, the radius shrinks in a faster

rate, resulting in more early-pruned nodes. Other radius shrinking techniques to accelerate

the algorithm convergence rate can be further referred to [64-66],

For bread-first search such as K-best algorithm, computation remains constant if K is
constant throughout decoding. The sorting operation directly relates to the complexity, and
choosing smaller K is a straightforward approach to reduce complexity; however, the error
performance may degrade. Since the K-best algorithm only searches for local minimums at
each layer, the probability of the ML-path being discarded increases when the channel in

low SNR conditions. It was pointed out in [67] that an adaptive K can effectively reduce

the computation complexity. With a signal quality indicator that is defined by the ratio of
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the second minimum and the minimum of the PEDs, a larger K is employed when the ratio
exceeds some threshold; otherwise, a smaller K-value is applied.

Statistic pruning, similar to the T-algorithm [63] in sequential decoding, is another type
of complexity reduction technique and can be applied to both depth-first and breadth-first
searching strategies. The paths with PEDs exceeding some thresholds will be ignored. More

details about the pruning schemes can be referred to [68-72].

3.2 Early-Pruned Breadth-First Sphere Decoding

Algorithm

Constant throughput and predictable complexity is the major advantages of breadth-first
sphere decoding algorithms, however, the decoder is often designed based on the worst
channel assumption to avoid performance degradation. In K-best algorithm, to achieve a
high probability of finding the minimizer in (3.3) by searching for the local minima, the
value K is usually large for complicated (dense) constellations, 64-QAM for instance. When
the received signals are severely impaired, which results in many small PEDs, large K can
prevent dropping the ML path, and therefore the average computation of K-best algorithm
is usually higher.

Pruning less likely pathes is one effective approach for complexity reduction. A depth-
first decoder inherently performs tree-pruning by its radius constraint. We can employ the
similar technique to a breadth-first decoder by setting an upper bound at each layer for the
PEDs. Although the computation is no longer constant, the single-direction data flow of the
breadth-first nature still corresponds to manageable complexity. With K-best algorithm,

the computation complexity remains predictable.
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In the following, a K-best sphere decoder with radius constraints will be presented,
including the derivation of the radius for each layer. Based on the statistical model, an
early-pruned multi- K-best sphere decoder, where distinct K'’s are assigned to each decoding
layer, is presented to improve the decoding efficiency. Since the radii equivalently exhibit
the data dynamic range of the PEDs, a coarse-granularity sorting strategy can be applied

for further complexity reduction.

3.2.1 Pruning Criterion

Let n = 2N, be the dimension of s, we wish to find a set of radii C™,C"=V ... CW for
a breadth-first decoder such that the i-th layer nodes are pruned when their corresponding

PEDs exceed C@. The radius C is derived according to the error tolerance ¢ for
Pr(Tﬁ)L EC L (3.18)

where T]E})L =0 (sg\?L) is the PED corresponds to the ML path defined in (3.7). Thus, when
the distribution of the ML path is known, the radii C® can be derived under the error

tolerance € for i =1,2,...,n.

Corollary 3.1. If v is an 1.i.d. Gaussian vector of dimension n and v; ~ N(0,0%) for
i=1,2,...,n, Qis an n x m unitary matrix, then r = Q?v is also an i.i.d. Gaussian vector

with 7; ~ N(0,0%) fori =1,2,... n.

Corollary 3.2. If v is an i.i.d. Gaussian vector of dimension d and v; ~ N(0,0?) for
i = 1,2,...,d, then r = v'v is chi-square distributed with degree d. The probability

density function (pdf), denoted by f@(r, o), and the cumulated distribution function (cdf),
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denoted by F@(r, o), of r are

d/2—1
T -Tr (72
72(1/2;@/2) (F) e "7 forr >0

f(d)(r,a) = (3.19)
0, for r <0
FO(r o) = % (3.20)

where I'(z) is the gamma function

[(x) = /OOO t" e dt (3.21)

and y(a, x) is the lower incomplete Gamma function

’y(a,x):/ - b il (3.22)
0

From the Gaussian channel model, Corollary 3.1 and Corollary 3.2, we know that
lqg — Rs||? is chi-square distributed with degree n, and the PED of the ML path sg\i/[)L is a
chi-square random variable of degree d = n — i + 1. When ¢ is given, the minimum C® is

the inverse of F@(¢®). That is, it can be derived by finding the C'” which satisfies
F@ (O@, %) o (3.23)

fori=1,2,...,n.
The radius C¥ obtained from (3.23) for the constraint (3.18) requires the knowledge of

2

the noise variance o“. However, it is difficult to acquire this value during decoding, and

real-time comput the radii CV, C® ... O™ results in huge computation overheads. Thus,
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not only the error tolerance €®’s, but ¢ should be treated as a design parameter as well.
For example, o2 can be selected according to SN R,,in, defined as the SNR value where ML
detection achieves some specific error performance. When the received SNR is lower than

SN R,,in, the transmit information is usually severely impaired and irrecoverable. Thus,

2

- azs bhe noise variance

only the SNR above SN R,,;, should be concerned. Consequently, o

corresponding to SN R, is regarded as an upper bound of the o2 in (3.23). As Figure 3.1

2

max?

shows, the value C'®) increases with o2 for some fixed e. Replacing o2 with o we can
determine the radii at design time and remains constants during decoding. Equivalently,
these radii provide looser radius constraints without effect on the error performance, but

could lead to computation complexity increase since more paths are retained.

CDF of Chi-Square Distribution with Degree = 1

Figure 3.1: CDF of chi-square distribution of different degree of freedom and various o?.

We have presented the approach to obtain the radii, ie. the upper bounds, of the PEDs
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at each decoding layer. The derivation is based on the Gaussian noise assumption and the

path metric is computed by Euclidean distances. When the path metric is defined differently,

the same constraint (3.18) still applies as long as the cdf of the path metric is given.
Replacing the path metric T'(s®) defined in (3.7) by taking the absolute value is one

common simplification in hardware implementation. That is, (3.7) is simplified to

n

T(sY) = >

i =1

qir — zn: Ri/,js;»i/)

=4
2Ny

(i)
qir — E Ri',ij
i'=i+1 i

= T(s“) 4 e(s?).

n

+

(3.24)

n
Q= Z Ri,j8§’)
=

In the following, derivation of the radii for the path metric (3.24) will be described by an

example.

Corollary 3.3. Given a random variable X with pdf gx(z), the pdf of |X| can be derived
by

gx(z) + gx(—x), for x > 0;
912 (2) = (3.25)
0, for x < 0.

Corollary 3.4. For i.i.d. randmon variables v, v, ...,vg with pdf f;, the pdf of Zle Vg,

denoted by f, , can be derived by

fs=h® Lo @ fy (3.26)

where the operator ® represents linear convolution.
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From Corollary3.3, the pdf of |v;| = |¢; — Z;‘:Z Ri7j3§-i)|, denoted by g(v), should be

2_exp Sia , forv >0,
glo) = VP (57) (3.27)
0, for v < 0;

for v; = ¢ — Y7, Rm-s;-i) is Gaussian distributed. Let f®(v) be the pdf of T(SE\Z) ).
Since T(s) = |gn — Rpns'| = |val, fD(v) equals to §(v) defined in (3.27). Follow-
ing Corollary3.4, (¥ (v), the pdf of T(sg\?L) = |v| + T(sg\ij;)), can be derived recursively
from

£ (v) PFED el W) (3.28)

ford=n—1i+ 1.
The aforementioned approach to derive the radii can be applied to other variations of
path metric as long as the recursive form (3.7) or (3.24) holds. Similarly, the radii can be

determined at design time and independent of the channel.

3.2.2 Multi-K-Best Algorithm with Radius Constraint

The radius constraints introduced in Section 3.2.1 allow the decoder to prune less likely
paths before it proceeds the computation of the next layer. Similar to the depth-first de-
coders, the computation also varies. To maintain predictable, manageable complexity, and
decoding speed, a maximum number of the retained paths at each layer should be set.

The combination of the radius constraints and K-best algorithm brings on an adequate
approach benefiting from both depth-first and breadth-first search strategies. At each layer,
the decoder first keeps all paths satisfying the radius constraint. Only the K paths corre-

sponding to the K smallest PEDs are preserved if the number of the retained paths exceeds
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K. Similar to K-best algorithm, a sorter is required to distinguish the K best paths, and the
sorting operation dominates the decoding computation complexity. If a constant K value is
chosen for each decoding layer, the suitable K value can be easily obtained by simulation. If
each decoding layer corresponds to a distinct K value, the resulted multi-K -best algorithm
facilitates computationally efficient and high-throughput decoder designs. However, empir-
ically deriving the multiple K values from a vast combinations is very time-consuming and
almost infeasible.

Instead of determining the multiple K’s by simulation, we analyze the expected number
of paths retained by the radius constraint of each layer, and the multiple K values can be
set according to the expected retained path number.

Let st be the ambiguous path of the i-th layer that also satisfies the radius constraints:

T(s(")) c™

a

IA

T(S((In-l)) < C(n—l)

~
w
IN

c9, (3.29)

Let €0 = T(sgi)) — T(sgﬂ)) denote the path increment of s, from layer-(i + 1) to layer-i,

and the following increment constraints must hold:

¢ = T(sg”)) < o
0= — sy — T(s(”)) < b _ =)
€0 = T(siD)y —T(s0) < O — oWt (3.30)
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for 0 < a(® < 1. Furthermore, s is |A®||? away from the ML path SE\Z)L. That is,

si =gl — A (3.31)

a

where A® = [AY AP ADT and A; € {£6,426, ..., +(M — 1)6} for M-PAM signal

mapping. Thus, the path matric of st is

T() = o —ROSI?
= |q® — R(i)sg\i}L + ROAO|32

— v+ ROAO2, (332
where R represents the last i-th rows of the channel matrix R. Note that

n 2
0= (w+ SR ,00) —r (339

j=i

which is also chi-square distributed with degree of freedom 1 and
1 =
0~ N <O,§(02 + Z(AW)) (3.34)
j=i

is a zero-mean Gaussian variable of variance %(02 + Z?i(Ay))?) = 1(0? + [|AD[]?). Let
us define \(¥ £ = ?:Z.(Aéi))Q which can be conducted to the recursive form
(A"

(@) — \(@+1)
O = X 4

(3.35)

Let F=(£D|A®) be the cdf of €@ for A®) is given. Figure 3.2 is an illustrative example of
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F=(CO — oOCEHDIND) for § = 7 of a 4 x 4 64-QAM system at SNR = 25dB, where the
noise variance ¢ is 0.0032 and the constellation spacing § is 0.0119. Note that Fg(C'® —
aDCED|ND) decreases as A increases. In other wards, a farther si” from s\), has lower

probability satisfying the radius constraints.

.—I:IT'-':‘T A=0 !
AR A=1 |
- = A=2
- - -r=3]]
|||||||)\:4
" 4
S
w 4
o
@)
™ ]
0.08 0.1 0.12

Figure 3.2: CDF of the x* variable £(A®) given various A = 5 Z?:i(Agi))Q

Moreover, since all the elements in R are i.i.d. Gassian random variables, n; and 7; are

also independent Gaussian random variables for all 4 # j. It follows that ¢® and ¢V are
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independent chi-square random variables. Therefore,

Pr(T(s) < W 7(sit) <ot 1) < ot | AD)

= Pr (5(1’) < CW — QW) i) < ol+l) _ (O o) el < o) | )\(i))

- HFE (C(j) — aWoU+D |)\(i)) ] (3.36)
Furthermore, the independency among the transmitted symbols s, s9, ..., s, leads to
Pr (A% = a) H Pr <A(Z ) (3.37)

for a; € {0,406, £24,...,+£(M —1)d}. Besides, each A® corresponds to a dinstint s over
all M"~**1 possible points in the (n—i+1)-dimensional sphere. With equal prior probability

assumption, we can have Pr (A() = a) Mn ——= and then

PR ()N = Wk = Pr(AY = a)
m% mz2+17 1 '7m121
4 . (3.38)
2 n—i+1’ :
mZ,mi g, ..., m2 M
where the integers
m; = 0:5—3 (3.39)
‘ A
forj =1,2,...,nand denotes the number of distinct {m?, m?,,,...,m2}
mZ,mi, g, ..., m2

resulting in A = " m?

Subsequently, let K be the maximum number of retained paths of the i-th layer, and
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N® be the average number of s satisfying the increment constraints in (3.30). By defini-

tion, N can be expressed by

NG = M P (T(s9) < 0O T(s0H)) < 00D (st < ¢
_ Mn—i+1 Z Pr ()\(z) — /\)
A

xPr (T(s?) < ¢, 7(s")y < D . T(s™) < C™ND = X). (3.40)

From(3.36)and (3.38), (3.40) becomes

)\ n n
V(@) _ ) _ @G+ [0 2
NO = 3 E 2 HF:<(JJ o) CUD| )0 _ij,)
m2m2, | em2 \ T Mgy ey My | =i J'=j
M-1 M-1 M-1 n n
= Z Z Z HFE (C(j) _ oW+ |6 = Zm]%) 7
mi:0 mi+1:0 my,=0 j=i ,],:,]
(3.41)
and K@ will be determined as a function of N®.
K% = [pN®] (3.42)

could be one simpliest form; the function [z] returns the smallest integer that is greater
than or equal to z.

The goal of employing multi- K-best algorithm is to reduced the complexity of the K-
best algorithm while remaining similar error performance. Thus we can confine 3 so that
max{K®|i = 1,2,...,n} < K. Moreover, the number of preserved paths decreases with i

because there are less paths that meets all the radius constraints from layer n to layer 7. An
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intuitive guess of the K@’s could be

K% < K, when ¢ is small;

K% ~ K, when i is close to n.

The K@’s can be determined by

K, ifi>n—ng

KO = (3.43)

WN(’” , ifi < n—ng.
for 6 > 0,0 < ng < n and K is parameter for the conventional K-best algorithm. Note
that ( is a tradeoff between complexity and performance. Now the problem of finding a set
of suitable n-dimensional K values is reduced to searching for a suitable 1-dimensional
factor, which can be easily derived empirically.

Note that N@ derived in (3.41) is dependent of a?, a1 ... o which are difficult
to be obtained. Thus we approximate all the o by a constant « for i = 1,2,...,n. It can
be observed in Figure 3.2 that the cdf F=(C® — aCG+|)) is a non-increasing function of a.
Larger o equivalently provides a smaller estimate of N®; smaller a results to over-estimate
of N and 0 < o < 1. Fig.3.3 illustrates the expected retained path N for n = 8 when
approximated by a constant «. It is observed that a is comparatively less related to N®
for low SNR scenarios, whereas for higher SNR environments N® explodes when « is too
small; consequently, little information can be delivered. According to the results in Fig.3.3,
a reasonable guess of « for the SNR above 20dB can be 0.9 < o < 1.0.

Approximated by o = 1.0, the expected number of retained paths N® for n = 8 is

shown in Fig.3.4. It is perceived that N increases exponentially with the dimension, which
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Figure 3.3: The expected retained path N® for n =8 and 0 < o) < 1.

is n — i + 1, of each decoding layer for low SNR values. For higher SNR, N® approaches
to some constant values, inferring that the early-pruning technique can provide significant

reduction in computation complexity when received signal strength is high.

For other path metric definitions, the same analysis techniques can be applied. By

modifying the distributions in (3.33) and (3.34), K®’s and N® can be derived.
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Figure 3.4: The expected number of retained paths N® for n = 8 and oY = 1.0.

3.2.3 Coarse-Granularity Sorting

Whether K-best algorithm or the aforesaid multi- K-best algorithm, sorting operation always
dominates the computation complexity. In fact, at each layer the decoder only requires the
K best values, which means the order among the K best values is unnecessary. Therefore, if

we can replace the strictly sorting by other approximately sorting schemes, the computation

complexity can be greatly reduced.

Since the radius constraint equivalently reveals the range of the retained paths, a coarse-
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granularity sorting strategy can be applied. First, the range of all the i-th layer path metrics,
which is (0, 0] | is partitioned into L regions, and an index I’ is assigned to the path metric
T(s) by
y l, if 2200 < T(sW) <
L+1, ifT(s?) >,

LC(Z‘);
L (3.44)
Let k; denotes the number of paths with index I’ = [, the decoder first finds the minimum /,,,,

such that k?1—|—]€2+"']€lmm > K and k1+k2+"'+klmw—1 < K. The k?1+]€2+"']€lmm_1

paths in region (0, M%C(i)] are then selected and kept. Finally, the decoder randomly

chooses K — ky — ky — =+ — ky,.,—1 from region (‘mee=lC0) lnee G0} Ag a result, sorting
can be approximated by a few comparators. Note that when there is no path satisfying
the radius constraint, i.e, all the I" = L + 1, the decoder has to search for the path with
minimum path metric. In this case, the number of retained path is 1. Figure 3.5 illustrates
a K = 6 example, and the balls in the [-th bucket denote the paths path metrics within
(lrm%lc(i)7 lrn%g(i)]'

=1 I=2 1=3 I=L-1 I=L

______ @,
) OO
O Q1O

OOCO

OO0

B

K=6: Randomly choose 3 paths at group 2

Figure 3.5: Coarse-granularity sorting for K = 6.
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3.3 Complexity Analysis

The computation complexity of sphere decoders can be measured by the number of floating
point operations, including multiplication, addition, and subtraction. For depth-first search,

complexity is often evaluated by the term expected complexity exponent [61], which is defined

as
1 20
EC é OgQ(n,O ) ) (345)
logn
where o2 is the noise variance and Q(n,c?, C) represents the expected number of floating

point operations corresponding to an n-dimensional hypersphere with radius C. By defini-

tion, Q(n, o2, C) can be expressed by

Q(n,0%,C) = (expected number of nodes in the sphere)

X (number of floating point operations per node). (3.46)

In [61], E. ~ ﬁ for large 0?; when o2 < 1, B, is almost constant for a wide range of n,
leading to the polynomial complexity that is expected.

The expected complexity exponent for breadth-first decoders can be defined in the same
manner. For conventional K-best algorithm that possesses constant computation, the ex-

pected complexity exponent is independent of % and

- log (K>~ 2(n—1i+ M))

E 3.47
CK log n Y ( )
which approaches to 11(; i Irf + 2 as n > M. Similarly, E. of multi-K-best algorithm is
log (31, KD2(n — i+ M))
ECMK ~ . (348)

logn
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Applying the radius constraints, the expected complexity expopnent of the aforemen-
tioned early-pruned breadth-first sphere decoding algorithm will be upper-bounded by (3.47)
or (3.48). Similar to the depth-first searching strategy, the complexity depends on the noise

variance 2.

3.3.1 Expected Complexity Exponent

By definition, the Q(n,o?,C) in (3.46) of the proposed early-pruned breadth-first sphere

decoder will be modified to

n

Q0 ey => NO(D)2(n —i+ M), (3.49)

=

where € = [¢(), @) ... e™]T determines the radii {CM,C?) ... C™} and N () is the
resulted expected number of nodes in the (n — i 4 1)-dimensional sphere of radius C”). The

expected complexity excponent, denoted by E¢,, , is

log (Z?zl NOE® a)2(n —i+ M))

Ec,, ~ (3.50)

logn

Fig.3.6 illustrates the Eo versus the sphere of degree n for the 8-PAM signal mapping
where the radii CM,C® ..., C® are determined by ) = ¢® = ... = ¢® = 0.0001 and

2 = ... = a® = 1.0. Besides, the Ex of the conventional 64-best algorithm is

o = g
illustrated for reference. It is observed that the expected complexity exponent increases
with the degree m when SNR is small. For larger SNR condition (SNR = 30dB in this
example), Fo tends to be a constant. Moreover, the E, of 64-best algorithm approaches

to some constant as well, indicating that the complexity of the two algorithms are both

polynomial with n in high SNR scenarios. Besides, the smaller E. shows the early-pruning
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scheme results in lower average computation complexity as compared to 64-best algorithm.

12 T T T T T T T
—8— SNR = 0dB
11K —— SNR = 10dB| |
—A— SNR = 20dB
—©— SNR = 30dB

''''' 64-Best

Expected complexity exponent

2 3 4 5 6 7 8 9 10
Degree of the sphere (n)

Figure 3.6: Expected complexity exponents (Ec) of early-pruned breadth-first sphere de-
coders.

3.3.2 Expected Computation Complexity

The concept of the expected complexity exponent was first introduced for depth-first sphere
decoders, and only the complexity of addition and multiplication are evalutated. In fact,
sorting complexity, which dominates the computation of breadth-first decoders, should be
considered as well.

Comparison is the basic operation for sorting, among several sorting algorithms, the
number of comparisons executed by an N-input sorter ranges from N log, N to N2. In the
best case, it takes about

> MKW log,(MKY) (3.51)

i=1
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comparisons to decode one n-dimensional M-PAM mapped signal by the multi- K-best algo-
rithm. Replaced by the coarse-granularity sorting introduced in previous section, the sorter
requires about K WM x L comparisons at the i-th layer, and the comparision number can
be reduced to K M log, L if binary-search is employed.

For strictly sorters, the sorting complexity of the early-pruned multi-K-best algorithm
is about X

> (Peoy N (€)M + (1 — Prew) K P M log, (K M)) (3.52)

i=1
where Py is the probabililty that the number of paths satisfying the radius constraint at

layer-i is less than K and no sorting is required. For coarse-granularity sorting approach,

the sorting complexity will be reduced to a linear function of N (i)(e(i)), which is

n—1 n
M (Z N+ (4D 1) + LY NO() (3.53)
=1 =1
or

M <nz_1 BL gL 1) + (log, L) Zn: N (D), (3.54)
i=1 i=1
Note that the first term in (3.53) and (3.54) is contributed by checking the radius constraints,
and the second term is resulted from the coarse-granularity sorting.

Furthermore, due to the regular computation of the path metric and the breadth-first
search nature, all the operations performed by the early-pruned sphere decoder can be easily
predicted by N@ (@), providing more explicit complexity analysis. That is, the number of
additions and multiplications performed by early-pruned sphere decoder can be estimated
by

n

> ONO(ED)(n—i+ M). (3.55)

=1
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3.4 Simulation Results

A 4 x 4 MIMO system was simulated. Random binary data with equal prior probability was
mapped by 64-QAM signaling and transmitted in an uncorrelated flat fading plus AWGN
channel. The results of error performance and average computation complexity are given in

the following.

3.4.1 FError Performance

Figure 3.7 and Figure 3.8 illustrate the symbol error rate and bit error rate of several
detection schemes. The ML detection is realized by Schnorr-Euchnorr sphere decoding
algorithm. All the C® are derived with €® = 0.0001 at minimum working SNR as 25
dB.

First, we can observe obvious diversity gain provided by the ML detection as compared
to the zero-forcing approach. Moreover, degradation occurs when the K value of the K-best
algorithm is small. It is perceived that K should be greater than 32 for this system, and the
error performance of the 64-best algorithm is nearly the same as the ML detection. Thus,
K = 64 is chosen for the early-pruned K-best algorithm, which is represented by EP-64-best
henceforth. Accordingly, with o = 1.0, nx = 3, and 3 = 4.5; the resulted K’s for the
multi- K-best algorithm are derived as 21, 25, 29, 32, 34, 64, 64, 8, from the first to the
eighth layer. Furthermore, the sorting operation of both EP-64-best and EP-multi-K-best
are realized by the coarse-granularity sorting where the range (0, C(i)] is partitioned into 16
regions, i.e., L = 16.

As it is shown in these two figures, the degradation resulted from the three schemes
(early-pruned, multi- K, and coarse-granularity sort) is hardly recognized for SER and BER

above 107°. In fact, it will be shown in subsequent that the computation complexity can be
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greatly reduced.
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Figure 3.7: Symbol error rate of 4 x 4 64-QAM MIMO system.

3.4.2 Computation Complexity

The computation complexity of a sphere decoder is determined by the number of nodes
visited during the tree-search process. Fig.3.9 illustrates the simulated probability of the
early-pruned sphere decoder combined with 64-best algorithm (EP-64-best). The probability
of k paths retained is truncated at k = 64, wherein the spikes shown in the four subfigures
of Fig.3.9. Moreover, for k > 20 in each of the four subfigures the probability becomes
small, which is about 1072 or smaller. The low probability reveals that the average number

of retained paths should be very small. Moreover, since the radii are derived by setting
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Figure 3.8: Bit error rate of 4 x 4 64-QAM MIMO system.

the minimum working SNR as 25dB, the shapes of the simulated probabilities tend to be
sharper for SNR lower than 25dB for the radii becomes too strict. Similarly, the shapes of
the probabilities become wider for SNR higher than 25dB since the radii becomes a looser
restriction. Furthermore, we can observe that the probabilities corresponding to smaller
layer index ¢ is sharper. This can be explained by regarding the early-pruning scheme as a
filter that filters out the less likely paths at each layer. The decoder proceeds from the 8-th
layer to the first layer. As a results, the number of paths satisfying all the radius constraints
becomes fewer when ¢ is small. Thus it is perceived in the figures that the probability
corresponding to ¢ = 1 has the sharpest shape for all SNR values.

Similar phenomenon can be observed in Figure 3.10, which is the simulated probability of
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the early-pruned sphere decoder combined multi- K best algorithm (EP-multi- K-best) where
the K@ for multi-K algorithm is 21, 25, 29, 32, 34, 64, 64, 8, from the first to the eighth
layer.

Figure 3.11 and Figure 3.12 present the average number of retained paths at each layer
for EP-64-best and EP-multi- K-best for different SNR values. The solid lines in both figures
are the expected number of paths derived by (3.41) with SNR equals to 30dB, a = 1.0, and
€®) = 0.0001. First, let us compare the results corresponding to SNR = 30dB. The expected
values are derived based on the radius constraints only, and the simulated average values are
derived with additional 64-best or multi- K-best restrictions. Thus the values derived from
simulation should be smaller than the theoretically derived values. The two figures show that
(3.41) can give a tight upper bound in estimating the expected number of retained paths.
Furthermore, the simulation results also shows that setting a”? = a = 1.0 can provide a
quite accurate approximation in computing (3.41).

Next, let us examine the results of SNR at 26dB and 30dB, which are higher than the
minimum working SNR (25dB). Since the radii become even looser constraints for the case
of 30dB, the number of retained paths is a little larger as compared to the results of SNR
at 26dB. Similarly, the radii are stricter restrictions for lower SNR values. As a result, it is
perceived in the two figures that the case of SNR at 16dB always has the smallest value for
the same layer index 1.

Table 3.1 shows the average number of operations performed for SNR at 30dB. Conven-
tional 64-best algorithm is presented as a reference, to which the results of other schemes
are normalized. It is perceived that by early-pruning and coarse-granularity sorting, more
than 90% of the computations, which are comparisons, multiplications, and additions , can

be saved. Furthermore, it can be observed in Figure 3.7 and Figure 3.8 that the degradation
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Table 3.1: Computation complexity

) Conventional | EP (Theoretical) | EP-64-best | EP-multi- K-best
Operation/Method

64-best (L = 16) (L = 16) (L = 16)

. 27648 545 425 401

Comparison

(100%) (1.98%) (1.55%) (1.46%)

o 5440 545 415 390

Multiplication

(100%) (10.02%) (7.63%) (7.17%)

5440 545 415 390

Addition

(100%) (10.02%) (7.63%) (7.17%)

at this SNR value is nearly imperceptible. Besides, although complexity reduction shown in
Table 3.1 from 64-best algorithm to multi- K-best algorithm is not significant, the benefit will
become more obvious in hardware implementation. On average, the number of paths satis-
fying the radius constraints is far less than 64, therefore the average decoder throughputs of
EP-64-best and EP-multi- K-best are similar. However, when the path number exceeds K,
the decoder reaches its lowest decoding speed. Since multi-K best with K® smaller than
34 for ¢ < 6 in this case, the corresponding worst decoding speed can be nearly doubled as

compared to EP-64-best algorithm.

3.5 Summary

In this chapter, early-pruning technique for breadth-first sphere decoders are proposed. A
set of distinct radii can be derived theoretically based on the error tolerance and the received
data statistics. Combining with K-best algorithm and the coarse-granularity sorting strat-

egy, computation complexity can be significantly reduced. Moreover, theoretical complexity
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analysis of is presented, ! providing the design parameters for early-pruned multi- K-best al-
gorithm. The analysis also shows that the computation complexity of the proposed schemes

is polynomial with the sphere degree.

! Acknowledgements are dedicated to Chien Ching Lin for his considerable contribution on the analysis
for Fig.3.3, Fig.3.4, Figure 3.6, Figure 3.11, and Figure 3.12.
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Figure 3.9: Simulated probability of retained paths for EP-64-best algorithm.
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Figure 3.11: Average number of path retained at each layer for EP-64-best algorithm.
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Figure 3.12: Average number of path retained at each layer for EP-multi- K-best algorithm.
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Chapter 4

Low Density Parity Check Code
Decoder

In 1963, Gallager [7] first introduced and proved low-density parity-check (LDPC) code
as a powerful error control scheme. Until the advances in VLSI technology, LDPC codes
were almost forgotten in the subsequent thirty years. Rediscovered by Mackay [8,9] and
then shown to be capacity-approaching [10-13], interests in LDPC codes eventually rose in
the late 1990s. The simple arithmetic computations and implicit parallelism of the LDPC
decoding algorithms facilitate low-complexity and high-speed hardware implementations.
Now, many advanced communication systems such as digital television broadcasting (DVB-
S2 [15], DMB-TH [16]), wireless local area network (IEEE802.11n [17]), wireless metropolitan
network (IEEE802.16e [18]), and 10G BASE-T Eithernet (IEEE802.3an [19]), employ LDPC
codes as the forward error correction (FEC) technique.

Being linear block codes, an LDPC code can be characterized by a sparse parity check
matrix H which has only a small fraction of non-zero entries. The sparseness of H inherently
reduces the computations in decoding. Moreover, H has a graphical representation [14, 73]
where the rows and columns are associated to check nodes and bit nodes, respectively. The
number of non-zero entries of each row or column is related to the degree of the corresponding
check node or bit node. An LDPC code has the same check node degree and bit node degree
is called a regular LDPC code. Otherwise, it will be referred to an irregular LDPC code.

Message-passing algorithm, also named belief-propagation (BP) algorithm [7,9,14], de-
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codes LDPC codes by iteratively exchanging probabilistic information between check nodes
and bit nodes. Moreover, the messages passed around are often represented by log-likelihood
ratios (LLR) where the multiplications are transformed to additions, leading to reduction
in computation complexity. However, some nonlinear operations are introduced. In this
chapter, approximations for the nonlinear operation in decoding LDPC codes are discussed.
A dynamic normalization technique will be introduced. Besides, analysis based on order
statistics [31,32] and density evolution [33] will be presented for deriving the normalization

factors.

4.1 LDPC Decoding Algorithm

An N-bit LDPC code can be defined by an M x N parity check matrix H = [h,|, where Ay,
denotes the entry on the m-th row and n-th column of H for | < m < M and 1 <n < N.
Note that only binary LDPC codes will be considered hereafter. Same as every linear block
code, each valid LDPC codeword x = |21, %3, ..., zn]’ satisfies the parity check equations
of Hx = 0. Maximum likelihood (ML) decoding is equivalent to searching for the most
likely codeword subject to Hx = 0. However, exhaustive search is infeasible when codeword
length N is large. Belief-propagation (BP) algorithm [7,14] is one common approach to
decode LDPC codes.

Tanner graph [73], which is also a bipartite graph [74], is one common graphical rep-
resentation for the parity checks of an LDPC code. Figure 4.1 is an illustrative example
of a 3 x 6 parity check matrix H and its corresponding Tanner graph. There are six
bit nodes, BNy, BNs,..., BNg, representing the 6-bit codeword x = [x1, o, .. .x6]T and
three check nodes, CNy, CNy, and CNj3, representing the three parity check equations of

H. Moreover, M(n) = {m : hp, = 1} is the set that check nodes connected to BN,,, and
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N(m) = {n : hp, = 1} denotes the bit nodes connected to CN,,. The number of edges
connected to a node is referred to the degree of the node. By definition, a regular LDPC
code has equal check node degree and bit node degree, whereas the ones with different check

node and bit node degrees are referred to irregular LDPC codes.

X
- %
110100 0
H5:101010:3:0
01001 1™ |0
%
| %5 |
Check
Nodes CN, CN, CN,
Bit
Nodes (BN,) (BN,) (BN,) (BN,) (BN;) (BN,

Figure 4.1: The parity check matrix and the corresponding Tanner graph

Let S, be the event that the parity check equations of CN,, are satisfied. In each decoding
iteration, the check node CN,, updates its outgoing message by the probability P(S,,|z, =
b), for all n’ € N(m) and b € {0,1}. After the bit node BN, receives all the messages from
the check nodes in M(n), the bit node updates its message according to the probability
P(x, = b|Sy,yn), where m’ € M(n) and y,, is the value received from the channel. Each
bit node can accumulate more reliable information from the others by iteratively exchanging
information between bit nodes and check nodes. The iterative decoding process proceeds
until a valid codeword is found or the decoding iteration exceeds a predefined number. If
the probabilistic messages are represented by log-likelihood ratios (LLR), Log-BP algorithm

can be described as follows.
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1. Initialization Under the assumption of equal priori, P(z, = 0) = P(x, = 1) = 0.5,
the decoder calculates p,,, the intrinsic information of BN,,, by

P(yn‘xn — 0)

pn = log :
P(yn‘xn = 1)

The message from BN,, to CN,,, denoted by ¢y, is initialized by ¢, = pn, while the

message from CN,, to BN,,, denoted by 7,,.,, is set to zero.

2. Iterative Decoding

a) Bit Node Updating

BN,, updates the message to CN,,, by

dnm = Pn + Z T'm!n, (41)
m/e{M(n)\m}

where the set { M (n)\ m} contains all elements in M(n) excluding m. Meanwhile BN,

decodes the n-th bit z,, by

07 if Pn + Zm’EM(n) T'm/n 2 O;
1

W, =
, otherwise.

The iterative process terminates when a valid codeword X = [y, 29, ..., 2x]|T is found,
i.,e. HX = 0, otherwise the Check Node Updating continues. If the iteration number
exceeds a predefined value, the decoder claims a decoding failure and terminates the

decoding procedure.

b) Check Node Updating

CN,,, updates r,,,, the message sent to BN,,, according to the messages received from
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{N(m) \ n} in which n is excluded:

Tmn = H sgn (QH’m) x Ut < Z lIl(‘qn,m‘)> ) (4'2)

n’e{N(m)\n} n'€{N(m)\n}

where
1+e™@
1—ea

U(a) = U '(a) = log (4.3)

As it is shown in (4.2), the nonlinear function W(-) is the most complicated operation
in computing 7,,,. Figure 4.2 illustrates the magnitude part of (4.2), where ¢, ¢, ..., qa,
represent the d, check node input magnitudes. The nonlinear function ¥(+) not only increases
the implementation complexity, extensive quantization loss resulted from finite-precision
representing W(-) limits the error performance of the decoder. Thus, some approximation

schemes had been proposed to facilitate circuit implementation.

q, —W() > : W) — Ir
q, —¥0) > 5 %(-P—v W) — I,
IS . |

4_(?—» P(e)—> Ir,

Figure 4.2: The architecture of the magnitude part of BP algorithm in (4.2)

Min-sum algorithm [20,21] discards the (d. — 2) smaller terms in the summation of (4.2)

and approximates the check node updating by

Trn, & | | sgn(¢um)  min - {|qum|}- (4.4)
/ we{N{m)\n}
n’€{N(m)\n}
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However, there exists a performance gap between min-sum algorithm and Log-BP al-
gorithm since min-sum algorithm always over-estimates the check node output magnitude.
Several low-complexity approximations using a correction factor have then been introduced
to compensate the performance loss [22-30,75]. The compensation modifies the min-sum

algorithm into the forms:

o TT santain) % min tlawol} ~ a) (45)

n'€{N (m)\n
e (N (m)\n} E{N(m)\n}

or

| | sgn(qn/m)x( min)\n}{\qn/mj}xﬁ), (4.6)

we(N(m)\n) P
where a and 3 are correction factors with a > 0 and 0 < § < 1.

Recently, shuffled decoding [76,77] has been proposed for better decoding convergence in
the iterative process. The major difference between a standard BP decoder and a shuffled
BP decoder lies in the message updating. The up-to-date messages computed at current
iteration are used in shuffled BP algorithm, whereas the messages computed in previous
iteration is used for standard BP algorithms.

Not only decoding convergence, the storage requirement in implementation can also
be reduced by shuffled BP decoding. Two memory blocks are required for standard BP
decoding; one is for the messages computed in the previous iteration and the other is for
recording the messages computed at current iteration. But the two memory can be shared if
applying shuffled BP decoding algortihm. Furthermore, potential improved decoding speed
can be another benefit. Since the intra-iteration nd the inter-iteration no longer exist, about
twice of the decoder throughput can be achieved by directly replacing standard BP with
shuffled BP decoding.
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However, shuffled BP decoding can be applied only in partially parallel or serial decoding
scheduling. Otherwise, the messages are updated concurrently in a fully parallel decoder,

and shuffled BP decoding will reduce to standard BP decoding.

4.2 Min-Sum algorithm with Dynamic Compensation

If a constant correction term in (4.5) or (4.6) is applied, they can be derived either empiri-
cally (by simulation) or theoretically (by analyzing statistics of the message distributions).
For LDPC codes of long block length, density evolution [11,23,27-30, 33, 78] can be ap-
plied to determine the correction factor that is optimized for the channel parameters, noise
variance for example. Except density evolution, averaging the difference between the min-
sum approximation and the BP decoding is an alternatively intuitive approach. In [25],
the normalization factors is determined by averaging the ratio of messages in min-sum and
Log-BP algorithms; in [26], the correction factor is chosen such that the mean square error
of approximation is minimized.

The derivations above only consider constant correction factors, however, constant factors
are not always to provide sufficient performance improvement. Although [30] suggests two-
dimensional normalization to reduce the performance gap between the constant normalized
min-sum and Log-BP algorithms, each of the bit node and check node output messages are
normalized by a constant still.

In fact, the normalization factor can be expressed as a function of the check node inputs,
and more accurate approximation can be expected. In the following, we will present an anal-
ysis based on order statistics and density evolution for deriving the dynamic normalization

factors.
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4.2.1 Dynamic Normalization Factors

It can be easily verified that the magnitude part in (4.6) is equivalent to

mlﬁh if |Qnm| 7é my
|7mn| = (4.7)

Mmoo, otherwise.

my and meo are the minimum and second minimum among the check node input massage
magnitudes. Note that each of m; and msy has a distinct normalization factor, ; and
Ba. Let q1,qo,...,qq, represent the d. magnitudes of a degree-d. check node, Figure 4.3
illustrates computation of (4.7). Subsequently, let m; be the j-th order statistic [31,32], i.e

my < mg < --+ < my,. If the normalized min-sum algorithm (4.7) accurately represents

Log-BP algorithm in (4.2), we must have

g (g
n/&{N (m)\n} (4.8)

=my

if ‘Qnm| 7é my, and

(e (S
n'€{N(m)\n} (4.9)
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for |gnm| = m1. The normalization factors are defined by

U (5 W (my))

B = - ; (4.10)
By 2 \Ij_l(ziw(mﬂ')). (4.11)

That is, 81 and 35 are distinct functions of the check node inputs. Thus, the data-dependent
normalization factors can provide a more accurate approximation. As Figure 4.4 shows, the
function U(m) decays rapidly with m. As a result, for all W(mg 1), ¥(mgi2),..., V(mg,)
that are relatively smaller than U(m), d.-dimensional functions (4.10) and (4.11) can be

simplified to K-dimensional functions as

V(i W) + 305 e BLY (my)mx]

ﬂl(mmea"')mK) ~ i (412)
mq
L K_H\If m;) + 46_ ENW(m;)|m
- 0 %K Won ]
2

All the U(m;)’s are approximated by the conditional expected values E[W(m;)|mg] for
j=K,K+1,....d.

For LDPC codes of relatively large codeword length, ¢;,qa, ..., qqs. can be regarded i.i.d.
with f(m) and F(m) as the pdf and cdf. Then f;(m), the pdf of j-th order statistic m;,

is [31,32]

d,!
(7 = DN de = j)!

fi(m) = [F(m) =" x [1 = F(m)]*7 f(m), (4.14)

forall j =1,2,...,d.. Consequently, E[¥(m;)|mg] and E[¥(m;)|mgi1]in (4.12) and (4.13)
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can be computed by

B[ (mj) m] = B[¥(m;)|m; > m]
S ¥(m) f5(m)dm (4.15)
— o ftmydm

and

B[ (m;)|mu1] = E[¥(m;)|m; > mg 1]
foo U(m) f;(m)dm (4.16)

MK+1

[ fi(m)dm

MK +1

L 2
MB
gl
=1
9,
D
o
S|

Sorter | '8”1

S
‘NE
N;Q i
-
A2 /
_?—_/

v |

vy

Decoder

Figure 4.3: Realizing normalized min-sum algorithm of (4.6) by sorting.

4.2.2 Message Distribution under Iterative Decoding

The K-dimensional normalization factors defined in (4.12) and (4.13) can be computed by
(4.15) and (4.16) when the degree and the input distributions are known. However, the check
node input distributions vary with the decoding iteration under message-passing algorithm.

Moreover, the distribution of first iteration is also determined according to the channel
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W(m)
IN

Figure 4.4: The W(m) function and W(m) decays rapidly as m increases.

statistics.

Density evolution is a technique to trace the message distribution under iterative decoding
and can be applied here for analyzing the dynamic normalization factors. Because the sign
and the magnitude of a check node can be updated separately, it is more convenient to
represent the pdfs of the messages ¢, and 7,7, in (4.1) and (4.2) by the sign-magnitude
representation. That is, the message pdfs fo(g) and fr(r) corresponding to a bit node and a
check node will be represented by two-dimensional quantities [So, fio|(¢)] and [Sg, fig ()],
where the notation ¢ and r stand for all ¢,,, and r,,,,. The terms Sg and Sr represent the

probability of ¢ and r having positive signs, which are calculated by

S0 [ " fola)d, (4.17)
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and

Sn= [ falr)dr (4.18)
0
The second term fig|(¢) and fig|(r) are the pdfs of the magnitude of ¢ and r, which can be
derived by
fial(@) = fo(a) + fo(—q) (4.19)
and
Nri(r) = fr(r) + fr(=r), (4.20)

for ¢ > 0 and r > 0.

It has been proved that the performance of an LDPC decoder is independent of the
codeword as long as the symmetry conditions are satisfied [10]. Hence we assume an all-zero
codeword x = 0 is transmitted to reduce the computation complexity of the following anal-
ysis. Without loss of generality, randomly and equal prior data are transmitted in binary
phase-shift keying (BPSK) signaling. Beside, a zero vector is assumed to be transmitted

through an additive white Gaussian noise (AWGN) channel and corrupted by a noise vector

2

v, a sequence of independent Gaussian random variables with variance ¢ and zero mean.

Thus, the received signal y = 1 + v is also a sequence of independent Gaussian random

2

variables with unity-mean and variance o°. Furthermore, the initial message of bit node

P(yn|xn:0)

PlynlzasD) — f—gyn, a Gaussian random variable with mean and vari-
n n—

BN,, becomes p,, = log
ance equal to 0—22 and ;%. With these assumptions, the distribution of messages and the
normalization factors of the [-th decoding iteration can be acquired recursively through the

following procedure.

Corollary 4.1. For two independent random variables ©; and ©, with pdfs fe,(0)1, fo,(0)2
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and sign-magnitude pdf pairs

Tl - [5617 f|@1| (01)]

TQ = [5627 f|®2| (02)]7
the pdf of ® = ©; + O, is

fo(®) = 5615@2/ fie11(0h) fle,) (02)d0
[01|+|02|=¢
+ (1—5@1)5@2/ fie.1(01) flon|(02)d0

—[01]+|02]=¢

+  Se,(1— S@z)/ fie:1(01) fio.(02)d0,

61| =102]|=¢
for ¢ < 0; (4.21)

B — (- sl / fionl (61 fio1(6a)d0

—101]—162]=¢

Lo A / fion (60) fioni(62)6

—|61]+02|=0

. S@l(l Bk S@Q)/ f|@1\(91)f\@2|(62)97

[01]—|02|=¢
for ¢ > 0. (4.22)

Moreover, the sign-magnitude pdf pair

[Sa, fla) (P)]; (4.23)

can be derived by
So= [ a(0)ds (4.24)
0
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and

fie| (8) = fo (¢) + fo (—0) (4.25)
for ¢ > 0.

Corollary 4.2. Let fo,(6;) and T, = [Se,, fie, (6:)], for i = 1,2,..., N, be the pdf and
the equivalent sign-magnitude pdf pair of N independent random variables ©1, ©,, ..., Oy.

The sign-magnitude representation for the pdf of

=)0 (4.26)
can be derived recursively by
A A(A(T1,T2),T3) -, Tn), (4.27)

where

T; = [Se,; fiei (03] (4.28)

and A(-) represent the process of deriving the sign-magnitude pdf pair of 6; + 6; based on

Corollary4.1.

Corollary 4.3. Let T; = [Se,, fle, (6;)] denote the sign-magnitude representation of the pdf
of a random variable ©;, i.e fo,(6;). Then, the corresponding sign-magnitude representation

for the mixture of the pdfs
N
i=1

will be
N N N

D o= > piSe, Y pifie(0:)] - (4.29)
=1 i=1

=1
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Corollary 4.4. M, M, ..., Mk are independent random variables and (3 is a K-dimensional
function of My, My, ..., Mg. Let the pdfs and cdfs of M;, j = 1,2,..., K, be denoted as
fj(m) and Fj(m). The pdf of the random variable R = M;3(M;, M, ..., Mg) will be

derived in the following.

Let R=1r, My =my, My = mao, ..., Mg = mg be one set of the solutions to
R:Mlﬁ(Ml,Mg,...,MK). (430)
Thus, for mo, ms, ..., mg are fixed, r is a function of m; only. Then, for all m; and the

given meo, mg, ..., Mg, the pdf of R can be expressed by the pdf of M; as

dr |~
Frlrlma,mg, . muc) =3 fan () |5
mi
= > fu(m)
mi
—1
X ‘ﬁ(ml,m% ooy mE) Fma S (my,me, . omg)| , (4.31)
where
, d
B'(my,ma,...,mg) = d—ﬁ(ml,mg,...,m;{). (4.32)
my
Therefore, for all solutions to
T:mlﬁ(mlum%mi’n”wmf{)? (433)
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the pdf fr(r) will be

— ZZ . .ZFJ’WQ(mQ)FJ’WS(m:g) < Fly (i)

mi1 mg
-1

X fMl(ml) ﬂ(mmea"')mK) +m1ﬁ/(mlam2a"'7mK)

Based on Corollary 4.1 to Corollary 4.4 and density evolution technique, the pdfs of

the messages can be derived recursively as follows.

e Step 1 [Output distribution of a bit node]:
Let the random variable (); represent the input message of a bit node of degree-i,
and [S 9 f](l) | be the equivalent sign-magnitude represented pdf pair. By (4.1), the
output distribution can be calculated from its input distribution [S](%l_l), f&‘_l)], which
is also the overall output distribution of the check nodes at the (I — 1)-th iteration.

Then, the sign-magnitude pdf pair of the output message can be derived according to

Corollary 4.2.

e Step 2 [Input distribution of the check nodes]:
The pdf of the check node’s input, denoted by f, (l), is a mixture of the pdfs fQ) derived

from Step 1, and
= v pils) (4.34)

i
where p; denotes the probability that the check node’s inputs are sent from a bit
node of degree i, and ) .p;, = 1. According to Corollary 4.3, the sign-magnitude

representation of fg) will be

@ fial = [szsg’ szf\ ] (4.35)
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e Step 3 [Output distribution of a check node]:
The output distribution of a check node will be calculated after its input distribution
[Sg), f|(3|] is derived at Step 2. For a check node of degree ¢, the sign of the check
node’s output is determined according to the sign operation in (4.2), and all the inputs
are assumed to be i.i.d. random variables, the probability ng that the output sign is

positive will be

SAY e

Jeven J

1 . .
= 511 -8g'+8¢) + (1= 55 =591

L D\i—
= SN - B (4.36)
According to (4.7), the check node has only two output magnitudes
Ry = Mlﬁl(MlaM%'“aMK) (437)

and

Rig = MyBy(Ma, M3, ..., Mg 11). (4.38)

Then the pdfs of R;; and Rj2, denoted by fr,, (1) and fz,,(r), will be expressed by the
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pdfs f](\?l (m), ]E?Q(m); and the cdfs F]EZ (m) for j =2,3,..., K+ 1. That is,

!
i (1) =
!
S© Fi(e2)Fiy (2s) - Fag (or) fo) (21)
T1,L2,..., LK
d -1
X {”(Il,l'g,...,l'}()+ZL’1%6£)(ZE1,I2,...7JZK)
1
(4.39)
and
F ) = 3 % 4.40
M]-(x]')_% Mj(m) ') = 4,90, ( )
for all x1, 2o, ...,z such that
37151(%7552, ceey xK) = 1
and
) = 03 F(ws) Py ()
T2,L35. ;LK +1
l
X F]/\4K+1(xK+1)fJ§/I)2 (z2)
5 W -1
X ﬁél)(l'g, CI, ,Z‘K_H) + xgd—ﬁé )(ZL‘Q, e 7.17[(_,_1)
X2
(4.41)
d
Fly (z;) = d—F]E?, (m) =34, K+1 (4.42)
J m J m=z;
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for all zo, x3,..., 2K such that

Tofa2(T2, 23, ..., TRp1) =T (4.43)

Note that f 1(%131 (r) and fgi)Q (r) can be derived by Corollary 4.4. Furthermore, we can
see from (4.7) that only one of the output messages will have magnitude R;5, and the
others will have magnitude R;;. The check node output magnitude |R;| will have the

distribution
1—1

1

00 = S 180 + 1) (144

Step 4 [Input distribution of the bit nodes]:

The input distribution of a bit node can be calculated by a mixture of the pdfs for
check nodes of different degrees. That is fg) = fz(zli) where fg? is the output
distribution of a check node of degree i, \; denotes the probability of the messages
coming from a check node of degree ¢, and ) *. A; = 1. Based on Appendix B, the input
distribution of a bit node can be calculated by [Sg), f|(1?|] = >, )\iSI(%lz, o )\if|(lR)i‘], and

can be used for the analysis of the (I 4 1)-th iteration.

Subsequently, repeat from Step 1 to Step 4, the distribution of the messages and the nor-

malization factors of each decoding iteration can be derived.

As the channel condition is given, the normalization factors of a specific LDPC code

can be analyzed by (4.12)-(4.16) and the 4-step procedure as mentioned above. Figure 4.5

and Figure 4.6 illustrate the normalization factors of the 64,800-bit, R = % LDPC code

specified in DVB-S2 [15] BPSK signaling under AWGN channel. Figure 4.5 illustrates [ for

K =1 at different decoding iteration and SNR while Figure 4.6 plots 3 for K = 2 at the

first iteration and SNR = 2.2 dB. Note that large m; or ms will require larger normalization
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factors. Furthermore, it can also be observed in Figure 4.5 that [ increases with the iteration

number and the channel SNR.

4.3 Implementation of Dynamic Normalization

So far, we have presented a means to estimate the normalization factors for each decoding
iteration. Although the distributions are analyzed at design time, the K-dimensional forms
derived from (4.12) to (4.16) are still complicated. Considering the implementation com-
plexity, further simplification on the normalization factors are required. Applying different
normalization factors at different decoding iteration will be costly in hardware implementa-
tion. Averaging the normalization factors over several iteration is a straightforward approach
to realize the dynamic normalization, by which the normalization factors become iteration-
irrelative. When given the channel SNR, the normalization factors become functions of the

(K + 1) smallest check node input magnitudes mq,ms, ..., mg 1

_ > By)(ml, My, ...,mg)PYO(my,mg,. .., mg)

4.45

s Zl P(l)(ml,mg,...,m[{) ( )

and
ﬁ — Zlﬁél)(m%m?ﬂ"‘?mK+1)P(l)(m27m37"'>mK+1) (4 46)

" Zl P(l)(m27m37"'amK+l)
where Bfl) (my, ma,...,mg) and Bél) (mg, ms, ..., mgy1) are the normalization factors for the
I-th decoding iteration; PY(my, my, ..., mg) and P®(my, ms, ..., mg1) are the probabili-
ties of the check node having its (K +1) smallest input magnitudes equaling to my, ms, ..., mg 1

at the [-th decoding iteration. Figure 4.7 illustrates the averages of (4.45) and (4.46) cor-
responding to Figure 4.5. Based on (4.45) and (4.46), three normalization approaches with

different complexities will be presented.
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Figure 4.5: 1-D (K = 1) normalization factors 1(m1) and f(ms) of the rate 2, 64,800-bit
LDPC code specified in DVB-S2.
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Figure 4.7: The averaged normalization factors in Figure 4.5.
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4.3.1 Direct mapping approach

As Figure 4.8(a) shows, the normalization is implemented by two look-up tables (LUT) where
my, Ma, ..., Mgy are directly mapped onto mq3,,, and ms[3,,,. This approach provides a
straightforward and highly precise approximation of the nonlinear function. However, there

exists overhead of storage requirement for the look-up tables.

4.3.2 Adaptive-§ approach

This scheme confines the choice of 3,,, and 3,,, to N candidates, which are denoted as

Bmy; and By, for j =1,2,... Ng. Moreover, let I'; and T’y denote the range of the check

node input magnitudes, which are also partitioned into Ni parts where I'y = ﬂjvj‘l I'y;
N
and T'y = ﬂj:RlFQj. For all [mq,ma,...,mg] € L'y, and [mq,ms,...,mg41| € Iy, the

corresponding B, and B,, will be assigned as [3;; and (5; which minimize the average

scaling error

Ngr

& 250

J=1

: (4.47)

d. —1 mij maj
1_(c 6J+iﬁj)
dc 67711 dc 67712

where T denotes the average of z. In fact, it will be shown by our simulation results that
K =1 can provide a quite accurate approximation for (4.2). Let us define single-3 approach
for K = 1, Np = 1 and double-B approach K = 1, Np = 2. For double-§ approach, the

normalization factors 3,,, and (3,,, can be determined by

(
ﬁlla if my S Tla

ﬁm1 - (448)
(12, otherwise;

\

ﬁQla if mo S T27

67712 - (449)
(92, otherwise,

\
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where T} and T, can be derived by uniformly partitioning the input range and adjusting

empirically after the normalization factors are determined.

4.3.3 Annealing approach

Sometimes the min-sum algorithm could be compensated incorrectly due to the finite preci-
sion and limited candidates of normalization factors. On one hand, the normalization factors
in (4.45) and (4.46) are averaged to the iteration number. However, the normalization fac-
tors tend to increase with iteration, the check node outputs may be over-normalized and
the messages are equivalently scaled by a smaller factor. On the other hand, min-sum algo-
rithm always over-estimates the check node updating; the check node output is equivalent to
scaling by a factor that is greater than 1. To prevent error accumulating with decoding iter-
ation, normalization may not be necessarily required every iteration. That is, normalization
can be applied intermittently. For example, given an integer L and the iteration number [,
normalization is applied only when (I mod L) # L — 1. It is equivalent to scaling the correct
check node outputs by another factor 4,y > 1, when (I mod L) = L — 1. For a check node

of degree d., vs can be estimated to be

Ngr Nr

de =1 1 1.0 1 1

dc 8 NR — /Bml]' . dc

. 1.0
NR i—1 Bm2j7

=

Vs (450)
where Np is the number of available 3’s.

Besides, this annealing approach equivalently provides more choices of 3 in finite precision
representation; we can derive other normalization factors by properly defining r and L when
Bm, and [3,,, are given. That is, the effect of scaling by ~y, should be balanced by the following

L — 1 iterations. Therefore the normalization factors at the L — 1 iterations are equivalent
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to Bml and Bm, where

- 1

By = By X v 77 (4.51)

and

1

By = By X s 71, (4.52)

for all L > 1. When L = 1, v, = 1, then Bml = B, and Bmg = B, Accordingly, more
choices of (3 are available by varying I when ( is restricted to finite number of candidates.
Thus, a finer resolution of 3 can be realized without increasing the message bit-widths. More-
over, the annealing normalization reduces computation and facilitates a more power-efficient
implementation. Figure 4.8(c) illustrates this annealing approach where the controller de-
cides if the dynamic normalization should be applied according to the current iteration
number /.

The following example demonstrates 3, and [3,,, derivation for different realization
approaches. To further reduce the implementation complexity, the values §,,, and (3,,, are
restricted to Y. 2" such that the normalization circuits can be implemented by few shifters
and adders.

Example: The R—%, 64,800-bit LDPC code in DVB-S2 [15]:

1. Parameters for analyzing the normalization factors:
There are 64800 x % = 25920 check nodes. Only one of the check node has degree 10
and the rest 25919 check nodes have degree 11. Let \; denote the probability that a

messages coming from a check node of degree i. Then A\j; ~ 1.0 and \;y ~ 0. Moreover,

Ng,
N Y

the probability of a bit node connecting to ¢ check nodes is represented by B; =

where Np, is the number of bit node of degree 7, IV is the total number of bit nodes,
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Figure 4.8: Architectures of different realization of dynamic normalization
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and ) . B; = 1. Hence, the probability p; defined in section III can be calculated by

_ NiB;, B,
PP NSiB B

In this example, N = 64800 and i = {12,3,2}. Therefore N, = 12,960, Np, =
25,920, and Np, = 25,920, leading to the following results: Bijs = 0.2, By = 0.4,
By = 0.4, and p1s = 0.545, p3 = 0.273, ps = 0.182. Therefore, the normalization
factors can be derived for different iterations based on the analysis in section III, and
averaged to the decoding iteration according to (4.45) and (4.46). Moreover, we only

consider the case K = 1 in this example.

. Determine the normalization factors:

2

5., 1} for simple im-

The normalization factors will be restricted in the set {%,
plementation. Besides, we only consider finite precision message representation that

represents the maximum magnitude by 4.0.

(a) Single-3 approach: 8, = 0.625 and f3,,, = 0.875.

(b) Double-( approach: The input is uniformly divided into two regions. Thus the
threshold 77 = 2.0 and 75 = 2.0. Then the normalization factors that minimize

(447) will be 611 = 05, 612 = 075, ﬁgl — 075, 622 = 1.0.

(c) Annealing, single-/3 approach: v, = 1.558 for L = 3. By (4.51) and (4.52), B, and
By, can then be determined to be 0.625% (1.558)"2 = 0.501 and 0.75x (1.558) "2 =
0.701, which will be modified into 0.5 and 0.75.

(d) Annealing, double-3 approach: 7, = 1.621 for L = 3. Similarly, 511, Bi2, Bo1, and

ng will be 0.375, 0.625, 0.625, and 0.75 respectively.
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For the Annealing approach with single-5 and L = 3, 7, is 1.558 according to (4.50)
where 8,,, = 0.625, 3., = 0.875 and Nz = 1. With (4.51) and (4.52), B, and B,
can then be determined to be 0.625 x (1.558)~2 = 0.501 and 0.75 x (1.558)~2 = 0.701
and modified into 0.5 and 0.75, the closest candidates in 2. Furthermore, the ~, of
the Annealing double-( approach is 1.621 according to (4.50), and the normalization
factors, (i1, Biz, Bo1, and By will be 0.375, 0.625, 0.625, and 0.75 respectively.

Figure 4.9 illustrates two implementation approach for this example, the direct-mapping
approach and the double-3 normalization. The normalization scheme in Figure 4.9(a) is
realized by a 2-dimensional (2-D) look-up-table (LUT), whereas the constant multiplications
in Figure 4.9(b), x% and X i, are performed by shifters.

In terms of area and timing, Fig.4.10 compares the circuit overheads in Figure 4.9(a) and
Figure 4.9(b) to that of min-sum algorithm. The check node unit that has degree 11 and
5-bit messages is synthesized with the 0.13-pm cell library in either area critical or timing
critical conditions. The gray portions in Figure 4.10 also present the additional gate count
and timing contributed by the normalization circuit. Both figures show that the 2-D LUT
direct-mapping normalization occupies about 50% of the gate count and 30% of the critical
path delay due to the large LUT growing in quadratic with the bit-width of the messages.
However, the double- approach requires only additional shifters and adders, leading to 5%
area (with 68 and 107 additional gates for each constraint) and 17% delay increases. It
will be shown in next section that similar error performance can be achieved by these two

schemes, however.
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4.4 Simulation Results

In the following, simulations based on 64,800-bit LDPC codes defined in DVB-S2 [15] are
presented. More than 3000 frames of LDPC codes, which equals to 3000 x 64800 x Rate =
1.944 x Rate x 10® bits, were simulated for each point. Moreover, belief-propagation al-
gorithm with floating-point messages, abbreviated to BP-FP, is simulated as the baseline
performance. Several aforementioned normalization approaches are compared. In the fol-
lowing, the adaptive-3 approach with K = 1, Ng = 1 will be referred to single-3 approach;
the adaptive-3 approach with K = 1, Ng = 2 will be referred as double-3 approach; nor-
malization by a constant will be referred to fized-8 approach.

The simulation channel is modeled as AWGN, and the randomly generated binary data
is modulated by QPSK signaling before transmission, where the LDPC decoder can be
initialized by the same method of BPSK. The maximum decoding iteration number is limited
to 50. Except BP-FP, all the messages for different normalization approaches are represented
by finite-precision; the bit-width of all messages are quantized to 6 bits. Considering low-
complexity implementation, the normalization factors are restricted in the set {%, %, .1

such that only few shifters and adders will be required.

4.4.1 Comparison of BP-FP and Min-Sum Algorithm

Table 4.1 compares the minimum working SNRs of BP-FP and min-sum algorithms, defined
by the minimum SNR for bit error rate (BER) below 1075. Note that the signal to noise

power ratio, SNR, is defined as

E
SNR = ﬁb + 101og,(2M, x Rate), (4.53)
0
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Table 4.1: The minimum working SNR, of BP-FP and min-sum algorithm

3 2 3 4 8 9
5

Rate i % % 5 3 4 9 10
BP-FP (dB) | -2.55|-1.35|-0.45|0.9|2.15|3.05 395 | 4.6 | 5.1 | 6.15 | 6.35
Min-Sum (dB) || -2.05 | -0.6 | 0.55 | 1.7 | 3.15 | 3.3 | 4.25 4.9 | 5.35| 6.35 | 6.55
Ays-pp(dB) 05 075 | 1.0 08| 1.0 |025| 03 [0.3]0.25] 0.2 | 0.2

2
5

(e[}

where 2. bits are mapped to one complex symbol. The finite precision formate (a, b) means
that (a + b+ 1) bits represent one message; where a bits are for the integer part and b bits
are for the fractional part, and the one extra bit is for the sign of the message. Different
combinations for (a, b) for a+b+1 = 6 has been simulated and the (3, 2) format will contribute
to the lowest error rate for min-sum algorithm for all rates. The term Ay;g_pp is the SNR
difference between the min-sum and BP-FP algorithms. According to Table 4.1, Ays_gp
is kept within 0.3dB for R > % since the codes work in better channel conditions such that
min-sum algorithm yields a good approximation. However, more accurate approximation is
necessary to improve the performance when R < % The proposed dynamic normalization
will effectively reduce the performance loss caused by min-sum algorithm for those codes

working at low SNR, environments.

4.4.2 Comparison of Dynamic Normalization Approaches

As it is shown in Table 4.1, R = % and R = % correspond to the largest SNR loss. Therefore
a discussion focused on the R = % LDPC code will be presented since there is larger room
for improvement. The resulted BER versus SNR for different normalization approaches are

compared in Figure 4.11. All the corresponding parameters resulting in the best working

SNR for different approaches are listed in Table 4.2 and Table 4.3. Note that the 2-D LUT

38



direct-mapping approach outperforms all the other normalization schemes, but has a great
storage overhead. The double-3 approach in Fig.4.11 has a comparable performance while
requiring few additional logics for normalization.

In Figure 4.12, the limited maximum decoding iteration for different normalization ap-
proaches are compared. When the iteration number exceeds this maximum value, the iter-
ative decoding terminates whether the codeword is decoded correctly or not. The proposed
double-3 normalization outperforms the fixed-3 approach while the former requires max-
imum 20 decoding iterations and the latter requires maximum 50 decoding iterations to
achieve BER = 10~° at similar SNR. Moreover, comparing the double-3 normalization with
min-sum algorithm, the former requires maximum 12 iterations and the later requires maxi-
mum 50 iterations to achieve BER = 10~° under the same SNR condition. Figure 4.12 shows
that when the decoding complexity and speed are both critical, the proposed dynamic nor-
malization improves the decoding speed of fixed-f and min-sum algorithm by about 60%
and 76%, respectively.

In Table 4.4, the performance of several normalization schemes are compared for all codes

with R < % The measurement of improvement is defined as

PRR = (1 - M) x 100%,
Ans-pp

where Aypp_pp is the difference of the minimum working SNR (SN R,,;,) between these

normalized-BP algorithms and BP-FP, which results from the approximation inaccuracy and

the quantization noise. Similarly, Ay;s_pgp is that between min-sum algorithm and BP-FP.

For R = i code that should work in low SNR condition, there is no suitable 3 in the set

%, %, ..., 1} for the fixed-(3 approach, leading to ITPR = 0. On the contrary, all the other

dynamic normalizations in this case can still compensate about 40% SNR loss. The average
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Table 4.2: Parameters of fixed-# and adaptive-3 approaches

Rate Fixed-/3 Single-(3 Double-f3
B | (ab) | Bm | Bm | (ab) | Bu | Pr2 Ty Bor | Bo2 T, | (a.b)
i 0.875 | (3.2) | 0.75 1.0 | (32)| 05 | 0.75 | 05 1.0 1.0 — 1(3.2)
% 0.875 | (2.3) | 0.75 1.0 | (2.3)|0.625| 0.75 | 0.625 | 0.875 | 1.0 2.0 |(2.3)
% 0.875 | (2.3) ] 0.625| 1.0 |(2.3)| 0.5 | 0.75 | 1.25 | 0.75 1.0 1.25 | (2.3)
% 0.75 | (3.2) | 0.625 | 0.875 | (2.3) | 0.625 | 0.875 | 1.5 | 0.75 | 0.875 | 1.625 | (2.3)
% 0.75 | (3.2) | 0.625 | 0.875 | (2.3) | 0.5 | 0.75 | 2.0 | 0.75 1.0 2.0 |(2.3)
Table 4.3: Parameters of the Annealing Adaptive-3 approaches
Rate Single-3 Double-(
Bima By | L | (ab) | Bu B2 Ty Ba1 B2z Ty L | (a.b)
% 0.75 1.0 131(32)10375| 05 | 05 | 0.75 | 0.75 — [ 31](3.2)
% 0.625 | 0.875 | 2| (2.3) | 0.625 | 0.75 | 2.0 | 0.75 | 0.875 | 1.5 | 3| (3.2)
% 0.625 | 0.75 | 3| (3.2)| 0.5 [0.625| 1.5 | 0.625 | 0.875 | 1.125 | 3 | (2.3)
% 0.5 [ 075 | 2|(23)| 0.5 |0.625]|1.75]0.625| 0.75 | 2.0 | 2| (2.3)
% 0.5 ORI 3 | %L (D @8 5. 2270 L O | (.73 1.0 | 3|(2.3)

degradation Aypp_pp and the average improvement IPR are also given in Table 4.4. It

shows that the double-3 approach outperforms the others on average. The average SNR

loss, Axygp_gp, is reduced to 0.2dB while Axpp_pgp of the fixed-3 approach is 0.5dB. The

average improvement of double-3 approach is 72.9%, which is more than twice averaged

IPR of the fixed-3 approach.
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Table 4.4: Comparisons of different normalization approaches

; . Annealing | Annealing | .
Rate Measure BP-FP | Min-Sum | Fixed-3 Single-3 | Double-3
Single-8 | Double-f3

. SNRpin(dB) || -2.55 | -2.05 -2.05 -2.25 -2.25 -2.2 -2.25
4 IPR(%) 100 NA 0 44.4 44.4 33.3 44.4
) SNRpin(dB) || -1.35 -0.6 -0.9 -1.0 -1.0 -1.05 -1.1
3 IPR(%) 100 NA 40.0 53.3 53.3 60.0 66.7
) SNRpmin(dB) || -0.45 0.55 0.25 0.0 5.1 -0.2 -0.2
> IPR(%) 100 NA 30.0 55.0 60.0 75.0 75.0
. SNRumin(dB) | 0.9 w7 1.3 1.1 1.1 1.05 0.95
2 IPR(%) 100 NA 50.0 75.0 75.0 81.3 93.4
5 SNRpin(dB) || 2.15 3.15 2.65 2.45 2.4 5 2.3
> IPR(%) 100 NA 50.0 70.0 75.0 80.0 85.0

ANBP—BP 0 0.81 0.5 0.32 0.29 0.25 0.2

Average
IPR(%) 100 0 34 59.54 61.54 65.92 72.9
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4.5 Summary

In this chapter, compensation schemes for approximation loss from Log-BP to min-sum
algorithms are discussed. The correction factors of normalized min-sum algorithm are shown
to be data-dependent. Based on order statistics and density evolution, the normalization
factors can be described as a function of channel statistics (ex. SNR), decoder input, and
decoding iteration number. Accordingly, several dynamic normalization approaches that
are applicable in hardware implementation are introduced. The simulation results based
on DVB-S2 show that the dynamic normalization is an efficient means to provide precise

compensation and preserve simple hardware implementation.
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Figure 4.10: Implementation results (one check node unit) of the 2-D LUT, double-3 ap-
proach, and min-sum algorithm for rate %, 64,800-bit LDPC code. The gray portion is the
overhead introduced by the normalization circuit.
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Figure 4.12: Comparisons of maximum decoding iterations for the rate %, 64800-bit LDPC

code applied with different normalizing techniques. The simulation parameters and finite-
precision message formats can be referred to Table 4.2.
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Chapter 5
Channel-Coded MIMO Receiver

In Chapter 3, sphere decoding algorithm has been shown to be an efficient and applicable
approach to realize ML detection for MIMO systems, and several techniques can be applied
to further improve the computational efficiency. Combined with channel coding scheme, the
additional coding gain allows the system work better in lower SNR environment. Instead
of hard-decision inputs, many advanced channel coding schemes, turbo codes [6] or low-
density parity check codes [7,9] for instance, require the received data to have probabilistic
information as soft value inputs. The sphere decoding algorithms introduced in Chapter 3
should be modified to generate the soft values (probabilistic information), and consequently
list sphere decoding algorithms can be employed.

Modified from a sphere decoder, a list sphere decoder (LSD) performs almost the same
operations but generates different output format. Not only the best guess of ML solution, a
candidate list containing other symbols which have high probabilities of being ML solution
is also delivered for computing the probabilistic information.

In the follow-up chapter, derivation of soft values from a list sphere decoder will be
introduced first. Under message-passing decoding, the influences of soft value generation
schemes are discussed, and low-complexity techniques for performance improvement will be

proposed.
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5.1 List Sphere Decoding Algorithm

Figure 5.1 illustrates soft-output MIMO detection realized by a list sphere decoder (LSD)
where L is the candidate list of size |£]. As the figure shows, an LSD primarily comprises
two parts, candidate list generation and soft value generation. Generally, the candidate list
generation can be realized by the sphere decoders introduced in Chapter 3, or by various
sequential detection schemes [38,79]. The list size |£| dominates the computation complexity

of the detector, thus it can be usually regarded as a parameter determined at design time.

¥
L(x, )
.| R Candidate List L Soft Value kJ
H—1 R mposifin “1 Generation 1 Generaton |

R
o

Figure 5.1: Soft-Output MIMO Detector.

5.1.1 Candidate List Generation and Soft Value Generation

An LSD differs from the conventional sphere decoder in the output format and the number of
the outputs. A candidate list will be generated and the soft values are computed accordingly.
If depth-first search is applied, the radius updating strategy needs to be modified as well.
Since the sphere decoder is required to generate a candidates list with size |£|, the radius
will be fixed until the list is full. When the number of the retained paths exceeds |L£|, the
path with the largest PED will be excluded from £, and the radius will be updated to the
currently largest PED in £. Therefore, sorting for the maximum PED is performed whenever

a new candidate is added into the list. As a result, sorting and radius-updating strategy
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dominate the computation complexity. For breadth-first search with radius constraints,
the same radius-updating philosophy should be employed. Considering constant decoding
speed and computation, K-best algorithm is inherently suitable for candidate list generation.
Moreover, the sorted K-best PEDs at the sphere decoder output can further reduce some
computations in soft value generation. However, achieving low-error-rate and low-error-floor
still requires a large K value.

For binary data, log likelihood ratio (LLR) is one of the most common description of
the probabilistic information for the received data. The LLR of the bit x;; is defined by its

a posteriori probabilities, which is

Pr(xk 0|Y)
L(zi;) =1 J
() = 18 B, = 1ly)
i e — r(y|zx,; = 0)
=1 2] 1 ] 1
B e = g gl o g (5.1)

The first term in (5.1) is the a priori information. This term is zero for ML detection or can
be computed by the extrinsic information provided by the channel decoder in an iterative
detection-decoding process [39]. Let M(:) denote the M-PAM mapping function such that
sk = M(xp1, Ta, -« - T, ). With Gaussian noise assumption, the second term in (5.1) can

be computed by

Pr(y|zy; = 0)
Pr(ylzg; =1)
ZS/GQ]"O Pr(y‘sl)

= log (5.2)
ZS/GQ]‘J Pr(y‘s/)
]‘ 2 2
~ﬁ(;gén Iy~ HSJ? = min 1y — TS ||) (5.3)
1
—( min [ly — Hs'r|2—mm Jy - Hs'||2), (5.4)
2 s'eq; Nt
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where o2 is the noise variance, and €2, is the the set of all 8" having xy; = b for b = 0, 1.

When preprocessing is performed, that is, g = QTy and H = QR, (5.4) will be

1 , )
ﬁ(m n lla—Rs"—  min flq- RSI|) (5.5)

5.1.2 Dynamic Compensation

In order to further improve the approximation accuracy for the channel decoder soft inputs,
an additive correction term that dynamically compensates the loss from (5.3) to (5.5) can
be introduced.

Let ng and ny denote the sizes of ;N L and Q;; N £ respectively, and ng + ny = [L£].

Moreover, let

2
Ao e la — Rs'| (5.6)
and
e’ il =R 1% (5.7)

Then we can express (5.3) as follows:

og D oseq,, Lr(yls) ~log > seq,, Lr(als’)
>scq,, Pryls) >_sica,, Prials’)
il no—1 2(’1Z mo)
_ (ml mO) L 0g ( +Z - ) (58)
20-2 (1+Zn1 162 2(b ml))
1
Sfﬂ(ml — My +10g n_l), (59)

where {mo,al,ag, ...,ano_l} = {T(s/)}Ws/ c Qj70 N E}, {ml, bl, bg, ceey bnl—l} = {T(S/)}‘VS/ c
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Q;1 N L}, are the path metric of the paths in €,,N £ and €,; N L. Note that

< logn— (5.10)

log LIPS log

n1 % d z )’ (5.11)

which is the intrinsic information required by an maximum a posteriori (MAP) detector.

As a result, the correction term and the intrinsic information can be combined as

1 no—1 2 i—Mmo) P h
b o (LB eEH ) (s, =0
1 + nq (]_ gl Z”l 1 62 2 (bi m1)) PT(ZEj = 1)

(5.12)

Notice that ¢ is modified to 11”0 to avoid logarithm of zero or infinity. Ultimately, the soft

value will be

1 14+n
L(Ikﬂ') ~ @ (m1 — My + ﬁlOg 1 T n(l)), (513)

where (3 is a normalization factor, and ny = |L|—ng. From (5.13), the compensation overhead
resulted from the dynamic compensation [ log 1+”0 are one multiplication, two logarithms,

and at most |£]| + 1 additions for accumulating ny.

5.2 Augmented-List Sphere Decoding Algorithm

Let us take a closer look at (5.4) and (5.5). Chances are Q0N L =0 or Q,;; N L =0, it
is impossible for us to find the minimizer in an empty set. In [39], it is suggested that the

minima can be approximated by a predefined large constant in case of empty sets. Figure 5.2
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is an illustrative examples for the empty set mentioned above. €2;, and €2, equally partition
the space of the valid constellation points. In Figure 5.2(a), we can always find minimizers in
both Q;0N L and Q;; N L according to the given £. An empty set is shown in Figure 5.2(b),
and the list contains only the symbols in €2;;. Then we can infer that z; ; has stronger
confidence in 1, which corresponds to a smaller cost function, i.e. Euclidean norm. In other
words, the weaker confidence in 0 should be represented by a large cost function. As a result,

a large constant Euclidean norm is assigned.

5.2.1 Dealing with the Empty-Set Issue

Although we can assume |L| is large enough so the empty set rarely occurs, and [39] fur-
ther suggested a list size larger than 512 is sufficient to maintain the desired error perfor-
mance. However, |£] = 512 is too large a list size for hardware implementation. Take
512-best algorithm for example, the average comparison operations per decoding layer will
be 4608 x M +logy, M (approximated by 512M X log,(512M)) for M-PAM mapping. More-
over, Figure 5.3 shows the rate of empty set versus the K value when K-best algorithm is
employed for generating the candidate list. It is perceived that the empty set rate decreases
much slower when K > 64 for 16-QAM and K > 128 for 64-QAM. In fact, this figure shows
the improvement from enlarging the list size becomes limited eventually.

When approximated by a constant, the probabilistic information derived from (5.4) or
(5.5) is equivalently added by an interference. Being the soft inputs to the subsequent
channel decoder, the additional interference resulted from the approximation inaccuracy can
hurt the error performance. Although the degradation can be mitigated by increasing the
list size such that the probability of €,0N L (or €;; N L) being an empty set reduces, the

computation complexity in generating the candidate list also increases.
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(a) Qj’lﬂﬁ#@ (b) Q1 NL=10

Figure 5.2: Illustration of the empty set issue

In [38,49], path augmentation techniques were proposed to expand L to a larger candidate
list £ before soft value generation. Since |£'| > |L£|, the probability of failing in finding
the minimizers in £ is reduced. In general, the computation overhead resulted from list
expansion is smaller as compared to directly generating a larger candidate list.

Although the path augmentation technique equivalently provides a larger list, we still
have to estimate the minimas since €2 N L or €, N L' could still be an empty set. When
this is the case, the simplest estimation of the minima is the the maximum path metric in
L'. This simple approach also applies to the conventional LSD where path-augmentation
technique is not employed. That is, we can estimate the minima by the maximum path

metric in L.

5.2.2 Path Augmentation

Not only computation complexity, efficient path augmentation should also guarantee a low
probability of failing in finding the minimizers. In the following, a path augmentation scheme
is proposed. The candidate list £ is expanded to distinct £y, for different zj; such that

we can always find the minimizers. Figure 5.4 shows the proposed augmented-list sphere
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Figure 5.3: Empty set rates for 16-QAM and 64-QAM 4 X 4 system, the candidate list
generation is realized by K-best algorithm.

decoder (A-LSD) in which the path augmentation can be treated as an enhancement; no
modifications are required for the candidate list generation (sphere decoder) and the soft
value generation.

When computing L(zy ), each path s’ in £ will be expanded to M paths by first du-
plicating s’ M — 1 times. Each the k-th element of the M identical paths is replaced by a
distinct w; from Q@ = {w;[j = 0,1,..., M — 1}, the M symbols of M-PAM constellation.
This duplicating-and-replacing procedure continues until all the paths in £ are examined.
As a result, £ is expended to Ly and |Lx] = M x |L£|. Although identical paths may be
found in Ly, €2;0N Ly, or ;1N Ly, will never be empty sets since the augmented list contains

all constellation points at the k-th layer. Figure 5.6 shows the augmented candidate list.
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Figure 5.4: Augmented list sphere decoder.

Compared with Fig.5.2(b), the empty set in Figure 5.6(b) is now covered by the expanded
L. Besides, L is believed to be more reliable, and the augmented list is supposed to be

reliable as well. It can be inferred that

min ||y — Hs'||> & mi y — Hs/||? 14

S’Gé?o || 2 ” s’EQj}OIllwk H S ” (5 )
and

mi y—H’2% min y—H/Q. 1

s’esli?’l ” 5 H s’enj}lﬂﬁk H 4 H (5 5)

Moreover, the path metric of the j-th expanded path from s’ can be computed by
T(s)) + (A;55)% + 24,/ %, (5.16)

where A; = s —w; for j = 0,1,...,M — 1 and ¥ = Zif\ik Ry, is the k-th column
summation of the channel matrix R.

Figure 5.5 illustrates an example of the proposed path augmentation scheme for com-
puting L(z50) and L(z51) in a 16-QAM 4 x 4 A-LSD. The equivalent 4-PAM 8-layered tree
can be represented by an 8-stage trellis diagram. Each s’ in £ corresponds to a distinct

path in the trellis. In this example, ' = {+1,—-1,—1,+1,43,—1,-3, -1}, M = 4, and
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Q ={-3,—1,+1,+43}. ¢ is first expanded to the four distinct path that contains all con-
stellation points of s; by duplicating-and-replacing procedure. Accordingly, €20, €201, and
Q40, ;1 can be constructed.

As Figure 5.6 shows, the augmented list £; equally partitions €2,y and €2;,. Note that

14+ng
14+nq

when the dynamic compensation (3 log in (5.13) is applied, ny and n; will be computed

from the original list L.
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Table 5.1: Average number of operations per bit for A-LSD

. K-best Path Soft Value Dynamic
Operation
Algorithm Augmentation Generation Compensation
CMP MW{:{ log,(MK) 0 YMK 0
MUL || 25222 (2N, — i+ M) IS 0 1
ADD || o232 (2N, — i+ M) A 1 <yK +1
MK
SQR 0 o 0 0
K
SQRT 0 — 0 0
Log 0 0 0 2

Note: CMP, MUL, ADD, SQR, and SQRT stand for comparing,

multiplication, addition, square, and square root operations, respectively.

5.2.3 Complexity Analysis

The aforementioned procedure needs to be performed 2N; times for decoding s, and (5.16)
is the major computation overhead. Since A; have limited values and ranges, they can
be realized by a simple look up table or a decoder. Considering the overhead from path
augmentation, £, can be augmented partially; the soft values are generated by the | L] x ~,
the most reliable paths for 0 < v < 1. The value v provides a tradeoff between complexity
and error performance.

TABLE 5.1 shows the average operation per bit for the proposed augmented-list sphere
decoder where candidate list is generated by K-best algorithm. Note that the number of

comparisons in the soft value generation increases since the |£| is now expanded to yM K.
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5.3 Simulation Results

An LDPC-Coded 64-QAM 4 x 4 MIMO system was simulated. Randomly generated binary
data are encoded by (1944, 972) LDPC code defined in IEEE 802.11n [17]. By direct spatial
mapping the coded information is transmitted via an uncorrelated flat fading channel. The
probabilistic information is generated by various list sphere decoders.

Subsequently, the LDPC codewords are decoded by Horizontal shuffled scheduling [76]
combined with normalized min-sum algorithm. Constant normalization factor is 0.875. At
most 10 iterations are performed to decode each LDPC codeword. For conventional list
sphere decoders without path augmentation, the log belief-propagation (Log-BP) algorithm
described in Chapter 4 is inapplicable due to the sensitivity to inaccurate input probabilis-
tic information. Slight interference resulted from inaccurate soft value estimation can be
amplified by the non-linear check node updating in the Log-BP decoding. As a result, the
erroneous messages traverse and spread through the iterative process, leading to poor con-
vergence and performance degradation. For fair comparisons among different list sphere

decoders, only linear decoding, min-sum algorithm for example, is employed.

5.3.1 Error Performance

The bit error rate (BER) in Fig.5.7 shows the influences of the aforementioned path aug-
mentation and dynamic compensation. Note that the minima in (5.5) will be set to D when
QioNL=0or Q;;NL=0. If dynamic compensation is applied, the normalization factor
([ = 1 are derived empirically. All the solid lines and dotted lines stand for the cases whether
dynamic compensation (5.13) is applied.

First, let us compare the performance of the conventional list sphere decoders without

compensation. As the figure shows, significant improvement is perceived when K, i.e. the
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list size, increases. To achieve BER below 107°, K should be larger than 128, otherwise
error floor arises. This coincides with Fig. 5.3 that the rate of the empty set decreases slowly
after k > 128 for the 64-QAM curve.

Fig. 5.7 also shows that the dynamic compensation improves the error performance at
low SNR region for all K values. However, the error flow presents still. Subsequently,
comparing 64-best LSD with 64-best A-LSD, a significant improvement is perceived when
path augmentation is applied. Not only the waterfall region, but the performance at the
error-floor region improves. It shows that 64-best A-LSD even outperforms the conventional
128-LSD. In fact, it will be shown that the overhead resulted from path augmentation is
far less than directly increasing K from 64 to 128. Furthermore, degradation of reducing ~
from 1 to 0.25 is less than 0.1dB at the waterfall region. At the error-floor region, similar
performance for v = 0.25 and v = 1 can be reached.

For other channel coding scheme, similar results can be obtained. Fig. 5.8 and Fig. 5.9
present the simulated bit error rates when the channel coding in the system is replaced by
the (648, 324) LDPC code in in IEEE 802.11n [17] and the rate-3z 480-bit convolutional
turbo code in IEEE 802.16e, which is also termed as WiMAX CTC. The LDPC code is
decoded by the same algorithm as the (1944, 972) LDPC code; the turbo code is decoded by
Max-log MAP algorithm [79]. Since the block length of the LDPC code and the turbo code
are comparatively shorter, the waterfall region is less obvious. But the two figures both show
that dynamic compensation and path augmentation provides significant improvements.

Although the results in Fig. 3.7 and Fig. 3.8 show imperceptible difference on the per-
formance at SNR smaller than 20dB, which is the SNR region where the channel decoder
works. However, Fig. 5.7 to Fig. 5.9 demonstrate the error performance is highly dependent

on the list size K. The simulation results show that the K value of the conventional K-best
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algorithm can be reduced to half, at least, when the proposed techniques are applied.

5.3.2 Influence of Candidate List Generation

Fig 5.10 illustrates the BER variation resulted from different candidate list generation
schemes for an augmented list sphere decoder. Dynamic compensation is applied for all

cases, and v = 1 for all cases. When the path metric ||q — Rs||? is replaced by

2N, 2N,
> la ZRJSJ , (5.17)
=1
the PED computed at i-th layer is also modified to
2N, 2N
T(s?) Z Z Rifs;1 (5.18)

then (5.1) is further simplified. Compared with S5 (q; ZQM R; ;s;)?, (5.18) has smaller
dynamic data range. As a result, the retained K best paths are not necessarily the same
as that derived from the conventional K-best algorithm, and a different candidate list can
be deduced. Due to the smaller dynamic rage, the probability of eliminating ML path dur-
ing breadth-first search increases. Compared with the 64-best A-LSD of Euclidean norm,
64-best A-LSD with (5.18) as the path metric has slight degradation at the waterfall re-
gion. However, thanks to the smaller data range, the simplification (5.17) and (5.18) lead
to better performance at the error-floor region. The A-LSD output distribution in Fig. 5.11
illustrates the difference between the two path metric computation. The smaller data rage
of the simplified path metric form means smaller variance, which will lead to faster con-

vergence under message-passing algorithm. Besides, it is explained in Chapter 4 that the
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normalization factor for min-sum decoding is a function of the LDPC decoder input. As a
result, constant normalization, referred to fixed-3 approach in Chapter 4, works better when
input distribution has smaller data range.

Fig. 5.10 also shows the BER when K-best algorithm is replaced by the early-pruning K-
best algorithm (EP-K-best) presented in Chapter 3, and the strict sorting is approximated
by the coarse-granularity sorting for L. = 16. Besides, the K values for the multi- K-best
algorithm are further reduced to 16, 16, 16, 16, 32, 64, 64 (the first to the eighth layer) in
order to reduce the sorting complexity. For BER above 107, we can observe that absolute
difference approximation results to about 0.6dB SNR degradation, which is almost the same
SNR loss caused by the early pruning scheme. Then an extra 0.4dB loss is introduced by
the multiple K reduction. However, the path metric definition impacts the BER at the error
floor region, i.e. BER below 10~

Although the pruning scheme guarantees a high probability of finding ML path, other
potential candidates may be dropped by the radius constraints. Thus the deduced list size
may be far less than K, leading to higher error floor as Euclidean norm is employed in
computing the path metric. Fig. 5.12(a) shows the simulated probability of the list size
resulted from EP-64-best algorithm, where 18.62% of the lists having size smaller than 63,
and 11.76% are smaller than 48. Compared with Fig. 5.12(b), Only 4.39% of the deduced
candidate list has size smaller than 48, providing a sufficiently large list for computing the
soft values.

Fig. 5.10 to Fig. 5.12 briefly concludes the influence of candidate list generation. Simpli-
fied computations influence the waterfall region performance; the candidate list size impacts

the error floor performance.
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Table 5.2: Computation of LSD and A-LSD

Method || 128-best LSD | 64-best A-LSD (y = 1) | 64-best A-LSD (y = 0.25)
Oper. SD  SVG+DC Total SD PA SVG+DC Total SD PA SVG+DC Total
CMP |/ 3414 12840 3542 (100%) [ 1536 0 51240 2048 (57.8%) [ 1536 0 12840 1664 (46.9%)
MUL | 1964  0+1 1965 (100%) | 982 342  0+1 1325 (67.4%) | 982 86  0+1 1069 (54.5%)
ADD [[1964 14129 2094 (100%) | 982 171 1465 1219 (58.2%) | 982 43  1+17 1043 (49.8%)

Note: SD, PA, SVG are abreviated for sphere decoding, path augmentation, soft value generation.

Table 5.3: Average number of comparing (CMP) operations per bit for (1944, 972) LDPC
coded 64-QAM 4 x 4 system

Candidate List Generation Average CMP Operation SNR (dB) SNR (dB)
@ SNR = 18dB @ BER = 10~*|@ BER = 106
128-best LSD (Euclidean norm) 3542 (100%) 16.3 18.0
64-best A-LSD (y = 1, Euclidean norm) 2048 (57.80%) 15.95 17.20
64-best A-LSD (v = 1, absolute difference) 2048 (57.80%) 16.55 17.35
64-best A-LSD (v = 0.25, Euclidean norm) 1664 (46.9%) 16.00 17.20
EP-64-best A-LSD (absolute difference, L = 16) 668 (18.9%) 16.55 17.45
EP-64-best A-LSD (Euclidean norm, L = 16) 636 (18.0%) 16.70 NA
EP-multi-K-best A-LSD (absolute difference, L = 16) 199 (5.6%) 16.95 17.7

5.3.3 Computation Complexity

So far, we have shown path augmentation scheme equivalently provides a larger candidate
list. A 64-best A-LSD can even outperforms 128-best LSD. Not only the error performance,
A-LSD also saves computation complexity. In Table 5.2, the computation complexity of
various list sphere decoders are compared. Note that 128-best LSD is the reference. For
64-best A-LSD with v = 1, at least 33% computations of the 128-best LSD are reduced.
Furthermore, when + is reduced to 0.25, about 50% of the computations can be saved. Since
the comparing operation in sorting is most dominating, the sorting complexity is further
compared and presented in Table 5.3. It is perceived that early-pruning scheme can further

reduce the sorting complexity; 80% to 94% comparing operations can be reduced .

111



5.4 Summary

In this chapter, techniques to reduce computation complexity of list sphere decoders are
presented. The path augmentation technique equivalently provides a larger and distinct list
for each data bit, leading to reduced complexity and improved error floor performance. Ac-
cording to the simulation results, the K value of the conventional K-best algorithm can be
reduced to half, at least. Besides, an additive correction term is introduced to dynamically
compensate the simplification loss in computing the soft values. These scheme are appli-
cable to many sphere decoding algorithms which are employed in generating the candidate
list. Combined with the early-pruning K-best algorithm presented in Chapter 3, significant

reduction in the computation complexity can be achieved.
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Figure 5.5: Path augmentation in a 16-QAM 4 x 4 A-LSD.
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Figure 5.6: Path augmentation avoids finding minimas in an empty set.
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Figure 5.7: Simulated bit error rate of (1944,972) LDPC-coded 64-QAM 4 x 4 system.
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Figure 5.8: Simulated bit error rate of (648, 324) LDPC-coded 64-QAM 4 x 4 system.
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Chapter 6

Conclusion

The thesis presents two essential parts in capacity-approaching MIMO receiver designs:
sphere decoders and LDPC decoders that remarkably improve system performance but of-
ten demand costly hardware implementation. This work intends to reduce complexity in

algorithm-leve and provide efficient solutions for the decoder.

6.1 Summary

Sphere decoding is one applicable realization for maximum likelihood (ML) signal detec-
tion in MIMO systems. Described as a closest-point-search problem, sphere decoding avoids
exhaustive search in the entire signal space by confining a search range in a hypersphere.
Sphere decoding can be further transformed to a tree-search problem and the search strate-
gies can be categorized into depth-first and breadth-first. K-best algorithm is one popular
realization of the latter by which constant computation and predictable complexity are guar-
anteed. Due to the fading phenomenon in propagation channels, a large K is required while
considering the worst case scenario that the received signals are in deep fades. However,
large K results in enormous computations, especially the sorting complexity. Consequently,
we present an early pruning scheme that discard the less likely candidates during the search.

Applying to breadth-first sphere decoders, the proposed pruning scheme distinguishes

the ML path from other paths by distinct radius constraints at each layer of the search tree.
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Given the system model and the channel statistics, the pruning criterion, i.e. the radii, can
be derived according to the desired error tolerance. Moreover, the expected computation
complexity is analyzed. Although the computation is non-constant, the proposal ensures
the manageable complexity by combining the pruning scheme with K-best algorithm. In
fact, the algorithm will become conventional K-best algorithm when the number of the
retained paths at each layer exceeds K, where the decoder reaches its lowest decoding speed.
Besides, since the radii equivalently exhibits the dynamic ranges for the representation of ML
path, the sorting complexity of the early-pruned K-best algorithm can be further reduced
by coarse-granularity sorting approach. The presented analysis techniques also provide an
approach to acquire parameters for multi- K-best algorithm by which each layer corresponds
to a distinct K value. The lowest decoding speed can be improved by the multiple K’s since
some of the K values are smaller. Simulated in a 64-QAM 4 x 4 MIMO system, about twice
improvement in the lowest decoding speed can be achieved when the early-pruned 64-best
algorithm is modified to early-pruned multi- K-best algorithm. Moreover, both early-pruned
64-best and early-pruned multi- K-best algorithms can achieve similar error performance of
the conventional 64-best algorithm. The degradation in SNR is almost imperceptible for
BER above 10~° while more than 90% computations are diminished.

After the MIMO detection process, the signals are passed to the channel decoder for error
correction, and the LDPC code is one of the powerful and also popular coding techniques.
Min-sum algorithm is often employed in implementing LDPC decoders for simplicity. The
non-linear operations in the original decoding algorithm, Log-BP algorithm, is approximated
by searching for the minima; however, significant performance loss may arise. Convention-
ally a constant offset or a normalization term can be applied to compensate the degradation,

whereas in some cases constant factors can not accurately compensation the approximation

121



error. Thus, we investigate the parameters for normalized min-sum algorithms; the normal-
ization factors can be represented as a function of decoder inputs and channel statistics.
Consequently, dynamic normalization schemes are proposed. Based on order statistics and
density evolution the data-dependent correction terms can be analyzed. The dynamic nor-
malization preserves simple hardware implementation, and the resulted overheads in circuit
complexity is less than 5% of the conventional min-sum algorithm. To reveal the effect of dy-
namic normalization, we apply the logn LDPC code defined in DVB-S2 system. Simulation
results shown that the proposed techniques can provide as much as 1dB SNR improvement
for min-sum algorithm.

Many of the research on LDPC decoding algorithms are based on AWGN channel model.
In MIMO systems, however, the decoder convergence under iterative decoding is highly
dependent on the input soft values. Sphere decoding algorithms are modified to list sphere
decoding algorithm that generates a candidate list for computing the soft inputs to the LDPC
decoder. We found that the list size impacts the error performance, and insufficient candidate
can result in sever error floor. Since producing a large candidate list can be computation-
demanding, a path augmentation technique is proposed to to enlarge the candidate list. As
a result, computation complexity can be reduced while the error floor can be alleviated. The
path augmentation technique can be regarded as performance enhancement and applied to
many list sphere decoding algorithms. We simulated LDPC codes in IEEE802.11n system
under 4 x 4 spatial multiplexing, the path augmentation scheme combined with the early-
pruning multi- K-best algorithm can achieve the lower computation complexity as well as
the lower error floor. About 94% complutation in the sorter can be saved as compared to

the list sphere decoders based on 128-best algorithm.
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6.2 Futurework

Complexity reduction techniques for sphere decoders are presented in this dissertation, how-
ever, the preprocessing part is not considered. Under finite precision data representation,
various QR decomposition algorithms (Householder transformation, Givens Rotation, and
Gram-Schmidt for example [54]), lead to different data stability. Moreover, similar complex-
ity reduction techniques can apply to preprocessing and the path metric computation. The
truncation error of the multiplications and additions can be analyzed and compensated ac-
cordingly, and some of the multiplications can be further replaced by the low-error reduced-
width multipliers [80-86]. Furthermore, the K values of the early-pruning multi- K-best
algorithm presented in Chapter 3 is determined empirically. Because they are determined
according to the expected complexity, statistically derived K values should be feasible. On
the other hand, computing the average complexity by (3.41) is very time-consuming when
the sphere degree (n) is larger than 12. Besides, as described in Chapter 5, several factors
impact the error floor. More complicated and realistic models should be considered, and
approximations are required for more efficient and quick analysis.

For LDPC decoding, the analysis for the dynamic factors in Chapter 4 is based on stan-
dard Log-BP decoding algorithm, while the LDPC convergence behavior is different under

shuffled decoding. Similar analyzing techniques still apply but require some modification.
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