B %5
-1:_:_[—:: w2 —
B S

12 [SFTS 5 PRI F2 5 SR e e

Low-Power Turbo Decoder Implementation with

Early Give-up and State Reuse Techniques

(e : HASTE

e B

i S o] pui - £|

FIIH FRR R PSAGTRRF) FI = o 8RS0 3 il as
T fsiE TR
CRESURN L E iy M E e TR ER

!

TR TR D R E AR R
PHOEEE HLRETH 1A ROV L o YRR AR S TR
70 SRR (% AT G FLSREIHE AT o UL L
i VR R P2 o R o SR SRR L - B
R o ¥ ey R SRR R b o i
R O T RIS R T L S g -
=5 (P9 (e R i gl L PR At BT R B o
oo R RVE I o FP RIS TR » 5 PR (R T -
RS o 09BN (AR R R PRI 9t S PR
e SR v e i R L T S R W U S TR e L R
g ﬁzﬁ%%ﬁﬁ%ﬁ@ﬁi@ﬂ%ﬁ@ﬂ [5 (Pl Rt BT+ SRR Lot

WA AR SRS LR TSR B LD 85 10%
5| 379 ET B

Low-Power Turbo Decoder Implementation with Early
Give-Up and State Reuse Techniques

Student: Shu-Der Lan Advisor: Dr. Lan Rong Dung

Department of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

A novel early give-up algorithm for turbo decoding process undergoing poor
channel SNR is proposed for energy-efficient consideration. Turbo decoding involves
an iterative process and the number of iterations required to correctly decode the
information packet is highly dependent of the channel condition. If the channel SNR
is good enough, the iterative -process could likely- be reduced, i.e. early stop or
termination. When the channel is icontaminated ‘at the time of transmission, the
process will keep going until a maxXimal. number of iterations is reached, and request a
packet to be re-submitted. Because energy consumption of the decoding algorithm is
proportional to the number of iterations, this would cost extra energy resource. The
proposed approach is to give up the decoding process earlier during bad channel SNR
and request data to be re-sent immediately. Based on observations from the
simulations of turbo decoding process, a simple hardware checking the average
absolute value of the extrinsic information on-the-fly is involved into the original
turbo decoder architecture. Besides, we apply another technique to reuse the prior
MAP information of the given-up process based on the assumption of correlation
between same packets transmitted at different times. Our results shows that the
average iterations required to decode fixed amount of valid packets can be reduced

from 10% to 37% under bad channel conditions.

il

Contents

Abstract in Chinese
Abstract in English
Contents

List of Figures

List of Tables

Chapter 1 Introduction
1.1 Motivation
1.2 The Proposed Scheme

1.3 The Arrangement for ThesisChaptefs

Chapter 2 Turbo Coding Technology
2.1 The Encoding and Decoding Structure for Turbo Code
2.2 The MAP Algorithm
2.3 The Implementation Issues
2.3.1 The Log-MAP Algorithm
232 The Fixed-Point Effects
233 The Metric Normalization
2.3.4 The Sliding Window Method for Turbo Decoder
2.3.5 The Termination Techniques for Turbo Code
2.4 Applications for Turbo Code
24.1 Application for 3GPP

2.4.2 Application for CCSDS

il

il

111

vi

viil

11

12

12

14

15

16

17

Chapter 3 Early Give-up and State Reuse Techniques for Turbo

Coding 19

3.1 Motivation 19
3.2 Observation and Simulation for Early Give-up 20
3.2.1 The Trends of Extrinsic Information 20
322 Simulation Results for Give-up 23

3.3 The Reuse Methodology for Early Give-up Scheme 25
3.3.1 The Idea of Reuse Methodology 25

3.3.2 The Simulation Results for State Reuse Methodology Scheme 26

3.4 The False Alarm for Early Give-up Technique 30
34.1 The Quantization Effects for False Alarm 30
342 The Decoding Flew. Effects for-False Alarm 37

3.5 The Simulation Results of Proposed-Scheme 43

Chapter 4 Hardware Implementation 47

4.1 A Case Study: The Turbo Decoder for 3GPP system 47
4.1.1 The Process Element Design 47

4.1.1.1 The Branch Metrics (gamma) 48
4.1.1.2 The Forward/ Backward State Metrics (alpha, beta) 49
4.1.1.3 The Soft-output Calculation (LLR) 50
4.1.2 The Interleaver and Deinterleaver Design 51
4.13 The State Metrics Normalization 54
4.14 Sliding Window Timing Diagram 54
4.1.5 The Memory Arrangement 56

4.1.5.1 The PE Control Mechanism 56

v

4.1.6 The Early Give-up Detection Circuit

4.2 Experiment Reports for Hardware Implementation
4.2.1 The Area Estimation by Design Analyzer
422 The Power Estimation by PrimePower

4.3 Chip Layout

Chapter 5 Comparison and Conclusion
5.1 Overhead and Iteration Saving of Give-up Detection Unit

5.2 Conclusions

Chapter 6 Future Works

References

57

58

58

60

60

62

62

63

64

66

[Figure 2-1)
[Figure 2-2]
[Figure 2-3)
[Figure 2-4]
[Figure 2-5)
[Figure 2-6)
[Figure 2-7)
[Figure 2-8)
[Figure 3-1)
[Figure 3-2]
[Figure 3-3)
[Figure 3-4)
[Figure 3-5)
[Figure 3-6)
[Figure 3-7)
[Figure 3-8)
[Figure 3-9)
[Figure 3-10)
[Figure 3-11)

[Figure 3-12)

[Figure 3-13)

List of Figures

Turbo encoder system block diagram

Turbo decoder system block diagram

MAP decoding flow chart

Timing diagram for sliding window method

Turbo-CRC encoding and decoding block diagram

The Structure of turbo encoder

The performance of turbo decoder

The encoder structure for the CCSDS turbo code
Simulation result.for SNR'vs. average iteration

[LLR| trendsfor different types of decoding packets

The trends of extrinsic information for frame=1024 bits
The trends of*extrinsic information for different frame size
Effects on the performance by give-up decoding process
The reuse methodology for turbo decoder

Reuse method for SNR at 0.0 dB

Reuse method for SNR at 0.5 dB

BER for different quantization schemes

Average iterations for different quantization schemes
False alarm rate for different quantization schemes

Turbo decoder decoding flow with give-up and state re-use
scheme (give-up detection before termination checking)
Turbo decoder decoding flow with give-up and state re-use

scheme (give-up detection after termination checking)

vi

14

15

16

17

18

20

21

22

26

28

29

33

34

36

[Figure 3-14)
[Figure 3-15)
[Figure 3-16)
[Figure 4-1)
[Figure 4-2)
[Figure 4-3)
[Figure 4-4)
[Figure 4-5)
[Figure 4-6)
[Figure 4-7)
[Figure 4-8)

[Figure 4-9)

[Figure 4-10)
[Figure 4-11)
[Figure 4-12)
[Figure 4-13)
[Figure 4-14)

[Figure 6-1)

The false alarm rate of different decoding flow

Traditional turbo decoding flow with termination scheme

Average iterations for 1000 valid packets

The Gamma calculation unit

Block diagram of ACSO unit

The forward processor unit with memory (FP)
The soft-output calculation unit

The row-by-row scheme for data writing

Data arrangement after intra-row permutation
Data arrangement after inter-row permutation
The column-by-column scheme for data reading
Space and time relationship for o-first memory
management

Block diagram for SW.log-MAP decoder

The PE controller

Block diagram of give-up detection circuit
Artisan’s memory compiler

MAP chip layout by SoC Encounter

State diagram for Type-I and Type-II HARQ Protocol

based on two codes

vii

42

44

46

48

49

49

50

51

52

52

55

55

57

58

59

61

65

[Table 2-1)
[Table 3-1)

[Table 3-2)

[Table 4-1)

[Table 5-1)

List of Tables

Information block lengths and rates

Different quantization scheme for MAP
Iteration reductions and throughput increase for
different channel SNR

Area report for each component

Energy saving percentage under different channel SNR

viii

18

31

46

59

62

Chapter 1 Introduction

With the performance approaching the Shannon limit of channel capacity, turbo
codes [1] [2] represents one of the most popular research topics in coding theory and
have been deployed in many designs of communication systems such as wireless
systems. Although turbo code provides powerful ability for error control coding, it
also requires a lot of power consumption during the iterative decoding process. Thus,
low-power turbo decoder design becomes an important research issue for
communication systems operated with stand-alone batteries. Due to the iterative
decoding style of turbo code, to reduce unnecessary iterations means to save the
energy consumption and has been studied.in many references [12] [18] [27]. This kind
of techniques is called early-terminationwhile decoded outputs are already correct
patterns.

When the channel condition. becomes-noisy,- the decoded output is possibly
unreliable even as maximal iteration number is reached. In [20], a neural network
training method is proposed to estimate the patterns of decoding errors for
re-transmission. Similar to the idea in [20], we find out a possible pattern of decoding
error through simulations and we propose early give-up technique to stop the
decoding process in advance. Then a request of re-transmission is sent. A reuse
method is also proposed to utilize the prior MAP information of the given-up process
as the initial condition for next transmission, based on the correlation between the
same packets transmitted at different times. The early give-up algorithm is acquired
from observations of simulation results, so there exists possible mis-judges, i.e. false
alarms. Under poor channel conditions, the simulations show that both the average

iteration number of turbo decoding process and the overall decoding latency are

reduced despite of the existence of false alarms.

1.1 Motivation

For battery-based applications like cell-phone or other portable devices, power
issues get more and more concerns recently. Our main job is to design a turbo decoder
which can use energy more efficiently depends on the channel conditions. With no
unnecessary energy waste for decoding, we can increase the use time for
battery-based applications with turbo coding and also increase the life time for the

battery.

1.2 The Proposed Scheme

The turbo decoding is a kind of iterative.decoding process. For power saving
aspects, a lot of papers discuss how te.save-unnecessary iterations for the situation
that the decoded outputs are already correct decoded pattern during decoding process.
This kind of techniques called termination skills [4] [18]. In this situation, because the
channel condition is good enough, a few iterations will be able to decode out the
correct patterns so we can stop decoding process before reach the preset limit
(maximum iteration).

However, in this thesis, we think about the other side of situation that if channel
condition goes very bad (over the decoding ability of the turbo decoder), whether we
should stop decoding process preventing unnecessary iterations for power saving?

According to our motivations, we propose a new idea called “Early Give-up”
which can detect the channel condition during decoding process by decoded extrinsic

information then make an estimation that whether the decoded data at final decoding

2

stage are reliable (error free) or not. If the estimation shows that we will get the
unreliable decoded pattern finally, the decoding process will be stopped for energy
saving, and request for re-transmission immediately to reduce overall decoding
latency.

Besides that, we also present a methodology for re-use the work we calculated
before the give-up stage. According to the simulation results, we prove that we can
reduce the overall average decoding iterations for given valid packet numbers under
bad channel conditions by using “Early Give-up” with reuse state methodology, thus

we can save power and reduce decoding latency under bad channel conditions.

1.3 The Arrangement for Thesis Chapters

This Thesis is structured as-follows.

Chapter 1: Introduction

Chapter 2: Turbo Coding Technology

In this chapter, we will briefly explain the encoding and decoding algorithm for
turbo code and corresponding hardware structures. Besides, we also take
implementation issues into considerations, like log-MAP algorithm, fixed-point
implementation effects, sliding window algorithm and some termination techniques
for turbo decoding. In the end of this chapter, we will introduce turbo code as an

application in the communication field.

Chapter 3: The Early Give-up and State Reuse Methodology for Turbo Coding
In this chapter, we will explain our new idea “Early Give-up” technique for turbo

decoding, and corresponding re-use methodology for re-send process. We will modify

3

the turbo code decoding flow with the new idea and show simulation results for the

proposed scheme in this chapter.

Chapter 4: Hardware Implementation

In this chapter, we will explain each component in turbo decoder for realizing
MAP algorithm, and also introduce the Early Give-up detection circuit for
implementation. We will compare the overhead from area and power point of view in

the end of this chapter to judge the new idea’s contributions.

Chapter 5: Comparison and Conclusion
We will compare the benefits and overheads for Early Give-up from hardware

and power point of view and make.conclusions for.the thesis in this chapter.

Chapter 6: Future Works
In this chapter we will present the future works relative to our research in this

thesis as the direction for future research topics.

Chapter 2 Turbo Coding Technology

What is Turbo Code

Turbo code was firstly introduced in 1993 by Berrou, Glavieux and
Thitimajshima [1]. They promised almost 10 dB coding gain (at BER=10"), which is
within 0.7 dB of Shannon limit in AWGN channel. Special features of turbo code are
as follows: (1) turbo code are composed of two parallel-concatenated recursive
systematic convolutional code (RSC) with (usually) very long block length (2) A
pseudo random interleaver is used to randomize the input data for second RSC
encoder (3) The decoder uses iterative MAP algorithm. These factors combined make
turbo code great abilities for erroficorrecting;.and also make turbo code a milestone in

error control coding area.

2.1 The Encoding and Decoding Structure for Turbo Code

The encoder side for turbo code uses two the recursive systematic convolutional
code (RSC) and one interleaver, as figure 2-1 shows. Code rate can be increased to
1/2 by puncturing (without puncturing, the code rate will be 1/3). The decoder parts
are shown in figure 2-2. De-puncturing action for decoder is according to encoder.
Other parts are composite of two SISO (Soft-Input Soft-Output) decoder -~ interleaver
and de-interleaver. The main concept for decoding is to use first SISO decoder which
made use of the received value from channel and a-priori information to calculate the
extrinsic information, and then take the extrinsic information as the a-priori

information to the second SISO decoder. Iterating the decoding process to decrease

the bit error rate from decoder (refer to [1] for detail). For SISO decoder, it can be

implemented by MAP algorithm or Soft-output Viterbi algorithm (SOVA) [8].

Input bits U, Systematic bits X §

>

RSC_- Parity bits X E Output
Parity bits XE

Interleaver — RSC_2

Puncturing

[Figure 2-1] Turbo encoder system block diagram

/ L
De-Interleaver |« 2l

Le

12

SISO _"

Interleaver

SISO_2

h A

YVY
YVY

Kk

—

Interleaver

Y

De-puncturing

[Figure 2-2] Turbo decoder system block diagram

2.2 The MAP Algorithm

BCIJR Algorithm (MAP) was firstly presented in 1974 by Bahl, Cocke, Jelinik
and Raviv [2]. BCJR algorithm is optimal for estimating the states or the outputs of a
Markov process observed in white noise. The details of the algorithm are available in
[2] [5] [6] [9] [10], we briefly describe the main idea of the MAP algorithm. The Log

Likelihood Ratio (LLR) of the k' input bit of the input sequence x is defined as:

6

f) Pr[x, =1|r]
Alz)=1n Pr[x, =0]1] @1

Where r is the received symbol form channel and x is the information bit.
Considering the state transition in trellis structure, we can express Pr[X =1|r] as

follows:

Prlx, =1|r]= > Pr(S, =s.S, =s|r) (2.2)

(s,5)eS*
Where S is the set of all pairs of states which transient from state s’ at time k-1 to

state s at time k due to xx = 1. Similarly,

Prlx, =0|r]= > Pr(S,=s.S, =s|r) (2.3)

(s‘,s)esf
Where S is the set of all pairs of states which transient from state s’ at time k-1 to
state s at time k due to x;, = 0.

Hence, the LLR of the k™ input bit of the mput.sequence x is obtained as:

Pr(S,, =s,S,.=s;1)
Pl =) | o 2.4)

Pr(x, = 0fr) - D Pr(S,, =55, =s,1)

(sy ,8)eS™

If A(%,)>0, we decode the input bit x as 1, otherwise, the input bit as 0.
Take Pr(Sy.1=s’, Si=s, r) into consideration, By using Bayes’ rule, we can partition the
joint probability of Pr(Sk.;=s’, Si=s, r) into three parts.

Pr(S, , =58, =s,r)=Pr(S, ,.S,,r)

(2.5)
=Pr(S,_,, Ficjck) Pr(r,, S, |Sk—1) Pr(’"qun S)
Define the three probabilities as follows:
&, (S,)=Pr(S, ,ng) (2.6)
7k(Sk—17Sk)EPr(Vk7Sk|Sk—1) (2.7)

B (S,) = Pr(’”kqgl

S (2.8)

Where ox.1(Sk-1) is the function of received information prior to the stage k, yk(Sk-1, Sk)
is the function of received information for stage k and PByx(Sx) is the function of

received information after stage k. ax(Sx) can be computed recursively as:

a; (S,)=Pr(S,,n)= zak—l (Si)7 (Si8)) (2.9)

s'eS
where S is the set of trellis state transition. Similarly Bx(Sx) can be computed

recursively as:

B (S, = Pr(rijSn

Sk—l)ZZIBk(S;c)yk(S;c—l’Sk) (2.10)

s'eS

The function y, (S,,,S,)can be expressed as:
7" =P Sy[S,0) = p(x =Dp(xifx,) p(pilpy) (2.11)

Where i is the input bit that cause the transition from state Sy;=s’ to Sx=s, and xy - px
are the systematic bit and parity-bit respectively.

From equation (2.4)-(2.11), we can obtain'the following equation:

ZZ“}H SO (S8 8,.(Sy)

A(%,)=1n Prls, =lr) | | 54 2.12)
‘ Pr(xk = O|r) ZZ“}H (S 708884 (Sy) ‘

The overall MAP decoding flow is illustrated in Figure 2-3 [11]

L. Y,

Channel values

A Priori
information L(u,)

vvr"

Y

Branch metric
calculation

A 4

Forward metric

Channel values

Backward metric

calculation L Y, calculation
a1 (S) A()?k) B(Sy)
[Figure 2-3] MAP decoding flow chart

2.3 The Implementation Issues

From software point of view, BEIR algorithm will be fine for BER performance.
But if it talks to hardware implementations, that will be lots of factors to effect the
overall performance. Like the performance degradation due to fixed-point realization,
and for real-time demands and decreasing memeory area (saving power), take sliding
window method for implementation, the effects for the performance. We also talk
about some techniques for reducing unnecessary iterative process for termination.
Therefore, the following sections will be from the hardware point of view to talk

about the questions and solutions from papers.

2.3.1 The Log-MAP Algorithm

Though MAP decoding can achieve great error correcting capacity near Shannon
limit, this algorithm is too difficult to be realized, basically because the numerical
representation of probabilities, non-linear functions and mixed multiplications and

additions of these values. For the SISO decoders, Log-MAP algorithm is suitable for

hardware implementation, due to its relative simplicity compared with original MAP
algorithm, and better performance than SOVA [5].

The Log-MAP algorithm is a transformation of MAP, which has equivalent
performance and without its problems in practical implementation. It works in
logarithmic domain, where multiplication is converted to addition. From (2.9), we can

define forward state metrics a in log domain.

akLM (Sp) = (S,)= ln(ZCZk_l (S)7 (81,8,)j

s'eS

_ ln(z e;/'fM (s's) ea,ﬂ”{ (s)j _ ln(z ey,’;M (s's)+af (s))

s'eS s'eS

(2.13)

Where 7/ (s',s)=1Iny,(s',s)

Form (2.10), we can derive backward state mettic in log domain.

B (S)= pf (S,)=In(Y e “HZef W)y =in(Y e) (2.14)

s'eS s'eS

Therefore, from (2.12) the log-likelihood ratio-is given by

LM LM LM LM LM LM
Z Z a5 (Se) v (SeossE) 5B (Si) Z z S (S (SposS+BE (Se)
e e e e
A Sy S Sy S
Az,)=ln| 22 — In| 25
(k) Z Z eaﬂ (Skfl)eyéM (Sk,I,Sk)eﬂkLM (Se) Z z eaﬁf e (Se S+ B (50)
St Sk Si S
LM LM LM LM LM LM
— ln(z Z eak—] S+ (Sio1:S)+Bre (Sk)j _ ln(z Z eak—] (S +707 (Spet:S)+ B (Sk)j
Sk Skt Sk S
(2.15)
By use of equation: max’ (x,y) = In(e* +e”) = max(x, y) + In(1 + el ‘) (2.16)

We can get o (s) = max” ([, (s',5) + & (O 2 (s,) + e (sH) @.17)

from (2.13). B (s) = max” ([2, (s',9) + B (O 2 (') + BP ()] @.18)

from (2.14). And from (2.15) we can derive

10

(s',s) (s's)
Ak)=max” (7 (s',9)+ @l (9)+ B (D)~ max” (2 5") + @ (5)+ B (51)

(2.19)

2.3.2 The Fixed-point Effects

From hardware implementation and real-time demanded point of view, using
fixed-point method to realize MAP algorithm is the best solution for cost and
performance. So we will discuss the considerations of quantization on the
performance proposed in [7] [16] [26].

In [16] [26], they consider the internal MAP state variables and channel data
from A/D outputs then simulate the different,quantization schemes for BER compared
to infinite precision case to find the minimum precision representation under tolerable
performance degradation. The meanings for'minimum bit representations are not only
for cost-down in hardware implementations but- also for power saving due to
minimum storage requirement and less'switching activities.

Paper [7] talks about the size of look-up table for Log-MAP. The core of
Log-MAP is the operation Max" (A4, B) = Max(A,B)+In(1+ e ?) = Max(A4,B)+ A,
according to the quantization scheme, the Ain above equation can be expressed

| A-B|

asA = In(l+exp(— | A— B) = In(l + exp— Y.), where p is number of precision

bits. We can find the minimum positive integer m stored in ROM satisfying the
inequality In(1+exp(-m/27))<2 %" to minimize the effects due to look-up table

for different precision.

11

2.3.3 The Metric Normalization

An important issue in Turbo Decoding fixed-point operation is the growing of
state metrics over the finite numerical range representation. The same problem also
can be found in Viterbi’s algorithm [22]. In 1999, Parhi had proposed a solution in
[16]. This method requires small amount of hardware and its speed does not depend
on the number of state. His approach is that if the word length of state metrics is q bits,
once the state metrics is larger than 297>, then subtract 297> from all state metric
(5 or E) . The proof is as follows:

The Max* operation is: Max*(x+z, y+z) = Max(x+z, y+z) + In(1+¢" 0™l (2 20)
Thus Max*(x+z, y+x) = Max(x, y) + z +,In(l+e*) = Max*(x, y) + z (2.21)
According to equation (2.21), Max* operation‘is linear. Thus a global shift for a and 3
in (2.17) (2.18) won’t change the value of L(uy) in (2.19) since the contribution of z,

when put outside two Max" operations,.is cancelled [17].

2.3.4 The Sliding Window Method for Turbo Decoder

According to section 2.3.1 above, we have simplified the MAP decoding
complexity by log-MAP equation. However, for log-MAP decoding algorithm, we
still have to store every branch metric (7) and forward state metric (@) at every
stage until the backward state metrics (/) had been calculated out, so as to compute
LLR in (2.19)

Taking 3GPP specification for example, according to encoder structure, we have
8 states in trellis diagram, if we express every state by 8 bits, it would require 64 bits

of storage per branch, and if the frame size is 1024 bits, the turbo decoder must at

12

least have 64x1024=64K bits storage for traditional MAP decoding algorithm.

Because lots of memory requirement and decoding latency for MAP decoding,
Viterbi proposed sliding window [3] structure as a solution for these questions in 1998.
We will briefly explain his idea by figure 2-4. First of all, we have three process
elements for sliding window (SW) MAP decoding algorithm, one for forward
processing and the other two for backward processing. L means the sliding window
length (typically 6-10 times for constraint length). The label for each node below
means the trellis time instance. The main idea for sliding window method is that we
can estimate real backward state metric condition by applying learning period (L). As
figure 2-4 shows, dash line means that the unreliable backward branch metric
computations (learning period). After learning period, we get reliable initial state
condition for backward state metri¢s computations. Now we take first decoded output
for example to explain how these' three process elements function. We compute
forward state metrics as the label shows.-From-time 2L to 3L, we compute the node
metric from 0 to L, at the same time(2L-3L), the first backward processor start to
learning the backward state by received data from 2L to L. During learning period, we
do not store anything until time goes to 3L, at this time instance (3L), because the
forward processor had been already computed the forward state metric from 0 to L, so
we can combine the forward and backward state metrics to get valid decoded output
(L to 0) from time 3L to 4L.

The operation for second backward processor will be same as the first backward
processor. While the first backward processor decode out branch from L to 0 at time
3L to 4L, second backward processor will start learning at time 3L. After learning
period, we can get decoded output for branch 2L to L from second backward
processor from time 4L to SL. Two backward processors will take turn to decode out

the branch as the timing in figure 2-4 shows. This is the way for sliding window MAP

13

algorithm functions.

R
C L 2L 3L 4L 5L

Forward

Processor | | | | | |

Timing 2L 3L 4L 5L 6L 7L

1st Backward E E-— < ¢ ___‘

Processor

Timing 4 3L 2L6L 5L 4£6L

-
-

2nd Backward ¢ € ——- F—r' - _‘
Processor
Timing 3L 4L 3L7L 6L 5% 7L

Decoder Output
Timing 4L 3L5L 4L6L 5L7L 6L

[Figure 2-4] Timing diagram'for sliding window method (refer to [3])

2.3.5 The Termination Techniques for Turbo Code

Termination is a kind of power saving technique for turbo code. Traditional way
for stopping of turbo decoding is to set a maximum iteration limit and whether
decoded outputs are valid or not, decoding iteration will not stop until the preset limit.
This is not a smart way for iterative decoding process, so lots of papers talk about
when to stop properly, this kind of technique calls termination.

The termination techniques can be split into two categories, one is made use of
inner forces and the other is made use of external forces [4]. Observing convergence
for decoding data with the number of iterative process increased to decide whether
continue decoding or not calls the inner force method. The other way calls external
force, it means to use another kind of error control coding prior to turbo encoder to

check the correctness of decoded frame. Corresponding encoding ~ decoding flow are

14

illustrated in figure 2-5 (taking CRC as outer code for example). My thesis uses CRC

as the outer code for termination scheme.

Turbo encoder X
Sy
CRC XPW
X, RSC_1 >
Encoder
sz
Interleaver < RSC 2 >

(a) Turbo-CRC encoder

A4 |
De- < e |
Interleaver |
y2p I
y1D = LE |; I
¢ 12 1 L, |
Y, » SISO 1 » Interleaver » SISO 2 I
» Interleaver = A 4]
B .| CRC
| Decoder
— I
hard decision ¢Decoder

~7~ output

(b) Turbo-CRC decoder

[Figure 2-5] Turbo-CRC encoding and decoding block diagram

2.4 Applications for Turbo Code

In this section we will briefly describe two applications of turbo code in

communication field, and corresponding specifications.

15

2.4.1 Application for 3GPP

First of all, we describe the encoder structure for 3GPP. As in Figure 2-6,

Encoder’s part is made up of two convolution encoders, and for each encoder, the

1 g, (D)

generator matrix: G(D) =] D)]’ where g(D)=1+D+D’, g,(D)=1+D*+D"’. The

&>

frame size for 3GPP specified is from 40 to 5114 bits per frame, and the code rate is

1/3. (In 3GPP2, the standard use two rate 1/3 constituent codes, both with generator

1+D+D* 1+D+D*+D’?

matrix G(D)=[l, ,
D)=l 1+D*+D* 1+D*+D°

], with rate from 1/5 up to 1/2). The

internal interleaver is implemented as an array with 5, 10, or 20 rows and between 8
and 256 columns, depending on the frame size K. Data is wrote in row-wise,
intra-row and inter-row permutationsis performed on the array. We will give a more
detail example in chapter 4. The dash line " figure2-6 is for termination to all-zero

state.

v

1'st constituent encoder

Input 0
VaAYN|
: Me
v) Output
Turbo code
internal interleaver 2nd constituent encoder
>0 MLy
” 4NV
'y
>PO{D DB

/A
e

\

[Figure 2-6] The Structure of turbo encoder (refer to [15])

The performance of 3GPP turbo decoder is in figure 2-7 [6]. Simulation is
implemented on TI DSP using Max-Log MAP algorithm. We can see the relationship

between SNR and BER, and corresponding coding gain for different decoding

16

iterations.

BER parornance of biock mre of 1440 bis and code mis of 173
6 T T]

167 ' — UnencosedBER | > \ 1
== |tnrabon 2 L :
—& Horeissn &
== Ngralon & | \
o | === nemion B _— 2 ! n
e] oz ca o OX 1 1.2 14 1E
Ebvio (oB)

[Figure 2-7] The perfohhancé ¢1Tturbddcclo‘der (excerpted from [6])

1
1

2.4.2 Application for CCSDS ~

CCSDS (Consultative Committee for Space Data Systems) takes turbo code in
channel coding standard recently. The additional coding gain of 2.5 dB at BER = 10~
can be achieved by rate 1/6 turbo code with respect to the old standard. The encoder

has two code rate 1/4, 16 states convolutional codes with generators

1+D+D>+D* 1+D*+D* 1+D+D*+D*+D*

G(D) =1, , ,
(D)= 1+D*+D* '1+D*+D* 1+D*+D*

] [23]. The

corresponding information rate and encoder structure are shown in table 2-1 and
figure 2-8. For encoder, the information block buffer contains interleaver which is

described in new CCSDS standard.

17

Information length k Code block length n
Rate 1/2 | Rate 1/3 Rate 1/4 Rate 1/6
1784 3576 5364 7152 10728
3568 7144 10716 14288 21432
7136 14280 21420 28560 42840
8920 17848 26772 35696 53544
16384 32776 49164 65552 98328
[Table 2-1] Information block lengths and rates
{“lf’“‘ y out 0a—@—Q@—0—©
niormation EN 1ODER a
R T ———— s D <
Block —
Buffor (DD {0 p{P H
Gi R BB out 1a—-O—Q—
G2 D <D R out 2a %
@ XOR G3 4%—%—%—%9— out 3a C
! ENEIIODERb o o 2 e
© Take every symbol A >0 e s s
O Take every other symbol > D [D (D [T H = = =
G1 D <D R out 1t
G2 >&— P D Not used
G3———%—— B out 3t

[Figure 2-8]

18

The Encoder structure for the CCSDS turbo code (refer to [23])

Chapter 3 Early Give-up and State Reuse
Methodology for Turbo Coding

3.1 Motivation

According to simulations of paper [4] [18], when channel condition goes very
bad (SNR very low), the decoding iterations needed will be very close to maximum
iteration during decoding process (shown in figure 3-1). Sometimes after final
iteration for decoding, we still get wrong information from decoder output (decoded
failure frame). This result points that when messages are interfered by noise seriously,
it may be not a smart way to continue'decoding:process (because lots of time we may
get decoded failure frame in the“end). So:-we present a technique calls Early Give-up.
The so called “Early Give-up” means that during decoding process, once we find the
trend of decoding failed, we will stop the decoding*procedure immediately not until to
maximum iteration! The goal of early give-up is to prevent power consumptions for
unnecessary iterations.

Giving up decoding process is not enough to decode a valid frame out, it needs
re-send frame to complete decoding process (As for a decoding frame at maximum
iteration but failed finally, it also needs re-send scheme, so “Early Give-up” gets
benefits from (1) no waste iterations for power saving (2) early re-send to shorten
overall decoding latency). According to above reasons, we can improve the QoS
(Quality of Service).

Besides, we have a reuse scheme for give-up. Reuse means that we can save the
previous work during give-up and use it for re-send the same packet as initial

conditions. We prove it by simulation. Reuse state methodology really can reduce

19

overall average decoding iteration numbers for successful decoded frames.

Awverage Mumber of Reralions

— p=107",51502
SHla—=a pe107° 8IS02
s—=s p=10"",5I1S01&2

a 0.2 04 0.8 1 1.2

0.6
E, /N, id8)

[Figure 3-1] Simulation result for SNR vs. average iteration (excerpted from [18])

3.2 Observation and Simulation for Early Give-up

Observing failure frame’s properties during simulation, we find the common
feature of decoding failed frame is that the extrinsic information of most decoding
failed frame will be oscillating with decoding iterations increasing. The oscillation
means that the average absolute value of extrinsic information will not increase
monotonically with decoding iterations increasing [12] [30]. In other words, if it can’t
gain additional information (judged by average absolute value of extrinsic information)

from iterative decoding process, more iteration may be useless!

3.2.1 The Trends of Extrinsic Information

According to paper [12], it says that if x e {+1,—1}are equally likely, then

20

N
through iterations, turbo decoding decrease the variance 6%, so M o = %Z| L(u,)|
k=1
Pr(u, =+1Y) fu, =+ 2
=10 = —
Pr(u, = 1Y) (Y, = 1) o

m

increase. (.- L(x) = log Y,

E[L(x)]= %E[Y], soo,, ¥ then M {)

m

25

—ig—FI, error-free, fast convergence

200 —=— FL, emor-free, slow convergence 1
== F3, fow errors

180 —#— F4, many emors]
—+— F3, oscillating emrors

Number ot errors per trame
=

1041
B0
0
40
0
]
o | 2 3 4 5 f 7)] [[1]
Iterations
(a)
g 120 1
—&— Fl, ermor-free, fast convergence p
= —&— F2, errod-free, slow convergence
100 —iv— F3, fow emors
—#— Fd, many errors
=—4— F3, mchilating ermors
E a0
£
= 6l
a
=)
*E- &0
3
E 20
1]
0 1 2 3 4 3 [T g 9 (1]
lterations
(b)

[Figure 3-2] |LLR| trends for different types of decoding packets

(excerpted from [12])

21

According to the idea and error pattern of [12], we also analyze the data during
decoding process. The sample data for extrinsic information from decoding process as
in figure 3-2, we can find the property that, for most decoding failed frame (in red
color marked by ‘x’), the mean of absolute value of extrinsic information (Le) will not
increase with iteration stepping up (oscillation for Le). Thus, we made a rule (Early
Give-up) that when we get the information of oscillation for average absolute value of
extrinsic information during decoding process, from the experience of successful
decoding point of view, we should give-up the decoding process immediately for
power saving. Therefore, we use the oscillation of extrinsic information as the criteria

for give-up detection.

+ errot free frgme
,,,,, R

Mean of |Le|

Iterations

[Figure 3-3] The trends of extrinsic information for frame=1024 bits

22

Frame size = 256

T
3
G
c
[0
(0]
s
0 2 4 6 8 10 12 14 16 18 20
Number of lteraions
Frame size = 512
oy
3
G
c
®
(0]
s

0 2 4 6 8 10 12 14 16 18 20
Number of Iteraions

[Figure 3-4] The trends of extrinsi¢ information for different frame size

In figure 3-3, the simulation results are-for frame size=1024 bits, we also observe
different frame sizes for oscillation” ‘phenomena, as figure 3-4 shows. From the
experiment results, we concluded that the estimation of decoding failed case is more
reliable as the frame size increased. The reason is, for longer frame size, we have
more side information about the bit we estimated, so the decoding failed case

estimated by oscillating can be more accurate.

3.2.2 Simulation Results for Give-up

According to our idea, we simulate the give-up effects for decoding performance
judged by packet error rate. Note that, in this case, we just give simulation results for

give-up only. However, give-up is not enough for decoding a valid packet out, so we

23

will discuss the give-up effects in section 3.5 for the system with re-transmission

scheme, and then give a complete conclusion there.

Packet Error Rate

Average lteration

[Figure 3-5]

Simulation for Give-up effects

B [—— B S ——
—+H— Optimum
—<— Early Give-up

—H&— Optimum
—<— Early Give-up | |

SNR (dB)

Effects on the performance by give-up decoding process

In figure 3-5, we set the number of maximum iterations to be 15, and the optimal

means that the program compared the information bits in encoder and decoded

outputs after per iteration of decoding process. If the output of encoder and decoder

are the same, we stop the process immediately for saving unnecessary iterations (This

is impossible in practical, because we don’t know what exactly the information bits

for encoder, so this method is only available in simulation, therefore, paper [27] called

it’s an optimal (or Magic Genie Rule) solution).

In facts, if we want to stop decoding process when decoded outputs are already

24

valid, we should use the termination techniques mentioned in chapter 2. Besides, we
analyze the performance by packet error rate (PER), rather than bit error rate (BER),
that because once we found a decoded failed packet, no matter one bit error or one
hundred bit errors in it, we all need re-transmission, so from system level point of

view, PER (or frame error rate, FER) is more meaningful than BER.

3.3 The Reuse Methodology for Early Give-up Scheme

By using the early give-up technique, the turbo decoding process can be stopped
as early as possible while the channel condition is not good enough. The simulations
show that energy can be saved even with the presence of false alarms. Another
question is that if there exists useful information within the given-up process except
for energy savings. Turbo deceding is an iterative-process and requires the initial
guess. We assume that there exists.certain-correlation between the same packets
transmitted at different times. Therefore, a reuse method is proposed to utilize the
calculated information of the given-up process and use it as the initial guess for
re-transmitted packet. So section 3.3.1 will describe the re-use method detaily and the
corresponding assumption conditions. Section 3.3.2 will show the simulation results

for reuse methodology.

3.3.1 The Idea of Reuse Methodology

Traditionally, the initial condition for MAP decoding algorithms is set to be 0
based on the assumption that the probability of information bits to be 0 or 1 is

equal-likely. So a priori information for initial condition is:

25

P =1 . . .
nr(L): log”—5 =log,1=0. By applying the re-use technique, we save
Pr(u, =0) 0.5

the extrinsic information calculated in the previous given-up process and use it as the
initial condition of MAP decoding for the re-transmitted packet based on the
correlation between the same packets transmitted at different times. The circled part in
figure 3-6 shows the reuse part for explanation. Instead of starting from 0 as initial
condition, we utilize the prior estimated values of information bits as initial guess.
This will lead to the iterations reduction of decoding processes and we will give the

simulation results in section 3.3.2.

Re-use it
a”' (L?) A priori infor. I
[De-Int |- -
©) 3 (2) "
|_> A Int —p .
4 a(L) -
, Dec 1 ; Dec 2 ~
» —p ec_ 2 ec_ >
x' p| In a(x')

[Figure 3-6] The reuse methodology for turbo decoder

3.3.2 The Simulation Results for State Reuse Methodology

The simulation results in figure 3-7, figure 3-8 demonstrate the average iteration
numbers of decoding processes with the reuse state technique. The X-axis represents
the SNR offset. The SNR offset means the SNR difference between the given-up
packet and the re-transmission packet. To be conservative, we assume that the channel

SNR becomes better than the previous given-up transmission, so that the resent packet

26

will have better chance to be correctly decoded. Therefore, the SNR offsets mean the
difference between two transmissions of the same packet.

The original channel SNR of two simulation cases are shown in figure 3-7 and
figure 3-8. Figure 3-7 is the case that the original channel SNR to be 0.0 dB and
figure 3-8 is the case that the original channel SNR to be 0.5 dB. The SNR of the
resend packet is according to the SNR offset. For example, if the original channel
SNR is 0.5 dB (the case in figure 3-8) and the offset is 1.0 dB, the channel SNR of the
re-transmitted packet is assumed to be 1.5 dB. Therefore, if the SNR offset is 0, it
means that both transmissions are under the same channel condition.

The SNR offsets in the simulations are all positive because the early
give-up/reuse state techniques proposed in this study focus on the worse channel
conditions. If the re-transmitted packet bears wotse channel SNR than the given-up

packet, the possibility to decode-correctly is much less.

Here are the specifications and-simulation results.

[Reuse Experiment 1]

Specifications:

Frame size = 1024 bits
Maximum iteration = 10 times
SNR (for the given-up packet) = 0.0 dB
Total Early Give-up times = 200 times
Decoding algorithm = Log-MAP

27

Average iteration

[Reuse Experiment 2]

Simulation for Reuse Method at 0.0 dB

—=— WithRM
—<— WithoutRM

SNR offset

[Figure 3-7] Reusé'method for SNR at 0.0 dB

Specifications:

Frame size = 1024 bits
Maximum iteration = 10 times
SNR (for the given-up packet) = 0.5 dB
Total Early Give-up times = 200 times
Decoding algorithm = Log-MAP

28

Simulation for Reuse Method at 0.5 dB

6 T T
| | —H&— WithRM
777777777777777777 L ______ Y| —%—WithoutRM | |
5.5 - T
I I
I I
I I
- - N - - — e i T — - - —
I I
I I
I I
45 - - ———---x--—-—-—-—--—- e i Fem e mm———— - - —
I I
I I
I I
e MR----------c----- Hm e mmm e mmm e mm———— = e m s mm e m—— == —
2 I I
© | |
2 | |
P Rl e N e i A m e m e —m e —— === to s m s m s —— == —
=) I |
g I I
> I
<< <] N T g —
I I
I I
I I
25k ————————Nc-—————— AT - e -
I
‘ -
I I
) N Hm e e e m oo g ==
I I
I I
I I
15 - - - - - N\ e _____ Lo ____ —
I I
I I
— I
1 ! \7,,,43 i
0 0.5 1 1.5
SNR offset

[Figure 3-8] Reuse method for SNR at 0.5 dB

The green line (marked by:diamond) is the result for the traditional case (taking 0
as initial condition for the re-send:packet) and the blue line (marked by square) is the
result for the re-use case (taking the extrinsic information at given-up stage as initial
condition for the re-send packet). The goal of the reuse experiments is to prove that
the decoding process will be converged faster if we use the information estimated at
the given-up stage as the initial condition instead of traditional initial condition (0).
Therefore, the experiment will focus on the decoding iterations of the re-send process.

The stopping condition for this experiment is to reach the pre-set number (total
early give-up times in the specification: 200 times) of the re-send process. The figure
3-7 and figure 3-8 are plotted according to the average decoding iterations under 200
times of the re-send process for both traditional flow and re-use methodology. The
number of the total transmission packets in this experiment must more than 200

packets, because not every transmission will request the re-transmission and we count

29

the re-transmission process only. Taking figure 3-8 for example, under the assumption
conditions, we can reduce average decoding iteration about 1.8 iteration at the SNR
offset 0.5 dB by re-use methodology compared to the traditional flow and thus, we
can use less energy (proportional to the number of decoding iterations) for decoding a
valid packet out with re-transmission.

From the simulation of above two case, we can give the conclusion: The reuse
method for early give-up procedure is more usable for the case that the packet is
given-up under better channel SNR, because the extrinsic information in better
channel condition are more reliable than in bad channel, so the estimation will be

more accurate and useful for decoding process.

3.4 The False Alarm for Early Give-up Technique

The give-up idea we proposediis that-once the packet is estimated be a failed
case, we give up decoding process as early as'we could for power saving and hence,
reducing latency for re-transmission. However, the give-up is a kind of estimation and
we can’t estimate exactly accurate, therefore false alarm arises when the rest of
iterations (if give-up not performed) can decode the valid packet out. In other words,

if the alarm signs on the valid packet, it is the false alarm.

3.4.1 The Quantization Effects for False Alarm

The false alarm will be affected by a lot of factors like the size of the packets, the
channel SNR and the decoding flow ...etc. In this section, we will combine these
effects above to discuss the false alarm. We will simulate different quantization

schemes for turbo decoding and compare the false alarms of them, then give a

30

conclusion from simulation results.

First, we want to explain the meaning of the symbol we used for quantization in
Table 3-1. Taking Received value: q(4,2) for example, q is the abbreviation for
quantization, 4 is the total bit numbers we represent the received value, and 2 is the
precision bit numbers for received value. Thus, the received value is represented by 2
bits for dynamic range and 2 bits for precision bits (behind the dot). The column
“Parhi” is the quantization scheme in his paper [16], and column “+Q1” means we
add one precision bit compared with Parhi’s data. The column “+Q1+D1” means we
add one bit for precision and one bit for dynamic range compared with Parhi. Table
3-1 shows the variables we used in MAP decoding process with different quantization

schemes.

Parhi [16] +Ql1 +D1+Q1 +Q2
Received value q(4,2) q(5,3) q(6,3) q(6,4)
Branch metric q(7,2) q(8.3) q(9,3) q(9.4)
LLR q(10,2) q(11,3) q(12,3) q(12,4)
Forward metric q(9,2) q(10,3) q(11,3) q(11,4)
Backward metric q(9,2) q(10,3) q(11,3) q(11,4)
Priori information q(6,2) Q(7,3) q(8,3) q(8,4)
Extrinsic information q(6,2) Q(7,3) q(8.,3) q(8.4)

[Table 3-1] Different quantization scheme for MAP

The simulation results for BER performance and average decoding iterations
under different quantization scheme are shown in figure 3-9 and figure 3-10. (Figure

3-9 (a) and (b) are both simulation for BER but different in SNR range) We can see

31

from the simulation results that under terrible channel SNR (less than 0.5 dB), less
precision quantization scheme will cause higher bit error rate and more iterations
needed for decoding. Taking SNR=0.3 dB for example, the BER for Parhi’s
quantization is about 10™" and is about 4x107 for Parhi+D1+Q1’s quantization scheme.
However, the number of average decoding iteration needed for Parhi’s quantization is
about 9 times and is about 6.8 times for Parhi+D1+Q1 shown in figure 3-10.
Therefore, in terrible channel SNR (< 0.5dB), using less precision quantization
scheme will cause higher bit error rate and need more iterations for decoding due to

the effects of quantization noise.

32

| —2— Parhi Q+1

| —6— Parhi

SNR (db)

BER for different quantization schemes

[Figure 3-9 (a)]

[T T T T 7
-

a

+

bl g
H g o
+ o+
£ ¢
= = =
T © @©
onoon

SNR

BER for different quantization schemes

[Figure 3-9 (b)]

33

T
I
: —o— Parhi
I
I
I

—4— Parhi Q+1
—+— Parhi D+1 Q+1

Avg lteration

SNR/(db)

[Figure 3-10] Average iterations for-different quantization schemes

Figure 3-11 (a) shows the false alarm rate for different quantization bits. The
false alarm rate is calculated according to the ratio of false alarm times and total alarm
times (The total alarm times is illustrated in figure 3-11 (b)). The definition of the
false alarm has been mentioned in section 3.4, here we explain the method we
simulate. Because we do not know this alarm is true or false until the maximum
iteration, therefore, we record this alarm and do not give-up until the maximum
iteration for the false alarm experiment. If the decoded patterns are not valid patterns
after maximum iteration, then this alarm is true, else it is a false alarm. From the
simulation results of figure 3-11 (a), we conclude that, for the same dynamic range
representation, false alarm rate will be decreased as the precision bits increased.
Taking Parhi, Parhi+Q1, Parhi+Q2 for example, the number of precision bit of

Parhi+Q1’s scheme is 1 bit more Parhi’s scheme and is 1 bit less than Parhi+Q2, and

34

the false alarm of Parhi, Parhi+Q1, Parhi+Q2 are 3.5%, 1% and 0.2 %, respectively.
That is because when we use more bits on precision, we will have less chance to
mis-judge the oscillation case due to quantization. However, if we increase the
representation for dynamic ranges, the quantization scheme will be less sensitive to
the false alarm criteria (observing figure 3-11 (b), the alarm times of the
Parhi+D1+Q1 are much less than the others). The experiment results for
corresponding alarm times are shown in figure 3-11 (b). According to this experiment,
we will choose the worst case of false alarm (Parhi+Q1+D1) as the quantization

scheme to discuss the benefits of the proposed flow compared to traditional flow.

35

/‘Z)

Parhi+Q1+D1

—+—— Parhi+Q2

T
—+H— Parhi
—<— Parhi+Q1

- - - - 4 - — — — — L

SNR (dB)

o
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|

_ L |
B |

30
25— 4L

waolad Ul a)ey Wiely as[ed

(@)

B Parhi+Q1
U Parhi+Q?2
0O Parhi+D1+Q1

O Parhi

1200
1000

ST} ULIB[Y

0 01 02 03 04 05

SNR (dB)

(b)

[Figure 3-11] False alarm rate for different quantization schemes

36

3.4.2 The Decoding Flow Effects for False Alarm

To achieve the goal of designing the energy efficient turbo decoder, we propose
the scheme which is the combination of termination checking and give-up detection in
decoding flow. However, how to decide the order of termination checking and give-up
detection in the turbo decoding flow? To solve this problem, we simulate these two
flows and the corresponding quantization effects of false alarm mentioned in above
section, then we conclude by the simulation results of the false alarm to choose the
best arrangement for termination checking and give-up detection as our proposed

decoding scheme.

37

\

Received
packet

['urbo Decoding
With EGu+RM

MAP
Decoding
Algorithm

Give-up
condition

checking

Resend process
with Reuse Method ||

Termination
condition
checking

Yes > Valid packet

Resend process i
with Reuse Method

J

K Next iteration

[Figure 3-12] Turbo decoder decoding flow with give-up and state re-use

scheme (give-up detection before termination checking)

38

Y

Received
packet

Turbo Decoding
With EGu+RM

MAP
Decoding
Algorithm

Termination
condition

checking

Yes > Valid packet

Give-up
condition
checking

Resend process

Early | |
with Reuse Method

give-up

Resend process |
with Reuse Method

J

\ Next iteration

[Figure 3-13] Turbo decoder decoding flow with give-up and state re-use

scheme (give-up detection after termination checking)

Figure 3-12 and figure 3-13 illustrate the different order of termination checking
and give-up detection in decoding flow, and the corresponding false alarm simulation
results are shown in figure 3-14. The decoding flow in figure 3-12 is stated: first,

when receive a packet from channel, we use MAP algorithm to decode the packet.

39

After one iteration of the MAP decoding process, we will check the extrinsic
information generated during the decoding process to see whether we are going to
giving-up the decoding process or not. If the give-up checking shows that we should
give-up the decoding process, we will request the re-transmission with re-use
methodology. If the packet pass give-up checking, it will go to see whether it satisfy
the termination condition. If the packet satisfies the termination checking, it is
recognized as a valid packet under termination checking condition. If the packet does
not pass the termination checking, it will check whether it reach the maximum
iteration or not. If yes, the decoding process will request the re-transmission with
re-use methodology, if no, the packet will go to next iteration of MAP decoding
process. The difference between figure 3-12 and figure 3-13 is the order between
give-up checking and termination checking, this is.the point we want to decide by the
simulation results of false alarm. Figure 3-14 (@) is-the result for give-up detection
first and the figure 3-14 (b) is-the tesult-for-termination checking first. Comparing
figure 3-14 (a) and figure 3-14 (b), we find that if we perform give-up detection
before termination checking as in figure 3-12 shown, we will get higher false alarm in
the higher (more than 0.4dB) channel SNR range. Taking SNR=0.5 dB for example,
we will have false alarm rate about 13% with Parhi’s quantization scheme for give-up
detection first flow (Fig. 3-12) and the false alarm about 7% for termination first flow
(Fig. 3-13). That is because if we perform give-up detection first, we will mis-judge
the case that the packet can pass the termination checking but been given-up before,
and this case will be obvious in higher channel SNR of the simulation. Intuitively, the
false alarm rate will go up as the channel SNR increased, that is because there will be
more possible to decode a valid packet out under better channel SNR, to prevent the
false alarm rate goes up severely for better (> 0.4dB) SNR range, we should use

termination checking before give-up detection according to the simulation results,

40

therefore, we will take the decoding flow in figure 3-13 as our proposed decoding

scheme.

41

S

a

+
- = o
M g g g
Tt
£ ccc
£ £ £ €
T & & ®
[a N Ny a Wy a

30

Jusosad ul ajey ey asje

SNR (dB)

(a) The early give-up before early termination in decoding flow

(refer to fig. 3-12)

Parhi+Q1+D1 |-

JsoJad Ul 8jey wle|y osje

0.25
SNR (dB)

0.2

0.15

0.1

0.05

o

(b) The early termination before early give-up in decoding flow

(refer to fig. 3-13)

[Figure 3-14] The false alarm rate of different decoding flow

42

3.5 The Simulation Results of Proposed Scheme

Combining the factors we consider in above sections (including give-up
detection, re-use methodology, quantization scheme, different decoding flow and the
false alarm) we will give the simulation results including these factors to discuss the
benefit of our proposed flow.

Firstly, we will compare the traditional flow and proposed flow then give the
simulation results to explain the benefits of our scheme under the terrible channel
conditions. As the figure 3-15 shows, the traditional flow for turbo coding system is
illustrated. For traditional way, when received a packet, we decode the receive pattern
by MAP algorithm. After per iteration of MAP decoding, we will check the
opportunity for termination using .seme termination techniques mentioned in 2.3.4. If
it is not the right time for termination, the process-will check whether it reach the
maximum iteration. If yes, it means that-the.decoding process reach max iteration but
decoded output still not a valid pattern:(because it failed to termination checking), so
we will demand the transmitter to re-send the packet to complete data transmission. If

no, we will continue the MAP decoding algorithm for next iteration.

43

Received
packe

MAP
Decoding
Algorithm

| Termination |
. condition
| Next checking |
i iterdtion :
i Valid packet
I
| Resend Process
\
’ e —— L. W 5 S T F - O

[Figure 3-15] Traditional turbordecoding flow with termination scheme

The above flow is the same'for turbo-decoding with termination skill proposed in
[12]. Now we will introduce our proposed flow for turbo decoding with proposed
early give-up and re-use methodology. The flow is illustrated in figure 3-13. The
differences between traditional flow and proposed flow are the give-up detection and
reuse state methodology. In figure 3-13, according to the simulation result of false
alarm, we add give-up decision after termination checking in decoding flow. After the
termination checking, we will check the extrinsic information for termination
checking to decide whether continue decoding process or not. If we decide to give up,
we can re-use the state by the methodology mentioned in 3.3.1. The other parts are
same to traditional flow.

To prove the give-up with reuse methodology really works for iteration reduction

under bad channel condition, we made the following experiment. We set the

44

maximum iteration to be 10, and stop criteria is to receive 1000 valid packets at
receiver for each SNR condition. The quantization scheme is the worst case for false
alarm (Parhi+QI1+D1). Each packet contains 1024 information bits and the valid
packet means that receiver decodes out a duplicate compared to the transceiver's
message. By accumulating the number of decoding iterations, we can calculate the
average decoding iterations for each valid packet.

The simulation assumptions are stated. Because we take re-transmission into
consideration, there will be two kinds of cases for channel SNR. One is SNR for the
give-up stage, and the other is for re-transmission stage. We assume the
re-transmission packet will have 1 dB SNR offset better than the packet at give-up
stage, for both traditional flow and our proposed flow. That is, if the packet with the
SNR=0.4 dB at the give-up stage,.then the re-transmission packet will have SNR=1.4
dB. The goal of this simulation is.to prove that.when the packet affected by noise
seriously, stop decoding will be smarter than-continue decoding process.

Under above assumptions and. the simulation results, we can conclude from
figure 3-16 that the idea we proposed really reduces iterations for decoding under
terrible channel conditions. Taking SNR=0.4 dB for example, the traditional flow
needs average 5.575 decoding iterations to decode a valid packet out and our
proposed flow needs about 4.77 decoding iterations. Therefore, we can use less
energy (according to iteration) to decode a packet out under our simulation conditions.
The corresponding reduction percentages are in table 3-2.

From the throughput point of view, because the proposed scheme can use less
decoding iterations for a valid packet under our assumptions, therefore, for given data
to be transmitted, our flow can use less decoding iterations for the receiver compared
to traditional flow, thus we can increase the through-put from iterations saving point

of view. The corresponding increase in throughput compared to the traditional flow is

45

also reported in table 3-2.

12 [[I
—F&— WithEGu+RM
******* —<— WithoutEGU+RM |

L

Average iteratons for per valid packet

[Figure 3-16] A"yérage‘" iterations for 1000 valid packets

SNR (dB) 0.0 0.2 0.4 0.6 0.8
Average
Iterations
Traditional flow 11.432 8.891 5.575 3.729 2.490
Proposed flow 7.108 6.369 4.770 3.323 2.435
Energy Saving 36.99% | 2837% | 14.44% | 10.89 % 221 %
The increase for 1.608 1.396 1.169 1.122 1.026
throughput (compared times times times times times
to traditional flow)

[Table 3-2] Iteration reductions and throughput increase for different channel SNR

46

Chapter 4 Hardware Implementation

We have briefly described the encoder and the decoder structure for 3GPP
system in chapter 2. The encoder part is easier than the decoder part for 3GPP, so the
following sections will focus on the decoder for implementation. We take hardware
architecture mentioned in [13] as the implementation blueprint to realize MAP
algorithm and add the additional hardware for early give-up detection circuit. We will
also estimate the overhead and the benefits for give-up from the point of area, power

consumption and power saving.

4.1 A Case Study: The Turbo Decoder for 3GPP system

According to the idea we proposed in chapter 3, we take 3GPP standard as a case
study to discuss the overhead: of »give-up,-then-compare the simulation results
presented in chapter 3, to discuss the ‘benefits of our idea. Therefore, the following
sections will focus on the hardware implementation of process element, control unit

and memory organizations.

4.1.1 The Process Element Design

As mentioned before in chapter 2, we have briefly described the MAP algorithm.
So the goal of this section is to realize the process element including branch metric
calculation, state metric calculation and soft-output calculation used in MAP

algorithm.

47

4.1.1.1 The Branch Metrics (gamma)

The Branch metrics are calculated according to the formula below:
. 1
7i(s'y8)=BM, (x,,,x,;) :E[L(dk)-xs,k L. (Vop Xut Vi -xp,k)] , where L(dy)

and L. are the a-prior information and channel reliability, respectively. The channel
reliability (L.) can be implemented by look-up table according to real channel SNR
case. Some papers talked about the performance degradation affected by SNR
mismatch [25]. However, in this thesis, we don’t touch this topic and assume the
channel SNR is estimated accurately.

According to the structure suggested for 3GPP, we need to update every state
metric in the same time stamp, therefore, . we have to calculate every branch metrics
out for updating the state metric On the cottesponding trellis diagram. However, some
branch metrics calculations “ can _be simplified by mapping rules
like BM, (1,1) = -BM , (-1,-1), BM, {,=1)==BM ,(~1,1) , due to encoder structure

and BPSK modulation. The block diagram of branch metric (gamma) calculation is in

figure 4-1.
L e
» S((M)]
Y > S(IO]
S K
—> > S,
Y > S(" 0)
P EX
» S(~U)]
Gamma > 5.,
Calculation P S0
Unit > Soo
— — S,
— — S,
BM —— % Sen
(C) — — > S(s,n
— — > S,
— — > S,
— — S((nl]
— — S,

[Figure 4-1] The Gamma calculation unit

48

4.1.1.2 The Forward/ Backward State Metrics (alpha, beta)

The forward state metrics ox can be calculated recursively according to the
formula: a,(s)= ln(z expla, (s")+7, (s',s)]j =max_*(a, (s")+y,(s',s))
Similar to the ACS unit used in Viterbi’s algorithm, the process element we used to
update the state metric is ACSO (Add Compare Select and Offset), the offset is
compensation part for max* operation and corresponding block diagram is in figure

4-2.

Max* unlt

V(S)04555;)
ACS unil

) 4

v »
.

T\ ak(szj)i _
N

sign il
7k(sjaszj) :

[Figure 4-2]7+ Block diagram-of ACSO unit

According to the FSM formula above, we need previous stage’s value to update
FSM. Therefore, it needs registers to hold the state value as shown in figure 4-3.
Besides, The LLR calculations also need FSM, so we need memory to store the value

for the length of sliding window of the branch history.

[4 Forward
Reg Metrics
Forward N Normalization o Memory
a,(s Processor unit 1 [sram.
SRAM,

Initial control

[Figure 4-3] The forward processor unit with memory (FP)

49

The hardware architecture for backward state metrics (BSM) is the same as FSM,
the difference between FSM and BSM is only the direction of branch calculation. In
chapter 2, we have mentioned the sliding window method for MAP decoding, we will
give explanations by space and time schedule diagram to state how each PE working

and corresponding timing in section 4.1.4.

4.1.1.3 The Soft-output Calculation (LLR)

According to the property of Max* operation:
In(e’ +e” +e° +e’)=1In(e™ """ + ")) = Max * (Max* (a,b), Max * (c,d)).

We can realize the LLR operation (2.19), by. 3-level tree structure of Max* as figure
4-4 shown. We fully pipeline the'soft outputunit to deal with the data of FP and BP

from every trellis state during every stage.

LLR out

reg
[Figure 4-4] The soft-output calculation unit

50

4.1.2 The Interleaver and De-interleaver Design

The operation of 3GPP internal interleaving is described in [15]. We just give an
example to explain the mapping technique (PIL interleaver). The turbo code internal
interleaver consists of bits-input to a rectangular matrix with padding, intra-row and
inter-row permutations of the rectangular matrix, and bits-output from the rectangular
matrix with pruning.

According to the size of the frame, we can find the row (R) and column (C) size
for the rectangular matrix. For the 3GPP specification, we take the smallest size K=40
for example.

First of all, we write data into RxC matrix row-by-row, the sequence as figure
4-5 shows (if the number of data less than R*C; the reset of matrix can be padded by

0 or 1, and the padded data will-be pruned out«n the final stage).

XXX X X) X X] X]
— o X Xao] Xao | Xz | Xae] Xaa | Xae } ae |
— o R] Ko] Xae { Xao | X | Xgp { Xoy | Xaa |
— o X Xae | Xar f Moo | Xao | Koo { Xsy | X |
— o Koo] Xsa] Xss f Xso | Xor | Ko | Xso | Xa |

[Figure 4-5] The row-by-row scheme for data writing

After filling out the data, the stage goes to intra-row permutation. As the name
implied, we can understand the meaning by comparing figure 4-5 and figure 4-6. The
data in figure 4-6 will be changed on its column index, but the row index still the

same, therefore, this action calls the intra-row permutation (The criteria for how to

51

manage the position in a row will be complicated, and refer to 3GPP specification [15]

for detail).

X | xe | x| x| x| x| %, | X,
XW x1i x11 x15 x1q x14 XS x1€
x1l XZZ x21 XZS x1‘ XZO x17 x24

[Figure 4-6] Data arrangement after intra-row permutation

Then we need to perform inter-row, permutation. Compare to figure 4-6 and
figure 4-7, we can find the data been exchangéd in‘the form of row-pattern, as action

name implied (the same, refer [15]for detail).

X, X5z X2 Xz Xoe X2 X, X4
Xy X, Xy Xy X, X4 X, X
X X X X X X X X

[Figure 4-7] Data arrangement after inter-row permutation

Finally, after intra-row, inter-row permutation performed on the data, we read the
matrix data column by column from left to right as figure 4-8 illustrated (during
read-out stage, if the data is filled for padding, we will prune out it at this stage).
Using this mechanism of mapping, the interleaver can achieve the goal for scattering

data sequence.

52

Due to lots of arithmetic calculations and look up operations defined by the
specification, using hardware to calculate mapping rule may be not very efficient. So
the usual way is using software to compute the mapping rule offline, then we store the
rule in the ROM, thereafter use look-up table method, to achieve interleaving function.
Of course, some paper talked about how to implement hardware consistent of 3GPP
specifications. The difference between hardware and software implementation is the
online calculation of mapping rule. If the frame size changed (3GPP specification
support 40-5114 bits as frame size), the mapping rule changed, of course. Hardware
method can online calculate the corresponding rules, however, look up table method
need to change the ROM table. However, the implementation for interleaving function
is not the topic for the thesis, so we choose software implementation method to realize

interleaving function.

[Figure 4-8] The column-by-column scheme for data reading

53

4.1.3 The State Metrics Normalization

We always have overflow problem for state metrics representations under given
quantization scheme after continuous summations and multiplications. To normalize
the state metrics before store it into memory as shown in figure 4-3 is essential for
fixed point representations. We have mentioned how to normalize state metric and
give the proof in 2.3.3. In summary, Parhi’s method requires small amount of

hardware and its speed does not depend on the number of state [16].

4.1.4 Sliding Window Timing Diagram

In chapter 2, we have mentioned about how: to use sliding window method to
solve MAP algorithm, in this section, we will use space and time relationship block
diagram to explain the schedule-of each-PE-and. corresponding hardware architecture.
As we mentioned before, we refer the hardware architecture of paper [13]. The
schedule for FP, BPy, BP; and WP are all in figure 4-9, and corresponding hardware
architecture in figure 4-10. Here we explain the functions for each PE. WP stores
input received symbols in Memory M;, and FP uses the stored received symbols to
compute forward metrics a and then store into Memory M,, while each BP computes
its own backward metrics B. As we mentioned before, sliding window method for
MAP algorithm needs learning period for backward state evaluation, therefore, we use
two BP (BPy and BP)) to increase the production of backward state calculations as in
figure 4-9 shown.

Once we have got a, f value from each PE for the window length, the soft output
calculator is employed to decode the LLR out. The shaded part in figure 4-9 is the

corresponding decoded timing for LLR value of the window length. We just

54

illustrated a part of overall frames but the schedules remained are the same for each

process element.

‘ M. -
0 L 2L 3L 4L
0
W
L
W processor
oL stored humber
in Mz
A B.() | W o
3L = PE ()
(04
A B.(ll W
4L
(@)
W A B.(I)
B,(II)
5L
(04
B.(I) | W B(()I) A
6L 2
v
Time

[Figure 4-9] Space and time relationship_for a-first memory management

(refer to [13])

Memory M.
soft-input
— WP [| Bank; | | Bank. || Bank, || Bank,
P A 4 YV | Y V]
. BMC BMC . BMC -
FP BP, BP.
—
Mel\Tzory Bank, ([Bank.
al Y v s

Soft-output calculator

v

soft-output

[Figure 4-10] Block diagram for SW log-MAP decoder (refer to [13])

55

4.1.5 The Memory Arrangement

Because we have more than one processor in hardware architecture, the dual-port
memory will be needed for different processors accessing concurrently. Therefore, we
use two kinds of dual-port SRAM for different purpose, memory M; for store the
received symbol from channel and memory M, for store the forward state metrics
from FP. We use 6 bits for received symbols and 11 bits for state metric
representations, therefore, the size of memory M;, memory M, are:

M, = (number of banks) * (2*[bits for received symbol]) * (sliding window size) =
4*(2*%6)*32 = 1536 bits

M, = (number of banks) * (sliding window size) * (number of states) * (bits for state
representations) = 2*32*8*11 = 5632 bits

Total memory size needed in MAP.decoding is 1536+5634=7 K bits.

4.1.5.1 The PE Control Mechanism

Processors like FP, BPy, BP; all need to use data stored in memory M; but the
difference is that FP need to store the results into memory M, and BP,, BP; don’t.
Therefore, all processors’ working time for the same trellis stage might not be the
same. Therefore, for simplicity and synchronism, we start every PE at the beginning
of trellis and wait until all PE’s work been finished in this stage. For this purpose, the
PE controller will disable the enable signal for the PE which have sent ‘done’ signal
to controller. When controller received all working PE’s done signals in this stage,
that means we can go to next stage, then the PE controller gives the enable signal to
all PE for next stage’s working preventing wrong access timing. The ideas are shown

in figure 4-11.

56

PE Controller

Shaded area <) PE working
for wait period
nL (n+1)L (n+2)L
8 4
WP | —p()
P
FP P>
8 4
BP, | | re—»(J+—>()
)
BP, | | a—»(_Jjt—()
> Soft O 3
out |-
y Done
Enable

[Figure 4-11] The PE controller

4.1.6

In this section, we will ptesent the- hardware structure for Give-up detection
circuit. By observation of simulation,”when the summation of absolute value of
extrinsic information not bigger than the summation of last iterations, that is the time

for give-up. Therefore, the input of the give-up detection circuit will be the Le and

frame size as figure 4-12 shows.

By using the extrinsic information (Le) calculated by MAP and controlled by
frame size, we will compare the summation results for last and current iteration. If the
result of current iteration is bigger than the last iteration, we will store the result in
Max register for next iteration’s comparison. However, if the result is smaller than last

iteration, we will assert give-up signal. The shaded parts in figure 4-12 are the

The Early Give-up:Detection Circuit

registers and the controller is a counter loaded by frame size.

57

Give-up detection unit

Y
Compare |

3

Frame: SIZEyI'Controller

clock !

[Figure 4-12] Block diagram of give-up detection circuit

4.2 Experiment Reports for Hardware Implementation

According to the hardware ar¢chitecture mentioned above, we wrote HDL model
[28] for each process elements=and. controller used in MAP decoding algorithm and
then estimate the give-up detection circuit’s-overhead from area and power point of
view to judge the benefit from give-up. Therefore, we report the experiment results

and corresponding in the following sections.

4.2.1 The Area Estimation by Design Analyzer

The data reported in table 4-1 are using TSMC 0.18um cell library, we use clock
frequency at SOMHz to synthesize every process element and controller by Design
Analyzer and generate memory M; and M, by Artisan memory compiler. The area

reports are as follows:

58

Component Gate Count (Size) Area
FP 4.7 K gate count 46935 (um?)
BP, 4.8 K gate count 48349 (um?)
BP; 4.8 K gate count 48349 (um?)

Soft-output

5.2 K gate count

52394 (um?)

CRC16

0.3 K gate count

2720 (um?)

PE Controller 0.8 K gate count 8345 (um?)
Memory M, 1536 bits 0.236 (mm?) by Artisan
Memory M, 5632 bits 0.84 (mm®) by Artisan

Give-up Detection Unit

1.2 K gate count

12467 (um?)

[Table 4-1]

File Utilities Help

tisan

EORPIHENTE

L= |

:Arrea report

N

SRAM-DP-HS SRAM Generator
TSMC CLO18G Process

for each component

_ |0 X!

~GENERIC PARAMETERS
Instance Name
Number of Words
Number of Bits
Frequency <hMHz>

Ring Width <um>

A_ram

3z

ag

30

2

Multiplexer Width 4 w8 []16
Drive Strength w12
Word—Write Mask [[Jon [¥ off
Default | | Update
~VIEWS
Synopsys Model -
Library Name [usERLB

| oefaurt | | |

~RELATIVE FOOTPRINT

~ASCII DATATABLE

name fast@—-0C| fast@0C typical slow |

geomsx 2842370 |2842.370 2842370 |ZB42.370 |a
geomy 147.785 147.785 147.7835 147.785
ring_size [5.200 5.200 5,200 5.200

ice 216882 22117 19.636 17.877

ico_r 20.327 20.727 18415 16.896

fco_w 23,037 23.507 20,8568 18,858
icc_peak 1316.379 |1263482 846,139 431,641
icc_desel |3.656 3720 3,097 2670
icc_stand.. |0.003 0,008 0,004 0.026

toyc 1,263 1.37E 2033 3683

ta 1.037 1.100 1.748 3.058

tas 0424 0480 0718 1.359

tah 0.051 0,057 0.071 0,103

tes 0,268 0,284 0,376 0,603

bl 1 1 = i

Log file is ACLlog

SRAM-DP-HS SRAM Generator, TSMC CLO18G Process

The copyright notice(s) in this Software does not indicate actual or
intended publication of this Software,

command: fhomeshomesoc/adderlan/CBDKOTB8_TSMC_artisanforia_lib/acifra2sh/bin/ra2zh synopsys —instnamme "A_ram" —words 32 —bits

Synopsys Model generator succeeded, created:
A_ram_fast@—0C_syn.lib
A_ram_fast@0OC_syn.lih
A_ram_typical_syn.lib
a_ram_slow_syn.lib

[Figure 4-13] Artisan’s memory compiler

59

We can estimate the area overhead from table 4-1, as it shows, the give-up unit
takes 0.012467 mm’ and overall area for MAP decoding estimated by Design
Analyzer and Artisan’s memory compiler is 1.294 mm?, therefore, give-up detection

circuit occupies 0.963% for area overhead.

4.2.2 The Power Estimation by PrimePower

The frame size is 1024 bits and the simulation time is about one MAP decoding
period by sliding window method, the power for MAP decoding at operation
frequency 50 MHz is about 46.96 mW, and the operation for give-up detection unit in
the same period is about 0.262 mW, therefore the overhead for give-up calculation in

power dissipations is about 0.56%:

4.3 Chip Lavout

We use SoC Encounter as APR (auto place and route) tool and layout is in figure
4-14. The hard macro in the design is memory unit M; and M, the core size for MAP
is 1.522 x 1.512 mm® = 2.301 mm” and the die size is 2.012 x 2.002 mm* = 4.028

mm? in TSMC 0.18 um process.

60

Mistule . _§T™

Blsck o [l T

T | L

)t arr

" ! W
g i
1 q T
1 ™ 1p

| |l

"wil s

gl

wionges [l
Wionges [l
Tasd f

o -
|
ok s i e

e b
S — -

*] =35 AT, 179270}

[Figure 4-14] MAPchip layout by SoC Encounter

61

Chapter S Comparison and Conclusion

In this chapter, we summarize the overhead of implementation for give-up
detection unit in chapter 4 and the energy savings in chapter 3 to judge the

contributions of give-up, and then give the conclusion in the end.

5.1 Overhead and Iteration Savings of Give-up Detection Unit

From the hardware architecture mentioned in chapter 4, the experiment results
for area overhead is about 0.963%, for the power overhead is about 0.56%. The
iteration saving and the corresponding, increase of throughput are illustrated in table
5-1. Therefore, combining the .0verheadijand itération saving into considerations,

give-up really helps energy saving under terrible chanhel conditions.

SNR (dB) 0.0 Ol 0.4 0.6 0.8
Average
Iterations
Traditional way 11.432 8.891 5.575 3.729 2.490
Proposed flow 7.108 6.369 4.770 3.323 2.435
Energy Saving 36.99 % 28.37 % 14.44 % 10.89 % 221 %
The increase for 1.608 1.396 1.169 1.122 1.026
throughput times times times times times
(compared to
traditional flow)

[Table 5-11 Energy saving percentage under different channel SNR

62

5.2 Conclusions

It is possible for turbo decoder to have decoding error case under terrible channel
conditions. How to estimate decoding error with HARQ scheme have been presented
in Wicker’s paper [20]. In his work, a neural network training method is proposed to
estimate the patterns of decoding errors for re-transmission. Similar to the idea and
simulation conditions, we find out a possible pattern of decoding error through
observations and propose early give-up technique to stop the decoding process in
advance. Then a request of re-transmission is sent. A reuse method is also proposed to
utilize the prior MAP information of the given-up process as the initial condition for
next transmission, based on the correlation between the same packets transmitted at
different times.

From power and performance. point of view, we-can turn on the give-up detection
unit by clock gating techniques-under-bad-channel condition, therefore, according to
the simulation results summarized above, the overall overhead in hardware area and
power consumption is very little in comparison to the significant reduction of average
decoding iterations. By applying the simple detection circuit of the early give-up
technique, a shorter overall latency can be achieved because of early re-transmission.
The proposed algorithm and hardware can help achieving a more energy-efficient

turbo decoder design.

63

Chapter 6 Future Works

For the chapters we have mentioned before, we present a new idea (give-up)
addition to traditional iterative decoding process. The next works we can do are put
the new idea into different iterative decoding algorithm and different transmission
network model, then discuss the effects for them. Therefore, we present two topics as

the direction for the future work.

1. Due to the powerful decoding ability and relative simple hardware
implementations, Low Density Parity Check Code (LDPC) gets more and
more concerns in recent years.,According to iterative process and learning
style, LDPC may have. thesame decoding properties for give-up
phenomenon! So the-next work may emphasize on LDPC and discuss the
conditions for give-up-decoding process ‘and other power saving techniques

for LDPC.

2. If we want to talk about the quality of service (QoS) with the turbo code, we
may enlarge the scope to the transmission network model level. Hybrid
type-I and type-II transmission network model are illustrated in figure 6-1.
RQ means request and ACK means acknowledgement. Figure 6-1 models a
noisy feedback channel with Hybrid Automatic Repeat Request (HARQ) like
proposed in [20] [21]. We know early give-up can get benefits from early
re-transmission for reducing overall decoding latency. Thus, the next step we
may formula the relation between the give-up and the network properties like

decoding latency and through-put with mathematic model proposed in [21] or

64

explain it by simulation results.

RQ->ACK

RQ received,
new packet
transmitted

Detectable, but
uncorrectable
error pattern

Source Destination
Packet — T 7 7 7 Packet
transmission accepted

(a) Type-I HARQ model

Detectable but
Errors uncorrectable
detected in

first packg

Packet - 7/
Packet accepted

accepted Packet

ACK>REQ

(b) Type-II HARQ model

[Figure 6-1] State diagram for Type-I and Type-I1 HARQ Protocol based on two

codes (refer to [21])

65

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

References

C. Berrou, A. Glavieux and P. Thitimajshima, ‘“Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” in Proc. ICC 93, Geneva,
Switzerland, May 1993, pp. 1064-1070.

L. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Trans. on Information Theory, vol. 20, pp.
284-287, May 1974.

A. J. Viterbi, “An intuitive justification and a simplified implementation of the
MAP decoder for convolutional codes,” IEEE J. Select. Areas Communication,
vol. 16, pp. 260-264, Feb. 1998.

Chunlong Bai, Jun Jiang."and Ping Zhang, ‘“Hardware implementation of
Log-MAP turbo decoder for W-CDMA Node B with CRC-aided early stopping,”
in Proc. IEEE Vehicular Technology Conf:, May 2002, pp. 1016-1019.

P. Robertson, E. Villebrun and®P. Hoeher, “A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,” in Proc.
IEEE Int. Conf. Communications (ICC "95), 1995, pp. 1009-1013.

M. R. Soleymani, Yingzi Gao and U. Vilaipornsawai, Turbo coding for satellite
and wireless communications, Kluwer Academic Publishers, 2002.

G. Montorsi and S. Benedetto, “Design of fixed-point iterative decoders for
concatenated codes with interleavers,” IEEE J. Select. Areas Commun., vol. 19,
pp- 871-882, May 2001.

J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and
its applications,” in Proc. IEEE Globecom Conf., Nov. 1989, pp. 1680-1686.

Jia Fei, “On a turbo decoder design for low power dissipation,” Master Thesis of

66

Virginia Polytechnic Institute, 6 July 2000.

[10] William E. Ryan, “A Turbo Code Tutorial,” http://www.eccpage.com/

[11] J. P. Woodard and L. Hanzo, “Comparative study of turbo decoding techniques:
an overview,” IEEE Trans. on Vehicular Technology, vol. 49, Nov. 2000, pp.
2208-2233.

[12] Zhai Fengqin and 1. J. Fair, “Techniques for early stopping and error detection in
turbo decoding,” IEEE Transactions on Communications, vol. 51, Oct. 2003, pp.
1617-1623.

[13] Chien-Ming Wu, Ming-Der Shieh and Chien-Hsing Wu, “Memory arrangements
in turbo decoders using sliding-window BCJR algorithm,” IEEE Int. Symposium
on Circuits and Systems, vol. 5, May 2002, pp. V-557-V-560.

[14] Third Generation Partnership:Project. http:/wawvw.3gpp.org

[15] Third Generation Partnership.Project. 3GPP. TS 25.222 Technical Specification
Group Radio Access Network, Multiplexing and channel coding (TDD).

[16] Z. Wang, H. Suzuki and K. K: Parhi, “VLSI implementation issues of TURBO
decoder design for wireless applications,” in Proc. IEEE Workshop Signal
Processing Systems, 1999, pp. 503-512.

[17] E. Boutillon, W. J. Gross and G.. Gulak, “VLSI Architectures for the MAP
Algorithm,” IEEE Transactions on Communications, vol. 51, Feb. 2003, pp.
175-185.

[18] Y. Wu, B. D. Woerner and W. J. Ebel, “A Simple Stopping Criterion for Turbo
Decoding,” IEEE Communications Letters, vol. 4, Aug. 2000, pp. 258-260.

[20] M. E. Buckley and S. B. Wicker, “The design and performance of a neural
network for predicting turbo decoding error with application to hybrid ARQ
protocols,” IEEE Transactions on Communications, vol. 48, Apr. 2000, pp.

566-576.

67

[21] S. B. Wicker, Error Control Systems for Digital Communication and Storage.
Englewood Cliffs, NJ: Prentice-Hall, 1995.

[22] C. B. Shung, G. Ungerboeck and H. K. Thapar, “VLSI architectures for metric
normalization in the Viterbi algorithm,” in Proc. IEEE Int. Conference
Communications (ICC "90), vol.4, Atlanta, GA, Apr. 16-19, 1990, pp.1723-1728.

[23]J. B. Berner and K. S. Andrews, “Deep Space Network Turbo Decoder
Implementation,” in Proc. IEEE Aerospace Conf., vol. 3, 10-17 March 2001, pp.
1149-1157.

[25] T. A. Summers and S. G. Wilson, “SNR Mismatch and Online Estimation in
Turbo Decoding,” IEEE Transactions on Communications, vol. 46, April 1998,
pp- 421-423.

[26] H. Michel and N. When, “Turbo-Decoder Quantization for UMTS,” IEEE
Communications letters, vol. 5, Feb 2001; pp.55-57.

[27] A. Matache, S. Dolinar, F. Pollara, ~Stepping Rules for Turbo Decoders”, TMO

Progress Report, Aug. 15, 2000, http:/tmo.jpl.nasa.gov/tmo/progress_report

[28] M. Keating, P. Bricaud, Reuse Methodology Manual for System on Chip Designs,
Kluwer Academic Publishers, 2002.

[29] A. C Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and Errors in Turbo
Decoding”, IEEE Transactions on Communications, vol. 49, Dec. 2001, pp.
2045-2051.

[30] L. Zhang, G. Zhang, and X. Liu, “Updated Extrinsic Information for Iterative
Decoding of Turbo Codes,” in Proc. IEEE Int. Conference Communications, vol.

1, July 2002, pp. 51-55.

68

