
國國國國 立立立立 交交交交 通通通通 大大大大 學學學學

電電電電 機機機機 與與與與 控控控控 制制制制 工工工工 程程程程 研研研研 究究究究 所所所所

碩碩碩碩 士士士士 論論論論 文文文文

利用預棄技術和狀態再利用實現低功率渦輪解碼器利用預棄技術和狀態再利用實現低功率渦輪解碼器利用預棄技術和狀態再利用實現低功率渦輪解碼器利用預棄技術和狀態再利用實現低功率渦輪解碼器

Low-Power Turbo Decoder Implementation with

Early Give-up and State Reuse Techniques

研研研研 究究究究 生生生生 : 連樹德連樹德連樹德連樹德

指導教授指導教授指導教授指導教授 : 董蘭榮董蘭榮董蘭榮董蘭榮 博士博士博士博士

中華民國中華民國中華民國中華民國 九十四年九十四年九十四年九十四年 七七七七月月月月

 i

利用利用利用利用預預預預棄棄棄棄技術技術技術技術和和和和狀態狀態狀態狀態再利用的技巧實現低功率渦輪解碼器再利用的技巧實現低功率渦輪解碼器再利用的技巧實現低功率渦輪解碼器再利用的技巧實現低功率渦輪解碼器

學生: 連樹德 指導教授: 董蘭榮 博士

國立交通大學電機與控制工程學系碩士班

摘要

考慮傳輸通道品質的情況下，為了使晶片能量能有效率的被使用，而提出了

新的想法“提早放棄”以利用在渦輪解碼的流程上。渦輪解碼器是利用反覆的方

式，完成解碼的動作，解碼的次數和通道的品質高度相關。如果通道狀況良好，

可以利用提早停止的方式，停止解碼程序。然而，當通道品質惡劣，傳統的做法

是解到最大解碼次數之後，若發現解碼失敗，再要求傳送端重傳該封包。因為解

碼所消耗的能量會正比於解碼迴圈的次數，所以就浪費能量在無意義的迴圈上。

我們提出的作法是放棄可能解碼失敗的封包其解碼程序，以節省不必要能量的浪

費，並能及早重傳。利用模擬觀察渦輪解碼資料，我們增加一個簡單的硬體，檢

查解碼中所產生的外部資訊，當作判斷提早放棄的機制。除此之外，我們也提出

在假設重傳的封包資料一致的情況下，如何再利用之前提早放棄解碼的計算，使

得整體解碼所需的迴圈次數下降。我們實驗結果顯示，在通道狀況惡劣的情況

下，綜合我們所提的想法，對達成一定數量成功解碼的封包，可以減少平均 10%

到 37%的解碼所需迴圈次數。

 ii

Low-Power Turbo Decoder Implementation with Early

Give-Up and State Reuse Techniques

Student: Shu-Der Lan Advisor: Dr. Lan Rong Dung

Department of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

A novel early give-up algorithm for turbo decoding process undergoing poor

channel SNR is proposed for energy-efficient consideration. Turbo decoding involves

an iterative process and the number of iterations required to correctly decode the

information packet is highly dependent of the channel condition. If the channel SNR

is good enough, the iterative process could likely be reduced, i.e. early stop or

termination. When the channel is contaminated at the time of transmission, the

process will keep going until a maximal number of iterations is reached, and request a

packet to be re-submitted. Because energy consumption of the decoding algorithm is

proportional to the number of iterations, this would cost extra energy resource. The

proposed approach is to give up the decoding process earlier during bad channel SNR

and request data to be re-sent immediately. Based on observations from the

simulations of turbo decoding process, a simple hardware checking the average

absolute value of the extrinsic information on-the-fly is involved into the original

turbo decoder architecture. Besides, we apply another technique to reuse the prior

MAP information of the given-up process based on the assumption of correlation

between same packets transmitted at different times. Our results shows that the

average iterations required to decode fixed amount of valid packets can be reduced

from 10% to 37% under bad channel conditions.

 iii

Contents

Abstract in Chinese i

Abstract in English ii

Contents iii

List of Figures vi

List of Tables viii

Chapter 1 Introduction 1

1.1 Motivation 2

1.2 The Proposed Scheme 2

1.3 The Arrangement for Thesis Chapters 3

Chapter 2 Turbo Coding Technology 5

2.1 The Encoding and Decoding Structure for Turbo Code 5

2.2 The MAP Algorithm 6

2.3 The Implementation Issues 9

2.3.1 The Log-MAP Algorithm 9

2.3.2 The Fixed-Point Effects 11

2.3.3 The Metric Normalization 12

2.3.4 The Sliding Window Method for Turbo Decoder 12

2.3.5 The Termination Techniques for Turbo Code 14

2.4 Applications for Turbo Code 15

2.4.1 Application for 3GPP 16

2.4.2 Application for CCSDS 17

 iv

Chapter 3 Early Give-up and State Reuse Techniques for Turbo

Coding 19

3.1 Motivation 19

3.2 Observation and Simulation for Early Give-up 20

3.2.1 The Trends of Extrinsic Information 20

3.2.2 Simulation Results for Give-up 23

3.3 The Reuse Methodology for Early Give-up Scheme 25

3.3.1 The Idea of Reuse Methodology 25

3.3.2 The Simulation Results for State Reuse Methodology Scheme 26

3.4 The False Alarm for Early Give-up Technique 30

 3.4.1 The Quantization Effects for False Alarm 30

 3.4.2 The Decoding Flow Effects for False Alarm 37

3.5 The Simulation Results of Proposed Scheme 43

Chapter 4 Hardware Implementation 47

4.1 A Case Study: The Turbo Decoder for 3GPP system 47

 4.1.1 The Process Element Design 47

 4.1.1.1 The Branch Metrics (gamma) 48

 4.1.1.2 The Forward/ Backward State Metrics (alpha, beta) 49

 4.1.1.3 The Soft-output Calculation (LLR) 50

 4.1.2 The Interleaver and Deinterleaver Design 51

 4.1.3 The State Metrics Normalization 54

4.1.4 Sliding Window Timing Diagram 54

4.1.5 The Memory Arrangement 56

 4.1.5.1 The PE Control Mechanism 56

 v

4.1.6 The Early Give-up Detection Circuit 57

4.2 Experiment Reports for Hardware Implementation 58

 4.2.1 The Area Estimation by Design Analyzer 58

 4.2.2 The Power Estimation by PrimePower 60

4.3 Chip Layout 60

Chapter 5 Comparison and Conclusion 62

5.1 Overhead and Iteration Saving of Give-up Detection Unit 62

5.2 Conclusions 63

Chapter 6 Future Works 64

References 66

 vi

List of Figures

【【【【Figure 2-1】】】】 Turbo encoder system block diagram 6

【【【【Figure 2-2】】】】 Turbo decoder system block diagram 6

【【【【Figure 2-3】】】】 MAP decoding flow chart 9

【【【【Figure 2-4】】】】 Timing diagram for sliding window method 14

【【【【Figure 2-5】】】】 Turbo-CRC encoding and decoding block diagram 15

【【【【Figure 2-6】】】】 The Structure of turbo encoder 16

【【【【Figure 2-7】】】】 The performance of turbo decoder 17

【【【【Figure 2-8】】】】 The encoder structure for the CCSDS turbo code 18

【【【【Figure 3-1】】】】 Simulation result for SNR vs. average iteration 20

【【【【Figure 3-2】】】】 |LLR| trends for different types of decoding packets 21

【【【【Figure 3-3】】】】 The trends of extrinsic information for frame=1024 bits 22

【【【【Figure 3-4】】】】 The trends of extrinsic information for different frame size 23

【【【【Figure 3-5】】】】 Effects on the performance by give-up decoding process 24

【【【【Figure 3-6】】】】 The reuse methodology for turbo decoder 26

【【【【Figure 3-7】】】】 Reuse method for SNR at 0.0 dB 28

【【【【Figure 3-8】】】】 Reuse method for SNR at 0.5 dB 29

【【【【Figure 3-9】】】】 BER for different quantization schemes 33

【【【【Figure 3-10】】】】 Average iterations for different quantization schemes 34

【【【【Figure 3-11】】】】 False alarm rate for different quantization schemes 36

【【【【Figure 3-12】】】】 Turbo decoder decoding flow with give-up and state re-use

scheme (give-up detection before termination checking) 38

【【【【Figure 3-13】】】】 Turbo decoder decoding flow with give-up and state re-use

scheme (give-up detection after termination checking) 39

 vii

【【【【Figure 3-14】】】】 The false alarm rate of different decoding flow 42

【【【【Figure 3-15】】】】 Traditional turbo decoding flow with termination scheme 44

【【【【Figure 3-16】】】】 Average iterations for 1000 valid packets 46

【【【【Figure 4-1】】】】 The Gamma calculation unit 48

【【【【Figure 4-2】】】】 Block diagram of ACSO unit 49

【【【【Figure 4-3】】】】 The forward processor unit with memory (FP) 49

【【【【Figure 4-4】】】】 The soft-output calculation unit 50

【【【【Figure 4-5】】】】 The row-by-row scheme for data writing 51

【【【【Figure 4-6】】】】 Data arrangement after intra-row permutation 52

【【【【Figure 4-7】】】】 Data arrangement after inter-row permutation 52

【【【【Figure 4-8】】】】 The column-by-column scheme for data reading 53

【【【【Figure 4-9】】】】 Space and time relationship for α-first memory

management 55

【【【【Figure 4-10】】】】 Block diagram for SW log-MAP decoder 55

【【【【Figure 4-11】】】】 The PE controller 57

【【【【Figure 4-12】】】】 Block diagram of give-up detection circuit 58

【【【【Figure 4-13】】】】 Artisan’s memory compiler 59

【【【【Figure 4-14】】】】 MAP chip layout by SoC Encounter 61

【【【【Figure 6-1】】】】 State diagram for Type-I and Type-II HARQ Protocol

based on two codes 65

 viii

List of Tables

【【【【Table 2-1】】】】 Information block lengths and rates 18

【【【【Table 3-1】】】】 Different quantization scheme for MAP 31

【【【【Table 3-2】】】】 Iteration reductions and throughput increase for

different channel SNR 46

【【【【Table 4-1】】】】 Area report for each component 59

【【【【Table 5-1】】】】 Energy saving percentage under different channel SNR 62

 1

Chapter 1 Introduction

With the performance approaching the Shannon limit of channel capacity, turbo

codes [1] [2] represents one of the most popular research topics in coding theory and

have been deployed in many designs of communication systems such as wireless

systems. Although turbo code provides powerful ability for error control coding, it

also requires a lot of power consumption during the iterative decoding process. Thus,

low-power turbo decoder design becomes an important research issue for

communication systems operated with stand-alone batteries. Due to the iterative

decoding style of turbo code, to reduce unnecessary iterations means to save the

energy consumption and has been studied in many references [12] [18] [27]. This kind

of techniques is called early-termination while decoded outputs are already correct

patterns.

When the channel condition becomes noisy, the decoded output is possibly

unreliable even as maximal iteration number is reached. In [20], a neural network

training method is proposed to estimate the patterns of decoding errors for

re-transmission. Similar to the idea in [20], we find out a possible pattern of decoding

error through simulations and we propose early give-up technique to stop the

decoding process in advance. Then a request of re-transmission is sent. A reuse

method is also proposed to utilize the prior MAP information of the given-up process

as the initial condition for next transmission, based on the correlation between the

same packets transmitted at different times. The early give-up algorithm is acquired

from observations of simulation results, so there exists possible mis-judges, i.e. false

alarms. Under poor channel conditions, the simulations show that both the average

iteration number of turbo decoding process and the overall decoding latency are

 2

reduced despite of the existence of false alarms.

1.1 Motivation

For battery-based applications like cell-phone or other portable devices, power

issues get more and more concerns recently. Our main job is to design a turbo decoder

which can use energy more efficiently depends on the channel conditions. With no

unnecessary energy waste for decoding, we can increase the use time for

battery-based applications with turbo coding and also increase the life time for the

battery.

1.2 The Proposed Scheme

The turbo decoding is a kind of iterative decoding process. For power saving

aspects, a lot of papers discuss how to save unnecessary iterations for the situation

that the decoded outputs are already correct decoded pattern during decoding process.

This kind of techniques called termination skills [4] [18]. In this situation, because the

channel condition is good enough, a few iterations will be able to decode out the

correct patterns so we can stop decoding process before reach the preset limit

(maximum iteration).

However, in this thesis, we think about the other side of situation that if channel

condition goes very bad (over the decoding ability of the turbo decoder), whether we

should stop decoding process preventing unnecessary iterations for power saving?

According to our motivations, we propose a new idea called “Early Give-up”

which can detect the channel condition during decoding process by decoded extrinsic

information then make an estimation that whether the decoded data at final decoding

 3

stage are reliable (error free) or not. If the estimation shows that we will get the

unreliable decoded pattern finally, the decoding process will be stopped for energy

saving, and request for re-transmission immediately to reduce overall decoding

latency.

 Besides that, we also present a methodology for re-use the work we calculated

before the give-up stage. According to the simulation results, we prove that we can

reduce the overall average decoding iterations for given valid packet numbers under

bad channel conditions by using “Early Give-up” with reuse state methodology, thus

we can save power and reduce decoding latency under bad channel conditions.

1.3 The Arrangement for Thesis Chapters

This Thesis is structured as follows.

Chapter 1: Introduction

Chapter 2: Turbo Coding Technology

 In this chapter, we will briefly explain the encoding and decoding algorithm for

turbo code and corresponding hardware structures. Besides, we also take

implementation issues into considerations, like log-MAP algorithm, fixed-point

implementation effects, sliding window algorithm and some termination techniques

for turbo decoding. In the end of this chapter, we will introduce turbo code as an

application in the communication field.

Chapter 3: The Early Give-up and State Reuse Methodology for Turbo Coding

 In this chapter, we will explain our new idea “Early Give-up” technique for turbo

decoding, and corresponding re-use methodology for re-send process. We will modify

 4

the turbo code decoding flow with the new idea and show simulation results for the

proposed scheme in this chapter.

Chapter 4: Hardware Implementation

 In this chapter, we will explain each component in turbo decoder for realizing

MAP algorithm, and also introduce the Early Give-up detection circuit for

implementation. We will compare the overhead from area and power point of view in

the end of this chapter to judge the new idea’s contributions.

Chapter 5: Comparison and Conclusion

 We will compare the benefits and overheads for Early Give-up from hardware

and power point of view and make conclusions for the thesis in this chapter.

Chapter 6: Future Works

 In this chapter we will present the future works relative to our research in this

thesis as the direction for future research topics.

 5

Chapter 2 Turbo Coding Technology

What is Turbo Code

 Turbo code was firstly introduced in 1993 by Berrou, Glavieux and

Thitimajshima [1]. They promised almost 10 dB coding gain (at BER=10
-5
), which is

within 0.7 dB of Shannon limit in AWGN channel. Special features of turbo code are

as follows: (1) turbo code are composed of two parallel-concatenated recursive

systematic convolutional code (RSC) with (usually) very long block length (2) A

pseudo random interleaver is used to randomize the input data for second RSC

encoder (3) The decoder uses iterative MAP algorithm. These factors combined make

turbo code great abilities for error correcting, and also make turbo code a milestone in

error control coding area.

2.1 The Encoding and Decoding Structure for Turbo Code

The encoder side for turbo code uses two the recursive systematic convolutional

code (RSC) and one interleaver, as figure 2-1 shows. Code rate can be increased to

1/2 by puncturing (without puncturing, the code rate will be 1/3). The decoder parts

are shown in figure 2-2. De-puncturing action for decoder is according to encoder.

Other parts are composite of two SISO (Soft-Input Soft-Output) decoder、interleaver

and de-interleaver. The main concept for decoding is to use first SISO decoder which

made use of the received value from channel and a-priori information to calculate the

extrinsic information, and then take the extrinsic information as the a-priori

information to the second SISO decoder. Iterating the decoding process to decrease

 6

the bit error rate from decoder (refer to [1] for detail). For SISO decoder, it can be

implemented by MAP algorithm or Soft-output Viterbi algorithm (SOVA) [8].

[Figure 2-1] Turbo encoder system block diagram

e
L12

eL21

[Figure 2-2] Turbo decoder system block diagram

2.2 The MAP Algorithm

BCJR Algorithm (MAP) was firstly presented in 1974 by Bahl, Cocke, Jelinik

and Raviv [2]. BCJR algorithm is optimal for estimating the states or the outputs of a

Markov process observed in white noise. The details of the algorithm are available in

[2] [5] [6] [9] [10], we briefly describe the main idea of the MAP algorithm. The Log

Likelihood Ratio (LLR) of the k
th
input bit of the input sequence x is defined as:

 7

() []
[]r|0xPr

r|1xPr
lnˆ

k

k

=

=
≡Λ kx (2.1)

Where r is the received symbol form channel and xk is the information bit.

Considering the state transition in trellis structure, we can express Pr[Xk=1|r] as

follows:

∑
+∈

====
Ss),(s

k

'

1-kk
'

r)|sS,sPr(Sr]|1Pr[x (2.2)

Where S
+
 is the set of all pairs of states which transient from state s’ at time k-1 to

state s at time k due to xk = 1. Similarly,

∑
−∈

====
Ss),(s

k

'

1-kk
'

r)|sS,sPr(Sr]|0Pr[x (2.3)

Where S
-
 is the set of all pairs of states which transient from state s’ at time k-1 to

state s at time k due to xk = 0.

Hence, the LLR of the k
th
 input bit of the input sequence x is obtained as:

()
()
() 
















==

==

=
=

=
=Λ

∑

∑

−

+

∈

∈

Ss),(s

k

'

1-k

Ss),(s

k

'

1-k

'

'

r)s,S,sPr(S

r)s,S,sPr(S

ln
r0Pr

r1Pr
lnˆ

k

k

k
x

x
x (2.4)

If ()kx̂Λ >0, we decode the input bit xk as 1, otherwise, the input bit as 0.

Take Pr(Sk-1=s’, Sk=s, r) into consideration, By using Bayes’ rule, we can partition the

joint probability of Pr(Sk-1=s’, Sk=s, r) into three parts.

)Pr(),Pr(),Pr(

),,Pr(),,Pr(

111

11

knjkkkkkjk

kkkk

SrSSrrS

rSSrsSsS

≤<−<≤−

−−

=

≡=′=
 (2.5)

Define the three probabilities as follows:

),Pr()(1111 kjkkk rSS <≤−−− ≡α (2.6)

),Pr(),(11 −− ≡ kkkkkk SSrSSγ (2.7)

 8

)Pr()(knjkkk SrS ≤<≡β (2.8)

Where αk-1(Sk-1) is the function of received information prior to the stage k, γk(Sk-1, Sk)

is the function of received information for stage k and βk(Sk) is the function of

received information after stage k. αk(Sk) can be computed recursively as:

∑
∈

−−−≤≤ ′′=≡
Ss

kkkkkkjkkk SSSrSS
'

1111),()(),Pr()(γαα (2.9)

where S is the set of trellis state transition. Similarly βk(Sk) can be computed

recursively as:

∑
∈

−−≤≤−− ′′=≡
Ss

kkkkkknjkkk SSSSrS
'

1111),()()Pr()(γββ (2.10)

The function),(1 kkk SS −γ can be expressed as:

)()()(),Pr(1

,

kkkkkkkk

mi

k pppxxpixpSSr ′′==≡ −γ (2.11)

Where i is the input bit that cause the transition from state Sk-1=s’ to Sk=s, and xk ` pk

are the systematic bit and parity bit respectively.

From equation (2.4)-(2.11), we can obtain the following equation:

() ()
() 
















=
=

=
=Λ

∑∑

∑∑

−

−

−−−

−−−

k k

k k

S S

kkkkkk

S S

kkkkkk

k

k

k
SSSS

SSSS

x

x
x

1

1

)(),()(

)(),()(

ln
r0Pr

r1Pr
lnˆ

1011

1111

βγα

βγα

 (2.12)

The overall MAP decoding flow is illustrated in Figure 2-3 [11]

 9

mi

k

,γ

)(11 −− kk Sα)ˆ(kXΛ)(kk Sβ

[Figure 2-3] MAP decoding flow chart

2.3 The Implementation Issues

From software point of view, BCJR algorithm will be fine for BER performance.

But if it talks to hardware implementations, that will be lots of factors to effect the

overall performance. Like the performance degradation due to fixed-point realization,

and for real-time demands and decreasing memory area (saving power), take sliding

window method for implementation, the effects for the performance. We also talk

about some techniques for reducing unnecessary iterative process for termination.

Therefore, the following sections will be from the hardware point of view to talk

about the questions and solutions from papers.

2.3.1 The Log-MAP Algorithm

Though MAP decoding can achieve great error correcting capacity near Shannon

limit, this algorithm is too difficult to be realized, basically because the numerical

representation of probabilities, non-linear functions and mixed multiplications and

additions of these values. For the SISO decoders, Log-MAP algorithm is suitable for

 10

hardware implementation, due to its relative simplicity compared with original MAP

algorithm, and better performance than SOVA [5].

 The Log-MAP algorithm is a transformation of MAP, which has equivalent

performance and without its problems in practical implementation. It works in

logarithmic domain, where multiplication is converted to addition. From (2.9), we can

define forward state metrics α in log domain.

)ln(ln

),()(ln)(ln)(

'

)(),'(

'

)(),'(

'

111

11 ∑∑

∑

∈

+

∈

∈
−−−

−− =







⋅=








 ′′=≡

Ss

sss

Ss

sss

Ss

kkkkkkkk

LM

k

LM
k

LM
k

LM
k

LM
k eee

SSSSS

αγαγ

γααα

 (2.13)

Where),'(ln),'(ssss k

LM

k γγ ≡

Form (2.10), we can derive backward state metric β in log domain.

)ln()ln()(ln)(
'

)'(),'(

'

)'(),'('

11

'

11 ∑∑
∈

+

∈
−−−− =⋅=≡

Ss

sss

Ss

sss

kkk

LM

k

LM
k

LM
k

LM
k

LM
k eeeSS

βγβγββ (2.14)

Therefore, from (2.12) the log-likelihood ratio is given by

()











−










=

















=
















=Λ

∑∑∑∑

∑∑

∑∑

∑∑

∑∑

−

−−−

−

−−−

−

−−−

−

−−−

−

−−−

−

−−−

++++

++

++

k k

k
LM
kkk

LM
k

LM
k

k k

k
LM
kkk

LM
k

LM
k

k k

k
LM
kkk

LM
k

LM
k

k k

k
LM
kkk

LM
k

LM
k

k k

k
LM
kkk

LM
k

LM
k

k k

k
LM
kkk

LM
k

LM
k

S S

SSSS

S S

SSSS

S S

SSSS

S S

SSSS

S S

SSSS

S S

SSSS

k

ee

e

e

eee

eee

x

1

1011

1

1111

1

1011

1

1111

1

1011

1

1111

)(),()()(),()(

)(),()(

)(),()(

)(),()(

)(),()(

lnln

lnlnˆ

βγαβγα

βγα

βγα

βγα

βγα

(2.15)

By use of equation:)1ln(),max()ln(),(max* yxyx eyxeeyx
−−++=+≡ (2.16)

We can get [] []())'(),'(,)'(),'(max)(1110

* sssssss LM

k

LM

u

LM

k

LM

u

LM

k kk −=−= ++= αγαγα (2.17)

from (2.13). [] []())'(),'(,)'(),'(max)(10

*

1 sssssss LM

k

LM

u

LM

k

LM

u

LM

k kk
βγβγβ ++= ==− (2.18)

from (2.14). And from (2.15) we can derive

 11

() [] []))'()(),'((max))'()(),'((maxˆ
1

),'(

0

*

1

),'(

1

* ssssssssx LM

k

LM

k

LM

k

ss

u

LM

k

LM

k

LM

k

ss

u
k

kk

βαγβαγ ++−++=Λ −
=

−
=

(2.19)

2.3.2 The Fixed-point Effects

From hardware implementation and real-time demanded point of view, using

fixed-point method to realize MAP algorithm is the best solution for cost and

performance. So we will discuss the considerations of quantization on the

performance proposed in [7] [16] [26].

In [16] [26], they consider the internal MAP state variables and channel data

from A/D outputs then simulate the different quantization schemes for BER compared

to infinite precision case to find the minimum precision representation under tolerable

performance degradation. The meanings for minimum bit representations are not only

for cost-down in hardware implementations but also for power saving due to

minimum storage requirement and less switching activities.

Paper [7] talks about the size of look-up table for Log-MAP. The core of

Log-MAP is the operation ∆+=++= −−),()1ln(),(),(||* BAMaxeBAMaxBAMax BA ,

according to the quantization scheme, the∆ in above equation can be expressed

as)
2

||
exp1ln(|))|exp(1ln(

p

BA
BA

−−
+≅−−+≡∆ , where p is number of precision

bits. We can find the minimum positive integer m stored in ROM satisfying the

inequality)1(2))2/exp(1ln(+−≤−+ ppm to minimize the effects due to look-up table

for different precision.

 12

2.3.3 The Metric Normalization

An important issue in Turbo Decoding fixed-point operation is the growing of

state metrics over the finite numerical range representation. The same problem also

can be found in Viterbi’s algorithm [22]. In 1999, Parhi had proposed a solution in

[16]. This method requires small amount of hardware and its speed does not depend

on the number of state. His approach is that if the word length of state metrics is q bits,

once the state metrics is larger than 22 −q , then subtract 22 −q from all state metric

)(βα or . The proof is as follows:

The Max* operation is: Max*(x+z, y+z) = Max(x+z, y+z) + ln(1+e
-|(x+z)-(y+z)|

) (2.20)

Thus Max*(x+z, y+x) = Max(x, y) + z + ln(1+e
-|x-y|

) = Max*(x, y) + z (2.21)

According to equation (2.21), Max* operation is linear. Thus a global shift for α and β

in (2.17) (2.18) won’t change the value of L(uk) in (2.19) since the contribution of z,

when put outside two Max
*
 operations, is cancelled [17].

2.3.4 The Sliding Window Method for Turbo Decoder

According to section 2.3.1 above, we have simplified the MAP decoding

complexity by log-MAP equation. However, for log-MAP decoding algorithm, we

still have to store every branch metric (γ) and forward state metric (α) at every

stage until the backward state metrics (β) had been calculated out, so as to compute

LLR in (2.19)

Taking 3GPP specification for example, according to encoder structure, we have

8 states in trellis diagram, if we express every state by 8 bits, it would require 64 bits

of storage per branch, and if the frame size is 1024 bits, the turbo decoder must at

 13

least have 64x1024=64K bits storage for traditional MAP decoding algorithm.

 Because lots of memory requirement and decoding latency for MAP decoding,

Viterbi proposed sliding window [3] structure as a solution for these questions in 1998.

We will briefly explain his idea by figure 2-4. First of all, we have three process

elements for sliding window (SW) MAP decoding algorithm, one for forward

processing and the other two for backward processing. L means the sliding window

length (typically 6-10 times for constraint length). The label for each node below

means the trellis time instance. The main idea for sliding window method is that we

can estimate real backward state metric condition by applying learning period (L). As

figure 2-4 shows, dash line means that the unreliable backward branch metric

computations (learning period). After learning period, we get reliable initial state

condition for backward state metrics computations. Now we take first decoded output

for example to explain how these three process elements function. We compute

forward state metrics as the label shows. From time 2L to 3L, we compute the node

metric from 0 to L, at the same time (2L-3L), the first backward processor start to

learning the backward state by received data from 2L to L. During learning period, we

do not store anything until time goes to 3L, at this time instance (3L), because the

forward processor had been already computed the forward state metric from 0 to L, so

we can combine the forward and backward state metrics to get valid decoded output

(L to 0) from time 3L to 4L.

 The operation for second backward processor will be same as the first backward

processor. While the first backward processor decode out branch from L to 0 at time

3L to 4L, second backward processor will start learning at time 3L. After learning

period, we can get decoded output for branch 2L to L from second backward

processor from time 4L to 5L. Two backward processors will take turn to decode out

the branch as the timing in figure 2-4 shows. This is the way for sliding window MAP

 14

algorithm functions.

[Figure 2-4] Timing diagram for sliding window method (refer to [3])

2.3.5 The Termination Techniques for Turbo Code

Termination is a kind of power saving technique for turbo code. Traditional way

for stopping of turbo decoding is to set a maximum iteration limit and whether

decoded outputs are valid or not, decoding iteration will not stop until the preset limit.

This is not a smart way for iterative decoding process, so lots of papers talk about

when to stop properly, this kind of technique calls termination.

The termination techniques can be split into two categories, one is made use of

inner forces and the other is made use of external forces [4]. Observing convergence

for decoding data with the number of iterative process increased to decide whether

continue decoding or not calls the inner force method. The other way calls external

force, it means to use another kind of error control coding prior to turbo encoder to

check the correctness of decoded frame. Corresponding encoding、decoding flow are

 15

illustrated in figure 2-5 (taking CRC as outer code for example). My thesis uses CRC

as the outer code for termination scheme.

(a) Turbo-CRC encoder

eL12
eL21

(b) Turbo-CRC decoder

[Figure 2-5] Turbo-CRC encoding and decoding block diagram

2.4 Applications for Turbo Code

In this section we will briefly describe two applications of turbo code in

communication field, and corresponding specifications.

 16

2.4.1 Application for 3GPP

First of all, we describe the encoder structure for 3GPP. As in Figure 2-6,

Encoder’s part is made up of two convolution encoders, and for each encoder, the

generator matrix:]
)(

)(
,1[)(

2

1

Dg

Dg
DG = , where g1(D)=1+D+D

3
, g2(D)=1+D

2
+D

3
. The

frame size for 3GPP specified is from 40 to 5114 bits per frame, and the code rate is

1/3. (In 3GPP2, the standard use two rate 1/3 constituent codes, both with generator

matrix]
1

1
,

1

1
,1[)(

32

32

32

3

DD

DDD

DD

DD
DG

++

+++

++

++
= , with rate from 1/5 up to 1/2). The

internal interleaver is implemented as an array with 5, 10, or 20 rows and between 8

and 256 columns, depending on the frame size K. Data is wrote in row-wise,

intra-row and inter-row permutation is performed on the array. We will give a more

detail example in chapter 4. The dash line in figure 2-6 is for termination to all-zero

state.

[Figure 2-6] The Structure of turbo encoder (refer to [15])

The performance of 3GPP turbo decoder is in figure 2-7 [6]. Simulation is

implemented on TI DSP using Max-Log MAP algorithm. We can see the relationship

between SNR and BER, and corresponding coding gain for different decoding

 17

iterations.

[Figure 2-7] The performance of turbo decoder (excerpted from [6])

2.4.2 Application for CCSDS

CCSDS (Consultative Committee for Space Data Systems) takes turbo code in

channel coding standard recently. The additional coding gain of 2.5 dB at BER = 10
-5

can be achieved by rate 1/6 turbo code with respect to the old standard. The encoder

has two code rate 1/4, 16 states convolutional codes with generators

]
1

1
,

1

1
,

1

1
,1[)(

43

432

43

42

43

43

DD

DDDD

DD

DD

DD

DDD
DG

++

++++

++

++

++

+++
= [23]. The

corresponding information rate and encoder structure are shown in table 2-1 and

figure 2-8. For encoder, the information block buffer contains interleaver which is

described in new CCSDS standard.

 18

Code block length n Information length k

Rate 1/2 Rate 1/3 Rate 1/4 Rate 1/6

1784 3576 5364 7152 10728

3568 7144 10716 14288 21432

7136 14280 21420 28560 42840

8920 17848 26772 35696 53544

16384 32776 49164 65552 98328

[Table 2-1] Information block lengths and rates

[Figure 2-8] The Encoder structure for the CCSDS turbo code (refer to [23])

 19

Chapter 3 Early Give-up and State Reuse

Methodology for Turbo Coding

3.1 Motivation

According to simulations of paper [4] [18], when channel condition goes very

bad (SNR very low), the decoding iterations needed will be very close to maximum

iteration during decoding process (shown in figure 3-1). Sometimes after final

iteration for decoding, we still get wrong information from decoder output (decoded

failure frame). This result points that when messages are interfered by noise seriously,

it may be not a smart way to continue decoding process (because lots of time we may

get decoded failure frame in the end). So we present a technique calls Early Give-up.

The so called “Early Give-up” means that during decoding process, once we find the

trend of decoding failed, we will stop the decoding procedure immediately not until to

maximum iteration! The goal of early give-up is to prevent power consumptions for

unnecessary iterations.

Giving up decoding process is not enough to decode a valid frame out, it needs

re-send frame to complete decoding process (As for a decoding frame at maximum

iteration but failed finally, it also needs re-send scheme, so “Early Give-up” gets

benefits from (1) no waste iterations for power saving (2) early re-send to shorten

overall decoding latency). According to above reasons, we can improve the QoS

(Quality of Service).

Besides, we have a reuse scheme for give-up. Reuse means that we can save the

previous work during give-up and use it for re-send the same packet as initial

conditions. We prove it by simulation. Reuse state methodology really can reduce

 20

overall average decoding iteration numbers for successful decoded frames.

[Figure 3-1] Simulation result for SNR vs. average iteration (excerpted from [18])

3.2 Observation and Simulation for Early Give-up

Observing failure frame’s properties during simulation, we find the common

feature of decoding failed frame is that the extrinsic information of most decoding

failed frame will be oscillating with decoding iterations increasing. The oscillation

means that the average absolute value of extrinsic information will not increase

monotonically with decoding iterations increasing [12] [30]. In other words, if it can’t

gain additional information (judged by average absolute value of extrinsic information)

from iterative decoding process, more iteration may be useless!

3.2.1 The Trends of Extrinsic Information

According to paper [12], it says that if }1,1{ −+∈x are equally likely, then

 21

through iterations, turbo decoding decrease the variance σ
2
, so ∑

=

=
N

k

k

i

mL uL
N

M
1

)(

|| |)(|
1

increase. (Q Y
uYf

uYf

Yu

Yu
xL

mk

k

e

k

k

e 2

2

)1(

)1(
log

)1Pr(

)1Pr(
log)(

σ
=

−=

+=
=

−=

+=
= ,

[] []YExLE
m

2

2
)(

σ
= , so ↓↓ ||Lm Mthenσ)

[Figure 3-2] |LLR| trends for different types of decoding packets

(excerpted from [12])

 22

According to the idea and error pattern of [12], we also analyze the data during

decoding process. The sample data for extrinsic information from decoding process as

in figure 3-2, we can find the property that, for most decoding failed frame (in red

color marked by ‘x’), the mean of absolute value of extrinsic information (Le) will not

increase with iteration stepping up (oscillation for Le). Thus, we made a rule (Early

Give-up) that when we get the information of oscillation for average absolute value of

extrinsic information during decoding process, from the experience of successful

decoding point of view, we should give-up the decoding process immediately for

power saving. Therefore, we use the oscillation of extrinsic information as the criteria

for give-up detection.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

Iterations

M
e
a
n
 o

f
|L

e
|

x failure frame
+ error free frame

[Figure 3-3] The trends of extrinsic information for frame=1024 bits

 23

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10
Frame size = 512

Number of Iteraions

M
e
a
n
 o

f
|L

e
|

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10
Frame size = 256

Number of Iteraions

M
e
a
n
 o

f
|L

e
|

[Figure 3-4] The trends of extrinsic information for different frame size

In figure 3-3, the simulation results are for frame size=1024 bits, we also observe

different frame sizes for oscillation phenomena, as figure 3-4 shows. From the

experiment results, we concluded that the estimation of decoding failed case is more

reliable as the frame size increased. The reason is, for longer frame size, we have

more side information about the bit we estimated, so the decoding failed case

estimated by oscillating can be more accurate.

3.2.2 Simulation Results for Give-up

According to our idea, we simulate the give-up effects for decoding performance

judged by packet error rate. Note that, in this case, we just give simulation results for

give-up only. However, give-up is not enough for decoding a valid packet out, so we

 24

will discuss the give-up effects in section 3.5 for the system with re-transmission

scheme, and then give a complete conclusion there.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

-2

10
-1

10
0

Simulation for Give-up effects

SNR (dB)

P
a
c
k
e
t

E
rr

o
r

R
a
te

Optimum

Early Give-up

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2

4

6

8

10

12

14

16

SNR (dB)

A
v
e
ra

g
e
 I

te
ra

ti
o
n

Optimum

Early Give-up

[Figure 3-5] Effects on the performance by give-up decoding process

In figure 3-5, we set the number of maximum iterations to be 15, and the optimal

means that the program compared the information bits in encoder and decoded

outputs after per iteration of decoding process. If the output of encoder and decoder

are the same, we stop the process immediately for saving unnecessary iterations (This

is impossible in practical, because we don’t know what exactly the information bits

for encoder, so this method is only available in simulation, therefore, paper [27] called

it’s an optimal (or Magic Genie Rule) solution).

In facts, if we want to stop decoding process when decoded outputs are already

 25

valid, we should use the termination techniques mentioned in chapter 2. Besides, we

analyze the performance by packet error rate (PER), rather than bit error rate (BER),

that because once we found a decoded failed packet, no matter one bit error or one

hundred bit errors in it, we all need re-transmission, so from system level point of

view, PER (or frame error rate, FER) is more meaningful than BER.

3.3 The Reuse Methodology for Early Give-up Scheme

By using the early give-up technique, the turbo decoding process can be stopped

as early as possible while the channel condition is not good enough. The simulations

show that energy can be saved even with the presence of false alarms. Another

question is that if there exists useful information within the given-up process except

for energy savings. Turbo decoding is an iterative process and requires the initial

guess. We assume that there exists certain correlation between the same packets

transmitted at different times. Therefore, a reuse method is proposed to utilize the

calculated information of the given-up process and use it as the initial guess for

re-transmitted packet. So section 3.3.1 will describe the re-use method detaily and the

corresponding assumption conditions. Section 3.3.2 will show the simulation results

for reuse methodology.

3.3.1 The Idea of Reuse Methodology

.

Traditionally, the initial condition for MAP decoding algorithms is set to be 0

based on the assumption that the probability of information bits to be 0 or 1 is

equal-likely. So a priori information for initial condition is:

 26

01log
5.0

5.0
log

)0Pr(

)1Pr(
log ===

=

=
nn

k

k

n
u

u
. By applying the re-use technique, we save

the extrinsic information calculated in the previous given-up process and use it as the

initial condition of MAP decoding for the re-transmitted packet based on the

correlation between the same packets transmitted at different times. The circled part in

figure 3-6 shows the reuse part for explanation. Instead of starting from 0 as initial

condition, we utilize the prior estimated values of information bits as initial guess.

This will lead to the iterations reduction of decoding processes and we will give the

simulation results in section 3.3.2.

)'(xα

x̂

)()2(1

eL
−α

'

1p

'x

'

2p

)1(Λ

)2(

eL

)2(Λ
)()1(

eLα

[Figure 3-6] The reuse methodology for turbo decoder

3.3.2 The Simulation Results for State Reuse Methodology

The simulation results in figure 3-7, figure 3-8 demonstrate the average iteration

numbers of decoding processes with the reuse state technique. The X-axis represents

the SNR offset. The SNR offset means the SNR difference between the given-up

packet and the re-transmission packet. To be conservative, we assume that the channel

SNR becomes better than the previous given-up transmission, so that the resent packet

 27

will have better chance to be correctly decoded. Therefore, the SNR offsets mean the

difference between two transmissions of the same packet.

The original channel SNR of two simulation cases are shown in figure 3-7 and

figure 3-8. Figure 3-7 is the case that the original channel SNR to be 0.0 dB and

figure 3-8 is the case that the original channel SNR to be 0.5 dB. The SNR of the

resend packet is according to the SNR offset. For example, if the original channel

SNR is 0.5 dB (the case in figure 3-8) and the offset is 1.0 dB, the channel SNR of the

re-transmitted packet is assumed to be 1.5 dB. Therefore, if the SNR offset is 0, it

means that both transmissions are under the same channel condition.

The SNR offsets in the simulations are all positive because the early

give-up/reuse state techniques proposed in this study focus on the worse channel

conditions. If the re-transmitted packet bears worse channel SNR than the given-up

packet, the possibility to decode correctly is much less.

Here are the specifications and simulation results.

[Reuse Experiment 1]

Specifications:

Frame size = 1024 bits

Maximum iteration = 10 times

SNR (for the given-up packet) = 0.0 dB

Total Early Give-up times = 200 times

Decoding algorithm = Log-MAP

 28

0 0.5 1 1.5
1

2

3

4

5

6

7

8

9

10
Simulation for Reuse Method at 0.0 dB

SNR offset

A
v
e
ra

g
e
 i
te

ra
ti
o
n

WithRM

WithoutRM

[Figure 3-7] Reuse method for SNR at 0.0 dB

[Reuse Experiment 2]

Specifications:

Frame size = 1024 bits

Maximum iteration = 10 times

SNR (for the given-up packet) = 0.5 dB

Total Early Give-up times = 200 times

Decoding algorithm = Log-MAP

 29

0 0.5 1 1.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
Simulation for Reuse Method at 0.5 dB

SNR offset

A
v
e
ra

g
e
 i
te

ra
ti
o
n

WithRM

WithoutRM

[Figure 3-8] Reuse method for SNR at 0.5 dB

The green line (marked by diamond) is the result for the traditional case (taking 0

as initial condition for the re-send packet) and the blue line (marked by square) is the

result for the re-use case (taking the extrinsic information at given-up stage as initial

condition for the re-send packet). The goal of the reuse experiments is to prove that

the decoding process will be converged faster if we use the information estimated at

the given-up stage as the initial condition instead of traditional initial condition (0).

Therefore, the experiment will focus on the decoding iterations of the re-send process.

The stopping condition for this experiment is to reach the pre-set number (total

early give-up times in the specification: 200 times) of the re-send process. The figure

3-7 and figure 3-8 are plotted according to the average decoding iterations under 200

times of the re-send process for both traditional flow and re-use methodology. The

number of the total transmission packets in this experiment must more than 200

packets, because not every transmission will request the re-transmission and we count

 30

the re-transmission process only. Taking figure 3-8 for example, under the assumption

conditions, we can reduce average decoding iteration about 1.8 iteration at the SNR

offset 0.5 dB by re-use methodology compared to the traditional flow and thus, we

can use less energy (proportional to the number of decoding iterations) for decoding a

valid packet out with re-transmission.

From the simulation of above two case, we can give the conclusion: The reuse

method for early give-up procedure is more usable for the case that the packet is

given-up under better channel SNR, because the extrinsic information in better

channel condition are more reliable than in bad channel, so the estimation will be

more accurate and useful for decoding process.

3.4 The False Alarm for Early Give-up Technique

The give-up idea we proposed is that once the packet is estimated be a failed

case, we give up decoding process as early as we could for power saving and hence,

reducing latency for re-transmission. However, the give-up is a kind of estimation and

we can’t estimate exactly accurate, therefore false alarm arises when the rest of

iterations (if give-up not performed) can decode the valid packet out. In other words,

if the alarm signs on the valid packet, it is the false alarm.

3.4.1 The Quantization Effects for False Alarm

The false alarm will be affected by a lot of factors like the size of the packets, the

channel SNR and the decoding flow ...etc. In this section, we will combine these

effects above to discuss the false alarm. We will simulate different quantization

schemes for turbo decoding and compare the false alarms of them, then give a

 31

conclusion from simulation results.

First, we want to explain the meaning of the symbol we used for quantization in

Table 3-1. Taking Received value: q(4,2) for example, q is the abbreviation for

quantization, 4 is the total bit numbers we represent the received value, and 2 is the

precision bit numbers for received value. Thus, the received value is represented by 2

bits for dynamic range and 2 bits for precision bits (behind the dot). The column

“Parhi” is the quantization scheme in his paper [16], and column “+Q1” means we

add one precision bit compared with Parhi’s data. The column “+Q1+D1” means we

add one bit for precision and one bit for dynamic range compared with Parhi. Table

3-1 shows the variables we used in MAP decoding process with different quantization

schemes.

 Parhi [16] +Q1 +D1+Q1 +Q2

Received value q(4,2) q(5,3) q(6,3) q(6,4)

Branch metric q(7,2) q(8,3) q(9,3) q(9,4)

LLR q(10,2) q(11,3) q(12,3) q(12,4)

Forward metric q(9,2) q(10,3) q(11,3) q(11,4)

Backward metric q(9,2) q(10,3) q(11,3) q(11,4)

Priori information q(6,2) Q(7,3) q(8,3) q(8,4)

Extrinsic information q(6,2) Q(7,3) q(8,3) q(8,4)

[Table 3-1] Different quantization scheme for MAP

The simulation results for BER performance and average decoding iterations

under different quantization scheme are shown in figure 3-9 and figure 3-10. (Figure

3-9 (a) and (b) are both simulation for BER but different in SNR range) We can see

 32

from the simulation results that under terrible channel SNR (less than 0.5 dB), less

precision quantization scheme will cause higher bit error rate and more iterations

needed for decoding. Taking SNR=0.3 dB for example, the BER for Parhi’s

quantization is about 10
-1
 and is about 4x10

-2
 for Parhi+D1+Q1’s quantization scheme.

However, the number of average decoding iteration needed for Parhi’s quantization is

about 9 times and is about 6.8 times for Parhi+D1+Q1 shown in figure 3-10.

Therefore, in terrible channel SNR (< 0.5dB), using less precision quantization

scheme will cause higher bit error rate and need more iterations for decoding due to

the effects of quantization noise.

 33

[Figure 3-9 (a)] BER for different quantization schemes

[Figure 3-9 (b)] BER for different quantization schemes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

Parhi

Parhi +Q1

Parhi +D1 +Q1

0 0.1 0.2 0.3 0.4 0.5
10

-3

10
-2

10
-1

10
0

SNR (db)

B
E

R
Parhi

Parhi Q+1

Parhi D+1 Q+1

 34

[Figure 3-10] Average iterations for different quantization schemes

Figure 3-11 (a) shows the false alarm rate for different quantization bits. The

false alarm rate is calculated according to the ratio of false alarm times and total alarm

times (The total alarm times is illustrated in figure 3-11 (b)). The definition of the

false alarm has been mentioned in section 3.4, here we explain the method we

simulate. Because we do not know this alarm is true or false until the maximum

iteration, therefore, we record this alarm and do not give-up until the maximum

iteration for the false alarm experiment. If the decoded patterns are not valid patterns

after maximum iteration, then this alarm is true, else it is a false alarm. From the

simulation results of figure 3-11 (a), we conclude that, for the same dynamic range

representation, false alarm rate will be decreased as the precision bits increased.

Taking Parhi, Parhi+Q1, Parhi+Q2 for example, the number of precision bit of

Parhi+Q1’s scheme is 1 bit more Parhi’s scheme and is 1 bit less than Parhi+Q2, and

0 0.1 0.2 0.3 0.4 0.5
4

5

6

7

8

9

10

SNR (db)

A
v
g
 I

te
ra

ti
o
n

Parhi

Parhi Q+1

Parhi D+1 Q+1

 35

the false alarm of Parhi, Parhi+Q1, Parhi+Q2 are 3.5%, 1% and 0.2 %, respectively.

That is because when we use more bits on precision, we will have less chance to

mis-judge the oscillation case due to quantization. However, if we increase the

representation for dynamic ranges, the quantization scheme will be less sensitive to

the false alarm criteria (observing figure 3-11 (b), the alarm times of the

Parhi+D1+Q1 are much less than the others). The experiment results for

corresponding alarm times are shown in figure 3-11 (b). According to this experiment,

we will choose the worst case of false alarm (Parhi+Q1+D1) as the quantization

scheme to discuss the benefits of the proposed flow compared to traditional flow.

 36

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

SNR (dB)

F
a
ls

e
 A

la
rm

 R
a
te

 i
n
 p

e
rc

e
n
t

Parhi

Parhi+Q1

Parhi+Q1+D1

Parhi+Q2

(a)

0

200

400

600

800

1000

1200

0 0.1 0.2 0.3 0.4 0.5

SNR (dB)

A
la

rm
 t
im

es Parhi

Parhi+Q1

Parhi+Q2

Parhi+D1+Q1

(b)

[Figure 3-11] False alarm rate for different quantization schemes

 37

3.4.2 The Decoding Flow Effects for False Alarm

To achieve the goal of designing the energy efficient turbo decoder, we propose

the scheme which is the combination of termination checking and give-up detection in

decoding flow. However, how to decide the order of termination checking and give-up

detection in the turbo decoding flow? To solve this problem, we simulate these two

flows and the corresponding quantization effects of false alarm mentioned in above

section, then we conclude by the simulation results of the false alarm to choose the

best arrangement for termination checking and give-up detection as our proposed

decoding scheme.

 38

[Figure 3-12] Turbo decoder decoding flow with give-up and state re-use

scheme (give-up detection before termination checking)

 39

[Figure 3-13] Turbo decoder decoding flow with give-up and state re-use

scheme (give-up detection after termination checking)

Figure 3-12 and figure 3-13 illustrate the different order of termination checking

and give-up detection in decoding flow, and the corresponding false alarm simulation

results are shown in figure 3-14. The decoding flow in figure 3-12 is stated: first,

when receive a packet from channel, we use MAP algorithm to decode the packet.

 40

After one iteration of the MAP decoding process, we will check the extrinsic

information generated during the decoding process to see whether we are going to

giving-up the decoding process or not. If the give-up checking shows that we should

give-up the decoding process, we will request the re-transmission with re-use

methodology. If the packet pass give-up checking, it will go to see whether it satisfy

the termination condition. If the packet satisfies the termination checking, it is

recognized as a valid packet under termination checking condition. If the packet does

not pass the termination checking, it will check whether it reach the maximum

iteration or not. If yes, the decoding process will request the re-transmission with

re-use methodology, if no, the packet will go to next iteration of MAP decoding

process. The difference between figure 3-12 and figure 3-13 is the order between

give-up checking and termination checking, this is the point we want to decide by the

simulation results of false alarm. Figure 3-14 (a) is the result for give-up detection

first and the figure 3-14 (b) is the result for termination checking first. Comparing

figure 3-14 (a) and figure 3-14 (b), we find that if we perform give-up detection

before termination checking as in figure 3-12 shown, we will get higher false alarm in

the higher (more than 0.4dB) channel SNR range. Taking SNR=0.5 dB for example,

we will have false alarm rate about 13% with Parhi’s quantization scheme for give-up

detection first flow (Fig. 3-12) and the false alarm about 7% for termination first flow

(Fig. 3-13). That is because if we perform give-up detection first, we will mis-judge

the case that the packet can pass the termination checking but been given-up before,

and this case will be obvious in higher channel SNR of the simulation. Intuitively, the

false alarm rate will go up as the channel SNR increased, that is because there will be

more possible to decode a valid packet out under better channel SNR, to prevent the

false alarm rate goes up severely for better (> 0.4dB) SNR range, we should use

termination checking before give-up detection according to the simulation results,

 41

therefore, we will take the decoding flow in figure 3-13 as our proposed decoding

scheme.

 42

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

SNR (dB)

F
a
ls

e
 A

la
rm

 R
a
te

 i
n
 p

e
rc

e
n
t

Parhi

Parhi+Q1

Parhi+Q1+D1

Parhi+Q2

(a) The early give-up before early termination in decoding flow

(refer to fig. 3-12)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

SNR (dB)

F
a
ls

e
 A

la
rm

 R
a
te

 i
n
 p

e
rc

e
n
t

Parhi

Parhi+Q1

Parhi+Q1+D1

(b) The early termination before early give-up in decoding flow

(refer to fig. 3-13)

[Figure 3-14] The false alarm rate of different decoding flow

 43

3.5 The Simulation Results of Proposed Scheme

Combining the factors we consider in above sections (including give-up

detection, re-use methodology, quantization scheme, different decoding flow and the

false alarm) we will give the simulation results including these factors to discuss the

benefit of our proposed flow.

Firstly, we will compare the traditional flow and proposed flow then give the

simulation results to explain the benefits of our scheme under the terrible channel

conditions. As the figure 3-15 shows, the traditional flow for turbo coding system is

illustrated. For traditional way, when received a packet, we decode the receive pattern

by MAP algorithm. After per iteration of MAP decoding, we will check the

opportunity for termination using some termination techniques mentioned in 2.3.4. If

it is not the right time for termination, the process will check whether it reach the

maximum iteration. If yes, it means that the decoding process reach max iteration but

decoded output still not a valid pattern (because it failed to termination checking), so

we will demand the transmitter to re-send the packet to complete data transmission. If

no, we will continue the MAP decoding algorithm for next iteration.

 44

[Figure 3-15] Traditional turbo decoding flow with termination scheme

The above flow is the same for turbo decoding with termination skill proposed in

[12]. Now we will introduce our proposed flow for turbo decoding with proposed

early give-up and re-use methodology. The flow is illustrated in figure 3-13. The

differences between traditional flow and proposed flow are the give-up detection and

reuse state methodology. In figure 3-13, according to the simulation result of false

alarm, we add give-up decision after termination checking in decoding flow. After the

termination checking, we will check the extrinsic information for termination

checking to decide whether continue decoding process or not. If we decide to give up,

we can re-use the state by the methodology mentioned in 3.3.1. The other parts are

same to traditional flow.

To prove the give-up with reuse methodology really works for iteration reduction

under bad channel condition, we made the following experiment. We set the

 45

maximum iteration to be 10, and stop criteria is to receive 1000 valid packets at

receiver for each SNR condition. The quantization scheme is the worst case for false

alarm (Parhi+Q1+D1). Each packet contains 1024 information bits and the valid

packet means that receiver decodes out a duplicate compared to the transceiver's

message. By accumulating the number of decoding iterations, we can calculate the

average decoding iterations for each valid packet.

The simulation assumptions are stated. Because we take re-transmission into

consideration, there will be two kinds of cases for channel SNR. One is SNR for the

give-up stage, and the other is for re-transmission stage. We assume the

re-transmission packet will have 1 dB SNR offset better than the packet at give-up

stage, for both traditional flow and our proposed flow. That is, if the packet with the

SNR=0.4 dB at the give-up stage, then the re-transmission packet will have SNR=1.4

dB. The goal of this simulation is to prove that when the packet affected by noise

seriously, stop decoding will be smarter than continue decoding process.

Under above assumptions and the simulation results, we can conclude from

figure 3-16 that the idea we proposed really reduces iterations for decoding under

terrible channel conditions. Taking SNR=0.4 dB for example, the traditional flow

needs average 5.575 decoding iterations to decode a valid packet out and our

proposed flow needs about 4.77 decoding iterations. Therefore, we can use less

energy (according to iteration) to decode a packet out under our simulation conditions.

The corresponding reduction percentages are in table 3-2.

From the throughput point of view, because the proposed scheme can use less

decoding iterations for a valid packet under our assumptions, therefore, for given data

to be transmitted, our flow can use less decoding iterations for the receiver compared

to traditional flow, thus we can increase the through-put from iterations saving point

of view. The corresponding increase in throughput compared to the traditional flow is

 46

also reported in table 3-2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
2

3

4

5

6

7

8

9

10

11

12

SNR (dB)

A
v
e
ra

g
e
 i
te

ra
to

n
s
 f

o
r

p
e
r

v
a
lid

 p
a
c
k
e
t

WithEGu+RM

WithoutEGu+RM

[Figure 3-16] Average iterations for 1000 valid packets

 SNR (dB)

Average

Iterations

0.0 0.2 0.4 0.6 0.8

Traditional flow 11.432 8.891 5.575 3.729 2.490

Proposed flow 7.108 6.369 4.770 3.323 2.435

Energy Saving 36.99 % 28.37 % 14.44 % 10.89 % 2.21 %

The increase for

throughput (compared

to traditional flow)

1.608

times

1.396

times

1.169

times

1.122

times

1.026

times

[Table 3-2] Iteration reductions and throughput increase for different channel SNR

 47

Chapter 4 Hardware Implementation

We have briefly described the encoder and the decoder structure for 3GPP

system in chapter 2. The encoder part is easier than the decoder part for 3GPP, so the

following sections will focus on the decoder for implementation. We take hardware

architecture mentioned in [13] as the implementation blueprint to realize MAP

algorithm and add the additional hardware for early give-up detection circuit. We will

also estimate the overhead and the benefits for give-up from the point of area, power

consumption and power saving.

4.1 A Case Study: The Turbo Decoder for 3GPP system

According to the idea we proposed in chapter 3, we take 3GPP standard as a case

study to discuss the overhead of give-up, then compare the simulation results

presented in chapter 3, to discuss the benefits of our idea. Therefore, the following

sections will focus on the hardware implementation of process element, control unit

and memory organizations.

4.1.1 The Process Element Design

As mentioned before in chapter 2, we have briefly described the MAP algorithm.

So the goal of this section is to realize the process element including branch metric

calculation, state metric calculation and soft-output calculation used in MAP

algorithm.

 48

4.1.1.1 The Branch Metrics (gamma)

The Branch metrics are calculated according to the formula below:

[])()(
2

1
),(),'(,,,,,,, kpkpksksckskkpkskk xyxyLxdLxxBMss ⋅+⋅+⋅==γ , where L(dk)

and Lc are the a-prior information and channel reliability, respectively. The channel

reliability (Lc) can be implemented by look-up table according to real channel SNR

case. Some papers talked about the performance degradation affected by SNR

mismatch [25]. However, in this thesis, we don’t touch this topic and assume the

channel SNR is estimated accurately.

According to the structure suggested for 3GPP, we need to update every state

metric in the same time stamp, therefore, we have to calculate every branch metrics

out for updating the state metric on the corresponding trellis diagram. However, some

branch metrics calculations can be simplified by mapping rules

like)1,1()1,1(),1,1()1,1(−−=−−−−= kkkk BMBMBMBM , due to encoder structure

and BPSK modulation. The block diagram of branch metric (gamma) calculation is in

figure 4-1.

[Figure 4-1] The Gamma calculation unit

 49

4.1.1.2 The Forward/ Backward State Metrics (alpha, beta)

The forward state metrics αk can be calculated recursively according to the

formula:)),'()'((*max)],'()'(exp[ln)(1'

'

1 sssssss kks

s

kkk γαγαα +=







+= −−∑ .

Similar to the ACS unit used in Viterbi’s algorithm, the process element we used to

update the state metric is ACSO (Add Compare Select and Offset), the offset is

compensation part for max* operation and corresponding block diagram is in figure

4-2.

)(41 +− jk sα

)(1 jk s−α

),(24 jjk ss +γ

),(2 jjk ssγ

)(2 jk sα

[Figure 4-2] Block diagram of ACSO unit

According to the FSM formula above, we need previous stage’s value to update

FSM. Therefore, it needs registers to hold the state value as shown in figure 4-3.

Besides, The LLR calculations also need FSM, so we need memory to store the value

for the length of sliding window of the branch history.

)(0 sα

[Figure 4-3] The forward processor unit with memory (FP)

 50

The hardware architecture for backward state metrics (BSM) is the same as FSM,

the difference between FSM and BSM is only the direction of branch calculation. In

chapter 2, we have mentioned the sliding window method for MAP decoding, we will

give explanations by space and time schedule diagram to state how each PE working

and corresponding timing in section 4.1.4.

4.1.1.3 The Soft-output Calculation (LLR)

According to the property of Max* operation:

)),(*),,(*(*)ln()ln()ln()ln(dcMaxbaMaxMaxeeeeee
dcba eeeedcba =+=+++ ++ .

We can realize the LLR operation (2.19) by 3-level tree structure of Max* as figure

4-4 shown. We fully pipeline the soft output unit to deal with the data of FP and BP

from every trellis state during every stage.

[Figure 4-4] The soft-output calculation unit

 51

4.1.2 The Interleaver and De-interleaver Design

The operation of 3GPP internal interleaving is described in [15]. We just give an

example to explain the mapping technique (PIL interleaver). The turbo code internal

interleaver consists of bits-input to a rectangular matrix with padding, intra-row and

inter-row permutations of the rectangular matrix, and bits-output from the rectangular

matrix with pruning.

 According to the size of the frame, we can find the row (R) and column (C) size

for the rectangular matrix. For the 3GPP specification, we take the smallest size K=40

for example.

 First of all, we write data into RxC matrix row-by-row, the sequence as figure

4-5 shows (if the number of data less than R*C, the reset of matrix can be padded by

0 or 1, and the padded data will be pruned out in the final stage).

[Figure 4-5] The row-by-row scheme for data writing

 After filling out the data, the stage goes to intra-row permutation. As the name

implied, we can understand the meaning by comparing figure 4-5 and figure 4-6. The

data in figure 4-6 will be changed on its column index, but the row index still the

same, therefore, this action calls the intra-row permutation (The criteria for how to

 52

manage the position in a row will be complicated, and refer to 3GPP specification [15]

for detail).

[Figure 4-6] Data arrangement after intra-row permutation

Then we need to perform inter-row permutation. Compare to figure 4-6 and

figure 4-7, we can find the data been exchanged in the form of row-pattern, as action

name implied (the same, refer [15] for detail).

[Figure 4-7] Data arrangement after inter-row permutation

Finally, after intra-row, inter-row permutation performed on the data, we read the

matrix data column by column from left to right as figure 4-8 illustrated (during

read-out stage, if the data is filled for padding, we will prune out it at this stage).

Using this mechanism of mapping, the interleaver can achieve the goal for scattering

data sequence.

 53

Due to lots of arithmetic calculations and look up operations defined by the

specification, using hardware to calculate mapping rule may be not very efficient. So

the usual way is using software to compute the mapping rule offline, then we store the

rule in the ROM, thereafter use look-up table method, to achieve interleaving function.

Of course, some paper talked about how to implement hardware consistent of 3GPP

specifications. The difference between hardware and software implementation is the

online calculation of mapping rule. If the frame size changed (3GPP specification

support 40-5114 bits as frame size), the mapping rule changed, of course. Hardware

method can online calculate the corresponding rules, however, look up table method

need to change the ROM table. However, the implementation for interleaving function

is not the topic for the thesis, so we choose software implementation method to realize

interleaving function.

[Figure 4-8] The column-by-column scheme for data reading

 54

4.1.3 The State Metrics Normalization

We always have overflow problem for state metrics representations under given

quantization scheme after continuous summations and multiplications. To normalize

the state metrics before store it into memory as shown in figure 4-3 is essential for

fixed point representations. We have mentioned how to normalize state metric and

give the proof in 2.3.3. In summary, Parhi’s method requires small amount of

hardware and its speed does not depend on the number of state [16].

4.1.4 Sliding Window Timing Diagram

In chapter 2, we have mentioned about how to use sliding window method to

solve MAP algorithm, in this section, we will use space and time relationship block

diagram to explain the schedule of each PE and corresponding hardware architecture.

As we mentioned before, we refer the hardware architecture of paper [13]. The

schedule for FP, BP0, BP1 and WP are all in figure 4-9, and corresponding hardware

architecture in figure 4-10. Here we explain the functions for each PE. WP stores

input received symbols in Memory M1, and FP uses the stored received symbols to

compute forward metrics α and then store into Memory M2, while each BP computes

its own backward metrics β. As we mentioned before, sliding window method for

MAP algorithm needs learning period for backward state evaluation, therefore, we use

two BP (BP0 and BP1) to increase the production of backward state calculations as in

figure 4-9 shown.

Once we have got α, β value from each PE for the window length, the soft output

calculator is employed to decode the LLR out. The shaded part in figure 4-9 is the

corresponding decoded timing for LLR value of the window length. We just

 55

illustrated a part of overall frames but the schedules remained are the same for each

process element.

α

α

α

[Figure 4-9] Space and time relationship for α-first memory management

(refer to [13])

α β

[Figure 4-10] Block diagram for SW log-MAP decoder (refer to [13])

 56

4.1.5 The Memory Arrangement

Because we have more than one processor in hardware architecture, the dual-port

memory will be needed for different processors accessing concurrently. Therefore, we

use two kinds of dual-port SRAM for different purpose, memory M1 for store the

received symbol from channel and memory M2 for store the forward state metrics

from FP. We use 6 bits for received symbols and 11 bits for state metric

representations, therefore, the size of memory M1, memory M2 are:

M1 = (number of banks) * (2*[bits for received symbol]) * (sliding window size) =

4*(2*6)*32 = 1536 bits

M2 = (number of banks) * (sliding window size) * (number of states) * (bits for state

representations) = 2*32*8*11 = 5632 bits

Total memory size needed in MAP decoding is 1536+5634=7 K bits.

4.1.5.1 The PE Control Mechanism

Processors like FP, BP0, BP1 all need to use data stored in memory M1 but the

difference is that FP need to store the results into memory M2 and BP0, BP1 don’t.

Therefore, all processors’ working time for the same trellis stage might not be the

same. Therefore, for simplicity and synchronism, we start every PE at the beginning

of trellis and wait until all PE’s work been finished in this stage. For this purpose, the

PE controller will disable the enable signal for the PE which have sent ‘done’ signal

to controller. When controller received all working PE’s done signals in this stage,

that means we can go to next stage, then the PE controller gives the enable signal to

all PE for next stage’s working preventing wrong access timing. The ideas are shown

in figure 4-11.

 57

[Figure 4-11] The PE controller

4.1.6 The Early Give-up Detection Circuit

In this section, we will present the hardware structure for Give-up detection

circuit. By observation of simulation, when the summation of absolute value of

extrinsic information not bigger than the summation of last iterations, that is the time

for give-up. Therefore, the input of the give-up detection circuit will be the Le and

frame size as figure 4-12 shows.

By using the extrinsic information (Le) calculated by MAP and controlled by

frame size, we will compare the summation results for last and current iteration. If the

result of current iteration is bigger than the last iteration, we will store the result in

Max register for next iteration’s comparison. However, if the result is smaller than last

iteration, we will assert give-up signal. The shaded parts in figure 4-12 are the

registers and the controller is a counter loaded by frame size.

 58

[Figure 4-12] Block diagram of give-up detection circuit

4.2 Experiment Reports for Hardware Implementation

According to the hardware architecture mentioned above, we wrote HDL model

[28] for each process elements and controller used in MAP decoding algorithm and

then estimate the give-up detection circuit’s overhead from area and power point of

view to judge the benefit from give-up. Therefore, we report the experiment results

and corresponding in the following sections.

4.2.1 The Area Estimation by Design Analyzer

The data reported in table 4-1 are using TSMC 0.18um cell library, we use clock

frequency at 50MHz to synthesize every process element and controller by Design

Analyzer and generate memory M1 and M2 by Artisan memory compiler. The area

reports are as follows:

 59

Component Gate Count (Size) Area

FP 4.7 K gate count 46935 (um
2
)

BP0 4.8 K gate count 48349 (um
2
)

BP1 4.8 K gate count 48349 (um
2
)

Soft-output 5.2 K gate count 52394 (um
2
)

CRC16 0.3 K gate count 2720 (um
2
)

PE Controller 0.8 K gate count 8345 (um
2
)

Memory M1 1536 bits 0.236 (mm
2
) by Artisan

Memory M2 5632 bits 0.84 (mm
2
) by Artisan

Give-up Detection Unit 1.2 K gate count 12467 (um
2
)

[Table 4-1] Area report for each component

[Figure 4-13] Artisan’s memory compiler

 60

We can estimate the area overhead from table 4-1, as it shows, the give-up unit

takes 0.012467 mm
2
 and overall area for MAP decoding estimated by Design

Analyzer and Artisan’s memory compiler is 1.294 mm
2
, therefore, give-up detection

circuit occupies 0.963% for area overhead.

4.2.2 The Power Estimation by PrimePower

The frame size is 1024 bits and the simulation time is about one MAP decoding

period by sliding window method, the power for MAP decoding at operation

frequency 50 MHz is about 46.96 mW, and the operation for give-up detection unit in

the same period is about 0.262 mW, therefore the overhead for give-up calculation in

power dissipations is about 0.56%.

4.3 Chip Layout

We use SoC Encounter as APR (auto place and route) tool and layout is in figure

4-14. The hard macro in the design is memory unit M1 and M2, the core size for MAP

is 1.522 x 1.512 mm
2
 = 2.301 mm

2
 and the die size is 2.012 x 2.002 mm

2
 = 4.028

mm
2
 in TSMC 0.18 um process.

 61

[Figure 4-14] MAP chip layout by SoC Encounter

 62

Chapter 5 Comparison and Conclusion

In this chapter, we summarize the overhead of implementation for give-up

detection unit in chapter 4 and the energy savings in chapter 3 to judge the

contributions of give-up, and then give the conclusion in the end.

5.1 Overhead and Iteration Savings of Give-up Detection Unit

From the hardware architecture mentioned in chapter 4, the experiment results

for area overhead is about 0.963%, for the power overhead is about 0.56%. The

iteration saving and the corresponding increase of throughput are illustrated in table

5-1. Therefore, combining the overhead and iteration saving into considerations,

give-up really helps energy saving under terrible channel conditions.

 SNR (dB)

Average

Iterations

0.0 0.2 0.4 0.6 0.8

Traditional way 11.432 8.891 5.575 3.729 2.490

Proposed flow 7.108 6.369 4.770 3.323 2.435

Energy Saving 36.99 % 28.37 % 14.44 % 10.89 % 2.21 %

The increase for

throughput

(compared to

traditional flow)

1.608

times

1.396

times

1.169

times

1.122

times

1.026

times

[Table 5-1] Energy saving percentage under different channel SNR

 63

5.2 Conclusions

It is possible for turbo decoder to have decoding error case under terrible channel

conditions. How to estimate decoding error with HARQ scheme have been presented

in Wicker’s paper [20]. In his work, a neural network training method is proposed to

estimate the patterns of decoding errors for re-transmission. Similar to the idea and

simulation conditions, we find out a possible pattern of decoding error through

observations and propose early give-up technique to stop the decoding process in

advance. Then a request of re-transmission is sent. A reuse method is also proposed to

utilize the prior MAP information of the given-up process as the initial condition for

next transmission, based on the correlation between the same packets transmitted at

different times.

From power and performance point of view, we can turn on the give-up detection

unit by clock gating techniques under bad channel condition, therefore, according to

the simulation results summarized above, the overall overhead in hardware area and

power consumption is very little in comparison to the significant reduction of average

decoding iterations. By applying the simple detection circuit of the early give-up

technique, a shorter overall latency can be achieved because of early re-transmission.

The proposed algorithm and hardware can help achieving a more energy-efficient

turbo decoder design.

 64

Chapter 6 Future Works

 For the chapters we have mentioned before, we present a new idea (give-up)

addition to traditional iterative decoding process. The next works we can do are put

the new idea into different iterative decoding algorithm and different transmission

network model, then discuss the effects for them. Therefore, we present two topics as

the direction for the future work.

1. Due to the powerful decoding ability and relative simple hardware

implementations, Low Density Parity Check Code (LDPC) gets more and

more concerns in recent years. According to iterative process and learning

style, LDPC may have the same decoding properties for give-up

phenomenon! So the next work may emphasize on LDPC and discuss the

conditions for give-up decoding process and other power saving techniques

for LDPC.

2. If we want to talk about the quality of service (QoS) with the turbo code, we

may enlarge the scope to the transmission network model level. Hybrid

type-I and type-II transmission network model are illustrated in figure 6-1.

RQ means request and ACK means acknowledgement. Figure 6-1 models a

noisy feedback channel with Hybrid Automatic Repeat Request (HARQ) like

proposed in [20] [21]. We know early give-up can get benefits from early

re-transmission for reducing overall decoding latency. Thus, the next step we

may formula the relation between the give-up and the network properties like

decoding latency and through-put with mathematic model proposed in [21] or

 65

explain it by simulation results.

(a) Type-I HARQ model

(b) Type-II HARQ model

[Figure 6-1] State diagram for Type-I and Type-II HARQ Protocol based on two

codes (refer to [21])

 66

References

[1] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit

error-correcting coding and decoding: Turbo-codes,” in Proc. ICC `93, Geneva,

Switzerland, May 1993, pp. 1064–1070.

[2] L. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate,” IEEE Trans. on Information Theory, vol. 20, pp.

284-287, May 1974.

[3] A. J. Viterbi, “An intuitive justification and a simplified implementation of the

MAP decoder for convolutional codes,” IEEE J. Select. Areas Communication,

vol. 16, pp. 260-264, Feb. 1998.

[4] Chunlong Bai, Jun Jiang and Ping Zhang, “Hardware implementation of

Log-MAP turbo decoder for W-CDMA Node B with CRC-aided early stopping,”

in Proc. IEEE Vehicular Technology Conf., May 2002, pp. 1016-1019.

[5] P. Robertson, E. Villebrun and P. Hoeher, “A comparison of optimal and

sub-optimal MAP decoding algorithms operating in the log domain,” in Proc.

IEEE Int. Conf. Communications (ICC `95), 1995, pp. 1009-1013.

[6] M. R. Soleymani, Yingzi Gao and U. Vilaipornsawai, Turbo coding for satellite

and wireless communications, Kluwer Academic Publishers, 2002.

[7] G. Montorsi and S. Benedetto, “Design of fixed-point iterative decoders for

concatenated codes with interleavers,” IEEE J. Select. Areas Commun., vol. 19,

pp. 871-882, May 2001.

[8] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and

its applications,” in Proc. IEEE Globecom Conf., Nov. 1989, pp. 1680-1686.

[9] Jia Fei, “On a turbo decoder design for low power dissipation,” Master Thesis of

 67

Virginia Polytechnic Institute, 6 July 2000.

[10] William E. Ryan, “A Turbo Code Tutorial,” http://www.eccpage.com/

[11] J. P. Woodard and L. Hanzo, “Comparative study of turbo decoding techniques:

an overview,” IEEE Trans. on Vehicular Technology, vol. 49, Nov. 2000, pp.

2208-2233.

[12] Zhai Fengqin and I. J. Fair, “Techniques for early stopping and error detection in

turbo decoding,” IEEE Transactions on Communications, vol. 51, Oct. 2003, pp.

1617–1623.

[13] Chien-Ming Wu, Ming-Der Shieh and Chien-Hsing Wu, “Memory arrangements

in turbo decoders using sliding-window BCJR algorithm,” IEEE Int. Symposium

on Circuits and Systems, vol. 5, May 2002, pp. V-557-V-560.

[14] Third Generation Partnership Project. http://www.3gpp.org

[15] Third Generation Partnership Project. 3GPP TS 25.222 Technical Specification

Group Radio Access Network, Multiplexing and channel coding (TDD).

[16] Z. Wang, H. Suzuki and K. K. Parhi, “VLSI implementation issues of TURBO

decoder design for wireless applications,” in Proc. IEEE Workshop Signal

Processing Systems, 1999, pp. 503-512.

[17] E. Boutillon, W. J. Gross and G.. Gulak, “VLSI Architectures for the MAP

Algorithm,” IEEE Transactions on Communications, vol. 51, Feb. 2003, pp.

175-185.

[18] Y. Wu, B. D. Woerner and W. J. Ebel, “A Simple Stopping Criterion for Turbo

Decoding,” IEEE Communications Letters, vol. 4, Aug. 2000, pp. 258–260.

[20] M. E. Buckley and S. B. Wicker, “The design and performance of a neural

network for predicting turbo decoding error with application to hybrid ARQ

protocols,” IEEE Transactions on Communications, vol. 48, Apr. 2000, pp.

566–576.

 68

[21] S. B. Wicker, Error Control Systems for Digital Communication and Storage.

Englewood Cliffs, NJ: Prentice-Hall, 1995.

[22] C. B. Shung, G. Ungerboeck and H. K. Thapar, “VLSI architectures for metric

normalization in the Viterbi algorithm,” in Proc. IEEE Int. Conference

Communications (ICC `90), vol.4, Atlanta, GA, Apr. 16-19, 1990, pp.1723-1728.

[23] J. B. Berner and K. S. Andrews, “Deep Space Network Turbo Decoder

Implementation,” in Proc. IEEE Aerospace Conf., vol. 3, 10-17 March 2001, pp.

1149-1157.

[25] T. A. Summers and S. G. Wilson, “SNR Mismatch and Online Estimation in

Turbo Decoding,” IEEE Transactions on Communications, vol. 46, April 1998,

pp. 421-423.

[26] H. Michel and N. When, “Turbo-Decoder Quantization for UMTS,” IEEE

Communications letters, vol. 5, Feb 2001, pp. 55-57.

[27] A. Matache, S. Dolinar, F. Pollara, “Stopping Rules for Turbo Decoders”, TMO

Progress Report, Aug. 15, 2000. http://tmo.jpl.nasa.gov/tmo/progress_report

[28] M. Keating, P. Bricaud, Reuse Methodology Manual for System on Chip Designs,

Kluwer Academic Publishers, 2002.

[29] A. C Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and Errors in Turbo

Decoding”, IEEE Transactions on Communications, vol. 49, Dec. 2001, pp.

2045-2051.

[30] L. Zhang, G. Zhang, and X. Liu, “Updated Extrinsic Information for Iterative

Decoding of Turbo Codes,” in Proc. IEEE Int. Conference Communications, vol.

1, July 2002, pp. 51-55.

