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摘要 

考慮傳輸通道品質的情況下，為了使晶片能量能有效率的被使用，而提出了

新的想法“提早放棄”以利用在渦輪解碼的流程上。渦輪解碼器是利用反覆的方

式，完成解碼的動作，解碼的次數和通道的品質高度相關。如果通道狀況良好，

可以利用提早停止的方式，停止解碼程序。然而，當通道品質惡劣，傳統的做法

是解到最大解碼次數之後，若發現解碼失敗，再要求傳送端重傳該封包。因為解

碼所消耗的能量會正比於解碼迴圈的次數，所以就浪費能量在無意義的迴圈上。

我們提出的作法是放棄可能解碼失敗的封包其解碼程序，以節省不必要能量的浪

費，並能及早重傳。利用模擬觀察渦輪解碼資料，我們增加一個簡單的硬體，檢

查解碼中所產生的外部資訊，當作判斷提早放棄的機制。除此之外，我們也提出

在假設重傳的封包資料一致的情況下，如何再利用之前提早放棄解碼的計算，使

得整體解碼所需的迴圈次數下降。我們實驗結果顯示，在通道狀況惡劣的情況

下，綜合我們所提的想法，對達成一定數量成功解碼的封包，可以減少平均 10%

到 37%的解碼所需迴圈次數。 
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ABSTRACT 

A novel early give-up algorithm for turbo decoding process undergoing poor 

channel SNR is proposed for energy-efficient consideration. Turbo decoding involves 

an iterative process and the number of iterations required to correctly decode the 

information packet is highly dependent of the channel condition. If the channel SNR 

is good enough, the iterative process could likely be reduced, i.e. early stop or 

termination. When the channel is contaminated at the time of transmission, the 

process will keep going until a maximal number of iterations is reached, and request a 

packet to be re-submitted. Because energy consumption of the decoding algorithm is 

proportional to the number of iterations, this would cost extra energy resource. The 

proposed approach is to give up the decoding process earlier during bad channel SNR 

and request data to be re-sent immediately. Based on observations from the 

simulations of turbo decoding process, a simple hardware checking the average 

absolute value of the extrinsic information on-the-fly is involved into the original 

turbo decoder architecture. Besides, we apply another technique to reuse the prior 

MAP information of the given-up process based on the assumption of correlation 

between same packets transmitted at different times. Our results shows that the 

average iterations required to decode fixed amount of valid packets can be reduced 

from 10% to 37% under bad channel conditions. 
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Chapter 1  Introduction 

 

With the performance approaching the Shannon limit of channel capacity, turbo 

codes [1] [2] represents one of the most popular research topics in coding theory and 

have been deployed in many designs of communication systems such as wireless 

systems. Although turbo code provides powerful ability for error control coding, it 

also requires a lot of power consumption during the iterative decoding process. Thus, 

low-power turbo decoder design becomes an important research issue for 

communication systems operated with stand-alone batteries. Due to the iterative 

decoding style of turbo code, to reduce unnecessary iterations means to save the 

energy consumption and has been studied in many references [12] [18] [27]. This kind 

of techniques is called early-termination while decoded outputs are already correct 

patterns. 

When the channel condition becomes noisy, the decoded output is possibly 

unreliable even as maximal iteration number is reached. In [20], a neural network 

training method is proposed to estimate the patterns of decoding errors for 

re-transmission. Similar to the idea in [20], we find out a possible pattern of decoding 

error through simulations and we propose early give-up technique to stop the 

decoding process in advance. Then a request of re-transmission is sent. A reuse 

method is also proposed to utilize the prior MAP information of the given-up process 

as the initial condition for next transmission, based on the correlation between the 

same packets transmitted at different times. The early give-up algorithm is acquired 

from observations of simulation results, so there exists possible mis-judges, i.e. false 

alarms. Under poor channel conditions, the simulations show that both the average 

iteration number of turbo decoding process and the overall decoding latency are 
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reduced despite of the existence of false alarms. 

 

1.1 Motivation 

 

For battery-based applications like cell-phone or other portable devices, power 

issues get more and more concerns recently. Our main job is to design a turbo decoder 

which can use energy more efficiently depends on the channel conditions. With no 

unnecessary energy waste for decoding, we can increase the use time for 

battery-based applications with turbo coding and also increase the life time for the 

battery. 

 

1.2 The Proposed Scheme 

 

The turbo decoding is a kind of iterative decoding process. For power saving 

aspects, a lot of papers discuss how to save unnecessary iterations for the situation 

that the decoded outputs are already correct decoded pattern during decoding process. 

This kind of techniques called termination skills [4] [18]. In this situation, because the 

channel condition is good enough, a few iterations will be able to decode out the 

correct patterns so we can stop decoding process before reach the preset limit 

(maximum iteration). 

However, in this thesis, we think about the other side of situation that if channel 

condition goes very bad (over the decoding ability of the turbo decoder), whether we 

should stop decoding process preventing unnecessary iterations for power saving? 

According to our motivations, we propose a new idea called “Early Give-up” 

which can detect the channel condition during decoding process by decoded extrinsic 

information then make an estimation that whether the decoded data at final decoding 
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stage are reliable (error free) or not. If the estimation shows that we will get the 

unreliable decoded pattern finally, the decoding process will be stopped for energy 

saving, and request for re-transmission immediately to reduce overall decoding 

latency. 

 Besides that, we also present a methodology for re-use the work we calculated 

before the give-up stage. According to the simulation results, we prove that we can 

reduce the overall average decoding iterations for given valid packet numbers under 

bad channel conditions by using “Early Give-up” with reuse state methodology, thus 

we can save power and reduce decoding latency under bad channel conditions. 

 

1.3 The Arrangement for Thesis Chapters 

 

This Thesis is structured as follows. 

Chapter 1: Introduction 

 

Chapter 2: Turbo Coding Technology 

 In this chapter, we will briefly explain the encoding and decoding algorithm for 

turbo code and corresponding hardware structures. Besides, we also take 

implementation issues into considerations, like log-MAP algorithm, fixed-point 

implementation effects, sliding window algorithm and some termination techniques 

for turbo decoding. In the end of this chapter, we will introduce turbo code as an 

application in the communication field. 

 

Chapter 3: The Early Give-up and State Reuse Methodology for Turbo Coding 

 In this chapter, we will explain our new idea “Early Give-up” technique for turbo 

decoding, and corresponding re-use methodology for re-send process. We will modify 
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the turbo code decoding flow with the new idea and show simulation results for the 

proposed scheme in this chapter. 

 

Chapter 4: Hardware Implementation 

 In this chapter, we will explain each component in turbo decoder for realizing 

MAP algorithm, and also introduce the Early Give-up detection circuit for 

implementation. We will compare the overhead from area and power point of view in 

the end of this chapter to judge the new idea’s contributions. 

 

Chapter 5: Comparison and Conclusion 

 We will compare the benefits and overheads for Early Give-up from hardware 

and power point of view and make conclusions for the thesis in this chapter. 

 

Chapter 6: Future Works 

 In this chapter we will present the future works relative to our research in this 

thesis as the direction for future research topics. 
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Chapter 2  Turbo Coding Technology 

 

What is Turbo Code 

 

 Turbo code was firstly introduced in 1993 by Berrou, Glavieux and 

Thitimajshima [1]. They promised almost 10 dB coding gain (at BER=10
-5
), which is 

within 0.7 dB of Shannon limit in AWGN channel. Special features of turbo code are 

as follows:  (1) turbo code are composed of two parallel-concatenated recursive 

systematic convolutional code (RSC) with (usually) very long block length (2) A 

pseudo random interleaver is used to randomize the input data for second RSC 

encoder (3) The decoder uses iterative MAP algorithm. These factors combined make 

turbo code great abilities for error correcting, and also make turbo code a milestone in 

error control coding area. 

 

2.1 The Encoding and Decoding Structure for Turbo Code 

 

The encoder side for turbo code uses two the recursive systematic convolutional  

code (RSC) and one interleaver, as figure 2-1 shows. Code rate can be increased to 

1/2 by puncturing (without puncturing, the code rate will be 1/3). The decoder parts 

are shown in figure 2-2. De-puncturing action for decoder is according to encoder. 

Other parts are composite of two SISO (Soft-Input Soft-Output) decoder、interleaver 

and de-interleaver. The main concept for decoding is to use first SISO decoder which 

made use of the received value from channel and a-priori information to calculate the 

extrinsic information, and then take the extrinsic information as the a-priori 

information to the second SISO decoder. Iterating the decoding process to decrease 
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the bit error rate from decoder (refer to [1] for detail). For SISO decoder, it can be 

implemented by MAP algorithm or Soft-output Viterbi algorithm (SOVA) [8]. 

 

 

[Figure 2-1] Turbo encoder system block diagram 

 

e
L12

eL21

 

[Figure 2-2] Turbo decoder system block diagram 

 

2.2 The MAP Algorithm 

 

BCJR Algorithm (MAP) was firstly presented in 1974 by Bahl, Cocke, Jelinik  

and Raviv [2]. BCJR algorithm is optimal for estimating the states or the outputs of a 

Markov process observed in white noise. The details of the algorithm are available in 

[2] [5] [6] [9] [10], we briefly describe the main idea of the MAP algorithm. The Log 

Likelihood Ratio (LLR) of the k
th 
input bit of the input sequence x is defined as: 
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If ( )kx̂Λ >0, we decode the input bit xk as 1, otherwise, the input bit as 0. 

Take Pr(Sk-1=s’, Sk=s, r) into consideration, By using Bayes’ rule, we can partition the 

joint probability of Pr(Sk-1=s’, Sk=s, r) into three parts. 
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Define the three probabilities as follows: 
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Where αk-1(Sk-1) is the function of received information prior to the stage k, γk(Sk-1, Sk) 

is the function of received information for stage k and βk(Sk) is the function of 

received information after stage k. αk(Sk) can be computed recursively as: 
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Where i is the input bit that cause the transition from state Sk-1=s’ to Sk=s, and xk ` pk 

are the systematic bit and parity bit respectively. 
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The overall MAP decoding flow is illustrated in Figure 2-3 [11] 
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[Figure 2-3] MAP decoding flow chart 

 

2.3 The Implementation Issues 

 

From software point of view, BCJR algorithm will be fine for BER performance.  

But if it talks to hardware implementations, that will be lots of factors to effect the 

overall performance. Like the performance degradation due to fixed-point realization, 

and for real-time demands and decreasing memory area (saving power), take sliding 

window method for implementation, the effects for the performance. We also talk 

about some techniques for reducing unnecessary iterative process for termination. 

Therefore, the following sections will be from the hardware point of view to talk 

about the questions and solutions from papers. 

 

2.3.1 The Log-MAP Algorithm 

 

Though MAP decoding can achieve great error correcting capacity near Shannon 

limit, this algorithm is too difficult to be realized, basically because the numerical 

representation of probabilities, non-linear functions and mixed multiplications and 

additions of these values. For the SISO decoders, Log-MAP algorithm is suitable for 



 10

hardware implementation, due to its relative simplicity compared with original MAP 

algorithm, and better performance than SOVA [5].  

 The Log-MAP algorithm is a transformation of MAP, which has equivalent 

performance and without its problems in practical implementation. It works in 

logarithmic domain, where multiplication is converted to addition. From (2.9), we can 

define forward state metrics α in log domain. 
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k γγ ≡  

Form (2.10), we can derive backward state metric β in log domain. 
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Therefore, from (2.12) the log-likelihood ratio is given by 
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By use of equation: )1ln(),max()ln(),(max* yxyx eyxeeyx
−−++=+≡   (2.16) 
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from (2.14). And from (2.15) we can derive 
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(2.19)  

2.3.2 The Fixed-point Effects 

 

From hardware implementation and real-time demanded point of view, using 

fixed-point method to realize MAP algorithm is the best solution for cost and 

performance. So we will discuss the considerations of quantization on the 

performance proposed in [7] [16] [26]. 

In [16] [26], they consider the internal MAP state variables and channel data 

from A/D outputs then simulate the different quantization schemes for BER compared 

to infinite precision case to find the minimum precision representation under tolerable 

performance degradation. The meanings for minimum bit representations are not only 

for cost-down in hardware implementations but also for power saving due to 

minimum storage requirement and less switching activities. 

Paper [7] talks about the size of look-up table for Log-MAP. The core of 

Log-MAP is the operation ∆+=++= −− ),()1ln(),(),( ||* BAMaxeBAMaxBAMax BA , 

according to the quantization scheme, the∆ in above equation can be expressed 

as )
2

||
exp1ln(|))|exp(1ln(

p

BA
BA

−−
+≅−−+≡∆ , where p is number of precision 

bits. We can find the minimum positive integer m stored in ROM satisfying the 

inequality )1(2))2/exp(1ln( +−≤−+ ppm  to minimize the effects due to look-up table 

for different precision. 
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2.3.3 The Metric Normalization 

 

An important issue in Turbo Decoding fixed-point operation is the growing of 

state metrics over the finite numerical range representation. The same problem also 

can be found in Viterbi’s algorithm [22]. In 1999, Parhi had proposed a solution in 

[16]. This method requires small amount of hardware and its speed does not depend 

on the number of state. His approach is that if the word length of state metrics is q bits, 

once the state metrics is larger than 22 −q , then subtract 22 −q  from all state metric 

)( βα or . The proof is as follows: 

The Max* operation is: Max*(x+z, y+z) = Max(x+z, y+z) + ln(1+e
-|(x+z)-(y+z)|

) (2.20) 

Thus Max*(x+z, y+x) = Max(x, y) + z + ln(1+e
-|x-y|

) = Max*(x, y) + z   (2.21) 

According to equation (2.21), Max* operation is linear. Thus a global shift for α and β 

in (2.17) (2.18) won’t change the value of L(uk) in (2.19) since the contribution of z, 

when put outside two Max
*
 operations, is cancelled [17]. 

 

2.3.4 The Sliding Window Method for Turbo Decoder 

 

According to section 2.3.1 above, we have simplified the MAP decoding 

complexity by log-MAP equation. However, for log-MAP decoding algorithm, we 

still have to store every branch metric (γ) and forward state metric (α) at every 

stage until the backward state metrics (β) had been calculated out, so as to compute 

LLR in (2.19) 

Taking 3GPP specification for example, according to encoder structure, we have 

8 states in trellis diagram, if we express every state by 8 bits, it would require 64 bits 

of storage per branch, and if the frame size is 1024 bits, the turbo decoder must at 



 13

least have 64x1024=64K bits storage for traditional MAP decoding algorithm. 

 Because lots of memory requirement and decoding latency for MAP decoding, 

Viterbi proposed sliding window [3] structure as a solution for these questions in 1998. 

We will briefly explain his idea by figure 2-4. First of all, we have three process 

elements for sliding window (SW) MAP decoding algorithm, one for forward 

processing and the other two for backward processing. L means the sliding window 

length (typically 6-10 times for constraint length). The label for each node below 

means the trellis time instance. The main idea for sliding window method is that we 

can estimate real backward state metric condition by applying learning period (L). As 

figure 2-4 shows, dash line means that the unreliable backward branch metric 

computations (learning period). After learning period, we get reliable initial state 

condition for backward state metrics computations. Now we take first decoded output 

for example to explain how these three process elements function. We compute 

forward state metrics as the label shows. From time 2L to 3L, we compute the node 

metric from 0 to L, at the same time (2L-3L), the first backward processor start to 

learning the backward state by received data from 2L to L. During learning period, we 

do not store anything until time goes to 3L, at this time instance (3L), because the 

forward processor had been already computed the forward state metric from 0 to L, so 

we can combine the forward and backward state metrics to get valid decoded output 

(L to 0) from time 3L to 4L. 

 The operation for second backward processor will be same as the first backward 

processor. While the first backward processor decode out branch from L to 0 at time 

3L to 4L, second backward processor will start learning at time 3L. After learning 

period, we can get decoded output for branch 2L to L from second backward 

processor from time 4L to 5L. Two backward processors will take turn to decode out 

the branch as the timing in figure 2-4 shows. This is the way for sliding window MAP 
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algorithm functions. 

 

 

[Figure 2-4] Timing diagram for sliding window method (refer to [3]) 

 

2.3.5 The Termination Techniques for Turbo Code 

 

Termination is a kind of power saving technique for turbo code. Traditional way 

for stopping of turbo decoding is to set a maximum iteration limit and whether 

decoded outputs are valid or not, decoding iteration will not stop until the preset limit. 

This is not a smart way for iterative decoding process, so lots of papers talk about 

when to stop properly, this kind of technique calls termination. 

The termination techniques can be split into two categories, one is made use of 

inner forces and the other is made use of external forces [4]. Observing convergence 

for decoding data with the number of iterative process increased to decide whether 

continue decoding or not calls the inner force method. The other way calls external 

force, it means to use another kind of error control coding prior to turbo encoder to 

check the correctness of decoded frame. Corresponding encoding、decoding flow are 
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illustrated in figure 2-5 (taking CRC as outer code for example). My thesis uses CRC 

as the outer code for termination scheme. 

 

 

(a) Turbo-CRC encoder 

 

eL12
eL21

 

(b) Turbo-CRC decoder 

[Figure 2-5] Turbo-CRC encoding and decoding block diagram 

 

2.4 Applications for Turbo Code 

 

In this section we will briefly describe two applications of turbo code in 

communication field, and corresponding specifications. 
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2.4.1 Application for 3GPP 

 

First of all, we describe the encoder structure for 3GPP. As in Figure 2-6, 

Encoder’s part is made up of two convolution encoders, and for each encoder, the 

generator matrix: ]
)(

)(
,1[)(

2

1

Dg

Dg
DG = , where g1(D)=1+D+D

3
, g2(D)=1+D

2
+D

3
. The 

frame size for 3GPP specified is from 40 to 5114 bits per frame, and the code rate is 

1/3. (In 3GPP2, the standard use two rate 1/3 constituent codes, both with generator 

matrix ]
1

1
,

1

1
,1[)(

32

32

32

3

DD

DDD

DD

DD
DG

++

+++

++

++
= , with rate from 1/5 up to 1/2). The 

internal interleaver is implemented as an array with 5, 10, or 20 rows and between 8 

and 256 columns, depending on the frame size K. Data is wrote in row-wise, 

intra-row and inter-row permutation is performed on the array. We will give a more 

detail example in chapter 4. The dash line in figure 2-6 is for termination to all-zero 

state. 

 

[Figure 2-6] The Structure of turbo encoder (refer to [15]) 

 

The performance of 3GPP turbo decoder is in figure 2-7 [6]. Simulation is 

implemented on TI DSP using Max-Log MAP algorithm. We can see the relationship 

between SNR and BER, and corresponding coding gain for different decoding 
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iterations. 

 

[Figure 2-7] The performance of turbo decoder (excerpted from [6]) 

 

2.4.2 Application for CCSDS 

 

CCSDS (Consultative Committee for Space Data Systems) takes turbo code in 

channel coding standard recently. The additional coding gain of 2.5 dB at BER = 10
-5
 

can be achieved by rate 1/6 turbo code with respect to the old standard. The encoder 

has two code rate 1/4, 16 states convolutional codes with generators 

]
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++
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+++
=  [23]. The 

corresponding information rate and encoder structure are shown in table 2-1 and 

figure 2-8. For encoder, the information block buffer contains interleaver which is 

described in new CCSDS standard. 

 

 



 18

Code block length n Information length k 

Rate 1/2 Rate 1/3 Rate 1/4 Rate 1/6 

1784 3576 5364 7152 10728 

3568 7144 10716 14288 21432 

7136 14280 21420 28560 42840 

8920 17848 26772 35696 53544 

16384 32776 49164 65552 98328 

[Table 2-1] Information block lengths and rates 

 

 

[Figure 2-8] The Encoder structure for the CCSDS turbo code (refer to [23]) 
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Chapter 3 Early Give-up and State Reuse 

Methodology for Turbo Coding 

 

3.1 Motivation 

 

According to simulations of paper [4] [18], when channel condition goes very 

bad (SNR very low), the decoding iterations needed will be very close to maximum 

iteration during decoding process (shown in figure 3-1). Sometimes after final 

iteration for decoding, we still get wrong information from decoder output (decoded 

failure frame). This result points that when messages are interfered by noise seriously, 

it may be not a smart way to continue decoding process (because lots of time we may 

get decoded failure frame in the end). So we present a technique calls Early Give-up. 

The so called “Early Give-up” means that during decoding process, once we find the 

trend of decoding failed, we will stop the decoding procedure immediately not until to 

maximum iteration! The goal of early give-up is to prevent power consumptions for 

unnecessary iterations. 

Giving up decoding process is not enough to decode a valid frame out, it needs 

re-send frame to complete decoding process (As for a decoding frame at maximum 

iteration but failed finally, it also needs re-send scheme, so “Early Give-up” gets 

benefits from (1) no waste iterations for power saving (2) early re-send to shorten 

overall decoding latency). According to above reasons, we can improve the QoS 

(Quality of Service). 

Besides, we have a reuse scheme for give-up. Reuse means that we can save the 

previous work during give-up and use it for re-send the same packet as initial 

conditions. We prove it by simulation. Reuse state methodology really can reduce 
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overall average decoding iteration numbers for successful decoded frames. 

 

 

[Figure 3-1] Simulation result for SNR vs. average iteration (excerpted from [18]) 

 

3.2 Observation and Simulation for Early Give-up 

 

Observing failure frame’s properties during simulation, we find the common 

feature of decoding failed frame is that the extrinsic information of most decoding 

failed frame will be oscillating with decoding iterations increasing. The oscillation 

means that the average absolute value of extrinsic information will not increase 

monotonically with decoding iterations increasing [12] [30]. In other words, if it can’t 

gain additional information (judged by average absolute value of extrinsic information) 

from iterative decoding process, more iteration may be useless! 

 

3.2.1 The Trends of Extrinsic Information 

 

According to paper [12], it says that if }1,1{ −+∈x are equally likely, then 
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[Figure 3-2] |LLR| trends for different types of decoding packets         

(excerpted from [12]) 
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According to the idea and error pattern of [12], we also analyze the data during 

decoding process. The sample data for extrinsic information from decoding process as 

in figure 3-2, we can find the property that, for most decoding failed frame (in red 

color marked by ‘x’), the mean of absolute value of extrinsic information (Le) will not 

increase with iteration stepping up (oscillation for Le). Thus, we made a rule (Early 

Give-up) that when we get the information of oscillation for average absolute value of 

extrinsic information during decoding process, from the experience of successful 

decoding point of view, we should give-up the decoding process immediately for 

power saving. Therefore, we use the oscillation of extrinsic information as the criteria 

for give-up detection. 
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[Figure 3-3] The trends of extrinsic information for frame=1024 bits 
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[Figure 3-4] The trends of extrinsic information for different frame size 

 

In figure 3-3, the simulation results are for frame size=1024 bits, we also observe 

different frame sizes for oscillation phenomena, as figure 3-4 shows. From the 

experiment results, we concluded that the estimation of decoding failed case is more 

reliable as the frame size increased. The reason is, for longer frame size, we have 

more side information about the bit we estimated, so the decoding failed case 

estimated by oscillating can be more accurate. 

 

3.2.2 Simulation Results for Give-up 

 

According to our idea, we simulate the give-up effects for decoding performance 

judged by packet error rate. Note that, in this case, we just give simulation results for 

give-up only. However, give-up is not enough for decoding a valid packet out, so we 
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will discuss the give-up effects in section 3.5 for the system with re-transmission 

scheme, and then give a complete conclusion there. 
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[Figure 3-5] Effects on the performance by give-up decoding process 

 

In figure 3-5, we set the number of maximum iterations to be 15, and the optimal 

means that the program compared the information bits in encoder and decoded 

outputs after per iteration of decoding process. If the output of encoder and decoder 

are the same, we stop the process immediately for saving unnecessary iterations (This 

is impossible in practical, because we don’t know what exactly the information bits 

for encoder, so this method is only available in simulation, therefore, paper [27] called 

it’s an optimal (or Magic Genie Rule) solution). 

In facts, if we want to stop decoding process when decoded outputs are already 
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valid, we should use the termination techniques mentioned in chapter 2. Besides, we 

analyze the performance by packet error rate (PER), rather than bit error rate (BER), 

that because once we found a decoded failed packet, no matter one bit error or one 

hundred bit errors in it, we all need re-transmission, so from system level point of 

view, PER (or frame error rate, FER) is more meaningful than BER. 

 

3.3 The Reuse Methodology for Early Give-up Scheme 

 

By using the early give-up technique, the turbo decoding process can be stopped 

as early as possible while the channel condition is not good enough. The simulations 

show that energy can be saved even with the presence of false alarms. Another 

question is that if there exists useful information within the given-up process except 

for energy savings. Turbo decoding is an iterative process and requires the initial 

guess. We assume that there exists certain correlation between the same packets 

transmitted at different times. Therefore, a reuse method is proposed to utilize the 

calculated information of the given-up process and use it as the initial guess for 

re-transmitted packet. So section 3.3.1 will describe the re-use method detaily and the 

corresponding assumption conditions. Section 3.3.2 will show the simulation results 

for reuse methodology. 

 

3.3.1 The Idea of Reuse Methodology 

. 

Traditionally, the initial condition for MAP decoding algorithms is set to be 0 

based on the assumption that the probability of information bits to be 0 or 1 is 

equal-likely. So a priori information for initial condition is: 
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the extrinsic information calculated in the previous given-up process and use it as the 

initial condition of MAP decoding for the re-transmitted packet based on the 

correlation between the same packets transmitted at different times. The circled part in 

figure 3-6 shows the reuse part for explanation. Instead of starting from 0 as initial 

condition, we utilize the prior estimated values of information bits as initial guess. 

This will lead to the iterations reduction of decoding processes and we will give the 

simulation results in section 3.3.2. 
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[Figure 3-6] The reuse methodology for turbo decoder 

 

3.3.2 The Simulation Results for State Reuse Methodology 

 

The simulation results in figure 3-7, figure 3-8 demonstrate the average iteration 

numbers of decoding processes with the reuse state technique. The X-axis represents 

the SNR offset. The SNR offset means the SNR difference between the given-up 

packet and the re-transmission packet. To be conservative, we assume that the channel 

SNR becomes better than the previous given-up transmission, so that the resent packet 
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will have better chance to be correctly decoded. Therefore, the SNR offsets mean the 

difference between two transmissions of the same packet. 

The original channel SNR of two simulation cases are shown in figure 3-7 and 

figure 3-8. Figure 3-7 is the case that the original channel SNR to be 0.0 dB and 

figure 3-8 is the case that the original channel SNR to be 0.5 dB. The SNR of the 

resend packet is according to the SNR offset. For example, if the original channel 

SNR is 0.5 dB (the case in figure 3-8) and the offset is 1.0 dB, the channel SNR of the 

re-transmitted packet is assumed to be 1.5 dB. Therefore, if the SNR offset is 0, it 

means that both transmissions are under the same channel condition. 

The SNR offsets in the simulations are all positive because the early 

give-up/reuse state techniques proposed in this study focus on the worse channel 

conditions. If the re-transmitted packet bears worse channel SNR than the given-up 

packet, the possibility to decode correctly is much less. 

 

Here are the specifications and simulation results. 

[Reuse Experiment 1] 

Specifications: 

Frame size    = 1024 bits 

Maximum iteration   = 10 times 

SNR (for the given-up packet) = 0.0 dB 

Total Early Give-up times  = 200  times 

Decoding algorithm   = Log-MAP 
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[Figure 3-7] Reuse method for SNR at 0.0 dB 

 

[Reuse Experiment 2] 

Specifications: 

Frame size    = 1024 bits 

Maximum iteration   = 10 times 

SNR (for the given-up packet) = 0.5 dB 

Total Early Give-up times  = 200 times 

Decoding algorithm   = Log-MAP 
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[Figure 3-8] Reuse method for SNR at 0.5 dB 

 

The green line (marked by diamond) is the result for the traditional case (taking 0 

as initial condition for the re-send packet) and the blue line (marked by square) is the 

result for the re-use case (taking the extrinsic information at given-up stage as initial 

condition for the re-send packet). The goal of the reuse experiments is to prove that 

the decoding process will be converged faster if we use the information estimated at 

the given-up stage as the initial condition instead of traditional initial condition (0). 

Therefore, the experiment will focus on the decoding iterations of the re-send process. 

The stopping condition for this experiment is to reach the pre-set number (total 

early give-up times in the specification: 200 times) of the re-send process. The figure 

3-7 and figure 3-8 are plotted according to the average decoding iterations under 200 

times of the re-send process for both traditional flow and re-use methodology. The 

number of the total transmission packets in this experiment must more than 200 

packets, because not every transmission will request the re-transmission and we count 
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the re-transmission process only. Taking figure 3-8 for example, under the assumption 

conditions, we can reduce average decoding iteration about 1.8 iteration at the SNR 

offset 0.5 dB by re-use methodology compared to the traditional flow and thus, we 

can use less energy (proportional to the number of decoding iterations) for decoding a 

valid packet out with re-transmission. 

From the simulation of above two case, we can give the conclusion: The reuse 

method for early give-up procedure is more usable for the case that the packet is 

given-up under better channel SNR, because the extrinsic information in better 

channel condition are more reliable than in bad channel, so the estimation will be 

more accurate and useful for decoding process. 

 

3.4 The False Alarm for Early Give-up Technique 

 

The give-up idea we proposed is that once the packet is estimated be a failed 

case, we give up decoding process as early as we could for power saving and hence, 

reducing latency for re-transmission. However, the give-up is a kind of estimation and 

we can’t estimate exactly accurate, therefore false alarm arises when the rest of 

iterations (if give-up not performed) can decode the valid packet out. In other words, 

if the alarm signs on the valid packet, it is the false alarm. 

 

3.4.1 The Quantization Effects for False Alarm 

 

The false alarm will be affected by a lot of factors like the size of the packets, the 

channel SNR and the decoding flow ...etc. In this section, we will combine these 

effects above to discuss the false alarm. We will simulate different quantization 

schemes for turbo decoding and compare the false alarms of them, then give a 
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conclusion from simulation results. 

First, we want to explain the meaning of the symbol we used for quantization in 

Table 3-1. Taking Received value: q(4,2) for example, q is the abbreviation for 

quantization, 4 is the total bit numbers we represent the received value, and 2 is the 

precision bit numbers for received value. Thus, the received value is represented by 2 

bits for dynamic range and 2 bits for precision bits (behind the dot). The column 

“Parhi” is the quantization scheme in his paper [16], and column “+Q1” means we 

add one precision bit compared with Parhi’s data. The column “+Q1+D1” means we 

add one bit for precision and one bit for dynamic range compared with Parhi. Table 

3-1 shows the variables we used in MAP decoding process with different quantization 

schemes. 

 

 Parhi [16] +Q1 +D1+Q1 +Q2 

Received value q(4,2) q(5,3) q(6,3) q(6,4) 

Branch metric q(7,2) q(8,3) q(9,3) q(9,4) 

LLR q(10,2) q(11,3) q(12,3) q(12,4) 

Forward metric q(9,2) q(10,3) q(11,3) q(11,4) 

Backward metric q(9,2) q(10,3) q(11,3) q(11,4) 

Priori information q(6,2) Q(7,3) q(8,3) q(8,4) 

Extrinsic information q(6,2) Q(7,3) q(8,3) q(8,4) 

[Table 3-1] Different quantization scheme for MAP 

 

The simulation results for BER performance and average decoding iterations 

under different quantization scheme are shown in figure 3-9 and figure 3-10. (Figure 

3-9 (a) and (b) are both simulation for BER but different in SNR range) We can see 
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from the simulation results that under terrible channel SNR (less than 0.5 dB), less 

precision quantization scheme will cause higher bit error rate and more iterations 

needed for decoding. Taking SNR=0.3 dB for example, the BER for Parhi’s 

quantization is about 10
-1
 and is about 4x10

-2
 for Parhi+D1+Q1’s quantization scheme. 

However, the number of average decoding iteration needed for Parhi’s quantization is 

about 9 times and is about 6.8 times for Parhi+D1+Q1 shown in figure 3-10. 

Therefore, in terrible channel SNR (< 0.5dB), using less precision quantization 

scheme will cause higher bit error rate and need more iterations for decoding due to 

the effects of quantization noise.  
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[Figure 3-9 (a)] BER for different quantization schemes 

 

[Figure 3-9 (b)] BER for different quantization schemes 
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[Figure 3-10] Average iterations for different quantization schemes 

 

Figure 3-11 (a) shows the false alarm rate for different quantization bits. The 

false alarm rate is calculated according to the ratio of false alarm times and total alarm 

times (The total alarm times is illustrated in figure 3-11 (b)). The definition of the 

false alarm has been mentioned in section 3.4, here we explain the method we 

simulate. Because we do not know this alarm is true or false until the maximum 

iteration, therefore, we record this alarm and do not give-up until the maximum 

iteration for the false alarm experiment. If the decoded patterns are not valid patterns 

after maximum iteration, then this alarm is true, else it is a false alarm. From the 

simulation results of figure 3-11 (a), we conclude that, for the same dynamic range 

representation, false alarm rate will be decreased as the precision bits increased. 

Taking Parhi, Parhi+Q1, Parhi+Q2 for example, the number of precision bit of 

Parhi+Q1’s scheme is 1 bit more Parhi’s scheme and is 1 bit less than Parhi+Q2, and 
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the false alarm of Parhi, Parhi+Q1, Parhi+Q2 are 3.5%, 1% and 0.2 %, respectively. 

That is because when we use more bits on precision, we will have less chance to 

mis-judge the oscillation case due to quantization. However, if we increase the 

representation for dynamic ranges, the quantization scheme will be less sensitive to 

the false alarm criteria (observing figure 3-11 (b), the alarm times of the 

Parhi+D1+Q1 are much less than the others). The experiment results for 

corresponding alarm times are shown in figure 3-11 (b). According to this experiment, 

we will choose the worst case of false alarm (Parhi+Q1+D1) as the quantization 

scheme to discuss the benefits of the proposed flow compared to traditional flow. 
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[Figure 3-11] False alarm rate for different quantization schemes 
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3.4.2 The Decoding Flow Effects for False Alarm 

 

To achieve the goal of designing the energy efficient turbo decoder, we propose 

the scheme which is the combination of termination checking and give-up detection in 

decoding flow. However, how to decide the order of termination checking and give-up 

detection in the turbo decoding flow? To solve this problem, we simulate these two 

flows and the corresponding quantization effects of false alarm mentioned in above 

section, then we conclude by the simulation results of the false alarm to choose the 

best arrangement for termination checking and give-up detection as our proposed 

decoding scheme. 
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[Figure 3-12] Turbo decoder decoding flow with give-up and state re-use 

scheme (give-up detection before termination checking) 
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[Figure 3-13] Turbo decoder decoding flow with give-up and state re-use 

scheme (give-up detection after termination checking) 

 

Figure 3-12 and figure 3-13 illustrate the different order of termination checking 

and give-up detection in decoding flow, and the corresponding false alarm simulation 

results are shown in figure 3-14. The decoding flow in figure 3-12 is stated: first, 

when receive a packet from channel, we use MAP algorithm to decode the packet. 
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After one iteration of the MAP decoding process, we will check the extrinsic 

information generated during the decoding process to see whether we are going to 

giving-up the decoding process or not. If the give-up checking shows that we should 

give-up the decoding process, we will request the re-transmission with re-use 

methodology. If the packet pass give-up checking, it will go to see whether it satisfy 

the termination condition. If the packet satisfies the termination checking, it is 

recognized as a valid packet under termination checking condition. If the packet does 

not pass the termination checking, it will check whether it reach the maximum 

iteration or not. If yes, the decoding process will request the re-transmission with 

re-use methodology, if no, the packet will go to next iteration of MAP decoding 

process. The difference between figure 3-12 and figure 3-13 is the order between 

give-up checking and termination checking, this is the point we want to decide by the 

simulation results of false alarm. Figure 3-14 (a) is the result for give-up detection 

first and the figure 3-14 (b) is the result for termination checking first. Comparing 

figure 3-14 (a) and figure 3-14 (b), we find that if we perform give-up detection 

before termination checking as in figure 3-12 shown, we will get higher false alarm in 

the higher (more than 0.4dB) channel SNR range. Taking SNR=0.5 dB for example, 

we will have false alarm rate about 13% with Parhi’s quantization scheme for give-up 

detection first flow (Fig. 3-12) and the false alarm about 7% for termination first flow 

(Fig. 3-13). That is because if we perform give-up detection first, we will mis-judge 

the case that the packet can pass the termination checking but been given-up before, 

and this case will be obvious in higher channel SNR of the simulation. Intuitively, the 

false alarm rate will go up as the channel SNR increased, that is because there will be 

more possible to decode a valid packet out under better channel SNR, to prevent the 

false alarm rate goes up severely for better (> 0.4dB) SNR range, we should use 

termination checking before give-up detection according to the simulation results, 
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therefore, we will take the decoding flow in figure 3-13 as our proposed decoding 

scheme. 
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(a) The early give-up before early termination in decoding flow 

(refer to fig. 3-12) 
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(b) The early termination before early give-up in decoding flow 

(refer to fig. 3-13) 

[Figure 3-14] The false alarm rate of different decoding flow 
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3.5 The Simulation Results of Proposed Scheme 

 

Combining the factors we consider in above sections (including give-up 

detection, re-use methodology, quantization scheme, different decoding flow and the 

false alarm) we will give the simulation results including these factors to discuss the 

benefit of our proposed flow. 

Firstly, we will compare the traditional flow and proposed flow then give the 

simulation results to explain the benefits of our scheme under the terrible channel 

conditions. As the figure 3-15 shows, the traditional flow for turbo coding system is 

illustrated. For traditional way, when received a packet, we decode the receive pattern 

by MAP algorithm. After per iteration of MAP decoding, we will check the 

opportunity for termination using some termination techniques mentioned in 2.3.4. If 

it is not the right time for termination, the process will check whether it reach the 

maximum iteration. If yes, it means that the decoding process reach max iteration but 

decoded output still not a valid pattern (because it failed to termination checking), so 

we will demand the transmitter to re-send the packet to complete data transmission. If 

no, we will continue the MAP decoding algorithm for next iteration. 
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[Figure 3-15] Traditional turbo decoding flow with termination scheme 

 

The above flow is the same for turbo decoding with termination skill proposed in 

[12]. Now we will introduce our proposed flow for turbo decoding with proposed 

early give-up and re-use methodology. The flow is illustrated in figure 3-13. The 

differences between traditional flow and proposed flow are the give-up detection and 

reuse state methodology. In figure 3-13, according to the simulation result of false 

alarm, we add give-up decision after termination checking in decoding flow. After the 

termination checking, we will check the extrinsic information for termination 

checking to decide whether continue decoding process or not. If we decide to give up, 

we can re-use the state by the methodology mentioned in 3.3.1. The other parts are 

same to traditional flow. 

To prove the give-up with reuse methodology really works for iteration reduction 

under bad channel condition, we made the following experiment. We set the 
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maximum iteration to be 10, and stop criteria is to receive 1000 valid packets at 

receiver for each SNR condition. The quantization scheme is the worst case for false 

alarm (Parhi+Q1+D1). Each packet contains 1024 information bits and the valid 

packet means that receiver decodes out a duplicate compared to the transceiver's 

message. By accumulating the number of decoding iterations, we can calculate the 

average decoding iterations for each valid packet. 

The simulation assumptions are stated. Because we take re-transmission into 

consideration, there will be two kinds of cases for channel SNR. One is SNR for the 

give-up stage, and the other is for re-transmission stage. We assume the 

re-transmission packet will have 1 dB SNR offset better than the packet at give-up 

stage, for both traditional flow and our proposed flow. That is, if the packet with the 

SNR=0.4 dB at the give-up stage, then the re-transmission packet will have SNR=1.4 

dB. The goal of this simulation is to prove that when the packet affected by noise 

seriously, stop decoding will be smarter than continue decoding process. 

Under above assumptions and the simulation results, we can conclude from 

figure 3-16 that the idea we proposed really reduces iterations for decoding under 

terrible channel conditions. Taking SNR=0.4 dB for example, the traditional flow 

needs average 5.575 decoding iterations to decode a valid packet out and our 

proposed flow needs about 4.77 decoding iterations. Therefore, we can use less 

energy (according to iteration) to decode a packet out under our simulation conditions. 

The corresponding reduction percentages are in table 3-2. 

From the throughput point of view, because the proposed scheme can use less 

decoding iterations for a valid packet under our assumptions, therefore, for given data 

to be transmitted, our flow can use less decoding iterations for the receiver compared 

to traditional flow, thus we can increase the through-put from iterations saving point 

of view. The corresponding increase in throughput compared to the traditional flow is 



 46

also reported in table 3-2. 
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[Figure 3-16] Average iterations for 1000 valid packets 

 

 SNR (dB) 

Average 

Iterations 

0.0 0.2 0.4 0.6 0.8 

Traditional flow 11.432 8.891 5.575 3.729 2.490 

Proposed flow 7.108 6.369 4.770 3.323 2.435 

Energy Saving 36.99 % 28.37 % 14.44 % 10.89 % 2.21 % 

The increase for 

throughput (compared 

to traditional flow) 

1.608      

times 

1.396 

times 

1.169 

times 

1.122 

times 

1.026 

times 

[Table 3-2] Iteration reductions and throughput increase for different channel SNR 
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Chapter 4  Hardware Implementation 

 

We have briefly described the encoder and the decoder structure for 3GPP 

system in chapter 2. The encoder part is easier than the decoder part for 3GPP, so the 

following sections will focus on the decoder for implementation. We take hardware 

architecture mentioned in [13] as the implementation blueprint to realize MAP 

algorithm and add the additional hardware for early give-up detection circuit. We will 

also estimate the overhead and the benefits for give-up from the point of area, power 

consumption and power saving. 

 

4.1 A Case Study: The Turbo Decoder for 3GPP system 

 

According to the idea we proposed in chapter 3, we take 3GPP standard as a case 

study to discuss the overhead of give-up, then compare the simulation results 

presented in chapter 3, to discuss the benefits of our idea. Therefore, the following 

sections will focus on the hardware implementation of process element, control unit 

and memory organizations. 

 

4.1.1 The Process Element Design 

 

As mentioned before in chapter 2, we have briefly described the MAP algorithm.  

So the goal of this section is to realize the process element including branch metric 

calculation, state metric calculation and soft-output calculation used in MAP 

algorithm. 
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4.1.1.1 The Branch Metrics (gamma) 

 

The Branch metrics are calculated according to the formula below: 

[ ])()(
2

1
),(),'( ,,,,,,, kpkpksksckskkpkskk xyxyLxdLxxBMss ⋅+⋅+⋅==γ , where L(dk) 

and Lc are the a-prior information and channel reliability, respectively. The channel 

reliability (Lc) can be implemented by look-up table according to real channel SNR 

case. Some papers talked about the performance degradation affected by SNR 

mismatch [25]. However, in this thesis, we don’t touch this topic and assume the 

channel SNR is estimated accurately. 

According to the structure suggested for 3GPP, we need to update every state 

metric in the same time stamp, therefore, we have to calculate every branch metrics 

out for updating the state metric on the corresponding trellis diagram. However, some 

branch metrics calculations can be simplified by mapping rules 

like )1,1()1,1(),1,1()1,1( −−=−−−−= kkkk BMBMBMBM , due to encoder structure 

and BPSK modulation. The block diagram of branch metric (gamma) calculation is in 

figure 4-1. 

 

[Figure 4-1] The Gamma calculation unit 
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4.1.1.2 The Forward/ Backward State Metrics (alpha, beta) 

 

The forward state metrics αk can be calculated recursively according to the 

formula: )),'()'((*max)],'()'(exp[ln)( 1'

'

1 sssssss kks

s

kkk γαγαα +=







+= −−∑ . 

Similar to the ACS unit used in Viterbi’s algorithm, the process element we used to 

update the state metric is ACSO (Add Compare Select and Offset), the offset is 

compensation part for max* operation and corresponding block diagram is in figure 

4-2. 

)( 41 +− jk sα

)(1 jk s−α

),( 24 jjk ss +γ

),( 2 jjk ssγ

)( 2 jk sα

 

[Figure 4-2] Block diagram of ACSO unit 

 

According to the FSM formula above, we need previous stage’s value to update 

FSM. Therefore, it needs registers to hold the state value as shown in figure 4-3. 

Besides, The LLR calculations also need FSM, so we need memory to store the value 

for the length of sliding window of the branch history. 

)(0 sα

 

[Figure 4-3] The forward processor unit with memory (FP) 
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The hardware architecture for backward state metrics (BSM) is the same as FSM, 

the difference between FSM and BSM is only the direction of branch calculation. In 

chapter 2, we have mentioned the sliding window method for MAP decoding, we will 

give explanations by space and time schedule diagram to state how each PE working 

and corresponding timing in section 4.1.4. 

 

4.1.1.3 The Soft-output Calculation (LLR) 

 

According to the property of Max* operation: 

)),(*),,(*(*)ln()ln( )ln()ln( dcMaxbaMaxMaxeeeeee
dcba eeeedcba =+=+++ ++ . 

We can realize the LLR operation (2.19) by 3-level tree structure of Max* as figure 

4-4 shown. We fully pipeline the soft output unit to deal with the data of FP and BP 

from every trellis state during every stage. 

 

 

[Figure 4-4] The soft-output calculation unit 
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4.1.2 The Interleaver and De-interleaver Design 

 

The operation of 3GPP internal interleaving is described in [15]. We just give an  

example to explain the mapping technique (PIL interleaver). The turbo code internal 

interleaver consists of bits-input to a rectangular matrix with padding, intra-row and 

inter-row permutations of the rectangular matrix, and bits-output from the rectangular 

matrix with pruning. 

 According to the size of the frame, we can find the row (R) and column (C) size 

for the rectangular matrix. For the 3GPP specification, we take the smallest size K=40 

for example.  

 First of all, we write data into RxC matrix row-by-row, the sequence as figure 

4-5 shows (if the number of data less than R*C, the reset of matrix can be padded by 

0 or 1, and the padded data will be pruned out in the final stage). 

 

 

[Figure 4-5] The row-by-row scheme for data writing 

 

 After filling out the data, the stage goes to intra-row permutation. As the name 

implied, we can understand the meaning by comparing figure 4-5 and figure 4-6. The 

data in figure 4-6 will be changed on its column index, but the row index still the 

same, therefore, this action calls the intra-row permutation (The criteria for how to 
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manage the position in a row will be complicated, and refer to 3GPP specification [15] 

for detail). 

 

 

[Figure 4-6] Data arrangement after intra-row permutation 

 

Then we need to perform inter-row permutation. Compare to figure 4-6 and 

figure 4-7, we can find the data been exchanged in the form of row-pattern, as action 

name implied (the same, refer [15] for detail). 

 

[Figure 4-7] Data arrangement after inter-row permutation 

 

Finally, after intra-row, inter-row permutation performed on the data, we read the 

matrix data column by column from left to right as figure 4-8 illustrated (during 

read-out stage, if the data is filled for padding, we will prune out it at this stage). 

Using this mechanism of mapping, the interleaver can achieve the goal for scattering 

data sequence. 
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Due to lots of arithmetic calculations and look up operations defined by the 

specification, using hardware to calculate mapping rule may be not very efficient. So 

the usual way is using software to compute the mapping rule offline, then we store the 

rule in the ROM, thereafter use look-up table method, to achieve interleaving function. 

Of course, some paper talked about how to implement hardware consistent of 3GPP 

specifications. The difference between hardware and software implementation is the 

online calculation of mapping rule. If the frame size changed (3GPP specification 

support 40-5114 bits as frame size), the mapping rule changed, of course. Hardware 

method can online calculate the corresponding rules, however, look up table method 

need to change the ROM table. However, the implementation for interleaving function 

is not the topic for the thesis, so we choose software implementation method to realize 

interleaving function. 

 

 

[Figure 4-8] The column-by-column scheme for data reading 
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4.1.3 The State Metrics Normalization 

 

We always have overflow problem for state metrics representations under given 

quantization scheme after continuous summations and multiplications. To normalize 

the state metrics before store it into memory as shown in figure 4-3 is essential for 

fixed point representations. We have mentioned how to normalize state metric and 

give the proof in 2.3.3. In summary, Parhi’s method requires small amount of 

hardware and its speed does not depend on the number of state [16]. 

 

4.1.4 Sliding Window Timing Diagram 

 

In chapter 2, we have mentioned about how to use sliding window method to 

solve MAP algorithm, in this section, we will use space and time relationship block 

diagram to explain the schedule of each PE and corresponding hardware architecture. 

As we mentioned before, we refer the hardware architecture of paper [13]. The 

schedule for FP, BP0, BP1 and WP are all in figure 4-9, and corresponding hardware 

architecture in figure 4-10. Here we explain the functions for each PE. WP stores 

input received symbols in Memory M1, and FP uses the stored received symbols to 

compute forward metrics α and then store into Memory M2, while each BP computes 

its own backward metrics β. As we mentioned before, sliding window method for 

MAP algorithm needs learning period for backward state evaluation, therefore, we use 

two BP (BP0 and BP1) to increase the production of backward state calculations as in 

figure 4-9 shown. 

Once we have got α, β value from each PE for the window length, the soft output 

calculator is employed to decode the LLR out. The shaded part in figure 4-9 is the 

corresponding decoded timing for LLR value of the window length. We just 
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illustrated a part of overall frames but the schedules remained are the same for each 

process element. 

 

α

α

α

 

[Figure 4-9] Space and time relationship for α-first memory management      

(refer to [13]) 

 

α β

 

[Figure 4-10] Block diagram for SW log-MAP decoder (refer to [13]) 
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4.1.5 The Memory Arrangement 

 

Because we have more than one processor in hardware architecture, the dual-port 

memory will be needed for different processors accessing concurrently. Therefore, we 

use two kinds of dual-port SRAM for different purpose, memory M1 for store the 

received symbol from channel and memory M2 for store the forward state metrics 

from FP. We use 6 bits for received symbols and 11 bits for state metric 

representations, therefore, the size of memory M1, memory M2 are:  

M1 = (number of banks) * (2*[bits for received symbol]) * (sliding window size) =  

4*(2*6)*32 = 1536 bits 

M2 = (number of banks) * (sliding window size) * (number of states) * (bits for state 

representations) = 2*32*8*11 = 5632 bits 

Total memory size needed in MAP decoding is 1536+5634=7 K bits. 

 

4.1.5.1 The PE Control Mechanism 

 

Processors like FP, BP0, BP1 all need to use data stored in memory M1 but the 

difference is that FP need to store the results into memory M2 and BP0, BP1 don’t. 

Therefore, all processors’ working time for the same trellis stage might not be the 

same. Therefore, for simplicity and synchronism, we start every PE at the beginning 

of trellis and wait until all PE’s work been finished in this stage. For this purpose, the 

PE controller will disable the enable signal for the PE which have sent ‘done’ signal 

to controller. When controller received all working PE’s done signals in this stage, 

that means we can go to next stage, then the PE controller gives the enable signal to 

all PE for next stage’s working preventing wrong access timing. The ideas are shown 

in figure 4-11. 
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[Figure 4-11] The PE controller 

 

4.1.6 The Early Give-up Detection Circuit 

 

In this section, we will present the hardware structure for Give-up detection 

circuit. By observation of simulation, when the summation of absolute value of 

extrinsic information not bigger than the summation of last iterations, that is the time 

for give-up. Therefore, the input of the give-up detection circuit will be the Le and 

frame size as figure 4-12 shows. 

By using the extrinsic information (Le) calculated by MAP and controlled by 

frame size, we will compare the summation results for last and current iteration. If the 

result of current iteration is bigger than the last iteration, we will store the result in 

Max register for next iteration’s comparison. However, if the result is smaller than last 

iteration, we will assert give-up signal. The shaded parts in figure 4-12 are the 

registers and the controller is a counter loaded by frame size. 
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[Figure 4-12] Block diagram of give-up detection circuit 

 

4.2 Experiment Reports for Hardware Implementation 

 

According to the hardware architecture mentioned above, we wrote HDL model 

[28] for each process elements and controller used in MAP decoding algorithm and 

then estimate the give-up detection circuit’s overhead from area and power point of 

view to judge the benefit from give-up. Therefore, we report the experiment results 

and corresponding in the following sections. 

 

4.2.1 The Area Estimation by Design Analyzer 

 

The data reported in table 4-1 are using TSMC 0.18um cell library, we use clock 

frequency at 50MHz to synthesize every process element and controller by Design 

Analyzer and generate memory M1 and M2 by Artisan memory compiler. The area 

reports are as follows: 

 

 



 59

Component Gate Count (Size) Area 

FP 4.7 K gate count 46935 (um
2
) 

BP0 4.8 K gate count 48349 (um
2
) 

BP1 4.8 K gate count 48349 (um
2
) 

Soft-output 5.2 K gate count 52394 (um
2
) 

CRC16 0.3 K gate count 2720 (um
2
) 

PE Controller 0.8 K gate count 8345 (um
2
) 

Memory M1 1536 bits 0.236 (mm
2
) by Artisan 

Memory M2 5632 bits 0.84 (mm
2
) by Artisan 

Give-up Detection Unit 1.2 K gate count 12467 (um
2
) 

[Table 4-1] Area report for each component 

 

[Figure 4-13] Artisan’s memory compiler 
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We can estimate the area overhead from table 4-1, as it shows, the give-up unit 

takes 0.012467 mm
2
 and overall area for MAP decoding estimated by Design 

Analyzer and Artisan’s memory compiler is 1.294 mm
2
, therefore, give-up detection 

circuit occupies 0.963% for area overhead. 

 

4.2.2 The Power Estimation by PrimePower 

 

The frame size is 1024 bits and the simulation time is about one MAP decoding 

period by sliding window method, the power for MAP decoding at operation 

frequency 50 MHz is about 46.96 mW, and the operation for give-up detection unit in 

the same period is about 0.262 mW, therefore the overhead for give-up calculation in 

power dissipations is about 0.56%. 

 

4.3 Chip Layout 

 

We use SoC Encounter as APR (auto place and route) tool and layout is in figure 

4-14. The hard macro in the design is memory unit M1 and M2, the core size for MAP 

is 1.522 x 1.512 mm
2
 = 2.301 mm

2
 and the die size is 2.012 x 2.002 mm

2
 = 4.028 

mm
2
 in TSMC 0.18 um process. 
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[Figure 4-14] MAP chip layout by SoC Encounter 
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Chapter 5  Comparison and Conclusion 

 

In this chapter, we summarize the overhead of implementation for give-up 

detection unit in chapter 4 and the energy savings in chapter 3 to judge the 

contributions of give-up, and then give the conclusion in the end. 

 

5.1 Overhead and Iteration Savings of Give-up Detection Unit 

 

From the hardware architecture mentioned in chapter 4, the experiment results 

for area overhead is about 0.963%, for the power overhead is about 0.56%. The 

iteration saving and the corresponding increase of throughput are illustrated in table 

5-1. Therefore, combining the overhead and iteration saving into considerations, 

give-up really helps energy saving under terrible channel conditions. 

 SNR (dB) 

Average 

Iterations 

0.0 0.2 0.4 0.6 0.8 

Traditional way 11.432 8.891 5.575 3.729 2.490 

Proposed flow 7.108 6.369 4.770 3.323 2.435 

Energy Saving 36.99 % 28.37 % 14.44 % 10.89 % 2.21 % 

The increase for 

throughput 

(compared to 

traditional flow) 

1.608      

times 

1.396 

times 

1.169 

times 

1.122 

times 

1.026 

times 

[Table 5-1] Energy saving percentage under different channel SNR 
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5.2 Conclusions 

 

It is possible for turbo decoder to have decoding error case under terrible channel 

conditions. How to estimate decoding error with HARQ scheme have been presented 

in Wicker’s paper [20]. In his work, a neural network training method is proposed to 

estimate the patterns of decoding errors for re-transmission. Similar to the idea and 

simulation conditions, we find out a possible pattern of decoding error through 

observations and propose early give-up technique to stop the decoding process in 

advance. Then a request of re-transmission is sent. A reuse method is also proposed to 

utilize the prior MAP information of the given-up process as the initial condition for 

next transmission, based on the correlation between the same packets transmitted at 

different times. 

From power and performance point of view, we can turn on the give-up detection 

unit by clock gating techniques under bad channel condition, therefore, according to 

the simulation results summarized above, the overall overhead in hardware area and 

power consumption is very little in comparison to the significant reduction of average 

decoding iterations. By applying the simple detection circuit of the early give-up 

technique, a shorter overall latency can be achieved because of early re-transmission. 

The proposed algorithm and hardware can help achieving a more energy-efficient 

turbo decoder design. 
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Chapter 6  Future Works 

 

 For the chapters we have mentioned before, we present a new idea (give-up) 

addition to traditional iterative decoding process. The next works we can do are put 

the new idea into different iterative decoding algorithm and different transmission 

network model, then discuss the effects for them. Therefore, we present two topics as 

the direction for the future work. 

 

1. Due to the powerful decoding ability and relative simple hardware 

implementations, Low Density Parity Check Code (LDPC) gets more and 

more concerns in recent years. According to iterative process and learning 

style, LDPC may have the same decoding properties for give-up 

phenomenon! So the next work may emphasize on LDPC and discuss the 

conditions for give-up decoding process and other power saving techniques 

for LDPC. 

 

2. If we want to talk about the quality of service (QoS) with the turbo code, we 

may enlarge the scope to the transmission network model level. Hybrid 

type-I and type-II transmission network model are illustrated in figure 6-1. 

RQ means request and ACK means acknowledgement. Figure 6-1 models a 

noisy feedback channel with Hybrid Automatic Repeat Request (HARQ) like 

proposed in [20] [21]. We know early give-up can get benefits from early 

re-transmission for reducing overall decoding latency. Thus, the next step we 

may formula the relation between the give-up and the network properties like 

decoding latency and through-put with mathematic model proposed in [21] or 
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explain it by simulation results. 

 

 

(a) Type-I HARQ model 

 

(b) Type-II HARQ model 

 

[Figure 6-1] State diagram for Type-I and Type-II HARQ Protocol based on two 

codes (refer to [21]) 
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