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ABSTRACT

As the traffic is becoming more and more serious in most developed countries, a lot of
researches about the intelligent transportation system (ITS) have been paid attention in recent
years. Above all, one of the most promoting topics for the ITS applications is concerning the
smart vehicles. The fundamental functien of the smart vehicle is the generic obstacle and lane
detection system, which can warn the driver or provide the road information for the unmanned
vehicle.

In this thesis the techniques of image processing and computer vision are applied to the
detection system. Two monochromatic CCD cameras are mounted top and bottom on the
vehicle, and the road image captured by the top camera is segmented by thresholding the
histogram. After that, the quasi-horizontal boundaries formed by the interconnection of two
different segments are detected in order, and each detected boundary could belong to either
the ground or the obstacle. The criterion to distinguish between them is to predict the
corresponding ground and obstacle boundaries in the bottom image by the stereo vision, and
to compute the normalized correlation coefficients of the detected boundary in the top image
with respect to the ground and obstacle boundaries in the bottom image respectively. The
detected boundary in the top image belongs to the obstacle if the normalized correlation
coefficient associated with the obstacle is larger than that associated with the ground. Thus the

road image can be divided into the ground and obstacle parts.
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On the other hand, a single monochromatic CCD camera is used in the lane detection
system to detect the lane markings. Based on the geometric lane model, the algorithm of lane
detection proposed in this thesis can generate a robust result. Besides, the detection region of
interest can be estimated to narrow the searching area and to reduce the computational load.
Eventually, the 3-D lane geometry is reconstructed to update the road inclination and lane
width. Therefore the proposed algorithm is available in the case of non-flat roads.

The lane detection system proposed in this thesis has been successfully verified on the
expressway and freeway. On the PC platform of 2.6-GHz CPU and 512-MB RAM, the
average time of lane detection is less than 1 ms per frame. In addition, the lane detection
system can be treated as the vision system of the automatic vehicle by integrating the
controller of the steering wheel. This work has been implemented on the experimental car,
TAIWAN iTS-1, running on the expressway and freeway with velocities of 90 km/hr and 110
km/hr respectively. TAIWAN iTS-1 is the first smart car in Taiwan capable of hand-free
driving on the real road, which verifies the practicability and robustness of the proposed lane

detection system.
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CHAPTER 1 INTRODUCTION

Chapter 1 Introduction

1.1 Motivation

As the conveyances are getting growth with years, the traffic is becoming more and more
serious in most developed countries. A lot of researches about the intelligent transportation
systems (ITS), including the smart vehicles, the driving safety, and the traffic mobility, have
been proposed in recent years. In fact, many problems are still expected to be overcome.
Above all, one of the most interesting and important issues for the ITS applications is
concerning the smart vehicles.

It is necessary to acquire the information about the on-road obstacles and the lane
tendency while driving on the way. Thanks:to the driver’s careless attitude, his/her moving
vehicle may hit the obstacles on the road; or may deviate from the correct lane orientation,
which induces the traffic accidents, Hence the on=vehicle obstacle and lane detection system
plays a fundamental and essential role in moving vehicles. Such a system can either be the
driver assistance function to warn the drivers of occurrences of which they may not be aware,
or be the vision system of unmanned vehicles to supply the car controller with the road
information for the goal of the automatic driving.

In general, the vision-based obstacle and lane detection system is a good choice for ITS
applications. Cameras are mounted on the vehicle, and then the road images are captured and
processed. The systems based on the vision have advantages of the high spatial resolution and
the fast image scansion. Many approaches using the image processing have been developed

[1], and different techniques will be reviewed in the next section.
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1.2 Background

1.2.1 Related work of obstacle detection

The definition of obstacles induces the development of detection algorithms. Since the
vehicles are most of obstacles on the road, some approaches to detect obstacles are limited to
search for particular features and then to match them with specific patterns, such as the
symmetry, textures, shapes, an approximate contour, and so on. In this case the processing can
be focused on the analysis of a single still image. Broggi et al. perform a function of vehicle
detection to locate and track the vehicle by exploiting the symmetry of the rear parts of a
typical car and a bounding box satisfying specific aspect ratio constraints [2]. However, such
a pattern-based approach may fail when characteristics of obstacles do not match the
pre-defined model.

As we know, vehicles are-not the only _obstacles on the road. A generic obstacle is
defined as an object rising out significantly from the road surface. Following this definition,
the pattern-based approach does not work owing to the lack of a prior knowledge about
generic obstacles on the road. More complex techniques must be imported to handle such a
problem, and two and more images may need to be taken into account.

The optical flow-based approach utilizes a sequence of two or more images to obtain
reliable and dense optical flows. In the assumption of the small difference between two
successive images due to the short time interval, the two-dimensional motion between two
images approximates the single direction. And therefore, the optical flow field can be
computed and the ego-motion can be estimated. Giachetti et al. use a correlation technique to
compute the flow field, and the obstacles moving with different speeds can be segmented by
analyzing the velocity fields [3]. However, the optical flow-based approach may fail deriving

from the lack of textures on the road, or from large displacements between two consecutive
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frames due to the higher speed or vibrations of the vehicle.

Another technique similar to the optical flow-based approach is known as the
motion-based method by estimating the motion of the ground plane and then detecting the
obstacles whose motions differ from that of the ground [4-7]. In this method, it is necessary to
make a tracking about the motion among images for large displacements, and as a
consequence the assumption of rectilinear motions in optical flow-based methods is invalid.
Since the scenes vary very much among images, it is difficult to identify the pixel
correspondence. If the size of searching area is too small, the correct matching for the
corresponding pixels may be missed. On the other hand, if the size is too large, too many
possibilities may exist. Notice that both optical flow-based and motion-based approaches need
expensive computational costs.

The stereo vision-based technique is also used to detect the generic obstacles. The
GOLD system transforms both left and right stereo images into top views in order to remove
the perspective effect. The ideal square-obstacle is-transformed into two triangles in the
difference image of both remapped views. Fhe polar histogram is constructed from the
difference image and then the two peaks in the polar histogram are joined to identify the
obstacle [2, 8].

Labayrade et al. also use both left and right stereo images to construct v-disparity image
to detect potential obstacles whose disparities differ from that on the road surface. The angles
between the cameras and the road are then estimated [9-10]. In conclusion the stereco

vision-based method is a better framework than others, and is adopted in this thesis.
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1.2.2 Related work of lane detection

It is the objective for lane detection to detect the relative position between the vehicle
and the road, and to determine the lane information, such as the offset, the orientation, the
curvature, and so forth. Since the structured roads are met in the practical applications, most
researches focus on the analysis of marking roads where lane markings are painted on the
road surface. Several features of the lane markings, including the constant lane width, the
higher brightness on markings, the structured lane shape, etc.

The GOLD system removes the perspective effect by mapping the road image into the
top view, and determines the lane markings by relying on the feature of the constant lane
width, which may fail when the assumption of a flat road is not valid [8]. Based on the GOLD
system, Jiang et al. model the lane,as two straight-lines to estimate the inclined angle on the
condition of non-flat roads [11].

However, the road shape usuallyiisnot straight in real cases. Polynomials or splines may
be better lane fittings than the straight line. Such a geometric model-based lane detection
technique is more robust against the interferences such as shadows, textures, or other vehicles.
Based on the lane geometry, the coefficients of lane model can be found out by several
methods. LOIS, LANA, and RVP-I systems decide the coefficients with the maximum
likelihood by completely searching the parameter spaces where all possibilities produced in
the training phase are built [12-14].

Instead of searching throughout the databases, some road features are detected in the
overall image in order to determine the coefficients. Yue Wang et al. [15] and Goldbeck et al.
[16] use the edge-oriented methods to measure the matching degree between the model and
the edge map in order to determine the parameters, respectively. Gonzalez et al. classify the
objects in the image as the road surface, markings, or obstacles by a histogram-based

segmentation method and then pixels belonging to the markings are taken into the fitting of
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the lane model [17].

Different from the lane geometry, the statistical model can be used to specify the
detection region of interest (ROI) in order to narrow the searching area [7, 18]. On the other
hand, the ROI can also be determined according to the features of markings used in the
TFALDA [19]. However, the statistical parameters and the weights of marking features have
to be trained in advance.

Since the model-based approaches have more robust results and the use of the detection
ROI can reduce the computational cost, both ideas are adopted in this thesis. The details will

be proposed later.

1.3 Organization

This thesis is organized as follows. A'review of-algorithms about the obstacle and lane
detections is given in this chapter. The preliminary: knowledge of the computer vision is
introduced in Chapter 2. In Chapter 3, the algorithm of the generic obstacle detection based on
two top and bottom stereo cameras is developed. The approach to detect the lane is proposed
in Chapter 4. And afterward the experimental results of both obstacle and lane detections are

demonstrated in Chapter 5. Finally, a conclusion is presented in Chapter 6.
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Chapter 2 Stereo Vision System

In this chapter the preliminary knowledge of the computer vision will be introduced. In
the beginning, the relationship of image, camera, and world coordinate systems is discussed.
And then the surface of the non-flat road is modeled. The architecture of two top and bottom

stereo cameras and the calibration principle are presented finally.

2.1 Geometric Camera Model

2.1.1 Perspective projection

The scene points (X Y Z(,) in the camera coordinate system can be captured by a

camera and be projected onto the_image pixels (u, v) in the image coordinate system, as
illustrated in Fig. 2.1. This phenomenon can.be described as the perspective projection, and
the camera can be modeled quite well by the so-called ideal pinhole camera, which induces

the projection equations as follows [20]:

X
u=e —= 2-1
Y (2-1)
Z
and y=e —< 2-2
Y (2-2)

where (u, v) and (X Y.Z ) are the image and camera coordinates, respectively. Note that

c?7c? ¢

e, and e, are the intrinsic parameters of the camera, and are represented by:

e :i and eV:i (2-3)

“du dv

where du and dv are the physical width and height, respectively, of an image pixel. And f
is the focal length of the camera.

(2-1) and (2-2) are the non-linear equations transforming the scene points of R® into the
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image pixels of R* and therefore, the homogeneous coordinate system is suitable for a

general simple treatment of the perspective projection.

N

—— - e =
/
\
\
\
o

\
/

Fig. 2.1 The relationship of the camera and image coordinate systems.

Let P, 1is the 4x4 perspective transform matrix, expressed as follows:
e, 0 0 O
0O 1 0 O
Pproi =10 o e, 0 (2‘4)
0 0 0 1
transforming C,=[X, Y. Z 1] into T,=[x, y, z 1],ie
1,=P,.C, (2-5)

where C, and [/, are the homogeneous camera and image coordinates, respectively.

Notice that the prime denotes the transpose.
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The non-homogeneous image coordinates (u, v) can then be obtained by

u=21 (2-6)
Vi

and y=10, 2-7)
Y,

It is obvious that there exists the invertible matrix P, satisfying C,= P;,.l,,jf ,» and

however, there is no sufficient information from the image coordinates (u, v) of R? to get the

camera coordinates (X_,Y,,Z.) of R’. The solutions about this issue will be presented later.

c?ced

2.1.2 Point relationship of camera and world coordinates

In the following, it is necessary to perform positioning in three coordinate systems, /,,

C,,and W,,shown in Fig. 2.1 and Fig;2.2. The relationship of 7, and C,, homogeneous
image and camera coordinates,“tespectively, have been explained in Section 2.1.1. In this

section the point relationship of Cj 'and W , Wwillbe discussed, and the transformation from

W, to I, will bebriefed in Section 2.1.3.

r

Fig. 2.2 The relationship of the camera and world coordinate systems.
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The 4x1 vector W, :[X, Y Z, 1] is the homogeneous world coordinates,

associated with C, by

C,=RW,-T (2-8)
where R, is the 4x4 rotation matrix between the camera and the road, and 7 is the 4x1
translation vector from O; to O, the origins of world and camera coordinate systems,
respectively.

Often T is the 1-D translation from O, to O., expressed by:
7=[o 0o H of 2-9)

and H is the distance between O, and O..
R

In general, R, is however, composed ,of three 4x4 rotation matrices, R and

o

ﬂ’
L ie.
R, =R.R;R, (2-10)

where ¢, S, and yare the pitch, roll, and yaw angles counterclockwise looking at the origin O;

from +X,, +Y,, and +Z, axes, respectively, and

10 0 0
|0 cosa -—sina O
R, = 0 sina cosa O (2-11)
10 0 0 1
[ cospp 0 sinf 0]
_ 0 1 0 0
R, = —sinff 0 cosff O (2-12)
0 0 0 1
cosy —siny 0 0
R — siny cosy 0 O 2.13
7 0 0 1 0 ( )
0 0 0 1

Usually the yaw angle, 7, can be taken no account without relating to the lane orientation

on the road and can be withdrawn. Hence (2-10) can be replaced by:
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. cosﬁ 0 ‘ sin 0
R =RRy=| “olaling sina cost-oonf 0 C-14
0 0 0 1
and its inverse matrix is
cosff sina-sinf —cos.a‘sinﬂ 0
R'=R,R, = sir(l)ﬂ —sirfgzs-%osﬂ cossc;r-lcoi)sﬂ 8 (2-15)
0 0 0 1
(2-8) can be rewritten as:
W, =R;'(C,+T) (2-16)
Substituting each term into (2-16) yields
X, =cosf3-X, +sina-sinB-Y. —cosa-sinB-(Z. + H), (2-17)
Y = cos¢a Y +sina- (z,+H), (2-18)
and Z =sinf-X, =sinaicos f:¥ +cosa-cosB-(Z,+H), (2-19)

which transform a point from (X, ¥.,Z, ) in the camera coordinates to (X,,¥.,Z, ) in the

cr e roLys

world coordinates.

10
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2.1.3 Point relationship of image and world coordinates

By the combination of (2-5) and (2-8), it yields

Ih:PprQiCh

=P, (R, ~T) (2-20)
e, 0.0 0 cosfB-X, +sinf-Z,

10 1 0 0 sina-sinf3-X, +cosa-Y, —sina-cosf3-Z,

10 0 e Of-cosa-sinf-X,+sina-Y, +cosa-cosfB-Z, —H
0 0 0 1 1

The transformation from the point (X,,Y,,Z,) in the world coordinates to the pixel (u, v) in

the image coordinates can be described by

X, cos - X, +sinf-Z,

u:;zelt sina-sin B+ X, +cosa-Y, —sina-cos B-Z, (2-21)
_z;  —cosa-sinf3-X +sina-Y +cosa-cosf-Z —H
and v—yi—ev sin ¢ -sin f3X ¥ ¢ose - Y. —sina-cos f-Z, (2-22)
If the roll angle, f3, of the camera;-approximates to. zero, then
‘e 2 (2-23)

e -
“cosa Y, —sina-Z,

sine.-Y +cosa:Z, —H
and v=e cosa-Y, =sina-Z, ' (2-24)

If «=0and =0, i.e. no rotation occurs between both coordinate systems, then (2-21) and

(2-22) reduce to

u=e L (2-25)

and v=e (2-26)

11
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2.2 Modeling the Road Surface

2.2.1 Consideration for the angle of inclination on the non-flat road

Usually the surface on the real road is not flat, and it may be modeled as a succession
composed of piecewise planes. For the simplification and the practicality, the road surface in
this thesis is modeled as the plane with the inclined angle 6, formed by the road ground and

the plane where the vehicle mounted the camera is standing, see Fig. 2.3.

TAIWAN /TS-1 ) /__/
@) Q) )0

Fig. 2.3 The inclined angle @ on the'non-flat road surface.

The (road) ground equation is stated as follows:

Z =tan@-Y =m,-Y

)

(2-27)
where m, =tan@ is the road inclination. Assume that both « and £ approximate to zero, and

combine (2-25), (2-26), and (2-27) to produce

x -4 e (2-28)
e, my,—v e,
Y=o, —1 (2:29)
e my—v
7 —e Mot (2-30)
e my,—v

If the road inclination m, and the ground coordinates (u, v) in the image are given, the

physical ground coordinates (X Y Z,) can be estimated by (2-28), (2-29), and (2-30).

ro Lo

12
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Notice that the intrinsic difference of the discussions between Section 2.1.3 and Section
2.2.1. Section 2.1.3 has proposed that a point in the world coordinate system can be projected
onto the image plane, which is affected by the camera angles. It is never said that Z =0
means the road surface. Ideally, Z =0 may happen on the flat road. If the camera angles, i.e.
a and f, are thought as what are included by the inclinations of the camera and the road, it
can be true that Z =0 for certain  and £ in every local zone is exactly the road plane, and
the angles for Z =0 may be different zone by zone.

On the contrary, the inclined angle @ discussed in this section is a global consideration
for the model of the non-flat road. It can be exactly said that (2-27) is representative of the
road ground. Similarly, if the inclined angle @1is treated as what is included by the inclinations
of the camera and the road, then the pitch angle « can never be considered. Furthermore, if S

is small enough to be ignored, as assumed earliety then three axes in the camera coordinates

are coincided with those in the world coordinates.

2.2.2 Width mapping of image and 'world coordinates

In this section we focus on the mapping of the width on the road ground from the world

coordinates to the image coordinates. From (2-28), it is easy to get

AY —Au—H & (2-31)
e, m,—v e

v

and Au=AX, G My Vv &y (2-32)
H e

If the road inclination m, and AX,, such as the lane width, are given, the pixel distance,

say Au, of the abscissa in the image can be determined by (2-32).

13
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2.2.3 Effects on distance accuracy associated with the inclined angle of the

road and the camera height

The distance of objects in front of the camera is a desire for the application of smart
vehicles. As indicated in (2-29), the distance, Y., is associated with the camera height H and
the inclined angle 6. However, H or € may change due to the oscillation in motion or the
non-flat road surface, which results in an inaccurate measure of distance. The effects on the

distance by the camera height H and by the inclined angle 8 will be discussed, respectively,

and an ideal case is assumed that /= 135 cm and 8= 0°.

» A: thevariation in the camera height H

In this case @ is fixed and equals to zero.-However, the change of H — H + AH results
in the change of Y. —» Y +AY .From (2-29), a'simple analysis can be to obtain the factor of

variation (AY,/Y,),, as follows:

(4] - EED
Y; AH H

It is obvious that (AY,/Y, )AH is only related to AH and is not affected by the
distance Y, . The change, AH , of the camera height due to the vibration in motion can be

assumed to bound in +20 cm. Table 2-1 shows some cases of different AH . For example, the

maximum error of the distance on the condition of ¥ =50 mand AH =20cmis 7.4 m.

Table 2-1 The effect on the distance by the variation in the camera height H.

AH (cm) |  +5 +10 +15 +20

Y

r

[AY’j +0.037 | £0.074 | £0.111 | +£0.148
AH

14
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> B: thevariation in the inclined angle 6

In this case H is fixed and equals to 135 cm. The error AY derived from the change of

0 — 6+ Af can also be computed by (2-29).

AY, —e— v e H -y,

€, Mo,ng —V ev'mame_ev'(ma_H/Yr)

_ — My pg T 1My 'Yr: — My Yr (.‘.6:00)

My.ng =My +H/Y, my,+H/Y,
1

=— Y 2-34
TR (2-34)

Myg Y,

Furthermore, the factor of variation in 6 is indicated by

[AY,} _ H1 2.35)
Y, AG -1

f
my,-Y

r

It is clear that (AYr /Y, ) o 15 associated:with not only A6 but also the distance Y,. An

observation reveals that the farther thé distance is, thé larger the absolute value of (AY,/Y,) 0

is. Some cases of different A& are listed in-Table 2-2. It is obvious that small changes in &still

affect the distance very much.

Table 2-2 The effect on the distance by the variation in the inclined angle 6.

(AY/Y)5g [0 @ 2 5 e P P
Y. m)
10 0.148 0349 0635  -0.114  -0205  -0.280
20 0349 1072 3472 -0205 -0341  -0.437
30 0.634 3465  -7.075 -0280 -0.437  -0.538
40 1.071  -29.827 -2.809  -0.341  -0.509  -0.608
50 1.829 4409  -2.063  -0392  -0.564  -0.659

According to the above discussions, a conclusion is given that AH can usually be
ignored because the variation in @ has the dominant effect on the distance. Such a concept is

used throughout this thesis.

15
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2.3 Stereo Cameras

2.3.1 Relationship of main and sub stereo cameras

This thesis will propose the framework of both top and bottom stereo cameras, namely
main and sub cameras, respectively, as illustrated in Fig. 2.4. The top camera is the main
image sensor used for the obstacle and lane detection. The lower sub camera is the auxiliary

utilized only to detect the obstacle.

Z, 2
A
A /f
- .= / Main Camera
- ..
Hm ) // ...................
/ ............................
/ .......................
g | / AYCM
......................... / o
oo
3 I
[
/ ................
H; /T
/ .................
/ ............ A
o, / YCS
.............. V /
.............. / : Yr

Fig. 2.4 The relationship of main and sub stereo cameras.

16
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The relationship of homogeneous image, camera, and world coordinate systems, namely

I C,,,and W,  respectively, of the main image sensor is the same as what is described

hm > hm > hm >

in (2-5) and (2-8), that is,

I,=P C, (2-36)

hm™— ' proj

and C,=RW, -T, (2-37)

where T, = [0 0 H, O] is the 4x1 translation vector from O; to O.m, the origin of the

main camera coordinate system, and H,, is the distance between O, and Ocp,.
The relationship of homogeneous main and sub coordinate systems is the combination of

one translation and one rotation, which is expressed as follows:

Co=Re|C,)+T, —T | (2-38)

/

Y., Z, l] 18 the 4x1 homogeneous sub camera coordinates, R, is the

c

where C, = [X

hs— cs

/

4x4 homogeneous rotation matrix betweenrmaifi and sub cameras, and T, = [0 0 H, 0]

is the 4x1 translation vector from O; to' O, the origin of the sub camera coordinate system.
Notice that

AH=H,-Hg (2-39)
1s the distance between O, and Og,.

Applying (2-36) through (2-38), the following equations are easily obtained

A}zs: RC[RrWh _fs] (2_40)
ihs: Pprojéhs: Pproj R c [R rVﬁh - 7_:; ] (2-4 1 )
and Rl 1Pyl =T, =T, (2-42)

17
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2.3.2 Main camera coordinates from pixel correspondence of stereo images

Remember that R, is the 4x4 homogeneous rotation matrix between main and sub

camera, as introduced in Section 2.3.1. Due to the pitch , roll, and yaw angles between main

and sub cameras, R_ is similar to (2-10). For the simplification and the convenience, R_ 1is

c

denoted by:
o Ta T O
v, r, r, O
Rc _|ho 12 (2-43)
Ty Ty Ty 0
0 0 0 1
and we know R:'=R’.Thus (2-38) can be expanded as:
cs Xcm rOO .Xcm +r01 .)Icm +r02 .(Zcm +AH)
ch :R chm e rlO.Xcm+r11.ch+r12.(Zcm+AH) (2_44)
ch ‘ Zcm+AH r20.Xcm+r2l.chm+r22.(Zcm+AH)
1 1 1
Furthermore, the following equations-also hold true:
Vg' — ev ch — ev 7"20 ‘Xcm +7"21 'ch +}"22 (Zcm +AH) , (2_45)
chs 7‘10'X0m+r11'yvcm+}/'12.(Zcm+AH)
Z
vy =—e —9 , 2-46
=y (2-46)
and u, =e, );"’" . (2-47)

The above three equations can be represented by the following linear algebraic system

Ho'Vy—Tyn €, hy"Vy—Iy-e Ty vi—rye |X, _(’iz'vs_rzz'ev)AH
0 v, —e, Y |= 0 (2-48)
- eM uﬂ’l 0 ZC”I 0
By Cramer’s rule, the solution is given:

y :detXcm (2-49)

det 4,
m = det X, (2-50)

det 4,

. detZ,, 2-51)

det 4,

18
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e
Where det Acm = eu{vm(rn .Vs _r22 .ev)+um(r10 'VS _r20 .ev)e_v—l—(rll 'VS _r21 ‘ev)ev} (2-52)

detX, =-u, -(r12 v, =1y, -ev)-AH-eV (2-53)
dethm == (IGZ'V.S_FZZ.ev)'AH‘ev'eu (2_54)
det Zcm = _vm (FIZ 'vs —V22 .ev)'AH .eu (2-55)

In summary it can be to obtain the main camera coordinates, X, Y., and Z.,, on condition

that the pixel correspondence of stereo image coordinates, u,, v,,, and vy, is given.

2.3.3 Pixel correspondence of stereo images

Multiplying both numerator and denominator of (2-45) by e,/Y, together, another

form is indicated as:

Z rZO.Xcm—l—er'ch+r22'(Zcm+AH)

’ ch vrlO.Xcm+r11'chm+r12.(Zcm+AH)
p W r-m Z,, AH

- R N +e,—)
m_ Cu ch ch (2-56)
e, AH
.7+rll.ev+rl2.(ev +ev7)
m eu cm ch

, AH
Iy U ;+7’21'ev+rzz'("m+ev )

cm

m
u cm

Y e, AH

r]O'umi—Frll'ev—i_rlZ.(varevY )

u cm

[

In the same way, u_ is given

N

e, AH
rOO.um;+r01'ev+r02.(vn1+ev )

Y
u,=e, “ o (2-57)
’/.lo.umiv—i_rll.ev-i_rn.(vm—i_ev )
eu cm

Define two functions of three variables as follows:

e
PreDot(m,n,0,)=0,,-m—-+o0, -e,+0,-n (2-58)
e

u

e
PostDot(m,n,0,) =0, -m—+o,,-€,+0,,n (2-59)
e

u

19



CHAPTER 2 STEREO VISION SYSTEM

. . ' e
where PreDot(m,n,0,) is the inner product of [0, 0, o,] and {m—v e, n}

Let Av,. =e }ﬂ (2-60)

1 v
ci

where the suffix ; denotes the main or sub camera.

Hence (2-57) and (2-56) can be, respectively, described by:

T PreDot(u,,,v,, ,7,) + 1y, - Av,, (2-61)
PreDot(u,,,v, 1)+ 1, -Av

m

v o—e PreDot(u,,,v,.1,)+ry, -Av, . (2-62)
PreDot(u,,,v,.1) + 1, - Av

From the similar process, u,, and v,, can be obtained as follows:
. PostDot(v,,u,,7,)
* PostDot(v,,u,,r,)
PostDot(v,,u ,r,)—Av,

v, =e, (2-64)
PostDot (v, u, 1)

(2-63)

m

where Av, = e, -Av, }/{PreDot(w, , v, 1) +7;, - Av, } (2-65)

» PartA: the condition of Z, =10

The relationship of Z, and the main camera coordinates can be found in (2-19):
Z, =sinf-X, —sina-cosB-Y, +cosa-cosB-(Z, +H,) (2-66)
Instead of (2-66), (2-67) results from the fact of Z, = 0 on the ground.
+H,) (2-67)

O=sinf-X —sina-cosﬂ-chg+cosa-cosﬂ-(Z

cmg cmg

where the suffix g indicates the ground of Z, = 0.

By algebraic manipulations, Av,, can be determined, that is,

AH AH || tan S e
Av =e =— ‘u —~+|-tanal-e +v 2-68
mg v Y Hm {[Cosa:| mg e [ ] v mg} ( )

cmg u

To summarize, it is able to determine the sub image coordinates, uy, and v, of the

ground from (2-61) and (2-62) on condition that ug, Vg, and Av, are known.

20
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» Part B: the condition of the same Y,

Given the pixel correspondence between both stereo images, i.e. P, (u,,,v,,) in the

main image associated with P (u,,v,) in the sub image, as illustrated in Fig. 2.5, if there

exists P, (u,,,v,,) with Y as same as that of P

corresponding P, (u,,,v,,) in the sub image.
Applying (2-18) to the equality of Y at P, and P_, yields
cosa-Y,, +sina-(Z,, +H,)=cosa-Y,, +sina-(Z,,+H,)

and (2-69) implies

1 e +tana-v,, 1
chmZ ev +tano - le chl
By the definition of Av, in (2-60), it yields
e, +ttana:y
Ay, ,=———— B Ay
e +ttana-v

ml

., the goal is to find out its

(2-69)

(2-70)

(2-71)

Since Av,, is known from the pixel correspondence of P, and P,, P, (u,,v,,)

can be derived from (2-61) and (2-62):by using (2-71) to get Av ,.

Main Image Sub Image
P S B e =
s PS2 (usZ, VSZ)
Pm2 (umZ, VmZ)
P (U1, Vinr) Ps1 (us1, vsr)
m mis m \ - _ ’/ S S1i S

Fig. 2.5 The corresponding pixels between main and sub images.
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» PartC: the condition of the same X,

In this case, the target is to determine P, (u,,v,,) associated with P, (u,,,v,,)

whose X, isthe same as thatof P, (u,,,v,,).

In the beginning, R, in (2-14) is re-presented by

Ry Ry Ry 0
R R R 0
R, =|," 11 12 2-72
Ry Ry Ry 0 ( )
0 0 0 1

and it is obvious that R;' = R’.And then (2-17) becomes

Xr=R00‘Xc+R10'Yc+R20'(Zc+H) (2‘73)
Applying (2-73) to the equality of X, yields
Roo 'Xcml +R10 'chl +R20 ‘Zcml = Roo 'Xcmz +Rlo 'chz +Rzo 'Zcmz (2‘74)

Let E, =Ry X+ Rmlaat Ray 2.,

Y . Xolde Z .
— Zcmi Roo ‘e, el v | R]O ‘e, + Rzo ‘e, cmi
e € chi

v cmi. U

AH
{Roo Ui '&"'Rlo e, + Ry 'sz}
Ay e

mi u

(2-75)

= AH . POStDOt(u,m s Vonis RO)
Av

mi

Substituting (2-75) into (2-74) yields
PostD R
v, = Ottty vy O)Avml (2-76)
PostDot(uml,vml,RO)

Since Av,, is given from the pixel correspondence of P, and P, P, (u,,,v,) can

be determined from (2-61) and (2-62) by using (2-76) to get Av,,.
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2.4 Calibration Principles

2.4.1 Calibration on both stereo cameras

The calibration on stereo cameras is a very important issue. The goal is to determine the
relationship between both stereo cameras, and the result influences the accuracy of 3-D
reconstruction. Once the calibration is finished, it is reasonable to suppose that the relative
position between both cameras is invariant in use.

For the application in this thesis, we wish that no rotation occurs between both cameras
to avoid the matrix calculation for the real-time consideration. However, it is difficult to
reduce to zero in whole for the pitch, roll, and yaw angles between both cameras. But it is sure
that we do our best to minimize the.angles as smallras possible.

The idea of the calibration is to transform-both images into the same coordinate domain,
and then to match the same objects in:both-images with each other. The ground on the road is
an ideal choice for the pattern matching. As mentioned in Section 2.3.3, the transformation
from the sub image coordinate system into the main image coordinate system is called
“Vision Transform.” The road image is transformed from the sub image domain into the main
image domain, and the ground in both images is coincided with each other after the
calibration.

Steps for the calibration on both stereo cameras are as follows:

(1) Set up the main camera to satisfy that its optical axis is paralleling the ground, i.e. a =0
and f=0.
(2) Set up and regulate the sub camera by using Vision Transform to match the texture on

the ground as possible, as displayed in Fig. 2.6.

(3) After setting up both cameras, estimate the angles by completely matching the ground

texture, and then the relationship between both cameras is determined.
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(a)
(b)

Fig. 2.6 Calibration on both stereo cameras. (a) The main (top) iage. (b) The sub (bottom)
image. (c) The sub image in (b) is mapped into the main image domain by Vision Transform.
(d) The difference between (a) and (c).
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2.4.2 Calibration on the main camera and the road

Due to the vibration in motion or the non-flat road surface, the pitch and roll angles, o
and f, between the main camera and the road are always different. As discussed in Section
2.2.1, there exist certain & and Sin every local zone so that Z =0 1is exactly the road plane.
Here o and g for every local zone of Z, =0 are interesting.

Arrange (2-68) in another form:

(2 ) ) @

Y cosa e

cmg u

If some data of u v ,and Y _ are given, then the unknowns, (Hm), (tan ﬂ/cos a),

mg mg cmg
and (—tanea), of (2-77) can be solved by the least-squares method. However, as proposed in

Section 2.2.3, the camera height has a smaller effect'on the distance accuracy than the angles,

and accordingly, H, can be taken as a constant and be moved to the left side of (2-77).

m

Again, (2-77) becomes

—{vmg ‘e, H, }:(tan ﬂj, {umg &}+(_ tana)-{e, } (2-78)
Y, cosa e

and two unknowns, (tan/cosar) and (~tana) can be solved according to the same way.

Finally, both & and £ can be determined by the coefficients of (2-78).
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Chapter 3 Generic Obstacle Detection

Since the preliminary knowledge of the computer vision has been proposed in Chapter 2,
the algorithm of generic obstacle detection based on both stereo cameras will be introduced in
this chapter. Two cameras are mounted top and bottom on the vehicle, and the top and bottom
images captured by them are called the main and sub images respectively. Most manipulations
are performed in the main image, and the sub image is used in the pattern matching. The

details will be presented in the following.

3.1 Overview

Fig. 3.1 shows the flowchart of generic obstacle detection. The dashed blocks mean the
successive detection mode and are not performed in the initial frame. In the beginning, the
procedure of the preprocessing is executed in order to:simplify the following detection. In the
preprocessing, the road image captured by the main camera is segmented according to the
gray levels and the so-called Minimum Ground in the main image is defined, which will be
introduced in Section 3.4.

Proceeding to the next process, the flow enters the principal detection loop. In this
detection loop, the boundaries are determined one by one, and then they are discriminated
between the ground and obstacle boundaries. The so-called obstacle boundaries are the
interconnecting boundaries between the ground and obstacles, and the others are called the
ground boundaries. The discrimination method will be presented in Section 3.6.

The similar detection process is repeated until the Row Leader arrives at its ending. After
that, all obstacle boundaries have been determined and then are updated for the detection in
the next frame. The obstacle boundaries are divided into the motion and roadside boundaries

according to their slopes. The boundaries with the sharp slopes are classified into the roadside
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ones, and the others are the motion ones. And then the roadside boundaries are fitted to only
the left and right roadside boundaries which can roughly bound the roadsides on the left and
right sides of the lane.

If the obstacles have been detected in the last frame, they will be tracked in the current
frame before the regular detection loop. However, only the motion boundaries can be tracked.
The obstacle tracking can stabilize the detection result and reduce the detection time. The

details will be proposed in Section 3.7.

START

\ 4
Preprocessing

______ pug, |

|r Tracking | |r frame < frame + 1 |

______ I______ m—————— g ————-—

Boundary Detection

A

A 4

A £
Discrimination of

Obstacle and Ground

Boundaries

End of
Row Leader?

Updating

Fig. 3.1 The flowchart of generic obstacle detection.

27



CHAPTER 3 GENERIC OBSTACLE DETECTION

3.2 Image Segmentation by Thresholding

In this section the goal is to segment the road image into several groups according to the
gray levels. Given a grayscale image, the mean and variance within the region of interest
(ROI) in the grayscale histogram #4,, /€ [O, 25 5], are respectively computed as:

Dokl

poden M (3-1)
MO MO

02:leL,H] :Mz_
Mo Mo

(3-2)

h (- u)
z 1 ( ﬂ) M, 2
MO
where [ is the gray level, L and H are, respectively, the low and high bounds of the ROI, and

M,, M,,and M, are, respectively, the zero, first, and second moments of the histogram to

the origin, represented as follows:

My= DUH, (3-3)
le[L,H]

M= D5 (3-4)
le[L,H]

M, = th'lz (3-5)
le[L,H]

The number of clusters in the ROI is not unique if ¢ > o, and there exists a threshold

/

. partitioning the region into two clusters so as to maximize the between-class variance, say

2
Op.,, Where

O-él,z = 0,0, (/"1 —H, )2 (3-6)
1

w, =M, /M, (3-7)

0, =1-0 (3-8)
Ml

1 ZVE (3-9)

_\M =M, (3-10)

? Mo _M(l)
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M, = [Z:})zl (the zero moment of histogram within class 1 to the origin)  (3-11)
le|L,l,,

and M| = Z h, -1 (the first moment of histogram within class 1 to the origin)  (3-12)
1elL.y,)

The above clustering process can be applied to each cluster iteratively until ¢” <o, or
M, / ZIE[O,ZSS]hl <P, . The reason to bound the population within the ROI in the grayscale

histogram is that the small class may be useless and be referred to the noise as detecting the
obstacle in the road image. Therefore it is a benefit for the following processing to avoid the
small cluster.

On condition of a blaze of daylight or the illimitable highway the gray levels on the
farther surface of the road are similar to those in the heavens, and hence both may be the same
class after the clustering process. As the histogram in Fig. 3.2 (b), the farther surface and the

sky are classified the same by the gray develsisay+/ . However, there exists a threshold,

namely /., , meeting that lejfhh 2 B> used to replace [~ for the separation

between the road and the sky if /, > [ . Anexample is demonstrated in Fig. 3.3.

right max *
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(a)

(b)

Fig. 3.2 The grayscale histogram of a road image with a blaze on the farther road surface. (a)
A road image with a blaze on the farther road surface. (b) The grayscale histogram of (a).
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(a)

(b)

Fig. 3.3 An example of the road image segmentation by different thresholds. (a) The
segmented image of Fig. 3.2 (a) by the threshold /__ . (b) The segmented image of Fig. 3.2 (a)

by the threshold 7,

right *
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3.3 Boundary Detection

The goal of boundary detection is to determine the significant boundaries which could be
the textures on the ground, the interconnection between the ground and obstacles, or the edges
on the obstacles. Since the road image has been segmented as described in Section 3.2, the
boundary is the connection of edge pixels between two different clusters. An example is

displayed in Fig. 3.4. The detection process will be proposed later.

3.3.1 Overview

Since the boundary is composed of edge pixels between two different clusters, the idea
of boundary detection is to determine an edge pixel at first, and then to expand it into a
boundary, as illustrated in Fig. 3.4.

In practice, a boundary is represented as the set of rows in the road image, and only one
row per boundary column has to be recorded. Therefore, the size of each boundary can be
simply regarded as the number of ‘boundary eolumns. The target here is to determine the
corresponding rows for each boundary column.

In order to detect the edge pixel for the expansion, pixels are scanned row by row for
every column. As shown in Fig. 3.4 (a), the row bound, namely the Row Leader, is to limit
what the current row can not exceed while scanning the edge, which guarantees that the edge
pixel with the lowest row among all columns is found out first. And the lowest boundary is
then produced by expanding the lowest edge pixel. Consequently, all boundaries will be
detected in order from bottom to top in the segmented image.

The flowchart of boundary detection is shown in Fig. 3.5. If an edge pixel is found out at
a certain column, the boundary is confirmed after the expansion process. A boundary is valid
if its size is large enough, and it will be partitioned into several ones according to its

disjunctive points, which will be introduced later.
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Row Leader

BNy sy s s S N RSNy NN RN eI SN NS EEgEEgEEgEE e R
[ [l [l " " " [ [l [l " " " u [ [ ] " " L u [ ] " " " [

Row Leader

L L R R Y]
u u " " " [ u " " " " u
[l " " " " [l " "

Fig. 3.4 An example of boundary detection. (a) The current row can not exceed the Row
Leader while scanning the edge. (b) The edge pixel of the lowest row is detected first. (c) The
boundary is determined by expanding the edge pixel. (d) The final extended boundary.
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If no boundary is determined for a specific Row Leader, the Row Leader moves up, and
then a new iteration is run. This process is repeated until any valid boundary is found out or

the Row Leader arrives at its ending.

START

L

A 4

Edge Detection

Edged ?

1

Boundary Expansion

4

Boundary Partition

A 4

column < column+l

A 4

column ?

A 4
column<-beginning column

Move up the
Row Leader

End of
Row Leader?

Boundary
Detected ?

El\;D

Fig. 3.5 The flowchart of boundary detection.
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3.3.2 Edge Detection

As mentioned above, an edge is mode up of two different clusters in the segmented
image. And an edge pixel is defined as the upper one of two pixels with different clusters. The
edge detection is to determine an edge row for a given column on condition of
row < Row Leader . The edge row corresponding to the given column is searched from the
row of the last iteration to the Row Leader, and this process is terminated when an edge pixel

is found out. Fig. 3.6 shows the flowchart of edge detection.

row <— last row

\ 4

) 4

row <— row + 1

row < Row Leader
(')

Discontinuous
(')

A 4

END

Fig. 3.6 The flowchart of edge detection.
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3.3.3 Boundary Expansion

Given an edge pixel, the boundary can be leftward and rightward extended according to
the same cluster. An 8-directional connecting process is used to extend the boundary. Fig. 3.7
indicates the direction numbers. Since the expanded edge pixel is the upper one whose cluster
differs from that of the lower one, its direction number can be initialized to 0. And then the
boundary is extended leftward and rightward by searching for the ways clockwise and

counterclockwise, respectively.

4
5 3
6 <« > 2
7 1
0

Fig. 3.7 The direction numbers for the 8-directional connecting process.

The expansion process stops on some conditions stated as follows:

(1) The current searching pixel comes back to the beginning entry.

(2) A U-turn is too deeper because two similar boundaries are closer very much. Fig. 3.8 (a)
displays such an example.

(3) There are too many steps of the vertical motion at a time. It could be the case of the

vertical boundary on the obstacles, which is not desired, as shown in Fig. 3.8 (b).

Finally, it is necessary to notice that only the lowest rows for every columns of the

boundary have to be recorded.
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A deeper
U-turn

Too many
: i AR
vertical steps "]
L
o

(a) A deeper U-turn (b) Too many vertical steps

Fig. 3.8 Some restrictions on the boundary expansion. (a) A deeper U-turn. (b) Too many
vertical steps.
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3.3.4 Boundary Partition

After the expansion process, it can obtain a set of connective pixels, which could be
regarded as what is composed of several quasi-straight lines. In this procedure, the extended
boundary is partitioned into several quasi-straight ones according to their interconnecting
points.

A quasi-straight boundary is smooth, and a disjunctive pixel is defined as the
interconnecting point of two adjoining boundaries, which form an angle ¢ satisfying ¢ <4, ,
as illustrated in Fig. 3.9. After partitioning a divisible boundary into several ones, some of
them are erased if their sizes are invalid, and the others are recorded as new boundaries, as

shown in the flowchart of boundary partition in Fig. 3.10.

Divisible

v

q2

Fig. 3.9 The disjunctive point, p, satisfies ¢<4g, .

A well-known formula is used to calculate the angle ¢

¢=cos™ P4 °Pb (3-13)

pq;

—_—

Pq,
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However, instead of (3-13), another form is utilized to avoid the computation of square roots :

sign(cos¢)- (cos2 ¢)= sign(ﬁ . I’le) M (3-14)

Hﬁ 2 2

—_—

P4,

where sign(x)=1 if x>0, -1 if x<0. The point p is said disjunctive on condition of

sign(cos ¢)- (cos2 ¢) >—cos’ @, .

/
/
Partition
A\ 4
Record Erase
A\ 4

A

column < column+l1

End of
column ?

Fig. 3.10 The flowchart of boundary partition.
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3.4 Preprocessing

3.4.1 Overview

Since the objects in the road image can be divided into two parts, i.e. obstacles and the
ground, the topic of obstacle detection is reduced to the issue of removing all the ground in
the road image. However, it is difficult to do so, but the problem of obstacle detection can be
simplified by removing the likely-known ground, namely the Minimum Ground, which will be
presented in Section 3.4.2.

The flowchart of the preprocessing is shown in Fig. 3.11. In the beginning, the road

image is segmented by thresholding the histogram, as described in Section 3.2. In this step, a

smaller threshold, o

> of the between-class .variance is chosen to generate much more

clusters so as to ensure no loss:of the interconnecting boundaries between the ground and

obstacles.

START

A 4

First Image Segmentation

A\ 4
Determination of

Minimum Ground

A 4
Second Image Segmentation|

Without Minimum Ground

\ 4

END

Fig. 3.11 The flowchart of the preprocessing.

40



CHAPTER 3 GENERIC OBSTACLE DETECTION

Fig. 3.12 An example of the preprocessing. (a) The original road image. (b) After the first
image segmentation.
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Fig. 3.12 An example of the preprocessing. (¢) The road image with the Minimum Ground.
(d) After the second image segmentation without the Minimum Ground.
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To proceed, the Minimum Ground is determined, and thus the location of the minimum
rows for every column is known. Since the Minimum Ground is defined, its effect on the
grayscale histogram can be removed, and thus the obstacles occupy most of the remainder.

Again, a new segmentation by thresholding the reshaped histogram is performed, and a

greater o, is chosen to create fewer clusters without classifying the obstacles too much.

An example is demonstrated in Fig. 3.12. It is obvious that much less noise on the
obstacles after the second clustering process, and it is a benefit for the following obstacle

detection.

3.4.2 Minimum Ground

In this section the approach to.determinethe Minimum Ground is proposed. At first, three
assumptions are given as follows:
(1) The ground and obstacles ort:the road are‘interconnected.
(2) The interconnection between obstacles and the ground is visible in the road image.
(3) The artifacts in the road image, such as other vehicles and textures on the ground,

contain some quasi-horizontal lines [5].

By upwardly searching the edge pixels for every column in the road image, the
first-detected pixels with a grater gradient are called the minimum rows, which could belong
to the textures on the road surface or the interconnecting boundaries between the ground and
obstacles. In consequence, there exists only one minimum row per column, and all minimum
rows in every column enclose a region of the ground, which is exactly the Minimum Ground,

see Fig. 3.12 (¢).
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In order to determine the Minimum Ground, the technique of boundary detection is used
to determine the ground boundaries. The overall image is scanned, and boundaries are
generated one by one. A new detected boundary is preserved if its gradient is greater enough,
or it is erased if not. While detecting the boundaries, the columns inside the existed
boundaries are never scanned. Finally, only one row per column is recorded, and these rows
enclose the region of the Minimum Ground.

As shown in Fig. 3.13 (a), the boundary gradient is computed by

> {% [G(column, row+1i)—G(column,row— i)]H

column € boundary | i=1

Grad (boundary) = (3-15)

N -boundary size

where G(c,r) is the gray level of the pixel at (c, r) and N is the neighbor size of the

boundary. The neighbor size N is adaptive and is determined from three steps:

(1) Divide the boundary into four parts of the same spacing by three points; see Fig. 3.13 (b).

(2) Scan upwardly the pixels row. by row in.the segmented image from these three points,
respectively, until the different clusters are-met.

(3) Choose the maximum size of three-scanning lines as the neighbor size N.

A A A
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(b) Divide the boundary into 4 parts
by 3 points. The size of the longest
scanning line at the starting point A

(a) The illustration of (3-15). is chosen as the neighbor size N.

Fig. 3.13 The boundary gradient. (a) The illustration of (3-15). (b) Divide the boundary into 4
parts by 3 points. The size of the longest scanning line at the starting point A is chosen as the
neighbor size N.

44



CHAPTER 3 GENERIC OBSTACLE DETECTION

3.5 Estimation of Pith and Roll Angles between the Main Camera

and the Ground

3.5.1 Overview

Due to the vibration in motion or the non-flat road surface, the pitch and roll angles, i.e.

a and [, between the main camera and the ground are time-variant. As mentioned in

Section 2.4.2, (2-78) can be utilized to estimate o and f if given some data of u Y

mg 2 mg >

and Y

cmg *

And Y, can be determined from (2-50) if the pixel correspondence of stereo

image coordinates, u V,g» and_a . is known. Therefore, the pixel correspondence of

mg > mg >
stereo images must be determined first for the purpose-of estimating o and f.

Given a ground boundary, {(u v )| i-e boundary pixels}, of the main image, its

mg "~ mg

corresponding ground boundary, {(uig,vlﬁg)|i € boundary pixels}, of the sub image can be

determined by searching the sub image and matching (ui V! ) with (ui v ) After that,

sg2 " sg mg? " mg

the pixel pairs of stereo images are confirmed and then o and 3 can be estimated from (2-78).
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3.5.2 Similarity measure based on normalized correlation coefficient

A pixel pair of stereo images is said the pixel correspondence if their corresponding
blocks of neighbor pixels are similar. Let the neighbor blocks in the main and sub images be,
respectively, the (2M+1)x(2N+1) image arrays, m(um +i,v, + j) and s(us +i,v, + j),
-M<i<M,-N<j<N. The goal in this section is to develop a measure of the similarity
between m(u, +i,v, +j) and s(u, +i,v, + j).

The so-called normalized correlation coefficient, defined as

i[m(um +i,v, +j)—%][s(us +1i,v, +j)—§]

NCC(u,,,v,,u,,v,) = ———ts —— (3-16)
[ Stu i« -l 3 Sty civs )it
i=—M j=—N i=—M j=—N

is an appropriate similarity measure whichyis.not too sensitive to illumination changes [21],
where 7 and 5 are the means of mfu, +4,v, + j)=and s(u, +i,v, + j), respectively. Two
neighbor  blocks m(um +i,v, j) and s(us +1,v, + j) are highly correlated if
NCC(u,,,v,,u,,v,) approximates to1,7and in this case (u,,v,) and (u,,v,) are the
corresponding pair.

(3-16) can be exploited to generate more accurate and reliable results but would lead to a

high computational load. Some steps are taken into account for the simplification. Consider

the following.

M N
= m.s, —(2M +1)2N +1)-m-s (3-17)
) 7]
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i _—
Z (mij —m
i=—M j=—N
M N M N M N
= Z Zm5—2z Zm,,”_?"‘ Z Zn—/lZ
i==M j=—N i==M j=—N i=M j=—N
= f im; —2(2M +1)2N +1)m”* +(2M +1)2N +1)m>
i=—M j=—N
M N
= > m;—(2M +1)2N + )’ (3-18)
i=—=M j=—N

Hence (3-16) is reduced to

N

NCC(u,,,v,,u,,v,)= — ’ —
2 —2 2 —2
\/Z 2. M —(2M+ )N + 1) \/Z 2. S, —@M+DEN+DS

i=—M j=—N i=—M j=—N

| Nmy.sl.j —@M+1)@2N+1)-7m -
=

(3-19)

In implementation, squaring (3-19) and takingsits sign into account yield the signed square

normalized correlation coefficient, 1.e.

SSNCC(u,,,v, ,u,,v,)=

M=
M=

2
mg;s, —(2M+1)(2N+1)-n_a-§j

M N
sign( 2 2 mys; —(2M+1)(2N+1)-ﬁu§}-(

i=—M j=—N

(3-20)

—N

M j

Mk

M N 5
Y, Y my—@M+ DN+’

i=—M j=—N

N
> s, —@Mm +1)(2N+1)§2j

M j=—N

i=

where sign(x)=1if x>0,-1if x<0.Paying attention to (3-20), it is clear that

(1) The computation of square roots is eliminated.

(2) Both mj and sijz. can be determined from a look-up table of size 256 since the gray
level ranges from 0 to 255.

(3) All terms of (3-20) can be confirmed simultaneously in only one loop of traveling
throughout the neighbor blocks.

(4) (3-20) is still scaled in the -1 to 1 range.

As a consequence, (3-20) is used for the similarity measure in practice.
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3.5.3 Logarithmic search for pattern matching

In order to determine the pixel correspondence, the neighbor block m(u,, +i,v, + j) in
the main image is superimposed on the sub image and it is translated to all possible positions
(u,,v,) within it in order to locate the maximum correlation. Due to the fact that two cameras
are mounted top and bottom, respectively, and that the angles between them are made small as
possible during the calibration process, the pattern search can be restricted to the

one-dimensional vertical direction.

The initial searching center

© #xh=42)

> @ #mh=21)

The matched pixel C
® (k) =(1,0)

¢ Do B/O ByO'm O O OO O OO

Fig. 3.14 The 1-D logarithmic search in the case of r =4 (k = 2).

However, the 1-D full search still traverses too many possibilities to save the
computational time. It is better to use the 1-D logarithmic search to reduce the possibilities
[22]. The searching location is initialized to the center of the vertical path of size 4r—1,
where r=2", kis a non-negative integer. Fig. 3.14 demonstrates the case of r =4 (k=2).
The computation of (3-20) is first performed at the center as well as the two points located at
a radius of 7 pixels. After that, the center is moved to the point of the maximum correlation

and »=r/2 (k=k-1). The process is repeated and finally the computation is performed at
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the two points at a radius of 7 = 1. The matched pixel (u,,v,) is located where its correlation
is the maximum among these three points. It is obvious that the number of computations is
4.2% —1 operations for the 1-D full search and is reduced to 2(k+1)+1 for the 1-D
logarithmic search.

As we know, the number of operations for the 1-D logarithmic search is associated with
the initial radius r. If the probable location of the matched pixel is able to be predicted, a
smaller » will be initialized so as to decrease the searching cost.

Since the corresponding pixels on the ground on the condition of Z, =0 are desired, in

the ideal case of =0 and £ =0, (2-68) becomes

AN =—;]£-vmg (3-21)

m

Hence, after substituting (3-21) into both (2-61) and (2-62), the corresponding pixels
(usg,vsg) in the sub image can be obtained. In our case that H, =172cm, H =117cm,
AH =55cm, a,=-0.7°, p. =0°,and y,=0.2°, where the subscript ¢ denotes the angles

between both stereo cameras, the predicted offset of u,, —u,, approximates a constant of -5

mg

and the 1-D v -predicting table for each v, is listed in Table 3-1. By analyzing several

images, it is concluded that the maximum absolute difference of u,, between the real and
predictive cases is about 6 pixels, and therefore the initial radius of » =4 is used in the
logarithmic search.

In conclusion, the 1-D look-up table of predicting the v, corresponding to the v, ,

and the constant offset. i.e. -5 pixels, of u,, —u, are both exploited to locate the initial

mg

center of the 1-D logarithmic search with the initial radius of » =4, which achieves the

low-cost and highly-accurate matching process.
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Table 3-1 The look-up table of predicting the

ng

forevery v, .

Ving o -1 2 3 4 5 6 -7 -8 -9 -10 -11 -12 -13 -14
Ve | 20 20 21 22 22 23 24 25 25 26 27 27 28 29 29
Vimg | -15 -16 -17 -18 -19 20 -21 -22 -23 -24 -25 -26 -27 -28 -29
Vi | 30 -31 32 32 33 34 34 35 36 36 -37 -38 -39 -39 40
Vmg | <30 31 32 33 34 35 236 -37 38 -39 -40 41 42 -43 -44
Ve | 41 41 -42 43 43 44 45 46 46 -47 48 -48 -49 50 -50
Vg | -45 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59
Ve | -S1 -52 -53 -53 -54 -55 .55 -56 -57 -57 -58 -59 -60 -60 -6
Vimg | <60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74
Ve | 62 -62 -63 64 -64 -65 -66 -67 -67 68 -69 -69 -70 -71 -7l
Vimg | 75 16 77 18 719 80 -81 -82 -83 -84 -85 -86 -87 -88 -89
Ve | 72 <73 74 74 75 76 76 <77 <78 <78 <79 80 81 -81 -82
Vmg | 90 91 92 93 94 95 -96 -97 -98 -99 -100 -101 -102 -103 -104
vy | 83 -83 -84 -85 -85 -86 -87 -88 -88 -89 -90 -90 91 -92 -9
Ving | -105 =106 -107 -108 =109 -110 -111 =112 -113 -114 -115 -116 -117 -118 -119
Ve | 93 94 -95 -95 96 -97..-97 -98 -99 -99 -100 -101 -102 -102 -103
Vg | -120 =121 -122 -123 -124 =125 _-126 =127, -128 -129 -130 -131 -132 -133 -134
Vg | -104 -104 -105 -106 -106 £107 2108 2109°-109 -110 -111 -111 -112 -113 -113
Vimg | -135 -136 -137 -138 =139 -140 -141 -142 =143 -144 -145 -146 -147 -148 -149
Vi | -114 -115 =116 -116 =117 -1187=118 -119 /120 -120 -121 -122 -123 -123 -124
Vimg | -150 -151 -152 -153 -154 ‘155 -156 -157--158 -159 -160 -161 -162 -163 -164
Ve | 125 <125 -126 -127 -127/5128 129130 -130 -131 -132 -132 -133 -134 -134
Ving | -165 -166 -167 -168 -169 -170 -171 =172 -173 -174 -175 -176 -177 -178 -179
Vg | <135 <136 -137 =137 -138 -139 -139 -140 -141 -141 -142 -143 -144 -144 -145
Vimg | -180 -181 -182 -183 -184 -185 -186 -187 -188 -189 -190 -191 -192 -193 -194
Vi | 146 -146 -147 -148 -148 -149 -150 -151 -151 -152 -153 -153 -154 -155 -155
Vimg | -195 -196 -197 -198 -199 200 -201 -202 -203 -204 -205 -206 -207 -208 -209
Vi | -156 -157 -158 158 -159 -160 -160 -161 -162 -162 -163 -164 -165 -165 -166
Vimg | -210 -211 212 -213 -214 215 -216 -217 218 -219 -220 -221 -222 -223 -224
Vye | 167 -167 -168 =169 -169 -170 -171 -172 -172 -173 -174 -174 -175 -176 -176
Vimg | <225 -226 -227 -228 -229 -230 -231 -232 -233 -234 -235 -236 -237 -238 -239
Vye | <177 -178 -179 =179 -180 -181 -181 -182 -183 -183 -184 -185 -186 -186 -187
Vimg | -240 -241 -242 -243 -244 -245 -246

Vg | 188 -188 -189 -190 -190 -191 -192
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3.6 Discrimination of Obstacle and Ground Boundaries

After the process of boundary detection in Fig. 3.1 is performed, the boundaries are
generated one by one, and the flow proceeds to the discrimination process. In this section it is
ready to propose the method to distinguish if a given boundary is an obstacle boundary or not.

Since the given boundary in the road image is quasi-horizontal, there may be another
boundary above the given boundary. Hence the given boundary and its corresponding top

boundary in the main image are called the bottom and top boundaries, namely B,, and B,,,
respectively, as illustrated in Fig. 3.15. A simple criterion to judge if the bottom boundary is
the obstacle boundary is to judge if its corresponding top boundary is located above the
vanishing line. If most of pixels within the top boundary are located above the vanishing line
or even if there exists no top boundary with respect to the bottom boundary, then the bottom
boundary is exactly the obstacle boundary.

Fig. 3.16 shows the flowchart ofithe discrimination process. If most of pixels within the

top boundary are below the vanishing line, it isshecessary to distinguish the bottom boundary

by extra methods.

Main Image

Heaven Bt : Top Boundary

Vanishing Line

Bmt : Top Boundary

Ground

Bmp - Bottom Boundar
Bmb : Bottom Boundary mo y

Fig. 3.15 The bottom boundary and its corresponding top boundary.
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At first, the calibration process is performed. Since the obstacle boundary is the
interconnection between the ground and obstacles, it is believed that the bottom boundary is
located on the ground no matter what it is. Therefore, its corresponding bottom boundary in
the sub image can be found out by the logarithmic search, and then the pitch and roll angles

can be determined, as described in Section 3.5.

START

A 4
Top Boundary Detection

(B,,)

Large Heaven
Size ?

Calibration

A
Determination of
Two Predicted
Boundaries
in the Sub Image,

i.e. B2 and B!

Correlation(B,,, B.)>
Correlation(B,,,B%) ?

A 4 A 4

Obstacle Ground
Boundary Boundary

A 4

END

Fig. 3.16 The flowchart of the discrimination process.
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If the bottom boundary is the ground boundary, its corresponding top boundary is

another bottom boundary; in words, the top boundary is located on the ground, which satisfies
the condition of Z, = 0. Thus the corresponding top boundary in the sub image, namely B%,

is on the ground and can be predicted by applying (2-68) to (2-61) and (2-62), as presented in
Section 2.3.3 (Part A).

If the bottom boundary is the obstacle boundary, its corresponding top boundary must be
not the ground boundary. In this case, the top and bottom boundaries could belong to the same

obstacle, and the corresponding pixels within these two boundaries satisfy the condition of the

o
st 2

same X ,. Hence the corresponding top boundary in the sub image, namely B! , belongs to

the obstacle and can be predicted by substituting (2-76) into (2-61) and (2-62), as presented in
Section 2.3.3 (Part C).

The correlation between = two —boundaries ~of the same size, represented as
Correlation(B1,B2), is defined-as the signed square normalized correlation coefficient of
their corresponding blocks of neighbor pixels, as-described in (3-20). The neighbor block of

the boundary is the zone enclosed by two vertical lines and two parallel shifting boundaries,

as illustrated in Fig. 3.17. As soon as B% and B are determined, Correlation(B,,,B%

and Correlation(B,,,B;) can be computed. Therefore the bottom boundary in the main

mt? t

image is referred to the obstacle boundary if Correlation(B,,, B;,) > Correlation(B,,,B%), or
else the ground boundary.
Main Image Sub Image

_-

z

------- R

S — '__'B/:I
oundary !

Correlated ?

L . |

boundary

______

Fig. 3.17 The neighbor block of the boundary.
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3.7 Motion Boundary Tracking

If the obstacles have been detected in the last frame, they will be tracked in the current
frame. The detected obstacle boundaries can be classified into the motion and roadside
boundaries according to their slopes. Since all roadside boundaries, i.e. the obstacle
boundaries of sharp slopes, have been fitted to two left and right ones in the last frame, they
will not be tracked in the current frame. Hence the tracking process is applied to only the
motion boundaries.

The new boundaries in the current frame are sought out one by one in the neighborhood
of a given motion boundary detected in the last frame, and the tracking succeeds if the new
detected boundary and the given motion boundary are highly correlated. Since the size of the
motion boundary in the last frame may be different from that of the new detected boundary in
the current frame, the dimensions. of their neighbor blocks may not be the same. However, due
to the smooth variation of gray levelsialong the direction of the parallel boundary, each mean
gray level along the parallel boundary-of different vertical spacing can be evaluated, which
forms a vector of mean gray levels, see Fig. 3.18. And the correlation between the mean
vectors of two boundaries of different sizes can be computed from (3-20). In consequence, the
tracking succeeds if the mean vectors of the new detected boundary and the given motion

boundary are highly correlated.

________ : - Mean Vector
—————— of Gray Levels

Fig. 3.18 The mean vector of the boundary.
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Chapter 4 Lane Detection

In this chapter the algorithm of lane detection will be presented. Since the obstacles have
been determined as mentioned in Chapter 3, the ground part of the top image will be utilized
to detect the lane without the disturbance of obstacles. In addition, the lane detection system
can also independently work without the aid of obstacle detection by using a single camera.

The details will be proposed soon.

4.1 Overview

The algorithm of lane detection will be developed in this chapter. The target of lane
detection is to determine information about the lane, such as the offset, the orientation, or the
curvature. The lane detection system can mmmediately warn the drivers of the danger if their
vehicles are straying from the correct way or can provide the controller of the automatic
vehicle with the lane information.

Since the structured roads are met in most practical cases, this thesis focuses on the
detection of marking roads where lane markings are painted on the road surface. Some
significant features of such a structured marking road are listed as follows:

(1) The structured lane geometry.

(2) The constant lane width.

(3) The constant marking width.

(4) The higher gray levels on the markings.
(5) The continuity of the lane markings.

Based on these features, a robust lane model is fitted into the lane geometry and the
detection regions of interest (ROIs) are predicted and specified to narrow the searching area

of lane markings of a constant width. Due to the constant lane width, the 3-D lane geometry
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can be reconstructed by the computer vision.

In addition, the lane parameters of the last frame can be exploited to assist in detecting
the lane in the current frame since the variation of the lane between two successive frames is
assumed slight according to the continuity. The flowchart of lane detection is displayed in Fig.
4.1. The process of lane detection is initially performed in the single mode without any lane
information. After that, the lane parameters are updated, and the flow enters the successive
mode to detect the lane by using the updated knowledge of the last frame. The process is
repeated in the successive mode until the detection fails, and then the flow goes back to the

single mode to try detecting once more. The details will be presented later.

START

A
Lane Detection

in the Single Mode

A
y

frame <— frame + 1
7y

Detected ?

A

frame < frame + 1

A\ 4
Lane Detection

in the Successive Mode

|

/ Detected ?

Fig. 4.1 The flowchart of lane detection.
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4.2 Geometric Lane Model

Since the lane model can stabilize the detection results against the interferences such as
shadows, textures, or other vehicles [12-14], a global geometric lane model is used in the lane
detection system in this thesis. Such a lane model can also be utilized to predict where the

lane markings are by computer vision, which thus increases the accuracy of lane detection.

4.2.1 Parabolic polynomial

Since the lane boundaries on the structured marking road can be represented by the arcs

of small curvatures, a parabolic polynomial of the form

X =k-Y’+m-Y, +b (4-1)
is applied to the global geometric lane models And consequently, the topic of lane detection is
reduced to the issue of determining the coefficients (&, m, D).

Some assumptions are made here that. . -approximates to zero and that & is the angle
included by the inclinations of the camera and the road, as mentioned in Section 2.2.1.
Therefore, the equations of (2-25) throughout (2-30) still hold true.

Substituting (2-28) and (2-29) into (4-1) yields

ke e -H
S e +m~eu+£~e—”-(ev~m3—v) (4-2)
e, my—v H e

v

u

v

(4-2) represents the lane model in terms of the image coordinates (u,v) as well as the road
inclination, m,, which is applied to the case of the non-flat road.

Let P, = (X I S L,) and P, = (X ro Vs Z R,.) be the world coordinates respectively
located on the left and right sides of the lane separated by a distance equal to the lane width

W . The corresponding middle point on the lane axisis P, = (PL + P, )/ 2. Assume that P, P,

is parallel to the X, -axis so X, —X, =W and Y, =Y, =Y, as well as that no torsion

occurs on the road so Z, =7, =Z2,, . Let (u,,v,), (uz,vz), and (u,,,v,,) be the image
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coordinates associated with P,, P,, and P, , respectively. The following equations can be

obtained [18].

X, - X
uR uL — eu Rr Lr
YMr
Z r
VR=VL =V =6 MY
Furthermore, (4-3) throughout (4-5) can also induce
XMr = uM : W
Up —Up
YMr = eu W
Up—u,
7, —H+ u W e
Up—Uu, e,

Substituting (4-6) and (4-7) into (4-1) yields

=) Do W e )+ | )

(4-3)

(4-4)

(4-5)

(4-6)

(4-7)

(4-8)

(4-9)

Both (4-2) and (4-9) represent the.lane-model in the image coordinate system. (4-2) is

available if m, 1s given. (4-9) results from the assumption of the constant lane width, i.e.

W . In fact, both m, and W can not be determined exactly in the various environments.

Hence, a combination of (4-2) and (4-9) is made to predict the lane tendency and to result in

the calibration on both m, and W . The details will be presented later.

4.2.2 Prediction of lane tendency

(4-9) can be rewritten as

U=C._ +C._ -Au+C._, -Au’

xy0 xyl xy2

where

58

(4-10)

(4-11)



CHAPTER 4 LANE DETECTION

C,=m-e, (4-12)
b

ny2 :W (4-13)

U=u,(u, —u,) (4-14)

Au =(uR —uL) (4-15)

C

xyl 2

and C

xy2°

If some data of the pair (u,,u,) are given, the coefficients, C of

00
(4-10) can be determined by means of the weighted-least-squares approximation. Accordingly,
the unknowns (k,m,b) of (4-2) can be further confirmed so that the lane tendency in the
image domain can be obtained from (4-2).

On the other hand, since u is a function of v in (4-2), it is denoted as u = f(v). The

first-order Taylor polynomial for f in powers of (v—v,) isrepresented as

FO) = fO)+ ) (v, (4-16)
where

(N ofeere, M b oe, )

e my H e w1

is the first derivative of f at v, .

If few pairs of (u,,u,) are given, the parameters (k,m,b) evaluated from (4-10) may
be inaccurate, so that there is a certain error in the lane tendency in the image domain
predicted from (4-2). Nevertheless, few data still contribute the information to the lane
tendency around them. If the lane tendency in a small specific region of the image is just
expected, (4-16) can be performed to obtain the approximation by expanding f about the
coordinate v, close to the specific region of the image.

Eventually, note that both left and right sides of the lane can also be predicted from (4-16)
by replacing b with bFW/2, respectively, i.e.

{b—W/Z ,if i=L (leftside)
b = (4-18)
b+W/2 ,if i=R (rightside)
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4.3 Marking Detection

The task of marking detection is to detect such marking pixels lying on both sides of the

lane in the road image. The lane markings can be characterized by two intrinsic factors:

(1)

()

The gray levels of the markings are greater than those of the road surface. There exist the
sharper edges between the markings and the road surface, so as to produce the higher
gradients located at the edges. Since only the vertical edges are interesting, the 3x3 mask
shown in Fig. 4.2 is used to compute the gradients. Notice that the maximum gradients
are located at the darker pixels.

All widths of the markings are thought constant in the world coordinate system since
they are artificially painted on the road surface. An example is demonstrated in Fig. 4.3
Of course the marking widths,could slightly vary in different areas, but all of them in a
certain zone can be considered the same..In general, the marking width ranges from 10

cm to 30 cm, and is referred to:20 cm in_this thesis. Since the lane markings will be

detected in the image coordinates; the constant marking width A/, in the world domain
can be transformed into its corresponding width m;, in the image domain from (2-32), as

described in Section 2.2.2. See Fig. 4.3.

Fig. 4.2 The 3x3 mask for determining the gradients of the vertical edges. Note that the
maximum gradients will be located at the darker pixels.
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(a) The original road image.

(b) The marking in
“Swessse. | the image coordinate

- \% system.
-
\

m;

(c) The top view of (a).

(d) The marking in
the world coordinate
system. Its width is
constant.

Fig. 4.3 The constant marking width in the world coordinate system. (a) The original road
image. (b) The marking in the image coordinate system. (c) The top view of (a). (d) The
marking in the world coordinate system. Its width A/, is approximately constant.
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Based on the intrinsic nature of the lane markings, the following steps are performed to

detect the marking, as illustrated in Fig. 4.4.

(2)

(b)

(©)

(d)

(e)

Fig. 4.4 (a) shows the marking with the greater intensity and its horizontal profile for a
given scanning line. It is clear that the intensity of the marking is greater than that of the
road surface.

Due to the higher brightness on the marking, the detection is based on the determination
of horizontal dark-light-dark (DLD) intensity transitions [16]. In this thesis the point M is
said to be situated at the location of the DLD-transition if its intensity /,, is greater
than those at its horizontal left and right neighbors by a distance m, /2, see Fig. 4.4 (b).
For a given scanning line, this process searches for the location of the DLD-transition
until one transition is found out or the scanning arrives at its ending. Go to step (c) if one
transition is determined, or elsgiexit.

Two maximum gradients .G, and ‘G, within-the intervals of [M —m, /2, M) and
(M , M +m,/ 2] are determined jat-the points L and R respectively by the mask in Fig.

4.2, and thus enclose a possible marking region (L,R), as illustrated in Fig. 4.4 (c).

Go to step (e) if the distance between L and R is greater than the threshold LRu, or else

go back to step (b). The threshold LRy is related to the minimum possible marking

width in the image domain, and usually it is the half of m,.

If the mean intensity / within (L,R) i1s greater than I/, and [, respectively, then
the marking is determined and thus return the center of (L,R). If not, there could be
some deeper valleys within (L,R) as figured in Fig. 4.4 (e). In the unsuccessful case,
the flow goes back to step (c) in order to determine a new possible marking region. A
new maximum gradient is detected within (L,M ) to replace G, if the mean intensity
within (L,M ) is less than that within (M ,R), or else it is detected within (M ,R) to
replace G,, which yields a new possible marking region. Proceeding in a similar

fashion, the process will exactly evaluate the marking for a given scanning line.
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The marking with the greater
intensity than that on the road surface.

The horizontal profile of the ideal

()

marking for a given scanning line.

—_——_———— — —,

I A 7] Searching for the point M satisfying
M—mi/2 Ll M IR M+m,-/2 that [M >IM—ml/2 and IM >[M

| | +m; /2"
.______._I ............... .. ................ I_.______.
M-m /2 L M R M+m,/2
(©) G, G Two maximum gradients G; and
4:— ______ : 4 I Gr  within  the intervals of
: | :: 7 \oo.[M —m, /2, M) and (M, M +m,/2]
M _’}7‘11— /_2___2_|A./I """"""" ";'e‘"—— ]—V[—_J;?m; /2 a'r? located | respectively, and thus
l | o enclose a region (L, R).

Fig. 4.4 Steps of the marking detection.
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4.4 Lane Detection in the Single Mode

4.4.1 Overview

Given a single frame, the topic in this procedure is to determine the lane without the aid
of the last frame. In the beginning, there is no information about the lane. However, according

to (4-1), the lane has been modeled as a quadratic polynomial with the coefficients (k,m,b),

whose probable ranges are as follows [14, 18]:

k;_LNL (1/m)

600 600
m :—tan(0.09) ~ tan(0.09) (4-19)
b:-3.75~3.75 (m)

Fig. 4.5 The possible ranges of the markings on both sides of the lane at the initial state.
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Since the probable ranges in the bottom of the image are the narrowest, the image plane
is divided into n zones ordered according to the direction of the v-axis and the size of the first
zone is greater, as shown in Fig. 4.6. The marking detection is performed zone by zone, from
bottom to top in the image.

As soon as the left and right markings in a certain zone are determined, an estimate of
(k,m,b) is evaluated from (4-10), and the probable left and right markings in the next zone
can be predicted by (4-16) and (4-18); moreover, the ROIs can be set up in the detection zone
to narrow the searching area. After the same process is iterated for each zone from bottom to
up, the markings on both sides of the lane are found out, and the parameters (k,m,b) can be
determined. Fig. 4.7 demonstrates the detection results and the predicted ranges for each zone.

The details will be described in the following.

Fig. 4.6 'The image is divided into n zones, and the markings are detected from bottom to up.
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(a)

Fig. 4.7 (a)~(f) are the intermediate phases where the zones are detected from bottom to up,
respectively. The black solid curve comes from (4-2) while the white dashed line is the
approximation of (4-16). The left and right dotted blocks are the detection regions of interest
in the next zone. (a), (b), and (c) show the detection ROIs in the zones 1, 2, and 3,
respectively.
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(d)

Fig. 4.7 (a)~(f) are the intermediate phases where the zones are detected from bottom to up,

respectively. The black solid curve comes from (4-2) while the white dashed line is the

approximation of (4-16). The left and right dotted blocks are the detection regions of interest

in the next zone. (d) and (e) show the detection ROIs in the zones 4 and 5, respectively. Fig. (f)
shows the final detection result, and it is obvious that the rears of the detected and predicted

lines match with each other.
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4.4.2 Detection flow

Fig. 4.8 shows the flowchart of lane detection in the single mode. In the beginning, the
initial possible ranges are searched zone by zone, and the zone is scanned row by row, from
bottom to up, to detect the markings. If both marking points on the left and right sides are
found out and the distance between them is valid, this procedure is terminated after finishing
the current zone. Since the constant lane width in the world domain is assumed, its
corresponding width in the image domain can be obtained from (2-32). Thus the distance
between the left and right detected pointes is said valid if it approximates to the constant lane
width in the image coordinate system.

After the lane detection at the initial state, the next zone is located. The probable regions
of the markings in this zone can be predicted by applying (4-16) and (4-18), where v, comes
from the coordinate v near the current zone. The ROIs are determined at the process, namely
Specify ROI, to narrow the searchingiranges. Both markings in these two ROIs are searched
and determined. And then the detection results for both markings are processed at the
procedure, namely Decision Tree. Both the processes of Specify ROI and Decision Tree will
be interpreted in next sections. Proceeding in the same way, the lane can be confirmed after

all zones are detected.
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START

A 4
Lane Detection

at the initial phase

» zone<—zone+1

v

Lane Prediction
v
Specify ROI
v

Marking Detection

v

Decision Tree

v

v < v+1

A 4

End of zone ?

Fig. 4.8 The flowchart of lane detection in the single mode.
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4.4.3 Specify the detection region of interest

This procedure is to specify the left and right regions of interest (ROIs) for the marking
detection, and these ROIs depend on the parameter pROI, composed of properties MAIN and
SUB, initialized to MAIN, and determined by the procedure called the Decision Tree.

(1) pROI=SUB

In this case, the left and right ROIs of the current ordinate v, are defined as:

ROI=[u,, A -m,u_ +A -m] (4-20)
where u,, is the abscissa detected in the last ordinate v, ,, m, is the constant marking
width in the image domain as described in Section 4.3, and A, is a constant. Since the
abscissa u, is the target to detect, its probable region is specified in the neighborhood of
the last detected abscissa u, , .due to the continuity of the marking.

(2) pROI=MAIN

In this condition, the left and right ROIs of the current ordinate v, are defined as:

ROI =lu =2, -m. w2, -m] (4-21)
where the abscissa u, corresponding to the current ordinate v, is evaluated in the
process of the lane prediction, and A is a constant. Since the last abscissa u, , is not

detected, a guess about u, can come from the combination of (4-16) and (4-18), and a

greater A

m

than A, is used due to the unknown abscissa u, , of the lane sides.

4.4.4 Decision tree

After the marking detection is performed in both left and right specified regions of

interest for a given ordinate v,, as illustrated in Fig. 4.8, one of four cases as stated below
will happen. This process is to judge whether both left and right detected marking points

belong to the boundaries of the lane, and to update the control parameters if true. Two control
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parameters, namely pROI and pMode respectively, will be updated in this process. The control

parameter pROI is the enumeration composed of two identifiers, namely MAIN and SUB, and

it is used to decide the ROIs for the marking detection, as proposed in Section 4.4.3. The other

control parameter pMode is the enumeration composed of four identifiers, namely BOTH,

LEFT, RIGHT, and NONE, and it responses the result of detecting both left and right marking

points. Fig. 4.9 illustrates the flowchart of the Decision Tree, and four conditions are

discussed as follows:

(1)

2)

€)

Both markings are found:

In this case, both left and right marking points are found out, and the distance between
them is compared to the constant lane width in the image domain. If it is legal, the lane
width in the world domain is updated and both marking points are added to the fitting
data accompanied with a greater weight for the. weighted-least-squares approximation.
Only the left marking is found:

In this situation, only the left marking point is found out. If pROI = SUB or pMode =
LEFT, proceed to the process called the Update Left. In the process of Update Left, the
right marking point can be estimated as what is the left point plus the lane width;
afterward both points are added to the fitting data with a smaller fitting weight, and
finally pROI is assigned as SUB. The conditions of pROI = SUB or pMode = LEFT are
based on the continuity of the marking, and they mean that the last marking point is
detected, and that the current marking point in the neighborhood of the last marking
point is found out; we believe two points belong to the same marking thanks to the
marking continuity.

Only the right marking is found:

In this condition, if pROI = SUB or pMode = RIGHT, then the left marking point is
approximated as what is the right point minus the lane width, and the process of Update

Right similar to the case (2) is driven.
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(4) No marking is found:
Since no marking is found in this case, no point is added to the fitting data. We just

assign pROI and pMode as MAIN and NONE, respectively.

Marking Detection

» Update Both
Valid Width Y
pMode = BOTH
5
> pROI= MAIN
» Update Left
pROI =SUB v e v —
ode =
pMode = LEFT p :
» pROI= MAIN
» Update Right
pROI =SUB v A
pMode = RIGHT pMode ;RIGHT
// » pROI= MAIN
pROI = MAIN
pMode = NONE
\ 4
END

Fig. 4.9 The flowchart of Decision Tree.
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4.5 Lane Detection in the Successive Mode

The purpose in this successive mode is to detect the lane with a prior knowledge of the
lane detected on the last frame. Due to the slight variation between two successive frames, the
last determined lane parameters (k,m,b) can be regarded as an estimate about the lane on
this frame. In addition, both estimated boundaries of the lane on the current frame can also be

evaluated from the estimated lane.

START

4

Specify ROI

!

Marking Detection

v

Decision Tree

A 4

v

v < v+1

Fig. 4.10 The flowchart of lane detection in the successive mode.

Fig. 4.10 shows the flowchart of the lane detection in the successive mode. The main
regions of interesting markings can be specified by the neighborhood of the estimated lane
boundaries. And thus the lane on the current frame can be determined by detecting directly the

main or sub ROIs in the same way as mentioned in the last section. After finishing scanning
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every interesting row, all marking points in the image are found out. Since the slight variation
between two successive frames is assumed, the current lane parameters (k,m,b) can, for the
purpose of the robust detection, be evaluated from the data of a mixture of the current and last
marking points, where the marking points on the last frame are assigned a smaller fitting
weight.

The process is repeated in the successive mode until it fails, and then returns to the single
mode. The detection in the successive mode is dominant since it takes the majority, and
therefore, for reducing the processing time, the algorithm in the successive mode should be

simple and effective as we do.

4.6 Update of Lane Parameters

The update of lane parameters involves two topics. At first, the lane tendency is
necessary in order to warn the drivers in bad situations or to supply the smart vehicle with the
lane information for the purpose of tracking the lane automatically. Thanks to the detection
algorithm involving the prediction+ phase, the lane, modeled as a quadratic curve with
parameters (k,m,b), is determined as soon as the detection finishes. However, the physical
lane parameters, such as the offset, the orientation, or the curvature, are usually desired in the
practical applications, and they will be discussed in Section 4.6.2.

On the other hand, the second topic is concerning the 3-D reconstruction of the lane. In
words, the goal here is to reconstruct the lane information about the road inclination and the
lane width for the next detection stage or the vehicle controller.

The algorithm of lane detection proposed in this thesis is based on the condition of the
constant lane width. Nevertheless, due to the vibration in motion, the variation of the road
inclination, or the illegal assumption of the constant lane width, some errors may exist in the
results of the formulas deduced from the computer vision. Thus, it is necessary to calibrate the

3-D lane parameters. This will be presented in Section 4.6.1.
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4.6.1 3-D reconstruction
Applying (4-7) and (4-8) to (2-27) and rearranging it by (4-15), it yields
vy =le, -m, ]+ {— iﬂ} - Au (4-22)
e, W

Using the weighted-least-squares method, the coefficients of (4-22), i.e.

C.,=e m, (4-23)

zy

c, =-2

zyl

H
W (4-24)

m, =—22 (4-25)
eV

et o (4-26)
e, Czy1

4.6.2 Offset, orientation, and curvature

Since the lane has been modeled as a quadratic polynomial with the coefficients

(k,m,b), from the fundamental calculus it is easy to obtain the offset, orientation, and

curvature of the lane, which are listed as follows:

Offset(Y,)  =X,(Y,)=k-Y'+m-Y, +b (4-27)
Orientaton(Y )= X, (Y.)=2-k-Y. +m (4-28)
Curvature(Y) = X, = 2-k (4-29)

[1+X'2j3/2 1+ kv, - mp )
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Chapter 5 Experimental Results

5.1 Results of Obstacle and Lane Detection

In the obstacle and lane detection system, two cameras are mounted top and bottom on
our experimental vehicle, and both road images are captured simultaneously. Fig. 5.1 shows
the results of obstacle detection on a hill road. On the other hand, Fig. 5.2 and 5.3 display the
results of obstacle and lane detection when the experimental vehicle is running on the
expressway and freeway with the velocities of 80 km/hr and 110 km/hr, respectively. It is
clear that the vehicles on the road can be determined. In addition, the roadsides such as the

median can also be marked.

Fig. 5.1 Results of obstacle detection on a hill road.
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Fig. 5.2 Results of.0 'éc ¢ and la & detection on the expressway.

EEE

Fig. 5.3 Results of obstacle and lane detection on the freeway.
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On the other hand, the lane detection algorithm proposed in this thesis can also be
performed alone using a single monochromatic camera without the obstacle detection system.
Several road conditions, such as the straight or crooked cases, shadows or sunlight conditions,
the roads interfered with the text or vehicles, are tested, and the results are very satisfactory,
as displayed in Fig. 5.4~5.8. The shadows on the road surface will result in the variation of
the brightness. The gray values of the texts on the road surface are similar to those of the lane
markings. In addition, the traffic in downtown is usually heavy so that the markings are often
covered by vehicles. The proposed algorithm can work in all cases, even if only left or right
lane side is available. On the other hand, the lane detection system can also be performed in
the night or rainy environment, as shown in Fig. 5.9 and 5.10 respectively. The results

demonstrate the proposed algorithm is very robust.
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Fig. 5.4 Results of lane detection on the straight roads.
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Fig. 5.6 Results of lane detection on the roads with shadows or the sunlight.
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{he”goads interfered with the text.

.‘ I =

Fig. 5.8 Results of lane detection on the roads affected by the vehicles.
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(a) The original road image.

b) The detection result of (a).

Fig. 5.9 Result of lane detection on the night road. (a) the original night road image. (b) the
detection result of (a).
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(a) The original road image.

(b) The detection result of (a).

Fig. 5.10 Result of lane detection on the rainy road. (a) the original rainy road image. (b) the

detection result of (a).
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Fig. 5.11 and 5.12 display the experimental results of real-time lane detection on our
experimental vehicle, namely TAIWAN iTS-1 as shown in Fig. 13, running on the freeway
under 110 km/hr. The road image sequence of size 644 x493 is captured with the frame rate
of 30 fps by the Domino Alpha 2 board and the Hitachi KP-F3 CCD camera mounted on the
smart vehicle, and then the image is processed by the proposed algorithm of lane detection
running on the PC platform of 2.6-GHz CPU and 512-MB RAM. The average processing
time is less than 1 ms per frame. In addition, the lane detection system can be treated as the
vision system of the automatic vehicle by integrating the controller of the steering wheel. This
work has been implemented on the experimental car, TAIWAN iTS-1, running on the
expressway and freeway with the velocities of 90 km/hr and 110 km/hr respectively. TATWAN
iTS-1 is the first smart car in Taiwan capable of hand-free driving on the real road, which

verifies the practicability and robustness of the proposed lane detection system.

83



CHAPTER 5 EXPERIMENTAL RESULTS

g B =

Fig. 5.11 Results of the real-time lane detection on the freeway of the sunny day.
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Fig. 5.12 Results of the real-time lane detection on the freeway by night.
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(a) TAIWAN /TS-1 is running on the freeway under 110 km/hr

VAN WAN Iy T

(b) The CCD camera is mounted on TAIWAN iTS-1.

Fig. 5.13 TAIWAN iTS-1. (a) TAIWAN iTS-1 is running on the freeway under 110 km/hr. (b)
The CCD camera is mounted on TATWAN iTS-1.
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5.2 Discussion

Since the GOLD system developed in the ARGO project is famous in the region of smart
vehicles [2, 8], it will be compared with the algorithm proposed in this thesis. The GOLD
system uses two left and right cameras to detect the obstacle and the left is used to detect the
lane markings. The GOLD system removes the perspective effect by transforming both road
images into the top views, and the detection is performed in the world coordinates; the
obstacles are determined if two triangles in the difference image between remapped views can
be joined and the lane markings are detected based on the constant lane width, which may fail
when the assumption of the flat road is illegal. The comparison between the GOLD system
and the algorithms proposed in this thesis is presented as follows:

(1) Based on the assumption of the flat roads, the. GOLD system may not be suitable for all
real situations. Fig. 5.14 presented mn the literature [8] demonstrates that the GOLD
system fails in the case of a non-flatroad where“the lane width diverges. However, the
calibrations on the road inclination and the lane width are considered in (4-22) in this

thesis in order to provide the precise information for the next frame.

(a) The road is not flat. (b) The remapped image.

Fig. 5.14 The GOLD system fails in the case of a non-flat road [8]. (a) the road is not flat. (b)
the remapped image.
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(2) A smaller image range can be used in the GOLD system after transforming the images
into the top view, as illustrated in Fig. 5.15. However, the system proposed in this thesis

keeps all image information because the detection is performed in the image domain.

(a) The original road image.

——l

A\Qregion

Remapped region

\

_-—— -

Fig. 5.15 The useful region in the world domain is smaller than that in the image domain. (a)
The original road image. (b) The top view of (a).
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€)

(4)

()

(6)

(7)

Both algorithms rely on the constant lane width. The algorithm proposed in this thesis is
performed in the original image, transforms the constant lane width from the world
domain into the image domain by (2-32), and takes only one operation per image row.
However, the GOLD system works in the world coordinates by mapping the whole
original image into the top view pixel by pixel, so that it takes more complex operations
and more time than that proposed in this thesis.

For the obstacle detection system, the roadside obstacles can be determined in this thesis.
However, such a function is not considered in the GOLD system.

The lane detection algorithm proposed in this thesis, based on a parametric lane model, is
more robust against the interferences such as shadows, textures, or other vehicles.

The proposed algorithm of lane detection can predict the lane tendency, and thus can
determine the detection ROIs 80 as to narrow. the searching ranges. Hence, the time is
saved. However, the GOLD system searches. the whole remapped image in the world
domain, and therefore it has.a highet computational load.

No matter what kind of algorithms. of lane‘detection, the lane geometry is usually fitted
into a curve since the goal of lane detection is to supply the drivers with the lane
information. Based on the geometric lane model, the proposed algorithm involves the
prediction of the lane tendency, and no more complex procedure must be taken to obtain
the lane tendency while finishing the detection. Besides, even if the detection has not
been finished, the approximate lane tendency can be acquired from the prediction
procedure. However, extra operations must be taken in the GOLD system in order to

obtain the lane tendency.
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Chapter 6 Conclusions

Both algorithms of generic obstacle and lane detection based on the techniques of
computer vision are proposed in this thesis. Two monochromatic CCD cameras are mounted
top and bottom respectively on the vehicle in order to detect the generic obstacles, and the top
camera is also used to detect the lane. The quasi-horizontal boundaries in the top road image
are detected in order, and each detected boundary could belong to either the ground or the
obstacle. The criterion to distinguish between them is to predict the corresponding ground and
obstacle boundaries in the bottom image by the stereo vision. The detected boundary in the
top image belongs to the obstacle if it is more related to the obstacle boundary predicted in the
bottom image than to the ground boundary predicted in the bottom image.

After that, the obstacles in the road image can be determined, and the remainder image
part without obstacles is used to detect the lane, so that the result of lane detection is not
affected by the obstacles. On the“other hand, the lane detection algorithm proposed in this
thesis can be performed alone using a single monochromatic camera. Based on the geometric
lane model, it can generate a robust result. Besides, the detection region of interest can be
estimated to narrow the searching area. Eventually, the 3-D lane geometry is reconstructed to
update the road inclination and lane width. Therefore the proposed algorithm is available in
the case of non-flat roads.

The lane detection system has been verified in some environments such as the
expressway or freeway, the straight or crooked roads, shadows or sunlight conditions, the
night or rainy cases, and the roads interfered with the text or vehicles. The average time of
lane detection is less than 1 ms per frame of size 644 x 493 on the PC platform of 2.6-GHz
CPU and 512-MB RAM. Besides, the lane detection system has been integrated with the

controller of the steering wheel on the automatic car, TAIWAN i/TS-1. TAIWAN iTS-1 is the
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first smart car in Taiwan capable of hand-free driving on the expressway and freeway with
velocities of 90 km/hr and 110 km/hr respectively, which demonstrates the practicability and
robustness of the proposed lane detection system.

Another fundamental function of the smart vehicle is the leading vehicle tracking. In this
case, the accurate distance and orientation of the leading vehicle must be determined.
Sometimes there is a desire to follow the leading vehicle on the road. A practical application is
to stop and to go with the leading vehicle in a traffic jam. Therefore the system of the leading

vehicle tracking is an important topic in the future.
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