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摘 要       

 
近年來隨著交通問題日益嚴重，智慧型運輸系統(Intelligent transportation system, ITS)

的相關研究愈來愈受到重視，其中智慧型車輛又是最有發展潛力的研究之一。而泛型障

礙物與車道偵測系統是智慧車所需配備的最基本功能，能夠偵測出路面障礙物的位置與

車道資訊，用以預警駕駛人注意或者提供車輛自動行駛所必需的道路資訊。 

本文主要是利用影像處理與電腦視覺的技術去偵測路上障礙物與車道的位置。將兩

支單色 CCD 攝影機分別上下地架設在車上，利用 histogram-based 的方法將上方攝影機

所擷取出的道路影像做分類，以偵測出不同類別的交界所組成之近乎水平的邊線。所偵

測出的邊線可能位於地面或者障礙物上，這兩種情況判斷的依據是藉由立體視覺的技術

分別預估此邊線在下方影像中可能是地面的位置以及可能是障礙物的位置，然後量測與

上方影像中之邊線的相關係數何者比較大來做判斷，因此可以鑑別出影像中障礙物與路

面的部分。 

而在車道偵測方面，使用一支單色 CCD 攝影機擷取道路影像，以偵測車道標線的

位置。本文所發展出的車道偵測演算法是基於車道幾何模型的標線偵測方式，能夠提供

一個穩健的偵測結果，並且適當地預估與縮小搜尋範圍，以降低搜尋時間而提高車道偵

測的效率。最後並重建車道 3-D 幾何模型以修正道路傾斜度與寬度，因此本文所提出的

演算法亦適用於非平坦的路面。 
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本文所發展出的車道偵測系統已經在快速道路與高速公路成功地實車驗證過，在

2.6 GHz 的 PC 平台上平均每張影像所需的偵測時間小於 1 ms。此外，車道偵測系統亦

結合方向盤控制器，做為無人駕駛智慧車的視覺系統，完成台灣第一台可以 hand-free

自動駕駛的智慧車 TAIWAN iTS-1。TAIWAN iTS-1 以時速 90 km/hr 與 110 km/hr 分別

在東西向快速道路與國道 3 號高速公路順利地自動駕駛實車測試，並經過國外卓越計畫

評審委員的評鑑與肯定，驗證了本文所提出的車道偵測系統的實用性與穩定性。 
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ABSTRACT 

 
As the traffic is becoming more and more serious in most developed countries, a lot of 

researches about the intelligent transportation system (ITS) have been paid attention in recent 

years. Above all, one of the most promoting topics for the ITS applications is concerning the 

smart vehicles. The fundamental function of the smart vehicle is the generic obstacle and lane 

detection system, which can warn the driver or provide the road information for the unmanned 

vehicle. 

In this thesis the techniques of image processing and computer vision are applied to the 

detection system. Two monochromatic CCD cameras are mounted top and bottom on the 

vehicle, and the road image captured by the top camera is segmented by thresholding the 

histogram. After that, the quasi-horizontal boundaries formed by the interconnection of two 

different segments are detected in order, and each detected boundary could belong to either 

the ground or the obstacle. The criterion to distinguish between them is to predict the 

corresponding ground and obstacle boundaries in the bottom image by the stereo vision, and 

to compute the normalized correlation coefficients of the detected boundary in the top image 

with respect to the ground and obstacle boundaries in the bottom image respectively. The 

detected boundary in the top image belongs to the obstacle if the normalized correlation 

coefficient associated with the obstacle is larger than that associated with the ground. Thus the 

road image can be divided into the ground and obstacle parts. 
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On the other hand, a single monochromatic CCD camera is used in the lane detection 

system to detect the lane markings. Based on the geometric lane model, the algorithm of lane 

detection proposed in this thesis can generate a robust result. Besides, the detection region of 

interest can be estimated to narrow the searching area and to reduce the computational load. 

Eventually, the 3-D lane geometry is reconstructed to update the road inclination and lane 

width. Therefore the proposed algorithm is available in the case of non-flat roads. 

The lane detection system proposed in this thesis has been successfully verified on the 

expressway and freeway. On the PC platform of 2.6-GHz CPU and 512-MB RAM, the 

average time of lane detection is less than 1 ms per frame. In addition, the lane detection 

system can be treated as the vision system of the automatic vehicle by integrating the 

controller of the steering wheel. This work has been implemented on the experimental car, 

TAIWAN iTS-1, running on the expressway and freeway with velocities of 90 km/hr and 110 

km/hr respectively. TAIWAN iTS-1 is the first smart car in Taiwan capable of hand-free 

driving on the real road, which verifies the practicability and robustness of the proposed lane 

detection system. 
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CHAPTER 1 INTRODUCTION 

Chapter 1 Introduction 

1.1 Motivation 

As the conveyances are getting growth with years, the traffic is becoming more and more 

serious in most developed countries. A lot of researches about the intelligent transportation 

systems (ITS), including the smart vehicles, the driving safety, and the traffic mobility, have 

been proposed in recent years. In fact, many problems are still expected to be overcome. 

Above all, one of the most interesting and important issues for the ITS applications is 

concerning the smart vehicles. 

It is necessary to acquire the information about the on-road obstacles and the lane 

tendency while driving on the way. Thanks to the driver’s careless attitude, his/her moving 

vehicle may hit the obstacles on the road, or may deviate from the correct lane orientation, 

which induces the traffic accidents. Hence the on-vehicle obstacle and lane detection system 

plays a fundamental and essential role in moving vehicles. Such a system can either be the 

driver assistance function to warn the drivers of occurrences of which they may not be aware, 

or be the vision system of unmanned vehicles to supply the car controller with the road 

information for the goal of the automatic driving. 

In general, the vision-based obstacle and lane detection system is a good choice for ITS 

applications. Cameras are mounted on the vehicle, and then the road images are captured and 

processed. The systems based on the vision have advantages of the high spatial resolution and 

the fast image scansion. Many approaches using the image processing have been developed 

[1], and different techniques will be reviewed in the next section. 
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CHAPTER 1 INTRODUCTION 

1.2 Background 

1.2.1 Related work of obstacle detection 

The definition of obstacles induces the development of detection algorithms. Since the 

vehicles are most of obstacles on the road, some approaches to detect obstacles are limited to 

search for particular features and then to match them with specific patterns, such as the 

symmetry, textures, shapes, an approximate contour, and so on. In this case the processing can 

be focused on the analysis of a single still image. Broggi et al. perform a function of vehicle 

detection to locate and track the vehicle by exploiting the symmetry of the rear parts of a 

typical car and a bounding box satisfying specific aspect ratio constraints [2]. However, such 

a pattern-based approach may fail when characteristics of obstacles do not match the 

pre-defined model. 

As we know, vehicles are not the only obstacles on the road. A generic obstacle is 

defined as an object rising out significantly from the road surface. Following this definition, 

the pattern-based approach does not work owing to the lack of a prior knowledge about 

generic obstacles on the road. More complex techniques must be imported to handle such a 

problem, and two and more images may need to be taken into account. 

The optical flow-based approach utilizes a sequence of two or more images to obtain 

reliable and dense optical flows. In the assumption of the small difference between two 

successive images due to the short time interval, the two-dimensional motion between two 

images approximates the single direction. And therefore, the optical flow field can be 

computed and the ego-motion can be estimated. Giachetti et al. use a correlation technique to 

compute the flow field, and the obstacles moving with different speeds can be segmented by 

analyzing the velocity fields [3]. However, the optical flow-based approach may fail deriving 

from the lack of textures on the road, or from large displacements between two consecutive 

2 



CHAPTER 1 INTRODUCTION 

frames due to the higher speed or vibrations of the vehicle. 

Another technique similar to the optical flow-based approach is known as the 

motion-based method by estimating the motion of the ground plane and then detecting the 

obstacles whose motions differ from that of the ground [4-7]. In this method, it is necessary to 

make a tracking about the motion among images for large displacements, and as a 

consequence the assumption of rectilinear motions in optical flow-based methods is invalid. 

Since the scenes vary very much among images, it is difficult to identify the pixel 

correspondence. If the size of searching area is too small, the correct matching for the 

corresponding pixels may be missed. On the other hand, if the size is too large, too many 

possibilities may exist. Notice that both optical flow-based and motion-based approaches need 

expensive computational costs. 

The stereo vision-based technique is also used to detect the generic obstacles. The 

GOLD system transforms both left and right stereo images into top views in order to remove 

the perspective effect. The ideal square obstacle is transformed into two triangles in the 

difference image of both remapped views. The polar histogram is constructed from the 

difference image and then the two peaks in the polar histogram are joined to identify the 

obstacle [2, 8]. 

Labayrade et al. also use both left and right stereo images to construct v-disparity image 

to detect potential obstacles whose disparities differ from that on the road surface. The angles 

between the cameras and the road are then estimated [9-10]. In conclusion the stereo 

vision-based method is a better framework than others, and is adopted in this thesis. 
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CHAPTER 1 INTRODUCTION 

1.2.2 Related work of lane detection 

It is the objective for lane detection to detect the relative position between the vehicle 

and the road, and to determine the lane information, such as the offset, the orientation, the 

curvature, and so forth. Since the structured roads are met in the practical applications, most 

researches focus on the analysis of marking roads where lane markings are painted on the 

road surface. Several features of the lane markings, including the constant lane width, the 

higher brightness on markings, the structured lane shape, etc. 

The GOLD system removes the perspective effect by mapping the road image into the 

top view, and determines the lane markings by relying on the feature of the constant lane 

width, which may fail when the assumption of a flat road is not valid [8]. Based on the GOLD 

system, Jiang et al. model the lane as two straight lines to estimate the inclined angle on the 

condition of non-flat roads [11]. 

However, the road shape usually is not straight in real cases. Polynomials or splines may 

be better lane fittings than the straight line. Such a geometric model-based lane detection 

technique is more robust against the interferences such as shadows, textures, or other vehicles. 

Based on the lane geometry, the coefficients of lane model can be found out by several 

methods. LOIS, LANA, and RVP-I systems decide the coefficients with the maximum 

likelihood by completely searching the parameter spaces where all possibilities produced in 

the training phase are built [12-14]. 

Instead of searching throughout the databases, some road features are detected in the 

overall image in order to determine the coefficients. Yue Wang et al. [15] and Goldbeck et al. 

[16] use the edge-oriented methods to measure the matching degree between the model and 

the edge map in order to determine the parameters, respectively. Gonzalez et al. classify the 

objects in the image as the road surface, markings, or obstacles by a histogram-based 

segmentation method and then pixels belonging to the markings are taken into the fitting of 
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CHAPTER 1 INTRODUCTION 

the lane model [17]. 

Different from the lane geometry, the statistical model can be used to specify the 

detection region of interest (ROI) in order to narrow the searching area [7, 18]. On the other 

hand, the ROI can also be determined according to the features of markings used in the 

TFALDA [19]. However, the statistical parameters and the weights of marking features have 

to be trained in advance. 

Since the model-based approaches have more robust results and the use of the detection 

ROI can reduce the computational cost, both ideas are adopted in this thesis. The details will 

be proposed later. 

 

1.3 Organization 

This thesis is organized as follows. A review of algorithms about the obstacle and lane 

detections is given in this chapter. The preliminary knowledge of the computer vision is 

introduced in Chapter 2. In Chapter 3, the algorithm of the generic obstacle detection based on 

two top and bottom stereo cameras is developed. The approach to detect the lane is proposed 

in Chapter 4. And afterward the experimental results of both obstacle and lane detections are 

demonstrated in Chapter 5. Finally, a conclusion is presented in Chapter 6. 
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CHAPTER 2 STEREO VISION SYSTEM 

Chapter 2 Stereo Vision System 

In this chapter the preliminary knowledge of the computer vision will be introduced. In 

the beginning, the relationship of image, camera, and world coordinate systems is discussed. 

And then the surface of the non-flat road is modeled. The architecture of two top and bottom 

stereo cameras and the calibration principle are presented finally. 

2.1 Geometric Camera Model 

2.1.1 Perspective projection 

The scene points  in the camera coordinate system can be captured by a 

camera and be projected onto the image pixels (u, v) in the image coordinate system, as 

illustrated in Fig. 2.1. This phenomenon can be described as the perspective projection, and 

the camera can be modeled quite well by the so-called ideal pinhole camera, which induces 

the projection equations as follows [20]: 

( ccc ZYX  , , )

c

c
u Y

Xeu =        (2-1) 

and        
c

c
v Y

Zev =         (2-2) 

where (u, v) and are the image and camera coordinates, respectively. Note that 

 and are the intrinsic parameters of the camera, and are represented by

( )ccc ZYX  , ,  

ue ve  : 

dv
e

du
e vu ==    and         (2-3) 

where du  and dv  are the physi

ff

cal width and height, respectively, of an image pixel. And f 

is the focal length of the camera. 

(2-1) and (2-2) are the non-linear equations transforming the scene points of R3 into the 
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CHAPTER 2 STEREO VISION SYSTEM 

image pixels of R2, and therefore, the homogeneous coordinate system is suitable for a 

general simple treatment of the perspective projection. 

 

Fig. 2.1 The relationship of the camera and image coordinate systems. 

 

Let  is the 4×4 perspective transform matrix, expressed as follows: 

⎡

=

1000
000
0010
000

v

u

proj e

e
P        (2-4) 

tran

u 

v 

Oi

Yc 

Oc 

Zc

Xc

camera 

 

projP

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

sforming [ ]′= 1ccch ZYXC  in ]v
to [ ′= ih xI 1ii zy

v
, i.e. 

       hprojh CI
vv

P=         (2-5) 

where hC
v

 and hI
v

 are the homogeneous camera and image coordinates, respectively. 

Notice that the prime denotes the transpose. 
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The non-homogeneous image coordinates (u, v) can then be obtained by 

i

i

y
xu =         (2-6) 

and        
i

i

y
zv = .        (2-7) 

It is obvious that there exists the invertible matrix  satisfying 1−
projP hprojh IC

vv 1−= P , and 

however, there is no sufficient information from the image coordinates (u, v) of R2 to get the 

camera coordinates  of R( ccc ZYX  , , ) 3. The solutions about this issue will be presented later. 

 

2.1.2 Point relationship of camera and world coordinates 

In the following, it is necessary to perform positioning in three coordinate systems, hI
v

, 

hC
v

, and hW
v

, shown in Fig. 2.1 and Fig. 2.2. The relationship of hI
v

 and hC
v

, homogeneous 

image and camera coordinates, respectively, have been explained in Section 2.1.1. In this 

section the point relationship of hC
v

 and hW
v

 will be discussed, and the transformation from 

hW
v

 to hI
v

 will be briefed in Section 2.1.3. 

Zr Zc

 
Fig. 2.2 The relationship of the camera and world coordinate systems. 
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Oc 

Xr
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Yr 
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The 4 × 1 vector [ ]′= 1rrrh ZYXW
v

 is the homogeneous world coordinates, 

associated with hC
v

 by 

       TWC hrh

vvv
−= R         (2-8) 

where  is the 4×4 rotation matrix between the camera and the road, and rR T
v

 is the 4×1 

translation vector from Or to Oc, the origins of world and camera coordinate systems, 

respectively. 

Often T
v

 is the 1-D translation from Or to Oc, expressed by: 

      [ ]′= 000 HT
v

       (2-9) 

and H is the distance between Or and Oc. 

 In general,  is however, composed of three 4×4 rotation matrices, , , and 

, i.e. 

rR αR βR

γR

       γβα RRRR =r        (2-10) 

where α, β, and γ are the pitch, roll, and yaw angles counterclockwise looking at the origin Or 

from +Xr, +Yr, and +Zr axes, respectively, and 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

1000
0cossin0
0sincos0
0001

αα
αα

αR      (2-11) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=

1000
0cos0sin
0010
0sin0cos

ββ

ββ

βR      (2-12) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

=

1000
0100
00cossin
00sincos

γγ
γγ

γR       (2-13) 

Usually the yaw angle, γ, can be taken no account without relating to the lane orientation 

on the road and can be withdrawn. Hence (2-10) can be replaced by: 
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      (2-14) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅⋅−
⋅−⋅==

1000
0coscossinsincos
0cossincossinsin
0sin0cos

βααβα
βααβα

ββ

βα RRR r

and its inverse matrix is 

      (2-15) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅⋅−

⋅−⋅

==−

1000
0coscoscossinsin
0sincos0
0sincossinsincos

1
βαβαβ

αα
βαβαβ

αβ RRR r

(2-8) can be rewritten as: 

( )TCW hrh

vvv
+= −1R        (2-16) 

Substituting each term into (2-16) yields 

   ( )HZYXX cccr +⋅⋅−⋅⋅+⋅= βαβαβ sincossinsincos ,   (2-17) 

   ( )HZYY ccr +⋅+⋅=            sin           cos                     αα ,   (2-18) 

and   ( )HZYXZ cccr +⋅⋅+⋅⋅−⋅= βαβαβ coscoscossinsin ,   (2-19) 

which transform a point from  in the camera coordinates to  in the 

world coordinates. 

( ccc ZYX  , , ) ( )rrr ZYX  , ,
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2.1.3 Point relationship of image and world coordinates 

By the combination of (2-5) and (2-8), it yields 

( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⋅⋅+⋅+⋅⋅−
⋅⋅−⋅+⋅⋅

⋅+⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

−=

=

1                             
coscos  sinsincos
cossincossinsin    

sin                            cos             

1000
000
0010
000

HZYX
ZYX

ZX

e

e

TW

CI

rrr

rrr

rr

v

u

hrproj

hprojh

βααβα
βααβα

ββ

vv

vv

RP

P

 (2-20) 

The transformation from the point ( )rrr ZYX  , ,  in the world coordinates to the pixel (u, v) in 

the image coordinates can be described by 

rrr

rr
u

i

i

ZYX
ZXe

y
xu ⋅⋅−⋅+⋅⋅

⋅+⋅== βααβα
ββ

cossincossinsin    
sin                            cos                 (2-21) 

and  
rrr

rrr
v

i

i

ZYX
HZYXe

y
zv ⋅⋅−⋅+⋅⋅

−⋅⋅+⋅+⋅⋅−== βααβα
βααβα

cossincossinsin    
coscos  sinsincos .   (2-22) 

If the roll angle, β, of the camera, approximates to zero, then 

rr

r
u ZY

Xeu ⋅−⋅= αα sincos
                    (2-23) 

and     
rr

rr
v ZY

HZYev ⋅−⋅
−⋅+⋅= αα

αα
sincos
cossin .      (2-24) 

If α = 0 and β = 0, i.e. no rotation occurs between both coordinate systems, then (2-21) and 

(2-22) reduce to 

r

r
u Y

Xeu   
      =           (2-25) 

and     
r

r
v Y

HZev −= .          (2-26) 
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2.2 Modeling the Road Surface 

2.2.1 Consideration for the angle of inclination on the non-flat road 

Usually the surface on the real road is not flat, and it may be modeled as a succession 

composed of piecewise planes. For the simplification and the practicality, the road surface in 

this thesis is modeled as the plane with the inclined angle θ, formed by the road ground and 

the plane where the vehicle mounted the camera is standing, see Fig. 2.3. 

TAIWAN iTS-1 

θ 
 

Fig. 2.3 The inclined angle θ on the non-flat road surface. 

 

The (road) ground equation is stated as follows: 

rrr YmYZ ⋅=⋅= θθtan ,       (2-27) 

where θθ tan=m  is the road inclination. Assume that both α and β approximate to zero, and 

combine (2-25), (2-26), and (2-27) to produce 

u

v

v
r e

e
vme

HuX ⋅
−⋅

⋅
=

θ

        (2-28) 

vme
HeY

v
vr −⋅

=
θ

        (2-29) 

vme
HmeZ

v
vr −⋅

⋅
=

θ

θ .        (2-30) 

If the road inclination  and the ground coordinates (u, v) in the image are given, the 

physical ground coordinates  can be estimated by (2-28), (2-29), and (2-30). 

θm

( rrr ZYX  , , )
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Notice that the intrinsic difference of the discussions between Section 2.1.3 and Section 

2.2.1. Section 2.1.3 has proposed that a point in the world coordinate system can be projected 

onto the image plane, which is affected by the camera angles. It is never said that 0=rZ  

means the road surface. Ideally, 0=rZ  may happen on the flat road. If the camera angles, i.e. 

α and β, are thought as what are included by the inclinations of the camera and the road, it 

can be true that 0=rZ  for certain α and β in every local zone is exactly the road plane, and 

the angles for  may be different zone by zone. 0=rZ

On the contrary, the inclined angle θ discussed in this section is a global consideration 

for the model of the non-flat road. It can be exactly said that (2-27) is representative of the 

road ground. Similarly, if the inclined angle θ is treated as what is included by the inclinations 

of the camera and the road, then the pitch angle α can never be considered. Furthermore, if β 

is small enough to be ignored, as assumed earlier, then three axes in the camera coordinates 

are coincided with those in the world coordinates. 

 

2.2.2 Width mapping of image and world coordinates 

In this section we focus on the mapping of the width on the road ground from the world 

coordinates to the image coordinates. From (2-28), it is easy to get 

     
u

v

v
r e

e
vme

HuX ⋅
−⋅

⋅∆=∆
θ

      (2-31) 

and     
v

uv
r e

e
H

vmeXu ⋅
−⋅

⋅∆=∆ θ       (2-32) 

If the road inclination  and θm rX∆ , such as the lane width, are given, the pixel distance, 

say , of the abscissa in the image can be determined by (2-32). u∆
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2.2.3 Effects on distance accuracy associated with the inclined angle of the 

road and the camera height 

The distance of objects in front of the camera is a desire for the application of smart 

vehicles. As indicated in (2-29), the distance, , is associated with the camera height H and 

the inclined angle θ. However, H or θ may change due to the oscillation in motion or the 

non-flat road surface, which results in an inaccurate measure of distance. The effects on the 

distance by the camera height H and by the inclined angle θ will be discussed, respectively, 

and an ideal case is assumed that H = 135 cm and θ = 0°. 

rY

 

 A: the variation in the camera height H 

In this case θ is fixed and equals to zero. However, the change of results 

in the change of . From (2-29), a simple analysis can be to obtain the factor of 

variation 

HHH ∆+→

rrr YYY ∆+→

( ) Hrr YY ∆∆  as follows: 

     
H
H

Y
Y

Hr

r ∆
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∆

∆

       (2-33) 

It is obvious that ( Hrr YY ∆∆ )  is only related to H∆  and is not affected by the 

distance . The change, rY H∆ , of the camera height due to the vibration in motion can be 

assumed to bound in ±20 cm. Table 2-1 shows some cases of different H∆ . For example, the 

maximum error of the distance on the condition of = 50 m and rY H∆ = 20 cm is 7.4 m. 

 

Table 2-1 The effect on the distance by the variation in the camera height H. 

148.0111.0074.00.037

2015105(cm) ∆

±±±±⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆

±±±±

∆Hr

r

Y
Y

H
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 B: the variation in the inclined angle θ 

In this case H is fixed and equals to 135 cm. The error  derived from the change of rY∆

θθθ ∆+→  can also be computed by (2-29). 

( )

)0(      

  

°=⋅
+

−
=⋅

+−
+−

=

−
−⋅−⋅

=−
−⋅

=∆

∆

∆

∆+

∆+

∆+∆+

θ
θ

θ

θθθ

θθθ

θθθθθ

Qr
r

r
r

r
rvv

vr
v

vr

Y
YHm

mY
YHmm

mm

Y
YHmeme

HeY
vme

HeY
   

r

r

Y

Ym
H ⋅

−
⋅

=

∆

1

1

θ

         (2-34) 

Furthermore, the factor of variation in θ is indicated by 

1

1

−
⋅

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆

∆

∆

r

r

r

Ym
HY

Y

θ

θ

        (2-35) 

It is clear that ( θ∆∆ rr YY )  is associated with not only ∆θ but also the distance . An 

observation reveals that the farther the distance is, the larger the absolute value of 

rY

( ) θ∆∆ rr YY  

is. Some cases of different ∆θ are listed in Table 2-2. It is obvious that small changes in θ still 

affect the distance very much. 

 

Table 2-2 The effect on the distance by the variation in the inclined angle θ. 

( ) θ∆∆ rr YY  θ∆  

rY  (m)  

1° 2° 3° -1° -2° -3° 

10 0.148 0.349 0.635 -0.114 -0.205 -0.280 

20 0.349 1.072 3.472 -0.205 -0.341 -0.437 

30 0.634 3.465 -7.075 -0.280 -0.437 -0.538 

40 1.071 -29.827 -2.809 -0.341 -0.509 -0.608 

50 1.829 -4.409 -2.063 -0.392 -0.564 -0.659 

 

According to the above discussions, a conclusion is given that H∆ can usually be 

ignored because the variation in θ has the dominant effect on the distance. Such a concept is 

used throughout this thesis. 
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2.3 Stereo Cameras 

2.3.1 Relationship of main and sub stereo cameras 

This thesis will propose the framework of both top and bottom stereo cameras, namely 

main and sub cameras, respectively, as illustrated in Fig. 2.4. The top camera is the main 

image sensor used for the obstacle and lane detection. The lower sub camera is the auxiliary 

utilized only to detect the obstacle. 

 

 

Zr Zcm

 

Fig. 2.4 The relationship of main and sub stereo cameras. 

 

Yr

Ycs

Ycm

Main Camera
Ocm

Sub Camera 
Ocs

Hm ΔH

Hs 
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The relationship of homogeneous image, camera, and world coordinate systems, namely 

hmI
v

, hmC
v

, and hmW
v

, respectively, of the main image sensor is the same as what is described 

in (2-5) and (2-8), that is, 

       hmprojhm CI
vv

P=         (2-36) 

and       mhmrhm TWC
vvv

−= R        (2-37) 

where  is the 4×1 translation vector from O[ ′= 000 mm HT
v ] r to Ocm, the origin of the 

main camera coordinate system, and Hm is the distance between Or and Ocm. 

The relationship of homogeneous main and sub coordinate systems is the combination of 

one translation and one rotation, which is expressed as follows: 

       [ ]smhmchs TTCC
vvvv

−+= R       (2-38) 

where  is the 4×1 homogeneous sub camera coordinates,  is the 

4×4 homogeneous rotation matrix between main and sub cameras, and 

[ ′= 1cscscshs ZYXC
v ] cR

[ ]′= 000 ss HT
v

 

is the 4×1 translation vector from Or to Ocs, the origin of the sub camera coordinate system. 

Notice that 

       Sm HHH −=∆        (2-39) 

is the distance between Ocm and Ocs. 

Applying (2-36) through (2-38), the following equations are easily obtained 

       [ ]shrchs TWC
vvv

−= RR       (2-40) 

       [ ]shrcprojhsprojhs TWCI
vvvv

−== RRPP     (2-41) 

and       smhmprojhsprojc TTII
vvvv

−=− −−− 111 PPR      (2-42) 
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2.3.2 Main camera coordinates from pixel correspondence of stereo images 

Remember that  is the cR 44×  homogeneous rotation matrix between main and sub 

camera, as introduced in Section 2.3.1. Due to the pitch , roll, and yaw angles between main 

and sub cameras,  is similar to (2-10). For the simplification and the convenience,  is 

denoted by: 

cR cR

             (2-43) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

1000
0
0
0

222120

121110

020100

rrr
rrr
rrr

cR

and we know = . Thus (2-38) can be expanded as: 1−
cR cR′

     (2-44) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆+⋅+⋅+⋅
∆+⋅+⋅+⋅
∆+⋅+⋅+⋅

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆+=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
)(
)(
)(

11
222120

121110

020100

HZrYrXr
HZrYrXr
HZrYrXr

HZ
Y
X

Z
Y
X

cmcmcm

cmcmcm

cmcmcm

cm

cm

cm

c
cs

cs

cs

R

Furthermore, the following equations also hold true: 

   
)(
)(

121110

222120

HZrYrXr
HZrYrXre

Y
Zev

cmcmcm

cmcmcm
v

cs

cs
vs ∆+⋅+⋅+⋅

∆+⋅+⋅+⋅
== ,    (2-45) 

   
cm

cm
vm Y

Zev = ,            (2-46) 

and   
cm

cm
um Y

Xeu = .            (2-47) 

The above three equations can be represented by the following linear algebraic system 

( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ ∆⋅−⋅−
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
−

⋅−⋅⋅−⋅⋅−⋅

0
0

0
0

2212221221112010 Hervr

Z
Y
X

ue
ev

ervrervrervr vs

cm

cm

cm

mu

vm

vsvsvs
 (2-48) 

By Cramer’s rule, the solution is given:  

       
cm

cm
cm A

XX
det
det

=        (2-49) 

       
cm

cm
cm A

YY
det
det

=         (2-50) 

       
cm

cm
cm A

ZZ
det
det

=         (2-51) 
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where ( ) ( ) (
⎭
⎬
⎫

⎩
⎨
⎧

⋅−⋅+⋅−⋅+⋅−⋅= vvs
u

v
vsmvsmucm eervr

e
eervruervrveA 211120102212det )    (2-52) 

 ( ) vvsmcm eHervruX ⋅∆⋅⋅−⋅⋅−= 2212det          (2-53) 

 ( ) uvvscm eeHervrY ⋅⋅∆⋅⋅−⋅−= 2212          det         (2-54) 

 ( ) uvsmcm eHervrvZ ⋅∆⋅⋅−⋅⋅−= 2212det          (2-55) 

In summary it can be to obtain the main camera coordinates, Xcm, Ycm, and Zcm, on condition 

that the pixel correspondence of stereo image coordinates, um, vm, and vs, is given. 

 

2.3.3 Pixel correspondence of stereo images 

Multiplying both numerator and denominator of (2-45) by cmv Ye  together, another 

form is indicated as: 

)(

)(

)(

)(

)(
)(

121110

222120

121110

222120

121110

222120

cm
vmv

u

v
m

cm
vmv

u

v
m

v

cm
v

cm

cm
vv

u

v

cm

cm
u

cm
v

cm

cm
vv

u

v

cm

cm
u

v

cmcmcm

cmcmcm
v

cs

cs
vs

Y
Hevrer

e
eur

Y
Hevrer

e
eur

e

Y
He

Y
Zerer

e
e

Y
Xer

Y
He

Y
Zerer

e
e

Y
Xer

e

HZrYrXr
HZrYrXre

Y
Zev

∆
+⋅+⋅+⋅

∆
+⋅+⋅+⋅

=

∆
+⋅+⋅+⋅⋅

∆
+⋅+⋅+⋅⋅

=

∆+⋅+⋅+⋅
∆+⋅+⋅+⋅

==

   (2-56) 

In the same way,  is given su

   
)(

)(

121110

020100

cm
vmv

u

v
m

cm
vmv

u

v
m

us

Y
Hevrer

e
eur

Y
Hevrer

e
eur

eu
∆

+⋅+⋅+⋅

∆
+⋅+⋅+⋅

=      (2-57) 

Define two functions of three variables as follows: 

   noeo
e
emoonm ivi

u

v
ii ⋅+⋅+⋅≡ 210),,(PreDot      (2-58) 

   noeo
e
emoonm ivi

u

v
ii ⋅+⋅+⋅≡ 210),,(PostDot      (2-59) 
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where  is the inner product of ),,(PreDot ionm [ ]′210 iii ooo  and 
′

⎥
⎦

⎤
⎢
⎣

⎡
ne

e
em v

u

v . 

Let     
ci

vi Y
Hev ∆

≡∆          (2-60) 

where the suffix i denotes the main or sub camera. 

Hence (2-57) and (2-56) can be, respectively, described by: 

     
mmm

mmm
us vrrvu

vrrvu
eu

∆⋅+
∆⋅+

=
121

020

),,(PreDot
),,(PreDot

     (2-61) 

     
mmm

mmm
vs vrrvu

vrrvu
ev

∆⋅+
∆⋅+

=
121

222

),,(PreDot
),,(PreDot

.     (2-62) 

From the similar process, um and vm can be obtained as follows: 

     
),,(PostDot
),,(PostDot

1

0

ruv
ruveu

ss

ss
um =        (2-63) 

     
),,(PostDot

),,(PostDot

1

2

ruv
vruvev

ss

sss
vm

∆−
=       (2-64) 

where    { } { }mmmmvs vrrvuvev ∆⋅+∆⋅=∆ 121),,(PreDot     (2-65) 

 

 Part A: the condition of Zr = 0 

The relationship of Zr and the main camera coordinates can be found in (2-19): 

 ( )mcmcmcmr HZYXZ +⋅⋅+⋅⋅−⋅= βαβαβ coscoscossinsin     (2-66) 

Instead of (2-66), (2-67) results from the fact of Zr = 0 on the ground. 

 ( )mcmgcmgcmg HZYX +⋅⋅+⋅⋅−⋅= βαβαβ coscoscossinsin0     (2-67) 

where the suffix g indicates the ground of Zr = 0. 

By algebraic manipulations, mgv∆  can be determined, that is, 

 [ ]
⎭
⎬
⎫

⎩
⎨
⎧

+⋅−+⋅⎥⎦
⎤

⎢⎣
⎡∆

−=
∆

=∆ mgv
u

v
mg

mcmg
vmg ve

e
eu

H
H

Y
Hev α

α
β tan

cos
tan     (2-68) 

To summarize, it is able to determine the sub image coordinates, usg, and vsg, of the 

ground from (2-61) and (2-62) on condition that umg, vmg, and mgv∆  are known. 
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 Part B: the condition of the same Yr 

Given the pixel correspondence between both stereo images, i.e.  in the 

main image associated with  in the sub image, as illustrated in Fig. 2.5, if there 

exists  with  as same as that of , the goal is to find out its 

corresponding  in the sub image. 

) ,( P 11m1 mm vu

) ,( P 11s1 ss vu

) ,( P 22m2 mm vu rY m1P

) ,( P 22s2 ss vu

Applying (2-18) to the equality of  at  and  yields rY m1P m2P

  ( ) ( )mcmcmmcmcm HZYHZY +⋅+⋅=+⋅+⋅ 2211 sincossincos αααα    (2-69) 

and (2-69) implies 

     
11

2

2

1
tan
tan1

cmmv

mv

cm Yve
ve

Y
⋅

⋅+
⋅+

=
α
α        (2-70) 

By the definition of  in (2-60), it yields mv∆

     1
1

2
2 tan

tan
m

mv

mv
m v

ve
vev ∆⋅

⋅+
⋅+

=∆
α
α        (2-71) 

Since  is known from the pixel correspondence of  and ,  

can be derived from (2-61) and (2-62) by using (2-71) to get 

1mv∆ m1P s1P ) ,( P 22s2 ss vu

2mv∆ . 

 

 

Fig. 2.5 The corresponding pixels between main and sub images. 

 

Pm2 (um2, vm2) 

Pm1 (um1, vm1) 

Main Image Sub Image 

Ps2 (us2, vs2) 

Ps1 (us1, vs1) 
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 Part C: the condition of the same Xr 

In this case, the target is to determine  associated with  

whose  is the same as that of . 

) ,( P 22s2 ss vu ) ,( P 22m2 mm vu

rX ) ,( P 11m1 mm vu

In the beginning,  in (2-14) is re-presented by rR

            (2-72) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

1000
0RRR
0RRR
0RRR

222120

121110

020100

rR

and  it is obvious that  = . And then (2-17) becomes 1−
rR rR′

     ( )HZYXX cccr +⋅+⋅+⋅= 201000 RRR      (2-73) 

Applying (2-73) to the equality of  yields rX

   220210200120110100 RRRRRR cmcmcmcmcmcm ZYXZYX ⋅+⋅+⋅=⋅+⋅+⋅  (2-74) 
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Substituting (2-75) into (2-74) yields 

   ( )
( ) 1

011

022
2 R,,PostDot

R,,PostDot
m

mm

mm
m v

vu
vuv ∆=∆         (2-76) 

Since  is given from the pixel correspondence of  and ,  can 

be determined from (2-61) and (2-62) by using (2-76) to get 

1mv∆ m1P s1P ) ,( P 22s2 ss vu

2mv∆ . 
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2.4 Calibration Principles 

2.4.1 Calibration on both stereo cameras 

The calibration on stereo cameras is a very important issue. The goal is to determine the 

relationship between both stereo cameras, and the result influences the accuracy of 3-D 

reconstruction. Once the calibration is finished, it is reasonable to suppose that the relative 

position between both cameras is invariant in use. 

For the application in this thesis, we wish that no rotation occurs between both cameras 

to avoid the matrix calculation for the real-time consideration. However, it is difficult to 

reduce to zero in whole for the pitch, roll, and yaw angles between both cameras. But it is sure 

that we do our best to minimize the angles as small as possible. 

The idea of the calibration is to transform both images into the same coordinate domain, 

and then to match the same objects in both images with each other. The ground on the road is 

an ideal choice for the pattern matching. As mentioned in Section 2.3.3, the transformation 

from the sub image coordinate system into the main image coordinate system is called 

“Vision Transform.” The road image is transformed from the sub image domain into the main 

image domain, and the ground in both images is coincided with each other after the 

calibration. 

Steps for the calibration on both stereo cameras are as follows: 

(1) Set up the main camera to satisfy that its optical axis is paralleling the ground, i.e. α = 0 

and β = 0. 

(2) Set up and regulate the sub camera by using Vision Transform to match the texture on 

the ground as possible, as displayed in Fig. 2.6. 

(3) After setting up both cameras, estimate the angles by completely matching the ground 

texture, and then the relationship between both cameras is determined. 
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Fig. 2.6 Calibratio
image. (c) The sub 
(d) The difference b
(a) 

 
(b) 

 
(c) 

 
(d) 
 
n on both stereo cameras. (a) The main (top) image. (b) The sub (bottom) 
image in (b) is mapped into the main image domain by Vision Transform. 
etween (a) and (c). 
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2.4.2 Calibration on the main camera and the road 

Due to the vibration in motion or the non-flat road surface, the pitch and roll angles, α 

and β, between the main camera and the road are always different. As discussed in Section 

2.2.1, there exist certain α and β in every local zone so that 0=rZ  is exactly the road plane. 

Here α and β for every local zone of 0=rZ  are interesting. 

Arrange (2-68) in another form: 
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If some data of , , and  are given, then the unknowns, , mgu mgv cmgY ( )mH ( )αβ costan , 

and ( )αtan− , of (2-77) can be solved by the least-squares method. However, as proposed in 

Section 2.2.3, the camera height has a smaller effect on the distance accuracy than the angles, 

and accordingly,  can be taken as a constant and be moved to the left side of (2-77). 

Again, (2-77) becomes 
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and two unknowns, ( )αβ costan  and ( )αtan−  can be solved according to the same way. 

Finally, both α and β can be determined by the coefficients of (2-78). 
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Chapter 3 Generic Obstacle Detection 

Since the preliminary knowledge of the computer vision has been proposed in Chapter 2, 

the algorithm of generic obstacle detection based on both stereo cameras will be introduced in 

this chapter. Two cameras are mounted top and bottom on the vehicle, and the top and bottom 

images captured by them are called the main and sub images respectively. Most manipulations 

are performed in the main image, and the sub image is used in the pattern matching. The 

details will be presented in the following. 

3.1 Overview 

Fig. 3.1 shows the flowchart of generic obstacle detection. The dashed blocks mean the 

successive detection mode and are not performed in the initial frame. In the beginning, the 

procedure of the preprocessing is executed in order to simplify the following detection. In the 

preprocessing, the road image captured by the main camera is segmented according to the 

gray levels and the so-called Minimum Ground in the main image is defined, which will be 

introduced in Section 3.4. 

Proceeding to the next process, the flow enters the principal detection loop. In this 

detection loop, the boundaries are determined one by one, and then they are discriminated 

between the ground and obstacle boundaries. The so-called obstacle boundaries are the 

interconnecting boundaries between the ground and obstacles, and the others are called the 

ground boundaries. The discrimination method will be presented in Section 3.6. 

The similar detection process is repeated until the Row Leader arrives at its ending. After 

that, all obstacle boundaries have been determined and then are updated for the detection in 

the next frame. The obstacle boundaries are divided into the motion and roadside boundaries 

according to their slopes. The boundaries with the sharp slopes are classified into the roadside 
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ones, and the others are the motion ones. And then the roadside boundaries are fitted to only 

the left and right roadside boundaries which can roughly bound the roadsides on the left and 

right sides of the lane. 

If the obstacles have been detected in the last frame, they will be tracked in the current 

frame before the regular detection loop. However, only the motion boundaries can be tracked. 

The obstacle tracking can stabilize the detection result and reduce the detection time. The 

details will be proposed in Section 3.7. 

 

START

Preprocessing 

 

Fig. 3.1 The flowchart of generic obstacle detection. 

 

Boundary Detection

Discrimination of 
Obstacle and Ground 

Boundaries 

Tracking 

End of 
Row Leader ?

frame ← frame + 1 

Updating 
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3.2 Image Segmentation by Thresholding 

In this section the goal is to segment the road image into several groups according to the 

gray levels. Given a grayscale image, the mean and variance within the region of interest 

(ROI) in the grayscale histogram , lh [ ]255 0,∈l , are respectively computed as: 
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where  is the gray level, L and H are, respectively, the low and high bounds of the ROI, and 

, , and  are, respectively, the zero, first, and second moments of the histogram to 

the origin, represented as follows: 
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   (the zero moment of histogram within class 1 to the origin)  (3-11) 
[ )
∑

∈

=
thlLl

lhM
,

1
0

and   (the first moment of histogram within class 1 to the origin)  (3-12) 
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∑

∈

⋅=
thlLl

l lhM
,

1
1

The above clustering process can be applied to each cluster iteratively until  or 22
thσσ ≤

[ ] thl l PhM ≤∑ ∈ 255,00 . The reason to bound the population within the ROI in the grayscale 

histogram is that the small class may be useless and be referred to the noise as detecting the 

obstacle in the road image. Therefore it is a benefit for the following processing to avoid the 

small cluster. 

On condition of a blaze of daylight or the illimitable highway the gray levels on the 

farther surface of the road are similar to those in the heavens, and hence both may be the same 

class after the clustering process. As the histogram in Fig. 3.2 (b), the farther surface and the 

sky are classified the same by the gray level, say . However, there exists a threshold, 

namely , meeting that , used to replace  for the separation 

between the road and the sky if  > . An example is demonstrated in Fig. 3.3. 

maxl

brightl brightll l Ph
bright

≥∑ =
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maxl

brightl maxl
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F
A

(

(

a) 

 

 
ig. 3.2 The grayscale histogram of a road image with a blaze on the farther road surface. (a) 
 road image with a blaze on the farther road surface. (b) The grayscale histogram of (a). 

b) 
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(a) 

(b) 

Fig. 3.3 An example of the road image segmentation by different thresholds. (a) The 
segmented image of Fig. 3.2 (a) by the threshold . (b) The segmented image of Fig. 3.2 (a) 
by the threshold . 

maxl

brightl
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3.3 Boundary Detection 

The goal of boundary detection is to determine the significant boundaries which could be 

the textures on the ground, the interconnection between the ground and obstacles, or the edges 

on the obstacles. Since the road image has been segmented as described in Section 3.2, the 

boundary is the connection of edge pixels between two different clusters. An example is 

displayed in Fig. 3.4. The detection process will be proposed later. 

3.3.1 Overview 

Since the boundary is composed of edge pixels between two different clusters, the idea 

of boundary detection is to determine an edge pixel at first, and then to expand it into a 

boundary, as illustrated in Fig. 3.4. 

In practice, a boundary is represented as the set of rows in the road image, and only one 

row per boundary column has to be recorded. Therefore, the size of each boundary can be 

simply regarded as the number of boundary columns. The target here is to determine the 

corresponding rows for each boundary column. 

In order to detect the edge pixel for the expansion, pixels are scanned row by row for 

every column. As shown in Fig. 3.4 (a), the row bound, namely the Row Leader, is to limit 

what the current row can not exceed while scanning the edge, which guarantees that the edge 

pixel with the lowest row among all columns is found out first. And the lowest boundary is 

then produced by expanding the lowest edge pixel. Consequently, all boundaries will be 

detected in order from bottom to top in the segmented image. 

The flowchart of boundary detection is shown in Fig. 3.5. If an edge pixel is found out at 

a certain column, the boundary is confirmed after the expansion process. A boundary is valid 

if its size is large enough, and it will be partitioned into several ones according to its 

disjunctive points, which will be introduced later. 
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(a) 

(b) 

(c) 

(d) 

Fig. 3.4 An example of boundary detection. (a) The current row can not exceed the Row 
Leader while scanning the edge. (b) The edge pixel of the lowest row is detected first. (c) The 
boundary is determined by expanding the edge pixel. (d) The final extended boundary. 
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If no boundary is determined for a specific Row Leader, the Row Leader moves up, and 

then a new iteration is run. This process is repeated until any valid boundary is found out or 

the Row Leader arrives at its ending. 

 

START

Edge Detection 

Edged ?

Boundary Expansion

Valid ?

Boundary Partition 

column ← column+1

End of 
column ?

column←beginning column

Boundary 
Detected ? 

End of 
Row Leader ? 

Move up the 
Row Leader 

END  

Fig. 3.5 The flowchart of boundary detection. 
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3.3.2 Edge Detection 

As mentioned above, an edge is mode up of two different clusters in the segmented 

image. And an edge pixel is defined as the upper one of two pixels with different clusters. The 

edge detection is to determine an edge row for a given column on condition of 

. The edge row corresponding to the given column is searched from the 

row of the last iteration to the Row Leader, and this process is terminated when an edge pixel 

is found out. Fig. 3.6 shows the flowchart of edge detection. 

LeaderRowrow  ≤

 

START

 

Fig. 3.6 The flowchart of edge detection. 

 

 

END

LeaderRow row ≤
?

Discontinuous 
?

row ← row + 1 

row ← last row 
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3.3.3 Boundary Expansion 

Given an edge pixel, the boundary can be leftward and rightward extended according to 

the same cluster. An 8-directional connecting process is used to extend the boundary. Fig. 3.7 

indicates the direction numbers. Since the expanded edge pixel is the upper one whose cluster 

differs from that of the lower one, its direction number can be initialized to 0. And then the 

boundary is extended leftward and rightward by searching for the ways clockwise and 

counterclockwise, respectively. 

4

5 3

6 2

7 1

0
 

Fig. 3.7 The direction numbers for the 8-directional connecting process. 

 

The expansion process stops on some conditions stated as follows: 

(1) The current searching pixel comes back to the beginning entry. 

(2) A U-turn is too deeper because two similar boundaries are closer very much. Fig. 3.8 (a) 

displays such an example. 

(3) There are too many steps of the vertical motion at a time. It could be the case of the 

vertical boundary on the obstacles, which is not desired, as shown in Fig. 3.8 (b). 

 

Finally, it is necessary to notice that only the lowest rows for every columns of the 

boundary have to be recorded. 
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Fig. 3.8 Some rest
vertical steps. 
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3.3.4 Boundary Partition 

After the expansion process, it can obtain a set of connective pixels, which could be 

regarded as what is composed of several quasi-straight lines. In this procedure, the extended 

boundary is partitioned into several quasi-straight ones according to their interconnecting 

points. 

A quasi-straight boundary is smooth, and a disjunctive pixel is defined as the 

interconnecting point of two adjoining boundaries, which form an angle φ  satisfying thφφ < , 

as illustrated in Fig. 3.9. After partitioning a divisible boundary into several ones, some of 

them are erased if their sizes are invalid, and the others are recorded as new boundaries, as 

shown in the flowchart of boundary partition in Fig. 3.10. 

 

q1 

 

Fig. 3.9 The disjunctive point, p, satisfies thφφ < . 

 

A well-known formula is used to calculate the angle φ  
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However, instead of (3-13), another form is utilized to avoid the computation of square roots : 
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where =1 if , -1 if )(xsign 0≥x 0<x . The point p is said disjunctive on condition of 

( ) ( ) thsign φφφ 22 coscoscos −>⋅ . 

 

 

START

Divisible ?

 

Fig. 3.10 The flowchart of boundary partition. 
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3.4 Preprocessing 

3.4.1 Overview 

Since the objects in the road image can be divided into two parts, i.e. obstacles and the 

ground, the topic of obstacle detection is reduced to the issue of removing all the ground in 

the road image. However, it is difficult to do so, but the problem of obstacle detection can be 

simplified by removing the likely-known ground, namely the Minimum Ground, which will be 

presented in Section 3.4.2. 

The flowchart of the preprocessing is shown in Fig. 3.11. In the beginning, the road 

image is segmented by thresholding the histogram, as described in Section 3.2. In this step, a 

smaller threshold, , of the between-class variance is chosen to generate much more 

clusters so as to ensure no loss of the interconnecting boundaries between the ground and 

obstacles. 

2
thσ

START

First Image Segmentation 

Second Image Segmentation 
Without Minimum Ground

Determination of  
Minimum Ground 

END  

Fig. 3.11 The flowchart of the preprocessing. 
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(a) 

(b) 

Fig. 3.12 An example of the preprocessing. (a) The original road image. (b) After the first 
image segmentation. 
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(c) 

(d) 

Fig. 3.12 An example of the preprocessing. (c) The road image with the Minimum Ground. 
(d) After the second image segmentation without the Minimum Ground. 
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To proceed, the Minimum Ground is determined, and thus the location of the minimum 

rows for every column is known. Since the Minimum Ground is defined, its effect on the 

grayscale histogram can be removed, and thus the obstacles occupy most of the remainder. 

Again, a new segmentation by thresholding the reshaped histogram is performed, and a 

greater  is chosen to create fewer clusters without classifying the obstacles too much. 2
thσ

An example is demonstrated in Fig. 3.12. It is obvious that much less noise on the 

obstacles after the second clustering process, and it is a benefit for the following obstacle 

detection. 

 

3.4.2 Minimum Ground 

In this section the approach to determine the Minimum Ground is proposed. At first, three 

assumptions are given as follows: 

(1) The ground and obstacles on the road are interconnected. 

(2) The interconnection between obstacles and the ground is visible in the road image. 

(3) The artifacts in the road image, such as other vehicles and textures on the ground, 

contain some quasi-horizontal lines [5]. 

 

By upwardly searching the edge pixels for every column in the road image, the 

first-detected pixels with a grater gradient are called the minimum rows, which could belong 

to the textures on the road surface or the interconnecting boundaries between the ground and 

obstacles. In consequence, there exists only one minimum row per column, and all minimum 

rows in every column enclose a region of the ground, which is exactly the Minimum Ground, 

see Fig. 3.12 (c). 
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In order to determine the Minimum Ground, the technique of boundary detection is used 

to determine the ground boundaries. The overall image is scanned, and boundaries are 

generated one by one. A new detected boundary is preserved if its gradient is greater enough, 

or it is erased if not. While detecting the boundaries, the columns inside the existed 

boundaries are never scanned. Finally, only one row per column is recorded, and these rows 

enclose the region of the Minimum Ground. 

As shown in Fig. 3.13 (a), the boundary gradient is computed by 

[ ]

sizeboundary 

),(),(
)boundary( boundary column 1

⋅
⎭
⎬
⎫

⎩
⎨
⎧ −−+

=
∑ ∑
∈ =

N

irowcolumnGirowcolumnG
Grad

N

i   (3-15) 

where  is the gray level of the pixel at (c, r) and N is the neighbor size of the 

boundary. The neighbor size N is adaptive and is determined from three steps: 

),( rcG

(1) Divide the boundary into four parts of the same spacing by three points; see Fig. 3.13 (b). 

(2) Scan upwardly the pixels row by row in the segmented image from these three points, 

respectively, until the different clusters are met. 

(3) Choose the maximum size of three scanning lines as the neighbor size N. 

 

 
Fig. 3.13 The boundary gradient. (a) The illustration of (3-15). (b) Divide the boundary into 4 
parts by 3 points. The size of the longest scanning line at the starting point A is chosen as the 
neighbor size N. 

 

A
B

C + 

- 

longest

NN 
boundary boundary 

(b) Divide the boundary into 4 parts 
by 3 points. The size of the longest 
scanning line at the starting point A 
is chosen as the neighbor size N. (a) The illustration of (3-15). 
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3.5 Estimation of Pith and Roll Angles between the Main Camera 

and the Ground 

3.5.1 Overview 

Due to the vibration in motion or the non-flat road surface, the pitch and roll angles, i.e. 

α  and β , between the main camera and the ground are time-variant. As mentioned in 

Section 2.4.2, (2-78) can be utilized to estimate α  and β  if given some data of , , 

and . And  can be determined from (2-50) if the pixel correspondence of stereo 

image coordinates, , , and , is known. Therefore, the pixel correspondence of 

stereo images must be determined first for the purpose of estimating 

mgu mgv

cmgY cmgY

mgu mgv sgu

α  and β . 

Given a ground boundary, ( ){ }pixelsboundary   , ∈ivu i
mg

i
mg , of the main image, its 

corresponding ground boundary, ( ){ }pixelsboundary   , ∈ivu i
sg

i
sg , of the sub image can be 

determined by searching the sub image and matching ( )i
sg

i
sg vu ,  with ( )i

mg
i
mg vu , . After that, 

the pixel pairs of stereo images are confirmed and then α and β can be estimated from (2-78). 
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3.5.2 Similarity measure based on normalized correlation coefficient 

A pixel pair of stereo images is said the pixel correspondence if their corresponding 

blocks of neighbor pixels are similar. Let the neighbor blocks in the main and sub images be, 

respectively, the 1)(2N  1)(2M +×+  image arrays, ( )jvium mm ++ ,  and ( )jvius ss ++ , , 

NN- M,M- ≤≤≤≤ ji . The goal in this section is to develop a measure of the similarity 

between  and ( )jvium mm ++ , ( )jvius ss ++ , . 

The so-called normalized correlation coefficient, defined as 
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is an appropriate similarity measure which is not too sensitive to illumination changes [21], 

where m  and s  are the means of ( )jvium mm ++ ,  and ( )jvius ss ++ , , respectively. Two 

neighbor blocks ( )jvium mm ++ ,  and ( )jvius ss ++ ,  are highly correlated if 

 approximates to 1, and in this case ),,,( ssmm vuvuNCC ( )mm vu ,  and  are the 

corresponding pair. 

( ss vu , )

(3-16) can be exploited to generate more accurate and reliable results but would lead to a 

high computational load. Some steps are taken into account for the simplification. Consider 

the following. 
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Hence (3-16) is reduced to 
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In implementation, squaring (3-19) and taking its sign into account yield the signed square 

normalized correlation coefficient, i.e.  
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  (3-20) 

 

where =1 if , -1 if )(xsign 0≥x 0<x . Paying attention to (3-20), it is clear that 

(1) The computation of square roots is eliminated. 

(2) Both  and  can be determined from a look-up table of size 256 since the gray 

level ranges from 0 to 255. 

2
ijm 2

ijs

(3) All terms of (3-20) can be confirmed simultaneously in only one loop of traveling 

throughout the neighbor blocks. 

(4) (3-20) is still scaled in the -1 to 1 range. 

As a consequence, (3-20) is used for the similarity measure in practice. 
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3.5.3 Logarithmic search for pattern matching 

In order to determine the pixel correspondence, the neighbor block ( )jvium mm ++ ,  i

)

n 

the main image is superimposed on the sub image and it is translated to all possible positions 

 within it in order to locate the maximum correlation. Due to the fact that two cameras 

are mounted top and bottom, respectively, and that the angles between them are made small as 

possible during the calibration process, the pattern search can be restricted to the 

one-dimensional vertical direction. 

( ss vu ,

The initial searching center ○1 (r, k) = (4, 2) 

○2 (r, k) = (2, 1) 
The matched pixel

○3 (r, k) = (1, 0) 
 

Fig. 3.14 The 1-D logarithmic search in the case of r = 4 (k = 2). 

 

However, the 1-D full search still traverses too many possibilities to save the 

computational time. It is better to use the 1-D logarithmic search to reduce the possibilities 

[22]. The searching location is initialized to the center of the vertical path of size 14 −r , 

where kr 2= , k is a non-negative integer. Fig. 3.14 demonstrates the case of 4=r  ( 2=k ). 

The computation of (3-20) is first performed at the center as well as the two points located at 

a radius of r pixels. After that, the center is moved to the point of the maximum correlation 

and  ( ). The process is repeated and finally the computation is performed at 2/rr = 1−= kk
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the two points at a radius of r = 1. The matched pixel ( )ss vu ,  is located where its correlation 

is the maximum among these three points. It is obvious that the number of computations is 

 operations for the 1-D full search and is reduced to  for the 1-D 

logarithmic search. 

124 −⋅ k 1)1(2 ++k

As we know, the number of operations for the 1-D logarithmic search is associated with 

the initial radius r. If the probable location of the matched pixel is able to be predicted, a 

smaller r will be initialized so as to decrease the searching cost. 

Since the corresponding pixels on the ground on the condition of  are desired, in 

the ideal case of 

0=rZ

0=α  and 0=β , (2-68) becomes 

      mg
m

mg v
H

Hv ⋅
∆

−=∆         (3-21) 

Hence, after substituting (3-21) into both (2-61) and (2-62), the corresponding pixels 

( )sgsg vu ,  in the sub image can be obtained. In our case that cmHm  172= , , 

, 

cmHs  117=

cmH  55=∆ °−= 7.0cα , °= 0cβ , and °= 2.0cγ , where the subscript c denotes the angles 

between both stereo cameras, the predicted offset of mgsg uu −  approximates a constant of -5 

and the 1-D -predicting table for each  is listed in Table 3-1. By analyzing several 

images, it is concluded that the maximum absolute difference of  between the real and 

predictive cases is about 6 pixels, and therefore the initial radius of 

sgv mgv

sgu

4=r  is used in the 

logarithmic search. 

In conclusion, the 1-D look-up table of predicting the  corresponding to the , 

and the constant offset. i.e. -5 pixels, of 

sgv mgv

mgsg uu −  are both exploited to locate the initial 

center of the 1-D logarithmic search with the initial radius of 4=r , which achieves the 

low-cost and highly-accurate matching process. 
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Table 3-1 The look-up table of predicting the  for every . sgv mgv

vmg 
vsg

    0   -1   -2   -3   -4   -5   -6   -7   -8   -9  -10  -11  -12  -13  -14
  -20  -20  -21  -22  -22  -23  -24  -25  -25  -26  -27  -27  -28  -29  -29

vmg 
vsg

  -15  -16  -17  -18  -19  -20  -21  -22  -23  -24  -25  -26  -27  -28  -29
  -30  -31  -32  -32  -33  -34  -34  -35  -36  -36  -37  -38  -39  -39  -40

vmg 
vsg

  -30  -31  -32  -33  -34  -35  -36  -37  -38  -39  -40  -41  -42  -43  -44
  -41  -41  -42  -43  -43  -44  -45  -46  -46  -47  -48  -48  -49  -50  -50

vmg 
vsg

  -45  -46  -47  -48  -49  -50  -51  -52  -53  -54  -55  -56  -57  -58  -59
  -51  -52  -53  -53  -54  -55  -55  -56  -57  -57  -58  -59  -60  -60  -61

vmg 
vsg

  -60  -61  -62  -63  -64  -65  -66  -67  -68  -69  -70  -71  -72  -73  -74
  -62  -62  -63  -64  -64  -65  -66  -67  -67  -68  -69  -69  -70  -71  -71

vmg 
vsg

  -75  -76  -77  -78  -79  -80  -81  -82  -83  -84  -85  -86  -87  -88  -89
  -72  -73  -74  -74  -75  -76  -76  -77  -78  -78  -79  -80  -81  -81  -82

vmg 
vsg

  -90  -91  -92  -93  -94  -95  -96  -97  -98  -99 -100 -101 -102 -103 -104
  -83  -83  -84  -85  -85  -86  -87  -88  -88  -89  -90  -90  -91  -92  -92

vmg 
vsg

-105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119
 -93  -94  -95  -95  -96  -97  -97  -98  -99  -99 -100 -101 -102 -102 -103

vmg 
vsg

 -120 -121 -122 -123 -124 -125 -126 -127 -128 -129 -130 -131 -132 -133 -134
 -104 -104 -105 -106 -106 -107 -108 -109 -109 -110 -111 -111 -112 -113 -113

vmg 
vsg

 -135 -136 -137 -138 -139 -140 -141 -142 -143 -144 -145 -146 -147 -148 -149
 -114 -115 -116 -116 -117 -118 -118 -119 -120 -120 -121 -122 -123 -123 -124

vmg 
vsg

 -150 -151 -152 -153 -154 -155 -156 -157 -158 -159 -160 -161 -162 -163 -164
 -125 -125 -126 -127 -127 -128 -129 -130 -130 -131 -132 -132 -133 -134 -134

vmg 
vsg

 -165 -166 -167 -168 -169 -170 -171 -172 -173 -174 -175 -176 -177 -178 -179
 -135 -136 -137 -137 -138 -139 -139 -140 -141 -141 -142 -143 -144 -144 -145

vmg 
vsg

 -180 -181 -182 -183 -184 -185 -186 -187 -188 -189 -190 -191 -192 -193 -194
 -146 -146 -147 -148 -148 -149 -150 -151 -151 -152 -153 -153 -154 -155 -155

vmg 
vsg

 -195 -196 -197 -198 -199 -200 -201 -202 -203 -204 -205 -206 -207 -208 -209
 -156 -157 -158 -158 -159 -160 -160 -161 -162 -162 -163 -164 -165 -165 -166

vmg 
vsg

 -210 -211 -212 -213 -214 -215 -216 -217 -218 -219 -220 -221 -222 -223 -224
 -167 -167 -168 -169 -169 -170 -171 -172 -172 -173 -174 -174 -175 -176 -176

vmg 
vsg

 -225 -226 -227 -228 -229 -230 -231 -232 -233 -234 -235 -236 -237 -238 -239
 -177 -178 -179 -179 -180 -181 -181 -182 -183 -183 -184 -185 -186 -186 -187

vmg 
vsg

-240  -241  -242  -243  -244  -245  -246 
-188  -188  -189  -190  -190  -191  -192 

 

 

 

 

50 



CHAPTER 3 GENERIC OBSTACLE DETECTION 

3.6 Discrimination of Obstacle and Ground Boundaries 

After the process of boundary detection in Fig. 3.1 is performed, the boundaries are 

generated one by one, and the flow proceeds to the discrimination process. In this section it is 

ready to propose the method to distinguish if a given boundary is an obstacle boundary or not. 

Since the given boundary in the road image is quasi-horizontal, there may be another 

boundary above the given boundary. Hence the given boundary and its corresponding top 

boundary in the main image are called the bottom and top boundaries, namely  and , 

respectively, as illustrated in Fig. 3.15. A simple criterion to judge if the bottom boundary is 

the obstacle boundary is to judge if its corresponding top boundary is located above the 

vanishing line. If most of pixels within the top boundary are located above the vanishing line 

or even if there exists no top boundary with respect to the bottom boundary, then the bottom 

boundary is exactly the obstacle boundary. 

mbB mtB

Fig. 3.16 shows the flowchart of the discrimination process. If most of pixels within the 

top boundary are below the vanishing line, it is necessary to distinguish the bottom boundary 

by extra methods. 

 

Fig. 3.15 The bottom boundary and its corresponding top boundary. 

Vanishing Line 

Bmb：Bottom Boundary 
Bmb：Bottom Boundary

Bmt：Top Boundary

Bmt：Top Boundary 

Ground 

Heaven 

Main Image 
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At first, the calibration process is performed. Since the obstacle boundary is the 

interconnection between the ground and obstacles, it is believed that the bottom boundary is 

located on the ground no matter what it is. Therefore, its corresponding bottom boundary in 

the sub image can be found out by the logarithmic search, and then the pitch and roll angles 

can be determined, as described in Section 3.5. 

 

START

Top Boundary Detection
( ) mtB

Large Heaven 
Size ? 

Calibration 

Determination of  
Two Predicted 

Boundaries  
in the Sub Image,  
i.e. g

stB  and o
stB  

),( o
stmt BBnCorrelatio >

?),( g
stmt BBnCorrelatio

Obstacle 
Boundary 

Ground 
Boundary 

END  

Fig. 3.16 The flowchart of the discrimination process. 
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If the bottom boundary is the ground boundary, its corresponding top boundary is 

another bottom boundary; in words, the top boundary is located on the ground, which satisfies 

the condition of . Thus the corresponding top boundary in the sub image, namely , 

is on the ground and can be predicted by applying (2-68) to (2-61) and (2-62), as presented in 

Section 2.3.3 (Part A). 

0=rZ g
stB

If the bottom boundary is the obstacle boundary, its corresponding top boundary must be 

not the ground boundary. In this case, the top and bottom boundaries could belong to the same 

obstacle, and the corresponding pixels within these two boundaries satisfy the condition of the 

same . Hence the corresponding top boundary in the sub image, namely , belongs to 

the obstacle and can be predicted by substituting (2-76) into (2-61) and (2-62), as presented in 

Section 2.3.3 (Part C). 

rX o
stB

The correlation between two boundaries of the same size, represented as 

, is defined as the signed square normalized correlation coefficient of 

their corresponding blocks of neighbor pixels, as described in (3-20). The neighbor block of 

the boundary is the zone enclosed by two vertical lines and two parallel shifting boundaries, 

as illustrated in Fig. 3.17. As soon as  and  are determined,  

and  can be computed. Therefore the bottom boundary in the main 

image is referred to the obstacle boundary if , or 

else the ground boundary. 

)2,1( BBnCorrelatio

g
stB o

stB ),( g
stmt BBnCorrelatio

),( o
stmt BBnCorrelatio

),(),( g
stmt

o
stmt BBnCorrelatioBBnCorrelatio >

Main Image Sub Image 
N N 

boundary boundary Correlated ? 

 

Fig. 3.17 The neighbor block of the boundary. 
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3.7 Motion Boundary Tracking 

If the obstacles have been detected in the last frame, they will be tracked in the current 

frame. The detected obstacle boundaries can be classified into the motion and roadside 

boundaries according to their slopes. Since all roadside boundaries, i.e. the obstacle 

boundaries of sharp slopes, have been fitted to two left and right ones in the last frame, they 

will not be tracked in the current frame. Hence the tracking process is applied to only the 

motion boundaries. 

The new boundaries in the current frame are sought out one by one in the neighborhood 

of a given motion boundary detected in the last frame, and the tracking succeeds if the new 

detected boundary and the given motion boundary are highly correlated. Since the size of the 

motion boundary in the last frame may be different from that of the new detected boundary in 

the current frame, the dimensions of their neighbor blocks may not be the same. However, due 

to the smooth variation of gray levels along the direction of the parallel boundary, each mean 

gray level along the parallel boundary of different vertical spacing can be evaluated, which 

forms a vector of mean gray levels, see Fig. 3.18. And the correlation between the mean 

vectors of two boundaries of different sizes can be computed from (3-20). In consequence, the 

tracking succeeds if the mean vectors of the new detected boundary and the given motion 

boundary are highly correlated. 

boundary 

…
…

Mean Vector 
 of Gray Levels  

Fig. 3.18 The mean vector of the boundary. 
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Chapter 4 Lane Detection 

In this chapter the algorithm of lane detection will be presented. Since the obstacles have 

been determined as mentioned in Chapter 3, the ground part of the top image will be utilized 

to detect the lane without the disturbance of obstacles. In addition, the lane detection system 

can also independently work without the aid of obstacle detection by using a single camera. 

The details will be proposed soon. 

4.1 Overview 

The algorithm of lane detection will be developed in this chapter. The target of lane 

detection is to determine information about the lane, such as the offset, the orientation, or the 

curvature. The lane detection system can immediately warn the drivers of the danger if their 

vehicles are straying from the correct way or can provide the controller of the automatic 

vehicle with the lane information. 

Since the structured roads are met in most practical cases, this thesis focuses on the 

detection of marking roads where lane markings are painted on the road surface. Some 

significant features of such a structured marking road are listed as follows: 

(1) The structured lane geometry. 

(2) The constant lane width. 

(3) The constant marking width. 

(4) The higher gray levels on the markings. 

(5) The continuity of the lane markings. 

Based on these features, a robust lane model is fitted into the lane geometry and the 

detection regions of interest (ROIs) are predicted and specified to narrow the searching area 

of lane markings of a constant width. Due to the constant lane width, the 3-D lane geometry 
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can be reconstructed by the computer vision. 

e exploited to assist in detecting 

the lane in the current frame since the variation of the lane between two successive frames is 

assum

 detection fails, and then the flow goes back to the 

ting once more. The details will be presented later. 

In addition, the lane parameters of the last frame can b

ed slight according to the continuity. The flowchart of lane detection is displayed in Fig. 

4.1. The process of lane detection is initially performed in the single mode without any lane 

information. After that, the lane parameters are updated, and the flow enters the successive 

mode to detect the lane by using the updated knowledge of the last frame. The process is 

repeated in the successive mode until the

single mode to try detec

START

Lane Detection  
in the Single Mode

Detected ?

Lane Detection  
 the Successive Modein

 

Fig. 4.1 The flowchart of lane detection. 

frame ← frame + 1 

frame ← frame + 1 

Detected ?
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4.2 Geometric Lane Model 

4.2.1 Parabolic polynomial 

sented by the arcs 

of sm  form 

      rrr        (4-1) 

is applied to the global geometric lan equently, the topic of lane detection is 

reduced to the issue of determining the coefficients

Some assumptions are made here that 

Since the lane model can stabilize the detection results against the interferences such as 

shadows, textures, or other vehicles [12-14], a global geometric lane model is used in the lane 

detection system in this thesis. Such a lane model can also be utilized to predict where the 

lane markings are by computer vision, which thus increases the accuracy of lane detection. 

Since the lane boundaries on the structured marking road can be repre

all curvatures, a parabolic polynomial of the

bYmYkX +⋅+⋅= 2

e model. And cons

) , ,( bmk . 

β  approximates to zero and that θ  is the angle 

included by the inclinations of the ca he road, as mentioned in Section 2.2.1. 

Therefore, the equations of (2-25) throughout (2-30) still hold true. 

Substituting (2-28) and (2-29) into (4-1) yields 

    

mera and t

( )vme
e
ebemH uv ⋅⋅+⋅+

Hvme
eeku v

v
u

v

u −⋅
−⋅
⋅⋅⋅

= θ
θ

     (4-2) 

(4-2) represents the lane model in terms of the image coordinates as well as the road 

inclination, , which is applied t road. 

Let  and 

) ,( vu  

θm  to the case of the non-fla

( )LrLrLrL ZYXP  , ,= ( )RrRrRrR ZYXP  , ,=  be the world coordinates respectively 

located on the left and right sides of the lane separated by a distance equal to the lane width 

. The corresponding middle point on the lane axis is W ( ) 2RLM PPP += . Assume that RL PP  

is parallel to the -axis so rX WXX LrRr =−  and MrLrRr YYY ==  as well as that no torsion 

occurs on the road so MrLrRr ZZZ == . Let , and  be the image ),( LL vu , ),( RR vu ),( MM vu
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coordinates associated with , , and , respectively. The following equations can be 

obtained [18]. 

L RP P MP

( )      
MrY2

      

Mr
uMLR

Xeuuu ==+
1       (4-3) 

MrMr

LrRr

Y
W

Y
XX

uuLR eeuu =
−

=−      (4-4) 

      
Mr

Mr
vMLR Y

evvv HZ −
===       (4-5) 

Furthermore, (4-3) throughout (4-5) can also induce 

      
LR

M
Mr uu

WuX
−
⋅

=           (4-6) 

      
LR uu

W
−uMr eY =         (4-7) 

      
v

u

LR

M
Mr e

e
uu
WvHZ ⋅

−
⋅

+=        (4-8) 

Substituting (4-6) and (4-7) into (4-1) yields 

   ( ) [ ] [ ] ( ) ( )22
LRLuuLRM emWekuuu ⋅+⋅⋅=− R uu

W
buu −⋅⎥⎦

⎤
⎢⎣
⎡+−⋅   (4-9) 

ys

he various environments. 

nc predict the lane tendency and to result in 

the c . The details will be presented la

 can be rewritten as

wh

  xy =0    

Both (4-2) and (4-9) represent the lane model in the image coordinate s tem. (4-2) is 

available if θm  is given. (4-9) results from the assumption of the constant lane width, i.e. 

W . In fact, both θm  and W  can not be determined exactly in t

He e, a combination of (4-2) and (4-9) is made to 

alibration on both m ter. θ  and W

4.2.2 Prediction of lane tendency 

(4-9)  

      2
210 uCuCCU xyxyxy ∆⋅+∆⋅+=      (4-10) 

ere 

     Weu ⋅⋅ 2     (4-11) kC
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       uxy eC m ⋅=1         (4-12) 

W
bCxy =2               (4-13) 

       ( )LRM uuuU −=        (4-14) 

       ( )LR uuu −=∆     

Ru  are given, the coeffi

east-squares approximation. Accordingly, 

the 

image domain can be obtained from (4-2). 

On the other hand, since u is a function of v in (4-2), it is denoted as . The 

first in powers of 

    (4-15) 

If some data of the pair ( Lu cients, 0xyC , 1xyC , and 2xyC , of ),

(4-10) can be determined by means of the weighted-l

unknowns ) , ,( bmk  of (4-2) can be further confirmed so that the lane tendency in the 

)(vfu =

-order Taylor polynomial for )f  ( evv −  is represented as 

      ()(~
evfvf = )()() ee vvvf −⋅′+      (4-16) 

whe

 

re 

     
( ) v

u

ev

vu
e

ebHeekvf ⋅−
eHvme −⋅

⋅⋅⋅
=′ 2)(

θ

     (4-17) 

is the first de tive of f  at . 

If few pairs of ), eters ) , ,( bmk  evaluated from (4-10) may 

be inaccurate, so that there is a certain error in the lane tendency in the image domain 

predicted from (4-2). N les , few data still contribute the info

riva

are given, the param

everthe s rmation to the lane 

cy in a small specific region of the image is just 

expected, (4-16) can be performed to obtain the approxim tion by expanding  about the 

coor cific region of the image. 

t and right sides of the lane ca

cing  with 

ev

( RL uu  

tendency around them. If the lane tenden

a f

dinate v  close to the spee

Eventually, note that both lef n also be predicted from (4-16) 

b 2Wb m , respectively, i.e. by repla

⎪⎩

⎪
⎨
⎧ −

=
)sideleft (Wb

b      (4-18) 
=+

=

)sideright (    ,2

    ,2

RiifWb

Liif
i    

59 



CHAPTER 4 LANE DETECTION 

4.3 M

The task of marking detection is to detect such marking pixels lying on both sides of the 

lane in the r can be characterized by two in

(1)

e marki as t rod  hig

(2)  system

e. An e rated in Fig. 4.3 

s could slightly vary in diffe

e considered the same. In general, the marking width ranges from 10 

cm to 30 cm, and is referred to 20 cm in this thesis. Since the lane markings will be 

detected in the image coordinates, the constant marking width in the world domain 

in the image domain from (2-32), as 

arking Detection 

oad image. The lane markings trinsic factors: 

 The gray levels of the markings are greater than those of the road surface. There exist the 

sharper edges between th ngs and the road surface, so o p uce the her 

gradients located at the edges. Since only the vertical edges are interesting, the 3×3 mask 

shown in Fig. 4.2 is used to compute the gradients. Notice that the maximum gradients 

are located at the darker pixels. 

All widths of the markings are thought constant in the world coordinate  since 

they are artificially painted on the road surfac xample is demonst

Of course the marking width rent areas, but all of them in a 

certain zone can b

WM  

im  can be transformed into its corresponding width 

described in Section 2.2.2. See Fig. 4.3. 

 

121 −

121 −

121 −
 

Fig. 4.2 The 3×3 mask for determining the gradients of the vertical edges. Note that the 
maximu ocated at the darker pixels. m gradients will be l
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(

F
im
m

(

a) The original road image. 

 

(b) The marking in 

system. 

c) The top view of (a). 

the image coordinate 

mi 
ig. 4.3 The constant marking width in the world coordinate system
age. (b) The marking in the image coordinate system. (c) The top

arking in the world coordinate system. Its width is approximate

 

 

 

WM  
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(d
the world coordinate

) The marking in

system. Its width is
 
. (a) The original road 
 view of (a). (d) The 
ly constant. 

constant. 
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B re of the lane markings, the following steps are performed to 

detect the marking, as illustrated in Fig. 4.4. 

(a) Fig. 4.4 (a) shows the marking with the greater intensity and its horizontal profile for a 

given scanning line. It is clear that the intensity of the marking is greater than that of the 

road surface. 

(b) Due to the higher brightness on the marking, the detection is base

of horizontal dark-light-dark (DLD) intensity transitions [16]. In t  the point M is 

said to be situated at the location of the DLD-transition if its intensity  is greater 

than those at its horizontal left

For a given scanning line, this process sear  the DLD-transition 

u ound out or the scanning arrives at its ending. Go to step (c) if one 

transition is determined, or else exit. 

(c) Two maximum gradients  and  within the intervals of  and 

are determined at the points L and R respectively by the mask in Fig. 

a possible marking region 

ased on the intrinsic natu

d on the determination 

his thesis

MI

2/im , see Fig. 4.4 (b).  and right neighbors by a distance 

ches for the location of

ntil one transition is f

LG RG [ )MmM i   ,2/−

( ]2/  , imMM +  

4.2, and thus enclose ( )RL, , as illustra

(d) Go to step (e) if the distance between L and R is greater than the 

ted in Fig. 4.4 (c). 

threshold thLR , or else 

go back to step (b). The threshold thLR  is related to the mini ble marking 

width in the image domain, and usually it is the half of . 

(e) If the mean intensity 

mum possi

im

( )RL, RI  I  within  is greater than LI  and resp ely, then 

the marking is determined and thus return the center of

ectiv

 ( )RL, . If not, there could be 

some deeper valleys within ( )RL,  as figured in Fig. 4.4 (e). In the unsuccessful case, 

the flow goes back to step (c) in order to de ine a new possible marking term region. A 

ew maximum gradient is detected within ( )ML,  to replace if the mean intensity 

ithin is less than that within 

LG  n

( )ML,  ( )RM , , or else it is detected within  to 

place , which yields a new possible marking region. Proceeding in a similar 

shion, the process will exactly evaluate the marking for a given scanning line. 

( )RM ,w

RGre

fa

62 



CHAPTER 4 LANE DETECTION 

(a) 

 
Fig. 4.4 Steps of the marking detection. 

Searching for the point M satisfying 
I

R

that 2/imMM II −>  and 2/imMI +> . 

Two maximum gradients G

M

L and 
G within the intervals of 
[ )MmM i   ,2/−  and 

tively, and th
). 

( ]2/  , imMM +

are located respec us 
enclose a region (L, R

Yes 

The marking with the greater 
intensity than that on the road surface. 

The horizontal profile of the ideal 
marking for a given scanning line. 

No 

(b) 

No

Yes 

(c) 

thLRLR >  
? 

(d) 

RL IIII >∧>     
?

(e) 

2/im 2/im

2/imMI +2/imMI − LI MI RI

2/imM +2/im−M M RL

GR GL 

2/M +2/im−M M imRL

M RL

M RL
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4.4 Lane Detection in the Single Mode 

4.4.1 Overview 

Given a single frame, the topic in this procedure is to determine the lane without the aid 

of the last frame. In the beginning, there is no information about the lane. However, according 

to (4-1), the lane has been modeled as a quadratic polynomial with the coefficients ) , ,( bmk , 

whose probable ranges are as follows [14, 18]: 

      
)(    75.3~75.3:b

)09.0tan(~)09.0tan(:

)/1(   
600
1~

600
1

m
m

mk

−
−

−

      (4-19) 

Fig. 4.5 displays the probable marking ranges of both left 

Therefore, the area of marking detection at the initia

:

and right sides of the lane. 

l phase is restricted to these two ROIs. 

 

Fig. 4.5 The possible ranges of the markings on both sides of the lane at the initial state. 
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Since the probable ranges in the bottom of the image are the narrowest, the image plane 

is divided into n zones ordered according to the direction of the v-axis and the size of the first 

zone is greater, as shown in Fig. 4.6. The marking detection is performed zone by zone, from 

bottom to top in the image. 

ocess is iterated for each zone from bottom to 

arkings on both sides of the lane are found out, and the parameters  can be 

det  the detection results and 

The details will be described in the following. 

 

Fig. 4.6 The image is divided into n zones, and the markings are detected from bottom to up. 

 

As soon as the left and right markings in a certain zone are determined, an estimate of 

) , ,( bmk  is evaluated from (4-10), and the probable left and right markings in the next zone 

can be predicted by (4-16) and (4-18); moreover, the ROIs can be set up in the detection zone 

to narrow the searching area. After the same pr

up, the m ) , ,( bmk

ermined. Fig. 4.7 demonstrates the predicted ranges for each zone. 

 

○0

○5  

○4  
○3  
○2  
○1  
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66 

(a) 

 
(b) 

 
(c) 

 
Fig. 4.7  to up, 
respectively  

spectively. 

 

(a)~(f) are the intermediate phases where the zones are detected from bottom
. The black solid curve comes from (4-2) while the white dashed line is the

approximation of (4-16). The left and right dotted blocks are the detection regions of interest 
in the next zone. (a), (b), and (c) show the detection ROIs in the zones 1, 2, and 3, 
re
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(d) 

 
(e) 

 
(f) 

 
Fig. 4.7 (a)~(f) are the intermediate phases where the zones are detected from bottom to up, 
respectively. The black solid curve comes from (4-2) while the white dashed line is the 
approximation of (4-16). The left and right dotted blocks are the detection regions of interest 
in the next zone. (d) and (e) show the detection ROIs in the zones 4 and 5, respectively. Fig. (f) 
shows the final detection result, and it is obvious that the rears of the detected and predicted 
lines match with each other. 
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4.4.2 Detection flow 

Fig. 4.8 shows the flowchart of lane detection in the single mode. In the beginning, the 

initial possible ranges are searched zone by zone, and the zone is scanned row by row, from 

bottom to up, to detect the markings. If both marking points on the left and right sides are 

found out and the distance between them is valid, this procedure is terminated after finishing 

the current zone. Since the constant lane width in the world domain is assumed, its 

esponding width in the image domain can be obtained from (2-32). Thus the distance 

between the left and right detected pointes is said valid if it approximates to the constant lane 

width in the image coordinate system. 

After the lane detection at the initial state, the next zone is located. The probable regions 

of the markings in this zone can be predicted by applying (4-16) and (4-18), where  comes 

from the coordinate v near the current zone. The ROIs are determined at the process, namely 

Specify ROI, to narrow the searching ranges. Both markings in these two ROIs are searched 

and determined. And then the detection results for both markings are processed at t e 

ely Decision Tree. Both the processes of Specify ROI and Decision Tree will 

be interpreted in next sections. Proceeding in the same way, the lane can be confirmed after 

all zones are detected. 

 

 

 

 

corr

ev

h

procedure, nam
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Fig. 4.8 The flowchart of lane detection in the single mode. 

 

 

 

START

End of  ? v

Lane Detection  
at the initial phase

Specify ROI 

End of zone ?

Marking Detection 

Decision Tree 

zone zone+1←

Lane Prediction 

END

v ← v + 1 
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4.4.3 Specify the detection region of interest 

This proced Is) for the marking 

MAIN and 

SUB, initialized to e called the Decision Tree. 

(1) pROI = SUB 

In this case, the left and right ROIs of the current ordinate are defined as: 

    

ure is to specify the left and right regions of interest (RO

detection, and these ROIs depend on the parameter pROI, composed of properties 

MAIN, and determined by the procedur

iv  

[ ]isiis umi muROI ⋅+⋅−= −− λλ 11  ,       (4-20) 

where is the abscissa detected in the last ordinate is the constant marking 

width in the image domain as described in Section 4.3, and 

1−iu  1−iv , im  

sλ  is a constant. Since the 

abscissa is the target to detect, its probable region is specified in the neighborhood of 

cissa d  the ma

(2) pROI = MAIN 

In this condition, the left and right ROIs of the current ordinate are defined as: 

    

iu  

the last detected abs 1−iu  ue to the continuity of rking. 

iv  

[ ]imii ummi muROI ⋅+⋅ λλ  ,−=       (4-21) 

where the abscissa  corresponding to the current ordinate is evaluated in the 

process of the lane prediction, and 

 iu iv  

mλ  is a constant. Since the last abscissa  is not 

detected, a guess about can com  from the combination of (4-16) and (4-18), and a 

greater 

1−iu

iu  e

mλ  than sλ  is used due to the unknown abscissa of the lane sides. 

 

4.4.4 Decision tree 

fter the marking detection is performed in both left and right specified regions of 

interest for a giv a s stated below 

will happen. This process is to judge whether both left and right detected marking points 

belong to the boundaries of the lane, and to update the control parameters if true. Two control 

1−iu  

A

en ordin te iv , as illustrated in Fig. 4.8, one of four cases a
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parameters, namely pROI and pMode respectively, will be updated in this process. The control 

parameter pROI is the enumeration composed of two identifiers, namely MAIN and SUB, and 

it is u

marking 

llustrates the flowchart of the Decision Tree, and four conditions are 

discu

(1) Bo d: 

a

s approximation. 

arking is found: 

ode = 

LE rocess called the Update Left

 th eig

etected, and that the current marking point in the neighborhood of the last marking 

point is found out; we believe two points belong to the same marking thanks to the 

marking continuity. 

(3) 

I

sed to decide the ROIs for the marking detection, as proposed in Section 4.4.3. The other 

control parameter pMode is the enumeration composed of four identifiers, namely BOTH, 

LEFT, RIGHT, and NONE, and it responses the result of detecting both left and right 

points. Fig. 4.9 i

ssed as follows: 

th markings are foun

In this case, both left and right marking points are found out, and the distance between 

them is compared to the constant lane width in the image dom in. If it is legal, the lane 

width in the world domain is updated and both marking points are added to the fitting 

data accompanied with a greater weight for the weighted-least-square

(2) Only the left m

In this situation, only the left marking point is found out. If pROI = SUB or pM

FT, proceed to the p . In the process of Update Left, the 

right marking point can be estimated as what is the left point plus the lane width; 

afterward both points are added to e fitting data with a smaller fitting w ht, and 

finally pROI is assigned as SUB. The conditions of pROI = SUB or pMode = LEFT are 

based on the continuity of the marking, and they mean that the last marking point is 

d

Only the right marking is found: 

In this condition, if pRO  = SUB or pMode = RIGHT, then the left marking point is 

approximated as what is the right point minus the lane width, and the process of Update 

Right similar to the case (2) is driven. 
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(4) No marking is found: 

Since no marking is found in this case, no point is added to the fitting data. We just 

assign pROI and pMode as MAIN and NONE, respectively. 

 

 
 

Fig. 4.9 The flowchart of Decision Tree. 

Marking Detection 

RIGHTpMode
SUBpROI ∨

=
=    

Update Right 

pROI = MAIN 

pMode = RIGHT

LEFTpMode
SUBpROI

=
∨=    

Update Left 

pROI = MAIN 

pMode = LEFT 

Valid Width 

Update Both 

? 

pROI = MAIN 

pMode = BOTHBoth ? 

Left ? 

Right ? 

pROI = MAIN 
pMode = NONE 

(None) 

END 
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4.5 Lane Detection in the Successive Mode 

ith a prior knowledge of the 

ne detected on the last frame. Due to the slight variation between two successive frames, the 

can be regarded as an estimate about the lane on 

this frame. In addition, both estimated boundaries of the lane on the current frame can also be 

evaluated from the estimated lane. 

 
Fig. 4.10 The flowchart of lane detection in the successive mode. 

 

Fig. 4.10 shows the flowchart of the lane detection in the successive mode. The main 

regions of interesting markings can be specified by the neighborhood of the estimated lane 

boundaries. And thus the lane on the current frame can be determined by detecting directly the 

main or sub ROIs in the same way as mentioned in the last section. After finishing scanning 

The purpose in this successive mode is to detect the lane w

la

) , ,( bmk  last determined lane parameters 

START

End of v ? 

Specify ROI 

Marking Detection 

Decision Tree 

END

v ← v + 1 
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every interesting row, all Since the slight variation 

arameters can, for the 

purpose of the robust detection, be evaluated from the data of a mixture of the current and last 

mark

 succes

ing time, the algorithm in the successive mode should be 

simple and effective as w

4.6 Update of

The update of lane param topics. At first, the lane tendency is 

necessary in order to warn the dr art vehicle with the 

lane information fo nks to the detection 

algorithm as a quadratic curve with 

parameters , is determined as soon as the detection finishes. However, the physical 

lane parameters, such as the offset, the orientation, or the curvature, are usually desired in the 

practical applications, and they will be dis ction 4.6.2. 

On the other hand, the second topic is concerning the 3-D reconstruction of the lane. In 

words, the goal here is to reconstruct the lane information about the road inclination and the 

lane width for the next detection stage or the v troller. 

The algo dition of the 

constant lane width. Nevertheless, due to the vibration in motion, the variation of the road 

inclination, or the illega

3-D lane parameters. This will be presented in Section 4.6.1. 

marking points in the image are found out. 

) , ,( bmk  between two successive frames is assumed, the current lane p

ing points, where the marking points on the last frame are assigned a smaller fitting 

weight. 

The process is repeated in the sive mode until it fails, and then returns to the single 

mode. The detection in the successive mode is dominant since it takes the majority, and 

therefore, for reducing the process

e do. 

 Lane Parameters 

eters involves two 

ivers in bad situations or to supply the sm

r the purpose of tracking the lane automatically. Tha

 involving the prediction phase, the lane, modeled 

) , ,( bmk

cussed in Se

ehicle con

rithm of lane detection proposed in this thesis is based on the con

l assumption of the constant lane width, some errors may exist in the 

results of the formulas deduced from the computer vision. Thus, it is necessary to calibrate the 
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4.6.1 3-D reconstruction 

     

Applying (4-7) and (4-8) to (2-27) and rearranging it by (4-15), it yields 

[ ] u
W
H

e
e

u
vM

⎦

⎤

⎣

⎡
θ

Using the weighted-least-squares method, the coefficients of (4-22), i.e. 

     

mev v ∆⋅⎥⎢ ⋅−+⋅=       (4-22) 

θmeC vzy ⋅=0          (4-23) 

     
W
H

e
e

u

v

can be solved. Finally, θm  and W  can be obtained from (4-25) and (4-26), respectively. 

      

Czy ⋅−=1         (4-24) 

v

zy

e
C

m 0=θ          (4-25) 

      
1zyu Ce

W ⋅−= v He         (4-26) 

 

e, which are listed

   +⋅+⋅== )(         )(      (4-27) 

4.6.2 Offset, orientation, and curvature 

Since the lane has been modeled as a quadratic polynomial with the coefficients 

) , ,( bmk , from the fundamental calculus it is easy to obtain the offset, orientation, and 

curvature of the lan  as follows: 

rrrrr
2 bYmYkYXYOffset

   mYkYXYOrientaton rrrr +⋅⋅=′= 2)()(       (4-28) 

   
(( ) ) 2/32

  )(
mY

YCurvature
r

r

+⋅
=

⎠⎝

2/32 21
2

1 k
k

X

X

r

r
⋅+

⋅

⎟
⎞

⎜
⎛ ′+

″
=    (4-29) 
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Chapter 5 Experimental Results 

5.1 Results of Obstacle and Lane Detection 

In the obstacle and lane detection system, two cameras are mounted top and bottom on 

ou d both road images are captu

e 

results of obstacle and lane detection when the experimental vehicle is running on the 

expressway and freeway with the velocities of 80 km/hr and 110 km/hr, respectively. It is 

clear th d can be deter

ked

r experimental vehicle, an red simultaneously. Fig. 5.1 shows 

the results of obstacle detection on a hill road. On the other hand, Fig. 5.2 and 5.3 display th

at the vehicles on the roa mined. In addition, the roadsides such as the 

median can also be mar . 

 

 

Fig. 5.1 Results of obstacle detection on a hill road. 
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Fig. 5.2 Results of obstacle and lane detection on the expressway. 

 

Fig. 5.3 Results of obstacle and lane detection on the freeway. 
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On the other hand, the lane detection algorithm proposed in this thesis can also be 

 detection system. 

Several road conditions, such as the straight or crooked cases, shadows or sunlight conditions, 

he results are very satisfactory, 

as displayed in Fig. 5.4~5.8. The shadows on the road surface will result in the variation of 

the brigh

performed alone using a single monochromatic camera without the obstacle

the roads interfered with the text or vehicles, are tested, and t

tness. The gray values of the texts on the road surface are similar to those of the lane 

markings. In addition, the traffic in downtown is usually heavy so that the markings are often 

covered by vehicles. The proposed algorithm can work in all cases, even if only left or right 

lane side is available. On the other hand, the lane detection system can also be performed in 

the night or rainy environment, as shown in Fig. 5.9 and 5.10 respectively. The results 

demonstrate the proposed algorithm is very robust. 

 

 

 

Fig. 5.4 Results of lane detection on the straight roads. 
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Fig. 5.5 Results of lane detection on the crooked roads. 
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Fig. 5.6 Results of lane detection on the roads with shadows or the sunlight. 
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Fig. 5.7 Results of lane detection on the roads interfered with the text. 

 

Fig. 5.8 hicles. 

 

 Results of lane detection on the roads affected by the ve
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Fig. 5.
detecti

 

(a) The original road image. 

(b) The detection result of (a). 
 
9 Result of lane detection on the night road. (a) the original night road image. (b) th
on result of (a). 

e 
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Fig. 5.
detecti

 

(a) The original road image. 

(b) The detection result of (a). 
 

10 Result of lane detection on the rainy road. (a) the original rainy road image. (b) the 
on result of (a). 
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F  experimental results of real-time lane detection on our 

experimental vehicle, namely TAIWAN iTS-1 as shown in Fig. 13, running on the freeway 

under 110 km/hr. The road image sequence of size 

ig. 5.11 and 5.12 display the

493644×  is captured with the frame rate 

of 30 fps by the Domino Alpha 2 board and the Hitachi KP-F3 CCD camera mounted on the 

smart vehicle, and then the image is processed by the proposed algorithm of lane detection 

running on the PC platform of 2.6-GHz CPU and 512-MB RAM. The average processing 

time is less than 1 ms per frame. In addition, the lane detection system can be treated as the 

vision system of the automatic vehicle by integrating the controller of the steering wheel. This 

work has been implemented on the experimental car, TAIWAN iTS-1, running on the 

expressway and freeway with the velocities of 90 km/hr and 110 km/hr respectively. TAIWAN 

iTS-1 is the first smart car in Taiwan capable of hand-free driving on the real road, which 

verifies the practicability and robustness of the proposed lane detection system. 
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Fig. 5.11 Results of the real-time lane detection on the freeway of the sunny day. 
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Fig. 5.12 Results of the real-time lane detection on the freeway by night. 
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Fig
hT
(a) TAIWAN iTS-1 is running on the freeway under 110 km/hr 

(b) The CCD camera is mounted on TAIWAN iTS-1. 
 

. 5.13 TAIWAN iTS-1. (a) TAIWAN iTS-1 is running on the freeway under 110 km/hr. (b) 
e CCD camera is mounted on TAIWAN iTS-1. 
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5.2 Discussion 

Since the GOLD system developed in the ARGO project is famous in the region of smart 

vehicles [2, 8], it will be compared with the algorithm proposed in this thesis. The GOLD 

system uses two left and right cameras to detect the obstacle and the left is used to detect the 

lane markings. The GOLD system removes the perspective effect by transforming both road 

images into the top views, and the detection is performed in the world coordinates; the 

obstacles are determined if two triangles in the difference image between remapped views can 

be joined and the lane markings are detected based on the constant lane width, which may fail 

when the assumption of the flat road is illegal. The comparison between the GOLD system 

and the algorithms proposed in this thesis is presented as follows: 

(1) Based on the assumption of the flat roads, the GOLD system may not be suitable for all 

real situations. Fig. 5.14 presented in the literature [8] demonstrates that the GOLD 

system fails in the case of a non-flat road where the lane width diverges. However, the 

calibrations on the road inclination and the lane width are considered in (4-22) in this 

thesis in order to provide the precise information for the next frame. 

Fig
the 

 
(a) The road is not flat.       (b) The remapped image.
. 5.14 The GOLD system fails in the case of a non-flat road [8]. (a) the road is not flat. (b) 
remapped image. 
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(2) er transforming the images 

into the top view, as illustrated in Fig. 5.15. However, the system proposed in this thesis 

keeps all image information because the detection is performed in the image domain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.15 The useful region in the world domain is smaller than that in the image domain. (a) 

 A smaller image range can be used in the GOLD system aft

(a) The original road image. 

 
(b) The top view of (a). 

Loss region 

Remapped region 

The original road image. (b) The top view of (a). 
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(3) Both algorithms rely on the constant lane width. The algorithm proposed in this thesis is 

performed in the original image, transforms the constant lane width from the world 

ne tendency, and thus can 

(7) 

ivers with the lane 

he om tric ane od  involves the 

prediction of the lane tendency, and no more complex procedure must be taken to obtain 

the lane tendency while finishing the detection. Besides, even if the detection has not 

been finished, the approximate lane tendency can be acquired from the prediction 

procedure. However, extra operations must be taken in the GOLD system in order to 

obtain the lane tendency. 

 

 

domain into the image domain by (2-32), and takes only one operation per image row. 

However, the GOLD system works in the world coordinates by mapping the whole 

original image into the top view pixel by pixel, so that it takes more complex operations 

and more time than that proposed in this thesis. 

(4) For the obstacle detection system, the roadside obstacles can be determined in this thesis. 

However, such a function is not considered in the GOLD system. 

(5) The lane detection algorithm proposed in this thesis, based on a parametric lane model, is 

more robust against the interferences such as shadows, textures, or other vehicles. 

(6) The proposed algorithm of lane detection can predict the la

determine the detection ROIs so as to narrow the searching ranges. Hence, the time is 

saved. However, the GOLD system searches the whole remapped image in the world 

domain, and therefore it has a higher computational load. 

No matter what kind of algorithms of lane detection, the lane geometry is usually fitted 

into a curve since the goal of lane detection is to supply the dr

information. Based on t ge e  l  m el, the proposed algorithm
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Ch

Both algorithms of generic obstacle and lane detection based on the techniques of 

om ounted 

p and bottom respectively on the vehicle in order to detect the generic obstacles, and the top 

amera is also used to detect the lane. The quasi-horizontal boundaries in the top road image 

re detected in order, and each detected boundary could belong to either the ground or the 

bstacle. The criterion to distinguish between them is to predict the corresponding ground and 

bstacle boundaries in the bottom image by the stereo vision. The detected boundary in the 

p image belongs to the obstacle if it is more related to the obstacle boundary predicted in the 

ottom image than to the ground boundary predicted in the bottom image. 

After that, the obstacles in the road image can be determined, and the remainder image 

art without obstacles is used to detect the lane, so that the result of ane detection is not 

ffected by the obstacles. On the other hand, the lane detection algorithm proposed in this 

esis can be performed alone using a single monochromatic camera. Based on the geometric 

ne model, it can generate a robust result. Besides, the detection region of interest can be 

stimated to narrow the searching area. Eventually, the 3-D lane geometry is reconstructed to 

pdate the road inclination and lane width. Therefore the proposed algorithm is available in 

e case of non-flat roads. 

The lane detection system has been verified in some environments such as the 

xpressway or freeway, the straight or crooked roads, shadows or sunlight conditions, the 

ight or rainy cases, and the roads interfered with the text or vehicles. The average time of 

ne detection is less than 1 ms per frame of size 644 × 493 on the PC platform of 2.6-GHz 

ontroller of the steering wheel on the automatic car, TAIWAN iTS-1. TAIWAN iTS-1 is the 

apter 6 Conclusions 

c puter vision are proposed in this thesis. Two monochromatic CCD cameras are m

to

c

a

o

o

to

b

p  l

a

th

la

e

u

th

e

n

la

CPU and 512-MB RAM. Besides, the lane detection system has been integrated with the 

c
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first smart car in Taiwan capable of hand-free driving on the expressway and freeway with 

ities of 90 km/hr and 110 km/hr respectively, which demonstrates the practicability and 

stness of the proposed lane detection system. 

Another fundamental function of the smart vehicle is the leading vehicle tracking. In this 

 the accurate distance and orientation of the leading vehicle must be determined. 

etimes there is a desire to follow the leading vehi

veloc

robu

case,

Som cle on the road. A practical application is 

vehic

 

to stop and to go with the leading vehicle in a traffic jam. Therefore the system of the leading 

le tracking is an important topic in the future. 
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