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ABSTRACT

In this thesis, a hybrid-order texture boundary detection technique inspired from
human visual system (HVS) was presented. The proposed algorithm integrates three
important visual primitives: luminance, texture, and color into a functional system. At
present, the related works were.developed for specific applications such that an
overall investigation of the texture: segregation process would be inaccessible.
Therefore, the thesis focuses on relevant: fundamental researches on HVS and
systematic integration to investigate the task of texture boundary detection thoroughly.
Moreover, some critical but ignored issues from the procedure of hybrid-order feature
extraction, such as false response, weights selection, etc., were also discussed and
solved in thisthesis.

Transmission with antagonism such as receptive field profile and opponent color
is the critical point that HV'S can effectively process visual information. This thesis
employs the encoding form in HV'S with systematic integration to build up a complete
algorithm for texture boundary detection. Color images are firstly decomposed into
three opponent axes and the 1%- and 2"- order features are extracted by a Gaussian
filter and Gabor filters. With the proposed adaptive weights selecting mechanism, the
hybrid-order boundary can be obtained. Among extensive tests, boundaries between
uniform textures can be detected successfully and accurately. For textures that are
non-uniform or non-regular, the results also reflect some meaningful properties which
are consistent to human visual sensation. In addition to satisfying testing results,
processing employed in this algorithm is very simple and intuitive with only few
assumptions and no training procedure involved. Compared with the present
researches, the proposed algorithm has a good application potential.



BB LR G R o RS E S THREH N AR Flo AR
R A b S e s X@ e 33X Fa & kP %3tk
B A G ARG S AAREAT PR A LS b oo T 0 Bl ot
SR R RS R RS EAPLE A EPER R R

WL 50 o pR ERARE L 24 AEF A

DR
ANSH
o

)
7

BPEAF AP A o IR R B S R > Tk R

AN

a’i

AN

FALEHADG N2 FERFL AL bt o GAEAT AR
Pavkghen- o B A METHERE S ¢ WA S - s
TAERP B e A e VAT R B ANE B DM 6 PR

- L Ly T Sy



TABLE OF CONTENTS

CHINESE ABSTRACT

ABSTRACT
ACKNOWLEDGEMENT

TABLE OF CONTENTS

L1ST OF FIGURES

L1ST OF TABLES

NOTATION AND ABBREVIATIONS

Chapter 1 IntroduCtioN........ccccceeiiiiie e

03 Y/ o V7= 1 o o S
1.2 Problem Statements...........cat bl eee e e eee e see e e e
(RS RS o (=0 IVAY (0] G T oS
1.3 L TEXTUrE ANAIYSIS. ... it s idesie s aki e ereeeeeeesseesseenaesseesseensessensseensens
1.3.2 Theories of TeXture PErCEPLiON ......cc..cceeveeeereerreeeseesieeseeseeseeeeens
1.3.3 Linear Filtering TheOry i iioii . e
1.3.4 ChromMatiC TEXIUM . tius v euveeeeisifenseueeneesteeeeeeesseeseeeaesseesseeseesseesseensens
1.4 RESEAICN SCOPE ....ecviieeeieeieetieeseeseseesteestesseesseesesseesseesesseesseesesseesseesessensns
1.50utline Of the THESIS....c.uice e

Chapter 2 Knowledge about Human Visual System...........ccccueu.eee.

2.1 Anatomical Structure of Human Visual System..........ccocevvvienininncenenene

2.1.1 TheVisual PathWay ..........ccooeeiiiiiiiiiinie e
2.1.2 Receptive Fields in Visua Pathway ...
2.2 Linear FIEriNg TREOMY ....coiviiiieeee ettt
G o] o AV Lo o PR SRSTRRRR
2.4 Feature INtegration THEOIY ..o e

Chapter 3 Modeling SIrategy ......ccceceevieeiieeieeree e

3.1 Luminance and Texture Features EXTraction.........ccooeeeeeeeeeeeeeeeeeeeeeee e
1 700 I I I 4 11 7= (o YRR
B TR I 1) 1 |



3.2 Hybrid-Order Feature EXIraCtion ...........cccvieereeieeseeseciee e eee e sie e e 37

3.2.1 Color DECOMPOSITION .....ccveeieeeiesiiesieeieeee e eie e sreeseeeae e sseeeesneennes 37

3. 2.2 FEatUre EXIraClioN ......ccocveiiieriese st 38

3.3 Operations for the Second-Order FEaLUNES...........cevvereriereeieeieseesieeeeseens 41
3.3.1 Full-Wave Rectification and Gaussian Smoothing ...........ccccceeeeveennen. 41

3.3.2 False Responses to Non-Texture REgIONS.........cccvveeveereeeeseesinseens 45

3.3.3 FEatUreS REAUCLION.......cceiieieieie e 49

3.4 Hybrid-Order Boundary DeteCtion ...........ccocveceereerecie e seese e 50
3.4.1 The First- and Second-Order Boundary Detection ...........cccccecvevueennen. 50

3.4.2 Boundary COmMDINGLION.........cccueieeriieiesieesieeieseeseeseeseesreesse e sseeseens 51

3.4.3 Local Peak DELECHION ......coeeieiiieriesie s 54

3.5 SUMMIEIY .ottt e e san e e e nane e e nes 54
Chapter 4 Experimental Results & DisCuSSIONS..........cccceevcveeeveeennee. 55
4.1 Parameters SElECHION ......cc.eoiiiiiiie et 55

4.2 Experimental COMPAIiSONS. ..........oierriereereeiieeiesieeseeseesiee e sessseesseseesseessens 56
4.2.1 Experiment I : Effect of Multi:Band Gabor Filters........cccccccvvuenene. 57

4.2.2 Experiment I1: Effect:of Color Information...........c.cecveveveieninnene. 60

4.2.3 Experiment IIL: Effect of Hybrid-Order Features.............ccceevvvnenene 62

4.3 Collection of Testing-Results by Hybrid-Order Boundary Detection............ 64
4.3.1 Fully Boundary Detection ... . iteieese e 65

4.3.2 Partially Boundary DEECHION ... .........ooeererierierieeee e 71

A4 Error ESHIMatiON .....ccueiiiieee ettt s sre e nneens 74
Chapter 5 Conclusions& Future Works........cccccceveveveeieeiinciecnen, 79
REFEIENCES.....ceieee s 81

vi



L1ST OF FIGURES

Figure 1-1: Two images made up of preattentively distinguishable and indistinguishable

PALEEITIS.. ..ttt nnns 3
Figure 1-2: Regional perception resulting from some kinds of grouping properties. .............. 7
Figure 1-3: An example demonstraing the incompleteness of texture element theory............. 8
Figure 2-1. Schematic diagram of human visual system model.........cccccceeveveivevie e 15
Figure 2-2: Schematic diagram of receptive field of the bipolar cell. ..., 18
Figure 2-3: Schematic diagram of receptive field of the V1 cels......ccovvvveveivieieieiiee 19
Figure 2-4: The overall luminance contrast sensitivity function (CSF) consisting of multiple

spatial frequency ChaNNELS. ... s 21
Figure 2-5: Schematic diagram of columnar organization in V1. .......ccccccovveveiieceveseenns 22
Figure 2-6. Representation of Hering's opponent-process theory. .........cocevvveveeveeveeseeseene 23
Figure 2-7: Contrast sensitivity function of luminance and chromatic stimuli. ..................... 25
Figure 2-8: Schematic diagram of featureintegration theory. ...........cccvevvvrerenenenecceeeene, 26
Figure 2-9: Typical results of ayisual search eXperiment............c.ccvveererereierieneseseseeeenes 26
Figure 3-1: Flow chart of the proposed FrameWarks . ...iccv..iive e 28
Figure 3-2: An example of 2D Gabor function in (&) spatial domain; (b) frequency domain. 33
Figure 3-3: Trade-off between spatial resolution and frequency resolution.............cc.ccceeueene. 34
Figure 3-4. Trade-off between spatial resolution and orientation resolution.......................... 34

Figure 3-5: Representation of Gabor wavelets, where shaded ellipses represent envelopes of
2D €= o o] g 111 = £ TR 37

Figure 3-6: Schematic diagram of hybrid-order feature extraction presented in frequency

Figure 3-7: Applying full-wave rectification to make sure responses at (a) and (b) with

180°phase shift, would bethe same. ... 42
Figure 3-8: An example demonstrating the effect of rectification...........cccceecvvvicieiieveniens 43
Figure 3-9: An example demonstrating the effect of Gaussian smoothing. ............ccccveneee. 44

Figure 3-10: Schematic diagram demonstrating the fal se responses to non-texture regions.. 45
Figure 3-11: An example ( I ) demonstrating the false response issue..........c.cooeeevveeeenienne. 47
Figure 3-12: An example (11 ) demonstrating the false reSponse iSSUe..........coevvereeeeeeeereenne. 47
Figure 3-13: A demonstration of our procedure enhancing the features of false responses... 48

Figure 3-14: An example demonstrating the results by our procedure.............ccccoevereieriene. 49

vii



Figure 3-15: Schematic diagram of boundary detector. ..........ccooeeieiieienr e 51

Figure 3-16: Two examples demonstrating the dominating role changes between the 1%- and

2" OFEN FEBIUTES ..o 52
Figure 3-17: An example demonstrating the weights selection by opening operation........... 53
Figure 4-1: Input image for demonstrating the effect of multi-band Gabor filters................. 57
Figure 4-2: Raw data of featureSin Dand T ..o 58
Figure 4-3: Raw data of featureSin band II ........cccocverininenieneneeccrese e 58
Figure 4-4: Raw data of features in band TIL .......cccccevereeninieneseee e 59
Figure 4-5: Boundaries detected by (a) band 1; (b) band 1I; (c) band II; (d) 3 bands

SIMUIANEOUSIY. ..ottt et e e s ee e e reenreenneas 59
Figure 4-6: Input image for demonstrating the effect of color information. ...............cc......... 60
Figure 4-7. Raw data of luminance and chromatic COMPONENLS. .........cccceeveereereeseeseesennnns 60
Figure 4-8: Boundaries detected by information from luminance channel only.................... 61

Figure 4-9: Boundaries detected by information from luminance and chromatic channels... 61
Figure 4-10: Input image for demonstrating the robustness to shading by color information.61
Figure 4-11: Raw data of luminance and chromatic. Components. .........ccccceveveveieeceveseenens 62
Figure 4-12: Raw data of the 1¥-order features in luminance and chromatic channels......... 62

Figure 4-13: The 1%- order boundaries detected by (a) luminance information only; (b)

luminance and chromatic iINFOFMELION. ...t e 62
Figure 4-14: An example for demonstrating the effect of hybrid-order features.................... 63
Figure 4-15: Superposition of input image and boundary after local peak detection............. 64
Figure 4-16: Examples of fully boundary detection............ccccovvveeve e 66
Figure 4-17: Examples of fully boundary detection............cccoveeeeiiiiieieiieeeee e 67
Figure 4-18: Examples of fully boundary detection............ccccovveeeie e 68
Figure 4-19: Examples of fully boundary deteCtion. ..........ccccceeveererce e 69
Figure 4-20: Examples of fully boundary deteCtion. .............ccoevereieieiinenineseseseeeeeees 70
Figure 4-21: Examples of partially boundary detection. ............ccccccveeeeveevieevin v 72
Figure 4-22: Examples of partially boundary detection. .............coeeeieierienienenencseeeeee 73
Figure 4-23: Schematic diagram of error estimation.............cccocvieeveieeieese s 74
Figure 4-24: The histogram of eStimated EITOrS. .........cceiiiririnerereeeese s 75
Figure 4-25: An example (1) with large estimation error. ...........cooeveieeninieneneneseeeeees 75
Figure 4-26: An example (II) with large estimation ETOr. ..........c.eeereiereneneseneseeee e 76
Figure 4-27: An example (1) with large estimation error. ...........cooereireniinienenene e 76
Figure 4-28: The histogram of estimated errors without considering color information. ...... 77

viii



Figure 4-29: An example ( I ) demonstrating the essentiality of color
Figure 4-30: An example (1I ) demonstrating the essentiality of color
Figure 4-31: An example (III) demonstrating the essentiality of color



L1ST OF TABLES

TABLE 4-1: Parameters for Experiments




NOTATION AND ABBREVIATIONS

exp

*y)
(u,v)

AX, Ay
Au, Av
A6

9(x)
G(u)
h(x)
H(u)
a(x, y)
Oy, Oy
Oy, Oy
h(x, y)

¢
h.(x,y)
hy(X,y)
h'(x,y)
S

K

m

n

U

Un

g

LGN

real numbers

complex numbers

Euler’s number

imaginary unit, j=-1

space axes

frequency axes

orientation

gpatial resolution in x and y axes

frequency resolution in u and v axes

orientation resolution

one-dimensional Gaussian function

Fourier transform of one-dimensional Gaussian function
one-dimensional Gabor function

Fourier transform of one-dimensional Gabor function
two-dimensional-Gaussian function

std of two-dimensional*Gaussian function in x and y axis
std of twa-dimensional Gaussian function in u and v axis
two-dimensional"Gabor function

center frequency. of two dimensional Gabor function in u axis
center frequency of two dimensional Gabor function inv axis
magnitude of center frequency of two-dimensional Gabor
function

phase of center frequency of two-dimensional Gabor function
real part of Gabor function

imaginary part of Gabor function

mother Gabor wavel et

number of selected frequencies in Gabor wavel ets scheme
number of selected orientations in Gabor wavelets scheme
index of center frequencies in Gabor wavelets scheme
index of orientations in Gabor wavelets scheme

lower center frequency

upper center frequency

std of post Gaussian filter

lateral geniculate nucleus

xi



V1
RF
CSF
HT
CNN
VLS

primary visual cortex

receptive field

contrast sensitivity function
feature integration theory

cellular nonlinear/neural networks
very large scale integration

Xii



Chapter 1

| ntroduction

1.1 Motivation

Vision is one of the most important senses of human beings. By vision, we can,
for example, locate a cup of tea or coffee to reach for, recognize a familiar person’s
face, and enjoy a majestic sight or a masterful art work. Our experiences from
surroundings are mainly originated by our visual systems. Various visual tasks can be
done immediately and effortlessly, almaost, without consciousness of any nerves. We
never realize how hard these tasks are until-sometimes attempting to make use of our
visua properties in some applications of ‘computer vision or image processing. The
critical problem in these cases. is object'segmentation. The first stage of many
engineering applications is to segment objects from background first and then apply
corresponding operations for objects and background. It seems very easy and intuitive
to segregate objects from background for usin our experiences. However, thereis still
no implementation dealing with the task well due to limited hardware devices and
inappropriate software processing procedure.

Human visual system is capable of integrating basic primitives to form our rich
sensation and perception, despite the fact that visual information is discretely sampled
by the retina and cortex. Both biological and computational evidences have suggested
that some kinds of feature extraction and data compression occur at very early stages
in visual processing. How human visua system extracts features and compresses

information in the stages is very ingenious and widely investigated. However, the



application-oriented researches seldom made good use of rich evidences from
fundamental researches about human visual system. For many application tasks with
criterions which are based on how human sees or how much they are like to human
being, it is a reasonable approach analyzing visual information from biological point
of view. Thought, in actual, some researchers approached related problems by
procedures replicating human behavior and many important visual primitives, such as
luminance, color, texture, and so on. However, how to integrate these primitives well
to describe visual behavior is still a difficult problem. In this thesis, we will propose a
novel approach which mimics the early stages of human vision integrating

hybrid-order features.

1.2 Problem Satements

Early vision, also called -as preattentive-stage vision, includes those mechanisms
that subserve the first stages of wisual-processing. These mechanisms operate in
parallel across the visual field, and-are believed to be used for extracting the basic
visual primitives. These primitives detected or extracted during early visua stages
constitute our sensation and perception, and the following level called cognition
combines meaningful features and compares them to patterns in our memory. In other
words, the sensation/perception stage faithful reports basic visual primitives and the
cognition stage combines these primitives to shape various forms upon needs. The
cognition involving attentions can not yet be described and modeled briefly, such that
it is unsuitable to represent the stage under unclear goal or assumption of applications.
Thus, it is better to formulate a framework investigating sensation/perception stage
thoroughly first and then adapt the framework for different purposes.

Empirical sciences such as psychophysics and psychology have strongly

advanced our knowledge of the underlying visual processes. Also, a computational
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approach is helpful to integrate multiple findings into a common framework which is
accessible to be analyzed and evaluated. As a biology-inspired approach, of course,
the criterion for evaluating the proposed algorithm is undoubtedly to verify if the
results are consistent to how human visual system works. Take the textural pairs in
Fig. 1-1(a) and Fig. 1-1(b) for example [1]. Both the images consist of two regions
and each of which is made up of distinct textural tokens. The fact is obvious in Fig.
1-1(a), while a close scrutiny is necessary to observe it in Fig. 1-1(b). By immediate
examination of Fig. 1-1(b), it does not result in the perception of two different
textured regions, but only one uniformly textured region instead. The textural pair in
Fig. 1-1(a) is called preattentively distinguishable, while the one in Fig. 1-1(b) is
called preattentively indistinguishable. As the proposed agorithm is developed for
considering how the human wisual system processes texture at early stages,
consistency between presttentive.vision and results by the algorithm is a rough but

fair criterion for the algorithm. Wewill-introduce preattentive vision more detailed in

Section 2.4.
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@ (b)
Figure 1-1: Two images made up of (a) preattentively distinguishable patterns; (b) preattentively

indistinguishable patterns. The figure is adapted from [1].

Evaluation of Computational Approaches

Besides the experimental results, to tell if a computational approach describes
visual behavior well, we should first consider how to evaluate it. In the well-known

book “Vision” [2], Marr elaborated a judgment on computational approaches. As an
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overall framework for specific visual task is formulated, there must be an attempt to
describe some phenomenon. Marr proposed that a complete understanding of a visual
process would involve explanations at three levels including: (a) the computational
theory; (b) the representation and algorithm; and (c) the hardware implementation. At
the first level, abstract of the computationa approach should be characterized well as
a mapping from one kind of information to another. Also, the appropriateness and
adequacy for the task at hand should be demonstrated at this level. At the second level,
it should characterize well how the computational approach can be implemented, in
particular, representation of the input and output, and algorithm for the transform. At
the last level, details of how the algorithm and representation are realized physically
have to be described. In other words, the detailed hardware architecture needs to be
explained well. Such a three-level ‘explanation provides us a practical evaluation for
computationa approaches illustrating visual behavior. For a complete and realizable
description about visual processing; the-relevant -computational approaches should

meet the requirements at all three'levels.

1.3 Related Works

1.3.1 Texture Analysis

In astatic image, an essential primitive besides luminance is texture. Its property
among different illumination conditions seldom changes as acutely as luminance does.
Thus texture information can help to prevent many erroneous estimations resulting
from illumination variation. Moreover, texture reveals some surface properties of
objects which are useful to separate an object from background or other objects. In
this section, a brief review about some important theories and properties of texture are

given.



Definition of Texture

Texture, compared with other visual primitives such as color, luminance, stereo,
etc., isarelatively new one being discussed with. The researches about texture began
about 1960s. Before we start to talk about texture, we should give a definition to
texture first asto any other tasks. Unfortunately, even though the property of textureis
too essentia to be neglected, there has not been a clear and acknowledged definition
to texture. A definition to texture in Webster's New World Dictionary is. “ The
character of the woven fabric resulting from the arrangement, size, quality, etc. of the
fabric's threads: as, a fine or coarse texture, a ribbed or twilled texture.” We can
immediately imagine what texture is by the definition. However, a more qualitative or
guantitative description is still inaccessible. The inaccessibility to a precise definition
mainly results from two reasons. Firstly, texture is one kind of perception during early
vision stages. It involves not anly physical factors:of stimuli but how the brain reacts
to these stimuli. Thus it cannat be easily defined at-physical level. The other reason is
that there are large amounts of “factors involved in texture perception and there exist
lots of nonlinearities in the interactions among them. The two reasons above make a
precise and identical definition to texture (especialy, a physica meaning) hardly to be
given so far [3]. Therefore, the “ definition” of texture is usually formulated depending
on specific application and there is no general agreement on definition.

In this thesis we referred to some perceptually motivated descriptions [4]-[6] and
refined the state. Our definition can be given as follows:. (a) Texture is characterized
by properties of a local region and there should be adequate spatial-relationships
between elements or primitives within the region. In this thesis spatia-relationships
simply mean the orientation and spatial frequency. (b) The homogeneous texture
discussed in this thesis means that there are similar features over single textured

pattern, and the scale- and rotation- invariant issues are not considered in thisthesis.



1.3.2 Theories of Texture Perception

In advances of texture theories, two major contributors. Bela Julesz and Jacob
Beck, had developed two main trends of texture perception caled the N™- order
statistics theory [7] and the texture element theory [8]. For completeness of thisthesis,
it is worth reviewing their theories first to facilitate the understanding of the theories

nowadays before we discuss present theories.

Julesz et al. [7]
As literal descriptions about textures above, it is believed that the statistical

distribution is suitable to model the spatial arrangement of texture. In Julesz’'s
approach [7], [9], he tried to find the highest statistical distribution which human
visual system can still discriminate and proposed: In most cases, the determination for
whether human visual system can distinguish:two'textured patterns or not is likely the
globa 2"- order correlation-function. Examine the approach by signal analyzing
method, Fourier transform of the global 2™ order correlation function is the power
spectrum reporting the frequency ‘components only. Thus, considering the power
spectrum without taking local information into account could not observe some spatial
arrangements making up textural properties. Therefore, considering the global 2"-
order distribution merely would inevitably meet counterexamples refuting the
necessity [9], [10] and sufficiency [11] of the global 2"- order distribution in the

approach.

Beck et al. [8]

From another point of view, Beck focused on the grouping phenomenon of
textural elements to formulate another approach for texture perception [8]. As an
advocate for Gestalt psychology, he held the main announcement: “ The whole is more

than the sum of its parts.” to analyze the process of texture perception. Compared



with the approach by Julesz, the texture element theory by Beck is more similar to
low-level organic operation in human visua system which employs the bottom-up
procedure to construct the approach step by step. The grouping elements are usually
basic visual primitives rather than cognitive forms (Fig. 1-2). Asdescribed in [12], for
local features, such as orientation, contrast, size, closure, etc., which could not be
described well by global statistical properties, the bottom-up procedure would provide
a better analyzing approach. However, when more local features were utilized jointly
for experiment and discussion, the incompleteness of the theory appeared. It was
found that the grouping form is not merely by summing all local feature effects and
the illusory conjunction phenomenon would occur in some case [13] as shown in Fig.
1-3. The problem is due to that receptive fields in human visual system are not merely
feature detectors (it will be discussed thoroughly later) and an approach would truly
characterize our perception for texture only: if it is developed while referring to the

basic information processing in human-visual-system.
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Figure 1-2: Regiona perception results from some kinds of grouping properties. For texture
perception, the basic primitive (orientation, in this case) plays a more important role than
cognitive form (L or T, in this case).The figure is adapted from [8].



(a)

G

(c) i)

Figure 1-3: Three regions could be easily segmented by controlling factors (b) the contrast to
background; and (c) the size. However, the degree of discrimination does not increase but decrease
as both factors are applied simultaneously (d). The“figure isadapted from [13].

Examine the two theoriesby. Marr’sthree-level explanation about computational
approach. Though both approaches define ‘the process and goal more explicitly, they
does not give clear descriptions about algorithm and hardware implement at upper
two levels, e.g. how to extract the defined features. There was no approach completely
describing all the three levels: computational theory; representation and algorithm;

and hardware implementation until the linear filtering theory.

1.3.3Linear Filtering Theory

As the texture element theory approached the texture perception subject by local
feature description, it led to the critical issue considering how local features could be
extracted quantitatively and fairly. To specify local features more accurately, literal

meanings of texture are not sufficient. Instead, it would be more adequate to



investigate how neurons managing visual information “see” an image. The processes
in visual pathway have been verified as spatial-frequency filtering and formulated by
general functions, e.g. Gaussian function and Gabor function [14]. The receptive field
profile at pre-cortical stage which has been regarded as the main source to our
luminance sensation can be fitted well by Laplacian of Gaussian (LoG) function [15].
Also, the receptive field profile in visual cortex, which is considered the main source
to texture perception from its orientation selective and spatial-frequency sensitive
properties, was verified to be fitted well by two-dimensional Gabor function [16], [17].
The two-dimensional Gabor function has been regarded as a spatial-frequency
filtering mechanism for texture perception. Moreover, the Gabor-based computational
model for texture perception has been examined and discussed entirely. Here we will
discuss some related approaches by Gabor filtering scheme. Details about human
visual system and our modeling.strategy will be further discussed in Chapter 2 and
Chapter 3 respectively.

The overall process of texture feature. extraction can be divided into three parts:
Gabor filtering, rectification, and Gaussian smoothing [18]-[21]. Among them, Gabor
filtering is the critical part, many researches focused on the topics in last ten years. We
can group them into two categories. filter-design approaches, where the Gabor filters
are designed for specific tasks; and filter-bank approaches, where the Gabor filters are

selected from predominated partitionsin the frequency domain.

Filter-Bank Approaches

For a quantitative description about literal meaning for texture properties such as
fine, coarse, vertical-orienting, etc., the Gabor function with profile narrowly tuned to
specific orientation and spatial frequency is a very suitable candidate. Daugman [16]

firstly present aframework composed of multiple filters with specific orientations and



spatial frequencies. Other similar frameworks were proposed by Turner [22] and
Malik and Perona [23] for psychophysical verification and by Jain and Farrokhnia
[24], Manjunath and Chellapa [25], and Manjunath and Ma [26] for application tasks.
How the framework woks is like a feature vector transform that provide a nearly
complete coverage of the spatial-frequency domain. Besides, corresponding to the
spatial-frequency property in cortex, the multiresolution filtering theory [27] was
utilized for a more compact representation. Sometimes we call the set of Gabor filters
with octave-bandwidth and octave-frequency profiles as Gabor wavelets.

In these approaches, the frequency domain is divided by predominated filters that
are not necessarily optimal for a specific task. The number of filters would sometimes
result in huge computational loads. Furthermore, the filter vector with large
dimensions may lead the undesirable phenomenon: “ curse of dimensionality.” Though
approaches by Unser and Eden [28] and Tang et.al-[29] reduced the number of filters
with feature refining procedures, itheir-methods focused on cases with only two
textures. Also, procedure of feature refinement implies the feature properties would
become unobservable and hard to analyze. Furthermore, the optimization involved in

such scheme would be less flexible than the filter-design approaches presented bel ow.

Filter-Design Approaches

To cope with drawbacks of filter-bank approaches, many researches focused on
how to select an optimal filter set to faithfully obtain useful information and discard
other meaningless information. Usually, these approaches need a training procedure or
database set in advance. Some typical ones are listed below.

Bovic et al. [19] gave a very detailed analysis of texture perception. They
proposed three supervised procedures to select center frequencies of filters by using

empirical information based on the power spectrum characteristics of individual
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textures. A similar but unsupervised approach was proposed by Tan [30]. It detects a
global spectral peak once, and repeatedly detects conspicuous peaks with erasing
operation on the frequency plane. That is, the power spectrum of a small
neighborhood (e.g. 5x5) around the detected peak would be set to zero. The iterative
peak detecting procedure terminates if the ratio of the current peak to the highest peak
is less than a pre-specified value. Another filter-design approach developed by Dunn
and Higgins [31] employed a procedure for designing a single filter to segment two
textures. Thisis atotally supervised approach measuring textural statistics by a Rician
statistical model and then using the statistics as a predictor for segmentation error. A
further study by Weldon and Higgins [32] generalized the approach for multiple
textures and thoroughly discussed the trade-off between classification and localization.
However, since the procedure requires some assumptions about textural distribution
and empirical values during filter. selection; and databases of textural statistics also
have to be built in advance, practi cability-of-the approach is highly limited. Teuner et
al. [33] proposed another approach:-to_select the optimal filter set by an iterative
pyramid Gabor representation. They indicated that human visual system does not
direct its attention ssimply to features which occur frequently but ones which stand out
significantly. Therefore, instead of selecting spectral peaks, they defined a spectral
feature contrast criterion with progressive dyadic stage to select center frequencies of
filters and the reciprocals of spectral feature contrast values could also be used as
weights for extracted features [34]. The approach has fairly represented the procedure
of texture processing. However, the efficiency and bandwidth selection are still
limited due to the pyramid Gabor representation [35], [36].

For some purposes, filter-design approaches indeed showed better performance
with less on-line computations. However, for developing the filter selecting procedure,

more assumptions and off-line computations were required. Moreover, these
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approaches were optimized for pure textured image that many factors were not taken
into consideration, e.g. ambiguous luminance variation, which would result in large
amounts of spectral components. That is, for more general purposes, even a complete
filter-design approach like the one by Teuner et al. [33] could not perform well due to
many uncertainties. It is better to extract textural information by more original
procedure faithfully acquiring information without ambiguous one, and the filter-bank

approach is amore suitable choice.

1.3.4 Chromatic Texture

A summary of texture segregation by Bergen [20] “ Texture based segregation is
a perceptual phenomenon in which regions differing only in their spatial structure, not
in color or brightness, and witheut any physical.contour segregating them.” revealed
that researchers seldom considered issues.about' eolor contrast [37] and color was
usually employed as a regiona primitive-like luminance, that discussions about
texture mainly focused on gray-scale.images. At present, there are still few relevant
researches about chromatic texture as follows.

Papathomas et al. [38] first built a computational model employing the concept
of double opponency and used a psychophysical procedure to verify the responses
between simulation and experiment. A similar approach by Jain and Healey [39]
combined the filter-bank procedure and opponent color feature to develop a model for
chromatic texture recognition. From another point of view, Mirmehdi and Petrou [40]
generated a multiscale representation by a multiband smoothing algorithm
cooperating with 3D histograms and probabilistic assignments to analyze the
interaction between color and spatial frequency. Recently, an approach by Wanderley
and Fisher [41] presented a feature set by color angles to deal with the illumination
invariant issues.

12



These models attempted to implement the multiple chromatic spatial frequency
channels [42]-[44] by computational approaches. However, some issues were not
considered well and these approaches seemed not describe the phenomenon properly.
First of al, opponent chromatic features were usualy represented over-completely.
There are some basic odds such as resolution and sensitive spatial frequency of
luminance and chromaticity that it is inappropriate to extract luminance texture and
chromatic texture by the same scheme. In addition to, the color decomposition
employed did not correspond well to the opponent-process theory [45] which was
considered as color delivering form at neuron stage, that it could not correctly model
the chromatic contrast. At last, these approaches focused on specific issues and lacked
some feasibilities in common use, e.g. only one sensitivity frequency considered in
the approach by Papathomas et.al. [38], that impracticability and issues of curse of
dimensionality (at least three times to filter-bank.features) would be inevitable.

Along the summary above, we would-like to-emphasize our purpose again: To
develop a computational approach for_general uses; that is, to extract meaningful
features while preserving analyzable essences. In Chapter 3, we will build the scheme

from the fundamental concept on chromatic texture.

1.4 Research Scope

At present, as we know there is no definitive model for dealing with the 1%- and
2" order information simultaneously for chromatic texture boundary detection,
where the 15- order information describes the global content; and the 2" order
information describes the local content within regions. In this thesis, a computational
approach for hybrid-order texture segregation will be proposed. We focused on
mimicking the preattentive stage of visual perception, and thus there will be no

clustering or classification procedure. In order to overcome insufficiency of only
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considering single order feature, we integrated the 1%- and 2"- order features into a
functional system. Three important visual primitives: luminance, texture, and color
were combined properly and adaptively. By the evaluation of Marr’s three-level
description, the proposed model can describe the texture segregation task well at all
three levels. Thisthesis will mainly present the goal and development of algorithm for
texture segregation, and the hardware implementation can be found in another

research [46] by our colleague.

1.5 Outline of the Thesis

To achieve the goals described in Section 1.4, thisthesisis organized as follows:

Chapter 2 introduces the knowledge from physiology and psychophysics about
vision. Some acknowledged evidences of mechanisms of human visual system which
reveal effective visual processing. procedure will be employed during our algorithm
devel opment.

Chapter 3 proposes the modeling. strategy in this thesis. Three primitives:
luminance, texture, and color can be combined into a functional system properly and
adaptively. Some ignored issues during individual modeling for specific goals will
also be described well and solved for the hybrid-order scheme.

Chapter 4 gives a large number of experimental results and discussions among
them. Discussions and comparisons for considered issues in Chapter 3 will aso be
present.

Chapter 5 concludes the innovations and contributions of this thesis and gives

suggestions for future researches.

14



Chapter 2

Knowledge about Human Visual System

Human visua system is a powerful and elaborate system that is capable of
extracting features and integrating them effectively. From physiologica and
psychophysical findings, there are large amounts of evidences revealing that human
visual system carries out the task at its early stages [47], [48]. The initial stages of
visual processing are very important in respect of detecting and grouping various
types of visual primitives, such as curvature, line orientation, color, spatia frequency,
etc. In this chapter, some important knowledge about vision will be introduced, and
the modeling strategy to be introduced in'the next.chapter is based on these evidences

to develop the overall framework.

2.1 Anatomical SructureofiHuman Visual System

2.1.1 TheVisual Pathway

Part 2 Chlasma Part 5 Cortex

Part 1 Optics of

Part 2 Retina
the eye Part 4 Lateral geniculate

nucleus

Figure 2-1: Schematic diagram of human visual system model.
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Fig. 2-1 shows a probable model of human visual system at early stages. Part 1is
the optics of eye including cornea and lens which focus a scene onto the retina (part 2)
where many receptors (cones and rods) spread over. The properties and uses of two
types of receptors are quite different: rods, which are about 10 times as sensitive as
cones, are the only functioning receptors at very low light levels. Cones, on the other
hand, do not respond to dim light but be responsible for our ability to see fine details
and for our color perception. There are three types of cones and each of them is
categorized by the wavelength sensitivity. It is well believed that color perception is
originated from the differences in wavelength selectivity of the three types of cones.
After a scene is projected on retina, the receptors will trandate the light signals into
neuro-electrical signals (the process is usually called transduction) and transmit them
from back to front of eyes. Passing through layers of horizontal cells, bipolar cells,
and amacrine cells, visua signals.then arrive the layer of ganglion cells whose axons
pass across the surface of the retina, collect-in.a bundle, and leave the eye to form the
optic nerves. The optic nerves of twe.eyes join-and split in the optic chiasma (part 3)
and then reach the central part of visual information, called lateral geniculate nucleus
(LGN, pat 4). In LGN, visua information is divided into two pathways:
mangocellular pathway mainly dealing with motion perception and spatia
information; and parvocellular pathway mainly dealing with color, shape, texture, etc.
Next to LGN, the visual information is delivered to the striate cortex (V 1, part 5). The
numbers of cellsin V1 (about 250 million) are much more than onesin LGN (about 1
million) and the functions are more complex. V1 preserves the most precise
topography map in cortex. After some basic processes in V1, various kinds of visual
information are delivered to corresponding pathways for further processes. Roughly
speaking, the visual pathway from retinato V1 is usually called the early vision level

where large amounts of previous analyses and investigations focus on. Most of our
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computational model was devel oped based on biological evidences at thislevel.

2.1.2 Receptive Fieldsin Visual Pathway

In retina, between the layer of receptors and the layer of ganglion cells, there are
three types of nerve cells: bipolar cells, horizontal cells, and amacrine cells. Among
the cells, receptive fields of them reveal most direct messages about their functional
processing. The region where specific receptors feed into a given sensory neuron is
usually called the cell’s receptive field (RF). Receptive fields have a substructure that
stimulating different parts of the receptive fields will give different responses
qualitatively and quantitatively thus two similar receptors in a cell’s receptive field
might feed onto the cell diversely due to their spatial positions in the receptive field.
Besides, stimulating a large area will result in cancellation from the subdivisions
rather than summation. The antagonism can-be found in kinds of our sensory systems
to avoid ambiguous sensations. The-physical-brightness amount of the “black” word
in sunlight is more than the amount of “ white”. paper at low light levels. However, we
never feel difficulty to discriminate the white paper and black word printed on. The
discrimination can not be fulfilled by recording absolute information but relative one.
The main concept of receptive field is not only the connection but also the opponent
form, and it is obvious that to understand functionsin visual pathway, we should refer
to receptive fields of nerve cellsin visual pathway in advance.

The bipolar cells occupy a strategic position in the retina, since all signals
originated from the receptors then transmitted toward the ganglion cells must pass
through them. Visual signals are delivered from receptors to bipolar cells in two
separate paths. a direct path where the receptors synapse onto the bipolar; and an
indirect path where the receptors contact the horizontal cells which in turn synapse

onto the bipolar cell. That is, each bipolar cell is connected to receptors in a two-path
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form. In the direct path, a bipolar cell obtains inputs from the receptors in a
circle-shape area of retina; from the indirect connections via horizontal cells the
bipolar cell receives inputs from alarger, overlapping, and concentric disk-shape area
(Fig. 2-2). The two paths deliver opposite tendency to the bipolar cell. That is, for
identical stimuli, one path will deliver excitatory response while the other will deliver
inhibitive one. The substructure of bipolar cell’s receptive field is caled as the
opponent center-surround mechanism. Similarly, the ganglion cell’s receptive field
also has such substructure, and in actual, the opponent center-surround mechanism
was firstly discovered in ganglion cell [49], [50]. The layer of ganglion cellsisthe last
stage of visua signals in eyes (the output of eyes); that is, the center-surround
antagonism provides a preliminary understanding of processes in retina and helps the

exploration for higher level visua!"ﬁfoc ng
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Figure 2-2: Schematic diagram of receptive field of the bipolar cell.

From retina to posterior stages in visual pathway, main processing for spatial

vision task does not change until V1. On the whole, the LGN islike arelay station for
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visual signals, and receptive field profile maintains the form in retina. As visua
signals are delivered to V1, the receptive field appears more elaborate properties. V1
cells have several characteristics not seen earlier: binocularity, direction selectivity,
and much narrow orientation and spatial frequency selectivity. The pioneers in this
field are Hubel and Wiesel (Nobel Prize, 1981). They discovered most V1 cells do not
respond to isotropic stimuli (e.g. point) but to specific line stimuli [51]-[53].
According to responses to various types of stimuli, Hubel and Wiesel classified V1
cellsinto two categories: simple cells and complex cells. Simple cells respond most to
stimuli with specific preferred orientations. Receptive fields of simple cells, like céells
in retina, aso have excitatory region and inhibitive region. There are two types of
simple cells determined by the arrangement of excitatory region and inhibitive region.
One is organized with inhibition-‘excitation- inhibition arrangement (even symmetric)
while the other is organized with.excitation- inhibition arrangement (odd symmetric)
as shown in Fig. 2-3. The other category-of-\/1 cells, complex cells, respond most to
line segments with specific orientations moving along specific directions. In V1 and
prior stages, the receptive fields of most neuron cells appear ssimple profiles and can
be easily understood. Still, there seems not an integral analysis considering the
properties more thoroughly. The next section to be introduced is the main integrating

theory: linear filtering theory.
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Figure 2-3: Schematic diagram of receptive field of the V1 cells.
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2.2 Linear Filtering Theory

As more and more evidences from physiologica and psychophysica
experiments about receptive fields were recorded, many researchers attempted to
further discover the fundamental processing of visual information. Among them,
linear filtering theory [47], [54], [55] has made a great impact on recent visual
researches. Spectral analyzing procedure is the principal concept of linear filtering
theory. Researchers in the field indicated that recording visual information by spatial
frequency decomposition is a more efficient way and large amounts of experiments
have been performed to verify the argument. We would like to point out that the
concept of linear filtering theory is a little bit different to the ideal Fourier analysis
because we cannot exactly calculate frequency components in a spatially delimited
image. Moreover, no neuron cell has areceptivefield extending to unlimited region;
that is, information from a receptive field.can reach-neither the most precise frequency
resolution nor spatial resolution. The issue can-be explained more thoroughly by
introducing another important concept: multiple spatial frequency channels.

The receptive field of a unit at pre-cortical stagesis possessed of center-surround
antagonism which can be interpreted as a band-pass filter extracting a specific range
of gpatia frequencies. The contrast sensitivity function (CSF) of human visua system
supports the assumption that the CSF attenuates at low and high frequencies (Fig. 2-4).
Until the late 1960s, it was assumed that all ganglion cells have the same broad
sengitivity profile as the CSF. In 1968, however, Campbell and Robson [54] made a
revolutionary suggestion that the visual system might contain a group of independent,
band-pass filters, which are narrowly tuned for ranges of frequencies (Fig. 2-4). In
other words, human visual system does not employ a single mechanism to deal with

all spatial frequencies but a group of mechanisms, and each of them is responsive to
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only some fraction of total range.

£

contrast sensitivity

spatial frequency (cpd)
Figure 2-4: The overall luminance contrast sensitivity function (CSF) consists of multiple spatial
frequency channels.

The assumption was soon supported and verified by many physiologica and
psychophysical evidences. Anatomical records showed that there exist cells with
different sizes of receptive fields corresponding to different sensitivity frequencies;
and responses of cells measured by micro-electrode aso showed much narrower
sensitivities than the overall CSF..In addition, in many psychophysical experiments
such as pattern adaptation, frequency masking, subthreshold summation, etc. [56],
stimulus at specific frequency did not result in an overall effect on CSF but a local
influence near the stimulating frequency that supported the assumption about multiple
spatial frequency channels as well. These evidences all revealed that there is no truly
Fourier analyzer in human visual system, and of course, what vision system functions
isnot global analysis that requires extremely narrow channels but a group of channels
operating spatial-frequency filtering. Besides these evidences, from the viewpoint of
signal analysis, it is more economical and suitable to represent the contents on
surroundings (e.g. objects, illuminations, etc.) by local spatial frequency filtering. In
human visua system, such phenomenon appears in ganglion cells, LGN cells, and V1

cells. An image in V1 is decomposed into not only spatial frequencies but also
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orientations. A schematic model of columnar organization in V1 shown in Fig. 2-5
represents that various two-dimensional spatial frequencies are considered to be in a
polar arrangement, with spatial frequencies increasing from the center. By choosing
appropriate basis, the organization can be represented well by spatial-frequency
analysis, eg. wavelets transform [27]. In actual, it had been verified that Gabor
function [17], [57] could fit well the receptive field profile of V1 cell and a
two-dimensional Gabor representation could also characterize an image completely

[35], [36]. We will discuss the Gabor function more detailed in Chapter 3.
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Figure 2-5: Schematic diagram of columnar organization in V1 (adapted from [47]).

2.3 Color Vision

The backgrounds described above mainly discussed the luminance content in an
image, and in fact, those biological evidences were derived from experiments with
gray-scale images. For color images, the processing complexities do not merely add
one feature. Here | will briefly introduce the color perception and issues about spatial
vision from color.

Like texture, color is not a physical quantity but perception. As described in
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Section 2.1, there are three types of cones categorized by their wavelength sensitivity.
We usually call the three types of cones as L-cone, M-cone, and S-cone (Long-,
Median-, and Short- wavelength sensitive). Unlike luminance information, which
directly corresponds to responses of receptors, color information is a manufactured
output of visual processes that responses of three types of cones are integrated within
a region and delivered. Vision system can roughly analyze the content of perceived
spectrum to make up our color perception. The opponent-process theory [45]
proposed by Hering is a very important theory characterizing color information
processes at neuron stages. Like luminance representation from receptive fields with
antagonism, vision system transmits color information by a similar way. After the
layer of receptors, color information is delivered in three opponent channels including
red-to-green channel, blue-to-yellow channel (two chromatic channels), and
white-to-black channel (one [luminance' channel).-Such representation was directly
supported by records in LGN-cells [58].-and-some investigations on complementary
colors. Like receptive field profiles; under limited amounts of neurons and nerves, the

opponent representation could provide a more economical and robust transmission.
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Figure 2-6: Representation of Hering’s opponent-process theory.

Here comes another issue, at neuron stages, color information is encoded in one
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luminance and two chromatic channels, and the luminance is represented in a group of
gpatial frequency channels. Are there similar mechanisms in the other two chromatic
channels? Fig. 2-7 is the schematic plot of overall CSF of chromatic and luminance
stimuli. Compared with luminance CSF, sensitivity range of chromatic CSF tends
toward lower frequency and there is no significant attenuation at low frequencies.
Also, the sengitivity amounts are less than those in luminance CSF. Texture
discrimination had been seldom attributed to color information for two reasons. (a)
Chromatic features are extracted within regions that inevitably lead to coarser
resolution and lower sensitivity frequency in chromatic channels. (b) Due to
transmission form, cells for chromatic information are possessed of opponent
mechanisms containing excitatory and inhibitive wavelength ranges, that the contrast
range in chromatic channel is more limited than the range in luminance channel.
Some researchers [59] even-asserted that-color information provides nothing for
texture discrimination. In fact, as long-as-chromatic stimuli are manipulated within
proper bandwidth and range, cell's for.chromatic information still preserve operations
for texture perception. From some experiments with isoluminant stimuli [42]-[44],
chromatic information also revealed the representation of spatial frequency channels
as luminance information. Moreover, records of V1 cells reveded orientation
selectivity for pure chromatic stimuli. That is, except for some basic odds of sensitive
frequency and resolution, the multiple spatial-frequencies filtering scheme can
describe well all three opponent channels. The economical and significant visual

processing scheme reveals that an efficient and simple implementation is possible.
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Figure 2-7: Contrast sensitivity function of luminance and chromatic stimuli.

2.4 Feature Integration Theory

In Section 1.2, we mentioned that if textures can be discriminated immediately is
arough but important judgment on whether the proposed approach functions correctly
or not. The preattentive visual-task is completed.at very early stages without attention
involved; that is, there will -be ne-top-down process thoroughly analyzing visual
primitives. The definition is clearexeept for the word “preattentive.” Purpose of this
thesis would not be definite until a clear description about preattentive processing
could be given.

Feature integration theory (FIT) by Treisman and Gelade [60] gave an intuitive
and critical definition to demarcation between preattentive stage and attentive stage.
Fig. 2-8 is a schematic diagram of FIT composed of two stages of visual processing:
At first, visual primitives of objects are analyzed in parallel and coded in feature maps.
At the second stage, focal attention serially deploys to particular positions and serves
to “glue” visual primitives into object representation. Some features glued from basic
primitives by attention will cost more time to be perceived since the gluing procedure
isnot parallel but serial. Thus, to judge what stage a visual feature is processed at, the

reaction time is an indicative clue. Treisman indicated that at preattentive stage, the
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reaction time is fast (pop-out) no matter how many distractors are present on display.
At attentive stage, however, increasing the number of distractors will increase the

reaction time as shown in Fig. 2-9.
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Figure 2-8: Schematic diagram of feature integration theory.
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Figure 2-9: Typical results of a visua‘search.experiment: (a) the result when pop-out occurs; (b)

the result without occurrence of pop-out.
So far, we have introduced some relevant biological backgrounds about this
research. In Chapter 3, a computational model will be developed based on these

backgrounds.
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Chapter 3

Modeling Strategy

The physiological and psychophysical evidences introduced in the preceding
sections did not lead to a convenient computational model representing visual
primitives. In this chapter, a novel boundary detection algorithm will be proposed.
This algorithm combines the 1%- and 2™- order features to model the texture
segregation task at preattentive stage of human visual system.

Fig. 3-1 shows the overal framework. In the beginning, a color image is
decomposed into one luminance and two chromatic channels in CIELAB color space.
We apply Gaussian function to extractithe 1% order features, and Gabor filters to
extract the 2"- order features, respectively. In thetwo chromatic channels, only the
lowest vertical and horizontal “Gaber.filters‘are applied due to coarser resolution and
lower sensitivity frequency in chromatic channels. The 2"- order features still need
some operations like rectification and Gaussian smoothing after Gabor filtering, and
the issues from hybrid-order scheme should also be considered. A typical issueisfalse
responses to non-texture region (e.g. sharp edge) in the 2™- order features which can
be detected and removed by the proposed criterion. Another critical issue is the
computational loads from the Gabor filter-bank approach. To relieve the problem,
only significant features determined by variance will be reserved. After feature
extraction, we then apply a local variance calculation to get the 15- and 2™- order
boundaries respectively. Finally, with an adaptive weights selection, the merged
boundary can be obtained. We may go a step further to thin the boundary by local

peak detection, and get boundary similar to human visual system.

27



@ color image

CIELAB Color Space

oL S oE S ov

Hybrid-Order
Filtering Mechanism

15t arder Nonlinear ond_ order
features Oper S features
[ Boundary Detector ]
1%- order 2"- order
boundary

boundar

[ Peak Detector ]

@ output

Figure 3-1: Flow chart of the proposed framework.

The proposed hybrid-order boundary detection algorithm will be presented in
detail. In Section 3.1, the way to extract two important features in gray-scale images,
luminance and texture, will be reviewed and discussed. Section 3.2 will introduce the
strategy to extract hybrid-order features and some issues in luminance and chromatic
channels. The nonlinear operations for the 2™- order features will be described in

Section 3.3, and in Section 3.4, the way to find the boundary will be illustrated.

3.1 Luminance and Texture Features Extraction

As mentioned, there are similar feature extracting mechanisms for boundary

detection in three color channels. Here we will review and discuss two important
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features. luminance and texture in gray-scale images first. In Section 3.2, it will be

extended to color images.

3.1.1 Luminance

Among most image segmentation methods, the main criterion is to consider how
and/or how much the luminance changes. There are aready numerous literatures
concerning the problem and a review can be found in the book “Digital Image
Processing” by Gonzalez and Woods [61]. Some well-known methods such as
Roberts, Prewitt, and Sobel operators were also reviewed in the book. The most two
typical methods are Laplacian of Gaussian (LoG) operator by Marr and Hildreth [15]
and Canny operator by Canny [62]. Laplacian of Gaussian operator was inspired from
the anatomical structure transferring visual information in pre-cortical visual pathway.
The receptive fields of bipolar-cells and ganglion cells in retina and LGN cells can be
fitted well by the LoG function. Marr-and-Hildreth used the LoG operator to find the
zero-crossing of second derivative of an image smoothed by Gaussian function as the
position of edge. By another approach, Canny defined three performance criteria for
edges as (a) good detection; (b) good localization; and (c) only one response to a
single edge, and then derived that the first derivative of Gaussian could be the optimal
edge detector.

Though the analyzing notions of both operators are a little bit different, they
employed the same concept to detect luminance discontinuities in two stages:
Gaussian convolution and gradient. Gaussian convolution is somehow like extracting
the local mean called the 1%- order feature here, and in the second stage, gradient is a
measurement for variation of the 1%- order feature. In this thesis, to build up a
hybrid-order scheme, only Gaussian convolution will be applied in feature extracting

stage and the gradient process will be accomplished later in boundary detecting stage.
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3.1.2 Texture

The orientation and spatial frequency selective property of receptive field in V1
is considered a main source to texture perception and the linear filtering approach has
been widely suggested and verified for spatial vision tasks. However, as described in
Section 2.2, receptive field of each neuron cell extends within a limited region. Also,
most images in nature are neither pure periodic nor comprised of a small set of
singular functions (e.g. Dirac function). For these reasons, spatial-frequency filtering
isaproper approach for texture analysis. In images, two-dimensional spatial filters are
constrained by general uncertainty relations that limit some attainable resolution for
spatial position, spatial frequency, and orientation. For luminance feature extraction, it
is commonly suggested that Gaussian functions are proper to extract local averaging
information. Besides close match between two-dimensional Gaussian functions and
pre-cortical receptive field fprofiles, another .important reason is that Gaussian
functions can achieve the lower bound-of joint uncertainty in two conjoint domains;
that is, the trade-off between resolutions.of position and spatial frequency can be
mediated optimally.

For texture feature extraction, there are similar considerations. The
two-dimensional Gabor functions, as defined: complex sinusoidal gratings modulated
by two-dimensional Gaussian functions, are commonly suggested for texture feature
extraction [18], [19], [22], [23], [63]. The neural model by Gabor functions was
originally proposed by Daugman [16] in two-dimensional form and Marcelja [64] in
one-dimensional form in 1980. Subsequent physiological findings also indicated the
validity of the Gabor receptive field model [17], [65]-[68]. Though the receptive
fields of the simple cells in V1 al differ with each other, they have some common
characteristics. The receptive field profiles consist of spatial frequency, orientation

selective characteristics. Also, the investigation by Pollen and Ronner [65] showed
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that adjacent pair of simple cells with matched preferred spatial frequency and
orientation has a quadrature phase relation. From neurophysiological measurements
by Jones and Palmer [17], [57], the two-dimensional Gabor function could fit well the
anisotropic receptive profiles describing neurons in mammalian visual cortex, in the
sense of satisfying chi-sguared tests. From another point of view, the two-dimensional
Gabor functions uniquely minimize the two-dimensional space-frequency uncertainty
principle for complex valued functions on R? [17]. Furthermore, the quadrature
relationship in complex components of the Gabor function allows a useful and unique

approach to texture analysis.

Two-Dimensional Gabor function

Now, to formulate texture feature extraction more precisely, we would like to
introduce the two-dimensional: Gabor:function'thoroughly. Corresponding to our
definition to texture, the two-dimensional- Gabor filters are appropriate for texture
segregation/segmentation tasks in-the 'sense: they have tunable spatial frequency,
orientation, and bandwidth. Thus, "the ‘analysis of texture can be reduced to the
analysis of outputs of selected filters which carry specific contents in images. The
Gabor function was originally suggested for processing and communication of speech
signals [14]. It is well-known that the one-dimensional Gaussian function g(x) with
its Fourier transform G(u) isthe only R—R function pair achieving the lower bound
of uncertainty relationship Ax-Au>1/4x . The one-dimensional Gabor function
h(x) = g(X)-exp(j22Ux) with its Fourier transform H(u) is a more generd
function pair (R—C) that also achieves the lower bound [14]. Daugman [17] further
extended the uncertainty relationship to two-dimensional form and formulated that the
two-dimensional Gabor function h(x,y) is the only function mapping R*-C while

achieving the both lower bounds of uncertainty relationship Ax-Au>1/4r and
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Ay-Av>1/4r simultaneously. Similar to one-dimensional Gabor functions, the

two-dimensional Gabor functions have the general form (| = J-1 ):
h(x,y) = g(xX,y")-explj2z(Ux+Wy)], (3-1)
where (X,Yy')=(xcos@+ysingd,—xsinf+ycosd) are rotated gpatiad domain

coordinates, and the two-dimensional Gaussian functions g(x,y) havetheform:

B N P (0 S _
o e Y22 s

The frequency response of Gaussian function (3-2) is

G(u,v) = expf- 27%|(o,u")? + (o,v) 2 ] (3-3)
where (u',v') =(ucos@+vsing,—using+vcosd) . The frequency response of
Gaussian function is also a Gaussian form. The shape of two-dimensional Gaussian

function is determined by aspect|ratio (o,/c,) where o, and o, are standard

deviation of Gaussian function in x.axiS-and-y-axis; In some cases without knowledge

of the context to extract texture feature, it isreasonable to select an isotropic Gaussian

modulation, namely o, =0, =0 . The impulse response h(x,y) is a complex

sinusoid with center frequency (U,V) that is modulated by a Gaussian envelope. A
complex sinusoid in spatial domain corresponds to a position shift in frequency
domain. In other words, the complex exponential components determine the place
where the main frequency response components of Gabor functions lie. The complex
components of two-dimensional Gabor functions determine the central spatial

frequency (F) and orientation (¢ ). The frequency response of the Gabor function (3-1)
isgiven by
H (u,v) = expl- 22702 (U'-U")? + o2 (v-V')?]}, (3-4)

where (U',Vv') =(ucos@+vsing,—using+vcosd) and (U'V') is a similar rotation
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of the center frequency (U,V). Equation (3-4) shows that the frequency response of

Gabor function H(u,v) isa Gaussian function with representation of center position
where frequency F=+U?+V? and orientation ¢=tan™(V/U) in frequency
domain. An example of Gabor function with orientation 30° in spatia domain is

presented in Fig. 3-2, where Fig. 3-2 (a) is the real part of a standard Gabor function

in the spatial domain, and Fig. 3-2 (b) isthe spectral response.

”

(@ P &~ (b)
Figure 3-2: An example of 2D Gabor function in (a) spatial domain; (b) frequency domain.
The two-dimensional Gabor uncertainty principle is illustrated in Fig. 3-3. It
shows the schematic representation of the real part of a two-dimensional Gabor
function on the left side and the schematic representation of its Fourier transform on
the right side. As the spatial resolution (Ax) gets coarser by a factor«, it alows a
more accurate determination of frequency by a factorl/« . Another illustration for
trade-off between spatial resolution and orientation resolution is shown in Fig. 3-4. As
theresolution iny axis (Ay ) decreases, it will provide greater sensitivity to orientation,

which can be seen in the frequency domain, where A8 < 1/(FAy) getssmaller.
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Figure 3-3: Trade-off between spatial resolution and frequency resolution (adapted from [17]).
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Figure 3-4: Trade-off between spatial resolution and orientation resolution (adapted from [17]).

In practice the Gabor function can be divided into real (even) part h.(x,y) and
imaginary (odd) part h,(x,y) as
h. (X, ¥) = g(x, y) - cog2z(Ux+Vy)] (3-5
and
hy(x,y) = g(x,y)-sin[2z(Ux+W)]. (3-6)
The rea part and imaginary part are requisite for complete Gabor scheme of image
representation [17], [35], [36]. For texture feature extraction, however, what

principally characterizes the form of texture is not phase spectral component defining
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spatial relationship between textura elements but magnitude spectral component
describing textural elements (e.g. orientation, repetitiveness, etc.). Therefore, for
texture feature extraction it is sufficient to consider magnitude information only. Some
judtifications by Malik and Perona [23] also showed that it is sufficient to extract
significant textural information by even-symmetric or odd-symmetric filters only.
From consideration of the overall framework, still, to avoid the “curse of
dimensionality” at discrimination stage (boundary detection), it is more appropriate to
select a compact and critical set of Gabor functions than a complete but redundant set.
The scheme to be introduced, called Gabor waveletsis employed in our procedure due

to its compact representation and convenient parameter selection step.

Gabor Wavelets

Wavelets, considering the:joint uncertainty.issue, have been presented as an
alternative to Gabor functions as a basis set for representation in the visual system
[69]. Multiresolution processing isamain-concept-of wavelets transform that function
can be represented as linear superposition ‘of strictly local elementary functions. A
family of wavelets is a complete set of functions, all generated from a mother wavel et
by the operations of dilation and trandation. The efficient procedure by Mallat [27]
provided a fast and economical way for signal decomposition. Besides pyramid
schemes of Gaussian [70] and Gabor functions [36] for a compact image code,
Daugman [35] unified Gabor functions and wavel ets and then defined Gabor wavelets
which fit well the neurophysiological and psychophysical findings indicating a
log-polar distribution of response selectivity in V1 cells. These anisotropic wavelets
are generated from a Gabor elementary function called mother Gabor wavelet by
dilation, trandation, and rotation. The mother Gabor wavelet h'(x,y) with preferred

orientation 0° can be presented as:
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, 1 1 x*  y? | .
h(x, y):{zﬂ ]-exp{—i[—2+y—2J+ me]. (3-7)
0,0, o, o,

Rest of the filters set can be obtained by the generating function
h.,,(xy)=a"g(x,y), mnel. (3-8)
(X',y)=a™(xcosf + ysinf,—xsin@ + ycosb)

1
wherea=(U,/U,)s1 and S is the number of selected spatia frequencies for

decomposition; 0=(n%) and K is the number of orientations. The number

m=0,1---,S-1 and n=0,1---,K -1 present the index of central frequencies and
orientations. By the design strategy [26], to ensure that the half peak magnitude of the

filter response in the frequency domain touches with each other for a compact

representation. The formulas for computing the filter parameterso, and o, are given as

[26]:
_ @Y, T o, _% oy | 2 ,
o, (@+D2In2 ,0, = tan( K)[Uh 2In( : )}{ZInZ 2 } . (39

The scheme has only four parameters to be selected: lower central frequency U, ;
upper central frequency U, ; total number of frequencies S and total number of
orientations K. In Section 3.2, the scheme will be employed for the 2"- order feature
extraction. As mentioned, some issues in three opponent color channels have to be

taken into consideration, we will aso discuss those in Section 3.2.
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Figure 3-5: Representation of Gabor wavelets, where shaded ellipses represent envelopes of 2D
Gabor filters.

3.2 Hybrid-Order Feature Extraction

3.2.1 Color Decomposition

As mentioned in Section 2.3, color information is delivered in a
three-opponent-channel form and representations for spatia vision in the three
channels are very similar. In 1976, Commission Internationale de I'Eclairage (CIE)
defined two approximately uniform color spaces, CIELUV and CIELAB [71]. They
are nearly linear to visual perception, and among both, CIELAB was devel oped based
on the opponent-process theory employed for many psychophysical experiments. Also,
the defined color difference, distance in the color space is very similar to human
perception. From the reasons above, we choose CIELAB color space for color
decomposition that we can be assured that biological evidences recorded in many
literatures will not be misapplied. In fact, many previous approaches employed

information of color contrast but applied improper color representation, that
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reasonabl e results would be inaccessible.
The CIELAB color space has a luminance component L* and two chromatic

components a* and b*. L* isderived as:

Y3_16 Y/Y, >0.008856
L*:{116(Y/Yn) 16 Y/Y, > (310)

903.3(Y/Y,)  Y/Y, <0.008856

where Y, is the CIEXYZ Y value for the reference white. L* ranges from 0 to 100
where O is perfect black, 50 is average gray, and 100 is the reference white. a* and b*
are defined as:
a* =500[f (X /X,)-f(Y/Y,)], (3-11)
b* =200[f(Y/Y,)-f(z/Z,)], (3-12)

where X, Y,, and Z, are the tristimulus values for the reference white, and where

(3-13)

()= tV/3 t > 0.008856
| 2.787-t416/116. '£<0.008856"

After a color image is decomposed; we-then. apply corresponding operations to the

three components.

3.2.2 Feature Extraction

In Section 3.1, the schemes for extracting luminance and texture features were
introduced. For color images, we represent color information by three values and
employ similar schemes as those for gray-scale images. Thus we can represent the 1%-
and 2"- order features in one luminance and two chromatic channels. The mentioned
luminance and texture in gray-scale images correspond to the 1%- and 2"- order
features in luminance channel. Before we adopt the schemes introduced in Section 3.1
for color images, we should discuss some issues about luminance and chromatic
pathways in advance to prevent a crude representation.

For spatial vision, color information usually plays an important role for object
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localization. Regions with the same color are more likely belong to the same object
while regions with different colors are more likely belong to different objects. In our
daily experiences, color usually presents local information as luminance does. Some
textured patterns composed of color information are less mentioned or observed, and
texture perception is usualy ascribed to gray-scale information (in luminance
pathway). In Section 2.3, some researches have been reviewed that there are some
similar properties in luminance channel and chromatic channels. Manipulating
isoluminant stimuli, it was shown that visual system is capable of discriminating
spatial frequency and orientation [42], [44] in chromatic grating. Also, some
psychophysical experimental procedures applied for validating multiple spatial
frequencies filtering in luminance channel were aso employed for investigating
properties in chromatic channels [43], [72]. Besides previous psychophysical
experiments, in recent years there were more physiological evidences supporting these
properties of mechanism for processing-color-information [73]- [76].

Numerous researches revedled that there ‘are similar mechanisms in luminance
and chromatic channels. How visual system deals with chromatic texture was also
discussed generaly [37], [38], [77], [78]. Still, there seem some conflictions to our
daily experiences and we seldom observe so called chromatic texture. The
phenomenon is mainly due to: (a) less contrast sensitivity, lower sensitivity frequency,
and coarser resolution in chromatic channel; (b) few natural cases exhibiting
chromatic texture without luminance texture. Most researches investigated processes
for pure chromatic stimuli in human visual system. However, such stimuli only appear
under specific manipulations. Moreover, compared to mechanisms for luminance
information, mechanisms for chromatic information carry less significant properties.
Thus, it is a very uneconomical way to represent a visual context with identical

scheme in luminance and chromatic channels. In our modeling strategy, only
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information sensitive to lower frequency with vertical and horizontal orientations will
be extracted as the 2" order features in chromatic channels. Another issue frequently
discussed is about the interactions between luminance and chromatic pathways [38],
[72], [77]-[80]. Based on individual experimental procedure and interpretation of
results, there are still some debates about the issue. Besides, artifact stimuli in these
experiments have to be manipulated precisely and many models were likely proposed
to interpret some specific stimuli. Thus, to develop a genera-purpose and economic
approach under uncontrolled condition, the issue was not taken into consideration in
thisthesis.

The schematic diagram of hybrid-order feature extraction is shown in Fig. 3-6.
After a color image is decomposed into one luminance component L* and two
chromatic components a* and.b*, the three:components are convoluted with a
two-dimensional Gaussian function to extract the-1%- order features. The 2™- order
features are extracted by Gabor wavelets-scheme. A three-scales and six-orientations
Gabor wavelets scheme is applied in.the luminance channel, and only the lowest
spatial frequency Gabor filters with vertical and horizontal orientations in Gabor
wavelets scheme are applied in two chromatic channels. That is, we have totally three
the 1%- order features and twenty-two the 2" order features (6x3+2+2=22). The
2" order features still need some operation to exactly characterize texture properties.
Also, some issues have to be discussed further and solved in hybrid-order scheme. In
Section 3.3, there will be some discussions about further operations for the 2"- order

features.



% 15t order feature extraction

21 order feature extraction

Figure 3-6: Schematic diagram of hybrid-order feature extraction presented in frequency domain,
for 2" order feature extraction in chromatic channels, only the lowest frequency Gabor filters

with vertical and horizontal orientations (bold contour ones) will be applied.

3.3 Operationsfor the Second-Order Features

The overall process of texture feature extraction can be divided into three parts:
Gabor filtering, rectification,zand Gaussian smoothing (G-R-G) [18]-[21]. In this
section, to continue the discussion in Section 3.2 considering Gabor filter for the 2™-
order feature extraction, the other.two stages: rectification and Gaussian smoothing
will be introduced. Another important issue about the false 2"- order features will

also be discussed.

3.3.1 Full-Wave Rectification and Gaussian Smoothing

Full-\Wave Rectification

Up to the present, what our procedure executes is like a set of parallel operators
extracting parts of spectral contents. The review of texture theory in Chapter 1 has
shown that the global power spectrum cannot provide sufficient texture properties. If
the processing procedure only extracts spectral contents in another way, the main
concept of the operation will not be different to global spectrum analysis. The

principal difference between the linear filtering theory and Fourier transform to
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texture analysis is due to the rectification operation. After Gabor filtering, the outputs
of the filters are transformed with rectification to ensure that the fine-grain positive
and negative portions of the carriers will not cancel one another when smoothed by a
Gaussian post filter. Researches by Graham et al. [81] and Heeger [82] presented the
“half-squaring,” i.e., the outputs of the filters are first half-wave rectified and then
squared. Simulation results with this kind of nonlinearity correlate well with
neurophysiological data. In actual, it iswell believed that V1 cells hold the half-wave
rectifying operation [83]. Malik and Perona [23] also provided some justification for
equivalent results by using even-symmetric and odd-symmetric Gabor filters.

In this thesis, only even-symmetric Gabor filters are employed with intervening
full-wave rectification. Texture is a regional representation; that is, what a textural
region appears is not fine-grain portions tbut local properties. For texture
representation, the textural element is more significant than its relative location. In Fig.
3-7, for areasonabl e representati on:of the grating texture, the responsesin location (@)
and (b) with 180° phase shift should.be the same and thus a full-wave rectification
should be applied after Gabor filtering. Moreover, the responses in (a), (b), and (c)
should aso be similar. The following stage, Gaussian smoothing will support the

state.

full-wawe rectification

Figure 3-7: Applying full-wave rectification to make sure responses at (a) and (b) with 180°
phase shift, would be the same.

Figure 3-8 (b) shows the output after Gabor filtering without rectification, and
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Fig. 3-8 (c) shows the output after rectification. White pixels in the image reflect that
Gabor filter has detected the matching features at the pixels, and some pixels with
negative responses are not so visible in Fig. 3-8 (b). Textura contents of invisible
pixels are very similar to those of white pixels. After rectification, in Fig. 3-8 (c), the
two regions can be separated more apparently due to the rectification turning the

negative responses to positive.

o 45°

a0® 135%

(b)

(©
Figure 3-8: An example demonstrating the effect of rectification: (a) input; (b) responses without

rectification; (c) responses with rectification.



Gaussian Smoothing

To manifest regional properties of textures, a further operation, Gaussian
smoothing needs to apply after rectification. The outputs of areas with opposite phase
show identical responses after full-wave rectification; however, regions with identical
textural properties but different locations (phases) still exhibit some different
responses. The features are inappropriate for boundary detection localizing positions
where features change sharply as boundaries. For texture segregation/segmentation
task, over-segmentation will occur frequently if there is no regiona enhancement
mechanism applying for textural features. Compared to human visual system, the
outputs of V1 cells responding to similar orientation tend to aggregate together. The
region with the same property will respond stronger than regions which consist of
elements with different properties.: The process is consistent with the localization
property of textures. Such property can be simulated by a Gaussian post filter, and
some spurious weak responses can also be elimi néted. Fig. 3-9 (b) shows the result
after rectification without Gaussian srnoofhing, and Fig. 3-9 (c) is the output of
Gaussian post filter applying to Fig. 3-9 (b). In Fig. 3-9 (c¢), there is a ramp-like
feature profile that provides more reliable distinction between different regions and

resemblance within the same region.

(b) (©
Figure 3-9: An example demonstrating the effect of Gaussian smoothing: (a) input; (b) responses
without Gaussian smoothing; (c) responses after Gaussian smoothing.



3.3.2 False Responses to Non-Texture Regions

After Gaussian
stnoothing

\ L

(- —

ﬁ After rectification
operation

— | :

Figure 3-10: Schematic diagram demonstrating the fal se responses to non-texture regions.

For a pure texture segregation/segmentation task, there is no difference of
average luminance between regions.; The Gabor-Rectification-Gaussian process is a
standard and acknowledged procedure [18]-[21}: However, if there are luminance
differences between regions, the procedure will induce some false response. Usually,
the false response occurs near:the' boundary. Fig. 3-10 is a schematic diagram
demonstrating an extreme case. If only the 1°- order feature exists, after applying a
Gabor filter with the same orientation to the boundary, there will be a peak-valley pair
apart from the width of Gabor filter’'s mainlobe. Along the procedure of texture
feature extraction: rectification and Gaussian smoothing, the 2"- order feature will
appear a significant peak on the boundary. Applying local variance calculation to find
the boundary, we will detect the boundaries which are located at two sides of real
boundary (as the dotted linesin Fig. 3-10).

Some researchers [84], [85] attempted to solve the problem by establishing a
database, with training procedure they could avoid the false segregation. It is obvious
that their procedure is not suitable for general-purpose tasks and we never know if the

training procedure faithfully characterizes the relationship between the 1%- and 2"-



order features. Kruizinga and Petkov [86], [87] and Grigorescu et al. [88] approached
the issue by grating cell operator feature, which is inspired from the function of a
visua neuron. Grating cell is a specific type of neuron found in areas V1 and V2 of
the visual cortex and is also selective for orientation. Unlike the majority of
orientation selective cells found in V1, grating cells do not react to single lines or
edges but only respond when a set of bars with appropriate orientation and spacing in
its receptive field. Based on the knowledge, Kruizinga and Petkov [86], [87] proposed
a computational model for mimicking the response of grating cell. Their model
consists of two stages. The first stage is constructed to respond at any position where
a set of three paralel bars with specific orientation locates, and the second stage
strengthens the output of the first stage if more than three parallel bars are present.
Without considering the relevance of grating eells, the computational model indeed
solved parts of the issues successfully and generalized the texture segmentation task.
However, the types of textures are far-more.than the grating type texture, that the
model is not a complete and economic approach for general cases.

Because there is till no acknowledged evidence considering about the issue from
available biological models, in this thesis, we do not attempt to employ any biological
process to deal with the problem under some limitations. Instead, we directly correct
the conflicting phenomena from the source resulting in some false responses. The
schematic diagram in Fig. 3-10 is an extreme case that only the 1%- order feature
exists. In most cases, however, the 15- and 2" order features exist simultaneously.
Moreover, the ranges of feature values are different by cases. Take Fig. 3-11 and Fig.
3-12 for example. In Fig. 3-11, the 1%- order feature difference between regions is
little. However, the 2™- order feature is much weaker over the whole. Hence the false
response will occur at parts of the boundary even thought the 1%- order feature

changes slightly. Another case shown in Fig. 3-12 exhibiting obvious 1%- order feature
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difference between regions while appearing a more intense 2™- order feature does not
lead to false response near the boundary. Considering the above cases, the absolute
S order feature difference between regions does not straightly provide a reliable
judging criterion. A more appropriate criterion is the relative significance between the
S and 2"- order features. If the 1%- order feature overwhelms the 2"- order feature
which is sensitive to the orientation of boundary, an obvious peak-valley pair will

appear and the response will be much larger than the 2"- order features at other

locations.

Figure 3-11: Anexample (1) demonstratmg the false rmonse issue: (a) Input image; (b) output
image after Gaussian filtering; (c) dUtput Tmage-afterGatpdr filtering.

+|I

@ (b)

Figure 3-12: An example (II ) demonstrating the false response issue: (a) Input image; (b) output
image after Gaussian filtering; (c) output image after Gabor filtering.

In Fig. 3-10 we showed that the peak and valley would be apart from the width

of Gabor filter’'s mainlobe. We can go further to enhance the peak-valley pattern to

make it more discriminable by applying afilter with positive-negative peaks pair apart

from the same width of Gabor filter's mainlobe. After applying the filter, the output is
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like Fig. 3-13. If positive-negative pair matches the peak-valley pair, a strong positive
peak with two alike negative peaks will appear. Similarly, if the positive-negative pair
matches the valley and peak, a strong negative peak with two alike positive peaks will
appear. The critical feature was employed as a criterion for dealing with the issue of
false response. Our procedure for solving the false response problem could be given
asfollows:

(1) Apply the filter with positive-negative peaks pair apart from the width of
Gabor filter’s mainlobe to the direction orthogonal to the selective orientation
of Gabor filter.

(i)  Scanthe peaks and valleys.

(i)  Compare absolute value of each peak (valley) to its previous one and next one.
If the peak (valley) value 'i'é".lléir_glér than2 times to its previous one and next
one, it means the faanerasponslu—é‘I appearsa,t the location that the 2™- order
features near the regi (;[_]."hav,é t@bepeplaced

(iv)  The false 2"- order ré;')ohs%are”r_epl-aééd by padding values linearly from
both sides.

Fig. 3-14 shows the results by our method. The false responses can be replaced

while preserving other correct texture information.
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Figure 3-13: A demonstration of our procedure enhancing the features of false responses. (a)

output after Gabor filtering; (b) a cross line of (a); (c) output after applying the filter with
positive-negative peaks pair apart from the width of Gabor filter’s mainlobe.
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Figure 3-14: An example demonstrating the results of our procedure for the false responses.

3.3.3 Features Reduction

The main problem of filter-bank approach is “the curse of dimensionality,” and
the filter-design approach attempted to solve the problem with some criterion to select
suitable filters fitting well with the image contents. As mentioned in Section 1.3, for a
general-purpose procedure, the filter-bank approach is a more appropriate choice.
However, the approach inevitably has to face the trade-off between feature
completeness (more filters) and redundancy reduction (less filters). In our approach,
to eliminate some insignificant features (non-responding filters), the variance of each

feature will be calculated. The ideal features providing some discriminable
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information must exhibit some value differences among the overal region. If a filter
responds or not responds to the overall content, features extracted by the filter cannot
provide sufficient information for discrimination. Employing the concept, the variance
of each 2" order feature will be checked and the feature with variance less than 35%

of the maximum will be discarded.

3.4 Hybrid-Order Boundary Detection

In this thesis, the features are extracted in parallel. At boundary detection stage,
the proposed approach does not combine the two kinds of features into one feature
space due to some issues; (a) the procedures extracting the 1%- and 2"- order features
are different such that the meanings of the two representations are also unequal. (b)
Significance between the 1%- and2™- order botindary is not always the same, and thus
how to select proper weighting would be a problem: Instead of roughly combining the
features, we propose a procedure tofind-the 13- and 2"- order boundaries individually
and then combine the two boundaries.. The proposed method can combine the

boundaries by determining the weights adaptively.

3.4.1 The First- and Second-Order Boundary Detection

Our procedure to find the boundary is based on the concept that the locations
where features change obviously would be more likely the boundaries. After
extracting features of all regions, the features can be described in a vector. The degree
of how much the vector changes can be considered as an indicator of boundary. In our
approach, all features from three channels are combined into two feature spaces as the
1%- order feature space and the 2"- order feature space. By applying local variance
criterion, we can localize two kinds of boundaries individually by both feature spaces.

A schematic diagram is shown in Fig. 3-15, after all the features are arranged well,
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local varianceswithin 5x5 mask are calculated in both the 13- and 2"- order feature
spaces. The two boundaries carry individual information of their own such that the
combination can be implemented properly based on a criterion considering the

reliability and compactness of boundary defined by each feature space.
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Figure 3-15: Schematic diagram of boundary detector.
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3.4.2 Boundary Comblnatlon‘ :

For segregation task, prevl ods Iesea:ch% r’evealed that there should be a
common site integrating boundarles defmed_ by dlfferent attributes [89]-[91]. Also, it
was verified that combining multiple attr‘l butes posterior to a decision of localizations
is advantageous to get more precise boundaries [89], [90]. If there are conflictions
between boundaries defined by different features, the weights of all features are
mediated by the measurements of reliabilities. A larger weight would be assigned to a
boundary which is more reliable and linear summation for combining multiple
features was suggested [90], [91]. Fig. 3-16 shows two opposing cases to demonstrate

that the reliability of each feature is not always the same, as the case may be. Thus a

criterion for determining the reliability is required.

51



@ (b) (©
(d) () (f)

Figure 3-16: Two examples demonstrating the dominating role changes between the 1%- and 2

order features (a), (d) input images; (b), (€) 1%- order boundaries of (a), (d) respectively; (c), (f)
2" order boundaries of (a), (d) respectively:

In our approach, we utilize the-opening operator to determine the weights
adaptively. After applying a-threshold to the raw- data of boundary, we will get a
compact and continuous black-white boundary if the feature space is reliable.
Oppositely, for a feature space which does not provide sufficient discriminable
information, we will get only some noise-like fractals. Opening operation is one kind
of morphological process that it can be used as a geometrical selection. By applying
opening operation to the black-white boundary image, for more compact and reliable
boundary, more region areas will be reserved after opening operation. Thus the
weights for combination can be selected from the region area ratio before and after
opening operator. The whole procedure for boundary combination could be given as
follows:

() Normalize the 1%- and 2™- order boundaries to values of 0-1.
(i)  Apply thresholds to make the two boundary images binary.

(iii)  Apply opening operator to the two black-white boundary images.
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(iv)  Calculate region arearatios before and after opening operator as weights.
(V) Combine the normalized boundaries by the determined weights and then
normalize the combined boundary to O-1.

W

itput itnage
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- order 9 order
boundary boundary
threshl:uldjng
opeting operation .

Figure 3-17: An example demonstrating the weights selection by opening operation.

In Fig. 3-17, it is demonstrated that the left side and right side of input image are
segregated mainly by the 1%- order feature and the texture information is nearly
uniform over the image. By applying local variance calculation, we can find the 1%
order boundary is much more compact and reliable than the 2"- order boundary. After

threshold and opening operation, the 1%- order boundary will get much larger weight
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by calculating the region area ratios. The combined boundary can fairly preserve the
information from the 1%- order boundary in this case. In the next chapter, more
genera cases will be shown that the significance between the 1%- and 2"- order
features is not always the same thus it is inappropriate to assign fixed weights for
combination. The proposed method for feature combining issue can indeed assign

weights adaptively and preserve the significant feature fairly.

3.4.3 Local Peak Detection

The coarse boundaries can be thinned by applying local peak detection. It is
assumed that the difference between distinct patterns is maximal at their boundary.
Algorithm of local peak detection is given below:

(i) Scanrow by row and column-by column to find local maximain x and y axes.
(if) Sort the peaks in descending.order and.keep peints with higher order in each row
and column. These pointsare regarded.as boundaries.

The number of peak-points'we keep.in(it) depends on the complexity of input

image. In our testing cases to be shown in Section 4.3, we selected two peaks.

3.5 Summary

In this chapter, we built up the model from evidences about human visual system
and relevant researches. Three visual primitives: luminance, texture, and color were
properly combined into a functional system for the chromatic texture segregation task.
Issues of false responses and weights selection were also discussed thoroughly and
solved by proposed method. In the next chapter, the proposed model will be applied
for extensive testing images. Besides, experimental comparisons about employed

processes will also be demonstrated.



Chapter 4

Experimental Results & Discussions

In this chapter we will apply our algorithm to a number of testing patterns. All of
them are synthesized by textures from Outex database [92], which contains a large
collection of textures, in both form of surface textures and natural scenes. The
collection of surface textures exhibits well defined variations to a given reference in
terms of illumination, rotation, and spatial resolution. The synthesized images for
experiments are 746x746 pixels in 24-bit RGB. When we compute the texture
features for pixels near the image boundary, the regions which are not totally covered
by filtering mask will be discarded. IniSection 4.1, we will first introduce parameters
selection. In Section 4.2, some important properties exhibiting on experiments will be
discussed. A wide test on synthesized paiterns by the proposed algorithm will be
shown in Section 4.3. At lagt, the error estimation for the algorithm will be discussed

in Section 4.4.

4.1 Parameters Selection

There are some parameters need to be selected: (a) the number of Gabor filters
and the parameters (U,V,0,,0,) determining the shape and orientation of Gabor
filters in the frequency domain. Gabor filtering is computation intensive, and
increasing the number of Gabor filters will increase computational loading

dramatically. On the other hand, unnecessary and useless features extracted by

ill-designed Gabor filters may result in incorrect boundaries. (b) The standard

deviation of post Gaussian filter o, , which determines the smoothing level. Increasing
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o, and the standard deviation of Gabor filter (o,,0,) can eliminate more noise,

but the accuracy of boundary might decrease.

Choice of the above parameters is an important but sophisticated problem and
choice of center frequencies of Gabor filters is the most frequently discussed issue in
filter-design approaches (Section 1.3). Algorithm in this thesis employed the Gabor
wavel ets scheme to build an unsupervised procedure to deal with more general cases.
As described in Section 3.1, the Gabor wavel ets scheme can extract significant texture
information with less filters, and al the parameters for the 2"- order feature
extraction reduce to only four selections: the number of frequencies S, the number of

orientation K, the lower central frequency U,, and the upper central frequency U, .

The values of parameters for all simulations are shown in Table 4-1.

Table 4-1: Parameters for Experiments

Parameters Values
Pattern Size 746 X146 -pixels
Number of Orientations 6.(0°, 30°,-60°, 90°, 120°, 150°)
Number of Frequencies 3
Lowest Frequency U, 0.06 cycles/pixel
Highest Frequency U, 0.24 cycles/pixel
STD of Gaussian Filter 25 pixels

4.2 Experimental Comparisons

In this section, some experimental comparisons will be given to show the
necessity of representation employed in this thesis. Foremost of them is the effect of
multiple sensitivity frequencies, which underlines the Gabor wavel ets scheme. In this
case, to avoid misleading the discussion, a gray-scale image will be used for
comparison. To emphasize the essentiality of color information, a comparison

between results with and without color information will also be given. Finaly, some
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examples will be shown to demonstrate the effects of hybrid-order features, including

incompl eteness of each feature and collaboration of hybrid-order features.

4.2.1 Experiment I : Effect of Multi-Band Gabor Filters

In this experiment we will demonstrate the reason why multi-band Gabor filters
are employed. During this experiment we did not consider the 13- order features but
the 2" order features only while detecting boundaries. For clearly demonstrating the
effects, the feature reduction process will be skipped. From Fig. 4-2 to Fig. 4-4, we
show the raw data of the 2" order features with selective orientations of 0°, 30°,
60°, 90°, 120°, 150° in each single band. The center frequencies are 0.06, 0.12,

0.24 cycles/pixel. Boundaries detected by each band are shown in Fig. 4-5 (a)-(c).
AL

Fig. 4-5 (a)-(c) demonstrate’§l1at there Hglx:efﬂlll some boundaries undetected; that
..... 5N e
boundaries can not be detectetjlf lelyr fngl,e"afgand in this example. Fig. 4-5 (d)
i L s :c .-"

shows the result of bounda?y etected by tb‘r@e bands simultaneously; all the
'F*"l: e .I;:IJW il 2 “ ‘3
boundaries can be detected successfull _.;ﬁ;ﬁfa'g"

Figure 4-1: Input image for demonstrating the effect of multi-band Gabor filters.
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Figure 4-2: Raw data of features inrband I :‘("‘:1)‘0o ‘,“‘(b) 30° , (€)60°, (d)90°, (e)120°, (f)150°.

(d) (e) )
Figure 4-3: Raw data of featuresinband 1 : (a) 0°, (b) 30°, (c) 60°, (d) 90°, (e)120°, (f)150° .
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Figure 4-4: Raw data of features intband TiI: (@).0°,(b)30°, (c) 60°, (d) 90°, ()120°, (f)150°.

€Y (b)
© (d)
Figure 4-5: Boundaries detected by () band 1; (b) band II; (c) band II; (d) 3 bands

simultaneously.
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4.2.2 Experiment 1I : Effect of Color Information

In this subsection, we shall first demonstrate an extreme case to emphasize the
essentiality of color information. In the proposed model, a color image is decomposed
into one luminance (L*) and two chromatic (a* and b*) components. The
demonstrated case consists of two regions where luminance and arrangements (texture)
are nearly the same as shown in Fig. 4-7, and good segregation cannot be achieved
without information from chromatic components (Fig. 4-8). In this case, the effects of
our method for adaptive weights selection can also be demonstrated, i.e., more
reliable boundaries can be reserved. In Fig. 4-9, the combined boundary reserves more
information from the 1%- order boundary which is more reliable and compact in this

case. Two regions are segregated successfully with considering color information.

Figure 4-6: Input image for demonstrating the effect of color information.

(b)
Figure 4-7: Raw data of (a) luminance L* component; (b) chromatic a* component; (c) chromatic
b* component.
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@ (b) (©

Figure 4-8: Boundaries detected by information from luminance channel only: (a) 1%- order
boundary; (b) 2™- order boundary; (c) combined boundary.

@ (b) (©

Figure 4-9: Boundaries detected by jnformation fromiduminance and chromatic channels: (a) 1°-
order boundary; (b) 2"- order boundary; (c) combined boundary.

In practice, we seldom find cases'having specific visua primitive difference only.
Another example to be demonstrated is.more similar to general cases. Some
illumination shading in the example would result in some ambiguities in luminance,
and more reliable features could be provided by color information despite appearance
of shading. In Fig. 4-12, the 1%- order features in two chromatic channels are more
uniform within single texture, and a better segregation result can be obtained by

considering color information (Fig. 4-13).

Figure 4-10: Input image for demonstrating the robustness to shading by color information.
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(b) (0)

Figure 4-11: Raw data of (&) luminance L*; (b) chromatic a* component; (c) chromatic b*

component.

@ (b) (©

Figure 4-12: The 1%- order features in{@) fumi nance L* component; (b) chromatic a* component;

(c) chromatic b* component.

@ (b)

Figure 4-13: The 1%- order boundaries detected by (a) luminance information only; (b) luminance

and chromatic information.

4.2.3 Experiment III: Effect of Hybrid-Order Features

In Section 3.4.2 we have demonstrated that the dominating role changes between
the 1% and 2"- order features frequently such that it is inappropriate to select fixed
weights for boundary combination, and it is obvious that a model is certainly
incomplete without considering hybrid-order features simultaneously. In this
subsection, we shall straightly demonstrate the effect of hybrid-order features with an
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example. Fig. 4-14 (b) and Fig. 4-14 (c) are the raw data of detected boundaries by the
1% and 2"- order features respectively. In Fig. 4-14 (c), only the boundaries in the
lower left part are detected where there is obvious difference in the 2" order features.
In Fig. 4-14 (b), it only detected the 13- order boundaries in the upper part. In the raw
data of two detected boundaries, it is obvious that it is insufficient to detect all
boundaries by a single order feature. In Fig. 4-14 (d), hybrid-order features are
considered simultaneously and all boundaries are detected successfully. A
superposition of input image and hybrid-order boundary after local peak detection is
also shown in Fig. 4-15, where detection results with good accuracy are also

demonstrated.

\

(© (d)
Figure 4-14: An example for demonstrating the effect of hybrid-order features. (a) input image; (b)
1%- order boundary; (c) 2" order boundary; (d) hybrid-order boundary.



Figure 4-15: Superpositi o_ri pfw input: i'r?niaé_;e:a'nd boﬁndary after local peak detection.

4.3 Collection of Teﬁi"ngRéUlfé by Hybrid-Order Boundary
Detection o

In this section the proposed algorithm is tested by a large amount of textures
randomly chosen from “QOutex database.” We synthesized five textures in each image,
which results in eight boundaries. We will show the raw data of boundaries,
boundaries after peak detection, and superposition of boundaries and testing imagesin
order. There are totally 35 testing results, and all parameters we used are the same as
we mentioned in Section 4.1.

In this section, we classified our experimental resultsinto two categories roughly.
In Section 4.3.1 we collect the results whose all boundaries are successfully detected.

The results whose some boundaries are missed are collected in Section 4.3.2.



4.3.1 Fully Boundary Detection

In this subsection we focus on uniform texture which consists of similar textural
elements. We will demonstrate some results (from Fig. 4-16 to Fig. 4-20) where all
the boundaries between different textures are detected and weak edges within single
texture are also detected. These results are consistent to our visual perception. As
mentioned in Section 4.2.3, it cannot perform well without considering hybrid-order
features simultaneously. Large amounts of testing images demonstrated below contain
discriminable 1%- and/or 2"- order features, and thus all boundaries are successfully
detected. And, of course, a region with more regular texture and/or more uniform
luminance or color can provide better discriminability than others, and boundaries

surrounding it will be much more obvious and compact than others.
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Figure 4-16: Examples of fully boundary detection.
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Figure 4-17: Examples of fully boundary detection.
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Figure 4-18: Examples of fully boundary detection.
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Figure 4-19: Examples of fully boundary detection.
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Figure 4-20: Examples of fully boundary detection.
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4.3.2 Partially Boundary Detection

In this subsection we will demonstrate the results (Fig. 4-21 and Fig. 4-22) where
some boundaries are not correctly detected. Some textures in this subsection are not
so uniform that boundaries within single texture are more obvious than boundaries
between different textures. In some cases, two textures have similar features, and the
boundaries cannot be detected as we even cannot distinguish them at our first sight.

The visual information in the proposed approach is represented in arelative form
as the main concept of receptive field. Therefore among eight boundaries in a testing
image, the more obvious a boundary is, the larger values of raw data are. Although an
adaptive weights selection can mediate the effects between the 1%- and 2"- order
features, the weights assigned by the mechanism are global; that is, the adaptive
selected weights are determined by the most significant 1%- and 2"- order boundaries.
In other words, the context will influence the segregation results. Two regions with
less difference of the 1%- order ifeature-and non-uniform textural elements, the
information of 1%- order boundary: should be depressed during normalization before
weights selection and sometimes the weak edges from the 2" order features would
dominate the result. The phenomenon is inevitable due to the proposed algorithm
mimicking one sight of our vision system; that is, to segregate more significant parts
in aview. Even two regions could be easily segregated if they were the only contents
in aview. In a multi-texture case, however, boundary between them might be ignored
if the boundary is less obvious compared to other ones. To verify the statement, see
the testing image with blinking eyes and some boundaries seem not as obvious as we
“focus’ on them. In actual, as we focus on something, it takes afew sights already and
vision system has tuned a good way to observe since the weights have been

specifically mediated for the focused view.
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Figure 4-21: Examples of partially boundary detection.
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Figure 4-22: Examples of partially boundary detection.
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4.4 Error Estimation

In this section the accuracy of the proposed method is discussed. The way we
estimated the error can be shown in Fig. 4-23. The five-texture pattern was not tested
for error estimation because the direction to calculate the error of circle contour is
hard to assign. Moreover, since there are totally eight boundaries, if some boundaries
are detected and some are not, the error estimated cannot clearly represent how the
error results from (missed boundary or inaccurate location). The error we defined is:

HAW 1 & AH,

Error = =AW 147, (4-1)
HS W W& H

The distance between the answer and result detected by the proposed algorithm is

measured and then divided by the number of total pixelsto obtain the estimated error.

' W

I

I

i |
L

I

]

Figure 4-23: Schematic diagram of error estimation.

Fig. 4-24 is the histogram of errors estimated in our experiments. The mean of
error is about 3.60% and standard deviation is 0.0197. The mean error of 3.60%
corresponds to approximate 12-pixel error which is very reasonable since the size of
textural element is usually larger than 15 pixels in the testing image. There are some

cases with errors larger than 8%; Fig. 4-25 to Fig. 4-27 are three typical cases. As
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mentioned in Section 4.3.2, the proposed algorithm mimics one-sight vision, and thus
the boundary between non-uniform textures with similar 1%- order features sometimes
would be ignored and weak edge within single texture would be detected. The cases

with larger errorsin our experiments all belong to this condition.

mean: 0.0360 -

std: 0.0197 f

1
i |
0 ooz 0.04 006 0.05 0.1 02 014 016

Figure 4=24: The histogram of estimated errors.

€Y (b)

Figure 4-25: An example ( I ) with large estimation error.
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@ (b)
Figure 4-26: An example (11 ) with large estimation error.

@ (b)
Figure 4-27: An example (III) with large estimation error.

To demonstrate the essentiality of color information, a hybrid-order model
without color information is also applied to the set of testing images and the estimated
errors were aso recorded. The histogram of estimated errors without color
information is shown in Fig. 4-28, and the mean of errors obviously rises from 3.60%
to about 5.91% (about 65% increases). Some patterns could be easily segregated with
color information seem ambiguous without considering color information as shown

from Fig. 4-29 to Fig. 4-31.
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Figure 4-28: The histogram of estimated errors without considering color information.

(b)

(c) (d)

Figure 4-29: An example demonstrating the essentiality of color: () input image; (b) luminance;

(c) detected boundary without color information; (d) detected boundary with color information.
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@ (b)

(© (d)
Figure 4-30: An example demonstrating the-essentiality:of color: (@) input image; (b) luminance;
(c) detected boundary without color information; (d) detected boundary with color information.

© (d)

Figure 4-31: An example demonstrating the essentiality of color: (@) input image; (b) luminance;

(c) detected boundary without color information; (d) detected boundary with color information.
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Chapter 5

Conclusions & FutureWorks

In this thesis, a framework for hybrid-order boundary detection has been
proposed. It mimics visual processing at very early stages of human vision where
sensation and perception appear. The main contribution of this thesis is to combine
three important visual primitives. luminance, texture, and color properly and
adaptively. Issues for general-purpose procedure ignored before were also discussed
thoroughly and solved, such that the proposed model can represent visual information
for segregation task in a complete and economic way. There are still few researches
reaching this goa up to the present, and previous researches usually had specific
applications and employed some. assumptions. The proposed approach dealt with the
task with few assumptions and no training-procedure involved, so a larger application
spaceisavailable.

The experimental results show consistency with sensation of human visual
system and the detected boundaries with adequate accuracy demonstrate application
potential for other image processing tasks such as stereo, pattern recognition, retrieval,
etc. A related work [46] considering about the hardware implementation of the
framework has successfully realized the model for gray-scale images on the
architecture called Cellular Nonlinear/Neural Networks (CNN). CNN is capable of
parallel processing and realizable by VLSI circuits such that the computational time
can greatly decrease. The real-time processing capability is critical in some
applications such as tracking and surveillance system.

The proposed agorithm was widely tested to detect the boundaries of

synthesized textures and the experimental results appeared similar responses to our
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sensation. However, there are still some problems necessary to be overcome:

(i)

(i)

The foremost one is the parameters selection of Gabor filters. The Gabor
wavelets scheme has substantially relieved the condition that there are only few
parameters need to be determined. However, there is ill no systematic and
efficient way to represent the relationship between image content and parameter.
In previous ten years, many researches focused on the issue for pure texture. For
more complex contents consist of hybrid-order features, the parameters selection
task will be more challenging.

Another issue to be improved is about the adaptive weights selecting mechanism.
In Section 4.3.2, we discussed some cases where some boundaries were not
detected. The main cause is that the present approach mimics one sight of vision
system and extracts most.significant parts in one view. To deal with more
complex cases, a mechanism.capable of multiple focuses is undoubtedly required,
such that weights of thed™- and 2%-_order boundaries can be determined rather
locally than globally. By someway. analyzing local information, it is believed that

weights can be assigned more properly to different parts of an image.
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