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中文摘要 

 

本論文提出一個由生物觀點所啟發的多階次質感邊界偵測演算法。在演算法

的發展階段，我們成功地整合了三個重要的視覺元素：明度、質感、色彩。現今

相關研究的盲點在於僅從應用觀點出發，無法對整個議題做出完整的探討。有鑑

於此，本論文對於人類視覺系統的基本運作模式乃至系統化的整合過程進行相關

的基礎研究，針對質感邊界偵測的議題完成了通盤的探討。此外，在多階次的質

感特徵萃取過程中，一些為過去研究所忽略但卻極其重要的議題，例如：偽反應

（false response）的產生，權重值的選定等等，我們也做了徹底地討論並提出解

決的方案。 

人類視覺系統能夠有效率地處理視覺資訊的關鍵在於拮抗式的傳送機制，諸

如接收域（receptive field）的組成方式以及對比色（opponent color）的形成。本

論文參考視覺系統的編碼方式，並以系統化的方式建構出完整的質感邊界偵測演

算法。輸入的彩色影像首先被解構為三組對比色軸，並經由高斯（Gaussian）濾

波器以及賈伯（Gabor）濾波器萃取質感的一階特徵及二階特徵，輔以本文所提

出之適應性權重值決定法則得到兩者對應邊界之權重值，我們可以結合出多階次

的質感邊界。經由大量的測試結果，我們發現均勻質感之間的邊界都可以成功而

精確地被標定，而對於較不規則或不均勻的質感圖形，演算法仍會找出一些符合

我們人眼感受的特性。除了令人滿意的測試結果，本演算法的處理過程極為簡單

且直觀，不需導入過多的假設以及任何的訓練過程。相較現有研究，本論文深具

應用潛力。 
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Biologically-Inspired Model for Hybrid-Order 

Chromatic Texture Boundary Detection  

Student: Tsung-Heng Tsai                    Advisor: Dr. Chin-Teng Lin 

                                    Dr. Chi-Cheng Jou 

Department of Electrical and Control Engineering 
National Chiao-Tung University 

 
ABSTRACT 

In this thesis, a hybrid-order texture boundary detection technique inspired from 

human visual system (HVS) was presented. The proposed algorithm integrates three 

important visual primitives: luminance, texture, and color into a functional system. At 

present, the related works were developed for specific applications such that an 

overall investigation of the texture segregation process would be inaccessible. 

Therefore, the thesis focuses on relevant fundamental researches on HVS and 

systematic integration to investigate the task of texture boundary detection thoroughly. 

Moreover, some critical but ignored issues from the procedure of hybrid-order feature 

extraction, such as false response, weights selection, etc., were also discussed and 

solved in this thesis.  

Transmission with antagonism such as receptive field profile and opponent color 

is the critical point that HVS can effectively process visual information. This thesis 

employs the encoding form in HVS with systematic integration to build up a complete 

algorithm for texture boundary detection. Color images are firstly decomposed into 

three opponent axes and the 1st- and 2nd- order features are extracted by a Gaussian 

filter and Gabor filters. With the proposed adaptive weights selecting mechanism, the 

hybrid-order boundary can be obtained. Among extensive tests, boundaries between 

uniform textures can be detected successfully and accurately. For textures that are 

non-uniform or non-regular, the results also reflect some meaningful properties which 

are consistent to human visual sensation. In addition to satisfying testing results, 

processing employed in this algorithm is very simple and intuitive with only few 

assumptions and no training procedure involved. Compared with the present 

researches, the proposed algorithm has a good application potential.  
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1. Chapter 1  

Introduction 

1.1 Motivation 

Vision is one of the most important senses of human beings. By vision, we can, 

for example, locate a cup of tea or coffee to reach for, recognize a familiar person’s 

face, and enjoy a majestic sight or a masterful art work. Our experiences from 

surroundings are mainly originated by our visual systems. Various visual tasks can be 

done immediately and effortlessly, almost without consciousness of any nerves. We 

never realize how hard these tasks are until sometimes attempting to make use of our 

visual properties in some applications of computer vision or image processing. The 

critical problem in these cases is object segmentation. The first stage of many 

engineering applications is to segment objects from background first and then apply 

corresponding operations for objects and background. It seems very easy and intuitive 

to segregate objects from background for us in our experiences. However, there is still 

no implementation dealing with the task well due to limited hardware devices and 

inappropriate software processing procedure.  

Human visual system is capable of integrating basic primitives to form our rich 

sensation and perception, despite the fact that visual information is discretely sampled 

by the retina and cortex. Both biological and computational evidences have suggested 

that some kinds of feature extraction and data compression occur at very early stages 

in visual processing. How human visual system extracts features and compresses 

information in the stages is very ingenious and widely investigated. However, the 
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application-oriented researches seldom made good use of rich evidences from 

fundamental researches about human visual system. For many application tasks with 

criterions which are based on how human sees or how much they are like to human 

being, it is a reasonable approach analyzing visual information from biological point 

of view. Thought, in actual, some researchers approached related problems by 

procedures replicating human behavior and many important visual primitives, such as 

luminance, color, texture, and so on. However, how to integrate these primitives well 

to describe visual behavior is still a difficult problem. In this thesis, we will propose a 

novel approach which mimics the early stages of human vision integrating 

hybrid-order features.  

1.2 Problem Statements 

Early vision, also called as preattentive-stage vision, includes those mechanisms 

that subserve the first stages of visual processing. These mechanisms operate in 

parallel across the visual field, and are believed to be used for extracting the basic 

visual primitives. These primitives detected or extracted during early visual stages 

constitute our sensation and perception, and the following level called cognition 

combines meaningful features and compares them to patterns in our memory. In other 

words, the sensation/perception stage faithful reports basic visual primitives and the 

cognition stage combines these primitives to shape various forms upon needs. The 

cognition involving attentions can not yet be described and modeled briefly, such that 

it is unsuitable to represent the stage under unclear goal or assumption of applications. 

Thus, it is better to formulate a framework investigating sensation/perception stage 

thoroughly first and then adapt the framework for different purposes.  

Empirical sciences such as psychophysics and psychology have strongly 

advanced our knowledge of the underlying visual processes. Also, a computational 
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approach is helpful to integrate multiple findings into a common framework which is 

accessible to be analyzed and evaluated. As a biology-inspired approach, of course, 

the criterion for evaluating the proposed algorithm is undoubtedly to verify if the 

results are consistent to how human visual system works. Take the textural pairs in 

Fig. 1-1(a) and Fig. 1-1(b) for example [1]. Both the images consist of two regions 

and each of which is made up of distinct textural tokens. The fact is obvious in Fig. 

1-1(a), while a close scrutiny is necessary to observe it in Fig. 1-1(b). By immediate 

examination of Fig. 1-1(b), it does not result in the perception of two different 

textured regions, but only one uniformly textured region instead. The textural pair in 

Fig. 1-1(a) is called preattentively distinguishable, while the one in Fig. 1-1(b) is 

called preattentively indistinguishable. As the proposed algorithm is developed for 

considering how the human visual system processes texture at early stages, 

consistency between preattentive vision and results by the algorithm is a rough but 

fair criterion for the algorithm. We will introduce preattentive vision more detailed in 

Section 2.4.  

 
(a) 

 
(b) 

Figure 1-1: Two images made up of (a) preattentively distinguishable patterns; (b) preattentively 

indistinguishable patterns. The figure is adapted from [1].  

Evaluation of Computational Approaches 

Besides the experimental results, to tell if a computational approach describes 

visual behavior well, we should first consider how to evaluate it. In the well-known 

book “Vision” [2], Marr elaborated a judgment on computational approaches. As an 
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overall framework for specific visual task is formulated, there must be an attempt to 

describe some phenomenon. Marr proposed that a complete understanding of a visual 

process would involve explanations at three levels including: (a) the computational 

theory; (b) the representation and algorithm; and (c) the hardware implementation. At 

the first level, abstract of the computational approach should be characterized well as 

a mapping from one kind of information to another. Also, the appropriateness and 

adequacy for the task at hand should be demonstrated at this level. At the second level, 

it should characterize well how the computational approach can be implemented, in 

particular, representation of the input and output, and algorithm for the transform. At 

the last level, details of how the algorithm and representation are realized physically 

have to be described. In other words, the detailed hardware architecture needs to be 

explained well. Such a three-level explanation provides us a practical evaluation for 

computational approaches illustrating visual behavior. For a complete and realizable 

description about visual processing, the relevant computational approaches should 

meet the requirements at all three levels.  

1.3 Related Works 

1.3.1 Texture Analysis 

In a static image, an essential primitive besides luminance is texture. Its property 

among different illumination conditions seldom changes as acutely as luminance does. 

Thus texture information can help to prevent many erroneous estimations resulting 

from illumination variation. Moreover, texture reveals some surface properties of 

objects which are useful to separate an object from background or other objects. In 

this section, a brief review about some important theories and properties of texture are 

given.  
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Definition of Texture 

Texture, compared with other visual primitives such as color, luminance, stereo, 

etc., is a relatively new one being discussed with. The researches about texture began 

about 1960s. Before we start to talk about texture, we should give a definition to 

texture first as to any other tasks. Unfortunately, even though the property of texture is 

too essential to be neglected, there has not been a clear and acknowledged definition 

to texture. A definition to texture in Webster’s New World Dictionary is: “The 

character of the woven fabric resulting from the arrangement, size, quality, etc. of the 

fabric’s threads: as, a fine or coarse texture, a ribbed or twilled texture.” We can 

immediately imagine what texture is by the definition. However, a more qualitative or 

quantitative description is still inaccessible. The inaccessibility to a precise definition 

mainly results from two reasons. Firstly, texture is one kind of perception during early 

vision stages. It involves not only physical factors of stimuli but how the brain reacts 

to these stimuli. Thus it cannot be easily defined at physical level. The other reason is 

that there are large amounts of factors involved in texture perception and there exist 

lots of nonlinearities in the interactions among them. The two reasons above make a 

precise and identical definition to texture (especially, a physical meaning) hardly to be 

given so far [3]. Therefore, the “definition” of texture is usually formulated depending 

on specific application and there is no general agreement on definition.  

In this thesis we referred to some perceptually motivated descriptions [4]-[6] and 

refined the state. Our definition can be given as follows: (a) Texture is characterized 

by properties of a local region and there should be adequate spatial-relationships 

between elements or primitives within the region. In this thesis spatial-relationships 

simply mean the orientation and spatial frequency. (b) The homogeneous texture 

discussed in this thesis means that there are similar features over single textured 

pattern, and the scale- and rotation- invariant issues are not considered in this thesis.  
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1.3.2 Theories of Texture Perception 

In advances of texture theories, two major contributors: Bela Julesz and Jacob 

Beck, had developed two main trends of texture perception called the Nth- order 

statistics theory [7] and the texture element theory [8]. For completeness of this thesis, 

it is worth reviewing their theories first to facilitate the understanding of the theories 

nowadays before we discuss present theories.  

Julesz et al. [7] 

As literal descriptions about textures above, it is believed that the statistical 

distribution is suitable to model the spatial arrangement of texture. In Julesz’s 

approach [7], [9], he tried to find the highest statistical distribution which human 

visual system can still discriminate and proposed: In most cases, the determination for 

whether human visual system can distinguish two textured patterns or not is likely the 

global 2nd- order correlation function. Examine the approach by signal analyzing 

method, Fourier transform of the global 2nd- order correlation function is the power 

spectrum reporting the frequency components only. Thus, considering the power 

spectrum without taking local information into account could not observe some spatial 

arrangements making up textural properties. Therefore, considering the global 2nd- 

order distribution merely would inevitably meet counterexamples refuting the 

necessity [9], [10] and sufficiency [11] of the global 2nd- order distribution in the 

approach.  

Beck et al. [8] 

From another point of view, Beck focused on the grouping phenomenon of 

textural elements to formulate another approach for texture perception [8]. As an 

advocate for Gestalt psychology, he held the main announcement: “The whole is more 

than the sum of its parts.” to analyze the process of texture perception. Compared 
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with the approach by Julesz, the texture element theory by Beck is more similar to 

low-level organic operation in human visual system which employs the bottom-up 

procedure to construct the approach step by step. The grouping elements are usually 

basic visual primitives rather than cognitive forms (Fig. 1-2). As described in [12], for 

local features, such as orientation, contrast, size, closure, etc., which could not be 

described well by global statistical properties, the bottom-up procedure would provide 

a better analyzing approach. However, when more local features were utilized jointly 

for experiment and discussion, the incompleteness of the theory appeared. It was 

found that the grouping form is not merely by summing all local feature effects and 

the illusory conjunction phenomenon would occur in some case [13] as shown in Fig. 

1-3. The problem is due to that receptive fields in human visual system are not merely 

feature detectors (it will be discussed thoroughly later) and an approach would truly 

characterize our perception for texture only if it is developed while referring to the 

basic information processing in human visual system.  

 
Figure 1-2: Regional perception results from some kinds of grouping properties. For texture 

perception, the basic primitive (orientation, in this case) plays a more important role than 

cognitive form (L or T, in this case).The figure is adapted from [8].  
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Figure 1-3: Three regions could be easily segmented by controlling factors (b) the contrast to 

background; and (c) the size. However, the degree of discrimination does not increase but decrease 

as both factors are applied simultaneously (d). The figure is adapted from [13].  

Examine the two theories by Marr’s three-level explanation about computational 

approach. Though both approaches define the process and goal more explicitly, they 

does not give clear descriptions about algorithm and hardware implement at upper 

two levels, e.g. how to extract the defined features. There was no approach completely 

describing all the three levels: computational theory; representation and algorithm; 

and hardware implementation until the linear filtering theory.  

1.3.3 Linear Filtering Theory 

As the texture element theory approached the texture perception subject by local 

feature description, it led to the critical issue considering how local features could be 

extracted quantitatively and fairly. To specify local features more accurately, literal 

meanings of texture are not sufficient. Instead, it would be more adequate to 
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investigate how neurons managing visual information “see” an image. The processes 

in visual pathway have been verified as spatial-frequency filtering and formulated by 

general functions, e.g. Gaussian function and Gabor function [14]. The receptive field 

profile at pre-cortical stage which has been regarded as the main source to our 

luminance sensation can be fitted well by Laplacian of Gaussian (LoG) function [15]. 

Also, the receptive field profile in visual cortex, which is considered the main source 

to texture perception from its orientation selective and spatial-frequency sensitive 

properties, was verified to be fitted well by two-dimensional Gabor function [16], [17]. 

The two-dimensional Gabor function has been regarded as a spatial-frequency 

filtering mechanism for texture perception. Moreover, the Gabor-based computational 

model for texture perception has been examined and discussed entirely. Here we will 

discuss some related approaches by Gabor filtering scheme. Details about human 

visual system and our modeling strategy will be further discussed in Chapter 2 and 

Chapter 3 respectively.  

The overall process of texture feature extraction can be divided into three parts: 

Gabor filtering, rectification, and Gaussian smoothing [18]-[21]. Among them, Gabor 

filtering is the critical part, many researches focused on the topics in last ten years. We 

can group them into two categories: filter-design approaches, where the Gabor filters 

are designed for specific tasks; and filter-bank approaches, where the Gabor filters are 

selected from predominated partitions in the frequency domain.  

Filter-Bank Approaches 

For a quantitative description about literal meaning for texture properties such as 

fine, coarse, vertical-orienting, etc., the Gabor function with profile narrowly tuned to 

specific orientation and spatial frequency is a very suitable candidate. Daugman [16] 

firstly present a framework composed of multiple filters with specific orientations and 
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spatial frequencies. Other similar frameworks were proposed by Turner [22] and 

Malik and Perona [23] for psychophysical verification and by Jain and Farrokhnia 

[24], Manjunath and Chellapa [25], and Manjunath and Ma [26] for application tasks. 

How the framework woks is like a feature vector transform that provide a nearly 

complete coverage of the spatial-frequency domain. Besides, corresponding to the 

spatial-frequency property in cortex, the multiresolution filtering theory [27] was 

utilized for a more compact representation. Sometimes we call the set of Gabor filters 

with octave-bandwidth and octave-frequency profiles as Gabor wavelets.  

In these approaches, the frequency domain is divided by predominated filters that 

are not necessarily optimal for a specific task. The number of filters would sometimes 

result in huge computational loads. Furthermore, the filter vector with large 

dimensions may lead the undesirable phenomenon: “curse of dimensionality.” Though 

approaches by Unser and Eden [28] and Tang et al. [29] reduced the number of filters 

with feature refining procedures, their methods focused on cases with only two 

textures. Also, procedure of feature refinement implies the feature properties would 

become unobservable and hard to analyze. Furthermore, the optimization involved in 

such scheme would be less flexible than the filter-design approaches presented below.  

Filter-Design Approaches 

To cope with drawbacks of filter-bank approaches, many researches focused on 

how to select an optimal filter set to faithfully obtain useful information and discard 

other meaningless information. Usually, these approaches need a training procedure or 

database set in advance. Some typical ones are listed below.  

Bovic et al. [19] gave a very detailed analysis of texture perception. They 

proposed three supervised procedures to select center frequencies of filters by using 

empirical information based on the power spectrum characteristics of individual 
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textures. A similar but unsupervised approach was proposed by Tan [30]. It detects a 

global spectral peak once, and repeatedly detects conspicuous peaks with erasing 

operation on the frequency plane. That is, the power spectrum of a small 

neighborhood (e.g. 55× ) around the detected peak would be set to zero. The iterative 

peak detecting procedure terminates if the ratio of the current peak to the highest peak 

is less than a pre-specified value. Another filter-design approach developed by Dunn 

and Higgins [31] employed a procedure for designing a single filter to segment two 

textures. This is a totally supervised approach measuring textural statistics by a Rician 

statistical model and then using the statistics as a predictor for segmentation error. A 

further study by Weldon and Higgins [32] generalized the approach for multiple 

textures and thoroughly discussed the trade-off between classification and localization. 

However, since the procedure requires some assumptions about textural distribution 

and empirical values during filter selection, and databases of textural statistics also 

have to be built in advance, practicability of the approach is highly limited. Teuner et 

al. [33] proposed another approach to select the optimal filter set by an iterative 

pyramid Gabor representation. They indicated that human visual system does not 

direct its attention simply to features which occur frequently but ones which stand out 

significantly. Therefore, instead of selecting spectral peaks, they defined a spectral 

feature contrast criterion with progressive dyadic stage to select center frequencies of 

filters and the reciprocals of spectral feature contrast values could also be used as 

weights for extracted features [34]. The approach has fairly represented the procedure 

of texture processing. However, the efficiency and bandwidth selection are still 

limited due to the pyramid Gabor representation [35], [36].  

For some purposes, filter-design approaches indeed showed better performance 

with less on-line computations. However, for developing the filter selecting procedure, 

more assumptions and off-line computations were required. Moreover, these 
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approaches were optimized for pure textured image that many factors were not taken 

into consideration, e.g. ambiguous luminance variation, which would result in large 

amounts of spectral components. That is, for more general purposes, even a complete 

filter-design approach like the one by Teuner et al. [33] could not perform well due to 

many uncertainties. It is better to extract textural information by more original 

procedure faithfully acquiring information without ambiguous one, and the filter-bank 

approach is a more suitable choice.  

1.3.4 Chromatic Texture 

A summary of texture segregation by Bergen [20] “Texture based segregation is 

a perceptual phenomenon in which regions differing only in their spatial structure, not 

in color or brightness, and without any physical contour segregating them.” revealed 

that researchers seldom considered issues about color contrast [37] and color was 

usually employed as a regional primitive like luminance, that discussions about 

texture mainly focused on gray-scale images. At present, there are still few relevant 

researches about chromatic texture as follows.  

Papathomas et al. [38] first built a computational model employing the concept 

of double opponency and used a psychophysical procedure to verify the responses 

between simulation and experiment. A similar approach by Jain and Healey [39] 

combined the filter-bank procedure and opponent color feature to develop a model for 

chromatic texture recognition. From another point of view, Mirmehdi and Petrou [40] 

generated a multiscale representation by a multiband smoothing algorithm 

cooperating with 3D histograms and probabilistic assignments to analyze the 

interaction between color and spatial frequency. Recently, an approach by Wanderley 

and Fisher [41] presented a feature set by color angles to deal with the illumination 

invariant issues.  
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These models attempted to implement the multiple chromatic spatial frequency 

channels [42]-[44] by computational approaches. However, some issues were not 

considered well and these approaches seemed not describe the phenomenon properly. 

First of all, opponent chromatic features were usually represented over-completely. 

There are some basic odds such as resolution and sensitive spatial frequency of 

luminance and chromaticity that it is inappropriate to extract luminance texture and 

chromatic texture by the same scheme. In addition to, the color decomposition 

employed did not correspond well to the opponent-process theory [45] which was 

considered as color delivering form at neuron stage, that it could not correctly model 

the chromatic contrast. At last, these approaches focused on specific issues and lacked 

some feasibilities in common use, e.g. only one sensitivity frequency considered in 

the approach by Papathomas et al. [38], that impracticability and issues of curse of 

dimensionality (at least three times to filter-bank features) would be inevitable.  

Along the summary above, we would like to emphasize our purpose again: To 

develop a computational approach for general uses; that is, to extract meaningful 

features while preserving analyzable essences. In Chapter 3, we will build the scheme 

from the fundamental concept on chromatic texture.  

1.4 Research Scope 

At present, as we know there is no definitive model for dealing with the 1st- and 

2nd- order information simultaneously for chromatic texture boundary detection, 

where the 1st- order information describes the global content; and the 2nd- order 

information describes the local content within regions. In this thesis, a computational 

approach for hybrid-order texture segregation will be proposed. We focused on 

mimicking the preattentive stage of visual perception, and thus there will be no 

clustering or classification procedure. In order to overcome insufficiency of only 
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considering single order feature, we integrated the 1st- and 2nd- order features into a 

functional system. Three important visual primitives: luminance, texture, and color 

were combined properly and adaptively. By the evaluation of Marr’s three-level 

description, the proposed model can describe the texture segregation task well at all 

three levels. This thesis will mainly present the goal and development of algorithm for 

texture segregation, and the hardware implementation can be found in another 

research [46] by our colleague.  

1.5 Outline of the Thesis 

To achieve the goals described in Section 1.4, this thesis is organized as follows:  

Chapter 2 introduces the knowledge from physiology and psychophysics about 

vision. Some acknowledged evidences of mechanisms of human visual system which 

reveal effective visual processing procedure will be employed during our algorithm 

development.  

Chapter 3 proposes the modeling strategy in this thesis. Three primitives: 

luminance, texture, and color can be combined into a functional system properly and 

adaptively. Some ignored issues during individual modeling for specific goals will 

also be described well and solved for the hybrid-order scheme.  

Chapter 4 gives a large number of experimental results and discussions among 

them. Discussions and comparisons for considered issues in Chapter 3 will also be 

present.  

Chapter 5 concludes the innovations and contributions of this thesis and gives 

suggestions for future researches.  
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2. Chapter 2  

Knowledge about Human Visual System 
Human visual system is a powerful and elaborate system that is capable of 

extracting features and integrating them effectively. From physiological and 

psychophysical findings, there are large amounts of evidences revealing that human 

visual system carries out the task at its early stages [47], [48]. The initial stages of 

visual processing are very important in respect of detecting and grouping various 

types of visual primitives, such as curvature, line orientation, color, spatial frequency, 

etc. In this chapter, some important knowledge about vision will be introduced, and 

the modeling strategy to be introduced in the next chapter is based on these evidences 

to develop the overall framework.  

2.1 Anatomical Structure of Human Visual System 

2.1.1 The Visual Pathway 

 
Figure 2-1: Schematic diagram of human visual system model.  
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Fig. 2-1 shows a probable model of human visual system at early stages. Part 1 is 

the optics of eye including cornea and lens which focus a scene onto the retina (part 2) 

where many receptors (cones and rods) spread over. The properties and uses of two 

types of receptors are quite different: rods, which are about 10 times as sensitive as 

cones, are the only functioning receptors at very low light levels. Cones, on the other 

hand, do not respond to dim light but be responsible for our ability to see fine details 

and for our color perception. There are three types of cones and each of them is 

categorized by the wavelength sensitivity. It is well believed that color perception is 

originated from the differences in wavelength selectivity of the three types of cones. 

After a scene is projected on retina, the receptors will translate the light signals into 

neuro-electrical signals (the process is usually called transduction) and transmit them 

from back to front of eyes. Passing through layers of horizontal cells, bipolar cells, 

and amacrine cells, visual signals then arrive the layer of ganglion cells whose axons 

pass across the surface of the retina, collect in a bundle, and leave the eye to form the 

optic nerves. The optic nerves of two eyes join and split in the optic chiasma (part 3) 

and then reach the central part of visual information, called lateral geniculate nucleus 

(LGN, part 4). In LGN, visual information is divided into two pathways: 

mangocellular pathway mainly dealing with motion perception and spatial 

information; and parvocellular pathway mainly dealing with color, shape, texture, etc. 

Next to LGN, the visual information is delivered to the striate cortex (V1, part 5). The 

numbers of cells in V1 (about 250 million) are much more than ones in LGN (about 1 

million) and the functions are more complex. V1 preserves the most precise 

topography map in cortex. After some basic processes in V1, various kinds of visual 

information are delivered to corresponding pathways for further processes. Roughly 

speaking, the visual pathway from retina to V1 is usually called the early vision level 

where large amounts of previous analyses and investigations focus on. Most of our 
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computational model was developed based on biological evidences at this level.  

2.1.2 Receptive Fields in Visual Pathway 

In retina, between the layer of receptors and the layer of ganglion cells, there are 

three types of nerve cells: bipolar cells, horizontal cells, and amacrine cells. Among 

the cells, receptive fields of them reveal most direct messages about their functional 

processing. The region where specific receptors feed into a given sensory neuron is 

usually called the cell’s receptive field (RF). Receptive fields have a substructure that 

stimulating different parts of the receptive fields will give different responses 

qualitatively and quantitatively thus two similar receptors in a cell’s receptive field 

might feed onto the cell diversely due to their spatial positions in the receptive field. 

Besides, stimulating a large area will result in cancellation from the subdivisions 

rather than summation. The antagonism can be found in kinds of our sensory systems 

to avoid ambiguous sensations. The physical brightness amount of the “black” word 

in sunlight is more than the amount of “white” paper at low light levels. However, we 

never feel difficulty to discriminate the white paper and black word printed on. The 

discrimination can not be fulfilled by recording absolute information but relative one. 

The main concept of receptive field is not only the connection but also the opponent 

form, and it is obvious that to understand functions in visual pathway, we should refer 

to receptive fields of nerve cells in visual pathway in advance.  

The bipolar cells occupy a strategic position in the retina, since all signals 

originated from the receptors then transmitted toward the ganglion cells must pass 

through them. Visual signals are delivered from receptors to bipolar cells in two 

separate paths: a direct path where the receptors synapse onto the bipolar; and an 

indirect path where the receptors contact the horizontal cells which in turn synapse 

onto the bipolar cell. That is, each bipolar cell is connected to receptors in a two-path 
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form. In the direct path, a bipolar cell obtains inputs from the receptors in a 

circle-shape area of retina; from the indirect connections via horizontal cells the 

bipolar cell receives inputs from a larger, overlapping, and concentric disk-shape area 

(Fig. 2-2). The two paths deliver opposite tendency to the bipolar cell. That is, for 

identical stimuli, one path will deliver excitatory response while the other will deliver 

inhibitive one. The substructure of bipolar cell’s receptive field is called as the 

opponent center-surround mechanism. Similarly, the ganglion cell’s receptive field 

also has such substructure, and in actual, the opponent center-surround mechanism 

was firstly discovered in ganglion cell [49], [50]. The layer of ganglion cells is the last 

stage of visual signals in eyes (the output of eyes); that is, the center-surround 

antagonism provides a preliminary understanding of processes in retina and helps the 

exploration for higher level visual processing.  

Figure 2-2: Schematic diagram of receptive field of the bipolar cell.  

From retina to posterior stages in visual pathway, main processing for spatial 

vision task does not change until V1. On the whole, the LGN is like a relay station for 
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visual signals, and receptive field profile maintains the form in retina. As visual 

signals are delivered to V1, the receptive field appears more elaborate properties. V1 

cells have several characteristics not seen earlier: binocularity, direction selectivity, 

and much narrow orientation and spatial frequency selectivity. The pioneers in this 

field are Hubel and Wiesel (Nobel Prize, 1981). They discovered most V1 cells do not 

respond to isotropic stimuli (e.g. point) but to specific line stimuli [51]-[53]. 

According to responses to various types of stimuli, Hubel and Wiesel classified V1 

cells into two categories: simple cells and complex cells. Simple cells respond most to 

stimuli with specific preferred orientations. Receptive fields of simple cells, like cells 

in retina, also have excitatory region and inhibitive region. There are two types of 

simple cells determined by the arrangement of excitatory region and inhibitive region. 

One is organized with inhibition- excitation- inhibition arrangement (even symmetric) 

while the other is organized with excitation- inhibition arrangement (odd symmetric) 

as shown in Fig. 2-3. The other category of V1 cells, complex cells, respond most to 

line segments with specific orientations moving along specific directions. In V1 and 

prior stages, the receptive fields of most neuron cells appear simple profiles and can 

be easily understood. Still, there seems not an integral analysis considering the 

properties more thoroughly. The next section to be introduced is the main integrating 

theory: linear filtering theory.  

 
Figure 2-3: Schematic diagram of receptive field of the V1 cells.  
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2.2 Linear Filtering Theory 

As more and more evidences from physiological and psychophysical 

experiments about receptive fields were recorded, many researchers attempted to 

further discover the fundamental processing of visual information. Among them, 

linear filtering theory [47], [54], [55] has made a great impact on recent visual 

researches. Spectral analyzing procedure is the principal concept of linear filtering 

theory. Researchers in the field indicated that recording visual information by spatial 

frequency decomposition is a more efficient way and large amounts of experiments 

have been performed to verify the argument. We would like to point out that the 

concept of linear filtering theory is a little bit different to the ideal Fourier analysis 

because we cannot exactly calculate frequency components in a spatially delimited 

image. Moreover, no neuron cell has a receptive field extending to unlimited region; 

that is, information from a receptive field can reach neither the most precise frequency 

resolution nor spatial resolution. The issue can be explained more thoroughly by 

introducing another important concept: multiple spatial frequency channels.  

The receptive field of a unit at pre-cortical stages is possessed of center-surround 

antagonism which can be interpreted as a band-pass filter extracting a specific range 

of spatial frequencies. The contrast sensitivity function (CSF) of human visual system 

supports the assumption that the CSF attenuates at low and high frequencies (Fig. 2-4). 

Until the late 1960s, it was assumed that all ganglion cells have the same broad 

sensitivity profile as the CSF. In 1968, however, Campbell and Robson [54] made a 

revolutionary suggestion that the visual system might contain a group of independent, 

band-pass filters, which are narrowly tuned for ranges of frequencies (Fig. 2-4). In 

other words, human visual system does not employ a single mechanism to deal with 

all spatial frequencies but a group of mechanisms, and each of them is responsive to 
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only some fraction of total range.  

 
Figure 2-4: The overall luminance contrast sensitivity function (CSF) consists of multiple spatial 

frequency channels.  

The assumption was soon supported and verified by many physiological and 

psychophysical evidences. Anatomical records showed that there exist cells with 

different sizes of receptive fields corresponding to different sensitivity frequencies; 

and responses of cells measured by micro-electrode also showed much narrower 

sensitivities than the overall CSF. In addition, in many psychophysical experiments 

such as pattern adaptation, frequency masking, subthreshold summation, etc. [56], 

stimulus at specific frequency did not result in an overall effect on CSF but a local 

influence near the stimulating frequency that supported the assumption about multiple 

spatial frequency channels as well. These evidences all revealed that there is no truly 

Fourier analyzer in human visual system, and of course, what vision system functions 

is not global analysis that requires extremely narrow channels but a group of channels 

operating spatial-frequency filtering. Besides these evidences, from the viewpoint of 

signal analysis, it is more economical and suitable to represent the contents on 

surroundings (e.g. objects, illuminations, etc.) by local spatial frequency filtering. In 

human visual system, such phenomenon appears in ganglion cells, LGN cells, and V1 

cells. An image in V1 is decomposed into not only spatial frequencies but also 
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orientations. A schematic model of columnar organization in V1 shown in Fig. 2-5 

represents that various two-dimensional spatial frequencies are considered to be in a 

polar arrangement, with spatial frequencies increasing from the center. By choosing 

appropriate basis, the organization can be represented well by spatial-frequency 

analysis, e.g. wavelets transform [27]. In actual, it had been verified that Gabor 

function [17], [57] could fit well the receptive field profile of V1 cell and a 

two-dimensional Gabor representation could also characterize an image completely 

[35], [36]. We will discuss the Gabor function more detailed in Chapter 3.  

 
Figure 2-5: Schematic diagram of columnar organization in V1 (adapted from [47]).  

2.3 Color Vision 

The backgrounds described above mainly discussed the luminance content in an 

image, and in fact, those biological evidences were derived from experiments with 

gray-scale images. For color images, the processing complexities do not merely add 

one feature. Here I will briefly introduce the color perception and issues about spatial 

vision from color.  

Like texture, color is not a physical quantity but perception. As described in 
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Section 2.1, there are three types of cones categorized by their wavelength sensitivity. 

We usually call the three types of cones as L-cone, M-cone, and S-cone (Long-, 

Median-, and Short- wavelength sensitive). Unlike luminance information, which 

directly corresponds to responses of receptors, color information is a manufactured 

output of visual processes that responses of three types of cones are integrated within 

a region and delivered. Vision system can roughly analyze the content of perceived 

spectrum to make up our color perception. The opponent-process theory [45] 

proposed by Hering is a very important theory characterizing color information 

processes at neuron stages. Like luminance representation from receptive fields with 

antagonism, vision system transmits color information by a similar way. After the 

layer of receptors, color information is delivered in three opponent channels including 

red-to-green channel, blue-to-yellow channel (two chromatic channels), and 

white-to-black channel (one luminance channel). Such representation was directly 

supported by records in LGN cells [58] and some investigations on complementary 

colors. Like receptive field profiles, under limited amounts of neurons and nerves, the 

opponent representation could provide a more economical and robust transmission.  

 

Figure 2-6: Representation of Hering’s opponent-process theory.  

Here comes another issue, at neuron stages, color information is encoded in one 
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luminance and two chromatic channels, and the luminance is represented in a group of 

spatial frequency channels. Are there similar mechanisms in the other two chromatic 

channels? Fig. 2-7 is the schematic plot of overall CSF of chromatic and luminance 

stimuli. Compared with luminance CSF, sensitivity range of chromatic CSF tends 

toward lower frequency and there is no significant attenuation at low frequencies. 

Also, the sensitivity amounts are less than those in luminance CSF. Texture 

discrimination had been seldom attributed to color information for two reasons: (a) 

Chromatic features are extracted within regions that inevitably lead to coarser 

resolution and lower sensitivity frequency in chromatic channels. (b) Due to 

transmission form, cells for chromatic information are possessed of opponent 

mechanisms containing excitatory and inhibitive wavelength ranges, that the contrast 

range in chromatic channel is more limited than the range in luminance channel. 

Some researchers [59] even asserted that color information provides nothing for 

texture discrimination. In fact, as long as chromatic stimuli are manipulated within 

proper bandwidth and range, cells for chromatic information still preserve operations 

for texture perception. From some experiments with isoluminant stimuli [42]-[44], 

chromatic information also revealed the representation of spatial frequency channels 

as luminance information. Moreover, records of V1 cells revealed orientation 

selectivity for pure chromatic stimuli. That is, except for some basic odds of sensitive 

frequency and resolution, the multiple spatial-frequencies filtering scheme can 

describe well all three opponent channels. The economical and significant visual 

processing scheme reveals that an efficient and simple implementation is possible.  
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Figure 2-7: Contrast sensitivity function of luminance and chromatic stimuli.  

2.4 Feature Integration Theory 

In Section 1.2, we mentioned that if textures can be discriminated immediately is 

a rough but important judgment on whether the proposed approach functions correctly 

or not. The preattentive visual task is completed at very early stages without attention 

involved; that is, there will be no top-down process thoroughly analyzing visual 

primitives. The definition is clear except for the word “preattentive.” Purpose of this 

thesis would not be definite until a clear description about preattentive processing 

could be given.  

Feature integration theory (FIT) by Treisman and Gelade [60] gave an intuitive 

and critical definition to demarcation between preattentive stage and attentive stage. 

Fig. 2-8 is a schematic diagram of FIT composed of two stages of visual processing: 

At first, visual primitives of objects are analyzed in parallel and coded in feature maps. 

At the second stage, focal attention serially deploys to particular positions and serves 

to “glue” visual primitives into object representation. Some features glued from basic 

primitives by attention will cost more time to be perceived since the gluing procedure 

is not parallel but serial. Thus, to judge what stage a visual feature is processed at, the 

reaction time is an indicative clue. Treisman indicated that at preattentive stage, the 
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reaction time is fast (pop-out) no matter how many distractors are present on display. 

At attentive stage, however, increasing the number of distractors will increase the 

reaction time as shown in Fig. 2-9.  

 
Figure 2-8: Schematic diagram of feature integration theory.  

 

Figure 2-9: Typical results of a visual search experiment: (a) the result when pop-out occurs; (b) 

the result without occurrence of pop-out.  

So far, we have introduced some relevant biological backgrounds about this 

research. In Chapter 3, a computational model will be developed based on these 

backgrounds.  
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3. Chapter 3  

Modeling Strategy 
The physiological and psychophysical evidences introduced in the preceding 

sections did not lead to a convenient computational model representing visual 

primitives. In this chapter, a novel boundary detection algorithm will be proposed. 

This algorithm combines the 1st- and 2nd- order features to model the texture 

segregation task at preattentive stage of human visual system.  

Fig. 3-1 shows the overall framework. In the beginning, a color image is 

decomposed into one luminance and two chromatic channels in CIELAB color space. 

We apply Gaussian function to extract the 1st- order features, and Gabor filters to 

extract the 2nd- order features, respectively. In the two chromatic channels, only the 

lowest vertical and horizontal Gabor filters are applied due to coarser resolution and 

lower sensitivity frequency in chromatic channels. The 2nd- order features still need 

some operations like rectification and Gaussian smoothing after Gabor filtering, and 

the issues from hybrid-order scheme should also be considered. A typical issue is false 

responses to non-texture region (e.g. sharp edge) in the 2nd- order features which can 

be detected and removed by the proposed criterion. Another critical issue is the 

computational loads from the Gabor filter-bank approach. To relieve the problem, 

only significant features determined by variance will be reserved. After feature 

extraction, we then apply a local variance calculation to get the 1st- and 2nd- order 

boundaries respectively. Finally, with an adaptive weights selection, the merged 

boundary can be obtained. We may go a step further to thin the boundary by local 

peak detection, and get boundary similar to human visual system.  
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Figure 3-1: Flow chart of the proposed framework.  

The proposed hybrid-order boundary detection algorithm will be presented in 

detail. In Section 3.1, the way to extract two important features in gray-scale images, 

luminance and texture, will be reviewed and discussed. Section 3.2 will introduce the 

strategy to extract hybrid-order features and some issues in luminance and chromatic 

channels. The nonlinear operations for the 2nd- order features will be described in 

Section 3.3, and in Section 3.4, the way to find the boundary will be illustrated.  

3.1 Luminance and Texture Features Extraction 

As mentioned, there are similar feature extracting mechanisms for boundary 

detection in three color channels. Here we will review and discuss two important 

L* a* b* 

1st- order 
boundar

2nd- order 
boundary 
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features: luminance and texture in gray-scale images first. In Section 3.2, it will be 

extended to color images.  

3.1.1 Luminance 

Among most image segmentation methods, the main criterion is to consider how 

and/or how much the luminance changes. There are already numerous literatures 

concerning the problem and a review can be found in the book “Digital Image 

Processing” by Gonzalez and Woods [61]. Some well-known methods such as 

Roberts, Prewitt, and Sobel operators were also reviewed in the book. The most two 

typical methods are Laplacian of Gaussian (LoG) operator by Marr and Hildreth [15] 

and Canny operator by Canny [62]. Laplacian of Gaussian operator was inspired from 

the anatomical structure transferring visual information in pre-cortical visual pathway. 

The receptive fields of bipolar cells and ganglion cells in retina and LGN cells can be 

fitted well by the LoG function. Marr and Hildreth used the LoG operator to find the 

zero-crossing of second derivative of an image smoothed by Gaussian function as the 

position of edge. By another approach, Canny defined three performance criteria for 

edges as (a) good detection; (b) good localization; and (c) only one response to a 

single edge, and then derived that the first derivative of Gaussian could be the optimal 

edge detector.  

Though the analyzing notions of both operators are a little bit different, they 

employed the same concept to detect luminance discontinuities in two stages: 

Gaussian convolution and gradient. Gaussian convolution is somehow like extracting 

the local mean called the 1st- order feature here, and in the second stage, gradient is a 

measurement for variation of the 1st- order feature. In this thesis, to build up a 

hybrid-order scheme, only Gaussian convolution will be applied in feature extracting 

stage and the gradient process will be accomplished later in boundary detecting stage.  
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3.1.2 Texture 

The orientation and spatial frequency selective property of receptive field in V1 

is considered a main source to texture perception and the linear filtering approach has 

been widely suggested and verified for spatial vision tasks. However, as described in 

Section 2.2, receptive field of each neuron cell extends within a limited region. Also, 

most images in nature are neither pure periodic nor comprised of a small set of 

singular functions (e.g. Dirac function). For these reasons, spatial-frequency filtering 

is a proper approach for texture analysis. In images, two-dimensional spatial filters are 

constrained by general uncertainty relations that limit some attainable resolution for 

spatial position, spatial frequency, and orientation. For luminance feature extraction, it 

is commonly suggested that Gaussian functions are proper to extract local averaging 

information. Besides close match between two-dimensional Gaussian functions and 

pre-cortical receptive field profiles, another important reason is that Gaussian 

functions can achieve the lower bound of joint uncertainty in two conjoint domains; 

that is, the trade-off between resolutions of position and spatial frequency can be 

mediated optimally.  

For texture feature extraction, there are similar considerations. The 

two-dimensional Gabor functions, as defined: complex sinusoidal gratings modulated 

by two-dimensional Gaussian functions, are commonly suggested for texture feature 

extraction [18], [19], [22], [23], [63]. The neural model by Gabor functions was 

originally proposed by Daugman [16] in two-dimensional form and Marcelja [64] in 

one-dimensional form in 1980. Subsequent physiological findings also indicated the 

validity of the Gabor receptive field model [17], [65]-[68]. Though the receptive 

fields of the simple cells in V1 all differ with each other, they have some common 

characteristics. The receptive field profiles consist of spatial frequency, orientation 

selective characteristics. Also, the investigation by Pollen and Ronner [65] showed 
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that adjacent pair of simple cells with matched preferred spatial frequency and 

orientation has a quadrature phase relation. From neurophysiological measurements 

by Jones and Palmer [17], [57], the two-dimensional Gabor function could fit well the 

anisotropic receptive profiles describing neurons in mammalian visual cortex, in the 

sense of satisfying chi-squared tests. From another point of view, the two-dimensional 

Gabor functions uniquely minimize the two-dimensional space-frequency uncertainty 

principle for complex valued functions on R2 [17]. Furthermore, the quadrature 

relationship in complex components of the Gabor function allows a useful and unique 

approach to texture analysis.  

Two-Dimensional Gabor function 

Now, to formulate texture feature extraction more precisely, we would like to 

introduce the two-dimensional Gabor function thoroughly. Corresponding to our 

definition to texture, the two-dimensional Gabor filters are appropriate for texture 

segregation/segmentation tasks in the sense: they have tunable spatial frequency, 

orientation, and bandwidth. Thus, the analysis of texture can be reduced to the 

analysis of outputs of selected filters which carry specific contents in images. The 

Gabor function was originally suggested for processing and communication of speech 

signals [14]. It is well-known that the one-dimensional Gaussian function )(xg  with 

its Fourier transform )(uG  is the only R→R function pair achieving the lower bound 

of uncertainty relationship π4/1≥∆⋅∆ ux . The one-dimensional Gabor function 

)2exp()()( Uxjxgxh π⋅=  with its Fourier transform )(uH  is a more general 

function pair (R→C) that also achieves the lower bound [14]. Daugman [17] further 

extended the uncertainty relationship to two-dimensional form and formulated that the 

two-dimensional Gabor function ),( yxh  is the only function mapping R 2→C while 

achieving the both lower bounds of uncertainty relationship π4/1≥∆⋅∆ ux  and 
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π4/1≥∆⋅∆ vy  simultaneously. Similar to one-dimensional Gabor functions, the 

two-dimensional Gabor functions have the general form ( 1−=j ):  

 [ ])(2exp)','(),( VyUxjyxgyxh +⋅= π ,  (3-1) 

where )cossin,sincos()','( θθθθ yxyxyx +−+=  are rotated spatial domain 

coordinates, and the two-dimensional Gaussian functions ),( yxg  have the form:  

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 2

2

2

2

2
1exp

2
1),(

yxyx

yxyxg
σσσπσ

.  (3-2) 

The frequency response of Gaussian function (3-2) is 

 [ ]{ }222 )'()'(2exp),( vuvuG yx σσπ +−= .  (3-3) 

where )cossin,sincos()','( θθθθ vuvuvu +−+= . The frequency response of 

Gaussian function is also a Gaussian form. The shape of two-dimensional Gaussian 

function is determined by aspect ratio )/( yx σσ  where xσ  and yσ  are standard 

deviation of Gaussian function in x axis and y axis. In some cases without knowledge 

of the context to extract texture feature, it is reasonable to select an isotropic Gaussian 

modulation, namely σσσ == yx . The impulse response ),( yxh  is a complex 

sinusoid with center frequency ),( VU  that is modulated by a Gaussian envelope. A 

complex sinusoid in spatial domain corresponds to a position shift in frequency 

domain. In other words, the complex exponential components determine the place 

where the main frequency response components of Gabor functions lie. The complex 

components of two-dimensional Gabor functions determine the central spatial 

frequency (F) and orientation (φ ). The frequency response of the Gabor function (3-1) 

is given by 

 { }])''()''([2exp),( 22222 VvUuvuH yx −+−−= σσπ ,  (3-4) 

where )cossin,sincos()','( θθθθ vuvuvu +−+=  and )','( VU  is a similar rotation 
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of the center frequency ),( VU . Equation (3-4) shows that the frequency response of 

Gabor function ),( vuH  is a Gaussian function with representation of center position 

where frequency 22 VUF +=  and orientation )/(tan 1 UV−=φ  in frequency 

domain. An example of Gabor function with orientation °30  in spatial domain is 

presented in Fig. 3-2, where Fig. 3-2 (a) is the real part of a standard Gabor function 

in the spatial domain, and Fig. 3-2 (b) is the spectral response.  

(a) (b) 

Figure 3-2: An example of 2D Gabor function in (a) spatial domain; (b) frequency domain.  

The two-dimensional Gabor uncertainty principle is illustrated in Fig. 3-3. It 

shows the schematic representation of the real part of a two-dimensional Gabor 

function on the left side and the schematic representation of its Fourier transform on 

the right side. As the spatial resolution ( x∆ ) gets coarser by a factorα , it allows a 

more accurate determination of frequency by a factor α/1 . Another illustration for 

trade-off between spatial resolution and orientation resolution is shown in Fig. 3-4. As 

the resolution in y axis ( y∆ ) decreases, it will provide greater sensitivity to orientation, 

which can be seen in the frequency domain, where )/(1 yF∆∝∆θ  gets smaller.  
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Figure 3-3: Trade-off between spatial resolution and frequency resolution (adapted from [17]).  

 

Figure 3-4: Trade-off between spatial resolution and orientation resolution (adapted from [17]).  

In practice the Gabor function can be divided into real (even) part ),( yxhc  and 

imaginary (odd) part ),( yxhs  as:  

 [ ])(2cos),(),( VyUxyxgyxhc +⋅= π   (3-5) 

and 

 [ ])(2sin),(),( VyUxyxgyxhs +⋅= π .  (3-6) 

The real part and imaginary part are requisite for complete Gabor scheme of image 

representation [17], [35], [36]. For texture feature extraction, however, what 

principally characterizes the form of texture is not phase spectral component defining 
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spatial relationship between textural elements but magnitude spectral component 

describing textural elements (e.g. orientation, repetitiveness, etc.). Therefore, for 

texture feature extraction it is sufficient to consider magnitude information only. Some 

justifications by Malik and Perona [23] also showed that it is sufficient to extract 

significant textural information by even-symmetric or odd-symmetric filters only. 

From consideration of the overall framework, still, to avoid the “curse of 

dimensionality” at discrimination stage (boundary detection), it is more appropriate to 

select a compact and critical set of Gabor functions than a complete but redundant set. 

The scheme to be introduced, called Gabor wavelets is employed in our procedure due 

to its compact representation and convenient parameter selection step.  

Gabor Wavelets 

Wavelets, considering the joint uncertainty issue, have been presented as an 

alternative to Gabor functions as a basis set for representation in the visual system 

[69]. Multiresolution processing is a main concept of wavelets transform that function 

can be represented as linear superposition of strictly local elementary functions. A 

family of wavelets is a complete set of functions, all generated from a mother wavelet 

by the operations of dilation and translation. The efficient procedure by Mallat [27] 

provided a fast and economical way for signal decomposition. Besides pyramid 

schemes of Gaussian [70] and Gabor functions [36] for a compact image code, 

Daugman [35] unified Gabor functions and wavelets and then defined Gabor wavelets 

which fit well the neurophysiological and psychophysical findings indicating a 

log-polar distribution of response selectivity in V1 cells. These anisotropic wavelets 

are generated from a Gabor elementary function called mother Gabor wavelet by 

dilation, translation, and rotation. The mother Gabor wavelet ),(' yxh  with preferred 

orientation 0° can be presented as:  
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Rest of the filters set can be obtained by the generating function 

 )','(),(' yxgayxh m
mn

−= , ∈nm, I.  (3-8) 

 )cossin,sincos()','( θθθθ yxyxayx m +−+= −    

where ( ) 1
1

/ −= Slh UUa and S is the number of selected spatial frequencies for 

decomposition; ⎟
⎠
⎞

⎜
⎝
⎛=

K
nπθ and K is the number of orientations. The number 

1,,1,0 −= Sm  and 1,,1,0 −= Kn  present the index of central frequencies and 

orientations. By the design strategy [26], to ensure that the half peak magnitude of the 

filter response in the frequency domain touches with each other for a compact 

representation. The formulas for computing the filter parameters uσ and vσ are given as 

[26]:  
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The scheme has only four parameters to be selected: lower central frequency lU ; 

upper central frequency hU ; total number of frequencies S; and total number of 

orientations K. In Section 3.2, the scheme will be employed for the 2nd- order feature 

extraction. As mentioned, some issues in three opponent color channels have to be 

taken into consideration, we will also discuss those in Section 3.2.  
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Figure 3-5: Representation of Gabor wavelets, where shaded ellipses represent envelopes of 2D 

Gabor filters.  

3.2 Hybrid-Order Feature Extraction 

3.2.1 Color Decomposition 

As mentioned in Section 2.3, color information is delivered in a 

three-opponent-channel form and representations for spatial vision in the three 

channels are very similar. In 1976, Commission Internationale de l'Eclairage (CIE) 

defined two approximately uniform color spaces, CIELUV and CIELAB [71]. They 

are nearly linear to visual perception, and among both, CIELAB was developed based 

on the opponent-process theory employed for many psychophysical experiments. Also, 

the defined color difference, distance in the color space is very similar to human 

perception. From the reasons above, we choose CIELAB color space for color 

decomposition that we can be assured that biological evidences recorded in many 

literatures will not be misapplied. In fact, many previous approaches employed 

information of color contrast but applied improper color representation, that 
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reasonable results would be inaccessible.  

The CIELAB color space has a luminance component L* and two chromatic 

components a* and b*. L* is derived as:  
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where Yn is the CIEXYZ Y value for the reference white. L* ranges from 0 to 100 

where 0 is perfect black, 50 is average gray, and 100 is the reference white. a* and b* 

are defined as:  

 ( ) ( )[ ]nn YYfXXfa //500* −= ,  (3-11) 

 ( ) ( )[ ]nn ZZfYYfb //200* −= ,  (3-12) 

where Xn, Yn, and Zn are the tristimulus values for the reference white, and where 
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After a color image is decomposed, we then apply corresponding operations to the 

three components.  

3.2.2 Feature Extraction 

In Section 3.1, the schemes for extracting luminance and texture features were 

introduced. For color images, we represent color information by three values and 

employ similar schemes as those for gray-scale images. Thus we can represent the 1st- 

and 2nd- order features in one luminance and two chromatic channels. The mentioned 

luminance and texture in gray-scale images correspond to the 1st- and 2nd- order 

features in luminance channel. Before we adopt the schemes introduced in Section 3.1 

for color images, we should discuss some issues about luminance and chromatic 

pathways in advance to prevent a crude representation.  

For spatial vision, color information usually plays an important role for object 



39 

localization. Regions with the same color are more likely belong to the same object 

while regions with different colors are more likely belong to different objects. In our 

daily experiences, color usually presents local information as luminance does. Some 

textured patterns composed of color information are less mentioned or observed, and 

texture perception is usually ascribed to gray-scale information (in luminance 

pathway). In Section 2.3, some researches have been reviewed that there are some 

similar properties in luminance channel and chromatic channels. Manipulating 

isoluminant stimuli, it was shown that visual system is capable of discriminating 

spatial frequency and orientation [42], [44] in chromatic grating. Also, some 

psychophysical experimental procedures applied for validating multiple spatial 

frequencies filtering in luminance channel were also employed for investigating 

properties in chromatic channels [43], [72]. Besides previous psychophysical 

experiments, in recent years there were more physiological evidences supporting these 

properties of mechanism for processing color information [73]- [76].  

Numerous researches revealed that there are similar mechanisms in luminance 

and chromatic channels. How visual system deals with chromatic texture was also 

discussed generally [37], [38], [77], [78]. Still, there seem some conflictions to our 

daily experiences and we seldom observe so called chromatic texture. The 

phenomenon is mainly due to: (a) less contrast sensitivity, lower sensitivity frequency, 

and coarser resolution in chromatic channel; (b) few natural cases exhibiting 

chromatic texture without luminance texture. Most researches investigated processes 

for pure chromatic stimuli in human visual system. However, such stimuli only appear 

under specific manipulations. Moreover, compared to mechanisms for luminance 

information, mechanisms for chromatic information carry less significant properties. 

Thus, it is a very uneconomical way to represent a visual context with identical 

scheme in luminance and chromatic channels. In our modeling strategy, only 
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information sensitive to lower frequency with vertical and horizontal orientations will 

be extracted as the 2nd- order features in chromatic channels. Another issue frequently 

discussed is about the interactions between luminance and chromatic pathways [38], 

[72], [77]-[80]. Based on individual experimental procedure and interpretation of 

results, there are still some debates about the issue. Besides, artifact stimuli in these 

experiments have to be manipulated precisely and many models were likely proposed 

to interpret some specific stimuli. Thus, to develop a general-purpose and economic 

approach under uncontrolled condition, the issue was not taken into consideration in 

this thesis.  

The schematic diagram of hybrid-order feature extraction is shown in Fig. 3-6. 

After a color image is decomposed into one luminance component L* and two 

chromatic components a* and b*, the three components are convoluted with a 

two-dimensional Gaussian function to extract the 1st- order features. The 2nd- order 

features are extracted by Gabor wavelets scheme. A three-scales and six-orientations 

Gabor wavelets scheme is applied in the luminance channel, and only the lowest 

spatial frequency Gabor filters with vertical and horizontal orientations in Gabor 

wavelets scheme are applied in two chromatic channels. That is, we have totally three 

the 1st- order features and twenty-two the 2nd- order features ( 222236 =++× ). The 

2nd- order features still need some operation to exactly characterize texture properties. 

Also, some issues have to be discussed further and solved in hybrid-order scheme. In 

Section 3.3, there will be some discussions about further operations for the 2nd- order 

features.  
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Figure 3-6: Schematic diagram of hybrid-order feature extraction presented in frequency domain, 

for 2nd- order feature extraction in chromatic channels, only the lowest frequency Gabor filters 

with vertical and horizontal orientations (bold contour ones) will be applied.  

3.3 Operations for the Second-Order Features 

The overall process of texture feature extraction can be divided into three parts: 

Gabor filtering, rectification, and Gaussian smoothing (G-R-G) [18]-[21]. In this 

section, to continue the discussion in Section 3.2 considering Gabor filter for the 2nd- 

order feature extraction, the other two stages: rectification and Gaussian smoothing 

will be introduced. Another important issue about the false 2nd- order features will 

also be discussed.  

3.3.1 Full-Wave Rectification and Gaussian Smoothing 

Full-Wave Rectification 

Up to the present, what our procedure executes is like a set of parallel operators 

extracting parts of spectral contents. The review of texture theory in Chapter 1 has 

shown that the global power spectrum cannot provide sufficient texture properties. If 

the processing procedure only extracts spectral contents in another way, the main 

concept of the operation will not be different to global spectrum analysis. The 

principal difference between the linear filtering theory and Fourier transform to 

u 

v 
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texture analysis is due to the rectification operation. After Gabor filtering, the outputs 

of the filters are transformed with rectification to ensure that the fine-grain positive 

and negative portions of the carriers will not cancel one another when smoothed by a 

Gaussian post filter. Researches by Graham et al. [81] and Heeger [82] presented the 

“half-squaring,” i.e., the outputs of the filters are first half-wave rectified and then 

squared. Simulation results with this kind of nonlinearity correlate well with 

neurophysiological data. In actual, it is well believed that V1 cells hold the half-wave 

rectifying operation [83]. Malik and Perona [23] also provided some justification for 

equivalent results by using even-symmetric and odd-symmetric Gabor filters.  

In this thesis, only even-symmetric Gabor filters are employed with intervening 

full-wave rectification. Texture is a regional representation; that is, what a textural 

region appears is not fine-grain portions but local properties. For texture 

representation, the textural element is more significant than its relative location. In Fig. 

3-7, for a reasonable representation of the grating texture, the responses in location (a) 

and (b) with 180°phase shift should be the same and thus a full-wave rectification 

should be applied after Gabor filtering. Moreover, the responses in (a), (b), and (c) 

should also be similar. The following stage, Gaussian smoothing will support the 

state.  

 
Figure 3-7: Applying full-wave rectification to make sure responses at (a) and (b) with 180°

phase shift, would be the same.  

Figure 3-8 (b) shows the output after Gabor filtering without rectification, and 
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Fig. 3-8 (c) shows the output after rectification. White pixels in the image reflect that 

Gabor filter has detected the matching features at the pixels, and some pixels with 

negative responses are not so visible in Fig. 3-8 (b). Textural contents of invisible 

pixels are very similar to those of white pixels. After rectification, in Fig. 3-8 (c), the 

two regions can be separated more apparently due to the rectification turning the 

negative responses to positive.  

 
(a) 

 
(b) 

 
(c) 

Figure 3-8: An example demonstrating the effect of rectification: (a) input; (b) responses without 

rectification; (c) responses with rectification.  
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Gaussian Smoothing 

To manifest regional properties of textures, a further operation, Gaussian 

smoothing needs to apply after rectification. The outputs of areas with opposite phase 

show identical responses after full-wave rectification; however, regions with identical 

textural properties but different locations (phases) still exhibit some different 

responses. The features are inappropriate for boundary detection localizing positions 

where features change sharply as boundaries. For texture segregation/segmentation 

task, over-segmentation will occur frequently if there is no regional enhancement 

mechanism applying for textural features. Compared to human visual system, the 

outputs of V1 cells responding to similar orientation tend to aggregate together. The 

region with the same property will respond stronger than regions which consist of 

elements with different properties. The process is consistent with the localization 

property of textures. Such property can be simulated by a Gaussian post filter, and 

some spurious weak responses can also be eliminated. Fig. 3-9 (b) shows the result 

after rectification without Gaussian smoothing, and Fig. 3-9 (c) is the output of 

Gaussian post filter applying to Fig. 3-9 (b). In Fig. 3-9 (c), there is a ramp-like 

feature profile that provides more reliable distinction between different regions and 

resemblance within the same region.  

 
(a) (b) (c) 

Figure 3-9: An example demonstrating the effect of Gaussian smoothing: (a) input; (b) responses 

without Gaussian smoothing; (c) responses after Gaussian smoothing.  
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3.3.2 False Responses to Non-Texture Regions 

Figure 3-10: Schematic diagram demonstrating the false responses to non-texture regions.  

For a pure texture segregation/segmentation task, there is no difference of 

average luminance between regions. The Gabor-Rectification-Gaussian process is a 

standard and acknowledged procedure [18]-[21]. However, if there are luminance 

differences between regions, the procedure will induce some false response. Usually, 

the false response occurs near the boundary. Fig. 3-10 is a schematic diagram 

demonstrating an extreme case. If only the 1st- order feature exists, after applying a 

Gabor filter with the same orientation to the boundary, there will be a peak-valley pair 

apart from the width of Gabor filter’s mainlobe. Along the procedure of texture 

feature extraction: rectification and Gaussian smoothing, the 2nd- order feature will 

appear a significant peak on the boundary. Applying local variance calculation to find 

the boundary, we will detect the boundaries which are located at two sides of real 

boundary (as the dotted lines in Fig. 3-10).  

Some researchers [84], [85] attempted to solve the problem by establishing a 

database, with training procedure they could avoid the false segregation. It is obvious 

that their procedure is not suitable for general-purpose tasks and we never know if the 

training procedure faithfully characterizes the relationship between the 1st- and 2nd- 
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order features. Kruizinga and Petkov [86], [87] and Grigorescu et al. [88] approached 

the issue by grating cell operator feature, which is inspired from the function of a 

visual neuron. Grating cell is a specific type of neuron found in areas V1 and V2 of 

the visual cortex and is also selective for orientation. Unlike the majority of 

orientation selective cells found in V1, grating cells do not react to single lines or 

edges but only respond when a set of bars with appropriate orientation and spacing in 

its receptive field. Based on the knowledge, Kruizinga and Petkov [86], [87] proposed 

a computational model for mimicking the response of grating cell. Their model 

consists of two stages. The first stage is constructed to respond at any position where 

a set of three parallel bars with specific orientation locates, and the second stage 

strengthens the output of the first stage if more than three parallel bars are present. 

Without considering the relevance of grating cells, the computational model indeed 

solved parts of the issues successfully and generalized the texture segmentation task. 

However, the types of textures are far more than the grating type texture, that the 

model is not a complete and economic approach for general cases.  

Because there is still no acknowledged evidence considering about the issue from 

available biological models, in this thesis, we do not attempt to employ any biological 

process to deal with the problem under some limitations. Instead, we directly correct 

the conflicting phenomena from the source resulting in some false responses. The 

schematic diagram in Fig. 3-10 is an extreme case that only the 1st- order feature 

exists. In most cases, however, the 1st- and 2nd- order features exist simultaneously. 

Moreover, the ranges of feature values are different by cases. Take Fig. 3-11 and Fig. 

3-12 for example. In Fig. 3-11, the 1st- order feature difference between regions is 

little. However, the 2nd- order feature is much weaker over the whole. Hence the false 

response will occur at parts of the boundary even thought the 1st- order feature 

changes slightly. Another case shown in Fig. 3-12 exhibiting obvious 1st- order feature 
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difference between regions while appearing a more intense 2nd- order feature does not 

lead to false response near the boundary. Considering the above cases, the absolute 

1st- order feature difference between regions does not straightly provide a reliable 

judging criterion. A more appropriate criterion is the relative significance between the 

1st- and 2nd- order features. If the 1st- order feature overwhelms the 2nd- order feature 

which is sensitive to the orientation of boundary, an obvious peak-valley pair will 

appear and the response will be much larger than the 2nd- order features at other 

locations.  

 
(a) (b) (c) 

Figure 3-11: An example (Ⅰ) demonstrating the false response issue: (a) Input image; (b) output 

image after Gaussian filtering; (c) output image after Gabor filtering.  

 
(a) (b) (c) 

Figure 3-12: An example (Ⅱ) demonstrating the false response issue: (a) Input image; (b) output 

image after Gaussian filtering; (c) output image after Gabor filtering.  

In Fig. 3-10 we showed that the peak and valley would be apart from the width 

of Gabor filter’s mainlobe. We can go further to enhance the peak-valley pattern to 

make it more discriminable by applying a filter with positive-negative peaks pair apart 

from the same width of Gabor filter’s mainlobe. After applying the filter, the output is 
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like Fig. 3-13. If positive-negative pair matches the peak-valley pair, a strong positive 

peak with two alike negative peaks will appear. Similarly, if the positive-negative pair 

matches the valley and peak, a strong negative peak with two alike positive peaks will 

appear. The critical feature was employed as a criterion for dealing with the issue of 

false response. Our procedure for solving the false response problem could be given 

as follows:  

(i) Apply the filter with positive-negative peaks pair apart from the width of 

Gabor filter’s mainlobe to the direction orthogonal to the selective orientation 

of Gabor filter.  

(ii) Scan the peaks and valleys.  

(iii) Compare absolute value of each peak (valley) to its previous one and next one. 

If the peak (valley) value is larger than 2 times to its previous one and next 

one, it means the false response appears at the location that the 2nd- order 

features near the region have to be replaced.  

(iv) The false 2nd- order responses are replaced by padding values linearly from 

both sides.  

Fig. 3-14 shows the results by our method. The false responses can be replaced 

while preserving other correct texture information.  

 
(a) (b) (c) 

Figure 3-13: A demonstration of our procedure enhancing the features of false responses: (a) 

output after Gabor filtering; (b) a cross line of (a); (c) output after applying the filter with 

positive-negative peaks pair apart from the width of Gabor filter’s mainlobe.  
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Figure 3-14: An example demonstrating the results of our procedure for the false responses.  

3.3.3 Features Reduction 

The main problem of filter-bank approach is “the curse of dimensionality,” and 

the filter-design approach attempted to solve the problem with some criterion to select 

suitable filters fitting well with the image contents. As mentioned in Section 1.3, for a 

general-purpose procedure, the filter-bank approach is a more appropriate choice. 

However, the approach inevitably has to face the trade-off between feature 

completeness (more filters) and redundancy reduction (less filters). In our approach, 

to eliminate some insignificant features (non-responding filters), the variance of each 

feature will be calculated. The ideal features providing some discriminable 
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information must exhibit some value differences among the overall region. If a filter 

responds or not responds to the overall content, features extracted by the filter cannot 

provide sufficient information for discrimination. Employing the concept, the variance 

of each 2nd- order feature will be checked and the feature with variance less than 35% 

of the maximum will be discarded.  

3.4 Hybrid-Order Boundary Detection 

In this thesis, the features are extracted in parallel. At boundary detection stage, 

the proposed approach does not combine the two kinds of features into one feature 

space due to some issues: (a) the procedures extracting the 1st- and 2nd- order features 

are different such that the meanings of the two representations are also unequal. (b) 

Significance between the 1st- and 2nd- order boundary is not always the same, and thus 

how to select proper weighting would be a problem. Instead of roughly combining the 

features, we propose a procedure to find the 1st- and 2nd- order boundaries individually 

and then combine the two boundaries. The proposed method can combine the 

boundaries by determining the weights adaptively.  

3.4.1 The First- and Second-Order Boundary Detection 

Our procedure to find the boundary is based on the concept that the locations 

where features change obviously would be more likely the boundaries. After 

extracting features of all regions, the features can be described in a vector. The degree 

of how much the vector changes can be considered as an indicator of boundary. In our 

approach, all features from three channels are combined into two feature spaces as the 

1st- order feature space and the 2nd- order feature space. By applying local variance 

criterion, we can localize two kinds of boundaries individually by both feature spaces. 

A schematic diagram is shown in Fig. 3-15, after all the features are arranged well, 
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local variances within 55×  mask are calculated in both the 1st- and 2nd- order feature 

spaces. The two boundaries carry individual information of their own such that the 

combination can be implemented properly based on a criterion considering the 

reliability and compactness of boundary defined by each feature space.  

 
Figure 3-15: Schematic diagram of boundary detector.  

3.4.2 Boundary Combination 

For segregation task, previous researches revealed that there should be a 

common site integrating boundaries defined by different attributes [89]-[91]. Also, it 

was verified that combining multiple attributes posterior to a decision of localizations 

is advantageous to get more precise boundaries [89], [90]. If there are conflictions 

between boundaries defined by different features, the weights of all features are 

mediated by the measurements of reliabilities. A larger weight would be assigned to a 

boundary which is more reliable and linear summation for combining multiple 

features was suggested [90], [91]. Fig. 3-16 shows two opposing cases to demonstrate 

that the reliability of each feature is not always the same, as the case may be. Thus a 

criterion for determining the reliability is required.  
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 3-16: Two examples demonstrating the dominating role changes between the 1st- and 2nd- 

order features (a), (d) input images; (b), (e) 1st- order boundaries of (a), (d) respectively; (c), (f) 

2nd- order boundaries of (a), (d) respectively.  

In our approach, we utilize the opening operator to determine the weights 

adaptively. After applying a threshold to the raw data of boundary, we will get a 

compact and continuous black-white boundary if the feature space is reliable. 

Oppositely, for a feature space which does not provide sufficient discriminable 

information, we will get only some noise-like fractals. Opening operation is one kind 

of morphological process that it can be used as a geometrical selection. By applying 

opening operation to the black-white boundary image, for more compact and reliable 

boundary, more region areas will be reserved after opening operation. Thus the 

weights for combination can be selected from the region area ratio before and after 

opening operator. The whole procedure for boundary combination could be given as 

follows:  

(i) Normalize the 1st- and 2nd- order boundaries to values of 0-1.  

(ii) Apply thresholds to make the two boundary images binary.  

(iii) Apply opening operator to the two black-white boundary images.  
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(iv) Calculate region area ratios before and after opening operator as weights.  

(v) Combine the normalized boundaries by the determined weights and then 

normalize the combined boundary to 0-1.  

 

Figure 3-17: An example demonstrating the weights selection by opening operation.  

In Fig. 3-17, it is demonstrated that the left side and right side of input image are 

segregated mainly by the 1st- order feature and the texture information is nearly 

uniform over the image. By applying local variance calculation, we can find the 1st- 

order boundary is much more compact and reliable than the 2nd- order boundary. After 

threshold and opening operation, the 1st- order boundary will get much larger weight 

1st- order 
boundary 

2nd- order 
boundary 
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by calculating the region area ratios. The combined boundary can fairly preserve the 

information from the 1st- order boundary in this case. In the next chapter, more 

general cases will be shown that the significance between the 1st- and 2nd- order 

features is not always the same thus it is inappropriate to assign fixed weights for 

combination. The proposed method for feature combining issue can indeed assign 

weights adaptively and preserve the significant feature fairly.  

3.4.3 Local Peak Detection 

The coarse boundaries can be thinned by applying local peak detection. It is 

assumed that the difference between distinct patterns is maximal at their boundary. 

Algorithm of local peak detection is given below:  

(i) Scan row by row and column by column to find local maxima in x and y axes.  

(ii) Sort the peaks in descending order and keep points with higher order in each row 

and column. These points are regarded as boundaries.  

The number of peak-points we keep in (ii) depends on the complexity of input 

image. In our testing cases to be shown in Section 4.3, we selected two peaks.  

3.5 Summary 

In this chapter, we built up the model from evidences about human visual system 

and relevant researches. Three visual primitives: luminance, texture, and color were 

properly combined into a functional system for the chromatic texture segregation task. 

Issues of false responses and weights selection were also discussed thoroughly and 

solved by proposed method. In the next chapter, the proposed model will be applied 

for extensive testing images. Besides, experimental comparisons about employed 

processes will also be demonstrated.  
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4. Chapter 4  

Experimental Results & Discussions 
In this chapter we will apply our algorithm to a number of testing patterns. All of 

them are synthesized by textures from Outex database [92], which contains a large 

collection of textures, in both form of surface textures and natural scenes. The 

collection of surface textures exhibits well defined variations to a given reference in 

terms of illumination, rotation, and spatial resolution. The synthesized images for 

experiments are 746746×  pixels in 24-bit RGB. When we compute the texture 

features for pixels near the image boundary, the regions which are not totally covered 

by filtering mask will be discarded. In Section 4.1, we will first introduce parameters 

selection. In Section 4.2, some important properties exhibiting on experiments will be 

discussed. A wide test on synthesized patterns by the proposed algorithm will be 

shown in Section 4.3. At last, the error estimation for the algorithm will be discussed 

in Section 4.4.  

4.1 Parameters Selection 

There are some parameters need to be selected: (a) the number of Gabor filters 

and the parameters ),,,( yxVU σσ  determining the shape and orientation of Gabor 

filters in the frequency domain. Gabor filtering is computation intensive, and 

increasing the number of Gabor filters will increase computational loading 

dramatically. On the other hand, unnecessary and useless features extracted by 

ill-designed Gabor filters may result in incorrect boundaries. (b) The standard 

deviation of post Gaussian filter gσ , which determines the smoothing level. Increasing 
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gσ  and the standard deviation of Gabor filter ),( yx σσ  can eliminate more noise, 

but the accuracy of boundary might decrease.  

Choice of the above parameters is an important but sophisticated problem and 

choice of center frequencies of Gabor filters is the most frequently discussed issue in 

filter-design approaches (Section 1.3). Algorithm in this thesis employed the Gabor 

wavelets scheme to build an unsupervised procedure to deal with more general cases. 

As described in Section 3.1, the Gabor wavelets scheme can extract significant texture 

information with less filters, and all the parameters for the 2nd- order feature 

extraction reduce to only four selections: the number of frequencies S, the number of 

orientation K, the lower central frequency lU , and the upper central frequency hU . 

The values of parameters for all simulations are shown in Table 4-1.  

Table 4-1: Parameters for Experiments 

Parameters Values 

Pattern Size 746 x 746 pixels 

Number of Orientations 6 ( °0 , °30 , °60 , °90 , °120 , °150 ) 

Number of Frequencies 3 

Lowest Frequency lU  0.06 cycles/pixel 

Highest Frequency hU  0.24 cycles/pixel 

STD of Gaussian Filter  25 pixels 

4.2 Experimental Comparisons 

In this section, some experimental comparisons will be given to show the 

necessity of representation employed in this thesis. Foremost of them is the effect of 

multiple sensitivity frequencies, which underlines the Gabor wavelets scheme. In this 

case, to avoid misleading the discussion, a gray-scale image will be used for 

comparison. To emphasize the essentiality of color information, a comparison 

between results with and without color information will also be given. Finally, some 
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examples will be shown to demonstrate the effects of hybrid-order features, including 

incompleteness of each feature and collaboration of hybrid-order features.  

4.2.1 Experiment Ⅰ: Effect of Multi-Band Gabor Filters 

In this experiment we will demonstrate the reason why multi-band Gabor filters 

are employed. During this experiment we did not consider the 1st- order features but 

the 2nd- order features only while detecting boundaries. For clearly demonstrating the 

effects, the feature reduction process will be skipped. From Fig. 4-2 to Fig. 4-4, we 

show the raw data of the 2nd- order features with selective orientations of °0 , °30 , 

°60 , °90 , °120 , °150  in each single band. The center frequencies are 0.06, 0.12, 

0.24 cycles/pixel. Boundaries detected by each band are shown in Fig. 4-5 (a)-(c).  

Fig. 4-5 (a)-(c) demonstrate that there are still some boundaries undetected; that 

boundaries can not be detected fully by a single band in this example. Fig. 4-5 (d) 

shows the result of boundary detected by three bands simultaneously; all the 

boundaries can be detected successfully.  

 
Figure 4-1: Input image for demonstrating the effect of multi-band Gabor filters.  
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 4-2: Raw data of features in band Ⅰ: (a) °0 , (b) °30 , (c) °60 , (d) °90 , (e) °120 , (f) °150 .  

 
(a) (b) (c) 

 

(d) (e) (f) 

Figure 4-3: Raw data of features in band Ⅱ: (a) °0 , (b) °30 , (c) °60 , (d) °90 , (e) °120 , (f) °150 .  
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(a) (b) (c) 

 

(d) (e) (f) 

Figure 4-4: Raw data of features in band Ⅲ: (a) °0 , (b) °30 , (c) °60 , (d) °90 , (e) °120 , (f) °150 . 

(a) 

 

(b) 

(c) 

 

(d) 

Figure 4-5: Boundaries detected by (a) band Ⅰ; (b) band Ⅱ; (c) band Ⅲ; (d) 3 bands 

simultaneously.  
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4.2.2 Experiment Ⅱ: Effect of Color Information 

In this subsection, we shall first demonstrate an extreme case to emphasize the 

essentiality of color information. In the proposed model, a color image is decomposed 

into one luminance (L*) and two chromatic (a* and b*) components. The 

demonstrated case consists of two regions where luminance and arrangements (texture) 

are nearly the same as shown in Fig. 4-7, and good segregation cannot be achieved 

without information from chromatic components (Fig. 4-8). In this case, the effects of 

our method for adaptive weights selection can also be demonstrated, i.e., more 

reliable boundaries can be reserved. In Fig. 4-9, the combined boundary reserves more 

information from the 1st- order boundary which is more reliable and compact in this 

case. Two regions are segregated successfully with considering color information.  

 
Figure 4-6: Input image for demonstrating the effect of color information.  

 
(a) (b) (c) 

Figure 4-7: Raw data of (a) luminance L* component; (b) chromatic a* component; (c) chromatic 

b* component.  
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(a) (b) (c) 

Figure 4-8: Boundaries detected by information from luminance channel only: (a) 1st- order 

boundary; (b) 2nd- order boundary; (c) combined boundary.  

 
(a) (b) (c) 

Figure 4-9: Boundaries detected by information from luminance and chromatic channels: (a) 1st- 

order boundary; (b) 2nd- order boundary; (c) combined boundary.  

In practice, we seldom find cases having specific visual primitive difference only. 

Another example to be demonstrated is more similar to general cases. Some 

illumination shading in the example would result in some ambiguities in luminance, 

and more reliable features could be provided by color information despite appearance 

of shading. In Fig. 4-12, the 1st- order features in two chromatic channels are more 

uniform within single texture, and a better segregation result can be obtained by 

considering color information (Fig. 4-13).  

 
Figure 4-10: Input image for demonstrating the robustness to shading by color information.  
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(a) (b) (c) 

Figure 4-11: Raw data of (a) luminance L*; (b) chromatic a* component; (c) chromatic b* 

component.  

 
(a) (b) (c) 

Figure 4-12: The 1st- order features in (a) luminance L* component; (b) chromatic a* component; 

(c) chromatic b* component.  

(a) 
 

(b) 

Figure 4-13: The 1st- order boundaries detected by (a) luminance information only; (b) luminance 

and chromatic information.  

4.2.3 Experiment Ⅲ: Effect of Hybrid-Order Features 

In Section 3.4.2 we have demonstrated that the dominating role changes between 

the 1st- and 2nd- order features frequently such that it is inappropriate to select fixed 

weights for boundary combination, and it is obvious that a model is certainly 

incomplete without considering hybrid-order features simultaneously. In this 

subsection, we shall straightly demonstrate the effect of hybrid-order features with an 
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example. Fig. 4-14 (b) and Fig. 4-14 (c) are the raw data of detected boundaries by the 

1st- and 2nd- order features respectively. In Fig. 4-14 (c), only the boundaries in the 

lower left part are detected where there is obvious difference in the 2nd- order features. 

In Fig. 4-14 (b), it only detected the 1st- order boundaries in the upper part. In the raw 

data of two detected boundaries, it is obvious that it is insufficient to detect all 

boundaries by a single order feature. In Fig. 4-14 (d), hybrid-order features are 

considered simultaneously and all boundaries are detected successfully. A 

superposition of input image and hybrid-order boundary after local peak detection is 

also shown in Fig. 4-15, where detection results with good accuracy are also 

demonstrated.  

(a) 

 

(b) 

(c) 

 

(d) 

Figure 4-14: An example for demonstrating the effect of hybrid-order features: (a) input image; (b) 

1st- order boundary; (c) 2nd- order boundary; (d) hybrid-order boundary.  
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Figure 4-15: Superposition of input image and boundary after local peak detection.  

4.3 Collection of Testing Results by Hybrid-Order Boundary 

Detection 

In this section the proposed algorithm is tested by a large amount of textures 

randomly chosen from “Outex database.” We synthesized five textures in each image, 

which results in eight boundaries. We will show the raw data of boundaries, 

boundaries after peak detection, and superposition of boundaries and testing images in 

order. There are totally 35 testing results, and all parameters we used are the same as 

we mentioned in Section 4.1.  

In this section, we classified our experimental results into two categories roughly. 

In Section 4.3.1 we collect the results whose all boundaries are successfully detected. 

The results whose some boundaries are missed are collected in Section 4.3.2.  
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4.3.1 Fully Boundary Detection 

In this subsection we focus on uniform texture which consists of similar textural 

elements. We will demonstrate some results (from Fig. 4-16 to Fig. 4-20) where all 

the boundaries between different textures are detected and weak edges within single 

texture are also detected. These results are consistent to our visual perception. As 

mentioned in Section 4.2.3, it cannot perform well without considering hybrid-order 

features simultaneously. Large amounts of testing images demonstrated below contain 

discriminable 1st- and/or 2nd- order features, and thus all boundaries are successfully 

detected. And, of course, a region with more regular texture and/or more uniform 

luminance or color can provide better discriminability than others, and boundaries 

surrounding it will be much more obvious and compact than others.  
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Figure 4-16: Examples of fully boundary detection.  
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Figure 4-17: Examples of fully boundary detection.  
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Figure 4-18: Examples of fully boundary detection.  
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Figure 4-19: Examples of fully boundary detection.  
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Figure 4-20: Examples of fully boundary detection.  
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4.3.2 Partially Boundary Detection 

In this subsection we will demonstrate the results (Fig. 4-21 and Fig. 4-22) where 

some boundaries are not correctly detected. Some textures in this subsection are not 

so uniform that boundaries within single texture are more obvious than boundaries 

between different textures. In some cases, two textures have similar features, and the 

boundaries cannot be detected as we even cannot distinguish them at our first sight.  

The visual information in the proposed approach is represented in a relative form 

as the main concept of receptive field. Therefore among eight boundaries in a testing 

image, the more obvious a boundary is, the larger values of raw data are. Although an 

adaptive weights selection can mediate the effects between the 1st- and 2nd- order 

features, the weights assigned by the mechanism are global; that is, the adaptive 

selected weights are determined by the most significant 1st- and 2nd- order boundaries. 

In other words, the context will influence the segregation results. Two regions with 

less difference of the 1st- order feature and non-uniform textural elements, the 

information of 1st- order boundary should be depressed during normalization before 

weights selection and sometimes the weak edges from the 2nd- order features would 

dominate the result. The phenomenon is inevitable due to the proposed algorithm 

mimicking one sight of our vision system; that is, to segregate more significant parts 

in a view. Even two regions could be easily segregated if they were the only contents 

in a view. In a multi-texture case, however, boundary between them might be ignored 

if the boundary is less obvious compared to other ones. To verify the statement, see 

the testing image with blinking eyes and some boundaries seem not as obvious as we 

“focus” on them. In actual, as we focus on something, it takes a few sights already and 

vision system has tuned a good way to observe since the weights have been 

specifically mediated for the focused view.  
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Figure 4-21: Examples of partially boundary detection.  
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Figure 4-22: Examples of partially boundary detection.  
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4.4 Error Estimation 

In this section the accuracy of the proposed method is discussed. The way we 

estimated the error can be shown in Fig. 4-23. The five-texture pattern was not tested 

for error estimation because the direction to calculate the error of circle contour is 

hard to assign. Moreover, since there are totally eight boundaries, if some boundaries 

are detected and some are not, the error estimated cannot clearly represent how the 

error results from (missed boundary or inaccurate location). The error we defined is:  
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The distance between the answer and result detected by the proposed algorithm is 

measured and then divided by the number of total pixels to obtain the estimated error.  

 
Figure 4-23: Schematic diagram of error estimation.  

Fig. 4-24 is the histogram of errors estimated in our experiments. The mean of 

error is about 3.60% and standard deviation is 0.0197. The mean error of 3.60% 

corresponds to approximate 12-pixel error which is very reasonable since the size of 

textural element is usually larger than 15 pixels in the testing image. There are some 

cases with errors larger than 8%; Fig. 4-25 to Fig. 4-27 are three typical cases. As 
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mentioned in Section 4.3.2, the proposed algorithm mimics one-sight vision, and thus 

the boundary between non-uniform textures with similar 1st- order features sometimes 

would be ignored and weak edge within single texture would be detected. The cases 

with larger errors in our experiments all belong to this condition.  

 
Figure 4-24: The histogram of estimated errors.  

(a) (b) 

Figure 4-25: An example (Ⅰ) with large estimation error.  
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(a) (b) 

Figure 4-26: An example (Ⅱ) with large estimation error.  

(a) (b) 

Figure 4-27: An example (Ⅲ) with large estimation error.  

To demonstrate the essentiality of color information, a hybrid-order model 

without color information is also applied to the set of testing images and the estimated 

errors were also recorded. The histogram of estimated errors without color 

information is shown in Fig. 4-28, and the mean of errors obviously rises from 3.60% 

to about 5.91% (about 65% increases). Some patterns could be easily segregated with 

color information seem ambiguous without considering color information as shown 

from Fig. 4-29 to Fig. 4-31.  
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Figure 4-28: The histogram of estimated errors without considering color information.  

(a) 
 

(b) 

(c) 
 

(d) 
Figure 4-29: An example demonstrating the essentiality of color: (a) input image; (b) luminance; 

(c) detected boundary without color information; (d) detected boundary with color information.  
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(a) 
 

(b) 

(c) 
 

(d) 
Figure 4-30: An example demonstrating the essentiality of color: (a) input image; (b) luminance; 

(c) detected boundary without color information; (d) detected boundary with color information.  

(a) 
 

(b) 

(c) 
 

(d) 
Figure 4-31: An example demonstrating the essentiality of color: (a) input image; (b) luminance; 

(c) detected boundary without color information; (d) detected boundary with color information.  
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5. Chapter 5  

Conclusions & Future Works 
In this thesis, a framework for hybrid-order boundary detection has been 

proposed. It mimics visual processing at very early stages of human vision where 

sensation and perception appear. The main contribution of this thesis is to combine 

three important visual primitives: luminance, texture, and color properly and 

adaptively. Issues for general-purpose procedure ignored before were also discussed 

thoroughly and solved, such that the proposed model can represent visual information 

for segregation task in a complete and economic way. There are still few researches 

reaching this goal up to the present, and previous researches usually had specific 

applications and employed some assumptions. The proposed approach dealt with the 

task with few assumptions and no training procedure involved, so a larger application 

space is available.  

The experimental results show consistency with sensation of human visual 

system and the detected boundaries with adequate accuracy demonstrate application 

potential for other image processing tasks such as stereo, pattern recognition, retrieval, 

etc. A related work [46] considering about the hardware implementation of the 

framework has successfully realized the model for gray-scale images on the 

architecture called Cellular Nonlinear/Neural Networks (CNN). CNN is capable of 

parallel processing and realizable by VLSI circuits such that the computational time 

can greatly decrease. The real-time processing capability is critical in some 

applications such as tracking and surveillance system.  

The proposed algorithm was widely tested to detect the boundaries of 

synthesized textures and the experimental results appeared similar responses to our 
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sensation. However, there are still some problems necessary to be overcome:  

(i) The foremost one is the parameters selection of Gabor filters. The Gabor 

wavelets scheme has substantially relieved the condition that there are only few 

parameters need to be determined. However, there is still no systematic and 

efficient way to represent the relationship between image content and parameter. 

In previous ten years, many researches focused on the issue for pure texture. For 

more complex contents consist of hybrid-order features, the parameters selection 

task will be more challenging.  

(ii) Another issue to be improved is about the adaptive weights selecting mechanism. 

In Section 4.3.2, we discussed some cases where some boundaries were not 

detected. The main cause is that the present approach mimics one sight of vision 

system and extracts most significant parts in one view. To deal with more 

complex cases, a mechanism capable of multiple focuses is undoubtedly required, 

such that weights of the 1st- and 2nd- order boundaries can be determined rather 

locally than globally. By someway analyzing local information, it is believed that 

weights can be assigned more properly to different parts of an image.  
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