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中文摘要 

 

利用硬體估測攝影裝置於拍攝時，因手晃動或是機體支架震動所產生之不預期背景震

動向量，以提供影像穩定系統(Image Stabilization)補償為本論文的主要貢獻。影像穩定系統

包含背景震動向量估測單元及震動向量之補償單元兩部分，然而計算背景震動向量佔去整

個影像穩定系統大部分的處理時間，因此本論文提出一特殊應用導向之晶片(ASIC)，處理

拍攝影像背景震動向量的估測。晶片設計採用仿細胞神經網路(Cellular Neural Network, 

CNN) 架構用以偵測背景震動向量的特徵；仿細胞神經網路之基本架構為一個和週圍細胞

(cell)相連並規則排列之二維陣列，具有即時平行運算處理的能力。本論文提出使用 CNN

可調節偏壓的設計，快速計算影像穩定系統中所需要的背景震動向量，並配合全區域輸出

連結鍊(global output connect chains)之設計，將區域背景震動向量位置定址出來。此外，區

域類比記憶體(Local Analog Memory)陣列的設計來儲存影像差值資訊。本論文所設計之背

景震動向量估測晶片採用 TSMC 0.35um 混合訊號製程，其大小為 8.1mm2 共包含 2519× 個

像素處理單元。電路模擬及 CNNUM 分析結果證實採用以 CNN 實現 IS 系統中估測背景震

動向量具有遠高於 DSP 處理器的運算速度，讓整體 IS 系統具有即時運算之能力。 
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Abstract 

 The objective of this thesis is to investigate the hardware design in image stabilization 

(IS) technique for local motion vectors (LMVs) in the image sequences. The IS technique is 

used to remove unwanted shaking phenomena in the image sequences captured by hand-held 

camcorders without affecting moving objects in image sequences and the intentional motion 

of panning condition, etc. It consists of motion estimation and motion compensation. Most of 

the complex and time consuming computations occur in motion estimation, an 

application-specific IC is designed to solve this problem. Cellular Neural Network (CNN) 

technology is used to implement the local motion estimation chip. CNN is a regular 

two-dimensional array and connects with its neighborhood locally. Real-time and parallel 

analog computing elements are contained in the architecture. CNN adaptive threshold 

template is proposed to extract reliable motion vectors from a given region. The design of 

global output connected chains can easily decode the LMV address. The local analog 

memory (LAM) is designed to store image difference information. The size of CNN array is 

19×25 pixels. The chip has integrated in the total area of 8.1mm2 by using TSMC 0.35um 

mixed-signal process. Results with HSPICE simulation and CNNUM analysis prove that the 

performance of the proposed CNN-based local motion estimation is better than that of a 

digital signal processor so that the IS system has the capability of real-time operations.  
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1. CHAPTER 1    

  INTRODUCTION 
Video image stabilizers that compensate for camcorder shaking have already become 

indispensable for consumer video camcorders [1]. Image stabilization (IS) is also known as 

vibration reduction, which is a digital camcorder technology that helps preventing images from 

blurring. It reduces vibration caused by camcorder shake, slow shutter speed or when using a 

long telephoto lens without a tripod. For developed video camcorders, image stabilization is 

finding a way into more consumer and professional digital camcorders. Various image-stabilizing 

systems have been developed for camcorders to free from degradation in picture quality by 

hand-movement. In the IS processing, scene points are motionless in spite of camcorder motion. 

This makes it easier for an operator to select a region, for example. The unwanted positional 

fluctuations of the video sequence will affect the visual quality and impede the subsequent 

processes for various applications such as motion coding, video compression, feature tracking, 

etc.  

 

1.1 Motivation 

Basically, the IS technique can be classified into two processing methods. One is the optical 

image stabilization (OIS), and the other is the electronic image stabilization (EIS). Optical image 

stabilization (see APPENDIX B) uses mechanical motion compensation to physically move the 

lens, and hence the image that falls on the image sensor, in the opposite direction from the 

camcorder shake. Camcorder makers offering optical stabilizers include Sony, Panasonic and 

Canon corp. [2], but this feature is generally reserved for high-end models. Optical image 

stabilization for consumer’s video cameras has been proposed by Holder [4] and Oshima [5]. 

Both systems are similar in the sense that they produce angular velocity by using gyro control 

sensors, but they differ in methods for compensating the angular velocity [6]. One common 

disadvantage of Holder’s method and Oshima’s system is that they are using mechanical parts 

such as gyros and they control deflection coils (Holder) or a gimbal mechanism (Oshima) for 
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motion compensation. The mechanical parts of the IS system result in higher cost, larger space, 

and heavier.  

Electronic image stabilizer, so-called digital image stabilizers (DIS), takes the property of 

image sensors with more pixels than the video image required and does the digital image 

processing. The video image is like a “window” that moves around within the larger frame of the 

image sensor. When camcorder shake moves the image up, EIS moves this “video window” 

down to compensate. Many DIS algorithms have been proposed. Chang et al. [7] use optical flow 

to remove the translational and rotational motion disturbance. The optical flow technique is used 

to estimate the local motion vector field of the image and yield the velocity of each pixel in the 

current image frame. Ko [8] propose a gray-coded bit-plan DIS algorithm to estimate the 

irregular condition motion vector due to moving objects and intentional panning. ITRI [9] has 

developed a DIS prototype system with FPGA and DSP implementation. The system composes 

of software and hardware blocks to utilize the gray-coded bit-plan matching algorithm for the 

video sequences. The DIS technique has been widely used for the computation of ego-motion 

[10], and video compression [11].  

DIS consists of the motion estimating system and the motion compensation system. The 

motion estimation based on block matching algorithm (BMA) plays an important role in DIS 

[13]-[16]. The full-search (FS) BMA under the mean absolute difference (MAD) and the mean 

square error (MSE) criteria can be considered as an optimal solution for block motion estimation 

[8]. For the motion compensation, the accumulated motion vector estimation [18] and frame 

position smoothing (FPS) [28]-[31] are two of the most popular approaches. The accumulated 

motion vector estimation needs to compromise stabilization and intentional panning preservation 

since the panning condition causes a steady-state lag in the motion trajectory[28]-[31]. FPS 

accomplishes the smooth reconstruction of an actual long-term camera motion by filtering out 

jitter components based on the concept of designing the filter with appropriated cut-off frequency 

[28] or adaptive fuzzy filter to continuously improve stabilization performance [31]. 

The full-search block matching algorithm requires complicated computation which is time 

consuming, and hardware implementation. Several computationally efficient DIS algorithms, 

such as representative point matching (RPM) [17], edge pattern matching (EPM) [18], and 

bit-plane matching (BPM) [19] have devoted for portable camcorders [13], [14], [16]. The major 
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objective of these algorithms is to reduce the computational complexity, in comparison with 

full-search block-matching method, without losing too much accuracy and reliability. However, 

RPM still costs many computation cycles in comparing with the global minimum position, and 

EPM requires large amount of computations due to preprocessing for generating edge maps [8].  

After analyzing the DIS algorithm, the motion estimation part has accounted for 80% of the 

computational complexity. The last 20% computation load belongs to motion compensation [32]. 

In contrast to the heavy arithmetic computational load from RPM (which is used in the proposed 

motion estimation), the motion compensation simply does some decisions on LMVs and then the 

calculation of the compensated motion vector. Hence we focus on a cost effective hardware 

design for the motion estimation. 

 

1.2 Objective 

Most of the DIS systems are processed by PC or FPGA implementation. The chip 

implantation for consumer camcorders of the IS system is only for gyro control sensor in optical 

stabilization system. We aim at designing a novel architecture for local motion estimation of the 

DIS system with VLSI approach. Due to the complex computation found in motion estimation, 

the DIS system is hard to perform in real time. In order to further reduce the computational 

complexity in finding LMVs, the mixed-signal cellular neural network (CNN) architecture is 

considered [20]. Comparing with conventional digital technology, cellular neural/nonlinear 

network (CNN)-based computing is capable of realizing the trillions of operations per second 

(TeraOPS)-range image processing tasks in a cost-effective implementation [21]. CNNs are an 

analog nonlinear dynamic processor arrays in which direct inter-connections among the basic 

processing units are restricted to a finite local neighborhood [22]. By changing the weight of 

local interconnections between neighborhood CNN cells, many image processing tasks can be 

realized with CNN framework. Because of their inherently parallel processing architecture, CNN 

can achieve a high speed computation while realizing the image processing tasks. In spite of that, 

their uniformity and local connectivity make them especially suited for VLSI implementation 

[23][24][25].  
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In this thesis, we propose an application-specific CNN (ASCNN) chip which could highly 

reduce the heavy computation problem for motion estimation. The RPM method is used to find 

the local motion vectors. The pre-processing image information will first pass a D/A converter 

and store in the memories. Then CNN will search the global minimum position and decode the x 

and y coordinates by using global output connected chains. Local analog memory (LAM) is 

designed to store the image difference information which is passed from an 8-bit D/A converter. 

With the aid of CNN technique [20], [27] , the global minimum position according to the RPM 

method could be easily generated and stored in comparing with the traditional DSP computation. 

The method of global output connected chains is used to connect CNN output and decode the 

LMV address. A reliable local motion vector extraction method based on CNN architecture is 

designed for the determination of global motion vector and image compensation processing in 

practical applications.   

 

1.3 Thesis Organization 

This thesis is organized as follows. Chapter 2 describes the models of the proposed image 

stabilization algorithm and gives a computational analysis to the DIS system. Chapter 3 

introduces CNN algorithm, the hardware design of the CNN core and templates design for the 

CNN-based local motion estimator. Chapter 4 describes the circuit design of application specific 

CNN (ASCNN) chip. The simulation results with HSPICE, CNN universal machine (CNNUM), 

and ModelSim respectively are shown in Chapter 5. Conclusions and future works are made in 

Chapter 6. 
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2. CHAPTER 2     

DIGITAL IMAGE STABILIZATION  
The architecture of the proposed image stabilizer technique shown in Fig. 1 is divided into 

two processing blocks as motion estimation and motion compensation. The motion estimation 

block consists of three estimators: the local motion vectors (LMVs), the ill-conditioned motion 

vector (IMV), and the global motion vector (GMV) estimators. The motion compensation unit 

consists of the compensating motion vector (CMV) estimation and image compensation. The two 

incoming consecutive images (at time (t-1) and time (t)) will be firstly divided into four regions. 

A LMV will be derived in each region by the representative point matching (RPM) algorithm 

[12], [19]. The motion estimation block also contains a reliability detection function that will 

generate an ill-conditioned motion vector for the irregular image conditions such as the lack of 

features or containing large low-contrast area, etc. The GMV estimation determines a global 

motion vector among LMVs, the IMV, and other pre-selected motion vectors through 

background-based evaluation function. Finally, the compensating CMV is generated according to 

the resultant GMV and the image sequences will be compensated based on the CMV in the 

motion compensation unit.  

The proposed digital image stabilizer system contains motion estimation step and motion 

compensation step. The design blocks are described as follows. 

 

 

Fig. 1  The architecture of the proposed image stabilization technique. 

 

2.1 Motion Estimation  

The motion estimation unit shown in Fig. 1 contains the LMVs, IMV, and GMV estimators. 

As shown in Fig. 2, the LMVs and IMV estimation is to generate the LMVs and IMV for global 
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motion vector estimation. The LMVs can be obtained from the correlation between two 

consecutive images by the representative point matching (RPM) algorithm [12], [19]. The IMV 

can be obtained from LMVs by evaluating the corresponding confidence indices through the 

irregular condition detection and the proposed IMV generation algorithm. 

 

 
Fig. 2  The block diagram of LMVs and IMV estimation. 

 

2.1.1 Local Motion Vector (LMV) and Irregular Condition Detection 

First, we obtain location motion vectors by using the representative point matching method. 

A 19×25 pixels’ macro-block is the basic processing unit of the algorithm. For a given sequence 

of video image, the specific boundary region of the incoming frame will be discarded first which 

saves as the compensating area. Then the pre-processing frame will be separated into four regions 

which will generate a local motion vector after the later steps. Then each region will further cut 

into many 19×25 pixels sub-regions. We take the center point color of the sub-region image as 

our representative point value. Each sub-region image has its own representative point value. The 

previous representing point value is subtracted from the present sub-region image and the 

absolute value is taken. The minimum value position in the 19×25 absolute differences matrix is 

considered as the previous representative moving point due to vibration noise. Summing all of the 

absolute differences (SAD) matrices and give a statistical analysis on them. The vector which 

calculates form the center point to the minimum SAD value position is considered as the local 

motion vector of each region. 

Our testing image sequence is a tennis player video clip which is 312×200 pixels for each 

incoming frame. The steps and the results of the algorithm are listed below.  

 Each incoming pre-processing image (300×190 pixels) is divided into four equal regions 

and each region is 150×95 pixels.  

Representative Point Matching
(RPM) 

Representative 
Points Buffer 

Original Images LMVs Estimation
( Four regions) 

Minimum Projections of 
x and y Directions
( Four regions) 

Inverted 
Triangle Method

Irregular Condition 
Detection

Generation of IMV
IMV

LMVs
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 Segment the prescribed sequence region (t-1) and (t) into sub-images which each of 

them is 19×25 pixels as shown in Fig. 3(a). 

 Map all the pixels with the central point in each sub-image (t-1). The mapping array is 

called representative point macro-block (RPM) as shown in Fig. 3 (b). 

 Subtraction: The operation is defined by |Msub(t)| := Sub-image(t)-Representative_point 

image (t-1) to provide absolute difference for the Msub(t) matrix (19×25 pixels). 

 Addition: Add all the |Msub(t)| in the prescribed region to form an 19×25 difference 

value matrix as shown in Fig. 4. Fig. 4 is the SAD matrix that map into a 3D view. The 

z-coordinate is the absolute difference value. The lower of the SAD value, the closer the 

LMV is.  

 Minimum: Find the minimum absolute difference position from the prescribed region 

and calculate the vector from the center point. The vector is called the local motion 

vector of the prescribed region. After analyzing the Fig. 4, we can find that the minimum 

position lies in the left and top place in the array and we will discuss it more in Chapter 

5. 

             
(a)                                         (b)                        

Fig. 3  (a) The original image is divided into 4 regions, and then each region is cut into an array 
of 19×25 pixels again. (b) All the pixels are mapped with the central point in each sub-image 
(t-1). 

Region 1 

Region 2 Region 4

Region 3
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Fig. 4  The accumulated results of all | Msub(t) | in the prescribed region form an 19×25 
difference value array. 

 

After analyzing the curves of correlation values corresponding to image sequences with 

various conditions, it is found that the curve of correlation values is related to the reliability of 

motion detection. Fig.5 shows various correlation curves corresponding to image sequences 

with different conditions. Fig. 5(a) shows a normal case that each region of the incoming 

frame has its own obvious minimum position, and we can distinguish them from x and y 

coordinates. Fig. 5(b) shows a valley shape distribution seeing from y coordinate and each 

region has its own obvious minimum position. But every x coordinate is not reliable due to 

lack of clear critical point.  

(a) 
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(b) 

Fig. 5  Various correlation curves corresponding to image sequences with different conditions. 
(a) Normal case that each region of the incoming frame has its own obvious minimum position. 
(b) Case of only y coordinate has valley shape distribution. 
 

  The curve of correlation values is related to the reliability of motion detection, so we 

propose a strategy that combines the minimum projections of correlation curve in x and y 

directions (minimum projections) and the inverse triangle method to detect the irregular 

conditions from each region to reduce computation complexity. The mathematical expression of 

minimum projections can be written as 

),(min)min(_ qpRpx iqi =
 

                         
),,(min)min(_ qpRqy ipi =

                     
(2.1) 

where _ min( )ix p  and _ min( )iy p  are the minimum projections of correlation curve in x and y 

directions in region i , respectively. The concept derives from the intuitional sense that the high 

reliable curve for determining the LMV has a sharp and obvious peak, and no other equivalent 

peaks appeared in the same curve. 

  Figure 6 is the projection of x and y correlation curve of each region from Fig. 5. We can see 

that in Fig. 6(a) each region has obvious minimum x and y position. There are many local 

minimum points in the x projection in Fig. 6 (b) and only y coordinate can distinguish the 

minimum position.  
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(b) 

Fig. 6  Examples of minimum projections of correlation curve from x and y directions in 
four regions: (a) regular image sequence and (b) ill-conditioned image sequence. 

 

In order to judge the reliability of the motion vector from Fig. 6 , we combine the inverse 

triangle method with the minimum projections of correlation curve to find the reliability indices. 

While the local minimum difference distance is larger than a specific value, the minimum 

position is not reliable.    
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Fig. 7  Illustration of the proposed inverse triangle method. 
 

Base on this criterion, the algorithm is designed as follows. In the first step, we find _ miniT  

that represents the global minimum of the minimum projection curve in region i  and can be 

calculated by Eq. (2.2). In the second step, we calculate xiS  and yiS  by Eq. (2.3), where offset  

is the altitude of the inverse triangle, xin  and yin  are defined as the numbers of xiS  and yiS , 

respectively Eq. (2.4), xid and yid are defined as the distances of two vertexes of the base of 

inverse triangle obtained by Eq. (2.5). The confidence level of x and y directions are calculated by 

Eq. (2.6). Since the condition of multiple peaks seriously degrades and affects the determination 

of reliability, the penalty of multiple peaks is taken into account by Eq. (2.6) to improve the 

discrimination of reliability. The example shown in Fig. 7 is a curve with twin peaks which will 

get the penalty of xi xid n− . In the third step, we determine the confidence indices of ix  and iy  

in region i  through a threshold denoted as TH . The smaller value of confidence level 

represents the higher reliability. In the final step, summing up the counts of reliable motion 

components of x and y in four regions as Eq. (2.7), we get ( )iNum x  and ( ),  1 ~ 4iNum y i = . 

 

The follows describe the procedure: 

Step 1. 

Find global minimum _ miniT from _ min( )ix p or _ min( )iy q . 
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_ min min( _ min( ))i ip
T x p= or _ min min( _ min( ))i iq

T y q= .                               (2.2) 

Step 2. 

Calculate the confidence level, _ix conf and _iy conf . 

{ | _ min( ) _ min }
{ | _ min( ) _ min }

xi i i

yi i i

S p x p T offset
S q y q T offset

= < +⎧⎪
⎨ = < +⎪⎩

,                                          (2.3)          

number of 
number of 

xi xi

yi yi

n S
n S

=⎧⎪
⎨ =⎪⎩

,                                                       (2.4)          

max min

max min
xi xi xiPP

yi yi yiqq

d S S

d S S

= −⎧⎪
⎨ = −⎪⎩

,                                                       (2.5)          

_ 2
_ 2

i xi xi

i yi yi

x conf d n
y conf d n

= −⎧⎪
⎨ = −⎪⎩

.                                                       (2.6)          

Step 3.  

Set the threshold,TH , for determining the reliability indices. 

If _  ix conf TH<  Then ix  is reliable,  

Else ix is unreliable, 

End if. 

If _  iy conf TH<  Then  iy  is reliable, 

Else iy is unreliable, 

End if. 

Step 4. 

Calculate the numbers of ix and iy in four regions. 

( ) sum of (  is reliable)
( ) sum of (y  is reliable)

i i

i i

Num x x
Num y

=⎧
⎨ =⎩

,    1 ~ 4i =                                      (2.7)          

 . 
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2.1.2 Irregular Motion Vector (IMV) 

Irregular motion vectors can be detected and excluded by using minimum projection and 

inverse triangle method; however, image sequence with ill-condition such as lack of feature, large 

low-contrast area, moving object or repeated pattern, may contain fewer available MVs (most of 

the MVs are irregular) in four regions. Therefore, recombination of these available regular MVs 

is necessary to form an ill-conditioned motion vector (IMV). To solve this problem, a median 

function is used to extract a motion vector with respect to each direction for ill condition.  

 

The calculation to determine the IMV is described as follows in details. 

Case 1. If ( ( )) 4iNum x t =  then 

_ _ _ _ _( ) ( ( ), ( ), ( ), ( ), ( 1))ill x a x b x c x d x xV t Med V t V t V t V t GMV t= − , 

Case 2. If ( ( )) 3iNum x t =  then 

_ _ _ _( ) ( ( ), ( ), ( ))ill x a x b x c xV t Med V t V t V t= , 

Case 3.  If ( ( )) 2iNum x t =  then 

_ _ _( ) ( ( ), ( ), ( 1))ill x a x b x xV t Med V t V t GMV t= − ,                                           (2.8)         

Case 4. If ( ( )) 1iNum x t =  then 

_ _( ) ( )ill x a xV t V t= , 

Case 5. If ( ( )) 0iNum x t =  then 

_ ( ) ( 1)ill x avgxV t GMV tγ= × − , 

where ( ( ))iNum x t is the number of x component of reliable LMVs, _ ( )ill xV t is the x component of 

IMV, _ ( )a xV t , _ ( )b xV t , _ ( )c xV t , and _ ( )d xV t represent x components of reliable LMVs in different 

region, respectively, ( )Med  in Eq. (2.8) is the function of median operation, ( 1)xGMV t −  is the x 

component of last previous GMV, t  is frame number, γ  is attenuation coefficient, 0 1γ< < .  

The ( )avgxGMV t  can be calculated by 

10)()1()1( <<−+−×= ςςς tGMVtGMVGMV xavgxavgx                              (2.9)           

Then we apply the similar process to obtain _ ( )ill yV t . The resultant IMV is represented by 

_

_

( )
( )

( )
ill x

ill
ill y

V t
V t

V t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                                                      (2.10)            
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2.1.3 Global Motion Vector 

  The LMV in each region may represent global motion vector, moving object motion vector, 

or even error vector. The error vector may cause by the ill condition or the mixture of global 

motion and moving object motion. Although the reliable global motion vector is essentially 

selected from LMVs and IMV, however, in the worst case, i.e. estimations of LMVs and IMV are 

all fault due to high noise image sequence, it will induce artificial shaking result due to adopt an 

error GMV. Therefore, if the evaluation includes the zero motion vector (ZMV), it can prevent 

the occurrence of this case. Similarly, for a high noise image sequence with panning, the last 

previous GMV will be the best choice if the estimations of LMVs and IMV are all fault. In the 

proposed IS technique, the seven motion vectors including four LMVs, the IMV, the ZMV, and 

the last previous GMV, referred as pre-selected motion vectors (pre_MV), are employed to 

estimate the GMV of the current frame. In general, one of LMVs is the highly probable GMV for 

the regular image; the IMV is the highly probable GMV for ill-conditioned image; the ZMV can 

prevent worse compensation result caused by the fault MVs; and the last previous GMV is useful 

for panning condition. In this paper, a background-based evaluation function is proposed to 

overcome this problem. Fig. 8 shows the areas for background-based evaluation. Five regions are 

selected to evaluate the result, which are located on the surroundings of the image. The reason is 

that, in most cases, the foreground object is located on the center of the image, so the 

surroundings of the image are the best candidates for background detection.  

 
Fig. 8  Areas for background detection and evaluation 

 

The estimation of the GMV is calculated by the summation of absolute difference (SAD) [33], 



15 

                       

,
,

( 1, , ) ( , , ) ,

1 5,       1 7,

i

i

B c c c
X Y B

SAD I t X Y I t X X Y Y

i c
∈

= − − + +

≤ ≤ ≤ ≤

∑
               (2.11)

  

where ( 1, , )I t X Y−  is the intensity of the point ( , )X Y  at frame t-1, iB is the i-th background region 

in the image, ,c cX Y are the components of the seven pre-select motion vectors ( _ cpre MV ) in x and 

y directions. Each _ cpre MV  can obtain it’s ,iB cSAD in each region. The smaller ,iB cSAD  represents 

the higher probability of the desired motion vector among theses pre-selected motion vectors. 

Five-region peer-to-peer evaluation can prevent the situation that some partial high-contrast 

image regions dominate the evaluation result. In this algorithm, each region has an equal priority 

to determine the result. The _ cpre MV  with the smallest cS  is the desired GMV and it can be 

expressed as  

                       GMV= _ ipre MV , for arg(min )c
c

i S= ,                      (2.12) 

where 
5

,
1

c i c
i

S S
=

= ∑ . The score for each _ cpre MV  in region i  is denoted as ,i cS . Hence, cS  is the 

important index to determine the GMV.  

 

 

2.2 Motion Compensation 

  It is necessary to generate the compensating motion vectors (CMVs) for removing the 

undesired shaking motion while keeping the steady motion of the image sequence. The 

conventional compensating motion vector estimation was given by [18] 

             ( ) ( ( 1)) ( ( ) (1 ) ( 1))CMV t k CMV t GMV t GMV tα α= − + + − − ,               (2.13) 

where t represents the frame number, 0 1k< <  and 0 1α≤ ≤ . In the case, there is the 

tremendous lag condition due to the steady panning effect. It will reduce the available effective 

image area. The CMVs are generated by Eq. (2.13) with the clipper function [34] as 

              
( ),)()(

2
1))(()( ltCMVltCMVtCMVclippertCMV −−+==           (2.14) 
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where l  is boundary limitation, i.e. maximum window shift allowance. The lag can be reduced 

to a certain range; however it will also decrease the performance of shaking compensation due to 

the picking window operating near the boundary area. To attack this drawback, we combine the 

inner feedback-loop integrator with clipper function to reduce the steady-state lag for steady 

motion as well as to keep the CMV to operate in the appropriated range. Fig. 9 shows the block 

diagram of the proposed CMV generation method. There is an integrator in the inner feedback 

loop, which can eliminate the steady-state lag of the CMV in panning condition. That means, by 

employing the integrator, shaking components of images with constant panning as well as those 

in regular images can be stabilized. The proposed CMV computation procedure is presented by 

 )1(_)]1()1()([)1()( −⋅−−⋅−+⋅+−⋅Κ= tICMVtGMVtGMVtCMVtCMV βαα ,     (2.15) 

CMV_I(t) =CMV_I(t-1)+CMV(t) and CMV(t)=clipper(CMV(t)), 

where [0 0]T ≤ Κ,α,β ≤ [1 1]T and clipper() is defined as Eq. (2.14). 

 

11 z
β

−−

l
l−

 
Fig. 9  The block diagram of the proposed CMV generation method. 

 

2.3 Implementation of Local Motion Estimation   

After programming the DIS system, we find that it can do an excellent off-line job 

comparing with the RPM fuzzy set theory [32]. But it is hard to implement the algorithm into 

practical consumer camcorders. Although there are still several DIS systems which could do the 

on-line job by using PC [45], it is still a long way to go into the DIS hardware design. 

Therefore it is necessary to analyze the DIS computation load before the system implement 

on practical camcorders. We record the computation time from each DIS step and compare them 

with whole processing time of each incoming test video frame. Then we take average of the 

computation percentage of all incoming frames and list them in Fig. 10. The percentage data 
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might lack of accuracy due to different test videos, but we still can recognize that most of the 

computation loading belongs to the motion estimation step.  Fig. 10 shows the percentage of the 

computation loading of each block in DIS system. The motion estimation step contains 80 % 

processing time and the motion compensation contains the rest 20%. And more than halve 

computation time belongs to local motion estimation step. This is because the RPM method in 

LMV step need to load the image SAD values into memories first and find the minimum value 

pixel by pixel. The tasks of finding global minimum position by using a DSP processor is 

comparing and storing the minimum value of neighbor pixel and jump to next pixel. The 

minimum position information should also store in the memory. The larger the processing unit is, 

the longer processing time it takes. Our strategy is to design an application specific chip which 

could highly reduce the computation time in LMV estimation. The less the processing time in 

LMV estimation step the higher capability of real-time operations for image stabilization 

processing is. 

The LMV estimation chip is designed with CNN technology to solve the heavy computation 

time problem. Compared with conventional digital technology, CNN-based computing is capable 

of realizing these TeraOPS-range image processing tasks in a cost-effective implementation. The 

design concept of ASCNN chip is shown in Fig. 11. By using an 8-bit D/A converter, the 

absolute image difference which ranges from 0~256 could store into the CNN local analog 

memories (LAM). And with the aid of CNN technology, the LMV position could be easily found 

compared with the DSP processor. The CNN theory and chip design are introduced in Chapter 3 

and Chapter 4.  
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Fig. 10  Computational complexity of the DIS flow. 

 

 

Fig. 11  The design concept of ASCNN chip architecture. 
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3. CHAPTER 3  

Cellular Neural Network 
The original Cellular Neural/Nonlinear Networks (CNN) paradigm was first introduced by 

Chua and Yang [20].  CNN technology is both a revolutionary and experimentally proven new 

computing paradigm. The two of most fundamental ingredients of the CNN are: the use of analog 

processing cells with continuous signal values, and local interaction within a finite radius. CNN 

possesses some of the key features of neural network, which has important potential applications 

in such areas as image processing and pattern recognition. The CNN theory and architecture will 

be introduced first and the next is CNN circuit. The last will include the inversion and adaptive 

threshold properties of CNN which are used to calculate the LMV.  

 

3.1 CNN Theory  

CNN can be considered an implementable alternative to fully connected neural networks 

and a remarkable improvement in hardware implementation of artificial Neural Networks. Local 

interconnection and simple synaptic operators are the most attractive features of the CNN for 

VLSI implementation in high-speed, real-time applications [35] and the CNN are widely used in 

several application fields, such as image processing and pattern recognition. Several hardware 

implementations of the CNN have been reported in the literatures [37], [38], [39]. 

The state equation of CNN can be represented by  

( ) ( ) ( ) ( ), , , ; , , , ; , , ,
, ( , ) , ( , )

i j i j i j k l k l i j k l k l i j
k l Nr i j k l Nr i j

x t x t A y t B u t I
∈ ∈

= − + + +∑ ∑ ,                      (3.1) 

( ) ( )( ) ( ) ( )( )1 1 1
2

y t f x t x t x t= = + − − ,                                         (3.2) 

where i, j refers to a grid point associated with a cell on the 2-D grid, and k, l∈Nr(i,j) is a grid 

point in the neighborhood within a radius r of the cell i, j. A and B are the nonlinear cloning 

templates [40]. Fig. 12 shows the dynamic route of state in CNN. The feature of the Eq. (3.2) has 

been plotted at Fig. 13. 
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    In many applications, the templates (A,B) and the threshold I are translation invariant. In the 

case of single variable A and B functions, the linear (space-invariant) template is represented by 

the additive terms as Eq. (3.1).
 
When the template is space invariant, each cell is described by a 

simple identical cloning template defined by two (2r + 1) × (2r + 1) real matrices A and B, as well 

as the constant term I. In addition, as a very special case, if the input and the initial state values 

are sufficiently small and f is piecewise linear, then the dynamics of the CNN array is linear. 

    Unlike other standard analog processing arrays, or neural networks, the one-to-one 

geometric (topographic) correspondence between the processing elements and the processed 

signal-array elements (e.g., pixels) is of crucial importance. Moreover, the template has 

geometrical meanings which can be exploited to provide with geometric insights and simpler 

design methods. 

 

Fig. 12  The dynamic route of state in CNN. 

 

 

Fig. 13  The output of sigmoid function. 
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3.2 CNN Architecture  

The basic circuit unit of CNN is called a cell. It contains linear and nonlinear circuit 

elements, which typically are linear capacitors, linear resistors, linear and nonlinear controlled 

sources, and independent sources. The structure of CNN is similar to that found in cellular 

automata, and each cell in a CNN is connected only to its neighbor cells. Adjacent cells can 

interact directly with each other. Cells not directly connected together may affect each other 

indirectly because of the propagation effects of the continuous-time dynamics of the network. A 

typical example of a cell C(i, j) is shown in Fig. 14, where the suffixes u, x, and y denote the 

input, state, and output, respectively.  

 

Fig. 14  The circuit of a CNN cell. 

 

The differential equation governing a CNN in Eq. (3.1)  is rewritten as follow : 

.1;1

,)(),;,()(),;,()(1)(

),(),(),(),(

NjMi

ItvlkjiBtvlkjiAtv
Rdt

tdv
C

jiNlkC
ukl

jiNlkC
yklxij

x

xij

rr

≤≤≤≤

+++−= ∑∑
∈∈

        (3.3) 

11: ≤≤−∈ yRywhere N

 And A is an M-by-N ( M=N ) real symmetric matrix defined as  

jiE ,

I C xR ),;,( lkjiI xu ),;,( lkjiI xy

yxI

yR

xijv yijv
uijv

input u state x output y 
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⎥
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⎥
⎥
⎥
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A                                (3.4)           

Here I = [I1 I2 ….. IN]T is an N-by-1 constant vector and the input vector vu can be defined in 

a similar way. A0 and A1 are two mm×  Toeplitz matrix with elements determined by a given 

cloning template. The synapse weights of the shift-invariant CNN can be described by the 

feedback and feed forward cloning templates: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

212

101

212

212

101

212

bbb
bbb
bbb

T
aaa
aaa
aaa

T BA                       (3.5) 

Where all elements respect the normalized numbers to Tx=1/Rx, and 1/),;,( >= TxjijiAai . 

The matrix B can be defined in the similar way. Then, the maximum value of x in the steady state 

is the sum of absolute values of all inputs from the neighborhood cells, 

∑∑
==

++=
3

1,
0

3

1,
max |||),(||),(|||

ji
B

ji
A xjiTjiTx                                        (3.6) 

where ,1||,1|| ≤≤ yu  and xTIx /0 = . The neuron cell should be able to handle the state voltage 

of the range |||| maxxx ≤ . 

 

3.3 CNN Circuit Design 

The current-mode approach [40], [42] is used in CNN circuit design because it has superior 

mathematical addition properties. The summation of weighted currents is simply done by 

appropriate transistor sizing. The piecewise-linear function is achieved by cascading two current 

limiters as shown in Fig. 15. 
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                         (a)                               (b) 

Fig. 15  Piecewise linear function. (a) Schematic view and (b) Transfer characteristics of 
two current limiters in the cascade [36]. 

 

The limiting operation of the input current denoted by Ix first takes place at a negative value 

Ix = -IQ and at a positive value Ix = IQ. For ,IQIx −≤  there is no currents that flow through the 

transistors M3 and M4. Therefore, IDS5 = IDS6 = 2IQ and Iy = -IQ, where IDS5 represents the 

drain-to-source current of M5, and so on. For ,IQIx −>  IDS3 = IDS4= IQ + Ix and IDS5 = IDS6 = 

(IQ – Ix) produce the output current Iy = IQ - IDS6 = Ix. However, if ,IQIx >  then IDS5 = IDS6 = 

0 and Iy = IQ.   

Figure 16 shows a detailed schematic diagram of a neuron cell [36]. The synaptic weight is 

realized by M11 - M14 for a0 and M15 – M16 for a1. Four copies of a current mirror are used to 

provide the weight for fore neighboring cells. The external input current, bias current, feedback 

current, and those from the neighboring cells are summed at the drain terminal of M1. The offset 

circuit provides a bias current which is set by bias voltage VBI. The output voltage generator is 

made of a simple current comparator using a cascade of two inverters. The input currents from 

neuron circuit, weighting circuit and reference voltage set by VBB are compared to produce an 

output Vy which represents the sign of the neuron output.  
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Fig. 16  The CNN cell with fixed weights (templates). 
 

3.4 CNN Template Consideration 

3.4.1 Image Difference  

The first step of RPM method will subtract the present sub-region pixels with past 

representative point pixel color. We can implement subtraction step with image inversion and 

current addition.  The inversion template [43] lists below. The input of CNN is grayscale 

representative sub-region. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

000
020
000

000
010
000

BA TT                  (3.7) 

Figure 17 shows the simulation result of CNN inversion template [44]. Fig. 17 (a) shows the 

input of CNN. Fig. 17(b) shows the initial state of CNN, and the state will subtract from input. 

The Fig. 17(c) shows the output after processing.   
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 (a)                         (b)                          (c) 

Fig. 17  Simulation of CNN inverse template. (a) Input of gray-scale image. (b)The initial 
state of CNN. (c) Output after difference processing. 

 

Because we take current mode CNN as processing core, the addition step can set initial state 

of CNN as zero and directly combine the input current between the inversion representative 

sub-region and present sub-region.  

 

3.4.2 Global Minimum  

To search the minimum position in a specify area not only takes time but also consumes lots 

power. Comparing previous value and storing the minimum value is the basic processing step. 

The larger area need to be determined, the more clock cycle, ie., power, it takes. Egusa [17] 

proposed to use analog circuit to find the global minimum value. But the circuit only suit for few 

input application. Therefore, we propose to use CNN adaptive threshold template with capability 

of finding the global minimum position in larger array and can process with less clock period. 

The adaptive threshold template lists below. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
010
000

000
020
000

BA TT                   (3.8) 

The adaptive threshold template not only simplifies the CNN state equation (3.1), but also 

makes the template easier to implement in VLSI. We can write an equation to represent Eq.(3.8) 

as: 

IuYXIBuAYXX +++−=+++−= 2
.

                  (3.9) 
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  We then set the set the initial state of CNN as zero which is reasonable for circuit design and 

also don’t need to implement any initial circuit for CNN core. And we set the sigmoid function 

will saturate at uA20± . This is because we give every current source of CNN core as 20uA. 

The CNN adaptive threshold template analysis is shown in  

Table 1. 

 
Table 1：  CNN Adaptive Threshold Template Analysis 

 Case 1 Case 2 

Ibias 
Iu = -10uA and x (initial) = 0 

IbiasxIbiasxxx +−=+−++−= 10)10(2
.

Iu = 10uA and x (initial) = 0 ; 

IbiasxIbiasxxx ++=+−++−= 10)10(2
.

-20 
302010

.
−=−+−=x     ,saturate  

y still strict in -20 

102010
.

−=−+=x  

now x = 0 – 10 = -10       ,unstable 

20201010
.

−=−++−=x  

now x = -10 -20 = -30 , 

and y strict in -20           ,stable     

-10 
201010

.
−=−+−=x  

now x = 0 -20 = -20 = y  , stable 

01010
.

=−+=x  

now x = 0 +0 = 0      , critical point ! 

0 

10010
.

−=+−=x  

now x = 0 -10 = -10    , unstable 

201010
.

−=−−=x  

now x = -30  and y strict in -20 

10010
.

=+=x   

now x = 0 +10 = 10       , unstable 

2001010
.

=++=x  

now x = 20 = y           , stable 
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10 
01010

.
=+−=x  

now  x = 0 + 0 = 0   , critical point ! 

201010
.

=+=x  

now x = 20 = y           ,stable 

20 

102010
.

=+−=x  

now x = 0 + 10 =10 = y    , unstable 

20201010
.

=+−=x  

now x = 20 + 10 = 30,  

and y strict in 20           ,stable 

302010
.

=+=x  

now x = 0 + 30 = 30   

and y strict in 20         ,stable 

 

We use the property of 【case 2】 to implement adaptive threshold template on searching 

global minimum position in RPM method. With the aid of CNN array, a brand-new searching 

method has developed for DIS algorithm. As shown in Fig. 18, the SAD values are plotted in 3D 

view, and the CNN output will change from logic 1 to logic 0 while any of the difference value is 

below the threshold level and others remain logic 1. If none of the position in the processing 

array flip its output logic, CNN bias control circuit will tune the threshold to a higher level until 

the minimum input in the array is lower than bias current.  
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Fig. 18  Searching global minimum by using CNN adaptive threshold template. 
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4. CHAPTER 4     

CIRCUIT DESIGN OF CNN-BASED LMV 

ESTIMATION 

The process of finding LMV is very computationally intensive, requiring billions of 

operations for each image. The most complexity operations occur in 1) computing the motion 

vector and the difference value and 2) storing the difference value with the position information if 

it is smaller than any previous value. Since the operation slows down the computation, the CNN 

architecture is suitable for motion computation and is done by CNN with a fixed template and the 

tunable bias current circuit for each cell.  

The tested image is a tennis player video of 200312×  pixels. Since image sensors can get 

more pixels than the video image requires, each image captured by sensors will first cut out a 

specific boundary pixels which saves as compensation area. Removing boundary area is called 

pre-processing step, and each image size now becomes 190300×  pixels. The motion estimation 

block diagrams which finds LMVs with CNN processing is shown in Fig. 19. Before entering 

CNN processing, the captured image has to be cut into four regions, and each of region will be 

found their own LMV. After this, each region again is divided into 30 sub-regions as mentioned 

in Chapter 2. Each sub-region is the size of 2519×  pixels processing block. We first store the 

center point image color value (0~255) of every sub-region in the prescribed region which is 

captured by (t-1)th image sequence. According to the RPM method described in Chapter 2, the 

absolute difference information should be computed by t th and (t-1)th sub-images. Through the 

digital-to-analog converter, the difference information could be stored in Local Analog Memories 

(LAM). The 30 sub-regions’ absolute difference value array will stack into CNN LAM from each 

processing region and the memories voltage information will vary from the difference values 

stored in the LAM. CNN does not begin to compute motion vectors until LAM accumulates all 

the difference information of 30 sub-regions. The CNN processor will check the global minimum 

position by using a 32-level threshold bias. The minimal difference value and the position 

information would be found within 32 clock cycles and then be latched in the location registers. 
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The processing time is not effected by the size of CNN. Therefore the larger the difference array 

is, the faster processing time compared with DSP processor will be.  

The system shown in Fig. 19 includes windowing (RPM and SAD), the 19×25 CNN array 

and LAM, the bias control circuit, and the addressing decoder. 

 

 

Fig. 19  The flow of CNN-based local motion estimation. 

 

Figure 20 shows the architecture of the application-specific CNN (ASCNN) design. By the 

windowing component of Fig. 19, the sequential images are segmented into many 19×25 pixels  

sub-regions for each region, and the absolute difference [17] of two images is calculated. 

Through an 8-bit D/A converter, the difference value is loaded and accumulated into LAM which 

consists of switch MOS capacitors. The bias current circuit will adjust the CNN array’s threshold 

according to the values of global output connected chains. If all difference values are higher than 

the given bias, the higher current fed into the CNN input from bias circuit will be. The process 

will be finished if the smallest input difference value is lower than the bias current. With the 

global connection of each row and column’s output, the digital row and column address decoder 
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will detect the X and Y position information in no time and store in the registers. 

 

Fig. 20  AS-CNN chip architecture. 
 

4.1 D/A Converter 

Analyzing the minimum image difference value of the input video sequence is necessary for 

the D/A converter. Fig. 21 shows the image sequences verses the minimum pixel difference 

values of each frame. We can calculate that the mean of minimum difference value is located in 

529 difference values, but the data would vary from each video. Therefore the upper bound of the 

minimum difference has 1024 pixels. The upper bound takes maximum charging input for four 

times, ie., 4256× , before LAM reach the 3.3 volts. Note that there is an exception in the 

sequence No.48. The minimum value is over 1024. This is because there’s a great movement for 

the whole region which is caused by intentionally moving the camcorder or the object is too large 

in this region so that it is considered as the background. LMV located in this region is not 

dependable and should not be stored. This kind of situation can be detected and discarded by the 

CNN controller.  



32 

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90

Frame No.

di
ff

er
en

ce
 (

pi
xe

l 
co

un
t)

 

Fig. 21  Analysis of minimum difference value for tennis player video frames. 
 

An 8-bit D/A converter is used to translate the image absolute difference code into analog 

current and load into local analog memory. In the first, the DAC input will pass registers in order 

to synchronize with digital control circuit, which is trigger by 20 MHz clock.     

The DAC is made of eight sets of current mirrors shown in Fig. 22 and the output stage is 

the 475 sets of LAM. Table 2 lists the DAC specification to keep the function accuracy of the 

input stage design.  

 

 

Fig. 22  8-bit current mode D/A converter. 
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Table 2：  8-bit D/A Converter Specification Table. 

Model   Application Specific CNN 8-bit DAC 
Output Loading  50Ω 
Resolution 8-bit 
Relative Accuracy 
0~70oC | 0.5 LSB | 
Output range  0~255 
Full output for LAM 

0~5.5mV 
0~3.3V 

DNL Max DNL <  0.25 LSB 
INL 0.1615 LSB 
SNR 55.8148 dB 
Digital Input 
Data Input , Voltage  :    Logic 1 
                      Logic 0 

Control Input, Voltage :    Logic 1 
                      Logic 0 

Input capacitance 

 
3.3V 
0V 

3.3V 
0V 
4pF 

Power Supply 
  Operating Voltage Range (VDD=3.3v) 
   MAX @ 11111111 
   current (Icc) 

 
 

6.9513 mW 
2.1064 mA 

Operating Temperature 0 ~ 70 oC 

 

1. Output Swing   

Figure 23 shows the output voltage variation of 256 levels with 50Ω loading. The charging 

voltage of the analog memory in the output stage is proportional to the input current and the 

loading time. The larger the image difference value is, the higher the memory voltage will be. 

 

Fig. 23  The output voltage variation due to input change of (8-bit) 256 steps. 
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2. DNL 

Figure 24 is the DNL analysis between the output voltage in Fig. 23 and ideal voltage curve 

ie. V_ideal=50Ω×0.43091/1000× t. The value 0.43091e-3 is the slope of output voltage due to 

the input change from 0 to 1. The coordinate Y represents the difference percentage of two curves 

versus LSB. The largest DNL in Fig. 24 is about 0.25 LSB. The coordinate X represents the time 

and the time step is 50 ns while input change data from 0 to 255.  

 
 
 
 
 
 
 
 
 
 
 
   
     
              

 
Fig. 24  DNL analysis. 

 

3. INL 

The INL is accumulated form all DNL data in Fig. 24. The result shows that,  

INL = 0.1615 LSB < 0.5 LSB 

 

4. SNR 

Because the input working frequency is set in 20MHz ie, fclk=20MHz, we give a sine 

wave input with 20MHz/28 frequency for DAC and record the output wave form as shown in 

(a). Then we sample the output stable voltage at 25 ns and get 140 sampling points. DFT 

position analysis is shown in (b). We take logarithm for the x coordinate and find the 

harmonic position in (c). The calculation results list below. 
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Power DC= 0.1479 

Power Sine = 0.0369 

Power Homonic = 1.6947e-007 

Power Noise = 9.6831e-008 

SNR_dB = 55.8148dB   >  49 dB 

 

 
Fig. 25  SNR analysis of 8-bit DAC. (a) sine wave output wave form of DAC; (b) DFT 
analysis of DAC output form with 140 sampling points; (c) The logarithm value for the x- 
coordinate in (b). 

 

Layout of the DAC is shown in Fig. 26. The 8-bit input is from the output of synchronize 

registers and the maximum current output is 2.1064mA which is designed to make each LAM 

cell has five times charging capability before reaching the 3.3 volt upper bound.   
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Fig. 26  Layout of 8-bit current mode D/A converter 
 

4.2 Local Analog Memory 

    Local analog memory (LAM) is designed to store the image difference value. The basic 

structure of the LAM is shown in Fig. 27 is a LAM cell. It consists of a transmission gate 

controlled by the CNN controller and a 2p MOS capacitor. defined in input stage. Vctrl_P and 

Vctrl_N are switch signals which are from the position decoder. Although there exists non-linear 

problems for the MOS capacitor design, for area consideration we still choose it rather than the 

poly capacitor. For a 2pf poly capacitor design, the nonlinear problems is much easier to solve, 

but the area take 2314um2 while the MOS capacitance only cost 1800um2 [51]. Therefore using 

of MOS capacitor could save much on-chip area. The characteristic curve of MOS capacitor is 

shown in Fig. 28. Since MOS capacitor has nonlinear transformative property, the capacitor value 

will have 600f variation while the gate voltage Vgs change from 0 to 0.65 volts. Pre-charging a 

specific voltage, i.e., 0.65 should be done before loading information into each capacitor. Layout 

view is show in Fig. 29. Symmetric layout style is used for every two LAM cells to reduce the 

mismatch during fabrication.  

However, accuracy of MOS capacitor value is not important. As long as the global LAM 

array has uniformly capacitor properties, CNN processor will be able to find the correct global 

minimum position.                 

    

 

 

 

Fig. 27  The single structure cell LAM. 



37 

 
 

Fig. 28  The characteristic curve of MOS capacitor. 
 

 

Fig. 29  Layout of MOS capacitor. 
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4.3 Voltage to Current Converter 

A voltage to current converter (VCC) shown in Fig. 30 is required to transform the LAM 

voltage into CNN current input. With properly design the W/L ratio, the output of VCC to 

CNN is limited to 20uA. VCC maximum power consumption is 104.6uW when the input 

signal is 3.3 volts. Fig. 31 shows the layout view of VCC. A common-centroid arrangement is 

used for the current mirror device M1 and M2.  

 

Fig. 30  Schematic of voltage to current converter. 

 

 

Fig. 31  Layout of voltage current converter. 
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Transistor M2 with Vsh (set to 2.85 volts) is used to shield switch noise from output stage 

and prevent LAM voltage from leakage. Analysis the current mirror of Fig. 30, we can write 

)1()()(
2
1

1
2

11 DSTHGSoxpD VVV
L

WCI λµ +−=                                         (4.1) 

)1()()(
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1

2
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WCI λµ +−=                                       (4.2) 
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⋅=                                                     (4.3) 

where λ is the channel length modulation coefficient.  

Figure 32 is the VCC voltage to current transfer curve. With 50Ω output loading, the 

current will change from 0 to 140uA while Vin changes from 0 to 3.3 volts. Quite low 

sub-threshold current arises as Vin changes from 0 to 0.5 volts. This is because Vin is lower 

than the threshold voltage (VTH) of Min transistor.   

 

 

Fig. 32  VCC voltage to current transfer curve. 
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4.4 CNN Core and Template (A,B) Design  

With the template defined in Eq. (3-7) and the simplify state equation list in Eq. (3-8), the 

ASCNN core with adaptive threshold template is designed as follows.  

Since IuYXX +++−= 2
.

, template A is set to 2)/(
)/(

3

4 =LW
LW

 
and other neighborhood 

connections are zero. Fig. 33 shows the schematic of CNN cell. The input current Iu from VCC 

and Bias current I are fed into the drain of M1. M5 and M6 form the output stage which is the  

diode connect common source amplify. The amplifier output is a robust binary value. A 

well-designed current mirror can generates 20uA for M1, M2 and M3 current source. M4 current 

source takes 40uA since the W/L is twice of M3. A switch signal Vac_CNN is used to control 

CNN operations. While the switch is turned on, the ASCNN works as a comparator that 

compares the current between Iu and Ibias. If the input current is higher than the bias current, the 

output will get logic ‘1’ value and trigger the 5-bit bias circuit to raise the threshold, ie, bias 

current. The bias current is hold until the current is higher than input and logic ‘0’ is obtained. 

The coordinate in the CNN array is considered as global minimum position.  

 

 

Fig. 33  Schematic of the CNN cell. 
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Fig. 34  Layout view of the CNN cell. 
 

Figure 34 shows the layout of CNN core. Splitting the devices into parallel devices and 

interdigitizing them can distribute process gradients across both devices, thus improving 

matching.  

 

4.5 Adaptive Bias Circuit  

The structure of 5-bit current decision circuit is the same as input stage shown in Fig. 22. By 

using a 5-bit counter from digital control circuit, 32-level bias current is fed into CNN. Due to a 

low drain voltage in the M3 transistor of the CNN cell, a cascade current source for lower 

minimum voltage across the current source is used and shown in Fig. 35 to provide an adaptive 

bias current.   
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Fig. 35  5-bit cascade current mirror using a source follower level shifter. 
 

We define the gate-source biasing voltage in terms of the excess gate-source voltage △V as 

VGS=△V+VTHN. The voltage on M6 is use to drop the potential at the gate of M4 down to 

2△V+VTHN. This reduces the voltage on drain of M4 to 2△V before M2 and M4 enter the triode 

region. The MOSFET M3 is resized to generate 3△V+2VTHN to provide the gate voltage of M4, 

i.e., VGS3=2△V+VTHN. The MOSFET with its gate and drain tied together being fed by a 

constant current (M1 and M3) behaves as a constant DC potential. While all the output of CNN 

array is high, the 5-bit bias decision circuit will change the bias current to a higher step and 

iterate until one of the CNN cell comes out with a low signal. For the enhanced ability of signal 

fanouts in Fig. 35, a unit gain buffer [33] is added to the output of the bias circuit as shown in Fig. 

36. A common mode feedback (CMFB) network is added to sense the common mode (CM) level 

of the two outputs and accordingly adjust one of the bias currents in the amplifier. We can divide 

the task of CMFB into three operations: sensing the output CM level, comparison with reference, 

and returning the error to the amplifier’s bias network. Fig. 37 shows the layout of the unit gain 
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buffer and Fig. 38 shows the layout of 5-bit bias control circuit. The output of the 5-bit control 

circuit should connect to the unit gain buffer before connecting to 475 CNN cells. The 

specification of the unit gain buffer is limited as Table 2.   

 

 

Fig. 36  Schematic of the unit gain buffer 

 

 

Fig. 37  Layout of the unit gain buffer. 

 

 

Fig. 38  Layout of 5-bit cascade current mirror using a source follower level shifter. 
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Table 3：  Specification of Unit Gain Buffer. 

Parameters   Performance 
Open-loop gain 72.4dB 

Common mode 
input range 

2.45V 

Common mode 
output level 

1.5~1.7 

Output swing 2.306V 

Power supply 13.04mW (@ 3.3 volts) 

Total current 
consumption 

3.95mA 

Low frequency 
PSRR 

-3.66dB 

High frequency 
PSRR 

-3.35dB 

DC CMRR -30.4dB 

High frequency 
CMRR 

-16.5dB 

Unit-gain 
bandwidth 

197MHz 

Phase margin 64 

Slew rate 
Rising 272V/us 

Falling 327/V/us 
 

 

4.6 ASCNN Processing Unit  

The ASCNN processing unit which consists of LAM, VCC, adaptive threshold template 

CNN and output connect AND gate is shown in Fig. 39. Each LAM switch in the processing 

array is turned on according to the Vx and Vy signal. The input current will feed into the 

designate LAM. Then VCC circuit will transform the SAD voltage into current and send into 

CNN core as input. The AND gates will take CNN output to the right and down cells and pass to 

the global output connect chain register. A digital decision circuit will raise the bias for all CNN 

cells if none of the global minimum position has been found.        
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Fig. 39  Components of ASCNN processing unit. 
 

The ASCNN processing unit including the CNN bias circuit is shown in Fig. 40. The circuit 

inside the rectangle is an ASCNN processing unit. The 5-bit bias circuit is connected to 

processing unit array by passing unit gain buffers. The CNN cell will compare the input current 

(1) and bias current (2) and give a binary output to the row and column global connected chains. 

Layout of processing unit is shown in Fig. 41. In order to overcome the mismatch during 

fabrication, symmetric layout skill is used. Fig. 41 (a) shows the odd number columns processing 

unit layout, and Fig. 41 (b) shows the even number columns processing unit layout. Therefore 

every column layout is mirrored from neighborhood. Power lines are drawing as nets, which are 

similar to cell based design to give every processing cells stable power supply. The signal lines 

are drawing in the same way, which result in convenient connections to neighbor cells. Fig. 42 

shows the layout of ASCNN cells. The T shape main power line is used to provide power streams 

in each processing unit.  
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Fig. 40  Schematic of an ASCNN processing unit (inside the rectangle) with CNN bias 
circuit. 

       

Fig. 41  Symmetric layout of ASCNN processing unit. (a) Odd column processing unit layout. 
(b) Even column processing layout. 
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(a) 

 

(b) 
Fig. 42  (a) Layout of ASCNN array (part view). (b) Connections of CNN cells.  
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4.7 Global Output Connected Chain 

Global output connected chains as shown in Fig. 43 are designed as address decoder. There 

are 19 row chains and 25 column chains in the processing array (19 x 25 pixels). Since the CNN 

cell can translate the analog signal input into binary output after processing, AND gate chains 

work as the output stage for each processing unit. If one of the input current is lower than bias 

current, the flip output signal (logic 0) will directly pass to the output registers with the 

connection of neighbor cells (right and down) for every processing unit. 

 

 

Fig. 43  Structure of global output connect chain (3 x 3 array). 
 

4.8 ASCNN Controller 

For the CNN active circuit, there are two operations such as loading and searching minimum. 

A digital control circuit in the mixed-signal ASCNN chip is used as a controller to operate whole 

ASCNN function. The finite stage machine (FSM) of the control circuit in Fig. 45 contains eight 

states to control the motion estimation processor. The state machine performs loading image into 

LAM, switching bias steps, and decoding LMV position. 

 Loading:  After coming of the start signal, initial signal will reset the LAM voltage and 
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load the SAD information sequentially into LAM. Since the parasitic capacitance of the 

processing array will also share the input charge current, a reset signal is needed before 

changing to next storage LAM cell. A pre-charge voltage (about 0.6 volts) for each MOS 

capacitor is also required to pass the nonlinear region as mentioned in section 4-2. Due to 

pixel-by-pixel input, excepting pre-charge all capacitors of LAM in the first time, the total 

of loading operations is 30 times for each location. The procedure of loading SAD 

information into each LAM cell location is shown in Fig. 44. After the 475 (19 x 25) LAM 

have loaded the SAD information, a finish signal will trigger the CNN on/off switches and 

CNN current source switches turn on and jump to searching global minimum state. During 

the loading step, the switches are turned off for saving power. 

 Searching minimum: An adaptive-minimized threshold template is used for searching the 

minimum value in the CNN array as mentioned in Section 3-5 and Section 4-7. The digital 

control circuit will check the global output connect chains of each rows and columns during 

every clock cycle. Two sets of 5-bit registers are used to decode and store the outputs of 

rows and columns global connect chains. If all the outputs remain logic 1, registers sent all 

zeros and command the bias counter rising to upper bit. The process will stop until one row 

and column flip their outputs to logic 0 and register will decode the address to output pad. In 

order to skip the worst case that all of the current input is higher than 32 levels bias current, 

the registers will sent all one (11111) to output pad and suggest the motion vector in the 

prescribed region is not dependable. A restart signal will make the searching minimum state 

jumping to initial state and again reset all the LAM before loading new SAD information.  

 Working frequency:  By taking advantage of the computing power of the CNN array, a 

single chip can be used to process a complete video frame by operating on a fraction of the 

image at a time. A frame rate of 40 Hz—adequate for high-quality video applications 

[47] —represents each frame processing time should take less than 25ms. Using working 

frequency at 20MHz on 19 times 25 ASCNN chip should be capable of fining 4 LMV at 

each image frame less than 6.2 ms and will discuss this in later chapters.  
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Fig. 44  Loading SAD information into each LAM location. 
 

 
 

Fig. 45  Complete FSM for the ASCNN controller design. 
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5. CHAPTER 5     

SIMULATION RESULTS 
Based on the CNN-based local motion estimation algorithm, we can both verify this method 

using CNNUM and the transistor-level simulation. Fluctuated video sequences with various 

irregular conditions are used for testing. Each video sequence contains 200 frames with the 

resolution of 312×200.  

 

5.1 Simulation Results of CNNUM  

The CNN Universal Machine (CNNUM) [48] provides the framework for the definition of 

an algorithmically programmable analog array computer with supercomputer power on a chip. Its 

character is using a mixed mode on-chip analog and logic (analogic) stored program [21] to 

realize highly complex image processing tasks. CNNUM is advantageous in terms of power 

consumption and computation speed as compared to these digital counterparts [49]. A 64×64 

array CNN processor [50] shown in Fig. 49 has been used to simulate the proposed motion 

estimation algorithm. A practical method of using 64×64 pixels processor is to make the input 

image operate onto fractions and process each fraction at a time. With the size of 19×25 pixels 

processing frames defined in chapter 2 have stored in CNNUM memories, the sub-image 

subtraction and addition can be done by using inversion, first and second addition templates. 

 
 

0=STATE ,  =INPUT Static grayscale image P, 

           bias=0, 

            −=OUTPUT P 

              

Fig. 46  Inversion template. 

0 0 0 
0 -2 0 
0 0 0 

0 0 0 
0 -1 0 
0 0 0 

Template B Template A 
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0=STATE , =INPUT Static grayscale image P, 

bias = Static grayscale image Q, 

=OUTPUT 0.5×(P+Q) 

 Template A 
        

  Fig. 47  First addition template. 
 

   

 

0=STATE , =INPUT 0.5 (P+Q), 

bias=0,                    

=OUTPUT P+Q 

        

    Fig. 48  Second addition template. 
 

 

Fig. 49  Chip sets of CNNUM 

0 0 0 
0 -1 0 
0 0 0 

0 0 0 
0 1 0 
0 0 0 

0 0 0 
0 -0.25 0 
0 0 0 

0 0 0 
0 2.5 0 
0 0 0 

 

Template B 

Template B 
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The result of the SAD array (19×25 pixels) after CNNUM processing is shown in Fig. 51 

(a). After analysis these SAD values, the minimum difference value is 85 pixel counts and locates 

in (6,4) while the top left point is defined as (1,1).  

Since the location of the designate motion vector (LMV) is located in the minimum SAD 

value position, the adaptive threshold as shown in Fig. 50 is applied to CNNUM. With proper 

choice of threshold bias current Ibias, only the minimum position appear with white color and 

others remain black color. The final result is shown in Fig. 51 (b). Since the threshold value is 

artificial, the result is time consuming. 

 

 

            0=STATE , =INPUT Static grayscale image P, 

ZIbias −= ,  where 11 <<− Z  

=OUTPUT  Binary image where black pixels   
correspond to pixels in with grayscale 
intensity ZPij >    

 

Fig. 50  Adaptive threshold template. 
 

There are two ways to decode the global minimum address. One make use of  the DSP 

processor of CNNUM to search the white color position. The other make use of shifting template. 

To compare the position information with the simulation of circuit, the vertical and horizontal 

shifting templates as follows are used, and their output is shown in Fig. 51 (c) and (d). 

The vertical shifting template:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

010
020
010

A  ,  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
000
000

B ,   Ibias=0                                  (5-1) 

The horizontal shifting template: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=
000
121

000
A  ,  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
000
000

B ,   Ibias=0                                 (5-2)

                      

0 0 0 
0 2 0 
0 0 0 

0 0 0 
0 1 0 
0 0 0 

Template A Template B 
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Figure 51 (c) is the result after applying vertical shifting template to Fig. 51 (b). Vertical 

template will propagate the white color position until it saturate at boundary. Fig. 51 (d) is the 

result after applying horizontal shifting template. With the definition of the top left point in Fig. 

11(b) as (1,1), the correct coordinate (X, Y) should be (6,4) and the position is the same as shown 

in Fig. 51 (a).   

 

Fig. 51  (a) The output of 19×25 difference value array image. (b) The output of (a) is fed 
into CNNUM using adaptive minimized threshold template with Eq. (7). (c) Vertical output 
of (b) with eq. (5-1). (d) Horizontal output of (b) with eq. (5-2). 

 

5.2 Chip Implementation 

The section contains the description of mixed-signal IC design flow, explanation of post 

simulation results by using HSPICE and ModelSim, whole chip layout and testing consideration. 
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5.2.1 Design flow 

The idea of the proposed DIS algorithm has been simulated by Matlab. Then, we study the 

feasibility on combining the CNN technology into DIS motion estimation to reduce the 

computation load. The next step is to implement the motion estimation chip with ASCNN design. 

ASCNN design follows the flow chart of Fig. 52. The chip design is divided into analog and 

digital part. Full-custom and cell-based design indicate the CNN processing units and the CNN 

controller, respectively.  

Fully custom design flow as follows:  

(1) Transistor level circuit design and pre-simulation by using HSPICE and SPECTRE 

(2) Drawing layout by using Cadence Virtuso and post-layout verification with Calibre.. 

(3) Post- Simulation with cell based circuit design. 

Cell-based design flow as follows: 

(1) CNN control behavior model code design. 

(2) CNN controller RTL code design. 

(3) Logic Synthesis by using design complier and mixed-signal layout integrated with SOC 

Encounter.  

(4) Post-layout verification with Calibre . 

(5) Post- Simulation with fully custom circuit design. 

 

                     

Fig. 52  ASCNN IC design flow. 
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5.2.2 Simulation Results   

The SAD result shown in Fig. 51(a) is loaded into LAM by 8-bit DAC. We mark the 

rectangular region (Fig. 55(a)) which contains the minimum SAD position to compare the LMV 

result with CNNUM. The rectangular contains 18 cells of LAM, and each output shown in Fig. 

53 is labeled as Vmem(x,y). As can be seen, the smallest voltage is 1.5 volts in the position (6,4) 

and the second is 1.58 volts in position (5,4) which is exactly the same as analyzing from Matlab. 

The 1.5 volts is the result of accumulating 89 pixel differences form a specific position of 30 

sub-regions and 1.58 volt is the result of accumulating 109 pixel differences. The operating 

frequency of the chip is 20MHz. We use the frequency to load the pixel differences information 

in sequence. The total loading time (including pre-charge operation) needs 65 clock cycles. Since 

each pixel takes 2 clock cycles to load into LAM, 30 sub-regions cost 60 clock cycles. Each cell 

has to spend 100ns (2 clock cycles) pre-charge time to reach 0.6 volts. The rest of 3 clock cycles 

are the rest time for parasitic capacitance in the circuits. Thus, loading a set of LAM will take 

3.25 us and for 19 times 25 LAM array totally cost 1543.75us.  

For a complete searching global minimum position as discussed in Fig. 45, each threshold 

level needs 2 clock cycles before rising to higher level. This is because CNN switches should turn 

on after bias signal VB heaving its value. For a worst case that none of the input current is lower 

than bias current, total processing time include loading LAM information cost 1.55ms 

( usnsus 95.15463210075.1543 =×+ ). Each image sequence processing time is less than 6.2ms. 

The number of searching global minimum clock cycles in using CNN design has superior 

computational effect than using DSP processor. For a 19 times 25 array, DSP processor takes 

14250302519 =××  loading clock cycles for a 312 times 200 pixels video frame and the 

proposed ASCNN chip takes 14725312519 =××  loading clock cycles which include 

pre-charge clock cycles for LAM. But a DSP at least takes 95022519 =××  clock cycles, 

comparing and storing, to find the global minimum position while the CNN with adaptive 

threshold template only takes 32 clock cycles in worst case. With the aid of global output connect 

chains, ASCNN chip does not need extra clock cycles to decode the LMV coordinates, but DSP 

processor does. As mentioned above, the result saves at least 44332)3132(2519 =−−××  

clock cycles compared with other DSPs. The larger the incoming frame size, the more clock 

cycles it saves in using ASCNN chip to find LMV. 
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Figure 53(a) shows the pre-simulation and post-simulation results of difference values 

voltage stored in LAM. Due to the existence of parasitic capacitors, the charging capacitance 

value in LAM is higher than that without parasitic effect. Compared with these two results in Fig. 

53(a), we can find that the smallest voltage position is the same. Fig. 53(b) is the LAM cells post 

simulation results which locate in the region that marked in Fig. 55(a). The region contains 18 

pixels and the global minimum point is included in. Because CNN bias circuit provides 32 levels 

threshold and the reliable LAM voltage output swing is from 0.65 volt to 3.15 volt. Therefore the 

change rate of the 5-bit bias circuit is 0.08 volts for each step which is equal to 24 pixels 

[0.08/3.3/( 4256× )] resolution. Thus the global minimum position can be found by using 32 

levels bias circuit in Fig. 53 (b). Due to the bias circuit, the changeable bias current from high to 

low can be found in the CNN array. The variation of bias current is shown in Fig. 54 which 

ranges form 0 to 20.15uA. When the minimum value is found, the output voltage of the related 

cell is low. Through the location decoder, the LMV position can be recognized and latched to the 

output register. The minimum SAD position is exactly the same as running by CNNUM. 

Moreover, the lower SAD value usually happens near the lowest SAD position and can also be 

verified in Fig. 53(b). Thus, if the difference pixel values are less than 24, the output decoder will 

choose the closer to original position’s address. But the global minimum position is still near the 

correct position if the address captured in registers is not correct. 

 

Pre-sim 

Post-sim 

smallest 

smallest 
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(a) 

 

(b) 

Fig. 53  (a) Pre-simulation and post-simulation results of the difference values which were 
stored in the LAM. (b) Post-simulation of the difference values which are stored in the 
prescribed rectangular LAM region. The 0.6 volts pre-charge voltage for each LAM cell is 
needed to pass the nonlinear region of the MOS capacitor. 

Figure 55(a) is the output of 19×25 difference value array image. Fig. 55 (b) and (c) 

shows the row and column global connect chains output corresponding to the minimum SAD 

position. The simulation only checks the 18 LAM (contained in the dot line) value and CNN 

switches turns on at 78us. With the help of automatic tuning bias current circuit, the output 

flips from high to low with a proper threshold of CNN. Fig. 55 (d) shows other global connect 

chains for the rest of 42 outputs.   
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Fig. 54  32 levels CNN bias current which ranges from 0uA to 20.15uA. 

 

 

Fig. 55  Simulation of CNN output inside the dot line. (a) The output of 19×25 difference value 
array image.(b) (c) row and column global connect chains output corresponding to minimum 
SAD position. (d) global connect chains for the rest of 42 outputs. 
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Figure 56 shows the simulation results of CNN control circuit from Modelsim. Fig. 56 (a) 

shows the control signals in initial state. The clock (Fclk) frequency is 20MHz. With a given 

reset signal (Frst), a Vrst signal will discharge all voltage stored in LAM and parasitic 

capacitance. The loading procedure as discussed in Fig. 44 is implemented with Vx (19-bit) and 

Vy (25-bits). The circuit use the Vx (19-bits) and Vy (25-bits) signal to address a position and 

turn on the input switch of the designate LAM cell. SAD information from 30 sub-regions of the 

specific position will then store in the memory. Fig. 56 (b) shows the control signals in the 

loading state. After loading a set SAD information into LAM, new position will be assigned by 

Vx and Vy according to the loading procedure. Fig. 56 (c) shows the control signals of the CNN 

active state. After 475 (19×25) LAM have stored SAD information from the 8-bit D/A converter, 

the CNN switches are turned on to check the global minimum position of the array. VB is the 

bias current control counter and V_H_o (19-bit) and V_v_o (25-bit) are the output from 19 rows 

and 25 columns global connected chains. If none of the CNN input is lower than the threshold 

level, VB will raise to the higher level. Fig. 56 (d) shows that the minimum position (6,4) has 

been found at VB equals to 23 and store the information in the registers axis_x (5) and axis_y (3). 

After the LMV position has accepted outside the chip, signal “start” will be changed to high and 

new SAD information is again sent into LAM as Fig. 56 (a).    

 

(a) 

 

(b) 
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(c) 

 

 (d) 

Fig. 56  Simulation results of the CNN control circuit.(a) the initial state. (b) the loading state. (c) 
the CNN active state. (d) the global minimum position by raising VB. 

 

Figure 57 shows the overall CNN output simulation from 19 rows 25 columns global output 

connected chains. The storage time takes 1543.75us after all SAD value have loaded into LAM. 

Note that the row No.6 and column No.4 flip from logic 1 to logic 0 while the CNN bias counter 

(VB) raise up to 23 at 1565us as shown in Fig. 56 (d). Only the minimum value location recorded 

in the positional registers axis_x and axis_y. 

 

Fig. 57  The overall simulation for the 19 times 25 array. (a) 25 columns of global output 
connect chains. (b) 19 rows of global output connect chains. 
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5.2.3 Chip Specification and Layout 

Figure 58 is the whole chip layout of mixed-signal ASCNN chip and its specification is 

listed in Table 3. The upper part is the CNN control circuit which is designed by cell-based 

design flow and the central 19 times 25 pixels array is pixel processing units as discussed in 

Section 4-6. The 8-bit D/A converter and CNN threshold control circuit are indicated in Fig. 

58(a). Fig. 58(b) shows chip layout with 48 bonding pads. A guard ring is drawing around the 

fully custom design in order to shield analog signals from digital signals. There are 3 sets of 

analog power for the processing array and one set of digital power for the digital control circuit. 

Chip information is shown in APPENDIX A which includes the specification of chip, I/O pad 

information, bounding wire layout, and Caliber DRC LVS verification results.   

  

                 (a)                                        (b)              

Fig. 58  Layout of mixed-signal ASCNN chip. (a) Topology of ASCNN chip. (b) ASCNN 
chip layout with 48 bonding pads.  
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Table 3 Specification of ASCNN chip 

Item Specification (unit) measure 

VDD 3.3 V N/A 

System Clock 20 MHz Yes 

Local Analog 

Memory 

0.5 v  ~  3.3 v Yes 

CNN bias 550 mV  ~ 900 mV Yes 

Power Consumption 
170mW (average) 

335mW (worst case) 

Yes 

Die size 2.375×3.442 um2 N/A 

Package SB 48 N/A 

Max Freq.   95.476 MHz (cell-Based design) PostSim 

 

5.2.4 Testing consideration 

The testing methods could be separated in two parts: digital CNN control circuit testing and 

fully custom ASCNN circuit testing. The package will first test by IMS testing machine to check 

the function of CNN control circuit. With the design of scan chain in digital circuit, the errors 

could simply feed the ATPG test pattern which generated by Tetra-max into chip testing pad (itsi) 

and analysis the output pattern for output pad (oY_tso). The testing pad information is discussed 

in Appendix A.  
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    Then, testing image generated by Logic Analyzer could feed into LAM by passing on chip 

8-bit DAC pad (iV8~1). Wait until all the LAM have loaded the image SAD information, testing 

pads (oY_mem1_1、oY_mem19_1、oY_mem25_1、oY_mem19_25) which represent the 4 corner 

LAM storage voltage could be analyzed and check if the memories voltage could raise as 

prediction.  

    The CNN threshold control circuit could check the testing pad (oY_biasL) voltage and see if 

the bias voltage can active after all LAM have loaded information.  

The pixel processing array could be check by feeding simple test pattern which only contain 

a extremely small pixel value and see if the CNN global connect output chain could mark the 

minimum position.  

 

◎ Digital Part： Add a scan chain by using DFT compiler. The test patterns have 119 sets in 

total and the fault and test coverage are 98.72 % and 100 %, respectively. 

 

 
Fig. 59  ATPG reports fromTetra-max. 

 

◎ Analog Part： 

1. LAM test: with a flat image pattern loaded by passing 8-bit DAC into LAM as shown in 

Fig. 60, the testing pad could help to analysis the properties of LAM functions to see if 

they can charge successfully and check the mismatch due to fabrication.  

2. CNN function test: feed a simple testing pattern that makes only one position’s CNN 

input is smaller than others. The bias current should quickly distinguish the global 
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minimum coordinate.  

3. Bias circuit test: feed the input with a flat but large SAD iamge and let all the pixel 

prcessing units cannot catch the minimuim position. Then test the bias testing point 

voltage and see if the volgate has reach the predic value. If the bias is out of the predic 

range due to differnet fabrication environment, the pad iVsh can be tunned to change the 

VCC input current to the CNN to feed the need of threshold level. 

 

 

Fig. 60  Digital and analog part testing consideration of ASCNN chip. 
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6. CHAPTER 6     

CONCLUSIONS AND FUTURE WORKS 
In this thesis we propose the local motion estimation chip based on CNN architecture for 

image stabilization and combine the motion compensation method to construct the image 

stabilization system. To obtain reliable LMVs from the video sequence captured in various 

conditions and to reduce the computational complexity in finding candidate of motion vectors, 

these are two challenges for an image stabilization system. According to the simulation results, 

the proposed technique demonstrates the remarkable performance in both quantitative and 

qualitative (human vision) evaluations compared with the existence of approaches. The ASCNN 

chip is implemented for real-time video stabilization applications. 

In particular, CNN is used to reduce computational complexity occurring in motion 

estimation and the ASCNN chip has superior performance compared with DSP processors. An 

8-bit D/A converter is designed to transform digital input into analog current and stored in LAM. 

LAM is designed to store SAD values and the memory cell is made of MOS capacitance. Various 

SAD voltage stored in LAM can produce input current of CNN by the VCC circuit. An adaptive 

and adjustable bias current circuit is combined with CNN to automatically increase the threshold 

level and detect the global minimal SAD position. The global output connected chains which take 

the CNN connection properties are used to decode LMV position without wasting more 

processing cycles in searching address. The proposed CNN-based method can be implemented on 

VLSI, and CNNUM is able to perform the idea of the proposed design. Results with mixed-signal 

simulation based on TSMC 0.35µm 2P4M process have demonstrated the superior functionality 

of the designed circuit. 

For the chip design or DIS implementation in the future, several possible improved 

directions will be considered as follows.  

1. The power consumption of CNN array should be reduced to fit the most consumer electronics. 

Reduce the supply current of CNN seems to be the best way to solve this problem since 

adaptive threshold template only takes the stable value from CNN output instead of transfer 

curve. Power management design in the chip can also save more power during LAM switches 
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turned on.  

2. A programmable CNN template is used instead of a fixed CNN template. The programmable 

method can reuse CNN architecture and perform more CNN functions. Dual clock design can 

also be used to speed up processing efficiency. The faster clock is used for CNN array in 

searching global minimum position. The other clock is used for new LAM which has shorter 

loading time.  

3. To further distinguish the SAD value into fewer pixels, more digits should be used to control 

bias signals, and a judgment control circuit should also be used to skip the raising clock cycle 

if the bias current is much lower than input current.  
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7. APPENDIX 

A.  Chip Information 
 

 
Chip Specification Table 

Spec. Result 
Technology TSMC 0.35µm 2P4M CMOS Mixed Signal Process 
Power supply 3.3 Volts 
Power dissipation 274mW(fully custom) + 8.3mW(cell based design) 
Input level Logical low: 0V, high: 3.3V 
Output level Logical low: 0V, high: 3.3V 
Operational Frequency (Cell-based) 20MHz 
Cell-based design Area 63315 
Bias step time 0.1us 
LAM accessing time 3.1us 
Bias resolution 32-tap (5-bit) 
No. of output 18 (fully=5, cell=13) 
Finding LMV for each frame Less than 6.2ms 
Package 48-pin 

 
 

Pad Names and Description 
Pin No. Name I/O direction Description 

47 oY_mem19_25 O Local Analog Memory testing point 19_25 
2 oY_mem19_1 O Local Analog Memory testing point 19_1 
3 oY_mem1_25 O Local Analog Memory testing point 1_25 
6 oY_mem1_1 O Local Analog Memory testing point 1_1 
7 VDD_1 Power Analog power 3.3 V 
46 VSS_1 Power Analog power  0 V 
44 VDD_2 Power Guard ring power 3.3 V 
42 VSS_2 Power Guard ring power  0 V 
5 VDD_3 Power Analog power 3.3 V 
4 VSS_3 Power Analog power  0 V 
1 VDD_4 Power Guard ring power 3.3 V 
48 VSS_4 Power Guard ring power  0 V 
40 oY_biasL O CNN threshold bias output voltage test point 
47 oY_biasU I Unity gain buffer voltage test point  
8 iV8 I Input Vin[8] 
9 iV7 I Input Vin[7] 
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10 iV6 I Input Vin[6] 
11 iV5 I Input Vin[5] 
12 iV4 I Input Vin[4] 
13 iV3 I Input Vin[3] 
14 iV2 I Input Vin[2] 
15 iV1 I Input Vin[1] 
16 itse I Scan chain enable 
17 iVsh I Current voltage converter bias (2.85V) 
18 iSTART I Start signal for CNN control circuit 
20 itsi I Scan chain input 
21 VSS_0 Power Digital power 3.3V 
22 iFRST I Reset  
23 iFCLK I Clock  
24 oY_Fsh O Finish signal 
25 oY_LE I Load enable 
26 oY_aY0 O axis_Y[0] 
27 oY_aY1 O axis_Y[1] 
28 oY_aY2 O axis_Y[2] 
29 oY_aY3 O axis_Y[3] 
30 oY_aY4 O axis_Y[4] 
33 VDD_0 power I/O PAD power 3.3V 
34 oY_ax0 O axis_X[0] 
35 INT_VSS_0 power Digital power 0V 
36 oY_ax1 O axis_X[1] 
37 oY_ax2 O axis_X[2] 
38 INT_VDD_0 power Digital power 3.3V 
39 oY_ax3 O axis_X[3] 
40 oY_ax4 O axis_X[4] 
41 oY_tso O Scan chain output 
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佈局驗證結果說明 

 
Fully custom design LVS check 

 
                            

Whole CHIP DRC check 

 
DRC error : VERTEX OFFGRID 假錯!        1000 
          M3.W.1 為 corner layout 假錯 !         2 
          M4.W.1 為 corner layout 假錯 !         2 
          M1.R.1 為 metal1 density 不足 30% warning，為 CIC 可忽略假錯      1 
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          M2.R.1 為 metal2 density 不足 30% warning，為 CIC 可忽略假錯      1 
          M3.R.1 為 metal3 density 不足 30% warning，為 CIC 可忽略假錯      1 
          M4.R.1 為 metal4 density 不足 30% warning，為 CIC 可忽略假錯      1 

共 1008 個可忽略假錯 
 

Whole CHIP LVS check 
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***  Chip Features                                      CAD Tools  *** 
CKT name  : CHIP_TOP (設計名稱)                HSPICE 
Technoloy  : TSMC 0.35um 2P4M CMOS          (使用製程)                OPUS 
Package    : 48 S/B    (包裝種類)  
Chip Size   : 2.375× 3.442 mm2  (晶片面積)  
Transistor/Gate Count : 4776 MOS / 6.33K gate count  (電晶體/邏輯閘數)   
Power Dissipation : ~355mW(最高)/~170mW(平均)   (功率消耗；mW) 
Max. Frequency  : < 20 MHz (最高工作頻率，MHz) (最高工作頻率)     
Testing Results           : □Function work  □Partial work   □Fail     
 
 
 

 
 

佈 局 平 面 圖 
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Side Braze 48-pin lead 

 
 

Bonding Diagram (打線圖) 
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B.  Optical IS Architecture 
 

 

Source: Cannon website: http://www.canon.com/technology/dv/02.html [3] 

 

If the lens front moves downward due to camera shake, the light from the subject shifts from 

the optical axis of the lens, and the image on the film plane is moved downwards. When this 

occurs, the corrective optical system is moved downwards to refract the light and the image is 

returned to the center of the film plane. In reality, both vertical and horizontal vibration occurs 

and the corrective optical system is moved in four directions along a plane perpendicular to the 

optical axis. 

 


