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Chip Design of CNN-Based Local Motion Estimation

for Image Stabilization Processing

Student : Ying-chang, Cheng Advisor : Dr. Chin-Teng Lin

Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

The objective of this thesis is to_investigate the hardware design in image stabilization
(IS) technique for local motion vectors. (LMVs).in the.image sequences. The IS technique is
used to remove unwanted shaking:phenomena in'the-image sequences captured by hand-held
camcorders without affecting moving objects in‘image sequences and the intentional motion
of panning condition, etc. It consists of motion estimation and motion compensation. Most of
the complex and time consuming “eomputations occur in motion estimation, an
application-specific IC is designed to solve this problem. Cellular Neural Network (CNN)
technology is used to implement the local motion estimation chip. CNN is a regular
two-dimensional array and connects with its neighborhood locally. Real-time and parallel
analog computing elements are contained in the architecture. CNN adaptive threshold
template is proposed to extract reliable motion vectors from a given region. The design of
global output connected chains can easily decode the LMV address. The local analog
memory (LAM) is designed to store image difference information. The size of CNN array is
19x 25 pixels. The chip has integrated in the total area of 8.1mm?by using TSMC 0.35um
mixed-signal process. Results with HSPICE simulation and CNNUM analysis prove that the
performance of the proposed CNN-based local motion estimation is better than that of a

digital signal processor so that the IS system has the capability of real-time operations.
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CHAPTER 1

INTRODUCTION

Video image stabilizers that compensate for camcorder shaking have already become
indispensable for consumer video camcorders [1]. Image stabilization (IS) is also known as
vibration reduction, which is a digital camcorder technology that helps preventing images from
blurring. It reduces vibration caused by camcorder shake, slow shutter speed or when using a
long telephoto lens without a tripod. For developed video camcorders, image stabilization is
finding a way into more consumer and professional digital camcorders. Various image-stabilizing
systems have been developed for camcorders to free from degradation in picture quality by
hand-movement. In the IS processing, scene points are motionless in spite of camcorder motion.
This makes it easier for an operator to select.a region, for example. The unwanted positional
fluctuations of the video sequence=will affect the wvisual quality and impede the subsequent
processes for various applications-such as motion coding, video compression, feature tracking,

etc.

1.1 Motivation

Basically, the 1S technique can be classified into two processing methods. One is the optical
image stabilization (OIS), and the other is the electronic image stabilization (EIS). Optical image
stabilization (see APPENDIX B) uses mechanical motion compensation to physically move the
lens, and hence the image that falls on the image sensor, in the opposite direction from the
camcorder shake. Camcorder makers offering optical stabilizers include Sony, Panasonic and
Canon corp. [2], but this feature is generally reserved for high-end models. Optical image
stabilization for consumer’s video cameras has been proposed by Holder [4] and Oshima [5].
Both systems are similar in the sense that they produce angular velocity by using gyro control
sensors, but they differ in methods for compensating the angular velocity [6]. One common
disadvantage of Holder’s method and Oshima’s system is that they are using mechanical parts

such as gyros and they control deflection coils (Holder) or a gimbal mechanism (Oshima) for



motion compensation. The mechanical parts of the IS system result in higher cost, larger space,

and heavier.

Electronic image stabilizer, so-called digital image stabilizers (DIS), takes the property of
image sensors with more pixels than the video image required and does the digital image
processing. The video image is like a “window” that moves around within the larger frame of the
image sensor. When camcorder shake moves the image up, EIS moves this “video window”
down to compensate. Many DIS algorithms have been proposed. Chang et al. [7] use optical flow
to remove the translational and rotational motion disturbance. The optical flow technique is used
to estimate the local motion vector field of the image and yield the velocity of each pixel in the
current image frame. Ko [8] propose a gray-coded bit-plan DIS algorithm to estimate the
irregular condition motion vector due to moving objects and intentional panning. ITRI [9] has
developed a DIS prototype system with FPGA and DSP implementation. The system composes
of software and hardware blocks to utilize the gray-coded bit-plan matching algorithm for the
video sequences. The DIS technique<has been widely used for the computation of ego-motion

[10], and video compression [11].

DIS consists of the motion -estimating ‘System and the motion compensation system. The
motion estimation based on block-matching-algorithm (BMA) plays an important role in DIS
[13]-[16]. The full-search (FS) BMA ‘under-the mean absolute difference (MAD) and the mean
square error (MSE) criteria can be considered as an optimal solution for block motion estimation
[8]. For the motion compensation, the accumulated motion vector estimation [18] and frame
position smoothing (FPS) [28]-[31] are two of the most popular approaches. The accumulated
motion vector estimation needs to compromise stabilization and intentional panning preservation
since the panning condition causes a steady-state lag in the motion trajectory[28]-[31]. FPS
accomplishes the smooth reconstruction of an actual long-term camera motion by filtering out
jitter components based on the concept of designing the filter with appropriated cut-off frequency

[28] or adaptive fuzzy filter to continuously improve stabilization performance [31].

The full-search block matching algorithm requires complicated computation which is time
consuming, and hardware implementation. Several computationally efficient DIS algorithms,
such as representative point matching (RPM) [17], edge pattern matching (EPM) [18], and
bit-plane matching (BPM) [19] have devoted for portable camcorders [13], [14], [16]. The major



objective of these algorithms is to reduce the computational complexity, in comparison with
full-search block-matching method, without losing too much accuracy and reliability. However,
RPM still costs many computation cycles in comparing with the global minimum position, and

EPM requires large amount of computations due to preprocessing for generating edge maps [8].

After analyzing the DIS algorithm, the motion estimation part has accounted for 80% of the
computational complexity. The last 20% computation load belongs to motion compensation [32].
In contrast to the heavy arithmetic computational load from RPM (which is used in the proposed
motion estimation), the motion compensation simply does some decisions on LMVs and then the
calculation of the compensated motion vector. Hence we focus on a cost effective hardware

design for the motion estimation.

1.2 Objective

Most of the DIS systems are processed by -PC or FPGA implementation. The chip
implantation for consumer camcorders of the IS system-is only for gyro control sensor in optical
stabilization system. We aim at designing a.novel architecture for local motion estimation of the
DIS system with VLSI approach. Due :to.the .complex.-computation found in motion estimation,
the DIS system is hard to perform in real_time. In order to further reduce the computational
complexity in finding LMVs, the mixed-signal cellular neural network (CNN) architecture is
considered [20]. Comparing with conventional digital technology, cellular neural/nonlinear
network (CNN)-based computing is capable of realizing the trillions of operations per second
(TeraOPS)-range image processing tasks in a cost-effective implementation [21]. CNNs are an
analog nonlinear dynamic processor arrays in which direct inter-connections among the basic
processing units are restricted to a finite local neighborhood [22]. By changing the weight of
local interconnections between neighborhood CNN cells, many image processing tasks can be
realized with CNN framework. Because of their inherently parallel processing architecture, CNN
can achieve a high speed computation while realizing the image processing tasks. In spite of that,
their uniformity and local connectivity make them especially suited for VLSI implementation
[23][24][25].



In this thesis, we propose an application-specific CNN (ASCNN) chip which could highly
reduce the heavy computation problem for motion estimation. The RPM method is used to find
the local motion vectors. The pre-processing image information will first pass a D/A converter
and store in the memories. Then CNN will search the global minimum position and decode the x
and y coordinates by using global output connected chains. Local analog memory (LAM) is
designed to store the image difference information which is passed from an 8-bit D/A converter.
With the aid of CNN technique [20], [27] , the global minimum position according to the RPM
method could be easily generated and stored in comparing with the traditional DSP computation.
The method of global output connected chains is used to connect CNN output and decode the
LMV address. A reliable local motion vector extraction method based on CNN architecture is
designed for the determination of global motion vector and image compensation processing in

practical applications.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 describes the models of the proposed image
stabilization algorithm and gives a computational ‘analysis to the DIS system. Chapter 3
introduces CNN algorithm, the hardware design_of the CNN core and templates design for the
CNN-based local motion estimator. Chapter 4 describes the circuit design of application specific
CNN (ASCNN) chip. The simulation results with HSPICE, CNN universal machine (CNNUM),
and ModelSim respectively are shown in Chapter 5. Conclusions and future works are made in
Chapter 6.



CHAPTER 2
DIGITAL IMAGE STABILIZATION

The architecture of the proposed image stabilizer technique shown in Fig. 1 is divided into
two processing blocks as motion estimation and motion compensation. The motion estimation
block consists of three estimators: the local motion vectors (LMVSs), the ill-conditioned motion
vector (IMV), and the global motion vector (GMV) estimators. The motion compensation unit
consists of the compensating motion vector (CMV) estimation and image compensation. The two
incoming consecutive images (at time (t-1) and time (t)) will be firstly divided into four regions.
A LMV will be derived in each region by the representative point matching (RPM) algorithm
[12], [19]. The motion estimation block also contains a reliability detection function that will
generate an ill-conditioned motion vector for the irregular image conditions such as the lack of
features or containing large low-contrast area, etc. The GMV estimation determines a global
motion vector among LMVs, the 1MV, @and:other pre-selected motion vectors through
background-based evaluation function: Finally, the compensating CMV is generated according to
the resultant GMV and the image' sequences will be compensated based on the CMV in the

motion compensation unit.

The proposed digital image stabilizer system contains motion estimation step and motion
compensation step. The design blocks are described as follows.

=

Fig. 1 The architecture of the proposed image stabilization technique.

2.1 Motion Estimation

The motion estimation unit shown in Fig. 1 contains the LMVs, IMV, and GMV estimators.
As shown in Fig. 2, the LMVs and IMV estimation is to generate the LMVs and IMV for global



motion vector estimation. The LMVs can be obtained from the correlation between two
consecutive images by the representative point matching (RPM) algorithm [12], [19]. The IMV
can be obtained from LMVs by evaluating the corresponding confidence indices through the

irregular condition detection and the proposed IMV generation algorithm.

Minimum Projections o »
x and y Directions [ Inverted
£ v Triangle Metho

( Four regions)

Original Images : Representative Point Matchin

LMVs Estimation Irregular Condition MV
(RPM) (Four regions) T Detection

—*Generation of IM\

LMVs

Fig. 2 The block diagram of LMVs and IMV estimation.

2.1.1 Local Motion Vector (LMV) and Irregular Condition Detection

First, we obtain location motionectors by usihg the representative point matching method.
A 19x25 pixels’ macro-block is the basic processing unit of the algorithm. For a given sequence
of video image, the specific boundary region-of the incoming frame will be discarded first which
saves as the compensating area. Then the pre-processing frame will be separated into four regions
which will generate a local motion vector after the later steps. Then each region will further cut
into many 19x25 pixels sub-regions. We take the center point color of the sub-region image as
our representative point value. Each sub-region image has its own representative point value. The
previous representing point value is subtracted from the present sub-region image and the
absolute value is taken. The minimum value position in the 19x25 absolute differences matrix is
considered as the previous representative moving point due to vibration noise. Summing all of the
absolute differences (SAD) matrices and give a statistical analysis on them. The vector which
calculates form the center point to the minimum SAD value position is considered as the local

motion vector of each region.

Our testing image sequence is a tennis player video clip which is 312x200 pixels for each

incoming frame. The steps and the results of the algorithm are listed below.

e Each incoming pre-processing image (300x190 pixels) is divided into four equal regions

and each region is 150x95 pixels.



e Segment the prescribed sequence region (t-1) and (t) into sub-images which each of

them is 19x25 pixels as shown in Fig. 3(a).

e Map all the pixels with the central point in each sub-image (t-1). The mapping array is

called representative point macro-block (RPM) as shown in Fig. 3 (b).

e Subtraction: The operation is defined by |[Msub(t)| := Sub-image(t)-Representative_point
image (t-1) to provide absolute difference for the Msub(t) matrix (19x25 pixels).

e Addition: Add all the |Msub(t)| in the prescribed region to form an 19x25 difference
value matrix as shown in Fig. 4. Fig. 4 is the SAD matrix that map into a 3D view. The
z-coordinate is the absolute difference value. The lower of the SAD value, the closer the
LMV is.

e Minimum: Find the minimum absolute difference position from the prescribed region
and calculate the vector from the center point. The vector is called the local motion
vector of the prescribed reglon After analy.’ng the Fig. 4, we can find that the minimum
position lies in the left and top pla m"the array and we will discuss it more in Chapter
5. : ;‘ b T 1..

Fig. 3 (a) The original image is divided into 4 regions, and then each region is cut into an array
of 19x25 pixels again. (b) All the pixels are mapped with the central point in each sub-image

(t-1).
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Fig. 4 The accumulated results of all | Msub(t) | in the prescribed region form an 19x25
difference value array.

After analyzing the curves of correlation values corresponding to image sequences with
various conditions, it is found that the curve,of correlation values is related to the reliability of
motion detection. Fig.5 shows various correlation curves corresponding to image sequences
with different conditions. Fig. 5(a) shows a normal case that each region of the incoming
frame has its own obvious minimum position, and we can distinguish them from x and y
coordinates. Fig. 5(b) shows a valley shape distribution seeing from y coordinate and each
region has its own obvious minimum-®position: But every x coordinate is not reliable due to

lack of clear critical point.

(@)

__________

T¥
h 20 i
A
A

o




(b)

Fig. 5 Various correlation curves corresponding to image sequences with different conditions.
(@) Normal case that each region of the incoming frame has its own obvious minimum position.
(b) Case of only y coordinate has valley:shape distribution.

The curve of correlation values is related- to +the. reliability of motion detection, so we
propose a strategy that combines the, mirimum- projections of correlation curve in x and y
directions (minimum projections) “and “the nverse.‘triangle method to detect the irregular
conditions from each region to reduce computation complexity. The mathematical expression of

minimum projections can be written as
X; _min(p) =minR;(p,q)
q
yi _min(q) =minR; (p.q), (2.1)

where x, _min(p) andy, _min(p) are the minimum projections of correlation curve in x and y

directions in region i, respectively. The concept derives from the intuitional sense that the high
reliable curve for determining the LMV has a sharp and obvious peak, and no other equivalent

peaks appeared in the same curve.

Figure 6 is the projection of x and y correlation curve of each region from Fig. 5. We can see
that in Fig. 6(a) each region has obvious minimum x and y position. There are many local
minimum points in the x projection in Fig. 6 (b) and only y coordinate can distinguish the

minimum position.
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Fig. 6 Examples of minimum projections of correlation curve from x and y directions in
four regions: (a) regular image sequence and (b) ill-conditioned image sequence.

In order to judge the reliability of the motion vector from Fig. 6 , we combine the inverse
triangle method with the minimum projections of correlation curve to find the reliability indices.

While the local minimum difference distance is larger than a specific value, the minimum
position is not reliable.
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Fig. 7 lustration of the proposed inverse triangle method.

Base on this criterion, the algorithm is designed as follows. In the first step, we find T _min

that represents the global minimum of the minimum projection curve in region i and can be

calculated by Eq. (2.2). In the secondstep, we calculate s, and s, by Eqg. (2.3), where offset

is the altitude of the inverse triangle, ' n

Xi

and n,are defined as the numbers of s, and s,
respectively Eq. (2.4), d,and dgare defined as the distances of two vertexes of the base of

inverse triangle obtained by Eq. (2.5): The confidence level of x and y directions are calculated by
Eq. (2.6). Since the condition of multiple peaks Seriously degrades and affects the determination
of reliability, the penalty of multiple peaks is taken into account by Eq. (2.6) to improve the
discrimination of reliability. The example shown in Fig. 7 is a curve with twin peaks which will
get the penalty of d,-n,. In the third step, we determine the confidence indices of x, and vy,
in region i through a threshold denoted as TH . The smaller value of confidence level
represents the higher reliability. In the final step, summing up the counts of reliable motion

components of x and y in four regions as Eq. (2.7), we get Num(x,) and Num(y,), i=1~4.

The follows describe the procedure:
Step 1.

Find global minimumT, _min from x, _min(p) ory, _min(q) .

11



T._min= mpin(xi _min(p)) Or T, _min = mqin(yi _min(q)). (2.2)

Step 2.
Calculate the confidence level, x, _conf andy, _conf .

{Sxi ={p|% _min(p) <T, _min+offset} (2.3)

S, ={aly, _min(q) <T, _min+offset} '

{nxi = number of S, (2.4)

1
n,; = number of S,

d, =maxS;-minS "’ (2.5)
q q

{dxi =maxS,; —minS,
P P

x._conf =2d, —n,
— X1 XI . (2.6)
y; _conf = 2dyi -n,

Step 3.
Set the threshold, TH , for determining.the reliability indices.

If x _conf < TH Then x isreliable,

Else x, is unreliable,

End if.

If y,_conf < TH Then vy, isreliable,

Else y, is unreliable,

End if.
Step 4.
Calculate the numbers of x; and y; in four regions.

{Num(xi) =sum of (x, is reliable) 14 2.7)

Num(y,) = sum of (y, is reliable) '

12



2.1.2 Irregular Motion Vector (IMV)

Irregular motion vectors can be detected and excluded by using minimum projection and
inverse triangle method; however, image sequence with ill-condition such as lack of feature, large
low-contrast area, moving object or repeated pattern, may contain fewer available MVs (most of
the MVs are irregular) in four regions. Therefore, recombination of these available regular MVs
IS necessary to form an ill-conditioned motion vector (IMV). To solve this problem, a median

function is used to extract a motion vector with respect to each direction for ill condition.

The calculation to determine the IMV is described as follows in details.
Case 1. If Num(x(t))=4 then

Vy (1) =Med(V, ,(t),V, )V, ).V, (1),GMV,(t-1)),
Case 2. If Num(x,(t)) =3 then

Vin_ (1) = Med (v, , (1).V,_,(©),V_, (1)),

Case 3.  IfNum(x(t))=2 then

Vi () =Med(V, ,().V, ,(),GMV, [{E-1)), (2.8)
Case 4. If Num(x(t))=1 then

Vy () =V, (),
Case 5. If Num(x (t))=0 then

Vi () = 7xGMV,, (t-1),

where Num(x (t)) is the number of x component of reliable LMVs, Vv,

ill_x

(t)is the x component of
IMV, v, ,®), V, 1), V., b, and Vv, () represent x components of reliable LMVs in different
region, respectively, Med() in Eqg. (2.8) is the function of median operation, GMV, (t-1) is the x
component of last previous GMV, t is frame number, » is attenuation coefficient, 0<y<1.

The Gmv,, (t) can be calculated by

avgx

GMV,,, =¢xGMV

avgx

(t-1)+(1-¢)GMV,(t) O<c¢<1 (2.9)

avgx

Then we apply the similar process to obtain Vv

iln_y

(t). The resultant IMV is represented by

V'|| X t
e {Vf — 8} (2.10)
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2.1.3 Global Motion Vector

The LMV in each region may represent global motion vector, moving object motion vector,
or even error vector. The error vector may cause by the ill condition or the mixture of global
motion and moving object motion. Although the reliable global motion vector is essentially
selected from LMVs and IMV, however, in the worst case, i.e. estimations of LMVs and IMV are
all fault due to high noise image sequence, it will induce artificial shaking result due to adopt an
error GMV. Therefore, if the evaluation includes the zero motion vector (ZMV), it can prevent
the occurrence of this case. Similarly, for a high noise image sequence with panning, the last
previous GMV will be the best choice if the estimations of LMVs and IMV are all fault. In the
proposed IS technique, the seven motion vectors including four LMVs, the IMV, the ZMV, and
the last previous GMV, referred as pre-selected motion vectors (pre_MV), are employed to
estimate the GMV of the current frame. In general, one of LMVs is the highly probable GMV for
the regular image; the IMV is the highly probable GMV for ill-conditioned image; the ZMV can
prevent worse compensation result caused by the fault MVs; and the last previous GMV is useful
for panning condition. In this paper, a background-based evaluation function is proposed to
overcome this problem. Fig. 8 shows the areas for background-based evaluation. Five regions are
selected to evaluate the result, which are located.on the surroundings of the image. The reason is
that, in most cases, the foreground: object is-located on the center of the image, so the

surroundings of the image are the best candidates for background detection.

Fig. 8 Areas for background detection and evaluation

The estimation of the GMV is calculated by the summation of absolute difference (SAD) [33],

14



SAD, .= > [I(t=LX,Y)—=1(t, X + XY +Y,),
" X, YeB; (2.11)

1<i<5, 1<c<7,

where 1(t-1,X,Y) is the intensity of the point(X,Y) at frame t-1, B, is the i-th background region
in the image, X_,Y, are the components of the seven pre-select motion vectors ( pre_MV,) in x and

y directions. Each pre_MvV, can obtain it’s SAD, .in each region. The smaller SAD, . represents

the higher probability of the desired motion vector among theses pre-selected motion vectors.
Five-region peer-to-peer evaluation can prevent the situation that some partial high-contrast
image regions dominate the evaluation result. In this algorithm, each region has an equal priority

to determine the result. The pre_Mmv, with the smallest s, is the desired GMV and it can be

expressed as

GMV=pre_Mv,, for i=arg(minS), (2.12)

5
where s =>'s, . The score for each pre_ MV, in ¥egion i is denoted ass,,. Hence, S, is the
i=1

important index to determine the GMV.,

2.2 Motion Compensation

It is necessary to generate the compensating motion vectors (CMVs) for removing the
undesired shaking motion while keeping the steady motion of the image sequence. The

conventional compensating motion vector estimation was given by [18]
CMV(t) =k(CMV (t-1)) + (aGMV (t) + (1-a)GMV (t -1)) , (2.13)

where t represents the frame number, 0<k<1 and 0<a<1. In the case, there is the
tremendous lag condition due to the steady panning effect. It will reduce the available effective

image area. The CMVs are generated by Eq. (2.13) with the clipper function [34] as

CMV (t) = clipper (CMV (t)) = %(]CMV (t) +1]=[cMV (1) - 1]), (2.14)
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where | is boundary limitation, i.e. maximum window shift allowance. The lag can be reduced
to a certain range; however it will also decrease the performance of shaking compensation due to
the picking window operating near the boundary area. To attack this drawback, we combine the
inner feedback-loop integrator with clipper function to reduce the steady-state lag for steady
motion as well as to keep the CMV to operate in the appropriated range. Fig. 9 shows the block
diagram of the proposed CMV generation method. There is an integrator in the inner feedback
loop, which can eliminate the steady-state lag of the CMV in panning condition. That means, by
employing the integrator, shaking components of images with constant panning as well as those

in regular images can be stabilized. The proposed CMV computation procedure is presented by
CMV(t)=K-CMV(t-1) +[a-GMV () + (1-a)-GMV (t-1)]- -CMV _I(t-1), (2.15)
CMV_I(t) =CMV_I(t-1)+CMV(t) and CMV (t)=clipper(CMV(t)),

where [0 0]" < K,o.,p < [1 1]" and clipper() is defined as Eq. (2.14).

A Yij

1-71

\

Fig. 9 The block diagram of the proposed CMV generation method.

2.3 Implementation of Local Motion Estimation

After programming the DIS system, we find that it can do an excellent off-line job
comparing with the RPM fuzzy set theory [32]. But it is hard to implement the algorithm into
practical consumer camcorders. Although there are still several DIS systems which could do the

on-line job by using PC [45], it is still a long way to go into the DIS hardware design.

Therefore it is necessary to analyze the DIS computation load before the system implement
on practical camcorders. We record the computation time from each DIS step and compare them
with whole processing time of each incoming test video frame. Then we take average of the

computation percentage of all incoming frames and list them in Fig. 10. The percentage data
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might lack of accuracy due to different test videos, but we still can recognize that most of the
computation loading belongs to the motion estimation step.  Fig. 10 shows the percentage of the
computation loading of each block in DIS system. The motion estimation step contains 80 %
processing time and the motion compensation contains the rest 20%. And more than halve
computation time belongs to local motion estimation step. This is because the RPM method in
LMV step need to load the image SAD values into memories first and find the minimum value
pixel by pixel. The tasks of finding global minimum position by using a DSP processor is
comparing and storing the minimum value of neighbor pixel and jump to next pixel. The
minimum position information should also store in the memory. The larger the processing unit is,
the longer processing time it takes. Our strategy is to design an application specific chip which
could highly reduce the computation time in LMV estimation. The less the processing time in
LMV estimation step the higher capability of real-time operations for image stabilization

processing is.

The LMV estimation chip is designed with CNIN_ technology to solve the heavy computation
time problem. Compared with conventional digital technology, CNN-based computing is capable
of realizing these TeraOPS-range-image processing tasks in a cost-effective implementation. The
design concept of ASCNN chip “is. shownrin=Fig. 11. By using an 8-bit D/A converter, the
absolute image difference which ranges from 0~256 could store into the CNN local analog
memories (LAM). And with the aid of CNN technology, the LMV position could be easily found
compared with the DSP processor. The CNN theory and chip design are introduced in Chapter 3
and Chapter 4.
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CHAPTER 3

Cellular Neural Network

The original Cellular Neural/Nonlinear Networks (CNN) paradigm was first introduced by
Chua and Yang [20]. CNN technology is both a revolutionary and experimentally proven new
computing paradigm. The two of most fundamental ingredients of the CNN are: the use of analog
processing cells with continuous signal values, and local interaction within a finite radius. CNN
possesses some of the key features of neural network, which has important potential applications
in such areas as image processing and pattern recognition. The CNN theory and architecture will
be introduced first and the next is CNN circuit. The last will include the inversion and adaptive

threshold properties of CNN which are used to calculate the LMV.

3.1 CNN Theory

CNN can be considered an iimplementable alternative to fully connected neural networks
and a remarkable improvement in-hardware implementation of artificial Neural Networks. Local
interconnection and simple synaptic ‘operators.are. the most attractive features of the CNN for
VLSI implementation in high-speed, real-time applications [35] and the CNN are widely used in
several application fields, such as image processing and pattern recognition. Several hardware

implementations of the CNN have been reported in the literatures [37], [38], [39].

The state equation of CNN can be represented by

Xi,j (t) = _Xi,j (t)+ Z Aﬁ,j;k,lyk,l (t)+ Z Bi,j;k,luk,l (t)"‘ Ii,j | (3-1)

kIeNr (i, j) K IeNr (i, j)

y(t)=t (x(t)):%(‘x(t)+1‘—‘x(t)—1‘), (32)

where i, j refers to a grid point associated with a cell on the 2-D grid, and k, | € Nr(i,j) is a grid
point in the neighborhood within a radius r of the cell i, j. A and B are the nonlinear cloning
templates [40]. Fig. 12 shows the dynamic route of state in CNN. The feature of the Eq. (3.2) has
been plotted at Fig. 13.
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In many applications, the templates (A,B) and the threshold I are translation invariant. In the
case of single variable A and B functions, the linear (space-invariant) template is represented by
the additive terms as Eqg. (3.1). When the template is space invariant, each cell is described by a
simple identical cloning template defined by two (2r + 1) x (2r + 1) real matrices A and B, as well
as the constant term 1. In addition, as a very special case, if the input and the initial state values

are sufficiently small and f is piecewise linear, then the dynamics of the CNN array is linear.

Unlike other standard analog processing arrays, or neural networks, the one-to-one
geometric (topographic) correspondence between the processing elements and the processed
signal-array elements (e.g., pixels) is of crucial importance. Moreover, the template has
geometrical meanings which can be exploited to provide with geometric insights and simpler

design methods.

Fig. 12 The dynamic route of state in CNN.

¥(z)

Fig. 13 The output of sigmoid function.
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3.2 CNN Architecture

The basic circuit unit of CNN is called a cell. It contains linear and nonlinear circuit
elements, which typically are linear capacitors, linear resistors, linear and nonlinear controlled
sources, and independent sources. The structure of CNN is similar to that found in cellular
automata, and each cell in a CNN is connected only to its neighbor cells. Adjacent cells can
interact directly with each other. Cells not directly connected together may affect each other
indirectly because of the propagation effects of the continuous-time dynamics of the network. A
typical example of a cell C(i, j) is shown in Fig. 14, where the suffixes u, X, and y denote the

input, state, and output, respectively.

V. Vi yil

E. . |

® ® = Neoe o« 0 @ 0

L[ e Rt ik 1L kD] Ry

\ J — —— _ \ J

input u state x output y

Fig. 14 The circuit of a CNN cell.

The differential equation governing a CNN in Eq. (3.1) is rewritten as follow :

M:—ivxij(tn DUAG ik, DV )+ DB ik, vy (1) +1,

dt Rx C(k.eN,(i.}) C(k,DeN(i.])

C

where yeR" :-1<y<1

And A is an M-by-N ( M=N ) real symmetric matrix defined as
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AbA 0
A= Al A° A/:l A1 (3.4)
A A
Here I = [l1 I, ..... In]" is an N-by-1 constant vector and the input vector v, can be defined in

a similar way. Ap and A; are two mxm Toeplitz matrix with elements determined by a given
cloning template. The synapse weights of the shift-invariant CNN can be described by the

feedback and feed forward cloning templates:

QB a4 b, b b
Ta=la, 3 & Tg = bl bo bl (3.5)
a a b, b b,

Where all elements respect the normalized numbers to Tx=1/Rx, and a, = A(i, J;i, J)/Tx > 1.

The matrix B can be defined in the similar way. Then, the maximum value of x in the steady state
is the sum of absolute values of all-inputs from-the neighborhood cells,
3 3

[ Xmax [= DA Ta G D) 1+ D 1T (i i+ 16 (3.6)

ij=1 ij=1
where |u|<1,|y|<1 and X, =1/T,. Theneuron cell should be able to handle the state voltage

of the range | x|<| x

max |

3.3 CNN Circuit Design

The current-mode approach [40], [42] is used in CNN circuit design because it has superior
mathematical addition properties. The summation of weighted currents is simply done by
appropriate transistor sizing. The piecewise-linear function is achieved by cascading two current

limiters as shown in Fig. 15.
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Fig. 15 Piecewise linear function. (a) Schematic view and (b) Transfer characteristics of
two current limiters in the cascade [36].

The limiting operation of the input current denoted by Ix first takes place at a negative value

Ix = -1Q and at a positive value Ix= 1Q. For= IX <=1Q, ~there is no currents that flow through the

transistors M3z and My. Therefore, Ipss = lpse = 21Q and ly = -1Q, where Ipss represents the

drain-to-source current of Ms, andse. on.sFor-Ix> =1Q, Ips3= lpss= 1Q + Ix and lpss = lpsg =
(1Q — Ix) produce the output current ly'=/1Q = lpsg = IX. However, if Ix>1Q, then Ipss= lIpss=
Oand ly =1Q.

Figure 16 shows a detailed schematic diagram of a neuron cell [36]. The synaptic weight is
realized by Mj; - My, for a; and Mis — My for a;. Four copies of a current mirror are used to
provide the weight for fore neighboring cells. The external input current, bias current, feedback
current, and those from the neighboring cells are summed at the drain terminal of M;. The offset
circuit provides a bias current which is set by bias voltage VBI. The output voltage generator is
made of a simple current comparator using a cascade of two inverters. The input currents from
neuron circuit, weighting circuit and reference voltage set by VBB are compared to produce an

output Vy which represents the sign of the neuron output.
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Fig. 16 The CNN cell with fixed weights (templates).

3.4 CNN Template Consideration

3.4.1 Image Difference

The first step of RPM method will subtract the present sub-region pixels with past
representative point pixel color. We can implement subtraction step with image inversion and
current addition. The inversion template [43] lists below. The input of CNN is grayscale

representative sub-region.

0 0 O 0 0 O
T,=/0 -1 0 T, =0 -2 0 (3.7)
0 0 O 0 0 O

Figure 17 shows the simulation result of CNN inversion template [44]. Fig. 17 (a) shows the
input of CNN. Fig. 17(b) shows the initial state of CNN, and the state will subtract from input.
The Fig. 17(c) shows the output after processing.
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(@) (b) (©)

Fig. 17 Simulation of CNN inverse template. (a) Input of gray-scale image. (b)The initial
state of CNN. (c) Output after difference processing.

Because we take current mode CNN as processing core, the addition step can set initial state
of CNN as zero and directly combine the input current between the inversion representative
sub-region and present sub-region.

3.4.2 Global Minimum

To search the minimum position ina specify area not only takes time but also consumes lots
power. Comparing previous value-and:storing-the minimum value is the basic processing step.
The larger area need to be determined, the more clock cycle, ie., power, it takes. Egusa [17]
proposed to use analog circuit to find the global minimum value. But the circuit only suit for few
input application. Therefore, we propose to use CNN adaptive threshold template with capability
of finding the global minimum position in larger array and can process with less clock period.
The adaptive threshold template lists below.

0 0O 0 0O
T,=/0 2 0 T,=|/0 1 0 (3.8)
0 00 00O
The adaptive threshold template not only simplifies the CNN state equation (3.1), but also

makes the template easier to implement in VVLSI. We can write an equation to represent Eq.(3.8)

as.

X==X+AY+Bu+1=-X+2Y +u+l (3.9
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We then set the set the initial state of CNN as zero which is reasonable for circuit design and

also don’t need to implement any initial circuit for CNN core. And we set the sigmoid function

will saturate at + 20uA. This is because we give every current source of CNN core as 20uA.

The CNN adaptive threshold template analysis is shown in

Table 1.
Tablel : CNN Adaptive Threshold Template Analysis
Case 1l Case 2
lu = -10uA and x (initial) = 0 lu = 10uA and x (initial) =0 ;
Ibias | _

X =—X+2X+(-10) + Ibias = x-10+ Ibias | x = —x+ 2x+ (-10) + Ibias = x+10 + Ibias
x =10+ -20 = -10

. now x =0-10=-10 ,unstable

20 X=-10+-20=-30 ,saturate
i o X =—10+10+-20 = —20

y still strict in -20
now x =-10-20 = -30,
and y strict in -20 ,stable

x=-10+-10=-20 x=10+-10=0

-10

nowx=0-20=-20=y ,stable nowx=0+0=0 , critical point !

x=-10+0=-10 x=10+0=10

now x =0-10 =-10 , unstable now x=0+10=10 , unstable

0
x=-10-10 = —20 x=10+10+0=20
now x =-30 and y strict in -20 nowx=20=y , Stable
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x=-10+10=0 x=10+10=20
10
now x=0+0=0 |, critical point! |nowx=20=y ,stable
x =-10+20=10
nowx=0+10=10=y , unstable x =10+ 20 = 30
20 now x = 0 + 30 = 30

x=10-10+20 = 20
now X = 20 + 10 = 30,

and y strict in 20 ,stable

and y strict in 20 ,Stable

We use the property of [case 2]
global minimum position in RPM method »With.the aid of CNN array, a brand-new searching
method has developed for DIS algorithm. As'shown in Fig. 18, the SAD values are plotted in 3D
view, and the CNN output will change fromlogic 1 to legic 0 while any of the difference value is
below the threshold level and others remain-fogic -1..1f none of the position in the processing

array flip its output logic, CNN bias control circuit will tune the threshold to a higher level until

to,implement adaptive threshold template on searching

the minimum input in the array is lower than bias current.
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Fig. 18 Searching global mrnlmum by ug:iﬁé'-CNN adaptive threshold template.
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CHAPTER 4
CIRCUIT DESIGN OF CNN-BASED LMV

ESTIMATION

The process of finding LMV is very computationally intensive, requiring billions of
operations for each image. The most complexity operations occur in 1) computing the motion
vector and the difference value and 2) storing the difference value with the position information if
it is smaller than any previous value. Since the operation slows down the computation, the CNN
architecture is suitable for motion computation and is done by CNN with a fixed template and the

tunable bias current circuit for each cell.

The tested image is a tennis playéer video of 312 x 200 pixels. Since image sensors can get
more pixels than the video image=requires,-each. image captured by sensors will first cut out a
specific boundary pixels which saves as compensation -area. Removing boundary area is called
pre-processing step, and each image size now hecomes: 300 x190 pixels. The motion estimation
block diagrams which finds LMVs with. CNN processing is shown in Fig. 19. Before entering
CNN processing, the captured image has to be cut into four regions, and each of region will be
found their own LMV. After this, each region again is divided into 30 sub-regions as mentioned
in Chapter 2. Each sub-region is the size of 19x25 pixels processing block. We first store the
center point image color value (0~255) of every sub-region in the prescribed region which is
captured by (t-1)™ image sequence. According to the RPM method described in Chapter 2, the
absolute difference information should be computed by t™ and (t-1)" sub-images. Through the
digital-to-analog converter, the difference information could be stored in Local Analog Memories
(LAM). The 30 sub-regions’ absolute difference value array will stack into CNN LAM from each
processing region and the memories voltage information will vary from the difference values
stored in the LAM. CNN does not begin to compute motion vectors until LAM accumulates all
the difference information of 30 sub-regions. The CNN processor will check the global minimum
position by using a 32-level threshold bias. The minimal difference value and the position

information would be found within 32 clock cycles and then be latched in the location registers.
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The processing time is not effected by the size of CNN. Therefore the larger the difference array

is, the faster processing time compared with DSP processor will be.

The system shown in Fig. 19 includes windowing (RPM and SAD), the 19x25 CNN array

and LAM, the bias control circuit, and the addressing decoder.

[
Cut 30sub-images for a
process element

! BN S | s
Capture single image Cut four regions

Pixelby-pixel

subtraction
t" sub image Represent point at (10,13) (t-1)™ sub-image

for each subimage

ABS

¢ Local memory array
. Accumulate
8-bit'D/A > 30 subimage values

Input.data to a 19 by 25 CNN array
Adaptive
bias circuit
Column decoder

Fig. 19 The flow of CNN-based local motion estimation.

Rdw decoder

Figure 20 shows the architecture of the application-specific CNN (ASCNN) design. By the
windowing component of Fig. 19, the sequential images are segmented into many 19x25 pixels
sub-regions for each region, and the absolute difference [17] of two images is calculated.
Through an 8-bit D/A converter, the difference value is loaded and accumulated into LAM which
consists of switch MOS capacitors. The bias current circuit will adjust the CNN array’s threshold
according to the values of global output connected chains. If all difference values are higher than
the given bias, the higher current fed into the CNN input from bias circuit will be. The process
will be finished if the smallest input difference value is lower than the bias current. With the

global connection of each row and column’s output, the digital row and column address decoder
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will detect the X and Y position information in no time and store in the registers.
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Fig-20  AS-CNN-chip architecture.

4.1 D/A Converter

Analyzing the minimum image difference value of the input video sequence is necessary for
the D/A converter. Fig. 21 shows the image sequences verses the minimum pixel difference
values of each frame. We can calculate that the mean of minimum difference value is located in
529 difference values, but the data would vary from each video. Therefore the upper bound of the
minimum difference has 1024 pixels. The upper bound takes maximum charging input for four
times, ie., 256x4, before LAM reach the 3.3 volts. Note that there is an exception in the
sequence No0.48. The minimum value is over 1024. This is because there’s a great movement for
the whole region which is caused by intentionally moving the camcorder or the object is too large
in this region so that it is considered as the background. LMV located in this region is not
dependable and should not be stored. This kind of situation can be detected and discarded by the
CNN controller.
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Fig. 21  Analysis of minimum difference value for tennis player video frames.

An 8-bit D/A converter is used to translate the.image absolute difference code into analog
current and load into local analog memory. In the first, the DAC input will pass registers in order
to synchronize with digital controlcircuit, which is trigger by 20 MHz clock.

The DAC is made of eight sets of current-mirrors shown in Fig. 22 and the output stage is
the 475 sets of LAM. Table 2 lists the'DAC. specification to keep the function accuracy of the
input stage design.

Wi va va 4
i1 i1 I 0
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o
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Fig. 22  8-bit current mode D/A converter.
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Table 2 :  8-bit D/A Converter Specification Table.

Model Application Specific CNN 8-bit DAC
Output Loading 50Q
Resolution 8-hit
(FJQ~e7I%£|C\:/e Accuracy 10.5LSB |
Output range 0~255 0~5.5mV
Full output for LAM 0~3.3V
DNL Max DNL < 0.25LSB
INL 0.1615 LSB
SNR 55.8148 dB
Digital Input
Data Input , Voltage : Logic 1 3.3V
Logic 0 ov
Control Input, Voltage : Logic 1 3.3V
Logic 0 ov
Input capacitance 4pF
Power Supply
Operating Voltage Range (VDD=3.3v)

MAX @ 11111111 6.9513 mW

current (lcc) 2.1064 mA
Operating Temperature 0~70°C

1. Output Swing

Figure 23 shows the output voltage variation of 256 levels with 50Q loading. The charging
voltage of the analog memory in the output stage is proportional to the input current and the
loading time. The larger the image difference value is, the higher the memory voltage will be.

etlages (in)

EPER e FERFaBRRRebRF

PEy
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LI 0000000

™ )u - - o T ~ = T e Ty

Fig. 23 The output voltage variation due to input change of (8-bit) 256 steps.
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2. DNL

Figure 24 is the DNL analysis between the output voltage in Fig. 23 and ideal voltage curve
ie. V_ideal=50Qx0.43091/1000xt. The value 0.43091e-3 is the slope of output voltage due to
the input change from 0 to 1. The coordinate Y represents the difference percentage of two curves
versus LSB. The largest DNL in Fig. 24 is about 0.25 LSB. The coordinate X represents the time

and the time step is 50 ns while input change data from 0 to 255.

3 ]
Tira (120w Ses 505

Fig. 24 DNL analysis.

3. INL
The INL is accumulated form all DNL data in Fig. 24. The result shows that,

INL=0.1615LSB <0.5LSB

4. SNR

Because the input working frequency is set in 20MHz ie, fclk=20MHz, we give a sine
wave input with 20MHz/28 frequency for DAC and record the output wave form as shown in
(). Then we sample the output stable voltage at 25 ns and get 140 sampling points. DFT
position analysis is shown in (b). We take logarithm for the x coordinate and find the

harmonic position in (c). The calculation results list below.
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Power DC= 0.1479

Power Sine = 0.0369

Power Homonic = 1.6947e-007
Power Noise = 9.6831e-008

SNR_dB =55.8148dB > 49 dB
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Fig. 25 SNR analysis of 8-bit DAC. (a) sine wave output wave form of DAC; (b) DFT
analysis of DAC output form with 140 sampling points; (c) The logarithm value for the x-
coordinate in (b).

Layout of the DAC is shown in Fig. 26. The 8-bit input is from the output of synchronize
registers and the maximum current output is 2.1064mA which is designed to make each LAM

cell has five times charging capability before reaching the 3.3 volt upper bound.

35



Fig. 26 Layout of 8-bit current mode D/A converter

4.2 Local Analog Memory

Local analog memory (LAM) is designed to store the image difference value. The basic
structure of the LAM is shown in Fig. 27 is a LAM cell. It consists of a transmission gate
controlled by the CNN controller and a 2p MOS capacitor. defined in input stage. Vctrl_P and
Vctrl_N are switch signals which are from the position decoder. Although there exists non-linear
problems for the MOS capacitor design, forarea consideration we still choose it rather than the
poly capacitor. For a 2pf poly capacitor design, the nonlinear problems is much easier to solve,
but the area take 2314um? while the MOS capacitance only cost 1800um? [51]. Therefore using
of MOS capacitor could save much on-chip area. The characteristic curve of MOS capacitor is
shown in Fig. 28. Since MOS capacitorhas nonfinear transformative property, the capacitor value
will have 600f variation while the gate voltage Vgs change from 0 to 0.65 volts. Pre-charging a
specific voltage, i.e., 0.65 should be done before loading information into each capacitor. Layout
view is show in Fig. 29. Symmetric layout style is used for every two LAM cells to reduce the

mismatch during fabrication.

However, accuracy of MOS capacitor value is not important. As long as the global LAM
array has uniformly capacitor properties, CNN processor will be able to find the correct global

minimum position.

1

] Y
|

Fig. 27 The single structure cell LAM.
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4.3 Voltage to Current Converter

A voltage to current converter (VCC) shown in Fig. 30 is required to transform the LAM
voltage into CNN current input. With properly design the WI/L ratio, the output of VCC to
CNN is limited to 20uA. VCC maximum power consumption is 104.6uW when the input
signal is 3.3 volts. Fig. 31 shows the layout view of VCC. A common-centroid arrangement is
used for the current mirror device M1 and M2.

o1 T ID2
l M1L:’ 1 [ M2 l

— CNN current input
Vsh [ [ Msh

Vin D—4_

Fig. 31 Layout of voltage current converter.
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Transistor M2 with Vsh (set to 2.85 volts) is used to shield switch noise from output stage

and prevent LAM voltage from leakage. Analysis the current mirror of Fig. 30, we can write

1 W
oy = 2 HpCox (T)I(VGS ~Vi )* (L4 AVps,) (4.1)
1 W
|D2 =§:upcox(f)2(ves _VTH)2(1+/1VD52) (4.2)
Iy, _ W/L), 1+AVy, (4.3)

loy, W/L), 1+AVy,

where A is the channel length modulation coefficient.

Figure 32 is the VCC voltage to current transfer curve. With 50Q output loading, the
current will change from 0 to 140uA while Vin changes from 0 to 3.3 volts. Quite low
sub-threshold current arises as Vin changes from 0 to 0.5 volts. This is because Vin is lower
than the threshold voltage (V1u) of Min.transistor .

#
Paraes (8}

Vollages (in)
n

[
Time (ln) {TIME)

Fig. 32 VCC voltage to current transfer curve.
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4.4 CNN Core and Template (A,B) Design

With the template defined in Eq. (3-7) and the simplify state equation list in Eq. (3-8), the

ASCNN core with adaptive threshold template is designed as follows.
i ( — : W/L) _ .
Since X =—X +2Y +u+1, template A is set to 4 w/L), = 2 and other neighborhood
3

connections are zero. Fig. 33 shows the schematic of CNN cell. The input current lu from VCC
and Bias current | are fed into the drain of M1. M5 and M6 form the output stage which is the
diode connect common source amplify. The amplifier output is a robust binary value. A
well-designed current mirror can generates 20uA for M1, M2 and M3 current source. M4 current
source takes 40uA since the W/L is twice of M3. A switch signal Vac_CNN is used to control
CNN operations. While the switch is turned on, the ASCNN works as a comparator that
compares the current between lu and Ibias. If the input current is higher than the bias current, the
output will get logic ‘1’ value and trigger the 5=bit bias circuit to raise the threshold, ie, bias
current. The bias current is hold until the current.is higher than input and logic ‘0’ is obtained.

The coordinate in the CNN array is considered as-global"-minimum position.

$ e

.
I

|:_E}n-=:l:-.|:-
|

Fig. 33 Schematic of the CNN cell.
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4.5 Adaptive Bias Circuit

The structure of 5-bit current decision circuit is the same as input stage shown in Fig. 22. By
using a 5-bit counter from digital control circuit, 32-level bias current is fed into CNN. Due to a
low drain voltage in the M3 transistor of the CNN cell, a cascade current source for lower
minimum voltage across the current source is used and shown in Fig. 35 to provide an adaptive
bias current.
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Fig. 35 5-bit cascade-current mirror using a'source follower level shifter.

We define the gate-source biasing veltage interms of the excess gate-source voltage /\V as
Ves=/AV+Vrun. The voltage on Mg is use to drop the potential at the gate of M, down to
2/A\V+V1yn. This reduces the voltage on drain of M4 to 2/\V before M, and M, enter the triode
region. The MOSFET Mg is resized to generate 3/\V+2Vyy to provide the gate voltage of My,
i.e., Vess=2/AV+Vryn. The MOSFET with its gate and drain tied together being fed by a
constant current (M; and M3) behaves as a constant DC potential. While all the output of CNN
array is high, the 5-bit bias decision circuit will change the bias current to a higher step and
iterate until one of the CNN cell comes out with a low signal. For the enhanced ability of signal
fanouts in Fig. 35, a unit gain buffer [33] is added to the output of the bias circuit as shown in Fig.
36. A common mode feedback (CMFB) network is added to sense the common mode (CM) level
of the two outputs and accordingly adjust one of the bias currents in the amplifier. We can divide
the task of CMFB into three operations: sensing the output CM level, comparison with reference,

and returning the error to the amplifier’s bias network. Fig. 37 shows the layout of the unit gain
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buffer and Fig. 38 shows the layout of 5-bit bias control circuit. The output of the 5-bit control
circuit should connect to the unit gain buffer before connecting to 475 CNN cells. The

specification of the unit gain buffer is limited as Table 2.
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Fig. 36 Schematic of the unit gain buffer
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Fig. 37 Layout of the unit gain buffer.
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Fig. 38 Layout of 5-bit cascade current mirror using a source follower level shifter.
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Table 3 :  Specification of Unit Gain Buffer.

Parameters Performance
Open-loop gain 72.4dB
Cgmmon mode 2 45V
input range

Common mode 1517
output level

Output swing 2.306V

Power supply

13.04mW (@ 3.3 volts)

Total current

: 3.95mA
consumption
Low frequency )
PSRR 3.66dB
High frequency )
PSRR 3.35dB
DC CMRR -30.4dB
High frequency )
CMRR 16.50B
Unit-gain
bandwidth MRz
Phase margin 64

Slew rate

Rising 272V/us
Falling 327/V/us

4.6 ASCNN Processing Unit

The ASCNN processing unit which consists of LAM, VCC, adaptive threshold template
CNN and output connect AND gate is shown in Fig. 39. Each LAM switch in the processing
array is turned on according to the Vx and Vy signal. The input current will feed into the
designate LAM. Then VCC circuit will transform the SAD voltage into current and send into
CNN core as input. The AND gates will take CNN output to the right and down cells and pass to

the global output connect chain register. A digital decision circuit will raise the bias for all CNN

cells if none of the global minimum position has been found.
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Fig. 39 Components of ASCNN processing unit.

The ASCNN processing unit including the‘CNN bias circuit is shown in Fig. 40. The circuit
inside the rectangle is an ASCNN processing unit:, The 5-bit bias circuit is connected to
processing unit array by passing unit gain buffers. The CNN cell will compare the input current
(1) and bias current (2) and give abinary-output to the row and column global connected chains.
Layout of processing unit is shown in Fig. 41. In-order to overcome the mismatch during
fabrication, symmetric layout skill is used. Fig. 41 (a) shows the odd number columns processing
unit layout, and Fig. 41 (b) shows the even number columns processing unit layout. Therefore
every column layout is mirrored from neighborhood. Power lines are drawing as nets, which are
similar to cell based design to give every processing cells stable power supply. The signal lines
are drawing in the same way, which result in convenient connections to neighbor cells. Fig. 42
shows the layout of ASCNN cells. The T shape main power line is used to provide power streams

in each processing unit.
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Fig. 41 Symmetric layout of ASCNN processing unit. (a) Odd column processing unit layout.
(b) Even column processing layout.
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Fig. 42 (a) Layout of ASCNN array (part view). (b) Connections of CNN cells.
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4.7 Global Output Connected Chain

Global output connected chains as shown in Fig. 43 are designed as address decoder. There
are 19 row chains and 25 column chains in the processing array (19 x 25 pixels). Since the CNN
cell can translate the analog signal input into binary output after processing, AND gate chains
work as the output stage for each processing unit. If one of the input current is lower than bias
current, the flip output signal (logic 0) will directly pass to the output registers with the

connection of neighbor cells (right and down) for every processing unit.
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Fig. 43 Structure of global output connect chain (3 x 3 array).

4.8 ASCNN Controller

For the CNN active circuit, there are two operations such as loading and searching minimum.
A digital control circuit in the mixed-signal ASCNN chip is used as a controller to operate whole
ASCNN function. The finite stage machine (FSM) of the control circuit in Fig. 45 contains eight
states to control the motion estimation processor. The state machine performs loading image into

LAM, switching bias steps, and decoding LMV position.

® Loading: After coming of the start signal, initial signal will reset the LAM voltage and
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load the SAD information sequentially into LAM. Since the parasitic capacitance of the
processing array will also share the input charge current, a reset signal is needed before
changing to next storage LAM cell. A pre-charge voltage (about 0.6 volts) for each MOS
capacitor is also required to pass the nonlinear region as mentioned in section 4-2. Due to
pixel-by-pixel input, excepting pre-charge all capacitors of LAM in the first time, the total
of loading operations is 30 times for each location. The procedure of loading SAD
information into each LAM cell location is shown in Fig. 44. After the 475 (19 x 25) LAM
have loaded the SAD information, a finish signal will trigger the CNN on/off switches and
CNN current source switches turn on and jump to searching global minimum state. During
the loading step, the switches are turned off for saving power.

Searching minimum: An adaptive-minimized threshold template is used for searching the
minimum value in the CNN array as mentioned in Section 3-5 and Section 4-7. The digital
control circuit will check the global output connect chains of each rows and columns during
every clock cycle. Two sets of 5-bit registers.are used to decode and store the outputs of
rows and columns global conpectchains. If all the outputs remain logic 1, registers sent all
zeros and command the bias-counter rising to upper bit. The process will stop until one row
and column flip their outputs’to logic'0-and register'will decode the address to output pad. In
order to skip the worst case that all of the current input is higher than 32 levels bias current,
the registers will sent all one (11111) to output pad and suggest the motion vector in the
prescribed region is not dependable. A restart signal will make the searching minimum state
jumping to initial state and again reset all the LAM before loading new SAD information.
Working frequency: By taking advantage of the computing power of the CNN array, a
single chip can be used to process a complete video frame by operating on a fraction of the
image at a time. A frame rate of 40 Hz—adequate for high-quality video applications
[47] —represents each frame processing time should take less than 25ms. Using working
frequency at 20MHz on 19 times 25 ASCNN chip should be capable of fining 4 LMV at

each image frame less than 6.2 ms and will discuss this in later chapters.
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Fig. 44 Loading SAD information into each LAM location.
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Fig. 45 Complete FSM for the ASCNN controller design.
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CHAPTER 5
SIMULATION RESULTS

Based on the CNN-based local motion estimation algorithm, we can both verify this method
using CNNUM and the transistor-level simulation. Fluctuated video sequences with various
irregular conditions are used for testing. Each video sequence contains 200 frames with the

resolution of 312x200.

5.1 Simulation Results of CNNUM

The CNN Universal Machine (CNNUM) [48] provides the framework for the definition of
an algorithmically programmable analogsarray computer with supercomputer power on a chip. Its
character is using a mixed mode .on-chipranaleg and. logic (analogic) stored program [21] to
realize highly complex image processing tasks: CNNUM is advantageous in terms of power
consumption and computation speed as'compared to these digital counterparts [49]. A 64x64
array CNN processor [50] shownin Fig. 49 has been used to simulate the proposed motion
estimation algorithm. A practical method of using 64 x64 pixels processor is to make the input
image operate onto fractions and process each fraction at a time. With the size of 19x25 pixels
processing frames defined in chapter 2 have stored in CNNUM memories, the sub-image

subtraction and addition can be done by using inversion, first and second addition templates.

0/0|0 0|00
-1 210
0/0|0 0/0|0

STATE =0, INPUT = static grayscale image P,
bias=0,
OUTPUT =-P

o
o
o

Template A Template B

Fig. 46 Inversion template.
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0(0]0 000
0[-1/0 0|10
0(0]0 000
Template A Template B
0 0 |0 0] 010
0(-025|0 0250
0 0 |0 0] 010
Template B

Figid8 S

STATE =0, INPUT =static grayscale image P,
bias = static grayscale image Q,
OUTPUT =0.5x(P+Q)

Fig. 47 First addition template.

STATE =0, INPUT =05 (P+Q),
bias=0,

OUTPUT =pP+Q

cond addition template.

Fig. 49 Chip sets of CNNUM
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The result of the SAD array (19x 25 pixels) after CNNUM processing is shown in Fig. 51
(a). After analysis these SAD values, the minimum difference value is 85 pixel counts and locates
in (6,4) while the top left point is defined as (1,1).

Since the location of the designate motion vector (LMV) is located in the minimum SAD
value position, the adaptive threshold as shown in Fig. 50 is applied to CNNUM. With proper
choice of threshold bias current Ibias, only the minimum position appear with white color and
others remain black color. The final result is shown in Fig. 51 (b). Since the threshold value is

artificial, the result is time consuming.

~

STATE =0, INPUT = Static grayscale image P,

0[(0]|0 I —Z, where —1<Z <1

bias —

OUTPUT = Binary image where black pixels

0/0/0 correspond to pixels in with grayscale

o
N

> lolo|o
o
[N
o

intensity P, >Z
Template B K Y /

Fig.-50 ~ Adaptive threshold template.

Template

There are two ways to decode‘the global minimum address. One make use of the DSP
processor of CNNUM to search the white color position. The other make use of shifting template.
To compare the position information with the simulation of circuit, the vertical and horizontal

shifting templates as follows are used, and their output is shown in Fig. 51 (c) and (d).

The vertical shifting template:

1
2
-1

00 0
B={0 0 0|, |pias=0 (5-1)
00 0

>

Il
o o o
o o o

The horizontal shifting template:

0 0 O 0 0O
A=l1 2 -1}, B=0 0 0}, |pjas=0 (5-2)
00 O 0 00O
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Figure 51 (c) is the result after applying vertical shifting template to Fig. 51 (b). Vertical
template will propagate the white color position until it saturate at boundary. Fig. 51 (d) is the
result after applying horizontal shifting template. With the definition of the top left point in Fig.
11(b) as (1,1), the correct coordinate (X, Y) should be (6,4) and the position is the same as shown
in Fig. 51 (a).

a) (19,25 ]

fic

Fig. 51 (a) The output of 19x25 difference value array image. (b) The output of (a) is fed
into CNNUM using adaptive minimized threshold template with Eq. (7). (c) Vertical output
of (b) with eq. (5-1). (d) Horizontal output of (b) with eq. (5-2).

5.2 Chip Implementation

The section contains the description of mixed-signal IC design flow, explanation of post

simulation results by using HSPICE and ModelSim, whole chip layout and testing consideration.
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5.2.1 Design flow

The idea of the proposed DIS algorithm has been simulated by Matlab. Then, we study the
feasibility on combining the CNN technology into DIS motion estimation to reduce the

computation load. The next step is to implement the motion estimation chip with ASCNN design.

ASCNN design follows the flow chart of Fig. 52. The chip design is divided into analog and
digital part. Full-custom and cell-based design indicate the CNN processing units and the CNN
controller, respectively.

Fully custom design flow as follows:

(1) Transistor level circuit design and pre-simulation by using HSPICE and SPECTRE

(2) Drawing layout by using Cadence Virtuso and post-layout verification with Calibre..

(3) Post- Simulation with cell based circuit design.

Cell-based design flow as follows:

(1) CNN control behavior model code.design.

(2) CNN controller RTL code design.

(3) Logic Synthesis by using design complier-and” mixed-signal layout integrated with SOC
Encounter.

(4) Post-layout verification with Calibre .

(5) Post- Simulation with fully custom circuit design.

Fig. 52 ASCNN IC design flow.
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5.2.2 Simulation Results

The SAD result shown in Fig. 51(a) is loaded into LAM by 8-bit DAC. We mark the
rectangular region (Fig. 55(a)) which contains the minimum SAD position to compare the LMV
result with CNNUM. The rectangular contains 18 cells of LAM, and each output shown in Fig.
53 is labeled as Vmem(x,y). As can be seen, the smallest voltage is 1.5 volts in the position (6,4)
and the second is 1.58 volts in position (5,4) which is exactly the same as analyzing from Matlab.
The 1.5 volts is the result of accumulating 89 pixel differences form a specific position of 30
sub-regions and 1.58 volt is the result of accumulating 109 pixel differences. The operating
frequency of the chip is 20MHz. We use the frequency to load the pixel differences information
in sequence. The total loading time (including pre-charge operation) needs 65 clock cycles. Since
each pixel takes 2 clock cycles to load into LAM, 30 sub-regions cost 60 clock cycles. Each cell
has to spend 100ns (2 clock cycles) pre-charge time to reach 0.6 volts. The rest of 3 clock cycles
are the rest time for parasitic capacitance in_the circuits. Thus, loading a set of LAM will take
3.25 us and for 19 times 25 LAM array totally cost 1543.75us.

For a complete searching glebal minimum.position as discussed in Fig. 45, each threshold
level needs 2 clock cycles before rising to higher level. This is because CNN switches should turn
on after bias signal VB heaving its‘value:*Fora worst case that none of the input current is lower
than bias current, total processing time include loading LAM information cost 1.55ms
(1543.75us +100ns x 32 =1546.95us ). Each image sequence processing time is less than 6.2ms.
The number of searching global minimum clock cycles in using CNN design has superior
computational effect than using DSP processor. For a 19 times 25 array, DSP processor takes
19x25x30 =14250 loading clock cycles for a 312 times 200 pixels video frame and the
proposed ASCNN chip takes 19x25x31=14725 loading clock cycles which include
pre-charge clock cycles for LAM. But a DSP at least takes 19x25x2 =950 clock cycles,
comparing and storing, to find the global minimum position while the CNN with adaptive
threshold template only takes 32 clock cycles in worst case. With the aid of global output connect
chains, ASCNN chip does not need extra clock cycles to decode the LMV coordinates, but DSP

processor does. As mentioned above, the result saves at least 19x 25x (32 —31) —32 =443

clock cycles compared with other DSPs. The larger the incoming frame size, the more clock
cycles it saves in using ASCNN chip to find LMV.
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Figure 53(a) shows the pre-simulation and post-simulation results of difference values
voltage stored in LAM. Due to the existence of parasitic capacitors, the charging capacitance
value in LAM is higher than that without parasitic effect. Compared with these two results in Fig.
53(a), we can find that the smallest voltage position is the same. Fig. 53(b) is the LAM cells post
simulation results which locate in the region that marked in Fig. 55(a). The region contains 18
pixels and the global minimum point is included in. Because CNN bias circuit provides 32 levels
threshold and the reliable LAM voltage output swing is from 0.65 volt to 3.15 volt. Therefore the
change rate of the 5-bit bias circuit is 0.08 volts for each step which is equal to 24 pixels
[0.08/3.3/(256 x 4)] resolution. Thus the global minimum position can be found by using 32
levels bias circuit in Fig. 53 (b). Due to the bias circuit, the changeable bias current from high to
low can be found in the CNN array. The variation of bias current is shown in Fig. 54 which
ranges form 0 to 20.15uA. When the minimum value is found, the output voltage of the related
cell is low. Through the location decoder, the LMV position can be recognized and latched to the
output register. The minimum SAD. position IS+ exactly the same as running by CNNUM.
Moreover, the lower SAD value usually happens near-the lowest SAD position and can also be
verified in Fig. 53(b). Thus, if the-difference pixel values are less than 24, the output decoder will
choose the closer to original position’s address. But the-global minimum position is still near the

correct position if the address captured in registers is not correct.
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Fig. 53 (a) Pre-simulation and post-simulation results of the difference values which were
stored in the LAM. (b) Post-simulation of the difference values which are stored in the
prescribed rectangular LAM region. The 0.6 volts pre-charge voltage for each LAM cell is
needed to pass the nonlinear region of the MOS capacitor.

Figure 55(a) is the output of 19x25 difference value array image. Fig. 55 (b) and (c)
shows the row and column global connect chains output corresponding to the minimum SAD
position. The simulation only checks the 18 LAM (contained in the dot line) value and CNN
switches turns on at 78us. With the help of automatic tuning bias current circuit, the output
flips from high to low with a proper threshold of CNN. Fig. 55 (d) shows other global connect

chains for the rest of 42 outputs.
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Fig. 55 Simulation of CNN output inside the dot line. (a) The output of 19x25 difference value
array image.(b) (c) row and column global connect chains output corresponding to minimum
SAD position. (d) global connect chains for the rest of 42 outputs.
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Figure 56 shows the simulation results of CNN control circuit from Modelsim. Fig. 56 (a)
shows the control signals in initial state. The clock (Fclk) frequency is 20MHz. With a given
reset signal (Frst), a Vrst signal will discharge all voltage stored in LAM and parasitic
capacitance. The loading procedure as discussed in Fig. 44 is implemented with Vx (19-bit) and
Vy (25-bits). The circuit use the Vx (19-bits) and Vy (25-bits) signal to address a position and
turn on the input switch of the designate LAM cell. SAD information from 30 sub-regions of the
specific position will then store in the memory. Fig. 56 (b) shows the control signals in the
loading state. After loading a set SAD information into LAM, new position will be assigned by
Vx and Vy according to the loading procedure. Fig. 56 (c) shows the control signals of the CNN
active state. After 475 (19x25) LAM have stored SAD information from the 8-bit D/A converter,
the CNN switches are turned on to check the global minimum position of the array. VB is the
bias current control counter and V_H_o (19-bit) and VV_v_o (25-bit) are the output from 19 rows
and 25 columns global connected chams if_noﬁaaqf the CNN input is lower than the threshold
level, VB will raise to the higher leveJF,l 11:\ ’CQ) shows that the minimum position (6,4) has
been found at VB equals to 23 and‘$tpre the i Tpﬁhatlop’-’m the registers axis_x (5) and axis_y (3).
After the LMV position has accepﬁted ogtsz_&hﬁa,hlp, sagnal “start” will be changed to high and
new SAD information is again sent fr;lte LAWIETQ 5"6 (@).
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Fig. 56 Simulation results of the CNN gqnt;gl»q ircuit.(a) the initial state. (b) the loading state. (c)
the CNN active state. (d) the global rm?’t um pos bq by raising VB.

i

Figure 57 shows the overall C N outpuicslmwatlcpﬁ from 19 rows 25 columns global output
connected chains. The storage tlm‘(ak@é’&ﬁms af@r all SAD value have loaded into LAM.
Note that the row No.6 and column Ndafl fI|p fropg*lbﬁlc 1 to logic 0 while the CNN bias counter
(VB) raise up to 23 at 1565us as shown i |n F’lg 56 (d). Only the minimum value location recorded
in the positional registers axis_x and axis_y.
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Fig. 57 The overall simulation for the 19 times 25 array. (a) 25 columns of global output
connect chains. (b) 19 rows of global output connect chains.
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5.2.3 Chip Specification and Layout

Figure 58 is the whole chip layout of mixed-signal ASCNN chip and its specification is
listed in Table 3. The upper part is the CNN control circuit which is designed by cell-based
design flow and the central 19 times 25 pixels array is pixel processing units as discussed in
Section 4-6. The 8-bit D/A converter and CNN threshold control circuit are indicated in Fig.
58(a). Fig. 58(b) shows chip layout with 48 bonding pads. A guard ring is drawing around the
fully custom design in order to shield analog signals from digital signals. There are 3 sets of
analog power for the processing array and one set of digital power for the digital control circuit.
Chip information is shown in APPENDIX A which includes the specification of chip, 1/O pad

information, bounding wire layout, and Caliber DRC LVS verification results.

(S M

TR Hhrom hesidd
i or o

(@) (b)

Fig. 58 Layout of mixed-signal ASCNN chip. (a) Topology of ASCNN chip. (b) ASCNN
chip layout with 48 bonding pads.
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Table 3 Specification of ASCNN chip

Item Specification (unit) measure
VDD 3.3V N/A
System Clock 20 MHz Yes
Local Analog 05v ~ 33v Yes
Memory
CNN bias 550 mV ~900 mV Yes
170mW. (average) Yes
Power Consumption | .+~ _—
- 335mW:(worst.case)
Die size - 2.375x3442um* N/A
Package SB48 N/A
Max Freq. 95.476 MHz (cell-Based design) PostSim

5.2.4 Testing consideration

The testing methods could be separated in two parts: digital CNN control circuit testing and
fully custom ASCNN circuit testing. The package will first test by IMS testing machine to check
the function of CNN control circuit. With the design of scan chain in digital circuit, the errors
could simply feed the ATPG test pattern which generated by Tetra-max into chip testing pad (itsi)
and analysis the output pattern for output pad (oY _tso). The testing pad information is discussed
in Appendix A.
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Then, testing image generated by Logic Analyzer could feed into LAM by passing on chip
8-bit DAC pad (iV8~1). Wait until all the LAM have loaded the image SAD information, testing
pads (0Y_meml 1-0Y_mem19 1-o0Y_mem25 1-0Y_mem19_25) which represent the 4 corner
LAM storage voltage could be analyzed and check if the memories voltage could raise as

prediction.

The CNN threshold control circuit could check the testing pad (oY _biasL) voltage and see if
the bias voltage can active after all LAM have loaded information.

The pixel processing array could be check by feeding simple test pattern which only contain
a extremely small pixel value and see if the CNN global connect output chain could mark the

minimum position.

© Digital Part : Add a scan chain by using DFT compiler. The test patterns have 119 sets in

total and the fault and test coverage are 98.72 % and 100 %, respectively.

£ Uncollapsed Stuck Fault Swummary Heport
e e R
/4 fault class code #faults
A e e
fi Detected T 4035
// Poszibly detected PT u]
S Undetectahle D 53
/4 ATPG untestable LT u}
S Mot detected HD ]
e e R
/4 total faults 4145
// test coverage 100.00%
// fault coverage 95.72%
L

Fig. 59 ATPG reports fromTetra-max.

© Analog Part :

1. LAM test: with a flat image pattern loaded by passing 8-bit DAC into LAM as shown in
Fig. 60, the testing pad could help to analysis the properties of LAM functions to see if

they can charge successfully and check the mismatch due to fabrication.

2. CNN function test: feed a simple testing pattern that makes only one position’s CNN

input is smaller than others. The bias current should quickly distinguish the global
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minimum coordinate.

Bias circuit test: feed the input with a flat but large SAD iamge and let all the pixel
prcessing units cannot catch the minimuim position. Then test the bias testing point
voltage and see if the volgate has reach the predic value. If the bias is out of the predic
range due to differnet fabrication environment, the pad iVsh can be tunned to change the
VCC input current to the CNN to feed the need of threshold level.

==

A

Fig. 60 Digital and analog part testing consideration of ASCNN chip.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORKS

In this thesis we propose the local motion estimation chip based on CNN architecture for
image stabilization and combine the motion compensation method to construct the image
stabilization system. To obtain reliable LMVs from the video sequence captured in various
conditions and to reduce the computational complexity in finding candidate of motion vectors,
these are two challenges for an image stabilization system. According to the simulation results,
the proposed technique demonstrates the remarkable performance in both quantitative and
qualitative (human vision) evaluations compared with the existence of approaches. The ASCNN

chip is implemented for real-time video stabilization applications.

In particular, CNN is used to reduce,computational complexity occurring in motion
estimation and the ASCNN chip has superior performance compared with DSP processors. An
8-bit D/A converter is designed to-transformrdigital input into analog current and stored in LAM.
LAM is designed to store SAD values and the - memory cell is made of MOS capacitance. Various
SAD voltage stored in LAM can produce.input-current.of CNN by the VCC circuit. An adaptive
and adjustable bias current circuit is combined-with ' CNN to automatically increase the threshold
level and detect the global minimal SAD position. The global output connected chains which take
the CNN connection properties are used to decode LMV position without wasting more
processing cycles in searching address. The proposed CNN-based method can be implemented on
VLSI, and CNNUM is able to perform the idea of the proposed design. Results with mixed-signal
simulation based on TSMC 0.35um 2P4M process have demonstrated the superior functionality

of the designed circuit.

For the chip design or DIS implementation in the future, several possible improved

directions will be considered as follows.

1. The power consumption of CNN array should be reduced to fit the most consumer electronics.
Reduce the supply current of CNN seems to be the best way to solve this problem since
adaptive threshold template only takes the stable value from CNN output instead of transfer

curve. Power management design in the chip can also save more power during LAM switches
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turned on.

2. A programmable CNN template is used instead of a fixed CNN template. The programmable
method can reuse CNN architecture and perform more CNN functions. Dual clock design can
also be used to speed up processing efficiency. The faster clock is used for CNN array in
searching global minimum position. The other clock is used for new LAM which has shorter

loading time.

3. To further distinguish the SAD value into fewer pixels, more digits should be used to control
bias signals, and a judgment control circuit should also be used to skip the raising clock cycle

if the bias current is much lower than input current.
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APPENDIX

A. Chip Information

Chip Specification Table

Spec. Result
Technology TSMC 0.35um 2P4M CMOS Mixed Signal Process
Power supply 3.3 Volts
Power dissipation 274mW(fully custom) + 8.3mW(cell based design)
Input level Logical low: 0V, high: 3.3V
Output level Logical low: OV, high: 3.3V
Operational Frequency (Cell-based) 20MHz
Cell-based design Area 63315
Bias step time 0.1us
LAM accessing time 3.1us
Bias resolution 32-tap (5-bit)
No. of output 18 (fully=5, cell=13)
Finding LMV for each frame Less than 6.2ms
Package 48-pin

Pad‘Names and Description

Pin No. Name 1/0 direction Description

47 oY_mem19 25 0] Local Analog Memory testing point 19_25
oY_mem19 1 O Local Analog Memory testing point 19 1
oY_meml_25 O] Local Analog Memory testing point 1_25
oY_meml_1 O Local Analog Memory testing point 1_1
VDD_1 Power Analog power 3.3V

46 VSS_1 Power Analog power 0V

44 VDD_2 Power Guard ring power 3.3 V

42 VSS 2 Power Guard ring power 0V

5 VvDD_3 Power Analog power 3.3V
VSS_3 Power Analog power 0V

1 VDD _4 Power Guard ring power 3.3 V

48 VSS 4 Power Guard ring power 0V

40 oY _biasL O CNN threshold bias output voltage test point

47 oY _biasU I Unity gain buffer voltage test point
ivV8 | Input Vin[8]
iv7 | Input Vin[7]
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10 V6 | Input Vin[6]

11 iV5 | Input Vin[5]

12 ivV4 | Input Vin[4]

13 iVvV3 | Input Vin[3]

14 V2 | Input Vin[2]

15 iv1y | Input Vin[1]

16 itse I Scan chain enable

17 iVsh | Current voltage converter bias (2.85V)
18 iSTART | Start signal for CNN control circuit
20 itsi | Scan chain input

21 VSS 0 Power Digital power 3.3V
22 iFRST | Reset

23 iIFCLK | Clock

24 oY_Fsh 0o Finish signal

25 oY_LE I Load enable

26 oY_aY0 0o axis_Y|[0]

27 oY_aYl O axis_Y[1]

28 oY_aY2 O axis_Y[2]

29 oY_aY3 o axis_Y[3]

30 oY_aY4 0 axis_Y[4]

33 VDD_0 power 1/O-PAD power 3.3V
34 oY_ax0 (0] axis: X[0]

35 INT_VSS 0 power Digital power 0V

36 oY_axl 0] axis_X[1]

37 oY_ax2 O axis_X][2]

38 INT_VDD_0 power Digital power 3.3V
39 oY_ax3 O axis_X][3]

40 oY_ax4 0} axis_X[4]

41 oY_tso 0] Scan chain output
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RULECHECK M3i.R.1 .vuuieenvnnn. TOTAL Result Count = 1 (1)
RULECHECK M2.FR.1 vvuuevrunns TOTAL Result Count = 1 (1)
——— SUMMARY
TOTAL CPU Time: 19
TOTAL REAL Time: z0
TOTAL Original Laver Geometries: 78380 (1495057)
TOTAL DREC RuleChecks Executed: 149
TOTAL DRC Besults Generated: 1008 (1015)
DRC error : VERTEX OFFGRID 542 | 1000
M3.W.1 % corner layout 45 ! 2
M4.W.1 % corner layout 4y ! 2
M1.R.1 % metall density # & 30% warning - 5 CIC ¥ £ % i4s 1
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M2.R.1 5 metal2 density # & 30% warning > 5 CIC ¥ & v% ids 1

M3.R.1 % metal3 density # &_30% warning > % CIC ¥ £ % iEds 1
M4.R.1 % metal4 density # & 30% warning > 5 CIC ¥ £ v% iBds 1

£ 1008 7 f vk Edg

Whole CHIP LVS check

REFORT FILE NAME:
LATOUT MANE:
SOURCE MAME:

RULE FILE:

RULE FILE TITLE:
HCELL FILE:
CREATICHN TIME:
CURRENT DIRECTORTY:
T3SER MAME:

CALIEBRE VERSICH:

BB AR AR AR R A R AR A R R

HE

CLLIEBRE S TS TEDN HH
HH

LV sz REPOERT HE
HH

HERSHEGHRRARRHRHE R R R R AR AR AR R A R AR Ea g

lwvs.rep

layout.spi ('CHIP_TOF')

.fCHIP_TOP.spi ('CHIP TOP')

Calibre-lwvs-cur

Calibre LWS Version Vi.da for T3MC 0.35wn MIXED SINGAL POLYCIDE
[—automatch)

Sun Jun 5 00:55:23 2005
fuser/sunnyeat/Finish/AMI1/Colibrez / LVS /run

sunnycat

wv2004.2 5.19 Tue Jun 259 19:44:37 PDT zZ004

OVERALL COMPARIZCN RESULTS

BHEEHEEBEBUEERERAEE _
# # * *
# CORRECT # |

8 8 v/
BHBEHERBEBHRERERAEE
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*k%x

Chip Features CAD Tools  ***
CKT name : CHIP_TOP (R340 HSPICE
Technoloy : TSMC 0.35um 2P4M CMOS (¢ * W) OPUS
Package :48 S/B (¢ Z£A5)

Chip Size  :2.375x 3.442 mm? (&% 5 & )
Transistor/Gate Count : 4776 MOS / 6.33K gate count (% & 19/ 48 [ #)
Power Dissipation : ~355mW(#. % )/~170mW(Z :5) (7 F 4 5 mw)
Max. Frequency :<20MHz (&% 1 i¥4g 5 > MHz) (3% 1 P4E %)
Testing Results : [JFunction work [JPartial work  [IFail
o||o ?. o |lo ?. o
== == =< S
T R O U U O = PR
g |15 || |12 [%[1%18]|%||
O ||| |63 ID fa || Im =l e
(] L]
filler2 | L
vSs.2 1 11 1 1 )
oY_aY4
oY biasL
— oY_aY3
vDD_2
oY _a¥?2
oY _biasU
oY_a¥y1
VSS_1 I
oY_a¥y0
oY_mem19_25
VSS_4 gy LE
vDD_4 oY_Fsh
oY _mem19_1 iIFCLK
oY_mem1_25 iIFRST
VSS_3 V8S_0
vDD_3 itsi
oY _mem1_1
VDD _1
filler1 =
_|l@
ZlZ2|=Z221=2|=2]== b ;,'
O~ ||T ||| ||w || M= =
_|
W oR T R
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Side Braze 48-pin lead

Bonding Diagram (3= % &)
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B. Optical IS Architecture

1=t group — Znd group Other lens | 15t grol — Znd group Dther lens
Lfocusing group) | (IS lens group) | &roups focusing group) | {15 lens group)| Eroups

E Film plansa
~ilm plana

To subject To subject '

Without correction With correction  Image stabilizetion control

Source: Cannon website: http://www.canon.com/technology/dv/02.html [3]

If the lens front moves downward due to camera shake, the light from the subject shifts from
the optical axis of the lens, and the image on the film plane is moved downwards. When this
occurs, the corrective optical system is moved downwards to refract the light and the image is
returned to the center of the film plane. In“reality; both vertical and horizontal vibration occurs
and the corrective optical system is moved in four directions along a plane perpendicular to the
optical axis.
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