
 i

MPEG-4 材質編碼器之架構設計與實現 

 

學生：洪堯俊                              指導教授：吳炳飛 教授 

 

國立交通大學電機與控制工程學系﹙研究所﹚碩士班 

摘 要       

在本論文中，我們提出了一個 MPEG-4 材質編碼(texture coding)架構設計，適合用

於目前的多媒體視訊應用。材質編碼是 MPEG-4 視訊編碼中重要的環節，用於去除空間

與頻率領域的冗餘資料並進行壓縮編碼，可以有效地降低儲存視訊內容所需的空間，在

較低頻寬的網路環境下，提供良好畫質的視訊傳輸。材質編碼的部分包括了離散餘弦轉

換(Discrete Cosine Transform)、量化(Quantization)、反量化(Inverse Quantization)、反轉

離散餘弦轉換(Inverse Discrete Cosine Transform)以及交流直流預測(AC/DC prediction)。

首先，我們採用 DCT、IDCT 交替的排程方式來處理影像中單一巨集區塊(Macroblock)，

利用運算處理單元共用的方式，有效地減少硬體面積以及節省運算處理所需的時間，再

者，我們使用行列分解的技術來降低二維 DCT/ IDCT 的運算複雜度，能夠利用簡便的

訊號控制同一硬體架構進行 DCT 或是 IDCT 運算，所提出的演算法能有效地減少乘法

運算元並且符合 IEEE 所制定的 IDCT 精確度要求。此外，在整個材質編碼器前端，亦

設計一個 ping-pong 緩衝區，使得材質編碼器的運作能夠管線(pipeline)進行，安全且正

確地讀取資料進行編碼，達到較佳的編碼效能。我們所提出的材質編碼架構適用於即時

視訊壓縮，可以支援 MPEG-4 Simple Profile Level 3 標準的位元流編碼。 

所提出的材質編碼架構在影像大小為 CIF 的格式下，處理單一巨集區塊的時間為

1137 個時間週期，透過 UMC 0.18 製程技術合成，最大操作頻率為 43MHz，邏輯閘總

數為 54,405 個，使用 16,840 位元的內部記憶體，此外，能夠輕易的整合進 MPEG-4 編
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碼器中，並且適用於行動通訊應用。 
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ABSTRACT 

 
An efficient architecture for MPEG-4 texture coding is proposed in this thesis. The 

architecture consists 2D-DCT/IDCT, quantization, AC/DC prediction block, inverse 

quantization and ping-pong buffer. It is designed to handle a macroblock data within 1137 

cycles and is suitable for MPEG-4 video encoder computing CIF (352x288) image formats. The 

cost-effective VLSI architecture for two-dimensional 2D DCT/ IDCT is based on the 

row-column decomposition technique. The 2D DCT/IDCT has a regular structure which will be 

interconnect and control simply, and the implementation of the inverse transform can use the 

same hardware efficiently. In addition, the proposed 2D IDCT algorithm used only four parallel 

multipliers and conforms to the accuracy specification of IEEE standard 1180 -1990. 

Furthermore, an efficient block engine with the interleaving DCT/IDCT scheduler is achieved 

for scheduling DCT, quantization, inverse quantization, IDCT, and AC/DC prediction in order 

to reduce the hardware cost and processing time. Besides, an additional ping-pong buffer is 

carried out to generate two independent addresses for reading and writing at the same time. 

Therefore, all the data in the buffer can be read safely and correctly. A typical MPEG-4 Simple 

Profile Level 3 sequence can be encoded in real-time with the proposed texture coding module.  

The proposed design has been synthesized by using 0.18-um CMOS technology. The 

simulation results indicate that MPEG-4 texture coding can run at a maximum frequency of 

43 MHz and it contains 54,405 gates and 16,840 bits memory. In addition, our texture coding 
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engine can be integrate into the entire MPEG-4 encoder easily, and it suitable for mobile 

communication applications. 
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Chapter 1 Introduction   

1.1 Background 

Video source coding is developed for over 20 years, and many video compression 

techniques have provided to improve the video coding efficiency. The primary purpose in the 

design of video coding system is to reduce the transmission rate and promote the quality. 

Because the storage requirement of original video sequences is very large, it is required to 

reduce data by compressing. Two approaches to achieve this propose are removal of statistic 

redundancy and psychophysical redundancy of video sequence. In the statistic redundancy, the 

video sequence is usually high-correlation in the spatial or temporal domain. The dependency in 

the spatial and temporal domain can be used to predict and get the statistic redundancy of the 

video sequences. The statistic redundancy such as the motion estimation and AC/DC prediction 

is widely-used in many video standards, for instance, MPEG-4[1] and H.263 [2]. Since the 

video system is based on the human observation in the psychophysical redundancy, the human 

vision is not sensitive to high frequency. We can employ the perceptive limitation of the human 

version to reduce the transmission requirements. The lossy compression techniques like 

quantization are provided to achieve the psychophysical redundancy without affecting 

perception, or with little reduction which could be disregarded.  

To drive the fast development of multimedia industry, the standards of digital video 

coding are specified. Several video standards have been made during the past few years. Table 

1-1 lists the roadmap of the video/image coding standards. A novel video compression 

technique, MPEG-4, is introduced in the next section. 
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Table 1-1 lists of video/image coding standards 

standards International 
standard 

Main features 

ISO JEPG 1991 Continuous-tone still image, DCT based 

ITU-T H.261 1990 Low bit-rate video conferencing, px64kbps 

ISO/IEC MPEG-1 1992 Video CD (storage), 1.5Mbps 

ISO/IEC MPEG-2 1994 Digital TV(Broadcasting), 2~15Mbps 

ITU-T H.263 1995 Very low bit-rate coding, < 64 kbps 

ITU-T H.263+ 1998 Add many advanced coding options to H.263

ISO/IEC MPEG-4 1999 Multimedia communication, content-based 
coding 

ISO/IEC JPEG-2000 2000 Still image coding, DWT coded 

ISO/IEC MPEG-4(v2) 2000 Add more tools and profiles to MPEG-4 

ITU-T H.263++ 2000 Add more advanced coding options to 
H.263++ 

ITU-T H.26L 2001 Functionality different, much more efficient

ISO/IEC MPEG-4(v3) 2001 Extend more tools/profiles to MPEG-4 

 

1.2 MPEG-4 standard overview 

MPEG-4 is well-known as the functionality-rich and high flexible multimedia standard. It 

is an ISO/IEC standard developed by MPEG (Moving Picture Expert Group), the committee 

that also developed the Emmy winning standards known as MPEG-1[3] and MPEG-2[4]. 

MPEG-4 wants to address a wide range of applications, and many of them are completely new. 

MPEG-4 does not target a major and exclusive killer application but opens many new 

frontiers. New and richer applications are developed, for instance, enhanced broadcasting, 

remote surveillance, personal communications, games, mobile multimedia, and virtual 
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environments [5]. The MPEG-4 has developed eight new or improved functionalities to 

support these applications, special in the three worlds-TV/film/entertainment, computing, and 

telecommunications. These functionalities can be classified into three categories [6], [7]. 

Chief among them on the following: 

 

1). Compression efficiency：This class includes functionalities for coding of multiple 

concurrent data streams and improved coding efficiency. These functionalities are 

needed for all applications relying on efficient transmission or the storage of video data. 

One example of such applications is the video transmission over IP. 

 

2). Content-based interactivity：These are functionalities to allow for content- based access 

and manipulation of data, editing bit streams, coding hybrid (natural and synthetic) data, 

and improved temporal random access. The functionalities will target the applications 

such as electronic shopping, digital library, and movie product. 

 

3). Universal access：Such functionalities consist of robustness in error-prone environments 

and content-based scalability. These functionalities allow MPEG-4 encoded data to be 

accessible over a wide range of media, with various qualities in terms of temporal and 

spatial resolutions for specific objects. These different resolutions can be decoded by a 

range of decoders with different complexities. Applications benefiting from them are 

mobile communications, database browsing, and access at different content levels, scales, 

qualities, and resolutions. 

 

In the MPEG-4 standards, profiles determine the tool set. For a given profile, a level defines 

quantitative bounds on technical parameters in order to bound implementation complexity and 

cost. Profiles will be convergence points for industry standards built on MPEG-4. Table 1-2 
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shows the definitions of visual profiles in the MPEG-4 standard. Each profile contains many 

coding tools to support the specific applications. The simple profile provides error robust 

coding of rectangular video objects for low bit rate applications such as mobile 

communications. The simple scalable profile adds capabilities for temporal and spatial 

scalability. It can be used in the networks with variable bit rates. The main profile supports 

interlaced coding and semi-transparent arbitrarily shaped objects, and its applications include 

entertainment and broadcast. The core profile provides better visual quality by using B-VOP, 

and supports to code the arbitrarily shape video objects. The major applications of the core 

profile are internet multimedia applications. 

 

Table 1-2 MPEG-4 visual profiles and corresponding tools 

 
Visual Tools 

Simple
Profile

Simple 
Scalable
Profile 

Core 
Profile

Main 
Profile 

Advanced 
Coding 

Efficiency 
Profile 

I-VOP           
P_VOP           

AC/DC Prediction           

 
 

Basic 
4MV, 

Unrestricted MV 
          

Slice 
Resynchronization 

          

Data Partitioning           

 
Error 

Resilience 
Reversible VLC           

Short Header           
B-VOP          

Method1/Method2 Quantization         
Rectangular         P-VOP Based 

Temporal 
Scalability 

Arbitrary 
Shape 

        

Binary Shape         
Grey Shape        
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Interlace        
Sprite       

Temporal Scalability 
(Rectangular) 

      

Spatial Scalability (Rectangular)       
Global Motion Compensation       

Quarter-pel Motion 
Compensation 

      

SA-DCT       
 
 

1.3 Thesis organization 

The organization of the thesis is depicted as follows. This chapter is a brief introduction to 

the video compression and MPEG-4 Standard. In chapter 2, MPEG-4 video coding algorithms 

including the motion compensation and the texture coding are represented. In chapter 3, the 

architecture of MPEG-4 texture coding units consisting of quantizer, inverse quantizer, 

DCT/IDCT, AC/DC prediction, and ping-pong buffer are introduced. In chapter 4, functional 

verification and ASIC implementation results are described. Finally, a conclusion is given in 

chapter 5.   
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Chapter 2  

Overview of MPEG-4 Video Coding  

2.1 Introduction  

In this chapter, technical overview of MPEG-4 video coding will be introduced. MPEG-4 

video coding supports two main coding modes：the coding of rectangular video objects and 

the coding of arbitrarily shaped video objects. The coding of rectangular video is described in 

this section. In principle, a rectangular video object is alike a frame that is used in well-known 

video coding standards such as MPEG-1 and MPEG-2, H.261 and H.263. Each frame of a 

video sequence is considered as a VOP (Video Object Plane), which is the instance of video 

objects at a given time. The coding of a frame is block-based－that is, each frame is divided 

into the MB (macroblocks) of 16x16 pixels in size. There are two major coding modes in the 

video encoding process, inter coding mode and intra coding mode. In inter coding mode, the 

ME (Motion Estimation) finds the most similar MB between the current VOP and the 

previous reconstructed VOPs. The most similar MB is regarded as the predicted MB. The 

different of MB luminance and chrominance values obtained from current VOP with respect 

to prediction values from previous or future VOPs is coded. The transform coding adopted by 

MPEG-4 video coding is the DCT (Discrete Cosine Transform). In intra coding mode, the 

luminance and chrominance values of MB are coded independently of previous or future 

VOPs and the DCT is applied to it without prediction. DCT transforms a signal or image in 

spatial domain into coefficients in frequent domain. Then these coefficients will be quantized 

(Q) by a quantized number. Two processing paths would be followed after the quantization. 

One processing path includes inverse quantization (IQ) and inverse discrete cosine transform 
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(IDCT).To avoid mismatch between the encoding process and the decoding process. This path 

is a decoding path which has the same process as the decode side and can get the 

reconstructed frame. The other one is the coding process. The AC/DC prediction will be used 

to get the predicted values from its neighbor MBs in intra coding mode. Due to the 

distribution of the coefficients in the frequency domain, scan block provides three scan 

methods to reorder the coefficients. They are the alternate-horizontal scan, the 

alternate-vertical scan, and the zigzag scan. The reordered coefficients will be input into the 

variable length coding (VLC), including running length coding and Huffman coding. The 

overall coding flow is shown in Fig. 2-1. In the intra coding mode, the motion compensation 

(MC) is not considered. The values of video sources will be directly input into DCT and the 

reconstructed values of the Frame Memory will only be from IDCT. In the inter coding mode, 

motion compensation errors, which are obtained by subtracting the predicted MB from the 

source MB, are used for inputting into DCT. The reconstructed values are the summation of 

the predicted values and the motion compensation errors.    

  

 

Figure 2-1 Basic coding flow of MPEG-4 

 

DCT Q   

IQ   

IDCT  

AC/DC   
Prediction 

Scan 

VLC ME 

MC  

Bitstream   

Frame Memory   

Video Source   

－ 
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2.2 Motion Estimation  

Motion estimation is the key technique of many video compression schemes to remove 

temporal redundancy and improve coding efficiency. To compress the video, the temporal 

redundancy between adjust frames could be exploited. Therefore, a reference frame is 

selected, and subsequent frame is predicted form the reference frame using the motion 

estimation. Block matching is the most common method of motion estimation. 

 

 
Figure 2-2 Block matching algorithm 

 

 The previous decoded frame is regarded as the reference frame. Each macroblock in the 

source frame is compared with shifted regions of the same size from the reference frame, and 

we have to search the most similar macroblock in the reference frame. Due to the 

computational complexity, we could define different areas in the reference frame as search 

range. As shown in Fig. 2-2, [-p, p-1] is the search range. The displacement which results in 

the minimum mismatch error is selected as the best MV (motion vector) for this macroblock. 

SAD (sum of absolute difference) is the most widely-used method to judge which block is the 

best match. The equation of SAD is shown as (2-1). 

 

p
p

motion  
vector  

search area   

current frame   reference frame    

current block 
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Where i is the horizontal pixel index and j is the vertical pixel index in the current block. Ref 

(i, j, u, v) is the pixel in the reference block. Motion vectors are (u, v) if SAD (u, v) is the 

minimum SAD in search area. During the motion compensation, the MB in the reference 

frame that is referenced to by the motion vector is copied into the reconstructed frame. The 

mismatch error between the current block and the reference block will be delivered to both the 

decode side and the reconstructed frame to compensate the error.  

 

2.3 Texture Coding 

This section describes the texture coding technique in the MPEG-4. The texture coding in 

the MPEG-4 video has two coding modes: one is the coding of luminance and chrominance 

values in the intra mode, and the other is the coding of prediction error values after the 

motion-compensated prediction in the inter mode. The coding process is shown in Fig. 2-3. 

The f[y] [x] denotes the video sources which are either the luminance and chrominance values 

or the prediction error values of an 8x8 pixels block. An 8x8 DCT transforms f[y] [x] in the 

2-D spatial domain into F[v] [u] in the 2-D frequency domain. Then the transform coefficients 

F[v] [u] are quantized to QF[v] [u]. The AC/DC prediction performs prediction of some of the 

transform coefficients only in intra coding mode. Finally, the scan block will convert the 

two-dimensional matrix of the coefficients and the prediction differences PQF[v] [u] into a 

one-dimensional vector QFS[v] [u].Then using a variable length coding to encoding this 

vector. The more detail procedure in each sub-block will be described in the following 

sections. 
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Figure 2-3 Block diagram of MPEG-4 texture coding 

2.3.1 DCT and inverse DCT 

The DCT (discrete cosine transform) is one of the most frequently used transformations for 

image compression. It transforms a signal form the spatial domain into the frequency domain. 

For most images, the energy almost lies at the low frequencies and the low frequencies will 

appear in the upper-left corner after the DCT. The values in the lower-right corner represent 

the high frequencies. For human vision, the values of high frequency are less sensitive, and 

are often – small enough to be neglected with little visible distortion. Now we describe the 

mathematical basis of the DCT and show how it is applied to encode an image. 

 

 Forward DCT Transform    

The block size of 8x8 for performing the 2-D DCT is small enough for the transform to 

be quickly computed but big enough for significant compression. For an 8x8 block of pixel 

values f(x, y), the 2-D DCT is defined as (2-2). 
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  Inverse DCT Transform 

In order to have the same processing as the decoding side, an inverse transform is needed 

in the encoding procedure. The two-dimensional inverse discrete cosine transform (2-D IDCT) 

for an 8x8 block is described by 
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2.3.2 Quantization and inverse quantization  

DCT and IDCT are the transform pairs, and they do not yield any compression by 

themselves. In order to reduce the required bit rate for texture coding, subsequent quantization 

of the transform coefficients can compress the data. 

 The quantization can be viewed as division followed by integer truncation. The 

coefficients in higher frequencies after the DCT are usually small and quantized to zero. That 

will reduce redundancy and will improve the compression efficiency. The quantization is the 

lossy compression. That is, it will result in some distortion between its input data and output 

data after dequantized. The MPEG-4 supports two possible quantization procedures to 

quantize the DCT coefficients. The first is derived from the MPEG-2 video standard, and the 

second one is used in the H.263 defined by the International Telecommunication Union – 
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Telecommunication Standardization Sector which quantization method selection is decided at 

the encoder side. 

 A specific parameter called quantizer_scale decides the quantization step size. It can take 

the values from 1 to 31 and is coded once per VOP. In the following, both the quantization 

formula and the inverse quantization formula are described.  

 

 Intra DC Coefficient Quantization 

   The nonlinear quantization method is provided for the DC coefficients of intra coded 

macroblocks. The value of dc_scaler depends on the value of quantizer_sacle and the operator 

// denotes an integer division with rounding to the nearest integer.    

Quantization ：    _//]0][0[]0][0[ scalerdcFQF =                               (2-4) 

Inverse quantization ：    _]0][0[]0][0[ scalerdcQFF •=                         (2-5) 

 

 MPEG Quantization 

This quantization method is derived from the MPEG-2 video standard. It allows the users 

to adapt the quantization step size individually for each transform coefficient by means of 

weighting matrices. Since the human eye is more sensitive to low spatial frequency and less 

sensitive to high spatial frequencies, the transform coefficients in high spatial frequency could 

be quantized more coarsely than those in low spatial frequencies. The default quantization 

matrices for intra and inter coded macroblocks are shown in Fig. 2-4. Then we can use (2-6) 

and (2-7) to compute quantization coefficients and dequantized coefficients, respectively.   
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Figure 2-4 Default weighting matrices for MPEG quantization. 

 

Quantization： 

)_2/()_]][[//16]][[(]][[ scalequantizerscalequantizerkvuWvuFvuQ ⋅⋅−⋅=   

where 
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Inverse quantization ： 
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 H.263 Quantization 

This quantization method is derived from the coefficient quantization used in H.263. It 

doesn’t apply the weighting matrix technique and only quantize by a constant value. 

Equations of the quantization and inverse quantization are shown as follows. 

Quantization： 
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Inverse quantization： 

( )
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⎩
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=
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]][[''

scalequantizeruvQF
scalequantizeruvQFuvF  (2-9) 

 

2.3.3 AC/DC Prediction 

There exist statistical dependencies for some of the AC and DC coefficients of the 

neighboring blocks. We can predict the values of one block from the corresponding values of 

one of the neighboring blocks. The AC/DC prediction is applied in only the case of intra 

coded MBs. The AC/DC prediction process is shown in Fig. 2-5. 

 

Figure 2-5 AC/DC prediction process for intra coded MBs. 

 

In Fig. 2-5, the black square in the top-left corner of each block indicates the DC 

coefficient. The vertical gray rectangle indicates the column AC coefficients and the 

horizontal gray rectangle indicates the row AC coefficients. The prediction is either from the 

left or the top neighboring block. The prediction direction will be selected is according to the 
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horizontal and vertical DC gradients around the block. As in the table 2-1, the DC gradient 

from B to A and the DC gradient form B to C are compared. That decides the prediction 

direction of block X and the lowest gradient is chosen for the AC/DC prediction. In addition, 

if any block is outside the VOP, its DC coefficient value will be set to 2(bits_per_pixel +2).    

 

                         Table 2-1 AC/DC prediction pseudo code 

 

2.3.4 Scan  

In order to build the symbols of entropy coding, we need to transform the 

two-dimensional matrix values into a one-dimensional vector. A scanning process is used for 

the 2D to 1D conversion. There are three scanning modes defined in the MPEG-4 standard. 

They are the zigzag scan, the alternate horizontal scan, and the alternate vertical scan and 

these modes are shown in Fig. 2-6. The scan that shall be used is decided by the following 

method. For intra blocks, if non-prediction occurs, the zigzag scan is selected for all blocks in 

a macroblock. Otherwise, the DC prediction direction is used to select a scan on block basis. 

For example, if the DC prediction direction refers to the horizontally adjacent block, the 

alternate-vertical scan is chosen for the current block. Otherwise, the alternate-horizontal scan 

is selected for the current block if DC prediction direction refers to vertically adjacent block. 

For all other blocks, the 8x8 blocks of transform coefficients are scanned in the “zigzag” 

scanning direction.    

if ( |FA[0][0] – FB[0][0]| <  |FB[0][0] – FC[0][0]|) 
        predict from block C 
else 
        predict from block A 
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Figure 2-6 Alternate MPEG-4 scanning mode 

2.3.5 Variable Length Coding  

In many cases, the quantization truncates the frequency components to zero. Therefore 

encoder uses variable length coding to encode the data, and the VLC will replace the string of 

zero with a count of how many zeros. The MPEG-4 adopts a novel 3-D VLC to encode the 

video stream. Traditional VLC is a 2-D run and level coding. Where run represents the 

number of zero coefficients preceding a non-zero coefficient in the scan order, and level 

represents the absolute value of this non-zero coefficient. As for the MPEG-4, additional 

symbol “LAST” indicates whether this is the final nonzero coefficient in the block. The 

standard describes how the actual values of these data elements (coefficients, zero runs, and 

LAST) can be decoded from the variable length codes. Finally, Huffman coding is used for 

the entropy coding. 

 

Alternate         
Horizontal scan    

Alternate         
Vertical scan      

Zigzag scan    
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Chapter 3 Architecture Design of 

MPEG-4 Video Texture Coding 

3.1 Texture Coding Units Overview  

In this chapter, the architecture of texture coding units is described. The texture coding 

units include the DCT, the quantization, the inverse quantization, the inverse DCT, and the 

AC/DC prediction and the architecture is shown in Fig. 3-1. Before the texture coding engine, 

a ping-ping buffer is required to latch the data. This ping-pong buffer consists of two 

memories and can generate two independent addresses for reading and writing at the same 

time. Which memory will be selected to read or write data is controlled by texture controller. 

When data from the ping-pong buffer is valid, the DCT/IDCT block is used to transfer the 

spatial values to the frequency values. Based on the row-column decomposition technique, the 

DCT and IDCT share the same architecture unit to improve implementation efficiency.  

 

 
Figure 3-1 Overall architecture of MPEG-4 texture coding 
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Two processing paths in the texture coding architecture are shown in Fig. 3-2. One is the 

encoding path including the DCT, the quantization, the AC/DC prediction, and the VLC in 

intra coding mode. The other is the reconstructed path consisting of the inverse quantization, 

the IDCT, and the serial-to-parallel block. The texture controller sends out the signal “DCT” 

to decide which function of DCT or IDCT will be activated in the DCT/IDCT block. There 

are two ways to get the input data for the DCT/IDCT. One is from the ping-pong buffer and 

the data is used for the DCT procedure; the other is from the inverse quantization block and 

the data is used for the IDCT procedure. A de-multiplexer controlled by the signal “DCT_out” 

decides the path of the output data from the DCT/IDCT block. The output data of IDCT are 

pixel-by-pixel, but the reconstructed frame data delivering through AMBA bus are four pixels 

per time. Therefore, a serial-to-parallel block is required. When the data come out, the flag 

“intra” selects the destination which is either the frame memory (through AMBA) or the 

motion compensation unit.                             

 

Figure 3-2 Architecture of MPEG-4 texture coding data path 

  

Encoding path   

Reconstructed path  
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   In the following sections, the ping-pong buffer, the DCT/IDCT architecture, the 

quantization, the inverse quantization, and the AC/DC prediction block are described in more 

detail. 

 
 

3.2 Ping-pong buffer unit  

In the ping-pong buffer, there are two ram memories with the same size and each memory 

is 3456 bits (64(pixels/block) x9(bits/pixel) x6(blocks) = 3456 bits). The pin definition of the 

ping-pong buffer is described as follow. The architecture of the ping-pong buffer is shown in 

Fig. 3-3. 

 

WR_RAM_Sel：This flag represents which ram is selected for writing data, and the flag is 

decided according to the position of the current MB. The WR_RAM_Sel 

sets ‘0’ for writing RAM0 and ‘1’ for writing RAM1. 

RAddr       ：These addresses are used for reading data. RAddr [3] decides which ram will 

be read, and RAddr [2:0] determines the index of the sub-block (including 

Y1, Y2, Y3, Y4, Cb, and Cr) in this ram. 

Intra         ：This flag reveals the coding mode. In intra coding mode, input data are got 

from the frame memory through AMBA bus. In inter coding mode, input 

data are the errors from the motion compensation. 

WAddr       ：These address are used for writing data. WAddr [6:4] determine the number 

of the sub-block in the macroblock, and WAddr [3:0] are the data 

addresses of the sub-block.   
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Figure 3-3 Architecture of ping-pong buffer 

 

3.3 DCT/IDCT Architecture 

A popular approach for the implementation of the 2-D DCT/IDCT is the row-column 

decomposition method [8], [9]. The 2-D transformation is computed by applying the 1-D 

DCT/IDCT by rows and, columns to reduce the complexity and hardware cost. A transpose 

memory is necessary to record the data between the two 1-D DCT / IDCT and the coefficients 

from column-by-column to row-by-row. We implement the DCT/IDCT architecture based on 

Weiping Li’s algorithm ＞. The basic computation performed by the DCT/IDCT is the 

evaluation of the N x N matrix by the products of Nx1 vectors. The computation of the 

product of triple matrix are, Z=AXAT, for the DCT and Z=ATXA for the IDCT [12], where A 

is an 8x8 matrix shown in equation (3-1). Even rows of A are even-symmetric and odd rows 

of A are odd-symmetric. Thus, we can separate this matrix into the even and odd rows by 

exploiting the symmetry in the row of A.  
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The 2-D DCT/IDCT architecture of row-column decomposition is shown in Fig. 3-4. The 

2-D DCT/IDCT transform is typically separated into two 1-D DCT/IDCT transformation to 

reduce the area cost and complexity. The row-column decomposition technique is 

implemented in two ways ： DRCD (direct row-column decomposition ) and MRCD 

(multiplexed row-column decomposition ) shown in Fig. 3-4(a) and Fig.3-4(b), respectively. 

The DRCD architecture consist two 1-D DCT/IDCT units and one transpose memory. 

Compared with the MRCD, it needs lager hardware cost but fewer latency.  The MRCD 

architecture requires only one 1-D DCT/IDCT unit and one transpose memory. It uses the 

multiplexer and the de-multiplexer to determine the processing path. Because the row and 

column share the same 1-D DCT/IDCT unit, next data are not allowed to input when 1-D 

DCT/IDCT unit is working. It results in the longer latency and the fewer throughput rate. But 

the MRCD needs smaller area than the DRCD.       
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Figure 3-4 2-D DCT/IDCT architecture of row-column decomposition 

 

The 1-D DCT/IDCT architecture consists of many processing units as shown in Fig. 3-5. 

Both DCT and IDCT have five-stage pipeline architecture. It consists the following blocks. 

I. Serial to parallel  

 A serial-to-parallel unit is needed because the DCT/IDCT requires the 8 pixels input in 

parallel.  

II. Pre-processor  

    The pre-processing unit of the DCT/IDCT will produce a set of 8 new values according 

to (3-2). These new values could be computed by the additions and subtractions of 

combinations of the input pixels. 

III. Multiplier-adder  

The multiplier-adder based architecture is used to accumulate the eq. (3-3) to the eq. (3-5). 

As shown in Fig. 3-6, the multiplier-adder unit consists of four multipliers and three adders.    
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IV.  Post-processor 

The post-processing unit will produce 8 DCT/IDCT coefficients according to eq. (3-6) 

V. Parallel to serial   

Finally, a parallel-to-serial unit is used to generate the output coefficients in serial. 

 

Figure 3-5 Architecture of 1D DCT/IDCT unit 

 

Figure 3-6 Architecture of multiplier-adder unit 
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Because the d2 (0) and S2 (0) in the eq.3-2 have the similar items except for the operator 

adder or subtraction, we can rewrite d2 (0) and S2 (0) in the eq.3-8 to reduce the adders in the 
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hardware implementation. Due to the modification of eq.3-2, rewording the m(4) and m(0) in 

the eq.3-5 are necessary when the process is in the DCT mode. The new equation is described 

in (3-9). The numbers of the adders in the pre-processor are 12.  
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We can rearrange (3-7) to get fewer adders as shown in (3-10). The adders in the 

post-processor are 14.  
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         (3-10) 

 

The complexity of our 1-D DCT/IDCT algorithm is depicted in Table 3-1. We need four 

multipliers and three adders in the multiplier-adder module. Twelve and fourteen adders are 

required in the pre-processor and the post-processor, respectively. One adder is used for 

rounding after the parallel to serial block. Total number of the adders in our proposed 1-D 

DCT/IDCT algorithm is 30.       
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Table 3-1 Complexity of the proposed 1-D DCT/IDCT algorithm 

 Our proposed 
Multipliers 4 

Adders 12+3+14+1=30 

 

As shown in Table 3-2, our design uses fewer multipliers to achieve the 1-D DCT/IDCT 

architecture while comparing with previous work. The design of [11] is also based on the 

weiping Li’s algorithm and needs 7 multipliers to implement a 1-D DCT/IDCT. The design of 

[13] is required 9 multipliers and 21 adders to achieve.    

 

Table 3-2 complexity of different 1D DCT/IDCT design 

Algorithm Cheng’s[13] Bousselmi’s[11] Our proposed 
Multipliers 9 7 4 

Adders 21 31 30 

 

Fig. 3-7 shows the read/write action of the DCT/IDCT transpose memory [14]. For the 

row-column decomposition of the 2D DCT/IDCT, the coefficients of the 1-D DCT/IDCT are 

written into the transpose memory row-by-row in sequence (0, 1, 2, 3, 4, 5, 6, 7, 8, …). As the 

coefficients of 1-D DCT/IDCT are written to the address 49, the data in the first column can 

be prepared to read. After that, the data in the transpose memory will be read column by 

column, (0, 8, 16, 24, 32, 40, 48, 56, 1,…). As shown in Fig. 3-7 (b), the data written to the 

address 56 is ready to be read after 8 cycles. At next time slice, other coefficients of the 1-D 

DCT/IDCT will be written column by column and read row by row. Therefore, reading and 

writing data in transpose memory can be achieved at the same time under this structure. 

 



 27

 

Figure 3-7 Read/write action of DCT/IDCT transpose memory 

 

A multiplier-adder based DCT/IDCT architecture is shown in Fig. 3-7. In Fig. 3-7, there are 

five quantization error sources: 1. The quantization of the coefficients for the row-wise and 

the column-wise transform (Coeff1 and Coeff2). 2. The wordlength reduction for the outputs 

of the first and the second multipliers (Adder1 and Adder2). 3. The output of the limiter for 

the row-wise transform (1D_Out). The most suitable way for deciding the minimum 

wordlength of the Coeff1, the Coeff2, and the 1D_Out is to compute the overall mean square 

error. The peak mean error, and the overall mean error are important to determine the 

minimum wordlength of Adder1 and Adder2 [15]. The optimum wordlength of these five 

terms in our work are shown in Table 3-3. The IDCT precision of this module meets IEEE 

IDCT precision standard and the implementation results are shown in chapter 4.  

 

 
(a)  (b)  
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Figure 3-8 Block diagram of a multiplier-adder based 2-D DCT/IDCT 

 

Table 3-3 The optimized wordlength for the our 2-D DCT/IDCT architecture  

               Optimized Word Length   

Coeff1 13 

Acc1 21 

1D_Out 16 

Coeff2 12 

Acc2 20 

 

  In order to reduce the hardware cost of the architecture of the DCT/IDCT, rounding is 

required after a multiplication. In our architecture, rounding is used to truncate the output data 

of each 1D DCT/IDCT module. We adopt the true rounding method to improve the IDCT 

precision. For the n x n multiplication, true rounding requires adding a 1 at the nth least 

significant bit of the product and truncates the least significant n bits of the sum. This process 

is illustrated via a dot diagram for a six by six multiplier on Fig.3-9[16]. 
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Figure 3-9 Rounded Multiplication Dot Diagram 

 

The core characteristics of the DCT/IDCT architecture have been summarized in Table 3-4. 

 

Table 3-4 Core characteristics of the DCT/IDCT architecture 

Inputs 9 bits(DCT), 12 bits(IDCT) 
Outputs 12 bits(DCT), 9 bits(IDCT) 

Internal wordlength 16 bits 
Technology 0.18-um CMOS 

No. of transistors 168,244 
Clock size 70 MHz 

Mode Selection DCT or IDCT 
Block size 8 x 8 
Accuracy IEEE std. 1180-1990 

 
 

3.4 Quantization and inverse Quantization Design 

Quantization applied to the transform coefficients can be viewed as division followed by the 

integer truncation. The division could be regarded as multiplying the reciprocal number. 

Consequently, the hardware architecture of the divider could be achieved by a multiplier and a 

1  

Form product 

ADD 1     

TRUNCATE 
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shifter. In order to meet the quantized values defined in the MPEG-4 standard, the 

quantization tables have to be established. When building up the N-bit quantization table, the 

reciprocal of the quantization step size must be set to 2^N /x + 1 (where x is the quantization 

step size). For example, while the step size is 4, the 16-bit binary data is 

(0100000000000001)bin . After multiplying the binary value in the quantization table, the shift 

for truncating data to integer is required. The MPEG-4 standard adopts a non-linear scaler for 

DC coefficients of the DCT blocks specified in Table 3-5            

 
 

Table 3-5 Non linear scaler for DC coefficients of DCT blocks, 

expressed in terms of relation with quantizer_scale 

 
Component: 
Type 

dc_scaler for quantizer_scale range 

 1 ~ 4 5 ~ 8 9 ~ 24 >=25 
Luminance: 
Type1 

8 2×quantizer_scale quantizer_scale+8 2×quantizer_scale-16 

Chrominance: 
Type2 

8 (quantizer_scale+13)/2 quantizer_scale-6 

 

The architecture of the quantization has to select a proper quantization table according to 

the quantized type of the current data. The type definitions are based on the luminance or the 

chrominance, the AC value or the DC value, and the inter block or the intra block. The 

flowchart of the quantization is shown in Fig. 3-10. First, the coding mode of the block is 

judged by the intra signal. In the intra coding mode, different quantization tables are provided 

for the luminance and the chrominance of the DC values. In some cases, H.263 quantizer 

guarantees that all coefficients equal to zero. As shown in Table 3-6, the quantized value is set 

to zero if the absolute value of the DCT coefficient is less than 2.5*quantization parameter in 

the inter coding mode. In the intra coding mode, the threshold is set to 2*quantization 

parameter. 
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Table 3-6 H.263 quantizer to guarantee all coefficients equal zero. 

H.263 Quantizer 

INTER mode for AC/DC coefficients |F (u, v)| - QP/2 < 2*QP  
to guarantee all coeff(u,v) = 0 

INTRA mode for AC coefficients |F (u, v)| < 2*QP  
to guarantee all coeff(u,v) = 0 

 

 

Figure 3-10 Flowchart of the quantization architecture 

 

 Each block has one bit to represent a coded/no coded status of it. In the inter coding mode, 

Block Type  

Intra  

Intra  Inter   

DC   AC  

Lum_DC_Scaler  

AC_LUT  AC_LUT   

|F (u, v)| + DC/2

|F (u, v)| - QP/2 

cbp    

Component 

Luminance Chrominance 

Lum  

Chro_DC_Scaler  

Multiplier                        

Result       
AC_LUT：AC Look-Up Table 
F(u,v)：DCT Coefficient      
QP：Quantization Parameter 
cbp：coded block pattern     

|F (u, v)|  
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the value of the cbp is set to ‘1’ if any coefficient in the block is not zero. In the intra coding 

mode, cbp is necessary to accumulate the absolutes of coefficients in this block. As shown in 

Fig. 3-11, when one of the grey pixels in the top left corner of the block is not zero, or the sum 

of all the absolutes of coefficients is greater than 2, which implies that this block needs to be 

encoded, the value of this cbp is set to ‘1’.  

 
Figure 3-11 coded block pattern in intra coding mode 

 

The inverse quantizer has similar architecture with the quantizer, except the data with fewer 

bits in the look up tables. There is the mismatch due to exact values (integer + 1/2) of the 

IDCT output, so the reconstruction level of the quantizer must be designed to alleviate this 

problem. A simple way to solve this mismatch problem is to avoid even values for the 

reconstruction levels. The uniform quantizer adopted in CCITT H.261-1990, Video Codec for 

Audiovisual Services at px64 kbit/s, the reconstruction levels (REC) are defined as 

follows[17]： 

 

( )
( )

( )
( )

 0                                       0
    0          ;1 1*2*   
 0          ;11*2*   

    0          ; 1*2*   
 0          ; 1*2*   

,     LEVEL  ; REC 
 "even"   QUANT LEVELLEVELQUANTREC

LEVELLEVELQUANTREC

 "odd"   QUANT LEVELLEVELQUANTREC
LEVELLEVELQUANTREC

==
=<+−=

>−+=

=<−=
>+=

    (3-11) 

where QUANT ranges from 1 to 31 whose value corresponds to half of the step size.  
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Fig.3-12 shows the flowchart of the inverse quantizer. First, to judge the current block is 

intra or inter is required. If the current block is the intra block, it implies the DC values should 

be got from multiplying the coefficients by the dc_scaler value. For other coefficients, the 

dequantized values will be obtained from the eq. 3-11. 

  

Figure 3-12 flowchart of inverse quantizer 

 

3.5 AC/DC prediction design 

In order to perform the AC/DC prediction, a large memory to store the information of the 

frame is necessary and the Y component storage is stored as in Fig.3-13. After the prediction 

of a block is complete, it is necessary to update the coefficient. For instance, while the 

prediction of block 0 is accomplished, the DC coefficient is copied to that of block B and D. 

The top AC coefficients are copied to the top locations of the block D and the left AC 

coefficients are copied to the left locations of the block B. The decision of the prediction 

direction is based on the DC coefficient of the neighbor blocks of the current block. Let’s take 

the block 0 as an example, the DC value of block C, B, and D are used to determine the 

prediction direction. 

Intra ??  

DC coeff?  
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Get REC   
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Figure 3-13 Y component storage for AC/DC prediction 

 

The architecture of K.Suh is adopted to implement the AC/DC predictor [18]. Fig. 3-14 

shows the structure of the memory to store the prediction data for CIF 352x288 resolutions. 

The horizontal memory stores the DC and horizontal AC coefficients and its size depends on 

the frame width. The vertical memory stores the vertical DC and AC coefficients. 

LT_DC_VALUE memory stores the top left value to be predicted. The top left value is 

replaced by the top value of each 8x8 block when a block read top value according to the 

table 3-8.    

 

Figure 3-14 Structure of prediction memory 
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current block   
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(352(Y) + 352(Cr, Cb) x12 = 704x12 bits
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  Table 3-7 shows that the left top DC values transfer in each prediction block. For example, 

when current block index is 0, the left top DC value is read from index 1 of LT_DC_VALUE 

memory for prediction. The top value of block index 0 is stored to the LT_DC_VALUE 

memory with index 0 and this data is the left top DC value of the block 1.  

 

Table 3-7 Storing left top value and reading for each block index 

Block index        0     1      2      3      4      5    
Storing LT_value   0      1      2      3      4      5    
LT memory read    1      0      3      2      4      5     

 

To perform the AC/DC prediction, the division is required to implement the normalization 

for the DC coefficient. In order to reduce the hardware cost of the AC/DC predictor, the 

quantizer will be used to normalize the DC coefficient.  The interleaved DCT/IDCT 

scheduling (IDIS) [14] is adopted and modified to meet our request. The scheduling for the 

DCT/IDCT, the Q (quantization), the IQ (inverse quantization) units are shown in Fig. 

3-15.We can use the idle time of the quantizer unit to perform the division of the DC 

coefficient and fetch the AC coefficients from the prediction memory.      

  

Figure 3-15 Timing diagram of interleaved DCT/IDCT scheduling 
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The architecture of the AC/DC prediction is depicted in Fig. 3-16. The prediction memory 

stores the AC/DC prediction coefficients of the past and these coefficients are used to predict. 

The direction manager decides the prediction direction by comparing the DC gradients. The 

DC normalization normalizes the boundary DC values. The state machine generates the 

irregular address to access the prediction memory and the register file stores the prediction 

values and the quantized values.     

 

Figure 3-16 Architecture of AC/DC prediction 

 

It doesn’t guarantee that the data after AC/DC prediction are better than the data without 

prediction. Consequently, the coded block patterns in intra coding mode are determined by the 

comparison between the data after and before prediction. When the summation of the absolute 

value after prediction is larger than without prediction, the smaller values (quantized DCT 

coefficients) will be adopted to determine the coded block patterns and vice versa. In the inter 

coding mode, if any AC coefficient in the 8x8 block is non-zero, it implies that this block is 

necessary to encode. Then, the coded block pattern is set to ‘1’. The Finite State Machine of 

the AC/DC prediction is depicted in Fig. 3-17. Each state of this finite state machine is 

described as follows. 
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 IDLE： do nothing in this state, and stay until the DCT coefficient is valid in intra coding 

mode. 

 Read LT DC：read the left top DC value from the LT_DC_VALUE memory. If the 

current block is a boundary block, the DC values around it may be a constant. Skipping 

the next states Read Top DC or Read Left DC is allowed. 

 Read Top DC：get the top DC value. 

 Read Left DC： get the left DC value. 

 Store LT DC：store the top DC value into the LT_DC_VALUE according to Table 3-8. 

 Check Gradient：determine the prediction direction and get AC coefficients from the 

prediction memory. 

 Read Top AC：read the AC coefficients for prediction from the horizontal memory. 

 Read Left AC：read the AC coefficients for prediction from the vertical memory. 

 Waiting Quantized Data：fetch prediction values, and wait until the quantized values are 

valid. 

 Store Next Prediction：compute the prediction errors and store the current quantized DCT 

coefficients into the prediction memory. 

 ACDC To VLC：judge whether the prediction of the current macroblock is complete. Go 

to the ACDC cbp state when the prediction is accomplished; else go to the IDEL state 

then wait for the next 8x8 block.          

 ACDC cbp：deliver the coded block patterns to the VLC unit then enter the IDLE state. 
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Figure 3-17 AC/DC prediction Finite State Machine 
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3.6 Finite State Machine of Texture Coding  

The valid signals are used to represent that the values are valid between each block. 

Therefore, the valid signals can be taken as the judgment on the conditional branch in the 

finite state machine of the texture coding. There are different coding paths in the inter coding 

mode and the intra coding mode. In the intra coding mode, it must be through the AMBA bus 

to load the input data into the ping-pong buffer and write the output data to the reconstructed 

frame memory. In the inter coding mode, the data access is controlled by the motion 

estimation engine. Consequently, the AMBA access finite state machine is required only in the 

intra coding mode. The AMBA access finite state machine is shown in Fig. 3-18 and each 

state of the AMBA FSM is described as follows.  

 IDLE：nothing to do in this state, and wait for enable reading or writing. 

 Read Request：request to access data through AMBA bus and wait for the response of the 

AMBA controller. When the user of the AMBA bus is texture coding, it implies that to 

access data through AMBA bus is allowed. 

 AMBA Get RAddr：get the address to read data. 

 AMBA Get WAddr：get the address to write data. 

 AMBA Read：load the data in the next macroblock into the ping-pong buffer. To improve 

the overall timing efficiency, a schedule of reading AMBA is essential. In order to avoid 

reading and writing data through AMAB bus at the same time, the data will be read in 

block index 3 and 6 respectively. 

 AMBA Write：writing the data into the reconstructed frame memory through AMBA bus. 

It is required to write sixteen times each block. 

 AMBA Finish：when reading or writing data is complete, send a finished flag to the 

texture controller then go to the IDLE state.    
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Figure 3-18 AMBA Read/Write Finite State Machine 

 

Texture coding FSM is shown in Fig. 3-19. When the finite state machine is enabled, first 

step to do is to judge what kind of frame to be encoded. If the MB_I_P signal is ‘1’, it 

indicates that the current frame is the intra frame; otherwise, the current block frame is the 

prediction frame. After encoding, the finite state machine enters the Texture_Finish state. 

Texture coding delivers a finished signal to the top controller, and waits for the acknowledge 

signal from the top controller. This finite state machine will get into the IDLE mode when the 

acknowledge signal is ‘1’.  

 Texture_IDLE：texture coding engine is in the idle mode, do nothing and wait for enable 

signal. 

 MB_Type_Check：check the current macroblock is inter or intra mode. 

 Inter_Encoding：inter encoding procedure. 
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 Intra_Encoding：intra encoding procedure. 

 Texture_Finish ： texture coding for a macroblock is complete and wait for an 

acknowledge signal from the top controller.  

 

Figure 3-19 Finite State Machine of texture coding 

 

Fig. 3-20 illustrates the intra encoding FSM. In this FSM, it is required to determine that 

the current macroblock is the first macroblock or not. If yes, it signifies that there is no 

available data in the ping-pong buffer and we have to read data from the frame memory in the 

first instance. When the current macroblock is not the first one, the data of the next 

macroblock will be read into the ping-pong buffer during the UV Block-level operation state. 

The Block-level operation represents the encoding operation of the 8x8 block. Because 
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AMBA bus is shared by the texture coding engine, the motion compensation engine and the 

variable length code engine, only one engine can use AMBA bus at the same time. The texture 

coding FSM doesn’t enter the Texture_Finish state until completely writing the reconstructed 

values through the AMBA bus.        

 

Figure 3-20 Intra encoding procedure 
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In inter coding mode, storing data into the ping-pong buffer is controlled by the motion 

estimation engine. Fig. 3-21 represents the inter encoding FSM. It is unnecessary to control 

the AMBA bus in this mode, so the luminance blocks and the chrominance blocks have the 

same procedure. The block index counts the number of the coded blocks. After the whole 

macroblock encoding, it is imperative to confirm that the last reconstructed value is delivered 

and to avoid data missing.  

 

Figure 3-21 Inter encoding procedure 
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Basically, the block-level operation in the intra coding mode is the same as that in the inter 

coding mode. A flag between two blocks illustrates whether the data is valid or not. Due to the 

valid signals, it is extremely simple to implement the block-level operation as shown in Fig. 

3-22.  

 

Figure 3-22 Block-level Operation Procedure 
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Chapter 4 ASIC Implementation  

4.1 Design Flow 

The traditional hardware design flow is depicted in Fig. 4-1. In the first instance, the 

module specification is determined and the computational complexity of each algorithm are 

investigated and analyzed by the C model. The C model adopted for our architecture is the 

XviD [19] MPEG-4 video encoder/decoder, which is a free software developed by the XviD 

organization. The designers can modify or redistribute the XviD MPEG-4 software in 

accordance with their requirements respectively. Some processes in C model are rewritten in 

hardware-like format consisting bit-width precision and data flow. It helps us to verify the 

hardware designs and find out the bugs. For instance, both the DCT and the IDCT have the 

same precision in the software and hardware model. The hardware architectures are 

implemented by using Hardware Description Language such as Verilog or VHDL. HDL 

simulation procedure is used to confirm that the results meet our requirement. The waveform 

simulation using Modelsim can analyze the timing and the signal values to correct the errors 

in the hardware model. When the function of the hardware model is correct, we can use 

Synopsys to synthesize these gate-level HDL codes. Then, the post-synthesis simulation is 

provided to check the timing specification. If the timing is not satisfied, the more tight 

constraints may be used or the hardware architecture may be modified and verified again. 

Before achieving our specification, these steps are repeated.   
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Figure 4-1 Module design flow 

 

4.2 Functional Verification 

Generally speaking, the design and the simulation in the software model are faster than that 

in the hardware model. Because the original DCT and IDCT algorithms in the XviD MPEG-4 

video codec are not suitable for the hardware implementation, the C models of DCT and 

IDCT are required to be developed. When the C models of DCT and IDCT are implemented 

to emulate our DCT/IDCT hardware architecture, it makes the testing and verification of our 

proposed architecture more efficient. By decoding the encoded files, it is very easy to verify 

whether the C models of DCT and IDCT is correct or not. After the verification of the C 

models completely, the flowchart as shown in Fig. 4-2 is adopted to verify the architecture of   

the MPEG-4 texture coding. The testing patterns for functional verification of each module 

are obtained from the MPEG-4 C model. The hardware model is simulated with Modelsim 

developed by Mentor Graphics. Some information such as the waveform and the signal values 

can be displayed on the screen during the simulation. Dumping the information of the I/O 

signals to the text files will be efficient to check the errors. The output values of each module 

in software model and hardware model are written into text files. These files are manually 
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compared by using UltraEditor. If it encounters any mismatch in the hardware model and the 

software model, the HDL codes will be modified and then simulated again. The iteration 

continues until the comparison of the text file from hardware model and that from the 

software model is equivalent.        

 
Figure 4-2 Flow chart of functional verification 
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After the logic synthesis of the MPEG-4 texture coding module is complete, 

design-for-testability is required to make an IC be testable. It involves inserting or modifying 

logic, and adding pins. The design-for-testability technique will reduce field returns, the 
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complier to achieve the design-for-testability. An overview of the DFT complier flow is 
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logic. Second, Pre-scan DRC is to check gate-level scan design rule before the scan chain 

synthesis. We must fix the DFT violations if necessary. Third, scan-chain is inserted. Fourth, 

post-scan DRC is required to confirm that there are no new DFT problems. Besides, it can 

verify the scan chains synthesized operates properly, and create an ATPG-ready database. 

Finally, the TetraMAX is used to estimate Fault Coverage. The fault coverage of our design 

with DFT consideration can achieve 95.80%. 

 

        

Figure 4-3 Overview of DFT compiler flow 

 

Because the memory is regarded as a black-box model and unobservable for testing, the 

shadow wrapper is required to insert around the memory. SynTest SRAMBIST is adopted to 

support the memory testing. The memory BIST architecture is depicted in Fig. 4-4. The 

BistMode signal chooses testing or working mode in our design. When testing mode is 

provided, the data of the memory are obtained from the BIST controller. Since there are six 

memory modules in the MPEG-4 texture coding architecture, both the BistFail and ErrorMap 

have six bits to express all memories respectively. If any error occurs, it will be easily 

detected from these signals. When the chip is in the working configuration, these memories 

are regularly used to access data.   
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Figure 4-4 Memory Built-In Self-Test Architecture 

 
 IEEE IDCT accuracy measurement   

Fig. 4-5 shows the setup for measuring the accuracy of a proposed 8x8 IDCT. IEEE Std 

1180-1990 specifies the numerical characteristic of 8x8 IDCT for visual telephony and similar 

applications where the 8x8 IDCT results are used in the reconstructed loop. For each 8x8 

block, round the 64 resulting transformed coefficients to the nearest integer values and clip 

them to the range -2048 to 2047. For each of the output pixels of the 8x8 IDCT and for each 

of data sets of the 10,000 block generated for the definition, measuring the peak, mean, and 

mean square errors between the “reference” data and the “test” data. The random data from 

range (-300, 300), (-255, 256), (-5, 5) is input and the rates are generated in 5 items which are 

peak error (PE), mean square error (MSE), overall mean square error (OMSE), mean error 

(ME),and overall mean error (OME). Table 4-1 shows the results.   
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Figure 4-5 Setup for measuring the accuracy of a proposed 8x8 IDCT 

 

Table 4-1 Accuracy Test result of the IDCT 

Test 
Parameter 

H:300  
L:-300 

H：255 
L:-256 
       

H：5  
L：-5 
       

Sign 
invert 
300   

Sign 
invert 
255    

Sign 
invert 
5      

L=H=0 IDCT Spec.  

OMSE    0.0145 0.0151 0.0095 0.0142 0.0153 0.0095 0.0000  <0.02    
 OME     0.0002 0.0001 0.0002 0.0002 0.0004 0.0002 0.0000  <0.0015   
PE        1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000  = 1     
MSE      0.0175 0.0180 0.0130 0.0167 0.0180 0.0127 0.0000  <0.06    
ME       0.0074 0.0094 0.0090 0.0083 0.0086 0.0093 0.0000  <0.015    
 

4.3 Implementation Result 

The timing of the proposed architecture is shown in Fig. 4-6. The DCT/IDCT architecture 

has 97 cycles latency to get the output coefficients. After DCT, there are four pipeline stages 

in the quantizer unit and four pipeline stages in the inverse quantizer unit. Furthermore, one 

clock for status change in the texture coding FSM is required. The actual number required for 

a macroblock is 1137 cycles.     
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Figure 4-6 Timing of the proposed architecture 

 

Table 4-2 depicts the implementation results for our texture coding engine. Due to the 

interleave DCT/IDCT scheduler, we adopt the sharing technique for AC/DC prediction with 

the Quantizer to reduce hardware cost. The area size of the DCT/IDCT architecture is larger 

because the multiplier-adder based architecture is adopted to implement this unit. It improves 

the working frequency but needs more area cost. Only one 64x16 transpose memory in the 

DCT/IDCT architecture is required in our work. The total ram size of our proposed is less 

than K. Suh’s. When the latency of the SDRAM are 5 clock cycles and the working frequency 

is 21 MHz , our texture coding engine meets the real-time requirement for encoding the frame 

sequences of CIF (352x288) at 30 fps with 54,405 gates. Furthermore, the maximum working 

frequency in our design is 43 MHz. 
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Table 4-2 Comparison with previous work 

Our Work K. Suh’s 
1137 cycles for one macroblock and the 
working frequency is 21 MHz         

1064 cycles for one macroblock and the 
working frequency is 27 MHz         

Module Logic 
( Gate ) 

RAM 
(bit) 

Module Logic 
( Gate )   

RAM   
(bit)    

FDCT 7,005 64x16  DCT/IDCT 27,061 64x16 
IDCT 8,091 64x16  

Q 4,132 0 
IQ 2,323 0 

Q/IQ 3,514 0 

AC/DC 
prediction 

11,304 742x12 AC/DC 
Prediction 

17,939 742x12 

Control 7,980 0 AMBA 
interface 

2,790 0 

Scan logic 1,605 0 Scan logic 2,841 0 
Q. coeff 
buffer 

0 32x16x3
+32x8x4 

Q. coeff 
buffer 

0 384x12 

Total 54,405 12,488 Total 42,180 15,536 
 

Table 4-3 lists the SRAMs required for each module. In the AC/DC prediction module, 

there is a 742x12 bits SRAM for storing the prediction values. In the ping-pong buffer, two 

SRAM are used for buffering the current macroblock data and the next macroblock data. 9 

bits are necessary for expressing each pixel. There is one transpose memory in the DCT/IDCT 

module, and its characteristic is dual-port. Dual port SRAM has two read/write ports, and can 

be read and written simultaneously. Total SRAM used in the texture coding unit is 16,840 bits.     

 

      Table 4-3 Memory required for each module 

Functions Characteristic Depth x Width Num. Bits 
ACDC 
Prediction 

 742x12 1 8,904 

Transpose mem. 
for DCT/IDCT 

Dual port 64x16 1 1,024 

Ping-pong buffer  96x36 2 6,912 
Total    4 16,840 
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The synthesized gate count of each module is shown in Fig. 4-7. Total gate count is 54,405 

gates. The DCT/IDCT module has 27,061 gates and occupies about half logic gates in the 

texture coding system. The AC/DC prediction without multiplier has 11,304 gates. This 

module needs some registers to store the prediction or quantized (non- prediction) data. The 

controller in the top module is designed to control each module and requires 7,980 gates. The 

quantizer and inverse quantizer which both are implemented with the multipliers have 4,132 

gates and 2,323 gates, respectively.    

 

   

Figure 4-7 Gate Count of each module 

 

When replacing the XviD C model by our texture coding module, the subject view is 

necessary to guarantee that the quality of the reconstructed frames is excellent. Fig. 4-8 to Fig. 

4-11 show the reconstructed frames of the testing sequence with our texture coding engine. 

The testing environment is under the condition of 384K bit-rate, 30 frames per second, and 

300 frames between each interval key-frame. The IDCT precision satisfies IEEE IDCT 

precision specification and the average PSNR of our reconstructed frames are very close to 

that of the XviD version. The average PSNR during the encoding using our texture coding 

49%
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8%

4% 3%
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engine compared to that of the XviD version with four testing sequence are shown in Table 

4-4. As we can see, there is only little PSNR degradation in our work. It is still 

indistinguishable between these two for human vision.  

 

Table 4-4 the average PSNR of our work and that of the XviD version 

 Our work  XviD 

Akiyo CIF  41.43782(-0.06508) 41.5029 

Foreman CIF 29.10254(-0.00819) 
 

29.11073 

Table CIF  29.72092(-0.01889) 
 

29.73981 

News CIF 33.85705(-0.04639) 
 

33.90344 
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PSNR= 40.11989 , Bits= 14384 PSNR= 41.82074, Bits=12256 

Figure 4-8 Subject view of reconstructed frame for akiyo sequences at the 46th frame and  

241st frame 

 
 
 
PSNR= 30.30287 , Bits= 8080 PSNR= 30.65964, Bits= 14272 

Figure 4-9 Subject view of reconstructed frame for foreman sequences at the 27th frame and 
109th frame 
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PSNR= 28.14944 , Bits= 8104 PSNR=31.60521 , Bits= 11480 

Figure 4-10 Subject view of reconstructed frame for Table sequences at the 122nd frame and 
183rd frame 

 
 
 
 
PSNR= 35.451321 , Bits= 12456 PSNR= 33.287823 , Bits= 11440 

Figure 4-11 Subject view of reconstructed frame for News sequences at the 21st frame and 
146th frame 
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Chapter 5 Conclusion 

In this thesis, the hardware architecture for the texture coding module in the MPEG-4 video 

encoder is presented. This proposed hardware core can support Simple Profile Level 3, under 

frame size 352x288 with 30fps for real time video applications. In order to reduce the 

hardware cost and smaller the processing time, an efficient block engine using the 

interleaving DCT/ IDCT scheduling is adopted. While this module is integrated into the entire 

system, it will maintain performance in low cost. Furthermore, the sharing technique for 

normalizing the AC/DC prediction values and quantizing DCT coefficients is applied to 

reduce area size further. The ping-pong buffer is designed to buffer motion estimation errors 

or intra frame data and ensure that all the data in the buffer can be read safely and correctly. 

Based on the row-column decomposition technique, the cost-effective VLSI architecture for 

two-dimensional 2D DCT/ IDCT is achieved. The 2D DCT/IDCT design has a regular 

structure, simple interconnects and control, and efficient implementation of the inverse 

transform using the same hardware. The required finite word-length accuracy is analyzed. The 

DCT/IDCT structure can achieve excellent accuracy and the accuracy conforms to IEEE 

standard 1180- 1990.  

In summary, a cost-effective block engine for MPEG-4 texture coding is presented and 

achieved. As the architecture can be placed in the regular fashion, it is proper to be 

implemented with commercial ASIC technologies. The proposed architecture can be applied 

to the portable multimedia terminal for wireless multimedia services. The future work 

includes three tasks. First, some improvements in our work to lower power consumption are 

necessary. These methods include clock gating, skipping input macro block for DCT or IDCT 

in the encoding loop…etc. Second, more functionality such as error-resilience tools, B-VOP 

coding will be integrated into the original module to satisfy other video applications. Third, 
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the decoding functions, such as variable length decoding, will also be designed to integrate 

into the original architecture to be a MPEG-4 texture codec design. 
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Appendix  

A-1 . Pin Definitions for MPEG-4 texture coding 

Fig. A-1 shows the inputs/outputs of our MPEG-4 texture coding. The descriptions for each 

pin are depicted in Table A-1. 

 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
MPEG-4 
Texture Coding 
 

Clk   
Resetn  
Ctrl_texture_en  
Ctrl_texture_ack  
ME_MB_X[4:0]  
Text_MB_X[4:0] 
Text_MB_Y[4:0] 

Text_init_L0_frame_ptr_X_table[8:0] 
Text_init_L1_frame_ptr_X_table[8:0]
Text_init_L0_frame_ptr_Y_table[16:0] 

FrameType       

Bus_user[2:0]     
MB_I_P         
MC_error[35:0]   
DCT_wren       
DCT_waddress[6:0]  

Q_Param[4:0]     

Text_init_UV_frame_ptr_Y_table[16:0]  

AHB_data_In[31:0]  
BistMode          

texture_rsp[1:0]  
texture_bus_req  
texture_HWRITE  
AHB_address_out[31:0] 
AHB_data_out[31:0]    
MB_Type             
qcoeff_valid           
Acdcp_direction        
Acdcp_flag            
q_blk_addr[2:0]        
q_pix_addr[5:0]        
vlc_cbp               
qcoeff[11:0]           
IDCT_cbp            
IDCT_data_valid       
IDCT_address_out[6:0]

BistFail[5:0]           
IDCT_data_out[35:0]    

ErrMap[5:0]           
Finish                

Figure A-1 MPEG-4 Texture Coding IP.   
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Table A-1 PIN Definition 

Name Direction Width Description  

Clk Input 1 Clock signal, positive edge trigger  

Resetn Input 1 Reset texture coding engine, active LOW 

Ctrl_texture_en Input 1 Enable Texture coding engine  

Ctrl_texture_ack Input 1 Acknowledge signal  

ME_MB_X Input 5 the MB position in the X-axis for Motion 

estimation  

Text_MB_X Input 5 the MB position in the X-axis for Texture 

coding 

Text_MB_Y Input 5 the MB position in the Y-axis for Texture 

coding 

Text_init_L0_frame 

_ptr_X_table 

Input 9 Offset of the frame pointers for the 

luminance values in the X-axis 

Text_init_L1_frame 

_ptr_X_table 

Input 9 Offset of the frame pointers for the 

chrominance values in the X-axis 

Text_init_L0_frame 

_ptr_Y_table 

Input 17 Offset of the frame pointers for the 

luminance values in the Y-axis 

Text_init_UV_frame 

_ptr_Y_table 

Input 17 Offset of the frame pointers for the 

chrominance values in the Y-axis 

FrameType Input 1 Frame type I or P 

Q_param Input 5 Quantization Parameter 

bus_user Input 3 AMBA bus user  

MB_I_P Input 1 MB type intra or inter 

MC_error Input 36 Motion compensation errors, store MC 
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errors in the ping-pong buffer if current 

frame is the Prediction frame.  

DCT_wren Input 1 Enable to write MC errors to ping-pong 

buffer 

DCT_wraddress Input 7 Address for writing MC errors to ping-pong 

buffer, address [6: 4] indicates the block 

index and address [3:0] indicates the pixel 

index.  

texture_rsp Output 2 Response to tell the status of texture coding 

engine(idle, busy, or finish) 

texture_bus_req Output 1 Request to use the AMBA bus  

AHB_data_in Input 32 Input data from the frame memory through 

the AMBA bus 

texture_HWRITE Output 1 Writing the reconstructed values to the 

frame memory through the AMBA bus 

AHB_address_out Output 32 Address of the reconstructed frame  

AHB_data_out Output 32 Reconstructed frame data for I frame  

MB_type Output 1 MB type to VLC module  

qcoeff_valid Output 1 Valid signal for quantized coefficients to 

VLC module 

acdcp_direction Output 1 Prediction direction  

acdcp_flag Output 1 Prediction flag to decide whether the 

prediction values are used or not. 

q_blk_addr Output 3 Quantization block address bus  

q_pix_addr Output 6 Quantization pixel address bus 
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vlc_cbp Output 1 Cbp signal to VLC 

qcoeff Output 12 Quantized coefficients to VLC  

IDCT_cbp Output 1 Cbp to Motion compensation 

IDCT_data_valid Output 1 Valid signal to the reconstructed memory in 

the Prediction frames  

IDCT_address_out Output 7 the MC errors Address bus 

IDCT_data_out Output 36 the reconstructed frame data bus 

BistFail Output 6 BIST fail  

ErrMap Output 6 Error mapping for BIST mode 

Finish Output 1 BIST finish signal 

BistMode Input 1 Signal to determine if BIST mode is used or 

not. 
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