
 i

MPEG-4 材質編碼器之架構設計與實現

學生：洪堯俊 指導教授：吳炳飛 教授

國立交通大學電機與控制工程學系﹙研究所﹚碩士班

摘 要

在本論文中，我們提出了一個 MPEG-4 材質編碼(texture coding)架構設計，適合用

於目前的多媒體視訊應用。材質編碼是 MPEG-4 視訊編碼中重要的環節，用於去除空間

與頻率領域的冗餘資料並進行壓縮編碼，可以有效地降低儲存視訊內容所需的空間，在

較低頻寬的網路環境下，提供良好畫質的視訊傳輸。材質編碼的部分包括了離散餘弦轉

換(Discrete Cosine Transform)、量化(Quantization)、反量化(Inverse Quantization)、反轉

離散餘弦轉換(Inverse Discrete Cosine Transform)以及交流直流預測(AC/DC prediction)。

首先，我們採用 DCT、IDCT 交替的排程方式來處理影像中單一巨集區塊(Macroblock)，

利用運算處理單元共用的方式，有效地減少硬體面積以及節省運算處理所需的時間，再

者，我們使用行列分解的技術來降低二維 DCT/ IDCT 的運算複雜度，能夠利用簡便的

訊號控制同一硬體架構進行 DCT 或是 IDCT 運算，所提出的演算法能有效地減少乘法

運算元並且符合 IEEE 所制定的 IDCT 精確度要求。此外，在整個材質編碼器前端，亦

設計一個 ping-pong 緩衝區，使得材質編碼器的運作能夠管線(pipeline)進行，安全且正

確地讀取資料進行編碼，達到較佳的編碼效能。我們所提出的材質編碼架構適用於即時

視訊壓縮，可以支援 MPEG-4 Simple Profile Level 3 標準的位元流編碼。

所提出的材質編碼架構在影像大小為 CIF 的格式下，處理單一巨集區塊的時間為

1137 個時間週期，透過 UMC 0.18 製程技術合成，最大操作頻率為 43MHz，邏輯閘總

數為 54,405 個，使用 16,840 位元的內部記憶體，此外，能夠輕易的整合進 MPEG-4 編

 ii

碼器中，並且適用於行動通訊應用。

 iii

Architecture Design and Implementation of MPEG-4 Texture Coding

Student：Yao-Chun Hung Advisor：Prof. Bing-Fei Wu

Department of Electrical and Control Engineering
National Chiao Tung University

ABSTRACT

An efficient architecture for MPEG-4 texture coding is proposed in this thesis. The

architecture consists 2D-DCT/IDCT, quantization, AC/DC prediction block, inverse

quantization and ping-pong buffer. It is designed to handle a macroblock data within 1137

cycles and is suitable for MPEG-4 video encoder computing CIF (352x288) image formats. The

cost-effective VLSI architecture for two-dimensional 2D DCT/ IDCT is based on the

row-column decomposition technique. The 2D DCT/IDCT has a regular structure which will be

interconnect and control simply, and the implementation of the inverse transform can use the

same hardware efficiently. In addition, the proposed 2D IDCT algorithm used only four parallel

multipliers and conforms to the accuracy specification of IEEE standard 1180 -1990.

Furthermore, an efficient block engine with the interleaving DCT/IDCT scheduler is achieved

for scheduling DCT, quantization, inverse quantization, IDCT, and AC/DC prediction in order

to reduce the hardware cost and processing time. Besides, an additional ping-pong buffer is

carried out to generate two independent addresses for reading and writing at the same time.

Therefore, all the data in the buffer can be read safely and correctly. A typical MPEG-4 Simple

Profile Level 3 sequence can be encoded in real-time with the proposed texture coding module.

The proposed design has been synthesized by using 0.18-um CMOS technology. The

simulation results indicate that MPEG-4 texture coding can run at a maximum frequency of

43 MHz and it contains 54,405 gates and 16,840 bits memory. In addition, our texture coding

 iv

engine can be integrate into the entire MPEG-4 encoder easily, and it suitable for mobile

communication applications.

 v

誌 謝

本論文得以完成，首先要感謝我的指導老師吳炳飛教授在我研究所生涯的悉心教

誨，在課業研究或是為人處世各方面，老師都給予我最佳的研究環境以及學習典範，讓

我在資源充沛的環境中可以充分地研究與學習，而老師對研究嚴謹與認真的態度，更成

為我學習的目標。另外，承蒙蔡淳仁教授、蘇崇彥教授以及莊俊雄博士撥冗參加學生口

試，並給予寶貴的建議，讓本論文更加充實完整，特此致謝。

在實驗室的生涯中，感謝忠哥(瞿忠正學長)、阿誠(陳昭榮學長)、阿霖(陳彥霖學

長)、重甫、全財以及信元，在你們的帶領與教導之下，讓我不論在研究或處世方面，

都有相當的成長。感謝和我一起奮鬥的東龍、則全、PPJ(林裕傑學弟)，能與你們一起

合作與研究，讓我感到十分地榮幸與快樂。感謝晏阡與培恭，在硬體設計上的問題，都

能夠不吝地給予協助。另外，感謝小熊(黃嘉雄學弟)、宗堯、元馨、晉源、秉宗，感謝

你們在生活上給予的幫助。

最後，我要致上最深的感謝給我最親愛的父母親以及家人，因為有你們的鼓勵與支

持，辛勤地付出讓我生活無虞，使我能夠順利的完成學業，雖然因忙於課業而無法時常

陪伴在你們身邊，但對你們的愛與關懷仍舊不變。

謹 將 此 文 獻 給 我 最 親 愛 的 家 人 以 及 所 有 關 心 與 愛 護 我 的 朋 友 們

洪堯俊 94 年 7 月

 vi

Table of contents

摘 要 ... I

ABSTRACT ... III

誌 謝 ...V

TABLE OF CONTENTS .. VI

LISTS OF FIGURE.. VIII

LISTS OF TABLE ...X

AWARD .. XI

CHAPTER 1 INTRODUCTION...1

1.1 BACKGROUND ...1
1.2 MPEG-4 STANDARD OVERVIEW...2
1.3 THESIS ORGANIZATION...5

CHAPTER 2 OVERVIEW OF MPEG-4 VIDEO CODING..6

2.1 INTRODUCTION ..6
2.2 MOTION ESTIMATION...8
2.3 TEXTURE CODING..9

2.3.1 DCT and inverse DCT ...10
2.3.2 Quantization and inverse quantization.. 11
2.3.3 AC/DC Prediction..14
2.3.4 Scan ...15
2.3.5 Variable Length Coding...16

CHAPTER 3 ARCHITECTURE DESIGN OF MPEG-4 VIDEO TEXTURE CODING17

3.1 TEXTURE CODING UNITS OVERVIEW ...17
3.2 PING-PONG BUFFER UNIT ...19
3.3 DCT/IDCT ARCHITECTURE...20
3.4 QUANTIZATION AND INVERSE QUANTIZATION DESIGN...29
3.5 AC/DC PREDICTION DESIGN ..33
3.6 FINITE STATE MACHINE OF TEXTURE CODING...39

CHAPTER 4 ASIC IMPLEMENTATION...45

4.1 DESIGN FLOW..45
4.2 FUNCTIONAL VERIFICATION...46

 vii

4.3 IMPLEMENTATION RESULT ...50

CHAPTER 5 CONCLUSION ...57

REFERENCE ...59

APPENDIX ...61

A-1 . PIN DEFINITIONS FOR MPEG-4 TEXTURE CODING ..61

BIOGRAPHY ...65

 viii

Lists of Figure

FIGURE 2-1 BASIC CODING FLOW OF MPEG-4...7
FIGURE 2-2 BLOCK MATCHING ALGORITHM...8
FIGURE 2-3 BLOCK DIAGRAM OF MPEG-4 TEXTURE CODING..10
FIGURE 2-4 DEFAULT WEIGHTING MATRICES FOR MPEG QUANTIZATION.13
FIGURE 2-5 AC/DC PREDICTION PROCESS FOR INTRA CODED MBS. ..14
FIGURE 2-6 ALTERNATE MPEG-4 SCANNING MODE ..16
FIGURE 3-1 OVERALL ARCHITECTURE OF MPEG-4 TEXTURE CODING17
FIGURE 3-2 ARCHITECTURE OF MPEG-4 TEXTURE CODING DATA PATH18
FIGURE 3-3 ARCHITECTURE OF PING-PONG BUFFER ...20
FIGURE 3-4 2-D DCT/IDCT ARCHITECTURE OF ROW-COLUMN DECOMPOSITION.......................22
FIGURE 3-5 ARCHITECTURE OF 1D DCT/IDCT UNIT...23
FIGURE 3-6 ARCHITECTURE OF MULTIPLIER-ADDER UNIT ..23
FIGURE 3-7 READ/WRITE ACTION OF DCT/IDCT TRANSPOSE MEMORY.....................................27
FIGURE 3-8 BLOCK DIAGRAM OF A MULTIPLIER-ADDER BASED 2-D DCT/IDCT........................28
FIGURE 3-9 ROUNDED MULTIPLICATION DOT DIAGRAM ...29
FIGURE 3-10 FLOWCHART OF THE QUANTIZATION ARCHITECTURE...31
FIGURE 3-11 CODED BLOCK PATTERN IN INTRA CODING MODE ...32
FIGURE 3-12 FLOWCHART OF INVERSE QUANTIZER ..33
FIGURE 3-13 Y COMPONENT STORAGE FOR AC/DC PREDICTION..34
FIGURE 3-14 STRUCTURE OF PREDICTION MEMORY ...34
FIGURE 3-15 TIMING DIAGRAM OF INTERLEAVED DCT/IDCT SCHEDULING35
FIGURE 3-16 ARCHITECTURE OF AC/DC PREDICTION..36
FIGURE 3-17 AC/DC PREDICTION FINITE STATE MACHINE..38
FIGURE 3-18 AMBA READ/WRITE FINITE STATE MACHINE..40
FIGURE 3-19 FINITE STATE MACHINE OF TEXTURE CODING...41
FIGURE 3-20 INTRA ENCODING PROCEDURE...42
FIGURE 3-21 INTER ENCODING PROCEDURE...43
FIGURE 3-22 BLOCK-LEVEL OPERATION PROCEDURE..44
FIGURE 4-1 MODULE DESIGN FLOW...46
FIGURE 4-2 FLOW CHART OF FUNCTIONAL VERIFICATION ..47
FIGURE 4-3 OVERVIEW OF DFT COMPILER FLOW ..48
FIGURE 4-4 MEMORY BUILT-IN SELF-TEST ARCHITECTURE ..49
FIGURE 4-5 SETUP FOR MEASURING THE ACCURACY OF A PROPOSED 8X8 IDCT50
FIGURE 4-6 TIMING OF THE PROPOSED ARCHITECTURE ..51
FIGURE 4-7 GATE COUNT OF EACH MODULE..53

 ix

FIGURE 4-8 SUBJECT VIEW OF RECONSTRUCTED FRAME FOR AKIYO SEQUENCES AT THE 46TH

FRAME AND..55
FIGURE 4-9 SUBJECT VIEW OF RECONSTRUCTED FRAME FOR FOREMAN SEQUENCES AT THE 27TH

FRAME AND 109TH FRAME...55
FIGURE 4-10 SUBJECT VIEW OF RECONSTRUCTED FRAME FOR TABLE SEQUENCES AT THE 122ND

FRAME AND 183RD FRAME ..56
FIGURE 4-11 SUBJECT VIEW OF RECONSTRUCTED FRAME FOR NEWS SEQUENCES AT THE 21ST

FRAME AND 146TH FRAME...56
FIGURE A-1 MPEG-4 TEXTURE CODING IP...61

 x

Lists of Table

TABLE 1-1 LISTS OF VIDEO/IMAGE CODING STANDARDS...2
TABLE 1-2 MPEG-4 VISUAL PROFILES AND CORRESPONDING TOOLS ...4
TABLE 2-1 AC/DC PREDICTION PSEUDO CODE...15
TABLE 3-1 COMPLEXITY OF THE PROPOSED 1-D DCT/IDCT ALGORITHM26
TABLE 3-2 COMPLEXITY OF DIFFERENT 1D DCT/IDCT DESIGN...26
TABLE 3-3 THE OPTIMIZED WORDLENGTH FOR THE OUR 2-D DCT/IDCT ARCHITECTURE28
TABLE 3-4 CORE CHARACTERISTICS OF THE DCT/IDCT ARCHITECTURE...................................29
TABLE 3-5 NON LINEAR SCALER FOR DC COEFFICIENTS OF DCT BLOCKS,30
TABLE 3-6 H.263 QUANTIZER TO GUARANTEE ALL COEFFICIENTS EQUAL ZERO.31
TABLE 3-7 STORING LEFT TOP VALUE AND READING FOR EACH BLOCK INDEX...........................35
TABLE 4-1 ACCURACY TEST RESULT OF THE IDCT..50
TABLE 4-2 COMPARISON WITH PREVIOUS WORK ..52
TABLE 4-3 MEMORY REQUIRED FOR EACH MODULE...52
TABLE 4-4 THE AVERAGE PSNR OF OUR WORK AND THAT OF THE XVID VERSION......................54
TABLE A-1 PIN DEFINITION ..62

 xi

Award
I. 本論文曾經參與 研華文教基金會 第六屆 TIC100 科技創新事業競賽冬令營 亞軍

II. 本論文曾入圍 2005 年教育部矽智產(SIP)設計競賽決賽

 1

Chapter 1 Introduction

1.1 Background

Video source coding is developed for over 20 years, and many video compression

techniques have provided to improve the video coding efficiency. The primary purpose in the

design of video coding system is to reduce the transmission rate and promote the quality.

Because the storage requirement of original video sequences is very large, it is required to

reduce data by compressing. Two approaches to achieve this propose are removal of statistic

redundancy and psychophysical redundancy of video sequence. In the statistic redundancy, the

video sequence is usually high-correlation in the spatial or temporal domain. The dependency in

the spatial and temporal domain can be used to predict and get the statistic redundancy of the

video sequences. The statistic redundancy such as the motion estimation and AC/DC prediction

is widely-used in many video standards, for instance, MPEG-4[1] and H.263 [2]. Since the

video system is based on the human observation in the psychophysical redundancy, the human

vision is not sensitive to high frequency. We can employ the perceptive limitation of the human

version to reduce the transmission requirements. The lossy compression techniques like

quantization are provided to achieve the psychophysical redundancy without affecting

perception, or with little reduction which could be disregarded.

To drive the fast development of multimedia industry, the standards of digital video

coding are specified. Several video standards have been made during the past few years. Table

1-1 lists the roadmap of the video/image coding standards. A novel video compression

technique, MPEG-4, is introduced in the next section.

 2

Table 1-1 lists of video/image coding standards

standards International
standard

Main features

ISO JEPG 1991 Continuous-tone still image, DCT based

ITU-T H.261 1990 Low bit-rate video conferencing, px64kbps

ISO/IEC MPEG-1 1992 Video CD (storage), 1.5Mbps

ISO/IEC MPEG-2 1994 Digital TV(Broadcasting), 2~15Mbps

ITU-T H.263 1995 Very low bit-rate coding, < 64 kbps

ITU-T H.263+ 1998 Add many advanced coding options to H.263

ISO/IEC MPEG-4 1999 Multimedia communication, content-based
coding

ISO/IEC JPEG-2000 2000 Still image coding, DWT coded

ISO/IEC MPEG-4(v2) 2000 Add more tools and profiles to MPEG-4

ITU-T H.263++ 2000 Add more advanced coding options to
H.263++

ITU-T H.26L 2001 Functionality different, much more efficient

ISO/IEC MPEG-4(v3) 2001 Extend more tools/profiles to MPEG-4

1.2 MPEG-4 standard overview

MPEG-4 is well-known as the functionality-rich and high flexible multimedia standard. It

is an ISO/IEC standard developed by MPEG (Moving Picture Expert Group), the committee

that also developed the Emmy winning standards known as MPEG-1[3] and MPEG-2[4].

MPEG-4 wants to address a wide range of applications, and many of them are completely new.

MPEG-4 does not target a major and exclusive killer application but opens many new

frontiers. New and richer applications are developed, for instance, enhanced broadcasting,

remote surveillance, personal communications, games, mobile multimedia, and virtual

 3

environments [5]. The MPEG-4 has developed eight new or improved functionalities to

support these applications, special in the three worlds-TV/film/entertainment, computing, and

telecommunications. These functionalities can be classified into three categories [6], [7].

Chief among them on the following:

1). Compression efficiency：This class includes functionalities for coding of multiple

concurrent data streams and improved coding efficiency. These functionalities are

needed for all applications relying on efficient transmission or the storage of video data.

One example of such applications is the video transmission over IP.

2). Content-based interactivity：These are functionalities to allow for content- based access

and manipulation of data, editing bit streams, coding hybrid (natural and synthetic) data,

and improved temporal random access. The functionalities will target the applications

such as electronic shopping, digital library, and movie product.

3). Universal access：Such functionalities consist of robustness in error-prone environments

and content-based scalability. These functionalities allow MPEG-4 encoded data to be

accessible over a wide range of media, with various qualities in terms of temporal and

spatial resolutions for specific objects. These different resolutions can be decoded by a

range of decoders with different complexities. Applications benefiting from them are

mobile communications, database browsing, and access at different content levels, scales,

qualities, and resolutions.

In the MPEG-4 standards, profiles determine the tool set. For a given profile, a level defines

quantitative bounds on technical parameters in order to bound implementation complexity and

cost. Profiles will be convergence points for industry standards built on MPEG-4. Table 1-2

 4

shows the definitions of visual profiles in the MPEG-4 standard. Each profile contains many

coding tools to support the specific applications. The simple profile provides error robust

coding of rectangular video objects for low bit rate applications such as mobile

communications. The simple scalable profile adds capabilities for temporal and spatial

scalability. It can be used in the networks with variable bit rates. The main profile supports

interlaced coding and semi-transparent arbitrarily shaped objects, and its applications include

entertainment and broadcast. The core profile provides better visual quality by using B-VOP,

and supports to code the arbitrarily shape video objects. The major applications of the core

profile are internet multimedia applications.

Table 1-2 MPEG-4 visual profiles and corresponding tools

Visual Tools

Simple
Profile

Simple
Scalable
Profile

Core
Profile

Main
Profile

Advanced
Coding

Efficiency
Profile

I-VOP
P_VOP

AC/DC Prediction

Basic
4MV,

Unrestricted MV

Slice
Resynchronization

Data Partitioning

Error

Resilience
Reversible VLC

Short Header
B-VOP

Method1/Method2 Quantization
Rectangular P-VOP Based

Temporal
Scalability

Arbitrary
Shape

Binary Shape
Grey Shape

 5

Interlace
Sprite

Temporal Scalability
(Rectangular)

Spatial Scalability (Rectangular)
Global Motion Compensation

Quarter-pel Motion
Compensation

SA-DCT

1.3 Thesis organization

The organization of the thesis is depicted as follows. This chapter is a brief introduction to

the video compression and MPEG-4 Standard. In chapter 2, MPEG-4 video coding algorithms

including the motion compensation and the texture coding are represented. In chapter 3, the

architecture of MPEG-4 texture coding units consisting of quantizer, inverse quantizer,

DCT/IDCT, AC/DC prediction, and ping-pong buffer are introduced. In chapter 4, functional

verification and ASIC implementation results are described. Finally, a conclusion is given in

chapter 5.

 6

Chapter 2

Overview of MPEG-4 Video Coding

2.1 Introduction

In this chapter, technical overview of MPEG-4 video coding will be introduced. MPEG-4

video coding supports two main coding modes：the coding of rectangular video objects and

the coding of arbitrarily shaped video objects. The coding of rectangular video is described in

this section. In principle, a rectangular video object is alike a frame that is used in well-known

video coding standards such as MPEG-1 and MPEG-2, H.261 and H.263. Each frame of a

video sequence is considered as a VOP (Video Object Plane), which is the instance of video

objects at a given time. The coding of a frame is block-based－that is, each frame is divided

into the MB (macroblocks) of 16x16 pixels in size. There are two major coding modes in the

video encoding process, inter coding mode and intra coding mode. In inter coding mode, the

ME (Motion Estimation) finds the most similar MB between the current VOP and the

previous reconstructed VOPs. The most similar MB is regarded as the predicted MB. The

different of MB luminance and chrominance values obtained from current VOP with respect

to prediction values from previous or future VOPs is coded. The transform coding adopted by

MPEG-4 video coding is the DCT (Discrete Cosine Transform). In intra coding mode, the

luminance and chrominance values of MB are coded independently of previous or future

VOPs and the DCT is applied to it without prediction. DCT transforms a signal or image in

spatial domain into coefficients in frequent domain. Then these coefficients will be quantized

(Q) by a quantized number. Two processing paths would be followed after the quantization.

One processing path includes inverse quantization (IQ) and inverse discrete cosine transform

 7

(IDCT).To avoid mismatch between the encoding process and the decoding process. This path

is a decoding path which has the same process as the decode side and can get the

reconstructed frame. The other one is the coding process. The AC/DC prediction will be used

to get the predicted values from its neighbor MBs in intra coding mode. Due to the

distribution of the coefficients in the frequency domain, scan block provides three scan

methods to reorder the coefficients. They are the alternate-horizontal scan, the

alternate-vertical scan, and the zigzag scan. The reordered coefficients will be input into the

variable length coding (VLC), including running length coding and Huffman coding. The

overall coding flow is shown in Fig. 2-1. In the intra coding mode, the motion compensation

(MC) is not considered. The values of video sources will be directly input into DCT and the

reconstructed values of the Frame Memory will only be from IDCT. In the inter coding mode,

motion compensation errors, which are obtained by subtracting the predicted MB from the

source MB, are used for inputting into DCT. The reconstructed values are the summation of

the predicted values and the motion compensation errors.

Figure 2-1 Basic coding flow of MPEG-4

DCT Q

IQ

IDCT

AC/DC
Prediction

Scan

VLC ME

MC

Bitstream

Frame Memory

Video Source

－

 8

2.2 Motion Estimation

Motion estimation is the key technique of many video compression schemes to remove

temporal redundancy and improve coding efficiency. To compress the video, the temporal

redundancy between adjust frames could be exploited. Therefore, a reference frame is

selected, and subsequent frame is predicted form the reference frame using the motion

estimation. Block matching is the most common method of motion estimation.

Figure 2-2 Block matching algorithm

 The previous decoded frame is regarded as the reference frame. Each macroblock in the

source frame is compared with shifted regions of the same size from the reference frame, and

we have to search the most similar macroblock in the reference frame. Due to the

computational complexity, we could define different areas in the reference frame as search

range. As shown in Fig. 2-2, [-p, p-1] is the search range. The displacement which results in

the minimum mismatch error is selected as the best MV (motion vector) for this macroblock.

SAD (sum of absolute difference) is the most widely-used method to judge which block is the

best match. The equation of SAD is shown as (2-1).

p
p

motion
vector

search area

current frame reference frame

current block

 9

() () () 1,,,,,,
11

, −≤≤−−
==

= ∑∑ pvupforvujirefjic
j
N

i
N

vuSAD (2-1)

Where i is the horizontal pixel index and j is the vertical pixel index in the current block. Ref

(i, j, u, v) is the pixel in the reference block. Motion vectors are (u, v) if SAD (u, v) is the

minimum SAD in search area. During the motion compensation, the MB in the reference

frame that is referenced to by the motion vector is copied into the reconstructed frame. The

mismatch error between the current block and the reference block will be delivered to both the

decode side and the reconstructed frame to compensate the error.

2.3 Texture Coding

This section describes the texture coding technique in the MPEG-4. The texture coding in

the MPEG-4 video has two coding modes: one is the coding of luminance and chrominance

values in the intra mode, and the other is the coding of prediction error values after the

motion-compensated prediction in the inter mode. The coding process is shown in Fig. 2-3.

The f[y] [x] denotes the video sources which are either the luminance and chrominance values

or the prediction error values of an 8x8 pixels block. An 8x8 DCT transforms f[y] [x] in the

2-D spatial domain into F[v] [u] in the 2-D frequency domain. Then the transform coefficients

F[v] [u] are quantized to QF[v] [u]. The AC/DC prediction performs prediction of some of the

transform coefficients only in intra coding mode. Finally, the scan block will convert the

two-dimensional matrix of the coefficients and the prediction differences PQF[v] [u] into a

one-dimensional vector QFS[v] [u].Then using a variable length coding to encoding this

vector. The more detail procedure in each sub-block will be described in the following

sections.

 10

Figure 2-3 Block diagram of MPEG-4 texture coding

2.3.1 DCT and inverse DCT

The DCT (discrete cosine transform) is one of the most frequently used transformations for

image compression. It transforms a signal form the spatial domain into the frequency domain.

For most images, the energy almost lies at the low frequencies and the low frequencies will

appear in the upper-left corner after the DCT. The values in the lower-right corner represent

the high frequencies. For human vision, the values of high frequency are less sensitive, and

are often – small enough to be neglected with little visible distortion. Now we describe the

mathematical basis of the DCT and show how it is applied to encode an image.

 Forward DCT Transform

The block size of 8x8 for performing the 2-D DCT is small enough for the transform to

be quickly computed but big enough for significant compression. For an 8x8 block of pixel

values f(x, y), the 2-D DCT is defined as (2-2).

⎥⎦
⎤

⎢⎣
⎡ +

⎥⎦
⎤

⎢⎣
⎡ +

= ∑∑
−

=

−

= N
vy

N
uxyxfvuvuC

N

y

N

x 2
)12(cos

2
)12(cos),()()(),(

1

0

1

0

ππαα

DCT Quantization

AC/DC Prediction Scan VLC

f[y][x]

F[v][u]
QF[v][u]

PQF[v][u] PQS[n]

Bitstream

 11

where

⎪
⎪
⎩

⎪⎪
⎨

⎧
=

=
kother for 2

0kfor 1

)(

N

Nkα , 10 −≤≤ Nk (2-2)

 Inverse DCT Transform

In order to have the same processing as the decoding side, an inverse transform is needed

in the encoding procedure. The two-dimensional inverse discrete cosine transform (2-D IDCT)

for an 8x8 block is described by

⎥⎦
⎤

⎢⎣
⎡ +

⎥⎦
⎤

⎢⎣
⎡ +

= ∑∑
−

=

−

= N
vy

N
uxvuCvuyxf

N

v

N

u 2
)12(cos

2
)12(cos),()()(),(

1

0

1

0

ππαα

where

⎪
⎪
⎩

⎪⎪
⎨

⎧
=

=
kother for 2

0kfor 1

)(

N

Nkα , 10 −≤≤ Nk (2-3)

2.3.2 Quantization and inverse quantization

DCT and IDCT are the transform pairs, and they do not yield any compression by

themselves. In order to reduce the required bit rate for texture coding, subsequent quantization

of the transform coefficients can compress the data.

 The quantization can be viewed as division followed by integer truncation. The

coefficients in higher frequencies after the DCT are usually small and quantized to zero. That

will reduce redundancy and will improve the compression efficiency. The quantization is the

lossy compression. That is, it will result in some distortion between its input data and output

data after dequantized. The MPEG-4 supports two possible quantization procedures to

quantize the DCT coefficients. The first is derived from the MPEG-2 video standard, and the

second one is used in the H.263 defined by the International Telecommunication Union –

 12

Telecommunication Standardization Sector which quantization method selection is decided at

the encoder side.

 A specific parameter called quantizer_scale decides the quantization step size. It can take

the values from 1 to 31 and is coded once per VOP. In the following, both the quantization

formula and the inverse quantization formula are described.

 Intra DC Coefficient Quantization

 The nonlinear quantization method is provided for the DC coefficients of intra coded

macroblocks. The value of dc_scaler depends on the value of quantizer_sacle and the operator

// denotes an integer division with rounding to the nearest integer.

Quantization ： _//]0][0[]0][0[scalerdcFQF = (2-4)

Inverse quantization ： _]0][0[]0][0[scalerdcQFF •= (2-5)

 MPEG Quantization

This quantization method is derived from the MPEG-2 video standard. It allows the users

to adapt the quantization step size individually for each transform coefficient by means of

weighting matrices. Since the human eye is more sensitive to low spatial frequency and less

sensitive to high spatial frequencies, the transform coefficients in high spatial frequency could

be quantized more coarsely than those in low spatial frequencies. The default quantization

matrices for intra and inter coded macroblocks are shown in Fig. 2-4. Then we can use (2-6)

and (2-7) to compute quantization coefficients and dequantized coefficients, respectively.

 13

Figure 2-4 Default weighting matrices for MPEG quantization.

Quantization：

)_2/()_]][[//16]][[(]][[scalequantizerscalequantizerkvuWvuFvuQ ⋅⋅−⋅=

where
⎩
⎨
⎧

=
blocks codedinter for])][[(
blocks coded intrafor 0

uvQFsign
k (2-6)

Inverse quantization ：

⎩
⎨
⎧

≠××+×
=

=
0 QF[v][u] if , 16 /) scalequantizer_] W[w][v][u k)QF[v][u]((2

 0 QF[v][u] if , 0
]][['' vuF

where
⎩
⎨
⎧

=
blocks codedinter for])][[(
blocks coded intrafor 0

uvQFsign
k (2-7)

 H.263 Quantization

This quantization method is derived from the coefficient quantization used in H.263. It

doesn’t apply the weighting matrix technique and only quantize by a constant value.

Equations of the quantization and inverse quantization are shown as follows.

Quantization：

⎩
⎨
⎧

⋅−
⋅

=
blocks codedinter for)_2/()_]][[(
blocks coded intrafor)_2/(]][[

]][[
scalequantiserscalequantiservuF

scalequantiservuF
vuQF (2-8)

4541383532302827
4138353230282625
3835323028262423
3531302826242322
3230282624232221
3028262423222120
2827252321191817
272523211918178

3331302827252423
2130282726242322
3028272624232221
2827262523222120
2726242322212019
2524232221201918
2423222120191817
2322212019181716

Default weighting matrix for
intra coded MBs

Default weighting matrix for
inter coded MBs

 14

Inverse quantization：

()
()⎪
⎩

⎪
⎨

⎧

≠×+×
≠×+×
=

=
even is scalequantizer_ , 0QF[v][u] if ,_1]][[2
odd is calequantzer_s , 0QF[v][u] if ,_1]][[2

0 QF[v][u] if , 0
]][[''

scalequantizeruvQF
scalequantizeruvQFuvF (2-9)

2.3.3 AC/DC Prediction

There exist statistical dependencies for some of the AC and DC coefficients of the

neighboring blocks. We can predict the values of one block from the corresponding values of

one of the neighboring blocks. The AC/DC prediction is applied in only the case of intra

coded MBs. The AC/DC prediction process is shown in Fig. 2-5.

Figure 2-5 AC/DC prediction process for intra coded MBs.

In Fig. 2-5, the black square in the top-left corner of each block indicates the DC

coefficient. The vertical gray rectangle indicates the column AC coefficients and the

horizontal gray rectangle indicates the row AC coefficients. The prediction is either from the

left or the top neighboring block. The prediction direction will be selected is according to the

 15

horizontal and vertical DC gradients around the block. As in the table 2-1, the DC gradient

from B to A and the DC gradient form B to C are compared. That decides the prediction

direction of block X and the lowest gradient is chosen for the AC/DC prediction. In addition,

if any block is outside the VOP, its DC coefficient value will be set to 2(bits_per_pixel +2).

 Table 2-1 AC/DC prediction pseudo code

2.3.4 Scan

In order to build the symbols of entropy coding, we need to transform the

two-dimensional matrix values into a one-dimensional vector. A scanning process is used for

the 2D to 1D conversion. There are three scanning modes defined in the MPEG-4 standard.

They are the zigzag scan, the alternate horizontal scan, and the alternate vertical scan and

these modes are shown in Fig. 2-6. The scan that shall be used is decided by the following

method. For intra blocks, if non-prediction occurs, the zigzag scan is selected for all blocks in

a macroblock. Otherwise, the DC prediction direction is used to select a scan on block basis.

For example, if the DC prediction direction refers to the horizontally adjacent block, the

alternate-vertical scan is chosen for the current block. Otherwise, the alternate-horizontal scan

is selected for the current block if DC prediction direction refers to vertically adjacent block.

For all other blocks, the 8x8 blocks of transform coefficients are scanned in the “zigzag”

scanning direction.

if (|FA[0][0] – FB[0][0]| < |FB[0][0] – FC[0][0]|)
 predict from block C
else
 predict from block A

 16

Figure 2-6 Alternate MPEG-4 scanning mode

2.3.5 Variable Length Coding

In many cases, the quantization truncates the frequency components to zero. Therefore

encoder uses variable length coding to encode the data, and the VLC will replace the string of

zero with a count of how many zeros. The MPEG-4 adopts a novel 3-D VLC to encode the

video stream. Traditional VLC is a 2-D run and level coding. Where run represents the

number of zero coefficients preceding a non-zero coefficient in the scan order, and level

represents the absolute value of this non-zero coefficient. As for the MPEG-4, additional

symbol “LAST” indicates whether this is the final nonzero coefficient in the block. The

standard describes how the actual values of these data elements (coefficients, zero runs, and

LAST) can be decoded from the variable length codes. Finally, Huffman coding is used for

the entropy coding.

Alternate
Horizontal scan

Alternate
Vertical scan

Zigzag scan

 17

Chapter 3 Architecture Design of

MPEG-4 Video Texture Coding

3.1 Texture Coding Units Overview

In this chapter, the architecture of texture coding units is described. The texture coding

units include the DCT, the quantization, the inverse quantization, the inverse DCT, and the

AC/DC prediction and the architecture is shown in Fig. 3-1. Before the texture coding engine,

a ping-ping buffer is required to latch the data. This ping-pong buffer consists of two

memories and can generate two independent addresses for reading and writing at the same

time. Which memory will be selected to read or write data is controlled by texture controller.

When data from the ping-pong buffer is valid, the DCT/IDCT block is used to transfer the

spatial values to the frequency values. Based on the row-column decomposition technique, the

DCT and IDCT share the same architecture unit to improve implementation efficiency.

Figure 3-1 Overall architecture of MPEG-4 texture coding

 18

Two processing paths in the texture coding architecture are shown in Fig. 3-2. One is the

encoding path including the DCT, the quantization, the AC/DC prediction, and the VLC in

intra coding mode. The other is the reconstructed path consisting of the inverse quantization,

the IDCT, and the serial-to-parallel block. The texture controller sends out the signal “DCT”

to decide which function of DCT or IDCT will be activated in the DCT/IDCT block. There

are two ways to get the input data for the DCT/IDCT. One is from the ping-pong buffer and

the data is used for the DCT procedure; the other is from the inverse quantization block and

the data is used for the IDCT procedure. A de-multiplexer controlled by the signal “DCT_out”

decides the path of the output data from the DCT/IDCT block. The output data of IDCT are

pixel-by-pixel, but the reconstructed frame data delivering through AMBA bus are four pixels

per time. Therefore, a serial-to-parallel block is required. When the data come out, the flag

“intra” selects the destination which is either the frame memory (through AMBA) or the

motion compensation unit.

Figure 3-2 Architecture of MPEG-4 texture coding data path

Encoding path

Reconstructed path

 19

 In the following sections, the ping-pong buffer, the DCT/IDCT architecture, the

quantization, the inverse quantization, and the AC/DC prediction block are described in more

detail.

3.2 Ping-pong buffer unit

In the ping-pong buffer, there are two ram memories with the same size and each memory

is 3456 bits (64(pixels/block) x9(bits/pixel) x6(blocks) = 3456 bits). The pin definition of the

ping-pong buffer is described as follow. The architecture of the ping-pong buffer is shown in

Fig. 3-3.

WR_RAM_Sel：This flag represents which ram is selected for writing data, and the flag is

decided according to the position of the current MB. The WR_RAM_Sel

sets ‘0’ for writing RAM0 and ‘1’ for writing RAM1.

RAddr ：These addresses are used for reading data. RAddr [3] decides which ram will

be read, and RAddr [2:0] determines the index of the sub-block (including

Y1, Y2, Y3, Y4, Cb, and Cr) in this ram.

Intra ：This flag reveals the coding mode. In intra coding mode, input data are got

from the frame memory through AMBA bus. In inter coding mode, input

data are the errors from the motion compensation.

WAddr ：These address are used for writing data. WAddr [6:4] determine the number

of the sub-block in the macroblock, and WAddr [3:0] are the data

addresses of the sub-block.

 20

Figure 3-3 Architecture of ping-pong buffer

3.3 DCT/IDCT Architecture

A popular approach for the implementation of the 2-D DCT/IDCT is the row-column

decomposition method [8], [9]. The 2-D transformation is computed by applying the 1-D

DCT/IDCT by rows and, columns to reduce the complexity and hardware cost. A transpose

memory is necessary to record the data between the two 1-D DCT / IDCT and the coefficients

from column-by-column to row-by-row. We implement the DCT/IDCT architecture based on

Weiping Li’s algorithm ＞. The basic computation performed by the DCT/IDCT is the

evaluation of the N x N matrix by the products of Nx1 vectors. The computation of the

product of triple matrix are, Z=AXAT, for the DCT and Z=ATXA for the IDCT [12], where A

is an 8x8 matrix shown in equation (3-1). Even rows of A are even-symmetric and odd rows

of A are odd-symmetric. Thus, we can separate this matrix into the even and odd rows by

exploiting the symmetry in the row of A.

EnRD
RAddr[3:0]

WR_RAM_Sel
Clock

DataIn
[35:0]

WAddr
[6:0]

EnWR

MC

MC

MC

ValidOut

DataOut[8:0]

RAM0 RAM1

Intra

Intra

Intra

Y1 Y2
Y3 Y4

U

V

Y1 Y2
Y3 Y4

U

V

Resetn

 21

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

−
−

−
−

−−
−−

−
−

−
−−

−−
−−

−

−−−−

=

ge
fc

db
ff

bd
fc

eg
cf

eb
ea

gd
aa

dg
aa

be
aa

dg
cf

be
fc

eb
cf

gd
fc

bd
aa

eg
aa

ge
aa

db
aa

A , where

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

16
7cos
8

3cos
16
5cos
16
3cos
8

cos
16

cos
4

cos

2

π

π

π

π

π

π

π

N

g
f
e
d
c
b
a

 (3-1)

The 2-D DCT/IDCT architecture of row-column decomposition is shown in Fig. 3-4. The

2-D DCT/IDCT transform is typically separated into two 1-D DCT/IDCT transformation to

reduce the area cost and complexity. The row-column decomposition technique is

implemented in two ways ： DRCD (direct row-column decomposition) and MRCD

(multiplexed row-column decomposition) shown in Fig. 3-4(a) and Fig.3-4(b), respectively.

The DRCD architecture consist two 1-D DCT/IDCT units and one transpose memory.

Compared with the MRCD, it needs lager hardware cost but fewer latency. The MRCD

architecture requires only one 1-D DCT/IDCT unit and one transpose memory. It uses the

multiplexer and the de-multiplexer to determine the processing path. Because the row and

column share the same 1-D DCT/IDCT unit, next data are not allowed to input when 1-D

DCT/IDCT unit is working. It results in the longer latency and the fewer throughput rate. But

the MRCD needs smaller area than the DRCD.

 22

Figure 3-4 2-D DCT/IDCT architecture of row-column decomposition

The 1-D DCT/IDCT architecture consists of many processing units as shown in Fig. 3-5.

Both DCT and IDCT have five-stage pipeline architecture. It consists the following blocks.

I. Serial to parallel

 A serial-to-parallel unit is needed because the DCT/IDCT requires the 8 pixels input in

parallel.

II. Pre-processor

 The pre-processing unit of the DCT/IDCT will produce a set of 8 new values according

to (3-2). These new values could be computed by the additions and subtractions of

combinations of the input pixels.

III. Multiplier-adder

The multiplier-adder based architecture is used to accumulate the eq. (3-3) to the eq. (3-5).

As shown in Fig. 3-6, the multiplier-adder unit consists of four multipliers and three adders.

 1D

DCT / IDCT
 UNIT

1D

DCT / IDCT
 UNIT

TRANSPOSE
MEMORY

X Y Z

 1D

DCT / IDCT
 UNIT

TRANSPOSE
MEMORY

X

Y

Z

D
E
M
U
X

M
U
X

Y

(a)

(b)

 23

IV. Post-processor

The post-processing unit will produce 8 DCT/IDCT coefficients according to eq. (3-6)

V. Parallel to serial

Finally, a parallel-to-serial unit is used to generate the output coefficients in serial.

Figure 3-5 Architecture of 1D DCT/IDCT unit

Figure 3-6 Architecture of multiplier-adder unit

MUL 0

MUL 1

MUL 2

MUL 3

Adder 0

Adder 1

Fin_Adder out

 24

() () ()
() () ()
() () ()
() () ()
() () ()() () ()()
() () ()() () ()()
() () () () ()() () () () ()()
() () () () ()() () () () ()()

() ()
() ()
() ()
() ()
() ()
() ()
() ()
() ()

00
40
61
20
53

72
31
00

526143700
526143700

52611
43700

523
342

611
700

2

2

4

4

8

8

8

8

2

2

4

4

8

8

8

8

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=
=
=
=
=
−=

=
=

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

+++++++=
+++−+++=

+−+=
+−+=

−=
−=
−=
−=

inS
ind
ind
ind
ind

ind
ind
ind

ininininininininS
inininininininind

inininind
inininind

inind
inind

inind
inind

IDCTIFDCTIF

 (3-2)

() () () () () () () () ()
() () () () () () () () ()
() () () () () () () () ()
() () () () () () () () ()

0*33*22*11*05
1*30*23*12*07
2*31*20*13*03

3*32*21*10*01

88888888

88888888

88888888

88888888

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+−−−=
++−−=
+++−=

+++=

dCdCdCdCm
dCdCdCdCm
dCdCdCdCm

dCdCdCdCm

 (3-3)

() () () () ()
() () () () () 0*11*06

1*10*02

4444

4444

⎩
⎨
⎧

+−=
+=

dCdCm
dCdCm

 (3-4)

() () ()
() () ()⎩

⎨
⎧

=
=

 0*00
0*04

22

22

SCm
dCm

 (3-5)

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

N
iC

i

N 2
3*cos

8
2 π (3-6)

)0()4()2()1()7(
)0()4()6()3()6(
)0()4()6()5()5(
)0()4()2()7()4(
)0()4()2()7()3(

)0()4()6()5()2(
)0()4()6()3()1(
)0()4()2()1()0(

)7()7(
)6()6(
)5()5(
)4()4(
)3()3(
)2()2(
)1()1(
)0()0(

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

+++−=
+−+−=
+−−−=
++−=
++−−=
+−−=
+−+=
+++=

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−=
=
=
=
=
=
=
=

mmmmout
mmmmout
mmmmout
mmmmout
mmmmout

mmmmout
mmmmout
mmmmout

mout
mout
mout
mout
mout
mout
mout
mout

IF IDCTIF DCT

 (3-7)

Because the d2 (0) and S2 (0) in the eq.3-2 have the similar items except for the operator

adder or subtraction, we can rewrite d2 (0) and S2 (0) in the eq.3-8 to reduce the adders in the

 25

hardware implementation. Due to the modification of eq.3-2, rewording the m(4) and m(0) in

the eq.3-5 are necessary when the process is in the DCT mode. The new equation is described

in (3-9). The numbers of the adders in the pre-processor are 12.

() () () () ()
() () () () () 52610

43700

2
'

2
'

ininininS
inininind

+++=

+++=
 (3-8)

() () () ()()
() () () ()()

 00*00

 00*04

2
'

2
'

2

2
'

2
'

2

⎪⎩

⎪
⎨
⎧

+=

−=

SdCm

SdCm
 (3-9)

We can rearrange (3-7) to get fewer adders as shown in (3-10). The adders in the

post-processor are 14.

)5()6()4()0()5(
)5()6()4()0()2(
)3()6()4()0()6(
)3()6()4()0()1(
)7()2()4()0()4(
)7()2()4()0()3(
)1()2()4()0()7(
)1()2()4()0()0(

)7()7(
)6()6(
)5()5(
)4()4(
)3()3(
)2()2(
)1()1(
)0()0(

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−−=
+−−=
−+−=
++−=
+−+=
−−+=
−++=
+++=

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−=
=
=
=
=
=
=
=

mmmmout
mmmmout
mmmmout
mmmmout
mmmmout
mmmmout
mmmmout
mmmmout

mout
mout
mout
mout
mout
mout
mout
mout

IF IDCTIF DCT

 (3-10)

The complexity of our 1-D DCT/IDCT algorithm is depicted in Table 3-1. We need four

multipliers and three adders in the multiplier-adder module. Twelve and fourteen adders are

required in the pre-processor and the post-processor, respectively. One adder is used for

rounding after the parallel to serial block. Total number of the adders in our proposed 1-D

DCT/IDCT algorithm is 30.

 26

Table 3-1 Complexity of the proposed 1-D DCT/IDCT algorithm

 Our proposed
Multipliers 4

Adders 12+3+14+1=30

As shown in Table 3-2, our design uses fewer multipliers to achieve the 1-D DCT/IDCT

architecture while comparing with previous work. The design of [11] is also based on the

weiping Li’s algorithm and needs 7 multipliers to implement a 1-D DCT/IDCT. The design of

[13] is required 9 multipliers and 21 adders to achieve.

Table 3-2 complexity of different 1D DCT/IDCT design

Algorithm Cheng’s[13] Bousselmi’s[11] Our proposed
Multipliers 9 7 4

Adders 21 31 30

Fig. 3-7 shows the read/write action of the DCT/IDCT transpose memory [14]. For the

row-column decomposition of the 2D DCT/IDCT, the coefficients of the 1-D DCT/IDCT are

written into the transpose memory row-by-row in sequence (0, 1, 2, 3, 4, 5, 6, 7, 8, …). As the

coefficients of 1-D DCT/IDCT are written to the address 49, the data in the first column can

be prepared to read. After that, the data in the transpose memory will be read column by

column, (0, 8, 16, 24, 32, 40, 48, 56, 1,…). As shown in Fig. 3-7 (b), the data written to the

address 56 is ready to be read after 8 cycles. At next time slice, other coefficients of the 1-D

DCT/IDCT will be written column by column and read row by row. Therefore, reading and

writing data in transpose memory can be achieved at the same time under this structure.

 27

Figure 3-7 Read/write action of DCT/IDCT transpose memory

A multiplier-adder based DCT/IDCT architecture is shown in Fig. 3-7. In Fig. 3-7, there are

five quantization error sources: 1. The quantization of the coefficients for the row-wise and

the column-wise transform (Coeff1 and Coeff2). 2. The wordlength reduction for the outputs

of the first and the second multipliers (Adder1 and Adder2). 3. The output of the limiter for

the row-wise transform (1D_Out). The most suitable way for deciding the minimum

wordlength of the Coeff1, the Coeff2, and the 1D_Out is to compute the overall mean square

error. The peak mean error, and the overall mean error are important to determine the

minimum wordlength of Adder1 and Adder2 [15]. The optimum wordlength of these five

terms in our work are shown in Table 3-3. The IDCT precision of this module meets IEEE

IDCT precision standard and the implementation results are shown in chapter 4.

(a) (b)

 28

Figure 3-8 Block diagram of a multiplier-adder based 2-D DCT/IDCT

Table 3-3 The optimized wordlength for the our 2-D DCT/IDCT architecture

 Optimized Word Length

Coeff1 13

Acc1 21

1D_Out 16

Coeff2 12

Acc2 20

 In order to reduce the hardware cost of the architecture of the DCT/IDCT, rounding is

required after a multiplication. In our architecture, rounding is used to truncate the output data

of each 1D DCT/IDCT module. We adopt the true rounding method to improve the IDCT

precision. For the n x n multiplication, true rounding requires adding a 1 at the nth least

significant bit of the product and truncates the least significant n bits of the sum. This process

is illustrated via a dot diagram for a six by six multiplier on Fig.3-9[16].

Multiplier

Coeff
ROM

Multiplier

Coeff
ROM

Transpose M
em

ory

12

Coeff1

Adder

Adder

Coeff2

1D_out

Round & Clip

9

Row-wise 1D DCT/IDCT Unit

Column-wise 1D DCT/IDCT

Acc1

Acc2

Post-
process

Post-
process

 29

Figure 3-9 Rounded Multiplication Dot Diagram

The core characteristics of the DCT/IDCT architecture have been summarized in Table 3-4.

Table 3-4 Core characteristics of the DCT/IDCT architecture

Inputs 9 bits(DCT), 12 bits(IDCT)
Outputs 12 bits(DCT), 9 bits(IDCT)

Internal wordlength 16 bits
Technology 0.18-um CMOS

No. of transistors 168,244
Clock size 70 MHz

Mode Selection DCT or IDCT
Block size 8 x 8
Accuracy IEEE std. 1180-1990

3.4 Quantization and inverse Quantization Design

Quantization applied to the transform coefficients can be viewed as division followed by the

integer truncation. The division could be regarded as multiplying the reciprocal number.

Consequently, the hardware architecture of the divider could be achieved by a multiplier and a

1

Form product

ADD 1

TRUNCATE

 30

shifter. In order to meet the quantized values defined in the MPEG-4 standard, the

quantization tables have to be established. When building up the N-bit quantization table, the

reciprocal of the quantization step size must be set to 2^N /x + 1 (where x is the quantization

step size). For example, while the step size is 4, the 16-bit binary data is

(0100000000000001)bin . After multiplying the binary value in the quantization table, the shift

for truncating data to integer is required. The MPEG-4 standard adopts a non-linear scaler for

DC coefficients of the DCT blocks specified in Table 3-5

Table 3-5 Non linear scaler for DC coefficients of DCT blocks,

expressed in terms of relation with quantizer_scale

Component:
Type

dc_scaler for quantizer_scale range

 1 ~ 4 5 ~ 8 9 ~ 24 >=25
Luminance:
Type1

8 2×quantizer_scale quantizer_scale+8 2×quantizer_scale-16

Chrominance:
Type2

8 (quantizer_scale+13)/2 quantizer_scale-6

The architecture of the quantization has to select a proper quantization table according to

the quantized type of the current data. The type definitions are based on the luminance or the

chrominance, the AC value or the DC value, and the inter block or the intra block. The

flowchart of the quantization is shown in Fig. 3-10. First, the coding mode of the block is

judged by the intra signal. In the intra coding mode, different quantization tables are provided

for the luminance and the chrominance of the DC values. In some cases, H.263 quantizer

guarantees that all coefficients equal to zero. As shown in Table 3-6, the quantized value is set

to zero if the absolute value of the DCT coefficient is less than 2.5*quantization parameter in

the inter coding mode. In the intra coding mode, the threshold is set to 2*quantization

parameter.

 31

Table 3-6 H.263 quantizer to guarantee all coefficients equal zero.

H.263 Quantizer

INTER mode for AC/DC coefficients |F (u, v)| - QP/2 < 2*QP
to guarantee all coeff(u,v) = 0

INTRA mode for AC coefficients |F (u, v)| < 2*QP
to guarantee all coeff(u,v) = 0

Figure 3-10 Flowchart of the quantization architecture

 Each block has one bit to represent a coded/no coded status of it. In the inter coding mode,

Block Type

Intra

Intra Inter

DC AC

Lum_DC_Scaler

AC_LUT AC_LUT

|F (u, v)| + DC/2

|F (u, v)| - QP/2

cbp

Component

Luminance Chrominance

Lum

Chro_DC_Scaler

Multiplier

Result
AC_LUT：AC Look-Up Table
F(u,v)：DCT Coefficient
QP：Quantization Parameter
cbp：coded block pattern

|F (u, v)|

 32

the value of the cbp is set to ‘1’ if any coefficient in the block is not zero. In the intra coding

mode, cbp is necessary to accumulate the absolutes of coefficients in this block. As shown in

Fig. 3-11, when one of the grey pixels in the top left corner of the block is not zero, or the sum

of all the absolutes of coefficients is greater than 2, which implies that this block needs to be

encoded, the value of this cbp is set to ‘1’.

Figure 3-11 coded block pattern in intra coding mode

The inverse quantizer has similar architecture with the quantizer, except the data with fewer

bits in the look up tables. There is the mismatch due to exact values (integer + 1/2) of the

IDCT output, so the reconstruction level of the quantizer must be designed to alleviate this

problem. A simple way to solve this mismatch problem is to avoid even values for the

reconstruction levels. The uniform quantizer adopted in CCITT H.261-1990, Video Codec for

Audiovisual Services at px64 kbit/s, the reconstruction levels (REC) are defined as

follows[17]：

()
()

()
()

 0 0
 0 ;1 1*2*
 0 ;11*2*

 0 ; 1*2*
 0 ; 1*2*

, LEVEL ; REC
 "even" QUANT LEVELLEVELQUANTREC

LEVELLEVELQUANTREC

 "odd" QUANT LEVELLEVELQUANTREC
LEVELLEVELQUANTREC

==
=<+−=

>−+=

=<−=
>+=

 (3-11)

where QUANT ranges from 1 to 31 whose value corresponds to half of the step size.

 33

Fig.3-12 shows the flowchart of the inverse quantizer. First, to judge the current block is

intra or inter is required. If the current block is the intra block, it implies the DC values should

be got from multiplying the coefficients by the dc_scaler value. For other coefficients, the

dequantized values will be obtained from the eq. 3-11.

Figure 3-12 flowchart of inverse quantizer

3.5 AC/DC prediction design

In order to perform the AC/DC prediction, a large memory to store the information of the

frame is necessary and the Y component storage is stored as in Fig.3-13. After the prediction

of a block is complete, it is necessary to update the coefficient. For instance, while the

prediction of block 0 is accomplished, the DC coefficient is copied to that of block B and D.

The top AC coefficients are copied to the top locations of the block D and the left AC

coefficients are copied to the left locations of the block B. The decision of the prediction

direction is based on the DC coefficient of the neighbor blocks of the current block. Let’s take

the block 0 as an example, the DC value of block C, B, and D are used to determine the

prediction direction.

Intra ??

DC coeff?

True

Get REC

False

Coeff *dcscaler

True

Get REC

Result

False

 34

Figure 3-13 Y component storage for AC/DC prediction

The architecture of K.Suh is adopted to implement the AC/DC predictor [18]. Fig. 3-14

shows the structure of the memory to store the prediction data for CIF 352x288 resolutions.

The horizontal memory stores the DC and horizontal AC coefficients and its size depends on

the frame width. The vertical memory stores the vertical DC and AC coefficients.

LT_DC_VALUE memory stores the top left value to be predicted. The top left value is

replaced by the top value of each 8x8 block when a block read top value according to the

table 3-8.

Figure 3-14 Structure of prediction memory

 C D E

 B

 A

 0 1

 2 3

depend on the frame width

current block

block in the top

block in the left

DC prediction coefficients

vertical AC coefficients

horizontal AC coefficients

horizontal_memory
(352(Y) + 352(Cr, Cb) x12 = 704x12 bits

LT_DC_VALUE
6x12 bits

vertical_memory
32x12 bits

742x12 bits

 35

 Table 3-7 shows that the left top DC values transfer in each prediction block. For example,

when current block index is 0, the left top DC value is read from index 1 of LT_DC_VALUE

memory for prediction. The top value of block index 0 is stored to the LT_DC_VALUE

memory with index 0 and this data is the left top DC value of the block 1.

Table 3-7 Storing left top value and reading for each block index

Block index 0 1 2 3 4 5
Storing LT_value 0 1 2 3 4 5
LT memory read 1 0 3 2 4 5

To perform the AC/DC prediction, the division is required to implement the normalization

for the DC coefficient. In order to reduce the hardware cost of the AC/DC predictor, the

quantizer will be used to normalize the DC coefficient. The interleaved DCT/IDCT

scheduling (IDIS) [14] is adopted and modified to meet our request. The scheduling for the

DCT/IDCT, the Q (quantization), the IQ (inverse quantization) units are shown in Fig.

3-15.We can use the idle time of the quantizer unit to perform the division of the DC

coefficient and fetch the AC coefficients from the prediction memory.

Figure 3-15 Timing diagram of interleaved DCT/IDCT scheduling

DCT

1D 1D

Q

IQ

DCT

1D 1D

Q

IQ

IDCT

1D 1D

DCT

1D 1D

Q

IQ

DCT

1D 1D

Q

IQ

IDCT

1D 1D

IDCT

1D 1D

DCT

1D 1D

Q

IQ

1D

IDCT

1D 1D 1D

IDCT

1D 1D

 ：Use the division in Q for DC normalization and fetch AC

 36

The architecture of the AC/DC prediction is depicted in Fig. 3-16. The prediction memory

stores the AC/DC prediction coefficients of the past and these coefficients are used to predict.

The direction manager decides the prediction direction by comparing the DC gradients. The

DC normalization normalizes the boundary DC values. The state machine generates the

irregular address to access the prediction memory and the register file stores the prediction

values and the quantized values.

Figure 3-16 Architecture of AC/DC prediction

It doesn’t guarantee that the data after AC/DC prediction are better than the data without

prediction. Consequently, the coded block patterns in intra coding mode are determined by the

comparison between the data after and before prediction. When the summation of the absolute

value after prediction is larger than without prediction, the smaller values (quantized DCT

coefficients) will be adopted to determine the coded block patterns and vice versa. In the inter

coding mode, if any AC coefficient in the 8x8 block is non-zero, it implies that this block is

necessary to encode. Then, the coded block pattern is set to ‘1’. The Finite State Machine of

the AC/DC prediction is depicted in Fig. 3-17. Each state of this finite state machine is

described as follows.

State
Machine

Prediction
Memory

DC normalization

Direction manager
|B-C| > |A-B|

Register file

Block
Memory 8x8

Enable

 37

 IDLE： do nothing in this state, and stay until the DCT coefficient is valid in intra coding

mode.

 Read LT DC：read the left top DC value from the LT_DC_VALUE memory. If the

current block is a boundary block, the DC values around it may be a constant. Skipping

the next states Read Top DC or Read Left DC is allowed.

 Read Top DC：get the top DC value.

 Read Left DC： get the left DC value.

 Store LT DC：store the top DC value into the LT_DC_VALUE according to Table 3-8.

 Check Gradient：determine the prediction direction and get AC coefficients from the

prediction memory.

 Read Top AC：read the AC coefficients for prediction from the horizontal memory.

 Read Left AC：read the AC coefficients for prediction from the vertical memory.

 Waiting Quantized Data：fetch prediction values, and wait until the quantized values are

valid.

 Store Next Prediction：compute the prediction errors and store the current quantized DCT

coefficients into the prediction memory.

 ACDC To VLC：judge whether the prediction of the current macroblock is complete. Go

to the ACDC cbp state when the prediction is accomplished; else go to the IDEL state

then wait for the next 8x8 block.

 ACDC cbp：deliver the coded block patterns to the VLC unit then enter the IDLE state.

 38

Figure 3-17 AC/DC prediction Finite State Machine

 39

3.6 Finite State Machine of Texture Coding

The valid signals are used to represent that the values are valid between each block.

Therefore, the valid signals can be taken as the judgment on the conditional branch in the

finite state machine of the texture coding. There are different coding paths in the inter coding

mode and the intra coding mode. In the intra coding mode, it must be through the AMBA bus

to load the input data into the ping-pong buffer and write the output data to the reconstructed

frame memory. In the inter coding mode, the data access is controlled by the motion

estimation engine. Consequently, the AMBA access finite state machine is required only in the

intra coding mode. The AMBA access finite state machine is shown in Fig. 3-18 and each

state of the AMBA FSM is described as follows.

 IDLE：nothing to do in this state, and wait for enable reading or writing.

 Read Request：request to access data through AMBA bus and wait for the response of the

AMBA controller. When the user of the AMBA bus is texture coding, it implies that to

access data through AMBA bus is allowed.

 AMBA Get RAddr：get the address to read data.

 AMBA Get WAddr：get the address to write data.

 AMBA Read：load the data in the next macroblock into the ping-pong buffer. To improve

the overall timing efficiency, a schedule of reading AMBA is essential. In order to avoid

reading and writing data through AMAB bus at the same time, the data will be read in

block index 3 and 6 respectively.

 AMBA Write：writing the data into the reconstructed frame memory through AMBA bus.

It is required to write sixteen times each block.

 AMBA Finish：when reading or writing data is complete, send a finished flag to the

texture controller then go to the IDLE state.

 40

Figure 3-18 AMBA Read/Write Finite State Machine

Texture coding FSM is shown in Fig. 3-19. When the finite state machine is enabled, first

step to do is to judge what kind of frame to be encoded. If the MB_I_P signal is ‘1’, it

indicates that the current frame is the intra frame; otherwise, the current block frame is the

prediction frame. After encoding, the finite state machine enters the Texture_Finish state.

Texture coding delivers a finished signal to the top controller, and waits for the acknowledge

signal from the top controller. This finite state machine will get into the IDLE mode when the

acknowledge signal is ‘1’.

 Texture_IDLE：texture coding engine is in the idle mode, do nothing and wait for enable

signal.

 MB_Type_Check：check the current macroblock is inter or intra mode.

 Inter_Encoding：inter encoding procedure.

 41

 Intra_Encoding：intra encoding procedure.

 Texture_Finish ： texture coding for a macroblock is complete and wait for an

acknowledge signal from the top controller.

Figure 3-19 Finite State Machine of texture coding

Fig. 3-20 illustrates the intra encoding FSM. In this FSM, it is required to determine that

the current macroblock is the first macroblock or not. If yes, it signifies that there is no

available data in the ping-pong buffer and we have to read data from the frame memory in the

first instance. When the current macroblock is not the first one, the data of the next

macroblock will be read into the ping-pong buffer during the UV Block-level operation state.

The Block-level operation represents the encoding operation of the 8x8 block. Because

ctrl_texture_en
=’1’ ?

MB_Type_Check

MB_I_P=1’ ?

Intra_Encoding
Inter_Encoding

Texture Finish

Ctrl_texture_
ack =’1’?

True

True

True False

False

False

Texture_IDLE

 42

AMBA bus is shared by the texture coding engine, the motion compensation engine and the

variable length code engine, only one engine can use AMBA bus at the same time. The texture

coding FSM doesn’t enter the Texture_Finish state until completely writing the reconstructed

values through the AMBA bus.

Figure 3-20 Intra encoding procedure

Intra_Start

First MB?

MB0_wait_AMBA

AMBA_Read
Finish?

Y Block-level
Operation

Block_index
< 3 ?

UV Block-level
Operation

Block_index
< 5 ?

Texture_Finish

True
True

True

True

True

False

False

False

False

Check_UV_
Finish

AMBA_Write_
Finish?

 43

In inter coding mode, storing data into the ping-pong buffer is controlled by the motion

estimation engine. Fig. 3-21 represents the inter encoding FSM. It is unnecessary to control

the AMBA bus in this mode, so the luminance blocks and the chrominance blocks have the

same procedure. The block index counts the number of the coded blocks. After the whole

macroblock encoding, it is imperative to confirm that the last reconstructed value is delivered

and to avoid data missing.

Figure 3-21 Inter encoding procedure

Inter Start

Inter_push_
MC2Pipo

DCT_Addr
= 63?

Inter Block-
Level Operation

Block_Index
< 5 ?

Inter_MB_Finish

Last_IDCT_
Data out?

Texture_Finish

 44

Basically, the block-level operation in the intra coding mode is the same as that in the inter

coding mode. A flag between two blocks illustrates whether the data is valid or not. Due to the

valid signals, it is extremely simple to implement the block-level operation as shown in Fig.

3-22.

Figure 3-22 Block-level Operation Procedure

MB DCT

Pixel_cnt = 63?

DCT2IDCT0

DCT_valid=’1’?

False

True

DCT2IDCT1

Q_valid=’1’?

False

True

IDCT0

IQ_valid=’1’?

False

True

False

IDCT1

IQ_valid=’0’?

False

True

Blk_Index_cnt

True

 45

Chapter 4 ASIC Implementation

4.1 Design Flow

The traditional hardware design flow is depicted in Fig. 4-1. In the first instance, the

module specification is determined and the computational complexity of each algorithm are

investigated and analyzed by the C model. The C model adopted for our architecture is the

XviD [19] MPEG-4 video encoder/decoder, which is a free software developed by the XviD

organization. The designers can modify or redistribute the XviD MPEG-4 software in

accordance with their requirements respectively. Some processes in C model are rewritten in

hardware-like format consisting bit-width precision and data flow. It helps us to verify the

hardware designs and find out the bugs. For instance, both the DCT and the IDCT have the

same precision in the software and hardware model. The hardware architectures are

implemented by using Hardware Description Language such as Verilog or VHDL. HDL

simulation procedure is used to confirm that the results meet our requirement. The waveform

simulation using Modelsim can analyze the timing and the signal values to correct the errors

in the hardware model. When the function of the hardware model is correct, we can use

Synopsys to synthesize these gate-level HDL codes. Then, the post-synthesis simulation is

provided to check the timing specification. If the timing is not satisfied, the more tight

constraints may be used or the hardware architecture may be modified and verified again.

Before achieving our specification, these steps are repeated.

 46

Figure 4-1 Module design flow

4.2 Functional Verification

Generally speaking, the design and the simulation in the software model are faster than that

in the hardware model. Because the original DCT and IDCT algorithms in the XviD MPEG-4

video codec are not suitable for the hardware implementation, the C models of DCT and

IDCT are required to be developed. When the C models of DCT and IDCT are implemented

to emulate our DCT/IDCT hardware architecture, it makes the testing and verification of our

proposed architecture more efficient. By decoding the encoded files, it is very easy to verify

whether the C models of DCT and IDCT is correct or not. After the verification of the C

models completely, the flowchart as shown in Fig. 4-2 is adopted to verify the architecture of

the MPEG-4 texture coding. The testing patterns for functional verification of each module

are obtained from the MPEG-4 C model. The hardware model is simulated with Modelsim

developed by Mentor Graphics. Some information such as the waveform and the signal values

can be displayed on the screen during the simulation. Dumping the information of the I/O

signals to the text files will be efficient to check the errors. The output values of each module

in software model and hardware model are written into text files. These files are manually

Module Spec

C Model Simulation

HDL Simulation

Synthesis
Design Flow

Revise Flow

 47

compared by using UltraEditor. If it encounters any mismatch in the hardware model and the

software model, the HDL codes will be modified and then simulated again. The iteration

continues until the comparison of the text file from hardware model and that from the

software model is equivalent.

Figure 4-2 Flow chart of functional verification

 Design For Testability

After the logic synthesis of the MPEG-4 texture coding module is complete,

design-for-testability is required to make an IC be testable. It involves inserting or modifying

logic, and adding pins. The design-for-testability technique will reduce field returns, the

complexity of test generation, the cost of testing, and improve yield. We can use the DFT

complier to achieve the design-for-testability. An overview of the DFT complier flow is

shown in Fig. 4-3. First, your scan style supported by vender’s library must be selected. The

scan style will tell the DFTC what type of scan-equivalent flip-flop is used in synthesizing the

Equal?

 .txt

 .txt

Compare
(UltraEdit)

Modify
HDL Codes

Yes

No

Software
dump text file

Hardware
output text file

Result
File

MPEG-4 C Model
Simulation

Dump text file

Test pattern
File (.txt)

Hardware
Testbench

Hardware
Model Simulation

 48

logic. Second, Pre-scan DRC is to check gate-level scan design rule before the scan chain

synthesis. We must fix the DFT violations if necessary. Third, scan-chain is inserted. Fourth,

post-scan DRC is required to confirm that there are no new DFT problems. Besides, it can

verify the scan chains synthesized operates properly, and create an ATPG-ready database.

Finally, the TetraMAX is used to estimate Fault Coverage. The fault coverage of our design

with DFT consideration can achieve 95.80%.

Figure 4-3 Overview of DFT compiler flow

Because the memory is regarded as a black-box model and unobservable for testing, the

shadow wrapper is required to insert around the memory. SynTest SRAMBIST is adopted to

support the memory testing. The memory BIST architecture is depicted in Fig. 4-4. The

BistMode signal chooses testing or working mode in our design. When testing mode is

provided, the data of the memory are obtained from the BIST controller. Since there are six

memory modules in the MPEG-4 texture coding architecture, both the BistFail and ErrorMap

have six bits to express all memories respectively. If any error occurs, it will be easily

detected from these signals. When the chip is in the working configuration, these memories

are regularly used to access data.

HDL
 Insert

Scan

 Preview
Coverage

Scan
Ready
Synthesis

Pre-scan
DRC

Post-scan
DRC

Technology Library：

Gates, flip-flops,
Scan equivalents

Constraint-based

Scan Synthesis：

Routing, balancing,
Gate-level optimization

Constraints：
Scan style,
Speed, area

 49

Figure 4-4 Memory Built-In Self-Test Architecture

 IEEE IDCT accuracy measurement

Fig. 4-5 shows the setup for measuring the accuracy of a proposed 8x8 IDCT. IEEE Std

1180-1990 specifies the numerical characteristic of 8x8 IDCT for visual telephony and similar

applications where the 8x8 IDCT results are used in the reconstructed loop. For each 8x8

block, round the 64 resulting transformed coefficients to the nearest integer values and clip

them to the range -2048 to 2047. For each of the output pixels of the 8x8 IDCT and for each

of data sets of the 10,000 block generated for the definition, measuring the peak, mean, and

mean square errors between the “reference” data and the “test” data. The random data from

range (-300, 300), (-255, 256), (-5, 5) is input and the rates are generated in 5 items which are

peak error (PE), mean square error (MSE), overall mean square error (OMSE), mean error

(ME),and overall mean error (OME). Table 4-1 shows the results.

 50

Figure 4-5 Setup for measuring the accuracy of a proposed 8x8 IDCT

Table 4-1 Accuracy Test result of the IDCT

Test
Parameter

H:300
L:-300

H：255
L:-256

H：5
L：-5

Sign
invert
300

Sign
invert
255

Sign
invert
5

L=H=0 IDCT Spec.

OMSE 0.0145 0.0151 0.0095 0.0142 0.0153 0.0095 0.0000 <0.02
 OME 0.0002 0.0001 0.0002 0.0002 0.0004 0.0002 0.0000 <0.0015
PE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 = 1
MSE 0.0175 0.0180 0.0130 0.0167 0.0180 0.0127 0.0000 <0.06
ME 0.0074 0.0094 0.0090 0.0083 0.0086 0.0093 0.0000 <0.015

4.3 Implementation Result

The timing of the proposed architecture is shown in Fig. 4-6. The DCT/IDCT architecture

has 97 cycles latency to get the output coefficients. After DCT, there are four pipeline stages

in the quantizer unit and four pipeline stages in the inverse quantizer unit. Furthermore, one

clock for status change in the texture coding FSM is required. The actual number required for

a macroblock is 1137 cycles.

 51

Figure 4-6 Timing of the proposed architecture

Table 4-2 depicts the implementation results for our texture coding engine. Due to the

interleave DCT/IDCT scheduler, we adopt the sharing technique for AC/DC prediction with

the Quantizer to reduce hardware cost. The area size of the DCT/IDCT architecture is larger

because the multiplier-adder based architecture is adopted to implement this unit. It improves

the working frequency but needs more area cost. Only one 64x16 transpose memory in the

DCT/IDCT architecture is required in our work. The total ram size of our proposed is less

than K. Suh’s. When the latency of the SDRAM are 5 clock cycles and the working frequency

is 21 MHz , our texture coding engine meets the real-time requirement for encoding the frame

sequences of CIF (352x288) at 30 fps with 54,405 gates. Furthermore, the maximum working

frequency in our design is 43 MHz.

1137 clk

DCT IN 934 clk

DCT OUT 97
clk

9
clk

IDCT IN

97
clk

IDCT OUT

 52

Table 4-2 Comparison with previous work

Our Work K. Suh’s
1137 cycles for one macroblock and the
working frequency is 21 MHz

1064 cycles for one macroblock and the
working frequency is 27 MHz

Module Logic
(Gate)

RAM
(bit)

Module Logic
(Gate)

RAM
(bit)

FDCT 7,005 64x16 DCT/IDCT 27,061 64x16
IDCT 8,091 64x16

Q 4,132 0
IQ 2,323 0

Q/IQ 3,514 0

AC/DC
prediction

11,304 742x12 AC/DC
Prediction

17,939 742x12

Control 7,980 0 AMBA
interface

2,790 0

Scan logic 1,605 0 Scan logic 2,841 0
Q. coeff
buffer

0 32x16x3
+32x8x4

Q. coeff
buffer

0 384x12

Total 54,405 12,488 Total 42,180 15,536

Table 4-3 lists the SRAMs required for each module. In the AC/DC prediction module,

there is a 742x12 bits SRAM for storing the prediction values. In the ping-pong buffer, two

SRAM are used for buffering the current macroblock data and the next macroblock data. 9

bits are necessary for expressing each pixel. There is one transpose memory in the DCT/IDCT

module, and its characteristic is dual-port. Dual port SRAM has two read/write ports, and can

be read and written simultaneously. Total SRAM used in the texture coding unit is 16,840 bits.

 Table 4-3 Memory required for each module

Functions Characteristic Depth x Width Num. Bits
ACDC
Prediction

 742x12 1 8,904

Transpose mem.
for DCT/IDCT

Dual port 64x16 1 1,024

Ping-pong buffer 96x36 2 6,912
Total 4 16,840

 53

The synthesized gate count of each module is shown in Fig. 4-7. Total gate count is 54,405

gates. The DCT/IDCT module has 27,061 gates and occupies about half logic gates in the

texture coding system. The AC/DC prediction without multiplier has 11,304 gates. This

module needs some registers to store the prediction or quantized (non- prediction) data. The

controller in the top module is designed to control each module and requires 7,980 gates. The

quantizer and inverse quantizer which both are implemented with the multipliers have 4,132

gates and 2,323 gates, respectively.

Figure 4-7 Gate Count of each module

When replacing the XviD C model by our texture coding module, the subject view is

necessary to guarantee that the quality of the reconstructed frames is excellent. Fig. 4-8 to Fig.

4-11 show the reconstructed frames of the testing sequence with our texture coding engine.

The testing environment is under the condition of 384K bit-rate, 30 frames per second, and

300 frames between each interval key-frame. The IDCT precision satisfies IEEE IDCT

precision specification and the average PSNR of our reconstructed frames are very close to

that of the XviD version. The average PSNR during the encoding using our texture coding

49%

21%

15%

8%

4% 3%

DCT/IDCT(27,061)

AC/DC Prediciton(11,304)

Controller(7,980)

Q(4,132)

IQ(2,323)

Scan logic(1,605)

 54

engine compared to that of the XviD version with four testing sequence are shown in Table

4-4. As we can see, there is only little PSNR degradation in our work. It is still

indistinguishable between these two for human vision.

Table 4-4 the average PSNR of our work and that of the XviD version

 Our work XviD

Akiyo CIF 41.43782(-0.06508) 41.5029

Foreman CIF 29.10254(-0.00819)

29.11073

Table CIF 29.72092(-0.01889)

29.73981

News CIF 33.85705(-0.04639)

33.90344

 55

PSNR= 40.11989 , Bits= 14384 PSNR= 41.82074, Bits=12256

Figure 4-8 Subject view of reconstructed frame for akiyo sequences at the 46th frame and

241st frame

PSNR= 30.30287 , Bits= 8080 PSNR= 30.65964, Bits= 14272

Figure 4-9 Subject view of reconstructed frame for foreman sequences at the 27th frame and
109th frame

 56

PSNR= 28.14944 , Bits= 8104 PSNR=31.60521 , Bits= 11480

Figure 4-10 Subject view of reconstructed frame for Table sequences at the 122nd frame and
183rd frame

PSNR= 35.451321 , Bits= 12456 PSNR= 33.287823 , Bits= 11440

Figure 4-11 Subject view of reconstructed frame for News sequences at the 21st frame and
146th frame

 57

Chapter 5 Conclusion

In this thesis, the hardware architecture for the texture coding module in the MPEG-4 video

encoder is presented. This proposed hardware core can support Simple Profile Level 3, under

frame size 352x288 with 30fps for real time video applications. In order to reduce the

hardware cost and smaller the processing time, an efficient block engine using the

interleaving DCT/ IDCT scheduling is adopted. While this module is integrated into the entire

system, it will maintain performance in low cost. Furthermore, the sharing technique for

normalizing the AC/DC prediction values and quantizing DCT coefficients is applied to

reduce area size further. The ping-pong buffer is designed to buffer motion estimation errors

or intra frame data and ensure that all the data in the buffer can be read safely and correctly.

Based on the row-column decomposition technique, the cost-effective VLSI architecture for

two-dimensional 2D DCT/ IDCT is achieved. The 2D DCT/IDCT design has a regular

structure, simple interconnects and control, and efficient implementation of the inverse

transform using the same hardware. The required finite word-length accuracy is analyzed. The

DCT/IDCT structure can achieve excellent accuracy and the accuracy conforms to IEEE

standard 1180- 1990.

In summary, a cost-effective block engine for MPEG-4 texture coding is presented and

achieved. As the architecture can be placed in the regular fashion, it is proper to be

implemented with commercial ASIC technologies. The proposed architecture can be applied

to the portable multimedia terminal for wireless multimedia services. The future work

includes three tasks. First, some improvements in our work to lower power consumption are

necessary. These methods include clock gating, skipping input macro block for DCT or IDCT

in the encoding loop…etc. Second, more functionality such as error-resilience tools, B-VOP

coding will be integrated into the original module to satisfy other video applications. Third,

 58

the decoding functions, such as variable length decoding, will also be designed to integrate

into the original architecture to be a MPEG-4 texture codec design.

 59

Reference
[1] MPEG-4 Video Group “Information Technology - Coding of Audio Visual

Object-Part2: Visual,” ISO/IEC JTC 1/SC 29/WG 11 M9477, Pattaya, March 2003.

[2] ITU-T Recommendation H.263, “Video coding for low bit rate communication,” ITU-T,

1996

[3] ISO/IEC JTC1 IS 11172, “Coding of Moving Picture and Coding of Continuous Audio for

Digital Storage Media up to 1.5 Mbps,” ISO/IEC JTC1, 1992.

[4] ISO/IEC JTC1/SC29/WG Draft CD 13818-2, “General Coding of Moving Pictures and

Associated Audio,” ITU-T Recommendation H.262 Committee Draft, 1994.

[5] Fernando Pereira and Touradj Ebrahimi, “The MPEG-4 Book,” Upper Saddle River, NJ :

Prentice Hall PTR, c2002.

[6] T. Sikora,“The MPEG-4 Video Standard Verification Model,＂IEEE Trans. on Circuits

and Systems for Video Technology, vol.7, No.1, pp.19-31, Feb. 1997.

[7] Atul Puri and Tsuhan Chen, “Multimedia systems, standards, and networks,” Marcel

Dekker, New York, c2000.

[8] A.V. Oppenhiem and R.W. Shafer, “Digital Signal Processing,” Prentice Hall, N.J.,

Englewood Cliffs, 1975.

[9] J. Canaris, “A VLSI Architecture for the Real Time Computation of Discrete

Trigonometric Transforms,” Journal of VLSI Signal Processing, vol. 5, pp. 95-104, 1993.

[10] Weiping Li, "A New Algorithm to compute the DCT and its Inverse," IEEE Trans. on

Signal Processing, Vol. 39, pp 1305-1313, June 1991.

[11] M. Bousselmi et al., "New parallel architecture of the DCT and its inverse for image

compression," IEEE International Conference on Electronics, Circuits and Systems
(ICECS 2000), vol. 1, pp. 345-348, Dec. 2000.

[12] A. Madisetti, A. N. Willson Jr., "A 100 MHz 2-D 8x8 DCT/IDCT Processor for HDTV

 60

Applications," IEEE Trans. On Circuits and Systems for Video Technology, vol.5, No.2,
pp. 158-165, Apr. 1995.

[13] K. H. cheng et al., “The Design and Implementation of DCT/IDCT Chip with Novel

Architecture,” IEEE International Symposium on Circuits and Systems (ISCAS 2000),
Geneva Switzerland, vol. 4, pp. 741-744, May 28-31, 2000.

[14] C.W. Hsu, W.M. Chao, Y.C. Chang, and L.G. Chen, “Texture coder design of MPEG-4
video by using interleaving schedule,” in Proc. of 2002 IEEE International Conference
on Multimedia and Expo (ICME 2002), Lausanne, Switzerland, August 2002.

[15] Seehyun Kim, Wonyong Sung "Fixed-Point Error Analysis and Word Length

Optimization of 8x8 IDCT Architecture,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 8, No. 8, Dec. 1998.

[16] E. E. Swartzlander, Jr., “Truncated multiplication with approximate Rounding,” in

Conference Record of the Thirty-third Asilomar Conference on Signals, Circuits and
Systems, pp.1480-1483, 1999.

[17] IEEE standard 1180-1990 “IEEE Standard Specifications for the Implementation of 8x8

Inverse Discrete Cosine Transform,” CAS Standards Committee of the IEEE Circuits and
Systems Society, Dec. 6, 1990.

[18] K. Suh, S. Park, S. Kim, B. Koo, I. Kim, K. Kim, H. Cho, "An Efficient Architecture of

DCTQ Module in MPEG-4 Video Codec," IEEE International Symposium on Circuits
and Systems(ISCAS 2002) , vol. 1, pp. I-777 – I-780, 2002.

[19] http://www.xvid.org

 61

Appendix

A-1 . Pin Definitions for MPEG-4 texture coding

Fig. A-1 shows the inputs/outputs of our MPEG-4 texture coding. The descriptions for each

pin are depicted in Table A-1.

MPEG-4
Texture Coding

Clk
Resetn
Ctrl_texture_en
Ctrl_texture_ack
ME_MB_X[4:0]
Text_MB_X[4:0]
Text_MB_Y[4:0]

Text_init_L0_frame_ptr_X_table[8:0]
Text_init_L1_frame_ptr_X_table[8:0]
Text_init_L0_frame_ptr_Y_table[16:0]

FrameType

Bus_user[2:0]
MB_I_P
MC_error[35:0]
DCT_wren
DCT_waddress[6:0]

Q_Param[4:0]

Text_init_UV_frame_ptr_Y_table[16:0]

AHB_data_In[31:0]
BistMode

texture_rsp[1:0]
texture_bus_req
texture_HWRITE
AHB_address_out[31:0]
AHB_data_out[31:0]
MB_Type
qcoeff_valid
Acdcp_direction
Acdcp_flag
q_blk_addr[2:0]
q_pix_addr[5:0]
vlc_cbp
qcoeff[11:0]
IDCT_cbp
IDCT_data_valid
IDCT_address_out[6:0]

BistFail[5:0]
IDCT_data_out[35:0]

ErrMap[5:0]
Finish

Figure A-1 MPEG-4 Texture Coding IP.

 62

Table A-1 PIN Definition

Name Direction Width Description

Clk Input 1 Clock signal, positive edge trigger

Resetn Input 1 Reset texture coding engine, active LOW

Ctrl_texture_en Input 1 Enable Texture coding engine

Ctrl_texture_ack Input 1 Acknowledge signal

ME_MB_X Input 5 the MB position in the X-axis for Motion

estimation

Text_MB_X Input 5 the MB position in the X-axis for Texture

coding

Text_MB_Y Input 5 the MB position in the Y-axis for Texture

coding

Text_init_L0_frame

_ptr_X_table

Input 9 Offset of the frame pointers for the

luminance values in the X-axis

Text_init_L1_frame

_ptr_X_table

Input 9 Offset of the frame pointers for the

chrominance values in the X-axis

Text_init_L0_frame

_ptr_Y_table

Input 17 Offset of the frame pointers for the

luminance values in the Y-axis

Text_init_UV_frame

_ptr_Y_table

Input 17 Offset of the frame pointers for the

chrominance values in the Y-axis

FrameType Input 1 Frame type I or P

Q_param Input 5 Quantization Parameter

bus_user Input 3 AMBA bus user

MB_I_P Input 1 MB type intra or inter

MC_error Input 36 Motion compensation errors, store MC

 63

errors in the ping-pong buffer if current

frame is the Prediction frame.

DCT_wren Input 1 Enable to write MC errors to ping-pong

buffer

DCT_wraddress Input 7 Address for writing MC errors to ping-pong

buffer, address [6: 4] indicates the block

index and address [3:0] indicates the pixel

index.

texture_rsp Output 2 Response to tell the status of texture coding

engine(idle, busy, or finish)

texture_bus_req Output 1 Request to use the AMBA bus

AHB_data_in Input 32 Input data from the frame memory through

the AMBA bus

texture_HWRITE Output 1 Writing the reconstructed values to the

frame memory through the AMBA bus

AHB_address_out Output 32 Address of the reconstructed frame

AHB_data_out Output 32 Reconstructed frame data for I frame

MB_type Output 1 MB type to VLC module

qcoeff_valid Output 1 Valid signal for quantized coefficients to

VLC module

acdcp_direction Output 1 Prediction direction

acdcp_flag Output 1 Prediction flag to decide whether the

prediction values are used or not.

q_blk_addr Output 3 Quantization block address bus

q_pix_addr Output 6 Quantization pixel address bus

 64

vlc_cbp Output 1 Cbp signal to VLC

qcoeff Output 12 Quantized coefficients to VLC

IDCT_cbp Output 1 Cbp to Motion compensation

IDCT_data_valid Output 1 Valid signal to the reconstructed memory in

the Prediction frames

IDCT_address_out Output 7 the MC errors Address bus

IDCT_data_out Output 36 the reconstructed frame data bus

BistFail Output 6 BIST fail

ErrMap Output 6 Error mapping for BIST mode

Finish Output 1 BIST finish signal

BistMode Input 1 Signal to determine if BIST mode is used or

not.

 65

Biography

Publication List

[1] Bing-Fei Wu, Yao-Chun Hung, Yen-Lin Chen, Chao-Jung Chen, Chung-Cheng Chiu, and

Chorng-Yann Su ,“A High-Speed Wavelet-Based Video Codec for Video Surveillance System” ,2004

第十三屆全國自動化科技研討會,Taipei, Taiwan , June 17~18

Awards

[1] 交通大學電機與控制工程學系 88 學年度第二學期書卷獎

[2] 第五屆 TIC 100 創業競賽 冬令營 冠軍

[3] 第五屆 TIC 100 創業競賽 總決賽 銀質獎

[4] 教育部九十二學年度大專院校通訊科技競賽研究所組入圍

[5] 第一屆機動車輛創新設計獎(智慧電子化機能創新設計組) 銀質獎

Yao-Chun Hung was born in changhua, Taiwan, R.O.C., on
March 25, 1981. He received the B.S and M.S degrees from the
Department of Electrical and Control Engineering, National
Chiao Tung University, Taiwan, in 2003 and 2005 separately.
His research interests include video coding algorithms and
VLSI architecture for image and video processing.

