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Abstract—Localization is a critical issue in wireless sensor
networks. In most localization schemes, there are beacons being
placed as references to determine the positions of objects or
events appearing in the sensing field. The underlying assumption
is that beacons are always static. In this work, we define a new
Beacon Movement Detection (BMD) problem. Assuming that there
are unnoticed changes of locations of some beacons in the system,
this problem is concerned about how to automatically monitor
such situations and identify these beacons. Removal of such
beacons in the positioning engine may improve the localization
accuracy. Two schemes are proposed to solve the BMD problem.
Finally, we evaluate how these solutions can improve the accuracy
of localization schemes in case that there are unnoticed movement
of some beacons. Simulation results show that our solutions
alleviate 53% the decrease of positioning accuracy caused by
the exceptional beacon movement.

Index Terms—Context Awareness, Location-Based Service,
Pervasive Computing, Positioning, Wireless Sensor Network.

I. INTRODUCTION

Recently, we have seen significant progress in the areas
of wireless ad hoc and sensor networks. Ad hoc network-
ing technologies enable quick and flexible deployment of a
communication platform. A wireless sensor network typically
adopts the ad hoc network architecture and is capable of
exploiting context information collected from sensors. Many
applications of wireless sensor networks have been proposed
[3], [5], [6].

Sensor networks are promising in supporting context-aware
and location-aware services. The success of this area may
greatly benefit human life. One essential research issue in
sensor networks is localization, whose purpose is to determine
the position of an object or event. For example, the sentient
system Bat [2] is composed of a set of sensors for 3D local-
ization purpose. Sensors are installed at known positions such
as ceilings, to measure the signal traveling time from a user
badge to them. Then, the location of the badge is calculated
by a triangulation algorithm. Localization by signal’s angle of
arrival is addressed in [8], [9]. In [9], ultrasonic sensors are
used to estimate the location and orientation of a mobile device
with the Cricket compasses. In [1], a distributed positioning

system called AHLoS (Ad Hoc Localization System) is pro-
posed, where some beacons are aware of their own locations
while others are not. The former are used to determine the
positions of the latter. A similar work based on a probability
model is proposed in [10]. The RADAR system [4] uses
machine learning and pattern-matching techniques to estimate
the locations of WiFi-enable mobile devices.

In all the above localization systems, there are a set of bea-
con sensors (or simply beacons), which are at fixed locations
and periodically send out or receive short broadcast packets
to estimate other objects’ locations by either triangulation or
pattern-matching schemes. Based on such an infrastructure,
this paper points out a new Beacon Movement Detection
(BMD) problem that may happen in most localization sys-
tems based on beacons. Beacon movements are usual cases
especially in wireless sensor networks. The topologies of
their ad hoc infrastructures are prone to be changed because
of unexpected external forces, such as those caused by the
animals being monitored. This problem is concerned about
how to automatically determine the unexpected change of
locations of some beacons in the system. Movement of some
beacons may affect the accuracy of the localization results. For
example, in Fig. 1(a), we show how three beacons determine a
target’s position in typical triangulation approaches. However,
if beacon b3 is moved to the location marked in gray without
being noticed, the system may incorrectly estimate the target’s
location as shown in Fig. 1(b). Note that the circle centered at
b3 has a radius equal to the distance from the real location of b3

to the target. Also note that the results proposed in this paper
is applicable to not only unnoticed movement of beacons,
but also unnoticed appearance of interference/obstacles in the
sensing field, which may affect the localization results.

The BMD problem involves two issues. First, we need to
determine those beacons that are unexpectedly relocated. Sec-
ond, the result has to be forwarded to the positioning engine
to improve the localization accuracy. To solve the first issue,
we will allow beacons to monitor each other to determine
those moved beacons. We will propose two schemes. In the
first location-based scheme, we try to calculate each beacon’s
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Fig. 1. An example of the Beacon Movement Detection (BMD) Problem.

current location and compares the result with its predefined
location to decide if it has been moved. This scheme has high
computation complexity, but is quite sensitive to noise. In the
second signal-strength-variation scheme, the change of signal
strengths of beacons will be exploited. This scheme has low
complexity but perform much better.

The remainder of this paper is organized as follows: Sec-
tion II gives a formal definition of the BMD problem. Sec-
tion III presents our solutions to the BMD problem. We then
evaluate the proposed algorithms and examine their capability
to improve the localization accuracy in Section IV. Finally,
Section V concludes on this work.

II. PROBLEM DEFINITION

We are given a sensing field, in which a set of beacons
B = {b1, b2, ..., bn} are deployed for localization purpose.
Periodically, each beacon will broadcast a HELLO packet. To
determine its own location, an object will collect HELLO pack-
ets from its neighboring beacons and send a signal strength
vector s = 〈s1, s2, ..., sn〉 to an external positioning engine,
where si is the signal strength of the HELLO packet from
bi (si = 0 if it cannot hear bi). The positioning engine can
then estimate the object’s location based on s (for example,
in the case of RADAR [4], s is compared against a location
database obtained in the training phase based on a similarity
measurement).

Suppose that a set of unreliable beacons BM ⊂ B are
moved or blocked by obstacles without being noticed. The
Beacon Movement Detection (BMD) problem is to compute a
detected set BD that is as similar to BM as possible. The result
BD may be used to calibrate the positioning engine to reduce
the localization error (for example, in the case of RADAR, the
entry si in s may be ignored if bi is detected to be unreliable).

To solve the BMD problem, we will enforce beacons to
monitor each other from time to time. Let’s denote the local
observation vector of bi at time t by Ot

i = 〈ot
i1, o

t
i2, ..., o

t
in〉,

where ot
ij is bi’s observation on bj at time t. The content

of an observation will depend on the corresponding BMD

scheme (refer to Section III). We use the observation vector
at time t = 0 to represent the original observation when
no beacon is moved. The observation matrix is denoted by
Ot = 〈Ot

1, O
t
2, ..., O

t
n〉T . Given Ot, the BMD engine is

responsible of calculating a set BD. The result is then sent
to the calibration algorithm in the positioning engine. Fig. 2
illustrates our system model.

Considering the following reasons, we define the tolerable
region Ri of each beacon bi as the geographic area within
which movement is acceptable. First, radio signal tends to
fluctuate from time to time. Second, ignoring the data of a
beacon in the location database will decrease the localization
accuracy due to less beacons helping the localization proce-
dures. So the slight movement activities should be omitted. As
a result, the unreliable set BM only contains those beacons
which are moved out of their tolerable regions. For simplicity,
tolerable regions are assumed to be circles centered at beacons
of the same radius. The size of tolerable regions is application-
dependent, which is beyond the scope of this work.

Ideally, we would expect BM = BD. However, for many
reasons this cannot be achieved. For ease of discussion, we
define two events. A hit event is obtained on a beacon bi if
bi ∈ BM and the BMD engine also determines that bi ∈ BD.
A false event is obtained on bi if bi /∈ BM but bi ∈ BD.

III. BEACON MOVEMENT DETECTION ALGORITHMS

To solve the BMD problem, we propose two detection
schemes, namely location-based and signal-strength-variation
schemes. These schemes differ in their local processing rule
of beacons and the decision algorithm at the BMD engine.
In the location-based scheme, each beacon reports its actually
received signal strengths, which are used by the BMD engine
to compute each beacon’s current location and to compare
against its original location. In the signal-strength-variation
scheme, each beacon locally decides if some neighboring
beacons have moved according to a threshold of signal strength
change and reports its binary observation to the BMD engine.
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Fig. 2. The system model.
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Fig. 3. An example of movement detection in the location-based scheme
where b4 is the only beacon being moved. A trilateration technique is used
in this example.

A. Location-Based (LB) Scheme

The location-based scheme utilizes localization techniques
to monitor the movements of beacons. Techniques such as
trilateration or pattern-matching can be used in the BMD
engine. Each beacon is in charge of reporting their observed
signal strength values to the BMD engine. Let the observed
signal strength by bi on bj at time t be st

ij . The observation ot
ij

of a beacon bi on bj at time t is defined as ot
ij = st

ij . In this
scheme, we assume the BMD engine knows the initial location
of each beacon. The engine then estimates the position of each
beacon through any localization technique. Let the estimated
location of bj at current time t be �t

j . If �t
j is out of the tolerable

region Rj , then bj is determined to be unreliable.
An example using the trilateration technique is shown in

Fig. 3. Beacon b4 is moved out of its tolerable region R4.
Since beacons b1, b2, and b3 are unmoved, they can help to
determine b4’s new location. One thing worthy of mentioning
is that because of b4’s movement, the estimated location of
b1, b2, and b3 may also be changed by a certain degree. So

bi

bj

p

q

ji

ji
Rj

Fig. 4. Determining thresholds δ+
ij and δ−ij by the tolerable region Rj of

bj in the signal-strength-variation scheme.

the tolerable regions need to be defined carefully. As shown
by our simulation results, the location-based scheme is too
sensitive to any movement, and thus does not perform well.

B. Signal-Strength-Variation (SSV) Scheme

In the location-based scheme, we report the observations
according to the received signal strengths directly. It is sen-
sitive to any slight movement. Hence, the signal-strength-
variation scheme hides the information of signal strengths and
just reports binary observations to the BMD engine. Similar
to the location-based scheme which assumes that beacons
can measure the signal strengths of HELLO packets from
their neighbors, the signal-strength-variation scheme asks each
beacon bi to evaluate the amount of signal strength change of
each neighboring beacon bj . Let the observed signal strength
by bi on bj at time t be st

ij (t = 0 means the initial observed
signal strength). The observation ot

ij of bi on bj is

ot
ij =




1, if (st
ij − s0

ij ≥ δ+
ij or s0

ij − st
ij ≥ δ−ij) or

(bj moves into or out of bi’s coverage)
0, otherwise,

where δ+
ij and δ−ij are the pre-defined thresholds of signal

strength variations.
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The thresholds δ+
ij and δ−ij of each beacon bi can be

determined by the tolerable region Rj of bj . Let locations p
and q be the farthest and nearest locations in Rj with respect to
bi (refer to Fig. 4). If the expected signal strengths of HELLO
packets from a beacon at p and q are sp and sq, respectively,
then δ−ij = s0

ij − sp and δ+
ij = sq − s0

ij . As can be seen, as
long as bj moves within the belt-like gray region, bi will not
report a movement event.

Because we assume that beacon movements are regarded
as accidents, we try to select a set BD that contains as
few beacons as possible. First, we transform matrix Ot to
an undirected observation graph GO = (V,E), where V =
{bj |Ot[i, j] = 1 or Ot[j, i] = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n} and
E = {(bi, bj)|Ot[i, j] = 1 and Ot[j, i] = 1}. Note that GO

is not an empty graph which means V �= ∅. Second, observe
that if Ot[i, j] = 1 and Ot[j, i] = 1, then at least one of bi

and bj has been moved. Therefore, the BMD problem can
be regarded as a vertex cover problem [7], whose goal is to
find the smallest set V ′ ⊆ V such that for each (bi, bj) ∈ E,
bi ∈ V ′ or bj ∈ V ′.

In this scheme, two algorithms are proposed. The first one,
called Enumerate-SSV, is only presented here for reference
purpose. From graph GO, we first construct all minimum
vertex covers (since this problem is NP-complete, this step
could be very costly). Among all solutions, the one with the
lowest stability level is selected. The stability of a beacon bi

is

stability(bi) =
NPos(i)
Pos(i)

,

where NPos(i) is the set of neighboring beacons of bi that
positively report that bi has not been moved, i.e., NPos(i) =
{bj |ot

ji = 0, bj can hear HELLO packets from bi originally},
and Pos(i) is the set of all beacons that positively report that
bi has been moved, i.e., Pos(i) = {bj |ot

ji = 1}. The stability
level of a vertex cover is the sum of stability values of all
beacons in the cover set. Then the vertex cover with the lowest
stability level is selected as our BD.

Considering the above algorithm is quite costly when the
problem scales up, the second algorithm Greedy-SSV adopts
a heuristic approach as follows. If a beacon bi’s degree in
GO is higher, it is more suspicious to be moved. So the
algorithm sorts the vertices in GO according to their degrees of
uncovered edges in descending order, and then examines them
one by one. A node is included in BD if any edge incident to
it has not been covered.

IV. SIMULATION RESULTS

In this section, we present our simulation results to evaluate
the proposed schemes. The performance metrics include the
probabilities of hit and false events. We also use the results to
calibrate the positioning engine and measure the localization
error when a localization scheme is applied (refer to our
system model in Fig. 2). Experiments are conducted under
different conditions, such as the ratio of moved beacons, the
maximum movement distance, and the noise degree of the
environment.

A. Simulation Model

The sensing field is a 500m×500m square area. There are
25 beacons randomly deployed on the field with a distance
restriction of at least 20 meters 1. Moved beacons are chosen
randomly and a parameter moved ratio (MR) is used to
control the number of moved beacons. The moving distance is
uniformly distributed between 0 and a parameter moved degree
(MD). The tolerable region of each beacon is a circle centered
at the beacon with a radius of 20 meters. Note that due to
the definitions of tolerable regions, only part of the moved
beacons will be considered moved.

The signal propagation of HELLO packets are modeled by
a log-distance path loss model [11], where the path loss of a
distance d is

PL(d) = PL(d0) + 10αlog10(
d

d0
) + Xσ,

where d0 is a reference distance, α is the path loss exponent
typically ranging from 2 to 6, and Xσ is a zero-mean Gaussian
random variable with a standard deviation σ. Also, the receiver
sensitivity is −100 dBm (signal lower than this value is not
detectable by a receiver). The default parameter settings are:
transmit power Pt = 17 dBm, reference path loss PL(d0) =
41.5 dBm, path loss exponent α = 3.5, and σ = 2.13 dBm.
All results are from the average of 50 experiments. To reduce
the influence of noise, signal strength is calculated from the
average of 10 HELLO packets.

B. Evaluation of Localization Accuracy

After determining the moved set BD, the set will be sent
to the positioning engine to calibrate the location database. In
the following, we will assume the pattern-matching-based lo-
calization algorithm [4], where the location database contains
the signal vector 〈v1, v2, . . . , vn〉 of each training location in
the sensing field, where vi is the averaged signal strength of
beacon bi, i = 1, 2, . . . , n. For calibration purpose, we will
ignore the element vi for each bi that is determined to be
in BD during the localization procedure. Clearly, this will
reduce the accuracy of localization. However, if the moved
beacons are not ignored, the error may be even higher. In
the following, we will evaluate how our schemes can reduce
localization errors due to moved beacons. In our experiment,
there are 25×25 training points and 25×25 test points. Then,
the average positioning error of the 625 test points is recorded.

We compare our results against the no movement case,
where no beacon is moved, and the no BMD case, where
there are unnoticed movements of some beacons but no special
action is taken. The former is only used as a reference.

Fig. 5(a), (b), and (c) show the average positioning er-
rors under different MR, MD, and σ, respectively. The re-
sults demonstrate that the signal-strength-variation scheme

1The restriction is to avoid some beacons being placed too crowded, thus
reducing the detection capability of the network. When a scenario is generated
not satisfying the restriction, it will be discarded and we will regenerate
another scenario.

365



 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.4 0.3 0.2 0.1 0.06 0.02

er
ro

r 
(m

)

moved ratio (MR)

(a)

no_BMD
LB

Enumerate-SSV
Greedy-SSV

no_movement

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100  150  200  250  300

er
ro

r 
(m

)

moved degree (MD)

(b)

no_BMD
LB

Enumerate-SSV
Greedy-SSV

no_movement

 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5  6

er
ro

r 
(m

)

standard deviation (σ)

(c)

no_BMD
LB

Enumerate-SSV
Greedy-SSV

no_movement

Fig. 5. Comparison of average localization errors by varying: (a) MR (MD=150m), (b) MD (MR=0.1), (c) σ (MD=150m, MR=0.1).

generally performs better than the other schemes. Surpris-
ingly, due to its high occurrences of false events, the LB
algorithm’s errors are quite unacceptable, sometimes even
worse than the no BMD case. Considering the Enumerate-SSV
and Greedy-SSV algorithms proposed in the signal-strength-
variation scheme, we can observe that the former does not
always perform better than the latter. This is because we
assume that only a small number of beacons are moved, and
thus the Enumerate-SSV algorithm will try to find the smallest
BD. However, this assumption is not true any more when a
lot of beacons are moved. Furthermore, considering that the
Enumerate-SSV algorithm are computationally infeasible in a
large scale network, the Greedy-SSV is more preferable in
general cases.

To model the error recovery capability of a BMD algorithm,
we propose the following metric:

ERC(algorithm) =
errorno BMD − erroralgorithm

errorno BMD − errorno movement
× 100%.

Ideally, an ERC of 100% is expected. However, this is unlikely
to be achieved because some data are ignored in the location
database. For example, when MR = 0.1, MD = 150, and
σ = 2.13, the ERC values are -6.71%, 53.53%, and 53.28%
for LB, Enumerate-SSV, and Greedy-SSV, respectively.

V. CONCLUSIONS

In this paper, we define a new beacon movement detection
(BMD) problem in wireless sensor networks for localization
applications. This problem describes a situation that some
beacon sensors which participate in the localization procedure
are moved unexpectedly. The result is a reduced localization
accuracy if we disregard this situation. We propose to allow
beacons to monitor each other to identify the moved beacons.
Two schemes are presented to solve the BMD problem. Some
heuristics are proposed by mapping the BMD problem to the
vertex-cover problem. Localization accuracy of the proposed
schemes are obtained through simulations. It is showed that the
best heuristic, Enumerate-SSV, has an error recovery capability
of 53%. For general cases, the Greedy-SSV balances the
tradeoff between the localization accuracy and computation
complexity. As to future work, it deserves to further investigate
the BMD problem if there is some trust model among beacons.
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