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Graduate Student: Sung-Shu Yeh    Advisor: Lan-Rong Dung 

 

Department of Electrical and Control Engineering 

National Chiao Tung University 

 

Abstract 

 

In modern video standard, such as MPEG-1, MPEG-2, MPEG-4 and 

H.264/MPEG-4 AVC, motion estimation requires the heaviest computational load and 

hence dominates main power requirement in video compression. Lots of published 

papers have presented efficient algorithms for motion estimation. But they don’t 

consider the influence of the video content. An adaptive motion estimation algorithm 

with variable subsample ratios has been presented. This proposed algorithm can 

adaptively select the compatible subsample ratio for each current group of picture 

(GOP). This proposed algorithm has been successful implemented in H.264/MPEG-4 

AVC with software model JM9.2. Experimental results have shown that the proposed 

algorithm can not only adaptively select the suitable subsample ratio to various video 

sequences but also maintain ∆PSNRY of 0.36 dB at most to save about 69.6% power 

consumption of motion estimation in a fixed bit rate control on average. The proposed 

algorithm can also easily combine with other fast algorithms which reduce the 

computational complexity of FSBM. For FME in JM 9.2, we save 73.6% power 

consumption and keep quality degradation under 0.33 dB. Hence the proposed 

algorithm is suitable for real-time implementation of high quality and power-saving 

video applications using a powerful CPU. 
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變動取樣率之低功率移動估測設計 

學生：葉松樹     指導教授：董蘭榮博士 

國立交通大學 

電機與控制工程學系研究所 

摘要 

 最新的影像壓縮規格中，如MPEG-1，MPEG-2，MPEG-4 and H.264/MPEG-4 

AVC，移動位移估測需要龐大的計算量與能量消耗。因此，移動位移估測主導了

在影像壓縮中的計算量與能量需求。針對位移估測，很多論文已經提出了不同的

快速演算法，可是他們並沒有考慮到影像內容的影響。所以，我們提出了一種新

的快速演算法，稱為“變動取樣率之低功率位移估測演算法”，這個演算法可以針

對不同性質的影像內容，選取最適合的取樣率來完成位移估測，以達到節省能量

且畫質衰退在可以容許的範圍之內。針對不同性質的影像內容，動態的選擇四組

不同的取樣率，分別為16：16、16：8、16：4、16：2。我們提出的這個演算法

已經成功的實現在H.264/MPEG-4 AVC的軟體模型JM9.2中，實驗結果顯示這個演

算法不只可以動態的依照不同的影像內容來選擇適合的取樣率，而且可以維持最

多0.36 dB的畫質衰退，在固定的傳輸頻率下，平均可以節省69.9％的能量損失。

這個演算法的另一個好處是可以輕易的與其他位移估測快速演算法結合，而達到

進一步減少所需的計算量，我們結合JM9.2中的FME快速演算法，可以維持最多

0.33 dB的畫質衰退且節省73.6％的能量損失。因此，對於我們所提出的“變動取

樣率之低功率位移估測演算法”，是適合實現在高畫質的即時影像壓縮應用上。 
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Chapter 1 Introduction 
 

In modern video standard, such as MPEG-1 [1], MPEG-2 [2], MPEG-4 [3] and 

H.264/MPEG-4 AVC [4], motion estimation requires the heaviest computational load 

and hence dominates main power requirement in video compression. Lots of 

published papers [4]-[17] and [39]-[47] have presented efficient algorithms for motion 

estimation. But they don’t consider the influence of the video content. In our 

observation, the video content effects on the performance of motion estimation. So we 

base on the video content to select the suitable motion estimation in order to achieve 

the best tradeoff between the power and quality. We think that we must use the 

different motion estimation in the different degree of the video content. Among these 

fast algorithms [4]-[17], the subsample algorithms [11]-[17] and [39]-[47] can not 

only easily combine with other approaches mentioned above but also reduce the 

number of matching points with flexibly changing subsample ratio.  

The subsample algorithm, also called the pixel decimation algorithm, can be, in 

general, classified into two categories. One is fixed patterns [11]-[15], and the other is 

adaptive patterns [16] [17]. Bierling used an orthogonal sampling lattice with a 4:1 

subsample [11]. Liu and Zaccarin implemented pixel decimation that is similar to 

Bierling’s approach with four alternating subsample patterns selected for each step so 

that all the pixels in the current block are visited [12]. T.Chiang et al presented an 

N-queen decimation approach to address the spatial homogeneity and directional 

coverage [14], [15]. The pixel decimation can be adapted based on the spatial 

luminance variation within a picture [16], [17]. The content-based subsample 

algorithm is proposed in [39]-[47]. Adaptive techniques can achieve better coding 

efficiency as compared to the uniform subsample schemes with an overhead in 
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deciding which pattern is more representative. These presented subsample algorithms 

can successfully reduce the computational complexity of motion estimation to save 

much power dissipation. 

The reason why we choose the adaptive subsample ratios is because we believe 

that the subsample ratios should be varying with the video content. Although the 

subsample algorithms [16], [17] use the adaptive subsample patterns based on the 

spatial luminance variation within a picture, they all don’t mention the temporal 

variation. They result in serious aliasing problems in high frequency band to degrade 

the visual quality without considering the temporal variation. The temporal variation 

in the video means the degree of object-moving. The degree of object-moving is faster, 

and the temporal variation is stronger. Although the low subsample ratio cause 

aliasing in high frequency band, the degree of temporal variation will affect the 

degree of quality degradation. If the temporal variation is strong, aliasing problems 

will degrade the validity of motion vector (MV) and result in visual quality 

degradation to video sequences obviously. On the contrary, if the temporal variation is 

weak, aliasing problems will not degrade the validity of motion vector (MV) although 

the low subsample ratio still cause aliasing in high frequency band. That is because 

we do not need the high frequency band information to find the motion vector when 

the degree of object-moving is slow. Hence, using higher subsample ratio to reduce 

the prediction residual is necessary when temporal variation is stronger. In DSP theory 

[18] the subsample process will induce the aliasing in high frequency band. The 

aliasing problem affects the variance of the prediction residual under a fixed bit-rate 

constraint. The variance of the prediction residual affects the compression quality. The 

quality degradation of 0.5 dB is empirically reasonable for the perceptual tolerance of 

decompressed visual quality in video coding community. Therefore, in order to 

efficiently alleviate the aliasing problem to satisfy the visual quality under the quality 
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threshold of 0.5 dB for general video sequences, adaptively selecting the suitable 

subsample ratio according to the degree of temporal variation in the content is 

imperative. 

 

 
Fig 1.1: The proposed system diagram in H.264/MPEG-4 AVC encoder 

 

In this thesis, we develop an adaptive motion estimation algorithm with variable 

subsample ratios and this proposed algorithm can adaptively select the compatible 

subsample ratio for each current group of picture (GOP). The proposed algorithm is 

first to analyze the degree of the object-moving between the first P-frame and I-frame 

for the current GOP and then adaptively selects the suitable subsample ratio to the 

current GOP according to analysis result. The proposed algorithm also has been 

successfully implemented in the encoder model of H.264/MPEG-4 AVC [4] reference 

software JM9.2 [36] and the proposed system diagram is shown in Fig 1.1. The 

dash-lined region is the proposed motion estimation algorithm and the proposed 

algorithm offers four kinds of subsample ratios to adaptively switch. We use the 

statistics science to analyze every GOP degradation and null motion vector count 

(NMVC). And we get several different threshold values to experiment with video 
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sequences. The experimental results have been shown that the proposed algorithm 

with the optimal threshold value can not only adaptively maintain visual quality under 

the quality degradation of 0.36 dB in a fixed bit-rate control for general video 

sequences but also meaningfully achieve the target of power-saving. 

The rest of the thesis is organized as follows. We introduce the study background 

in chapter 2. In chapter 3, we introduce the generic subsample algorithm in detail and 

describe the aliasing problem in the subsample algorithm. Chapter 4 describes the 

proposed algorithm. Chapter 5 shows the experimental performance of the proposed 

algorithm in H.264/MPEG-4 AVC [4] software model JM9.2 [36]. Finally, Chapter 6 

concludes our contribution and merits of this work. 
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Chapter 2 Background 
 

In this chapter, technical overview of H.264/MPEG-4 AVC [4] will be 

introduced [19] [20]. The feature of H.264/MPEG-4 AVC [4] unlike MPEG-4 [3] will 

be pointed out [19] [20]. The variable block size motion estimation is the main 

different place in H.264/MPEG-4 AVC [4]. The paper [21] proposed the new 

one-dimensional (1-D) very large-scale integration architecture for full-search 

VBSME (FSVBSME). About the full-search algorithm, it is particularly attractive to 

ones who require extremely high quality. However, it requires a huge number of 

arithmetic operations and results in highly computational load and power dissipation. 

In order to reduce the computational complexity of the FSBM, lots of published 

papers [4]-[17] and [39]-[47] have presented efficient algorithms for motion 

estimation. Among these fast algorithms [4]-[17] and [39]-[47], the subsample 

algorithms [11]-[17] and [39]-[47] can not only easily combine with other approaches 

mentioned above but also reduce the number of matching points with flexibly 

changing subsample ratio. In general, the subsample algorithm, also called the pixel 

decimation algorithm, can be classified into two categories. One is fixed patterns 

[11]-[15], and the other is adaptive patterns [16] [17] and [39]-[47]. Adaptive 

techniques can achieve better coding efficiency as compared to the uniform 

subsample schemes with an overhead in deciding which pattern is more representative. 

These presented subsample algorithms [11]-[17] and [39]-[47] can successfully 

reduce the computational complexity of motion estimation to save much power 

dissipation. 
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2.1 H.264/MPEG-4 AVC Video Coding System 

 

H.264/MPEG-4 AVC [4] provides ultra high coding efficiency and network 

friendly functionalities. It has been a hot candidate for future’s video streaming and 

communications. Fig 2.1 [22] shows that rate-distortion curve comparison of 

H.264/MPEG-4 AVC [4] with previous video coding standards. Under medium 

bit-rate, its PSNR quality outperforms MPEG-4 [3] simple profile by more than 3dB. 

Fig 2.2 shows H.264 baseline subjective view comparison with MPEG-4 advanced 

simple profile at the specification of QCIF and bit-rate 112Kbps.  

H.264/MPEG-4 AVC [4] has such high performance because it adopts several 

novel coding tools in its algorithm design. For example, variable block size motion 

estimation, multiple reference frame motion estimation, and intra frame prediction are 

used in its prediction algorithm. In-loop deblocking filter offers good subjective view. 

The 6-tap filter is incorporated to do the quarter pixel interpolation. CAVLC 

(Context-Adaptive Variable Length Coding) and CABAC (Context-Adaptive Binary 

Arithmetic Coding) are adopted in its entropy coding design. H.264/MPEG-4 AVC [4] 

is the first video coding standard that adopts the arithmetic coding into its entropy 

design. The block diagram of H.264/MPEG-4 AVC encoder is shown in Fig 2.3. 

Video frames are captured into intra prediction and inter prediction parts. If the frame 

type is intra, the inter prediction part will be disabled. Multiple reference frames and 

variable block size motion estimation is used for inter prediction. The best mode 

among these prediction modes is chosen in the mode selection block. The input frame 

is then subtracted from the prediction and forms the residue block. The residue blocks 

are transformed by 4x4 integer DCT for luminance and 2x2 transform for 

chrominance DC coefficient. Scan and quantization procedures are then applied to the 

coefficients. The entropy coder receives these quantized coefficients and generates 
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codeword. The mode information is also transformed by the mode tables and fed into 

the entropy coder. The reconstruction loop includes the dequantization, inverse 

transform and deblocking filter. Finally, the reconstruct frame is written to the frame 

buffer for motion estimation.  

There are three kinds of profile for H.264/MPEG-4 AVC standard [4]: baseline 

profile is for real-time communication, main profile is for digital storage application, 

and x-profile is for network streaming application. In the baseline profile, B-frame is 

not used and CAVLC is adopted in entropy coding. In the main profile, B-frame 

coding is used and CABAC is adopted for entropy coding. And X-profile has all the 

features of baseline profile while B-frame coding, SI-frame coding, and SP-frame [23] 

coding are included. Although the coding performance of H.264 is good, more than 

four times of the algorithm complexity compared to MEG-4 simple profile prevents 

its practical implementation. Several previous papers and documents have addressed 

the coding complexity of this new state of art video coding algorithm. 

 

 
Fig 2.1: Rate-distortion curve comparison of H.264/MPEG-4 AVC with 

previous standards. (Excerpted from [22]) 
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Fig 2.2: Subjective view comparison of MPEG-4 ASP (left) and 

H.264/MPEG-4 AVC baseline (right) at bit-rate 112Kbps. (Excerpted 
from [22]) 

 

 
Fig 2.3: Block diagram of H.264/MPEG-4 AVC encoder. 

 

 Next section, we will discuss the architecture of motion estimation. And we will 

focus on the full-search variable block size motion estimation architecture. 

 

2.2 Full-search Variable Block Size Motion estimation Architecture 

(FS-VBSME) 

  

The computational requirements for motion estimation are heavy and a real-time 

video application usually requires a direct mapped hardware architecture. Direct 

mapped architectures also have important advantages in terms of reduced power 

dissipation. Full-search algorithms, typically, can be implemented using regular 1-D 
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or 2-D systolic or systolic-like architectures as described by the paper [24]. 1-D 

systems offer a number of attractive features over their full 2-D counterparts, in 

particular much less complex data scheduling and simpler structures. These 

architectures are therefore attractive for portable devices because of their lower 

silicon area. The paper [25] has also demonstrated that flexible 1-D systems can be 

used to implement other fast matching algorithms, such as a three-step search (TSS) 

and pixel subsample. 

To date, conventional VLSI architectures for computing variable block size 

motion estimation (VBSME) have been based on 2-D processor systems. For example, 

the architecture in the paper [26] uses a 2-D array with appropriate through masking 

of process elements (PEs). However, this results in low processor utilization. The 

architecture in the paper [27] uses a smaller 2-D array with partial-sum the sum of 

absolute difference (SAD) calculations performed sequentially using the smallest 

block size, 8×8. However, these architectures do not incorporate the capability to 

process all the variable block sizes (VBSs). 

In H.264/MPEG-4 AVC [4], a macroblock is further segmented with the smallest 

block size being 4×4, as shown in Fig 2.4. This has two modes, the macroblock mode 

and the 8×8 mode. They are illustrated in Fig 2.5(a) and (b), respectively. VBSs must 

be accommodated, namely 4×4, 4×8, 8×4, 8×8, 16×8, 8×16, and 16×16. Referring to 

Fig 2.5(b), it will be noted that there are four quarter-blocks in a macroblock, each of 

which contains nine block patterns i.e., a total of 36 block patterns. However, 

observed in Fig 2.5(a), each macroblock contains another nine block patterns, with 

four of the 8×8 blocks common with the equivalent 8×8 blocks in Fig 2.5(b). 

Therefore, the total number of block patterns, to be processed is 36+9-4=41 i.e., a 

total of 41 motion vectors. 
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Fig 2.4: Segmented macroblock: Base block is 4x4. (Excerpted from [21]) 

 
Fig 2.5: Variable block sizes in H.264/MPEG-4 AVC [4] (a) Macroblock 

mode. (b) 8×8 mode. (Excerpted from [21]) 
 

The architecture presented in the paper [21] is based on 1-D array processor, in 

this case containing 16 PEs, in general, N for an N×N macroblock. This is 

summarized in Fig 2.6. A key aspect of the approach proposed is that it incorporates 

within the basic PE the means to accumulate the partial SAD values through shuffling. 

The scheduling of the current macroblock data (CMD) and search region data (SRD) 

is similar to a conventional 1-D architecture [28] with the CMD arranged in a raster 

scan sequence and the SRD arranged in a dual raster scan sequence. They apply this 

approach to the macroblock shown in Fig 2.4 and result in 16 SADs being computed, 

each with block size 4×4. The stored SADs are then re-used to compute SAD values 

for other block sizes. This is done by shuffling and combining the computed 

sub-block SAD values appropriately to derive SADs for each of the other larger 
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blocks sizes. For example, the results of two 4×4 sub-block computations can be 

combined to derive results for a 4×8 or 8×4 computation, and so on. This avoids the 

need to compute each of these from scratch and allows the overall computational 

requirements to be significantly reduced by avoiding the need to derive sub-block 

computation values that already have been established. As discussed below, this 

allows up to 41 VBS SAD values to be processed in a single processor. 

 

 
Fig 2.6: One-dimensional array VBSME architecture in the paper [21]. 

(Excerpted from [21]) 
 

These computations of VBS’s SAD are performed using the internal PE circuitry. 

Details of which are shown in Fig 2.7. This uses a three stage process, provides 100% 

PE efficiency and allows SAD value computation to be choreographed directly with 

the data flow within the image. The first stage in the PE contains hardware to derive 

absolute difference values between the CMD and the SRD. These values are then 

latched to a second stage where they are multiplexed appropriately and stored in one 

of eight registers. The function of the registers and Mux C is to ensure that once 

computations have been performed these are stored and fed back in the correct order 

to compute the overall AD values for each of the sub-blocks 4×4. The function of the 

second stage of the array is twofold. The first is simply to pass, on successive cycles, 

the values 4×4 downwards through the PE cell. The second is to combine these values 
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appropriately to compute results of larger block size such as 8×4, 4×8 etc. This is 

done in a similar manner to stage 1 i.e., shuffling and combining results using a 

combination of multiplexing and adder circuitry, with results and intermediate results, 

in this case, being assigned to one of six registers, and so on.  The third stage in the 

PE has a similar function to the second stage, but in this case feeding back the SAD 

values stored in the stage 2 registers via Mux D and Mux F. The net result is that by 

clock cycle 261 (256 cycles plus 5 cycles internal cell latency) all 41 candidate MVs 

are available from each PE. 

 

 
Fig 2.7: Process element of the FS-VBSME architecture in [21] (Excerpted 

from [21]) 
 

Once all the values from an image block have been input then the data from a 

new block can immediately be input to each PE. This thus provides a continuous 
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streaming process that directly synchronizes with a constant flow of image data and 

means that each PE is 100% utilized. With 16 PEs working concurrently, the 

architecture described allows a total of 256 candidate MVs (16 16 search region) per 

sub-block to be processed in parallel with each PE producing all the information 

needed for a full search every 256 clock cycles— the same as existing architectures. 

However, in this case, this is done through the derivation of 41 MVs rather than one 

for each macroblock. Repeating this further 16 times means that up to 4096 clock 

cycles are required to complete a full search. 

 

2.3 The Subsample Algorithm Using Fixed Pattern 

  

The subsample algorithms [11]-[17] can not only easily combine with other 

approaches mentioned above but also reduce the number of matching points with 

flexibly changing subsample rate. For the fixed pattern, we can be sure that the power 

dissipation will be down by subample scale. But different patterns will case the 

different degreed of quality degradations. 

Bierling used an orthogonal sampling lattice with a 4:1 subsample [11]. The 

pattern they used is the quarter pattern, shown in Fig 2.8 (b) [14]. The quarter pattern 

can save the power dissipation for 75%. And the paper [12] uses four different quarter 

pattern to the different search area. They are based on motion-field and pixel 

subsample. They first determine a subsample motion field by estimating the motion 

vectors for a fraction of the blocks. The motion vectors for these blocks are 

determined by using only a fraction of the pixels at any searched location and by 

alternating the pixel subsample patterns with the searched locations. They then 

interpolate the subsample motion field so that a motion vector is determined for each 

block of pixels. Fig 2.9 (a) shows a block of 8×8 pixels with each pixel labeled a, b, c, 
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or d in a regular pattern. We call pattern A the subsample pattern that consists of all 

the “a” pixels, as the quarter pattern. Similarly, patterns B, C, and D are the 

subsample patterns that consist of all the “b”, “c”, and “d” pixels, respectively. If only 

the pixels of pattern “A” are used for block matching, then the computation is reduced 

by a factor of 4. However, since 3/4 of the pixels do not enter into the matching 

computation, the use of this subsample pattern alone can seriously affect the accuracy 

of the motion vectors. To reduce this drawback, they proposes using all four quarter 

patterns, but only one at each location of the search area and in a specific alternating 

manner. Fig 2.9 (b) shows some pixels forming part of the search region in the 

previous frame. The pixels are labeled 1, 2, 3, and 4 in a regular pattern. The labeling 

of the pixels refers to which of the four quarter patterns of Fig 2.9 (a) is to be used for 

computing the matching at that location. That is, when computing the match at 

locations labeled 1 (i.e., when the upper-left pixel of the block to match falls on those 

locations), pattern A is used. Similarly, pattern B, C, or D is used when computing the 

match at locations labeled 2, 3, or 4.  
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Fig 2.8: Pixel patterns for decimation. (a) Full pattern with N×N pixels 

selected. (b) Quarter pattern uses 4:1 subsampling. (c) Four-queen 
pattern is tiled with four identical patterns. (d) Eight-queen pattern. (c) 
and (d) are derived from the N-queen approach with N = 4 and N = 8, 
respectively. (Excerpted from [14]) 
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Fig 2.9: (a) Patterns of pixels used for computing the matching criterion 

with a 4 to 1 subsample ratio. (b) Alternating schedule of the four pixel 
subsample patterns over the search area (Excerpted from [12]) 

 

We can analyze the subsample pattern with the spatial homogeneity and 

directional coverage [14]. The spatial homogeneity is measured by the average and 

variance of spatial distances from each skipped pixel to its nearest selected pixel 

where N is the dimension of the block, and indicates the coordinates of the 

selected pixel nearest to the pixel at the position . K is the number of the selected 

pixels. Smaller 

),( yxS

),( yx

dµ  and  indicate a more spatially homogeneous sampling lattice. 

An edge is defined as a line passing through the sampling grids in any 

of , , and directions in Fig 2.8 (d). The directional coverage is measured 

as the percentage of edges that at least one of the selected pixels exists on an edge. 

Table I shows that the quarter pattern has less spatial homogeneity and lacks half of 

the coverage in the specified directions. To address the issues of spatial homogeneity 

and directional coverage, the paper [14] construct a new N-queen sampling lattice Fig 

2.8 (c) and (d).  

2
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In the paper [14], to fully represent the spatial information of a N×N block, it is 

required that at least one pixel should be selected for each row, column, and diagonal. 

To satisfy such a constraint, the solution is identical to the problem of placing queens 

on a chessboard, which is referred to as -queen pattern. For a N×N block, as shown in 

Fig 2.8 (c) and (d), every pixel of the N-queen pattern occupies a dominant position, 

which is located at the center. All the other pixels located on the four lines in the 

vertical, horizontal and diagonal directions are removed from the list of the selected 

pixels. With such elimination process, there is exactly one pixel selected for each row, 

column, and (not necessarily main) diagonal of the block. Thus, the N-queen patterns 

present a subsample lattice that can provide N times of speedup improvement. Despite 

the randomized lattice, the paper [15] designed compact data storage architecture for 

efficient memory access and simple hardware implementation for the N-queen 

patterns. 

 

 

 

 

 

 

 

 

 



 18

Table 1 
Comparison of the sampling lattices an 8×8 block in measuring the directional 
coverage, four orientation described in Fig 2.8 (d) are used for horizontal, vertical and 
diagonal directions, there are eight, eight, and 15 possible edges, respectively, while 
for the diagonal directions, there are 15 possible edges. (Excerpted from [14]) 

Spatial homogeneity Directional coverage (θ ) Pattern 

dµ  2
dσ  

d

d
µ

σ °0  °45  °90  °135  

Full 0 0  8/8 8/8 15/15 15/15 

Quarter [11] 1.14 0.04 17.16% 4/8 4/8 7/15 7/15 

Hexagonal [13] 1.03 0.11 11.07% 4/8 8/8 12/15 12/15 

4-Queen [14] 1 0  8/8 8/8 10/15 10/15 

8-Queen [14] 1.32 0.14 28.77% 8/8 8/8 8/15 8/15 

 

2.4 The Subsample Algorithm using adaptive Pattern 

 

The approach using the fixed patterns could possibly be able to obtain a good 

estimation of motion when the intensity of the block is nearly uniform. However, in 

the case of high activity blocks, some details may be neglected. Thus, it probably 

would introduce excessive prediction error. The paper [16] is based on the fact that 

high activity in spatial domain such as edges and texture mainly contributes to the 

MAD criterion. We can vary the number of selected pixels based on the image details. 

In other words, we can use fewer pixels when the block has uniform intensity. But in 

the high activity block, more pixels can be employed for the MAD matching criterion. 

This adaptive approach [16] can reduce the prediction error compared with standard 

pixel decimation [11]-[15]. In the algorithm [16], they used the relationship between a 

pixel and its neighbors to select the most representative pixels. For example in 8×8 

block size, initially, nine pixels are selected as shown in Fig 2.10 (a). The 8 x 8 pixel 
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block is divided into nine regions, depicted in Fig 2.10(b), and each region has its 

corresponding central pixel. In each region, the difference is defined the difference 

between central pixel and one of its neighbor pixels. If the difference is greater 

than threshold, this pixel is selected. We have used block size of 8 x 8 as an example 

for the description of the proposed algorithm in the paper [16], however, the extension 

of the proposed scheme to a large block size, say 16 x 16, is straightforward. 

kD

kD

 

Kkk IkhIkhD −= ),(),( , where (h, k) is the location of the neighbor pixel in 

region K, with (h, k) as the displacements from the central pixel . kI
 
 

 
Fig 2.10: Adaptive pixel selection (a) nine selected pixels. (b) The selected 

pixels in (a) are considered as the central pixel for each region, the 
dotted lines indicate the neighbor pixels of respective central pixels in 
each region. (Excerpted from [16]) 
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Fig 2.11: An edge in a 16×6 block for testing the subsample algorithm [17] 

 

About the paper [16], their scheme still requires an initial uniform division of a 

block, and therefore the pattern is locally adaptive. The pixel-decimation algorithm 

proposed in the paper [17] also utilizes edge information. Compared to Chan’s 

method [16], it extends the adaptivity from local to global. To realize global 

adaptivity, the algorithm [17] looks directly for edge pixels instead of requiring an 

initial uniform division of a block. This task [17] is made easier in a 1-D space with 

the help of Hilbert scan [29]. The Hilbert scan was named after the great German 

mathematician Hilbert, who found the simplest family of curves (Hilbert curves) that 

pass through all the grid points only once in a 2-D space [29]. The Hilbert scan, 

defined as a scan of a 2-D image through one of its Hilbert curves, is equivalent to a 

depth-first scanning of a quad-tree representation of the 2-D image. Some interesting 

features of this scan method used in previous applications include: 1) it is easier to 

extract clusters in an image with a Hilbert scan than other scan methods, e.g., row 

scan, row-prime scan, Morton scan, etc., and 2) it preserves 2-D coherence [30]–[35]. 

In addition, Kamata has shown that edge information in a 2-D image is preserved in 

its 1-D Hilbert-scan sequence, and has demonstrated an effective compression of 2-D 

images by compressing their 1-D sequences using the edge information [34]. The 

compressed images have a similar visual quality to that of the JPEG images at a high 
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compression rate.  

To illustrate how edges are detected in a 1-D Hilbert sequence, Fig 2.11 shows a 

2-D block with a closed circular edge, and Fig 2.12 (a) is the 1-D Hilbert sequence 

converted from the block in Fig 2.11. If edge pixels are defined at where pixel 

intensity changes the most, 22 edge pixels can be located in Fig 2.12 (a). All of the 22 

pixels, when mapped back to 2-D, appear evenly distributed on the circular edge as 

shown in Fig 2.12 (b). For comparison, Fig 2.12 (c) is the 1-D row sequence 

converted from the same block in Fig 2.11. Although the row sequence contains 20 

edge pixels, they all appear at the left and right vertical portion of the circular edge, 

and none appear on the upper and lower horizontal edges, as shown in Fig 2.12 (d). In 

general, the Hilbert scan not only provides edge information with little directional 

preference, but also preserves pixel coherence more effectively than other scan 

methods. In contrast, row scan, typical of many other scan methods, may miss edges 

due to its scan direction. Based on edge information in 1-D Hilbert sequences [29], 

the algorithm [16] selects pixels at which the matching criterion is evaluated.  
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Fig 2.12: (a) 1-D Hilbert sequence converted from Fig 2.11. (b) Edge pixels 

detected from 1-D Hilbert sequence. (c) 1-D row sequence converted 
from Fig 2.11. (d) Edge pixels detected from 1-D row sequence 
(Excerpted from [17]) 

 

The paper [39]-[47] proposed that the general subsample algorithm has aliasing problem 

when it is in high subsample rate. The aliasing problem leads to considerable quality degradation 

because the high frequency band is messed up. To alleviate the problem, he uses edge extraction 

techniques to separate the edge pixels from a macro-block and then perform subsampling to the 

remaining pixels. 

Although the subsample algorithms [11]-[17] and [39]-[47] reduce the number of matching 

points with flexibly changing subsample rate to save the power dissipation, they will cause the 

aliasing problem in high frequency band. Next, we will explain aliasing problems in subsample 

algorithms. 
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Chapter 3 Aliasing Problems in Subsample 

Algorithm 
 

In this chapter, we present a generic subsample algorithm in which the 

subsample ratio ranges from 16-to-2 to 1-to-1. We use the fixed subsample ratio to 

test the video sequences and observe that the quality degradation is dependent on the 

video content. That is because the subsample process will induce the aliasing in high 

frequency band [18]. The video with high motion have the high quality degradation. 

On the contrary, the video with low motion have the low quality degradation. We 

discuss aliasing problems in subsample algorithms in this chapter. From DSP theory 

[18], we will kwon the reason why aliasing problems happen. We also can find this 

situation in every GOP of the video sequence. We assume that the frames in the GOP 

are very correlative. So we can see the GOP as a control unit to adaptively select the 

best subsample ratio. Aliasing problems can be solved more accurate. And the video 

sequence “Table” is the example to explain the relationship between the quality 

degradation and the video content in aliasing problems in high frequency band.  

 

3.1 Generic Subsample Algorithm 

 

Here, we present a generic subsample algorithm in which the subsample ratio 

ranges from 16-to-2 to 1-to-1. The basic operation of the generic subsample algorithm 

is to find the best motion estimation with less SAD computation. The generic 

subsample algorithm uses Eq.1 as a matching criterion, called as subsample sum of 

absolute difference (SSAD), where the macro-block size is N-by-N,  is the 

luminance value at  of the current macro-block (CMB). The  is 

),( jiR

),( ji ),( vjuiS ++
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the luminance value at  of the reference macro-block (RMB) which offsets 

 from the CMB in the searching area 2p-by-2p.  is the subsample mask 

for the subsample ratio 16-to-2m as shown in Eq.2. The subsample mask  is 

generated from basic mask as shown in Eq.3. Fig 3.1 shows the subsample patterns of 

16:16, 16:8, 16:4 and 16:2 generated by the generic subsample algorithm respectively. 

The other subsample patterns are omitted because they also can be generated from the 

generic subsample algorithm and the subsample patterns of 16:16, 16:8, 16:4 and 16:2 

shown in Fig 3.1 are symmetry and their scale is power of two. 
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Fig 3.1: The subsample patterns with 16:16, 16:8, 16:4 and 16:2 

respectively 
 

Given a subsample mask generated from Eq.3, the computational cost of SSAD 

can be lower than that of SAD. Hence, the generic subsample algorithm can achieve 

the target of power-saving with flexibly changing subsample ratio. However, the 

generic subsample algorithm suffers form aliasing problems in high frequency band. 

Aliasing problems will degrade the validity of motion vector (MV) and result in 

visual quality degradation to video sequences obviously.  

 We use the fixed subsample ratio from 16:2 to 1:1 to experiment the twelve 

video sequences [37] in H.264/MPEG-4 AVC [4] coder with JM9.2 [36]. Here, we 

define one group of picture (GOP) is fifteen frames, frame rate is 30 frames/s, the bit 

rate is 450k bits/s and initial Qp is 34. We can observe the quality degradation of the 

video sequence in the Fig 3.2 and Fig 3.3. In Fig 3.2, the video sequence “dancer” has 
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the most quality degradation. The most quality degradation of “dancer” is 0.93 dB 

using the fixed subsample pattern of 16:2. And the other sequences in the Fig 3.2 have 

the excess of the 0.3dB quality degradation. We call those video sequences as high or 

normal motion video sequences. They have the high degree of high-frequency 

characteristic. We have to choose higher subsample ratio to keep the quality 

degradation acceptable. The quality degradation of 0.5 dB is empirically reasonable 

for the perceptual tolerance of decompressed visual quality in video coding 

community. Therefore, we can conclude that we must use the difference subsample 

ratio to keep the quality degradation acceptable. It is not enough to only use the fixed 

subsample pattern for all video sequences. From Fig 3.3, the most quality degradation 

is not over the 0.35 dB. We call those video sequences as low motion video sequences. 

They have the low degree of temporal variation. The temporal variation in the video 

means the degree of object-moving. The degree of object-moving is faster, and the 

temporal variation is stronger. Although the low subsample ratio cause aliasing in 

high frequency band, the degree of temporal variation will affect the degree of quality 

degradation. If the temporal variation is strong, aliasing problems will degrade the 

validity of motion vector (MV) and result in visual quality degradation to video 

sequences obviously. On the contrary, if the temporal variation is weak, aliasing 

problems will not degrade the validity of motion vector (MV) although the low 

subsample ratio still cause aliasing in high frequency band. That is because we do not 

need the high frequency band information to find the motion vector when the degree 

of object-moving is slow. Hence, using higher subsample ratio to reduce the 

prediction residual is necessary when temporal variation is stronger. For those video 

sequences, unlike the video sequences in the Fig 3.2, we can use the lowest the 

subsample ratio to save the largest power dissipation. That is because the quality 

degradation is acceptable.  
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Fig 3.2: The results ∆PSNRY of testing sequences “Dancer“, “Foreman“, 

“Flower“, “Table“, “Mother Daughter“ and “Weather“ 
 
 

 
Fig 3.3: The results ∆PSNRY of testing sequences “Children“, “Paris“, 

“News“, “Akiyo“, “Silent“ and “Container“ 
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If we use the fixed subsample ratio for all the twelve video sequences and keep 

the quality degradation acceptable, we have to choose the 16:12 subsample ratio. We 

will have the large power dissipation. We will waste the power in the low motion 

video sequences. Hence, the adaptive subsample ratios have to be used on 

power-saving and the acceptable quality degradation.  

 

3.2 Aliasing Problems in High Frequency Band 

 

As mentioned above, the generic subsample algorithm has aliasing problems for 

low subsample ratio and leads to considerable quality degradation because the high 

frequency band is messed up.  

The subsample process is like the down-sampling process in DSP theory [18]. In 

general, the operation of reducing the sampling ratio will be called down-sampling. 

Down-sampling is illustrated in Fig 3.4. We assume that the Fig 3.4 (a) is the 

conceptual spectrum of a macroblock in a frame of a video sequence. If this 

macroblock is down-sampling by 2, then his new conceptual spectrum will be Fig 3.4 

(b). Because the original conceptual spectrum is low bandwidth and the 

down-sampling ratio is high, the aliasing don’t happen in this case. If the 

down-sampling ratio becomes 3, the aliasing will happen shown in Fig 3.4 (c). The 

aliasing in the high frequency band will case the motion estimation is no accurate. 

Aliasing problems affect the variance of the prediction residual under a fixed bit-rate 

constraint. The variance of the prediction residual affects the compression quality. 

Therefore, in order to efficiently alleviate aliasing problems to satisfy the visual 

quality under the quality threshold of 0.5 dB for general video sequences, adaptively 

selecting the suitable subsample ratio according to the degree of temporal variation in 

the content is imperative. 
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(a) The original conceptual spectrum 

 
(b) Down-sampling by 2 

 
(c) Down-sampling by 3 (with aliasing problem) 

Fig 3.4: Frequency-domain illustration of down-sampling (Excerpted from 
[18]) 

 

In all the twelve video sequences, the video sequences with low motion have no 

aliasing problems, like “Children“, “Paris“, “News“, “Akiyo“, “Silent“ and 

“Container“. About these video sequences, we can use the low subsample ratio in 

order to save the large power dissipation without the high quality degradation. That is 

because these video sequences have low frequency distribution and weak temporal 

variation. Although we down-sample the video sequences by large number, the high 

frequency don’t be messed up. On the other hand, the video sequences with high and 

normal motion have aliasing problems. If we down-sample those video sequences by 

large number, the quality degradation will be large. For example, the video sequence 

“Dancer” will case 0.93 dB quality degradation using the 16:2 subsample ratio. That 

quality degradation is very serious and can’t be acceptable. 

In the video sequence, temporal variation is in proportion to the degree of 
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object-moving and the degree of object-moving means moving motion vector count 

(MMVC) between adjacent frames. For a fast motion video sequence, the degree of 

temporal variation is stronger than a normal motion or slow motion video sequence. 

Hence, the higher subsample ratio can more efficiently reduce the prediction residual 

to maintain the visual quality in a bit rate control. On the contrary, the lower 

subsample ratio results in more noticeable aliasing because of increasing the 

inaccurate moving motion vector count (MMVC) and furthermore increases 

prediction residual to degrade the visual quality in a bit rate control. Therefore, the 

high subsample ratio is necessary for a fast motion video. And the low subsample 

ratio is also suitable for a normal or slow motion video.  

 

We define the null motion vector count to reflect the spectrum in frequency 

deomain. We use the lower of subsample ratio for the larger of NMVC. On the other 

hand, we use the higher of subsample ratio for the smaller of NMVC. The overhand 

of the point for the spectum is only an extra counter for implementation. But in the 

encode system, we get the NMVC value after encoding. But we have to decide the 

subsample ratio before encoding. In order to solve this problem, we use the GOP as a 

processing unit. For any video sequence, the degree of temporal variation in this video 

sequence is not the same. We also can find this situation in every GOP in the video 

sequence. The GOP is like the small size of video sequence, about 0.5 second. 

Because the number of frames in the GOP is smaller than that in the video sequence, 

we assume that the frames in the GOP are very correlative. So we can see the GOP as 

a control unit to adaptively select the best subsample ratio. If we do that, we can get 

the degree of temporal variation more accurate. Aliasing problems can be solved more 

accurate. So We get the NMVC of the first P-frame in the GOP as the point to select 

the suitable subsample ratio for this GOP. The more detail will be discuss in next 
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chapter. 

We take the video sequence “Table” for example. To particularly analyze the 

results of visual quality degradation with different subsample ratios for a video, the 

normal motion video sequence “table” is simulated in H.264/MPEG-4 AVC [4] coder 

with JM9.2 [36]. Here, we define one group of picture (GOP) is fifteen frames, frame 

rate is 30 frames/s, the bit rate is 450k bits/s and initial Qp is 34. Subsample ratios are 

16:8, 16:4 and 16:2 respectively and can be generated from Eq.3. Fig 3.5 shows 

quality degradation results versus these subsample ratios. Fig 3.6 shows the NMVC 

value of the first P-frame in each GOP. The average quality degradation of ith GOP 

( ) is defined as shown in Eq.4, where  is the average PSNRY 

of ith GOP using the full-search block-matching (FSBM).  is the 

average PSNRY of ith GOP with specific subsample ratio (SSR). From Fig 3.5, there 

exists the stronger temporal variation between third GOP and seventh GOP, hence, the 

lower subsample ratio leads to more obviously aliasing problems and results in higher 

quality degradation. We can see the NMVC values of these GOPs are larger in Fig 3.6. 

This can reflect the the aliasing problem. Furthermore, the tenth GOP has maximum 

quality degradation because of scene change. Although lower subsample ratio leads to 

more obviously aliasing problems in high frequency band, Fig 3.5 also shows that 

quality degradation is unobvious between eleventh GOP and twenty GOP because of 

the weaker temporal variation. In Fig 3.6, the NMVC values of these GOPs are small. 

So we can use the NMVC to select the suitable subsample ratio for the GOP. 

GOPithQ∆ FSMEiPSNRY

SSRiPSNRY

( ) )4(SSRiFSMEiGOPith PSNRYPSNRYQ −=∆  
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Fig 3.5: The diagram of ∆Q with 16:8, 16:4, 16:2 subsample ratios for table 

sequence. 

 
Fig 3.6: The NMVC of the first P-frame in each GOP for table sequence. 
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From Fig 3.5 and Fig 3.6, the various degrees of temporal variation are 

distributed over GOPs even though the “table” video sequence is regarded as a normal 

motion video. Therefore, in order to efficiently alleviate the aliasing problems, we 

need develop an adaptive motion estimation scheme and this scheme can adaptively 

supply the suitable sample ratio to each GOP according to the degree of NMVC in 

order to maintain the better visual quality in a bit rate control. 
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Chapter 4 Adaptive Motion Estimation with 

Variable Subsample Ratios 
 

In this chapter, we describe the proposed algorithm in detail. We use a GOP as a 

process unit. We get the null motion vector count (NMVC) from the first P-frame in 

the current GOP. In order to make sure the correct of NMVC, we set the first P-frame 

in the GOP to use the full search motion estimation. That is 16:16 subsample ratio. 

According the value of NMVC, we select the suitable subsample ratio for the next 13 

P-frames in the current GOP. Then the flowchart of the proposed algorithm is 

developed. Next, we provide four subsample ratios of 16:16, 16:8, 16:4 and 16:2 in 

order to let the proposed algorithm having better adaptive ability. The reason why to 

choose those subsample ratios is because they are symmetry and their scale is power 

of two. Final, we propose an adaptive subsample ratio threshold decision to set the 

compatible threshold values and get the optimal result. The static science is adopted in 

the adaptive subsample ratio threshold decision. We test the percentage of 90%-65% 

in the static data of the quality degradation versus NMVC to get the different 

threshold value. From the result of twelve testing video sequence, we take the 70% 

result as the optimal threshold value.  

 

4.1 Proposed Algorithm Development 

 

To efficiently alleviate the aliasing problems in subsample algorithm to maintain 

the visual quality under the threshold of 0.3 dB for general video sequences, we 

propose an adaptive motion estimation algorithm using variable subsample ratios and 

the proposed algorithm is based on the observation in Fig 3.4. From Fig 3.4, the 
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temporal variation in a frame is in proportion to moving motion vector count 

(MMVC), meaning that it is in inverse proportion to null motion vector count 

(NMVC). Therefore, we use one GOP as a processing unit and calculate the NMVC 

of the first P-frame in a processing unit. Next, we compare NMVC with threshold 

values to determine the suitable subsample ratio for the current GOP. We recursively 

execute these steps above, and we can adaptively supply the suitable subsample ratio 

to each GOP in one video sequence and also achieve the target of power saving. 

A flowchart of the proposed algorithm is shown Fig 4.1 and the realization 

procedure of the adaptive motion estimation algorithm using variable subsample 

ratios is as follows. 

Step 1: Setting initial value 

Set i=1. 

We set the initial value in this proposed algorithm. And the proposed algorithm 

is ready to start 

Step 2: Starting 

When starting the proposed algorithm, the ith GOP of current video sequence is 

picked out and the first frame of the ith GOP goes to Step 3. 

 In this step, we check the number of the frames in the GOP. We have to realize 

which frame is the first frame in the GOP and start our proposed algorithm from 

beginning. For the arrangement of a GOP, the first frame is coded using 

intra-prediction and the others are coded using inter-prediction. So, every GOP can be 

seen as a small size video sequence, about 0.5 second. But the advantage of this GOP 

is the high correlation between the frames in the GOP. That is why we choose the 

GOP as the process unit to adaptively select the suitable subsample ratio. 

Step 3: Determining the current frame whether an I-frame or not 

If the current frame is an I-frame, the proposed algorithm executes intra-frame coding 
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to encode the current I-frame; otherwise, the current frame is a P-frame and then goes 

to Step 4. 

 We can recognize the I-frame in the GOP in this step. We don’t change the 

inter-predication in the proposed algorithm. Hence, the proposed algorithm uses the 

same inter-prediction like H.264/MPEG-4 AVC for the I-frame. 

Step 4: Determining the current frame whether a first P-frame or not 

If the current frame is a first P-frame, the proposed algorithm executes inter-frame 

coding for the current P-frame using 16:16 subsample ratio and then calculates the 

null motion estimation count (NMVC) of the current frame; otherwise, the current 

P-frame goes to Step 5. 

 The reason why the first P-frame in the GOP use the 16:16 subsample ratio is 

that we want the accurate NMVC. If the NMVC is not correct, the subsample ratio for 

the rest 13 P-frames will not be suitable for this GOP. It will cause the large quality 

degradation or waste the power dissipation for low motion GOP. Therefore, in order 

to get the correct NMVC, we consume the power to using the 16:16 subsample ratio. 

Step 5: Adaptively selecting the suitable subsample ratio to the current P-frame 

The proposed algorithm compares NMVC of the first P-frame with optimal threshold 

values to adaptively select a suitable subsample ratio and then uses this selected 

subsample ratio to execute inter-frame coding for the current P-frame and then the 

current P-frame goes to Step 6. 

 In this step, we process the rest 13 P-frames in the GOP. These frames will be 

code using the selected subsample ratio. The selected subsample ratio is according to 

the NMVC of the first P-frame in the GOP. We assume that the frames in the current 

GOP have the high correlation between each other. According to the NMVC of the 

first P-frame, we recognize the current GOP as high, normal or low motion GOP. And 

we compare this NMVC with the threshold value to decide the suitable subsample 
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ratio for the current GOP. The inter-prediction of the rest 13 P-frames uses this 

suitable subsample ratio. 

Step 6: Determining the current P-frame whether a last P-frame or not 

If the current P-frame is a last frame, the procedure goes to Step 7; otherwise, the next 

frame goes to Step 3. 

 When the current GOP is end, we have to start the proposed algorithm again and 

to control the next GOP. Otherwise, the frame in the current GOP will be coded 

according to the situation in the current GOP. 

Step 7: Ending 

If all GOPs in the current video sequence are encoded, the proposed algorithm 

finishes; otherwise, the procedure sets i=i+1 and goes to step 2; 

This video is end and all frames in the video sequence have been coded using the 

proposed algorithm in the H.264/MPEG-4 AVC [4]. 



 38

 
Fig 4.1: The flowchart of the proposed algorithm (Th16:2 is the threshold between 16:2 subsample ratio and 16:4 subsample ratio, 

Th16:4 is the threshold between 16:4 subsample ratio and 16:8 subsample ratio and Th16:8 is the threshold between 16:8 
subsample ratio and 16:16 subsample ratio). 
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4.2 Subsample Patterns of the Proposed Algorithm 

 

To demonstrate that the proposed algorithm has better adaptive ability, the 

proposed algorithm provides four subsample ratios and adaptively selects the suitable 

subsample ratio from these subsample patterns to the current GOP. These subsample 

ratios are fixed at powers of two in spatial distribution and are 16:16, 16:8, 16:4 and 

16:2 respectively. These subsample masks can be generated in a 16-by-16 

macro-block using Eq.3 and are shown in Fig 3.1. The reason why to choose those 

subsample ratios is because they are symmetry and their scale is power of two. We 

select four subsample ratios in our proposed algorithm. There are four levels of 16:16, 

16:8, 16:4 and 16:2. All P-frames expect the first P-frame in the GOP will be 

classified into four levels according to the NMVC of the first P-frame in the GOP. 

Every GOP have only one subsample ratio. According to these subsample ratios, the 

proposed algorithm can adaptively select the suitable subsample ratio to the current 

GOP. For example, the proposed algorithm can provide the 16:16 subsample ratio for 

the current GOP which has the stronger degree of temporal variation or provide the 

16:2 subsample ratio for the current GOP which has the weaker degree of temporal 

variation. The temporal variation in the video means the degree of object-moving. The 

degree of object-moving is faster, and the temporal variation is stronger. Although the 

low subsample ratio cause aliasing in high frequency band, the degree of temporal 

variation will affect the degree of quality degradation. If the temporal variation is 

strong, aliasing problems will degrade the validity of motion vector (MV) and result 

in visual quality degradation to video sequences obviously. On the contrary, if the 

temporal variation is weak, aliasing problems will not degrade the validity of motion 

vector (MV) although the low subsample ratio still cause aliasing in high frequency 

band. That is because we do not need the high frequency band information to find the 
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motion vector when the degree of object-moving is slow. According to the NMVC of 

the first P-frame, we recognize the current GOP as high, normal or low motion GOP. 

High motion means the high degree of high frequency. On the contrary, Low motion 

means the low degree of high frequency. And we compare this NMVC with the 

threshold value to decide the suitable subsample ratio for the current GOP. The 

inter-prediction of the rest 13 P-frames uses this suitable subsample ratio. Therefore, a 

threshold decision for variable subsample ratios is necessary to set the compatible 

threshold values in order to adaptively choosing the suitable subsample ratio to the 

current GOP. Next, a threshold decision for variable subsample ratios will be 

presented in chapter 4.3. 

 

4.3 Threshold Decision for Variable Subsample Ratios 

 

To support a suitable subsample ratio to other P-frames of current GOP, except 

the first P-frame of the current GOP, an adaptive subsample ratio threshold decision is 

necessary. Therefore, we use 16:2, 16:4, 16:8 and 16:16 subsample ratios respectively 

to calculate the statistical distribution of GOPQ∆  versus NMVC for twelve video 

sequences (Fig 4.2) [37].  

The statistical results are shown as in Fig 4.3 and each coordinate means  

versus NMVC using a specific subsample ratio. From Fig 4.3, we can observe that the 

statistical distribution of  versus NMVC focus on the right side. This situation 

means the most video sequence must have a part of background region. The 

background region means the MV is null. There is not video sequence without the 

background region except for scene change. For scene change case, there is no 

algorithm can be solved success. 

GOPQ∆

GOPQ∆
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“Dancer“   “Foreman“   ”Flower“   “Table“ 

 
“Mother Daughter“  “Weather“   “Children“   “Paris“ 

 
“News“    “Akiyo“   “Silent“    “Container“ 

Fig 4.2: The twelve testing video sequences 
 

 
Fig 4.3: The statistical distribution of GOPQ∆  versus NMVC for twelve 

video sequences 
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In order to efficiently use the statistical distribution to get the threshold values 

between these subsample ratios, we propose an adaptive subsample ratio threshold 

decision to decide the threshold values. The method is to statistically calculate the 

maximum distributed range of NMVC in which the number of  under a 

desired threshold of quality degradation are smaller than or equal to a fixed 

percentage of total using a selected subsample ratio and this method is proposed as 

Fig 4.4.  

GOPQ∆

 
Fig 4.4: Flow chart of the threshold decision algorithm 
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We first set the quality degradation threshold is 0.3 dB. We define the first 

region is the selected 16:2 subsample ratio. The second region is the selected 16:4 

subsample ratio. The selected 16:8 subsample ratio is the third region. The last region, 

fourth region, is the selected 16:16 subsample ratio. In the first region, we calculate 

the percentage of the number of point with the quality degradation under 0.3dB using 

the 16:2 subsample ratio in this region. For the second region, the percentage of the 

number of point with the quality degradation under 0.3dB using the 16:2 subsample 

ratio change to 16:4 subsample ratio. And third region is for 16:8 subsample ratio. So 

we set the percentage threshold from 90% to 60%, every decreasing for 5%. We will 

get the seven forms of the adaptive subsample ratio threshold value.  

To get the threshold values between these subsample ratios, we use the threshold 

decisions mentioned above to calculate the threshold values and the distribution of 

threshold values is shown as Fig 4.5. We can observe the size of every region directly 

in Fig 4.5.  

 
Fig 4.5: The distribution of threshold values 
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Table 2 

Threshold Setting of the adaptive subsample ratio threshold decision 
The adaptive subsample ratio threshold decision  

90% 85% 80% 75% 70% 65% 60% 
Threshold of 16:2 ( ) 2:16TH 393 387 376 344 305 232 190 

Threshold of 16:4 ( ) 4:16TH 368 356 344 251 239 190 49 

Threshold of 16:8 ( ) 8:16TH 265 242 227 207 179 49 X 

 

Table 2 shows the summary of threshold values using different adaptive 

subsample ratio decision. From the Table 2, we observe the adaptive subsample ratio 

threshold value of 60% is not complete. There is not the  value. That is 

because the second region is too big and the rest region can make the percentage 

down to 60%. About the 65%, the  value is too small so that the 16:16 

subsample ratio is hardly selected. For the 90%, 85%, 80%, 75% and 70%, the first 

region increases. That means we can tolerate more change of the quality degradation 

over 0.3 dB. The same situation is happened in the second and third regions. 

8:16TH

8:16TH
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Chapter 5 Experimental Result 
 

In our simulation, the proposed algorithm is simulated in H.264/MPEG-4 AVC 

[4] with software model JM9.2 [36] using AMD 2.0G Hz and the distortion measure 

is sum of absolute difference (SAD) which is computed for a 16-by-16 macro-block. 

We use twelve famous video sequences [37] to be tested and the simulation 

environment in JM9.2 is shown as in Table 3. From Table 3, the file format of these 

video sequences is CIF (352 × 288 pixels) and the search range is ±16 in both 

horizontal and vertical directions for a 16-16 macro-block. The bit-rate control is 

turned on to maintain a fixed bit rate of 450k bits/s under displaying 30 frames / s. In 

Chapter 4, we proposed an adaptive subsample ratio decision to pick the suitable 

subsample ratio and the adaptive subsample ratio threshold decision support six 

different threshold values between 16:16, 16:8, 16:4 and 16:2, which are shown as in 

Table 2. To choose the optimal threshold values from Table 2, we simulate these 

tested video sequences using these subsample ratio decisions respectively in the same 

simulation condition and then analysis to decide the optimal threshold values from 

these decisions based on two factors: average quality degradation (∆PSNRY) and 

average subsample ratio. The PSNRY is defined as Eq.5 where the frame size is N × 

M,  and  denote the Y components of original frame and 

reconstructed frame at (x; y). The ∆PSNRY is defined as Eq.6 and it means the 

difference of PSNRY which is calculated by a chosen algorithm and PSNRY which is 

calculated by using full-search block-matching algorithm (FSBM). 
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The average subsample ratio is also defined as Eq.7 and it averagely estimates 

what subsample ratio can be used to execute the motion estimation for a video 

sequence. 

 

( ) ( ) (
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Table 3 

Testing Video Sequences and Simulation Conditions 

 
Video 

Sequence 

Number 

of 

Frames 

Format 

Frame 

Rate 

(frames/s)

Bit 

Rate 

(bits/s)

Initail 

Qp 

Search 

Range 

GOP 

Unit 

Video 

Type 

Dancer 250 

Foreman 300 
Fast 

Motion 
Flower 250 

Table 300 

Mother 

Daughter 
300 

Weather 300 

Children 300 

Normal 

Motion 

Paris 300 

News 300 

Akiyo 300 

Silent 300 

Slow 

Motion 

Container 300 

CIF    

(352 × 

288) 

30 450k 34 ±16 
15 

frames 

IPPP…

IPPP…

 

To demonstrate that the proposed algorithm can adaptively select the suitable 

subsample ratio to each GOP for a tested video sequence, we analysis the average 

quality degradation of each GOP using Eq.4 for the video sequence “table” and the 

results is shown as in Fig 5.1. This case is the same with the Fig 3.4 in chapter 3. But 

the Fig 5.1 adds the distribution of the proposed algorithm to demonstrate the 

performance of the proposed algorithm. From Fig 5.1, there exists the stronger 
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temporal variation between third GOP and seventh GOP, the proposed algorithm can 

adaptively support higher subsample ratio to efficiently reduce the ∆GOP. Besides, 

the proposed algorithm can adaptively support lower subsample ratio to save power 

dissipation without affecting the ∆GOP between eleventh GOP and twenty GOP 

because of the weaker temporal variation.  

 
Fig 5.1: Te average quality degradation of each GOP for the video sequence 

“table” 

 

Table 4 shows the simulation results of PSNRY and ∆PSNRY for these tested 

video sequences using this threshold decision method. Table 5 shows the simulation 

results of average subsample ratio and overall average subsample ratio for these tested 

video sequences using this threshold decision method. Because threshold values of 

Table 2 can be calculated according to the target of average quality degradation of 0.3 

dB, the average quality degradation of 0.3 dB is an important index for all tested 

video sequences. From Table 4 and Table 5, 90%, 85% and 80% statistics of threshold 

decision method can satisfy all tested video sequences under the average quality 
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degradation of 0.3 dB, however their overall average subsample ratio are higher than 

75% and 70% statistics of threshold decision method. Among 75% and 70% statistics 

of threshold decision method, 70% statistics causes average quality degradation 

exceed 0.3 dB for sequences “Dancer”, “Foreman”, “Mother Daughter”, “Weather” 

and “Paris”, but these average quality degradations are very close to the target of 0.3 

dB. For the video sequences “Dancer” and “Mother Daughter”, their quality 

degradations in this 70% method are the same and are equal to 0.36 dB. And the 

quality degradation in this 70% method of video sequence “Foreman” is equal to 0.33 

dB. For “Paris”, it is 0.35 dB. And 0.33 dB is for “Weather”. Although the overall 

average subsample ratio of 65% statistics of threshold decision method is the lowest, 

the average quality degradation of it exceeds 0.3 dB too much. For example, the 

average quality degradations of the sequences “Dancer” and “Foreman” are 0.77dB 

and 0.59 dB. These quality degradations are not acceptable. For the 70% statistics, we 

can observe the video sequences of fast motion have the maximum acceptable quality 

degradation for near 0.3 dB. In this quality degradation, the power consumption is the 

maximum. We can save the power efficiently. For the other threshold values, they can 

also keep the quality degradation acceptable. But they waste the power to gain the 

better quality degradation under 0.3 dB. For the low motion video sequences, the 

algorithm using the threshold value of 70% statistics can select adaptively the 

minimum power consumption to save power efficiently. The minimum power 

consumption is the average subsample ratio 16:3. That contains the number of the first 

P-frame in the GOP using 16:16 subsample ratio and all the rest P-frame using 16:2 

subsample ratio. Therefore, in order to minimize the power consumption of motion 

estimation and maintain the average visual quality about 0.3dB, threshold values of 

70% statistics is the optimal choice for adaptively selecting the suitable subsample 

ratio.And we save 69.6% power consumption and keep quality degradation under 0.36 
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dB. 

Table 4  
Analysis of quality degradation using adaptive subsample ratio decision 

The adaptive subsample ratio threshold decision 

90% 85% 80% 75% 70% 65%  
Video 

Sequence 

Full 

Search 

PSNRY 
PSNRY

Δ

PSNRY 
PSNRY

Δ

PSNRY
PSNRY

Δ

PSNRY
PSNRY

Δ

PSNRY 
PSNRY 

Δ

PSNRY
PSNRY

Δ

PSNRY

Dancer 33.42 33.4 -0.02 33.4 -0.02 33.4 -0.02 33.33 -0.09 33.06 -0.36 32.65 -0.77

Foreman 29.51 29.42 -0.09 29.36 -0.15 29.35 -0.16 29.2 -0.31 29.18 -0.33 28.92 -0.59
Fast 

Motion 

Flower 19.58 19.58 0 19.54 -0.04 19.54 -0.04 19.43 -0.15 19.31 -0.27 19.14 -0.44

Table 31.04 30.99 -0.05 30.98 -0.06 30.93 -0.11 30.85 -0.19 30.78 -0.26 30.7 -0.34

Mother 

Daughter 
39.34 39.14 -0.2 39.12 -0.22 39.11 -0.23 39.01 -0.33 38.98 -0.36 38.89 -0.45

Weather 32.26 32.06 -0.2 32.04 -0.22 32.01 -0.25 31.97 -0.29 31.93 -0.33 31.93 -0.33

Children 29 28.87 -0.13 28.84 -0.16 28.81 -0.19 28.72 -0.28 28.71 -0.29 28.71 -0.29

Normal 

Motion 

Paris 30.67 30.5 -0.17 30.45 -0.22 30.46 -0.21 30.36 -0.31 30.32 -0.35 30.32 -0.35

News 37.27 37.19 -0.08 37.17 -0.1 37.15 -0.12 37.12 -0.15 37.07 -0.2 37.07 -0.2 

Akiyo 42.36 42.27 -0.09 42.24 -0.12 42.24 -0.12 42.21 -0.15 42.21 -0.15 42.21 -0.15

Silent 34.62 34.56 -0.06 34.57 -0.05 34.58 -0.04 34.56 -0.06 34.53 -0.09 34.53 -0.09

Slow 

Motion 

Container 35.47 35.45 -0.02 35.45 -0.02 35.45 -0.02 35.45 -0.02 35.45 -0.02 35.45 -0.02

 
Table 5 

The simulation results of average subsample ratio and overall average subsample ratio 
Threshold Decision 

90% 85% 80% 75% 70% 65%  Video 
Sequence Average 

Subsample 
ratio 

Average 
Subsample 

ratio 

Average 
Subsample 

ratio 

Average 
Subsample 

ratio 

Average 
Subsample 

ratio 

Average 
Subsample 

ratio 

Dancer 16:15.55 16:15.55 16:15.55 16:14.43 16:11.75 16: 6.91 
Foreman 16:14.32 16:13.31 16:12.93 16:10.61 16:10.24 16: 6.06 Fast 

Motion 
Flower 16:16.00 16:15.10 16:15.10 16:11.98 16: 8.80 16: 5.12 
Table 16: 9.50 16: 9.03 16: 7.17 16: 5.32 16: 4.67 16:3.55 

Mother 
Daughter 16: 7.08 16: 6.43 16: 6.34 16: 3.92 16: 3.55 16: 3.00 

Weather 16: 5.87 16: 5.32 16: 4.39 16: 3.18 16: 3.00 16: 3.00 
Children 16: 7.82 16: 7.27 16: 6.43 16: 3.83 16: 3.27 16: 3.00 

Normal 
Motion 

Paris 16: 6.52 16: 6.25 16: 5.22 16: 3.46 16: 3.00 16: 3.00 
News 16: 7.45 16: 6.71 16: 4.95 16: 3.09 16: 3.00 16: 3.00 
Akiyo 16: 4.76 16:3.83 16: 3.46 16: 3.00 16: 3.00 16: 3.00 
Silent 16: 7.27 16: 7.08 16: 6.34 16: 3.92 16: 3.00 16: 3.00 

Slow 
Motion 

Container 16: 3.18 16: 3.00 16: 3.00 16: 3.00 16: 3.00 16: 3.00 
Overall Average Subsample 

ratio 16: 8.58 16: 8.04 16: 7.35 16: 5.60 16: 4.87 16: 3.74 
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After choosing the optimal threshold values between 16:16, 16:8, 16:4 and 16:2, 

we compare the proposed algorithm using the optimal threshold value with generic 

subsample ratio algorithms. The PSNRY and ∆PSNRY of the proposed algorithm and 

generic subsample ratio algorithm are shown in Table 6 and Table 7. Fig 5.2 and Fig 

5.3 are similar with Fig 3.2 and Fig 3.3 respectively. Fig 5.2 and Fig 5.3 add the 

location of the proposed algorithm with the optimal threshold value. We can easily 

observe the relation between the generic subsample ratio algorithm and the proposed 

algorithm with the optimal threshold value. For Fig 5.2, the quality degradations of 

these testing sequences using generic subsample ratio algorithms are strong. The 

maximum quality degradation is 0.93 dB. It happens in “Dancer” sequence using the 

16:2 generic subsample ratio. From Fig 5.3, the proposed algorithm can adaptively 

maintain ∆PSNRY under the threshold of about 0.3 dB and has lower subsample ratio 

to substantially save power dissipation than the generic subsample ratio algorithm 

under the same ∆PSNRY for tested video sequences. For Fig 5.3, the quality 

degradations of these testing sequences using generic subsample ratio algorithms are 

light. The maximum quality degradation is 0.33 dB and it is acceptable. It happens in 

“Weather” and “Paris” sequences using the 16:2 generic subsample ratio. From Fig 

5.3, therefore, the proposed algorithm can select the lowest subsample ratio and 

maintain ∆PSNRY under the threshold of about 0.3 dB. We can determine the 

performance of the proposed algorithm with different threshold value from Fig 5.2 

and Fig 5.3. The optimal threshold value can make the quality degradation of high and 

low motion video sequence keep near by 0.3 dB. That will save the maximum power 

consumption. And for low motion video sequence, the selected subsample ratio is the 

lowest one, 16:2. The power consumption is the minimum, for 16:3. If the other 

threshold value is used in the proposed algorithm, the location will be away from 0.3 

dB and have no the minimum power consumption case. 
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Table 6 
The PSNRY of the proposed algorithm and generic subsample ratio algorithm 

Full Search Block Matching 
Generic 
16:16 

Subsample 
ratio 

Generic 
16:14 

Subsample 
ratio 

Generic 
16:12 

Subsample 
ratio 

Generic 
16:10 

Subsample 
ratio 

Generic  
16:8 

Subsample 
ratio 

Generic  
16:6 

Subsample 
ratio 

Generic  
16:4 

Subsample 
ratio 

Generic  
16:2 

Subsample 
ratio 

Proposed 
Algorithm 

Method 
(70%) 

 video 
Sequence 

PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY
Dancer 33.42 33.24 33.09 32.89 32.72 32.56 32.5 32.49 33.06 

Foreman 29.51 29.42 29.33 29.24 29.11 28.96 28.79 28.73 29.18 
Fast 

Motion 
Flower 19.58 19.53 19.48 19.4 19.3 19.18 19.09 19.07 19.31 

Table 31.04 31.02 31 30.95 30.91 30.88 30.8 30.69 30.78 
Mother 

Daughter 39.34 39.31 39.32 39.26 39.19 39.09 38.99 38.88 38.98 

Weather 32.26 32.2 32.16 32.17 32.11 32.04 31.98 31.93 31.93 

Children 29 28.99 28.95 28.89 28.86 28.83 28.78 28.71 28.71 

Normal 
Motion 

Paris 30.67 30.67 30.63 30.62 30.57 30.54 30.4 30.34 30.32 

News 37.27 37.25 37.26 37.23 37.21 37.18 37.14 37.05 37.07 

Akiyo 42.36 42.37 42.35 42.34 42.33 42.11 42.27 42.2 42.21 

Silent 34.62 34.59 34.59 34.59 34.6 34.6 34.56 34.54 34.53 
Slow 

Motion 

Container 35.47 35.47 35.46 35.46 35.47 35.45 35.45 35.45 35.45 
 

Table 7 
The ∆PSNRY of the proposed algorithm and generic subsample ratio algorithm 

Full Search Block Matching 
Generic 
16:14 

Subsample 
ratio 

Generic 
16:12 

Subsample 
ratio 

Generic 
16:10 

Subsample 
ratio 

Generic  
16:8 

Subsample 
ratio 

Generic  
16:6 

Subsample 
ratio 

Generic  
16:4 

Subsample 
ratio 

Generic  
16:2 

Subsample 
ratio 

Proposed 
Algorithm 
Method1 

(70%) 
 video 

Sequence 

∆PSNRY ∆PSNRY ∆PSNRY ∆PSNRY ∆PSNRY ∆PSNRY ∆PSNRY ∆PSNRY
Dancer -0.18 -0.33 -0.53 -0.7 -0.86 -0.92 -0.93 -0.36 

Foreman -0.09 -0.18 -0.27 -0.4 -0.55 -0.72 -0.78 -0.33 Fast 
Motion 

Flower -0.05 -0.1 -0.18 -0.28 -0.4 -0.49 -0.51 -0.27 

Table -0.02 -0.04 -0.09 -0.13 -0.16 -0.24 -0.35 -0.26 
Mother 

Daughter -0.03 -0.02 -0.08 -0.15 -0.25 -0.35 -0.46 -0.36 

Weather -0.06 -0.1 -0.09 -0.15 -0.22 -0.28 -0.33 -0.33 

Children -0.01 -0.05 -0.11 -0.14 -0.17 -0.22 -0.29 -0.29 

Normal 
Motion 

Paris 0 -0.04 -0.05 -0.1 -0.13 -0.27 -0.33 -0.35 

News -0.02 -0.01 -0.04 -0.06 -0.09 -0.13 -0.22 -0.2 

Akiyo 0.01 -0.01 -0.02 -0.03 -0.25 -0.09 -0.16 -0.15 

Silent -0.03 -0.03 -0.03 -0.02 -0.02 -0.06 -0.08 -0.09 
Slow 

Motion 

Container 0 -0.01 -0.01 0 -0.02 -0.02 -0.02 -0.02 
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Fig 5.2: The results ∆PSNRY of testing sequences “Dancer“, “Foreman“, 

“Flower“, “Table“, “Mother Daughter“ and “Weather“ and the 
proposed algorithm results location 

 
Fig 5.3: The results ∆PSNRY of testing sequences “Children“, “Paris“, 

“News“, “Akiyo“, “Silent“ and “Container“ and “Weather“ and the 
proposed algorithm results location 
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The subsample algorithm, also called the pixel decimation algorithm, can be, in 

general, classified into two categories. One is fixed patterns [11]-[15], and the other is 

adaptive patterns [16] [17]. For the subsample algorithm using fixed patterns 

[11]-[15], they have to choose the only subsample pattern. In our Experimental Result, 

it is obvious that the only subsample pattern is not suitable for every video sequence.  

Although the subsample algorithm using the fixed pattern make sure the power 

consumption is low, they can not keep the quality degradation of all video sequence 

near 0.3 dB. If we want to keep the quality degradation of all video sequence near 0.3 

dB using the fixed pattern, we have to choose the subsample ratio of 16:12. Because 

the worse case is the “Dancer” video sequence shown in Fig 5.2. In order to make the 

quality degradation of “Dancer” near 0.3 dB, we choose the 16:12 fixed subsample 

ratio. But it is waste the power consumption to using the 16:12 fixed subsample ratio 

in the low motion video sequence. Therefore, we have to using the adaptive 

subsample ratios in all video sequences. In our proposed algorithm with the optimal 

threshold value, it is achieved the best tradeoff between the quality degradation and 

the power consumption. It can keep the quality degradation near 0.3 dB, and save the 

maximum power consumption at the same time.  

In order to save more power consumption, we also can combine our algorithm 

with some fast algorithms, like [4]-[17]. The quality is also near 0.3 dB. We can make 

the video sequences keep their quality near 0.3 dB. At the same time, the power 

comsuption can be redued more. We simulate that our algorithm is combined with 

FME mode [38] in JM9.2. We compare the proposed algorithm in FME mode [38] 

with generic subsample ratio algorithms in FME mode [38]. The PSNRY and 

∆PSNRY of the proposed algorithm in FME mode [38] and generic subsample ratio 

algorithm in FME mode [38] are shown in Table 8, Table 9 and Table 10. Fig 5.4 and 

Fig 5.5 are similar with Fig 5.2 and Fig 5.3 respectively. Fig 5.2 and 5.3 are result of 
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full search mode and Fig 5.4 and 5.5 are result of FME mode [38]. We can easily 

observe the relation between the generic subsample ratio algorithm in FME mode [38] 

and the proposed algorithm in FME mode [38]. In table 8, we can observe the quality 

and average subsample ratio of our proposed algorithm in FME mode [38]. The 

quality of our proposed algorithm in FME mode [38] is still near 0.3 dB. This can be 

acceptable. And the power consumption can be got from the average subsample ratio. 

We can save the power consumption up to 73.6% in FME mode [38]. For Fig 5.4, the 

quality degradations of these testing sequences using generic subsample ratio 

algorithms in FME mode [38] are strong. The maximum quality degradation is 1.05 

dB. It happens in “Dancer” sequence using the 16:2 generic subsample ratio in FME 

mode [38]. From Fig 5.4, the proposed algorithm can adaptively maintain ∆PSNRY 

under the threshold of about 0.3 dB and has lower subsample ratio to substantially 

save power dissipation than the generic subsample ratio algorithm under the same 

∆PSNRY for tested video sequences. For Fig 5.5, the quality degradations of these 

testing sequences using generic subsample ratio algorithms in FME mode [38] are 

light. The maximum quality degradation is 0.3 dB and it is acceptable. It happens in 

“Childern” sequence using the 16:2 generic subsample ratio in FME mode [38]. From 

Fig 5.5, therefore, the proposed algorithm can select the lowest subsample ratio and 

maintain ∆PSNRY under the threshold of about 0.3 dB. The situation in FME mode 

[38] is the same in full search mode. Therefore, we can know that our algorithm can 

be combined with FME [38] and the result is similar with in full search mode. We can 

save more power consumption using this method, combined with some fast 

algorithms. 
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Table 8 
The result of the proposed algorithm in FME mode [38] 

Full search     
in FME mode [38]

Proposed Algorithm Method in FME mode 
[38]  video Sequence 

PSNRY PSNRY ∆PSNRY Average 
Subsample Rate 

Dancer 33.48 33.23 -0.25 16:12.35 
Foreman 29.63 29.31 -0.32 16: 6.23 

Fast 
Motion 

Flower 19.64 19.35 -0.29 16: 4.24 
Table 31.07 30.84 -0.23 16: 3.00 

Mother_Daughter 39.44 39.2 -0.24 16: 3.55 
Weather 32.34 32.08 -0.26 16: 3.00 
Children 29.12 28.85 -0.27 16: 3.27 

Normal 
Motion 

Paris 30.75 30.5 -0.25 16: 3.00 
News 37.37 37.25 -0.12 16: 3.00 
Akiyo 42.43 42.32 -0.11 16: 3.00 
Silent 34.7 34.64 -0.06 16: 3.00 

Slow 
Motion 

Container 35.52 35.48 -0.04 16: 3.00 
Overall Average Subsample Rate 16: 4.22 

 
Table 9 

The PSNRY of the proposed algorithm and generic subsample ratio algorithm in FME 
mode [38] 

FME Search Block Matching 
Generic 
16:16 

Subsample 
ratio 

Generic 
16:14 

Subsample 
ratio 

Generic 
16:12 

Subsample 
ratio 

Generic 
16:10 

Subsample 
ratio 

Generic  
16:8 

Subsample 
ratio 

Generic  
16:6 

Subsample 
ratio 

Generic  
16:4 

Subsample 
ratio 

Generic  
16:2 

Subsample 
ratio 

Proposed 
Algorithm 

Method 
(70%) 

 video 
Sequence 

PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY
Dancer 33.48 33.31 33.17 33.01 32.85 32.64 32.47 32.43 33.23 

Foreman 29.63 29.57 29.52 29.46 29.42 29.34 29.18 28.94 29.31 
Fast 

Motion 
Flower 19.64 19.63 19.61 19.58 19.56 19.49 19.39 19.16 19.35 

Table 31.07 31.05 31.04 31.01 31 30.96 30.9 30.82 30.84 
Mother 

Daughter 39.44 39.42 39.4 39.37 39.33 39.29 39.25 39.12 39.2 

Weather 32.34 32.33 32.32 32.29 32.25 32.27 32.21 32.07 32.08 

Children 29.12 29.06 29.04 29.01 28.97 28.96 28.89 28.82 28.85 

Normal 
Motion 

Paris 30.75 30.73 30.71 30.7 30.68 30.65 30.58 30.48 30.5 

News 37.37 37.35 37.34 37.32 37.3 37.28 37.25 37.24 37.25 

Akiyo 42.43 42.42 42.41 42.41 42.4 42.37 42.36 42.31 42.32 

Silent 34.7 34.68 34.66 34.65 34.64 34.64 34.63 34.63 34.64 
Slow 

Motion 

Container 35.52 35.51 35.51 35.51 35.5 35.5 35.49 35.47 35.48 
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Table 10 
The ∆PSNRY of the proposed algorithm and generic subsample ratio algorithm in 

FME mode [38] 
FME Search Block Matching 

Generic 
16:14 

Subsample 
ratio 

Generic 
16:12 

Subsample 
ratio 

Generic 
16:10 

Subsample 
ratio 

Generic  
16:8 

Subsample 
ratio 

Generic  
16:6 

Subsample 
ratio 

Generic  
16:4 

Subsample 
ratio 

Generic  
16:2 

Subsample 
ratio 

Proposed 
Algorithm 
Method1 

(70%) 
 video 

Sequence 

∆PSNRY ∆PSNRY ∆PSNRY ∆PSNRY ∆PSNRY ∆PSNRY ∆PSNRY ∆PSNRY
Dancer -0.17 -0.31 -0.47 -0.63 -0.84 -1.01 -1.05 -0.25 

Foreman -0.06 -0.11 -0.17 -0.21 -0.29 -0.45 -0.69 -0.32 Fast 
Motion 

Flower -0.01 -0.03 -0.06 -0.08 -0.15 -0.25 -0.48 -0.29 

Table -0.02 -0.03 -0.06 -0.07 -0.11 -0.17 -0.25 -0.23 
Mother 

Daughter -0.02 -0.04 -0.07 -0.11 -0.15 -0.19 -0.32 -0.24 

Weather -0.01 -0.02 -0.05 -0.09 -0.07 -0.13 -0.27 -0.26 

Children -0.06 -0.08 -0.11 -0.15 -0.16 -0.23 -0.3 -0.27 

Normal 
Motion 

Paris -0.02 -0.04 -0.05 -0.07 -0.1 -0.17 -0.27 -0.25 

News -0.02 -0.03 -0.05 -0.07 -0.09 -0.12 -0.13 -0.12 

Akiyo -0.01 -0.02 -0.02 -0.03 -0.06 -0.07 -0.12 -0.11 

Silent -0.02 -0.04 -0.05 -0.06 -0.06 -0.07 -0.07 -0.06 
Slow 

Motion 

Container -0.01 -0.01 -0.01 -0.02 -0.02 -0.03 -0.05 -0.04 

 
Fig 5.4: The results ∆PSNRY of testing sequences “Dancer“, “Foreman“, 

“Flower“, “Table“, “Mother Daughter“ and “Weather“ and the 
proposed algorithm results location in FME mode [38] 
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Fig 5.5: The results ∆PSNRY of testing sequences “Children“, “Paris“, 

“News“, “Akiyo“, “Silent“ and “Container“ and “Weather“ and the 
proposed algorithm results location in FME mode [38] 

 

 We simulate our algorithm in H.264 software model JM 9.2[36] for two 

situations, full search and FME [38]. We can keep the quality degradation near 0.3 dB 

and save the maxium power consumption. For full search in JM 9.2, we save 69.6% 

power consumption and keep quality degradation under 0.36 dB. For FME in JM 9.2, 

we save 73.6% power consumption and keep quality degradation under 0.33 dB. 

Therefore, the proposed algorithm can steady the video quality in power-saving 

situation.  
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Chapter 6 Conclusion 
 

In modern video standard, such as MPEG-1 [1], MPEG-2 [2], MPEG-4 [3] and 

H.264/MPEG-4 AVC [4], motion estimation requires the heaviest computational load 

and hence dominates main power requirement in video compression. Lots of 

published papers [4]-[17] have presented efficient algorithms for motion estimation. 

But they don’t consider the influence of the video content. Among these fast 

algorithms [4]-[17], the subsample algorithm [11]-[17] can not only easily combine 

with other approaches mentioned above but also reduce the number of matching 

points with flexibly changing subsample ratio. The reason why we choose the 

adaptive subsample ratios is because we believe that the subsample ratios should be 

varying with the video content.  

An adaptive motion estimation algorithm with variable subsample ratios has 

been presented. This proposed algorithm can adaptively select the compatible 

subsample ratio for each current group of picture (GOP). The proposed algorithm is 

first to analyze the degree of the object-moving between the first P-frame and I-frame 

for the current GOP and then adaptively selects the suitable subsample ratio to the 

current GOP according to analysis result. This proposed algorithm has been 

successful implemented in H.264 with software model JM9.2. An adaptive subsample 

ratio threshold decision is used to set the compatible threshold values and get the 

optimal result. The static science is adopted in the adaptive subsample ratio threshold 

decision. Experimental results has shown that the proposed algorithm can not only 

adaptively select the suitable subsample ratio to various video sequences but also 

maintain ∆PSNRY of 0.36 dB at most to save about 69.6% power consumption of 

motion estimation in a fixed bit rate control on average. The proposed algorithm can 
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also easily combine with other fast algorithms which reduce the computational 

complexity of FSBM. For FME in JM 9.2, we save 73.6% power consumption and 

keep quality degradation under 0.33 dB. Hence the proposed algorithm is suitable for 

real-time implementation of high quality and power-saving video applications using a 

powerful CPU. 
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