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Abstract

In modern video standard, such as MPEG-1, MPEG-2, MPEG-4 and
H.264/MPEG-4 AVC, motion estimation requires the heaviest computational load and
hence dominates main power requirement in video compression. Lots of published
papers have presented efficient algorithms .for motion estimation. But they don’t
consider the influence of the vidéo content-An.adaptive motion estimation algorithm
with variable subsample ratios has been presented. This proposed algorithm can
adaptively select the compatible subsample ratio for each current group of picture
(GOP). This proposed algorithm has been successful implemented in H.264/MPEG-4
AVC with software model JM9.2. Experimental results have shown that the proposed
algorithm can not only adaptively select the suitable subsample ratio to various video
sequences but also maintain APSNRY of 0.36 dB at most to save about 69.6% power
consumption of motion estimation in a fixed bit rate control on average. The proposed
algorithm can also easily combine with other fast algorithms which reduce the
computational complexity of FSBM. For FME in JM 9.2, we save 73.6% power
consumption and keep quality degradation under 0.33 dB. Hence the proposed
algorithm is suitable for real-time implementation of high quality and power-saving

video applications using a powerful CPU.
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Chapter 1 Introduction

In modern video standard, such as MPEG-1 [1], MPEG-2 [2], MPEG-4 [3] and
H.264/MPEG-4 AVC [4], motion estimation requires the heaviest computational load
and hence dominates main power requirement in video compression. Lots of
published papers [4]-[17] and [39]-[47] have presented efficient algorithms for motion
estimation. But they don’t consider the influence of the video content. In our
observation, the video content effects on the performance of motion estimation. So we
base on the video content to select the suitable motion estimation in order to achieve
the best tradeoff between the power and quality. We think that we must use the
different motion estimation in the different degree of the video content. Among these
fast algorithms [4]-[17], the subsampleralgorithms, [11]-[17] and [39]-[47] can not
only easily combine with othér approaches mentioned above but also reduce the
number of matching points with flexibly changing subsample ratio.

The subsample algorithm, also called the pixel decimation algorithm, can be, in
general, classified into two categories. One is fixed patterns [11]-[15], and the other is
adaptive patterns [16] [17]. Bierling used an orthogonal sampling lattice with a 4:1
subsample [11]. Liu and Zaccarin implemented pixel decimation that is similar to
Bierling’s approach with four alternating subsample patterns selected for each step so
that all the pixels in the current block are visited [12]. T.Chiang et al presented an
N-queen decimation approach to address the spatial homogeneity and directional
coverage [14], [15]. The pixel decimation can be adapted based on the spatial
luminance variation within a picture [16], [17]. The content-based subsample
algorithm is proposed in [39]-[47]. Adaptive techniques can achieve better coding

efficiency as compared to the uniform subsample schemes with an overhead in



deciding which pattern is more representative. These presented subsample algorithms
can successfully reduce the computational complexity of motion estimation to save
much power dissipation.

The reason why we choose the adaptive subsample ratios is because we believe
that the subsample ratios should be varying with the video content. Although the
subsample algorithms [16], [17] use the adaptive subsample patterns based on the
spatial luminance variation within a picture, they all don’t mention the temporal
variation. They result in serious aliasing problems in high frequency band to degrade
the visual quality without considering the temporal variation. The temporal variation
in the video means the degree of object-moving. The degree of object-moving is faster,
and the temporal variation is stronger. Although the low subsample ratio cause
aliasing in high frequency band,'the degree of.temporal variation will affect the
degree of quality degradation. 4f the temporal variation is strong, aliasing problems
will degrade the validity of ‘motion’-vector,(MV) and result in visual quality
degradation to video sequences obviously. On-the contrary, if the temporal variation is
weak, aliasing problems will not degrade the validity of motion vector (MV) although
the low subsample ratio still cause aliasing in high frequency band. That is because
we do not need the high frequency band information to find the motion vector when
the degree of object-moving is slow. Hence, using higher subsample ratio to reduce
the prediction residual is necessary when temporal variation is stronger. In DSP theory
[18] the subsample process will induce the aliasing in high frequency band. The
aliasing problem affects the variance of the prediction residual under a fixed bit-rate
constraint. The variance of the prediction residual affects the compression quality. The
quality degradation of 0.5 dB is empirically reasonable for the perceptual tolerance of
decompressed visual quality in video coding community. Therefore, in order to

efficiently alleviate the aliasing problem to satisfy the visual quality under the quality



threshold of 0.5 dB for general video sequences, adaptively selecting the suitable

subsample ratio according to the degree of temporal variation in the content is

imperative.
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Fig 1.1: The proposed-system diagram in H.264/MPEG-4 AVC encoder

In this thesis, we develop an-adaptive motion estimation algorithm with variable
subsample ratios and this proposed algorithm can adaptively select the compatible
subsample ratio for each current group of picture (GOP). The proposed algorithm is
first to analyze the degree of the object-moving between the first P-frame and I-frame
for the current GOP and then adaptively selects the suitable subsample ratio to the
current GOP according to analysis result. The proposed algorithm also has been
successfully implemented in the encoder model of H.264/MPEG-4 AVC [4] reference
software JM9.2 [36] and the proposed system diagram is shown in Fig 1.1. The
dash-lined region is the proposed motion estimation algorithm and the proposed
algorithm offers four kinds of subsample ratios to adaptively switch. We use the
statistics science to analyze every GOP degradation and null motion vector count

(NMVC). And we get several different threshold values to experiment with video



sequences. The experimental results have been shown that the proposed algorithm
with the optimal threshold value can not only adaptively maintain visual quality under
the quality degradation of 0.36 dB in a fixed bit-rate control for general video
sequences but also meaningfully achieve the target of power-saving.

The rest of the thesis is organized as follows. We introduce the study background
in chapter 2. In chapter 3, we introduce the generic subsample algorithm in detail and
describe the aliasing problem in the subsample algorithm. Chapter 4 describes the
proposed algorithm. Chapter 5 shows the experimental performance of the proposed
algorithm in H.264/MPEG-4 AVC [4] software model JM9.2 [36]. Finally, Chapter 6

concludes our contribution and merits of this work.



Chapter 2 Background

In this chapter, technical overview of H.264/MPEG-4 AVC [4] will be
introduced [19] [20]. The feature of H.264/MPEG-4 AVC [4] unlike MPEG-4 [3] will
be pointed out [19] [20]. The variable block size motion estimation is the main
different place in H.264/MPEG-4 AVC [4]. The paper [21] proposed the new
one-dimensional (1-D) very large-scale integration architecture for full-search
VBSME (FSVBSME). About the full-search algorithm, it is particularly attractive to
ones who require extremely high quality. However, it requires a huge number of
arithmetic operations and results in highly computational load and power dissipation.
In order to reduce the computational, complexity of the FSBM, lots of published
papers [4]-[17] and [39]-[47]. have  presented ‘efficient algorithms for motion
estimation. Among these fast algorithms [4]-[17]- and [39]-[47], the subsample
algorithms [11]-[17] and [39]-[47] can.not enly easily combine with other approaches
mentioned above but also reduce the ‘number of matching points with flexibly
changing subsample ratio. In general, the subsample algorithm, also called the pixel
decimation algorithm, can be classified into two categories. One is fixed patterns
[11]-[15], and the other is adaptive patterns [16] [17] and [39]-[47]. Adaptive
techniques can achieve better coding efficiency as compared to the uniform
subsample schemes with an overhead in deciding which pattern is more representative.
These presented subsample algorithms [11]-[17] and [39]-[47] can successfully
reduce the computational complexity of motion estimation to save much power

dissipation.



2.1 H.264/MPEG-4 AVC Video Coding System

H.264/MPEG-4 AVC [4] provides ultra high coding efficiency and network
friendly functionalities. It has been a hot candidate for future’s video streaming and
communications. Fig 2.1 [22] shows that rate-distortion curve comparison of
H.264/MPEG-4 AVC [4] with previous video coding standards. Under medium
bit-rate, its PSNR quality outperforms MPEG-4 [3] simple profile by more than 3dB.
Fig 2.2 shows H.264 baseline subjective view comparison with MPEG-4 advanced
simple profile at the specification of QCIF and bit-rate 112Kbps.

H.264/MPEG-4 AVC [4] has such high performance because it adopts several
novel coding tools in its algorithm design. For example, variable block size motion
estimation, multiple reference framie motion estimation, and intra frame prediction are
used in its prediction algorithm=In-loop deblocking filter offers good subjective view.
The 6-tap filter is incorporated to.-do-the-quarter pixel interpolation. CAVLC
(Context-Adaptive Variable Length' Coding).and CABAC (Context-Adaptive Binary
Arithmetic Coding) are adopted in its entropy coding design. H.264/MPEG-4 AVC [4]
is the first video coding standard that adopts the arithmetic coding into its entropy
design. The block diagram of H.264/MPEG-4 AVC encoder is shown in Fig 2.3.
Video frames are captured into intra prediction and inter prediction parts. If the frame
type is intra, the inter prediction part will be disabled. Multiple reference frames and
variable block size motion estimation is used for inter prediction. The best mode
among these prediction modes is chosen in the mode selection block. The input frame
is then subtracted from the prediction and forms the residue block. The residue blocks
are transformed by 4x4 integer DCT for luminance and 2x2 transform for
chrominance DC coefficient. Scan and quantization procedures are then applied to the

coefficients. The entropy coder receives these quantized coefficients and generates



codeword. The mode information is also transformed by the mode tables and fed into
the entropy coder. The reconstruction loop includes the dequantization, inverse
transform and deblocking filter. Finally, the reconstruct frame is written to the frame
buffer for motion estimation.

There are three kinds of profile for H.264/MPEG-4 AVC standard [4]: baseline
profile is for real-time communication, main profile is for digital storage application,
and x-profile is for network streaming application. In the baseline profile, B-frame is
not used and CAVLC is adopted in entropy coding. In the main profile, B-frame
coding is used and CABAC is adopted for entropy coding. And X-profile has all the
features of baseline profile while B-frame coding, SI-frame coding, and SP-frame [23]
coding are included. Although the coding performance of H.264 is good, more than
four times of the algorithm complexity compared.to MEG-4 simple profile prevents
its practical implementation. Several previous papers and documents have addressed

the coding complexity of this new state’of-art-video coding algorithm.
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Fig 2.1: Rate-distortion curve comparison of H.264/MPEG-4 AVC with
previous standards. (Excerpted from [22])
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Next section, we will discuss the architecture of motion estimation. And we will

focus on the full-search variable block size motion estimation architecture.

2.2 Full-search Variable Block Size Motion estimation Architecture

(FS-VBSME)

The computational requirements for motion estimation are heavy and a real-time
video application usually requires a direct mapped hardware architecture. Direct
mapped architectures also have important advantages in terms of reduced power

dissipation. Full-search algorithms, typically, can be implemented using regular 1-D



or 2-D systolic or systolic-like architectures as described by the paper [24]. 1-D
systems offer a number of attractive features over their full 2-D counterparts, in
particular much less complex data scheduling and simpler structures. These
architectures are therefore attractive for portable devices because of their lower
silicon area. The paper [25] has also demonstrated that flexible 1-D systems can be
used to implement other fast matching algorithms, such as a three-step search (TSS)
and pixel subsample.

To date, conventional VLSI architectures for computing variable block size
motion estimation (VBSME) have been based on 2-D processor systems. For example,
the architecture in the paper [26] uses a 2-D array with appropriate through masking
of process elements (PEs). However, this results in low processor utilization. The
architecture in the paper [27] usesta smaller 2-D.array with partial-sum the sum of
absolute difference (SAD) caleulations performed -sequentially using the smallest
block size, 8x8. However, these architectures,do; not incorporate the capability to
process all the variable block sizes (VBSs).

In H.264/MPEG-4 AVC [4], a macroblock is further segmented with the smallest
block size being 4x4, as shown in Fig 2.4. This has two modes, the macroblock mode
and the 8x8 mode. They are illustrated in Fig 2.5(a) and (b), respectively. VBSs must
be accommodated, namely 4x4, 4x8, 8x4, 8x8, 16x8, 8x16, and 16x16. Referring to
Fig 2.5(b), it will be noted that there are four quarter-blocks in a macroblock, each of
which contains nine block patterns i.e., a total of 36 block patterns. However,
observed in Fig 2.5(a), each macroblock contains another nine block patterns, with
four of the 8x8 blocks common with the equivalent 8x8 blocks in Fig 2.5(b).
Therefore, the total number of block patterns, to be processed is 36+9-4=41 1i.e., a

total of 41 motion vectors.
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mode. (b) 8x8 mode. (Exeerptedfrom[21])

The architecture presented in the paper [21] is based on 1-D array processor, in
this case containing 16 PEs, in general, N for an NXN macroblock. This is
summarized in Fig 2.6. A key aspect of the approach proposed is that it incorporates
within the basic PE the means to accumulate the partial SAD values through shuffling.
The scheduling of the current macroblock data (CMD) and search region data (SRD)
is similar to a conventional 1-D architecture [28] with the CMD arranged in a raster
scan sequence and the SRD arranged in a dual raster scan sequence. They apply this
approach to the macroblock shown in Fig 2.4 and result in 16 SADs being computed,
each with block size 4x4. The stored SADs are then re-used to compute SAD values
for other block sizes. This is done by shuffling and combining the computed

sub-block SAD values appropriately to derive SADs for each of the other larger
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blocks sizes. For example, the results of two 4x4 sub-block computations can be
combined to derive results for a 4x8 or 8x4 computation, and so on. This avoids the
need to compute each of these from scratch and allows the overall computational
requirements to be significantly reduced by avoiding the need to derive sub-block
computation values that already have been established. As discussed below, this

allows up to 41 VBS SAD values to be processed in a single processor.

S T G —
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N, il “\_'_,r:_ , .
PE PE | | ------ PE |
0 1 15 |
Control
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SAD BUS, 5 - Mln 1 .-—Ir.,-“,r

Fig 2.6: One-dimensional array VBSME architecture in the paper [21].
(Excerpted from21])

These computations of VBS’s SAD-are performed using the internal PE circuitry.
Details of which are shown in Fig 2.7. This uses a three stage process, provides 100%
PE efficiency and allows SAD value computation to be choreographed directly with
the data flow within the image. The first stage in the PE contains hardware to derive
absolute difference values between the CMD and the SRD. These values are then
latched to a second stage where they are multiplexed appropriately and stored in one
of eight registers. The function of the registers and Mux C is to ensure that once
computations have been performed these are stored and fed back in the correct order
to compute the overall AD values for each of the sub-blocks 4x4. The function of the
second stage of the array is twofold. The first is simply to pass, on successive cycles,

the values 4x4 downwards through the PE cell. The second is to combine these values
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appropriately to compute results of larger block size such as 8x4, 4x8 etc. This is
done in a similar manner to stage 1 i.e., shuffling and combining results using a
combination of multiplexing and adder circuitry, with results and intermediate results,
in this case, being assigned to one of six registers, and so on. The third stage in the
PE has a similar function to the second stage, but in this case feeding back the SAD
values stored in the stage 2 registers via Mux D and Mux F. The net result is that by
clock cycle 261 (256 cycles plus 5 cycles internal cell latency) all 41 candidate MVs

are available from each PE.
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Fig 2.7: Process element of the FS-VBSME architecture in [21] (Excerpted
from [21])

Once all the values from an image block have been input then the data from a

new block can immediately be input to each PE. This thus provides a continuous
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streaming process that directly synchronizes with a constant flow of image data and
means that each PE is 100% utilized. With 16 PEs working concurrently, the
architecture described allows a total of 256 candidate MVs (16 16 search region) per
sub-block to be processed in parallel with each PE producing all the information
needed for a full search every 256 clock cycles— the same as existing architectures.
However, in this case, this is done through the derivation of 41 MVs rather than one
for each macroblock. Repeating this further 16 times means that up to 4096 clock

cycles are required to complete a full search.

2.3 The Subsample Algorithm Using Fixed Pattern

The subsample algorithms [11]-[17] can mot only easily combine with other
approaches mentioned above but,also reduce the mumber of matching points with
flexibly changing subsample rate. For the-fixed pattern, we can be sure that the power
dissipation will be down by subample.scale: But different patterns will case the
different degreed of quality degradations.

Bierling used an orthogonal sampling lattice with a 4:1 subsample [11]. The
pattern they used is the quarter pattern, shown in Fig 2.8 (b) [14]. The quarter pattern
can save the power dissipation for 75%. And the paper [12] uses four different quarter
pattern to the different search area. They are based on motion-field and pixel
subsample. They first determine a subsample motion field by estimating the motion
vectors for a fraction of the blocks. The motion vectors for these blocks are
determined by using only a fraction of the pixels at any searched location and by
alternating the pixel subsample patterns with the searched locations. They then
interpolate the subsample motion field so that a motion vector is determined for each

block of pixels. Fig 2.9 (a) shows a block of 8x8 pixels with each pixel labeled a, b, c,
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or d in a regular pattern. We call pattern A the subsample pattern that consists of all
the “a” pixels, as the quarter pattern. Similarly, patterns B, C, and D are the
subsample patterns that consist of all the “b”, “c”, and “d” pixels, respectively. If only
the pixels of pattern “A” are used for block matching, then the computation is reduced
by a factor of 4. However, since 3/4 of the pixels do not enter into the matching
computation, the use of this subsample pattern alone can seriously affect the accuracy
of the motion vectors. To reduce this drawback, they proposes using all four quarter
patterns, but only one at each location of the search area and in a specific alternating
manner. Fig 2.9 (b) shows some pixels forming part of the search region in the
previous frame. The pixels are labeled 1, 2, 3, and 4 in a regular pattern. The labeling
of the pixels refers to which of the four quarter patterns of Fig 2.9 (a) is to be used for
computing the matching at that .Jocation. Thattis, when computing the match at
locations labeled 1 (i.e., when the upper-left pixel.of the block to match falls on those
locations), pattern A is used. Similarly;pattern-B, C,or D is used when computing the

match at locations labeled 2, 3, or 4:
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Fig 2.8: Pixel patterns for decimation. (a) Full pattern with NxN pixels
selected. (b) Quarter pattern uses 4:1 subsampling. (c) Four-queen
pattern is tiled with four identical patterns. (d) Eight-queen pattern. (c)
and (d) are derived from the N-queen approach with N =4 and N = §,
respectively. (Excerpted from [14])
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Fig 2.9: (a) Patterns of pixels used for computing the matching criterion
with a 4 to 1 subsample ratio. (b) Alternating schedule of the four pixel
subsample patterns over the search area (Excerpted from [12])

We can analyze the subsample pattern with the spatial homogeneity and
directional coverage [14]. The spatial homogéneity is measured by the average and
variance of spatial distances from each:skipped pixel to its nearest selected pixel
where N is the dimension of the block, and S(X, y)indicates the coordinates of the

selected pixel nearest to the pixel‘at the position(X,:y). K is the number of the selected
pixels. Smaller u, and o, indicate a more spatially homogeneous sampling lattice.

An edge is defined as a line passing through the sampling grids in any
0f0°,45°,90° and 135° directions in Fig 2.8 (d). The directional coverage is measured
as the percentage of edges that at least one of the selected pixels exists on an edge.
Table I shows that the quarter pattern has less spatial homogeneity and lacks half of
the coverage in the specified directions. To address the issues of spatial homogeneity
and directional coverage, the paper [14] construct a new N-queen sampling lattice Fig

2.8 (c) and (d).
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In the paper [14], to fully represent the spatial information of a NxN block, it is
required that at least one pixel should be selected for each row, column, and diagonal.
To satisfy such a constraint, the solution is identical to the problem of placing queens
on a chessboard, which is referred to as -queen pattern. For a NxN block, as shown in
Fig 2.8 (¢) and (d), every pixel of the N-queen pattern occupies a dominant position,
which is located at the center. All the other pixels located on the four lines in the
vertical, horizontal and diagonal directions are removed from the list of the selected
pixels. With such elimination process, there is éxactly one pixel selected for each row,
column, and (not necessarily main) diagonal of the block. Thus, the N-queen patterns
present a subsample lattice that'can provide N times of speedup improvement. Despite
the randomized lattice, the paper"f15] designed compact data storage architecture for
efficient memory access and simple hardware implementation for the N-queen

patterns.
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Table 1
Comparison of the sampling lattices an 8x8 block in measuring the directional
coverage, four orientation described in Fig 2.8 (d) are used for horizontal, vertical and

diagonal directions, there are eight, eight, and 15 possible edges, respectively, while
for the diagonal directions, there are 15 possible edges. (Excerpted from [14])

Pattern Spatial homogeneity Directional coverage (&)
By g2 0% o 45° 90°  135°
Full 0 0 8/8 8/8 15/15 15/15
Quarter [11]  1.14 0.04 17.16%  4/8 4/8 7/15 7/15
Hexagonal [13] 1.03 0.11 11.07% 4/8 8/8 12/15 12/15
4-Queen [14] 1 0 8/8 8/8 10/15 10/15
8-Queen [14] 1.32  0.14 28.77% 8/8 8/8 8/15 8/15

2.4 The Subsample Algorithm using adaptive Pattern

The approach using the fixed patterns could possibly be able to obtain a good
estimation of motion when the intensity of the block is nearly uniform. However, in
the case of high activity blocks, some details may be neglected. Thus, it probably
would introduce excessive prediction error. The paper [16] is based on the fact that
high activity in spatial domain such as edges and texture mainly contributes to the
MAD criterion. We can vary the number of selected pixels based on the image details.
In other words, we can use fewer pixels when the block has uniform intensity. But in
the high activity block, more pixels can be employed for the MAD matching criterion.
This adaptive approach [16] can reduce the prediction error compared with standard
pixel decimation [11]-[15]. In the algorithm [16], they used the relationship between a
pixel and its neighbors to select the most representative pixels. For example in 8x8

block size, initially, nine pixels are selected as shown in Fig 2.10 (a). The 8 x 8 pixel
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block is divided into nine regions, depicted in Fig 2.10(b), and each region has its
corresponding central pixel. In each region, the difference D, is defined the difference
between central pixel and one of its neighbor pixels. If the difference D, is greater
than threshold, this pixel is selected. We have used block size of 8 X 8 as an example
for the description of the proposed algorithm in the paper [16], however, the extension

of the proposed scheme to a large block size, say 16 X 16, is straightforward.

D, (h,k) = |Ik (h,k) — 1|, where (h, k) is the location of the neighbor pixel in

region K, with (h, k) as the displacements from the central pixell, .

- N - - N -
A A
N N
. Sl 0.1
\J \j
@ Tnitial selected pixel % Central Pixel for Each Region

(a) (b}

Fig 2.10: Adaptive pixel selection (a) nine selected pixels. (b) The selected
pixels in (a) are considered as the central pixel for each region, the
dotted lines indicate the neighbor pixels of respective central pixels in
each region. (Excerpted from [16])
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Fig 2.11: An edge in a 16x6 block for testing the subsample algorithm [17]

About the paper [16], their scheme still requires an initial uniform division of a
block, and therefore the pattern is locally adaptive. The pixel-decimation algorithm
proposed in the paper [17] also utilizes edge information. Compared to Chan’s
method [16], it extends the adaptiyity ‘ fr.o_“n}. local to global. To realize global

adaptivity, the algorithm [17] lodks direi_(_:wtly for édge pixels instead of requiring an

initial uniform division of a bloek. Thisrltaisi('" f17] 18 :i?nade easier in a 1-D space with
the help of Hilbert scan [29]. The H11bemn wasJ named after the great German
mathematician Hilbert, who found nfﬁé‘simplest‘f'a;r;lily of curves (Hilbert curves) that
pass through all the grid points only once in a 2-D space [29]. The Hilbert scan,
defined as a scan of a 2-D image through one of its Hilbert curves, is equivalent to a
depth-first scanning of a quad-tree representation of the 2-D image. Some interesting
features of this scan method used in previous applications include: 1) it is easier to
extract clusters in an image with a Hilbert scan than other scan methods, e.g., row
scan, row-prime scan, Morton scan, etc., and 2) it preserves 2-D coherence [30]-[35].
In addition, Kamata has shown that edge information in a 2-D image is preserved in
its 1-D Hilbert-scan sequence, and has demonstrated an effective compression of 2-D

images by compressing their 1-D sequences using the edge information [34]. The

compressed images have a similar visual quality to that of the JPEG images at a high
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compression rate.

To illustrate how edges are detected in a 1-D Hilbert sequence, Fig 2.11 shows a
2-D block with a closed circular edge, and Fig 2.12 (a) is the 1-D Hilbert sequence
converted from the block in Fig 2.11. If edge pixels are defined at where pixel
intensity changes the most, 22 edge pixels can be located in Fig 2.12 (a). All of the 22
pixels, when mapped back to 2-D, appear evenly distributed on the circular edge as
shown in Fig 2.12 (b). For comparison, Fig 2.12 (c) is the 1-D row sequence
converted from the same block in Fig 2.11. Although the row sequence contains 20
edge pixels, they all appear at the left and right vertical portion of the circular edge,
and none appear on the upper and lower horizontal edges, as shown in Fig 2.12 (d). In
general, the Hilbert scan not only provides edge information with little directional
preference, but also preserves pixel coherence .more effectively than other scan
methods. In contrast, row scan,-typical of many other scan methods, may miss edges
due to its scan direction. Based on edge-information in 1-D Hilbert sequences [29],

the algorithm [16] selects pixels at which the matching criterion is evaluated.
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Fig 2.12: (a) 1-D H1lbert sequence-cnrrverted from Fig 2.11. (b) Edge pixels
detected from 1-D ‘Hilbert sequence.(c) 1-D row sequence converted

from Fig 2.11. (d) Edge pixels detected from 1-D row sequence
(Excerpted from [17])

The paper [39]-[47] proposed that the general subsample algorithm has aliasing problem
when it is in high subsample rate. The aliasing problem leads to considerable quality degradation
because the high frequency band is messed up. To alleviate the problem, he uses edge extraction
techniques to separate the edge pixels from a macro-block and then perform subsampling to the
remaining pixels.

Although the subsample algorithms [11]-[17] and [39]-[47] reduce the number of matching
points with flexibly changing subsample rate to save the power dissipation, they will cause the
aliasing problem in high frequency band. Next, we will explain aliasing problems in subsample

algorithms.
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Chapter 3 Aliasing Problems in Subsample
Algorithm

In this chapter, we present a generic subsample algorithm in which the
subsample ratio ranges from 16-to-2 to 1-to-1. We use the fixed subsample ratio to
test the video sequences and observe that the quality degradation is dependent on the
video content. That is because the subsample process will induce the aliasing in high
frequency band [18]. The video with high motion have the high quality degradation.
On the contrary, the video with low motion have the low quality degradation. We
discuss aliasing problems in subsample algorithms in this chapter. From DSP theory
[18], we will kwon the reason why. aliasing preblems happen. We also can find this
situation in every GOP of the video sequence. We assume that the frames in the GOP
are very correlative. So we can:see the GOP as a control unit to adaptively select the
best subsample ratio. Aliasing problems can be solved more accurate. And the video
sequence “Table” is the example to explain the relationship between the quality

degradation and the video content in aliasing problems in high frequency band.

3.1 Generic Subsample Algorithm

Here, we present a generic subsample algorithm in which the subsample ratio
ranges from 16-to-2 to 1-to-1. The basic operation of the generic subsample algorithm
is to find the best motion estimation with less SAD computation. The generic
subsample algorithm uses Eq.1 as a matching criterion, called as subsample sum of
absolute difference (SSAD), where the macro-block size is N-by-N, R(i, j) is the

luminance value at (i, j) of the current macro-block (CMB). The S(i+u, j+V) is
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the luminance value at (i, j) of the reference macro-block (RMB) which offsets
(u,v) from the CMB in the searching area 2p-by-2p. SM,,., is the subsample mask
for the subsample ratio 16-to-2m as shown in Eq.2. The subsample mask SM ,, is
generated from basic mask as shown in Eq.3. Fig 3.1 shows the subsample patterns of
16:16, 16:8, 16:4 and 16:2 generated by the generic subsample algorithm respectively.
The other subsample patterns are omitted because they also can be generated from the
generic subsample algorithm and the subsample patterns of 16:16, 16:8, 16:4 and 16:2

shown in Fig 3.1 are symmetry and their scale is power of two.

SSADg,  (u,v)=

-1 N-1

p=4

UISM 1o (s 1) -[SG+U, j#W=RA, Pld, for —p<uv<p-1 (1)

Il
(=1

SM,,. (i, j) = BM,,,,  mod 4, ] mod 4, m=12345678 (2)

BM som =

um-1) u(m-5) u(m-2) u(m-=6)
um-=7) u(m-3) u(m-8) u(m-4)
um-2) u(m-5) u(m-1) u(m-=6)
um-=7) u(m-3) u(m-8) u(m-4)

€)

1, for n>0

when u(n) is a step function: that is, u(n)=<"
0, for n<o0
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(b) 16:8 subsample pattern

_HEE EEN |
_HEE EEE |
_HEE EEE_
_EEE EEE |
(c) 16:4 subsample pattern (d) 16:2 subsample pattern
Fig 3.1: The subsample patterns'with-16:16; 16:8, 16:4 and 16:2
respectively

Given a subsample mask generated from Eq.3, the computational cost of SSAD
can be lower than that of SAD. Hence, the generic subsample algorithm can achieve
the target of power-saving with flexibly changing subsample ratio. However, the
generic subsample algorithm suffers form aliasing problems in high frequency band.
Aliasing problems will degrade the validity of motion vector (MV) and result in
visual quality degradation to video sequences obviously.

We use the fixed subsample ratio from 16:2 to 1:1 to experiment the twelve
video sequences [37] in H.264/MPEG-4 AVC [4] coder with IM9.2 [36]. Here, we
define one group of picture (GOP) is fifteen frames, frame rate is 30 frames/s, the bit
rate is 450k bits/s and initial Qp is 34. We can observe the quality degradation of the

video sequence in the Fig 3.2 and Fig 3.3. In Fig 3.2, the video sequence “dancer” has
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the most quality degradation. The most quality degradation of “dancer” is 0.93 dB
using the fixed subsample pattern of 16:2. And the other sequences in the Fig 3.2 have
the excess of the 0.3dB quality degradation. We call those video sequences as high or
normal motion video sequences. They have the high degree of high-frequency
characteristic. We have to choose higher subsample ratio to keep the quality
degradation acceptable. The quality degradation of 0.5 dB is empirically reasonable
for the perceptual tolerance of decompressed visual quality in video coding
community. Therefore, we can conclude that we must use the difference subsample
ratio to keep the quality degradation acceptable. It is not enough to only use the fixed
subsample pattern for all video sequences. From Fig 3.3, the most quality degradation
is not over the 0.35 dB. We call those video sequences as low motion video sequences.
They have the low degree of temporal variation.The temporal variation in the video
means the degree of object-moving. The degree of object-moving is faster, and the
temporal variation is stronger. ‘Although-the -low subsample ratio cause aliasing in
high frequency band, the degree of temporal variation will affect the degree of quality
degradation. If the temporal variation is strong, aliasing problems will degrade the
validity of motion vector (MV) and result in visual quality degradation to video
sequences obviously. On the contrary, if the temporal variation is weak, aliasing
problems will not degrade the validity of motion vector (MV) although the low
subsample ratio still cause aliasing in high frequency band. That is because we do not
need the high frequency band information to find the motion vector when the degree
of object-moving is slow. Hence, using higher subsample ratio to reduce the
prediction residual is necessary when temporal variation is stronger. For those video
sequences, unlike the video sequences in the Fig 3.2, we can use the lowest the
subsample ratio to save the largest power dissipation. That is because the quality

degradation is acceptable.
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If we use the fixed subsample ratio for all the twelve video sequences and keep
the quality degradation acceptable, we have to choose the 16:12 subsample ratio. We
will have the large power dissipation. We will waste the power in the low motion
video sequences. Hence, the adaptive subsample ratios have to be used on

power-saving and the acceptable quality degradation.

3.2 Aliasing Problems in High Frequency Band

As mentioned above, the generic subsample algorithm has aliasing problems for
low subsample ratio and leads to considerable quality degradation because the high
frequency band is messed up.

The subsample process is like'the down-sampling process in DSP theory [18]. In
general, the operation of reducing.the sampling ratio will be called down-sampling.
Down-sampling is illustrated m Fig-3.4.-We, assume that the Fig 3.4 (a) is the
conceptual spectrum of a macroblock in_a frame of a video sequence. If this
macroblock is down-sampling by 2, then his new conceptual spectrum will be Fig 3.4
(b). Because the original conceptual spectrum is low bandwidth and the
down-sampling ratio is high, the aliasing don’t happen in this case. If the
down-sampling ratio becomes 3, the aliasing will happen shown in Fig 3.4 (c). The
aliasing in the high frequency band will case the motion estimation is no accurate.
Aliasing problems affect the variance of the prediction residual under a fixed bit-rate
constraint. The variance of the prediction residual affects the compression quality.
Therefore, in order to efficiently alleviate aliasing problems to satisfy the visual
quality under the quality threshold of 0.5 dB for general video sequences, adaptively
selecting the suitable subsample ratio according to the degree of temporal variation in

the content is imperative.
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Fig 3.4: Frequency-domain-illustration of down-sampling (Excerpted from
[18])

In all the twelve video sequénces, the video sequences with low motion have no
aliasing problems, like “Children®, “Paris®, “News®, “Akiyo“, “Silent“ and
“Container. About these video sequences, we can use the low subsample ratio in
order to save the large power dissipation without the high quality degradation. That is
because these video sequences have low frequency distribution and weak temporal
variation. Although we down-sample the video sequences by large number, the high
frequency don’t be messed up. On the other hand, the video sequences with high and
normal motion have aliasing problems. If we down-sample those video sequences by
large number, the quality degradation will be large. For example, the video sequence
“Dancer” will case 0.93 dB quality degradation using the 16:2 subsample ratio. That

quality degradation is very serious and can’t be acceptable.

In the video sequence, temporal variation is in proportion to the degree of
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object-moving and the degree of object-moving means moving motion vector count
(MMVC) between adjacent frames. For a fast motion video sequence, the degree of
temporal variation is stronger than a normal motion or slow motion video sequence.
Hence, the higher subsample ratio can more efficiently reduce the prediction residual
to maintain the visual quality in a bit rate control. On the contrary, the lower
subsample ratio results in more noticeable aliasing because of increasing the
inaccurate moving motion vector count (MMVC) and furthermore increases
prediction residual to degrade the visual quality in a bit rate control. Therefore, the
high subsample ratio is necessary for a fast motion video. And the low subsample

ratio is also suitable for a normal or slow motion video.

We define the null motion yector count to.reflect the spectrum in frequency
deomain. We use the lower of subsample ratie for the larger of NMVC. On the other
hand, we use the higher of subsample tatio-for.the smaller of NMVC. The overhand
of the point for the spectum is only an.extra-counter for implementation. But in the
encode system, we get the NMVC value after encoding. But we have to decide the
subsample ratio before encoding. In order to solve this problem, we use the GOP as a
processing unit. For any video sequence, the degree of temporal variation in this video
sequence is not the same. We also can find this situation in every GOP in the video
sequence. The GOP is like the small size of video sequence, about 0.5 second.
Because the number of frames in the GOP is smaller than that in the video sequence,
we assume that the frames in the GOP are very correlative. So we can see the GOP as
a control unit to adaptively select the best subsample ratio. If we do that, we can get
the degree of temporal variation more accurate. Aliasing problems can be solved more
accurate. So We get the NMVC of the first P-frame in the GOP as the point to select

the suitable subsample ratio for this GOP. The more detail will be discuss in next
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chapter.

We take the video sequence “Table” for example. To particularly analyze the
results of visual quality degradation with different subsample ratios for a video, the
normal motion video sequence “table” is simulated in H.264/MPEG-4 AVC [4] coder
with JM9.2 [36]. Here, we define one group of picture (GOP) is fifteen frames, frame
rate is 30 frames/s, the bit rate is 450k bits/s and initial Qp is 34. Subsample ratios are
16:8, 16:4 and 16:2 respectively and can be generated from Eq.3. Fig 3.5 shows
quality degradation results versus these subsample ratios. Fig 3.6 shows the NMVC

value of the first P-frame in each GOP. The average quality degradation of ith GOP

(AQ,y, cop) 1s defined as shown in Eq.4, where PSNRY, ., 1s the average PSNRY

of ith GOP using the full-search bleck-matching (FSBM). PSNRY, . is the

average PSNRY of ith GOP with specific:subsample ratio (SSR). From Fig 3.5, there
exists the stronger temporal variation between third GOP and seventh GOP, hence, the
lower subsample ratio leads to more obviously aliasing problems and results in higher
quality degradation. We can see the NMVC values of these GOPs are larger in Fig 3.6.
This can reflect the the aliasing problem. Furthermore, the tenth GOP has maximum
quality degradation because of scene change. Although lower subsample ratio leads to
more obviously aliasing problems in high frequency band, Fig 3.5 also shows that
quality degradation is unobvious between eleventh GOP and twenty GOP because of
the weaker temporal variation. In Fig 3.6, the NMVC values of these GOPs are small.

So we can use the NMVC to select the suitable subsample ratio for the GOP.

AQith Gop — (PSNRYi FSME — PSNRYi SSR) 4



32

AQGOP( dB)
16 T T T T T T I
: f : '!' ~@ 16:8 subsample rate
: : : n =X~ 16:4 subsample rate
U I —+ 16:2 subsample rate ||
: - : _ LB
1 1
I 1
1 1
1k " . '| . .
Fo
[
0.8 £oiod .
!
VS
: : P X
06 : k ' 'l i \'\ lI |
g % ‘ '.' i' ‘ 1‘
'J 3 i\\\
0.2 g X Y- ! i
*le * )'- —Ir‘\ @ ;k\
S \ N 4* & \
0r o g : EBS ‘AJ‘:'\' ,é -P-:" @‘;45 $
R &9/ ¥oge
02 z ; : : ?? ; .
0.4 I i I I | I | | i
0 2 4 6 8 10 12 14 16 18 20
Table cif GOP number
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From Fig 3.5 and Fig 3.6, the various degrees of temporal variation are
distributed over GOPs even though the “table” video sequence is regarded as a normal
motion video. Therefore, in order to efficiently alleviate the aliasing problems, we
need develop an adaptive motion estimation scheme and this scheme can adaptively
supply the suitable sample ratio to each GOP according to the degree of NMVC in

order to maintain the better visual quality in a bit rate control.
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Chapter 4 Adaptive Motion Estimation with

Variable Subsample Ratios

In this chapter, we describe the proposed algorithm in detail. We use a GOP as a
process unit. We get the null motion vector count (NMVC) from the first P-frame in
the current GOP. In order to make sure the correct of NMVC, we set the first P-frame
in the GOP to use the full search motion estimation. That is 16:16 subsample ratio.
According the value of NMVC, we select the suitable subsample ratio for the next 13
P-frames in the current GOP. Then the flowchart of the proposed algorithm is
developed. Next, we provide four subsample ratios of 16:16, 16:8, 16:4 and 16:2 in
order to let the proposed algorithm having better adaptive ability. The reason why to
choose those subsample ratios i§ because-they are symmetry and their scale is power
of two. Final, we propose an adaptive subsample ratio threshold decision to set the
compatible threshold values and get the optimal result. The static science is adopted in
the adaptive subsample ratio threshold decision. We test the percentage of 90%-65%
in the static data of the quality degradation versus NMVC to get the different
threshold value. From the result of twelve testing video sequence, we take the 70%

result as the optimal threshold value.

4.1 Proposed Algorithm Development

To efficiently alleviate the aliasing problems in subsample algorithm to maintain
the visual quality under the threshold of 0.3 dB for general video sequences, we
propose an adaptive motion estimation algorithm using variable subsample ratios and

the proposed algorithm is based on the observation in Fig 3.4. From Fig 3.4, the
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temporal variation in a frame is in proportion to moving motion vector count
(MMVC), meaning that it is in inverse proportion to null motion vector count
(NMVC). Therefore, we use one GOP as a processing unit and calculate the NMVC
of the first P-frame in a processing unit. Next, we compare NMVC with threshold
values to determine the suitable subsample ratio for the current GOP. We recursively
execute these steps above, and we can adaptively supply the suitable subsample ratio
to each GOP in one video sequence and also achieve the target of power saving.

A flowchart of the proposed algorithm is shown Fig 4.1 and the realization
procedure of the adaptive motion estimation algorithm using variable subsample
ratios is as follows.

Step 1: Setting initial value
Set i=1.

We set the initial value in-this.proposed-algorithm. And the proposed algorithm
is ready to start
Step 2: Starting
When starting the proposed algorithm, the ith GOP of current video sequence is
picked out and the first frame of the ith GOP goes to Step 3.

In this step, we check the number of the frames in the GOP. We have to realize
which frame is the first frame in the GOP and start our proposed algorithm from
beginning. For the arrangement of a GOP, the first frame is coded using
intra-prediction and the others are coded using inter-prediction. So, every GOP can be
seen as a small size video sequence, about 0.5 second. But the advantage of this GOP
is the high correlation between the frames in the GOP. That is why we choose the
GOP as the process unit to adaptively select the suitable subsample ratio.

Step 3: Determining the current frame whether an I-frame or not

If the current frame is an I-frame, the proposed algorithm executes intra-frame coding
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to encode the current I-frame; otherwise, the current frame is a P-frame and then goes
to Step 4.

We can recognize the I-frame in the GOP in this step. We don’t change the
inter-predication in the proposed algorithm. Hence, the proposed algorithm uses the
same inter-prediction like H.264/MPEG-4 AVC for the I-frame.

Step 4: Determining the current frame whether a first P-frame or not

If the current frame is a first P-frame, the proposed algorithm executes inter-frame
coding for the current P-frame using 16:16 subsample ratio and then calculates the
null motion estimation count (NMVC) of the current frame; otherwise, the current
P-frame goes to Step 5.

The reason why the first P-frame in the GOP use the 16:16 subsample ratio is
that we want the accurate NMVC..Jf the NMVCis.not correct, the subsample ratio for
the rest 13 P-frames will not be suitable for this GOP. It will cause the large quality
degradation or waste the power dissipation-for.low motion GOP. Therefore, in order
to get the correct NMVC, we consume-the power to using the 16:16 subsample ratio.
Step 5: Adaptively selecting the suitable subsample ratio to the current P-frame
The proposed algorithm compares NMVC of the first P-frame with optimal threshold
values to adaptively select a suitable subsample ratio and then uses this selected
subsample ratio to execute inter-frame coding for the current P-frame and then the
current P-frame goes to Step 6.

In this step, we process the rest 13 P-frames in the GOP. These frames will be
code using the selected subsample ratio. The selected subsample ratio is according to
the NMVC of the first P-frame in the GOP. We assume that the frames in the current
GOP have the high correlation between each other. According to the NMVC of the
first P-frame, we recognize the current GOP as high, normal or low motion GOP. And

we compare this NMVC with the threshold value to decide the suitable subsample
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ratio for the current GOP. The inter-prediction of the rest 13 P-frames uses this
suitable subsample ratio.

Step 6: Determining the current P-frame whether a last P-frame or not

If the current P-frame is a last frame, the procedure goes to Step 7; otherwise, the next
frame goes to Step 3.

When the current GOP is end, we have to start the proposed algorithm again and
to control the next GOP. Otherwise, the frame in the current GOP will be coded
according to the situation in the current GOP.
Step 7: Ending
If all GOPs in the current video sequence are encoded, the proposed algorithm
finishes; otherwise, the procedure sets i=i+1 and goes to step 2;

This video is end and all frames in the video'sequence have been coded using the

proposed algorithm in the H.264/MPEG-4 AVC [4].
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Fig 4.1: The flowchart of the proposed algorithm (Th16:2 is the threshold between 16:2 subsample ratio and 16:4 subsample ratio,
Th16:4 is the threshold between 16:4 subsample ratio and 16:8 subsample ratio and Th16:8 is the threshold between 16:8
subsample ratio and 16:16 subsample ratio).
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4.2 Subsample Patterns of the Proposed Algorithm

To demonstrate that the proposed algorithm has better adaptive ability, the
proposed algorithm provides four subsample ratios and adaptively selects the suitable
subsample ratio from these subsample patterns to the current GOP. These subsample
ratios are fixed at powers of two in spatial distribution and are 16:16, 16:8, 16:4 and
16:2 respectively. These subsample masks can be generated in a 16-by-16
macro-block using Eq.3 and are shown in Fig 3.1. The reason why to choose those
subsample ratios is because they are symmetry and their scale is power of two. We
select four subsample ratios in our proposed algorithm. There are four levels of 16:16,
16:8, 16:4 and 16:2. All P-frames expect the first P-frame in the GOP will be
classified into four levels according to the NMVC of the first P-frame in the GOP.
Every GOP have only one subsample ratio. According to these subsample ratios, the
proposed algorithm can adaptively select-the-suitable subsample ratio to the current
GOP. For example, the proposed algorithm can provide the 16:16 subsample ratio for
the current GOP which has the stronger degree of temporal variation or provide the
16:2 subsample ratio for the current GOP which has the weaker degree of temporal
variation. The temporal variation in the video means the degree of object-moving. The
degree of object-moving is faster, and the temporal variation is stronger. Although the
low subsample ratio cause aliasing in high frequency band, the degree of temporal
variation will affect the degree of quality degradation. If the temporal variation is
strong, aliasing problems will degrade the validity of motion vector (MV) and result
in visual quality degradation to video sequences obviously. On the contrary, if the
temporal variation is weak, aliasing problems will not degrade the validity of motion
vector (MV) although the low subsample ratio still cause aliasing in high frequency

band. That is because we do not need the high frequency band information to find the
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motion vector when the degree of object-moving is slow. According to the NMVC of
the first P-frame, we recognize the current GOP as high, normal or low motion GOP.
High motion means the high degree of high frequency. On the contrary, Low motion
means the low degree of high frequency. And we compare this NMVC with the
threshold value to decide the suitable subsample ratio for the current GOP. The
inter-prediction of the rest 13 P-frames uses this suitable subsample ratio. Therefore, a
threshold decision for variable subsample ratios is necessary to set the compatible
threshold values in order to adaptively choosing the suitable subsample ratio to the
current GOP. Next, a threshold decision for variable subsample ratios will be

presented in chapter 4.3.

4.3 Threshold Decision for Variable Subsample Ratios

To support a suitable subsample ratio-te-other P-frames of current GOP, except
the first P-frame of the current GOP, an.adaptive subsample ratio threshold decision is
necessary. Therefore, we use 16:2, 16:4, 16:8 and 16:16 subsample ratios respectively
to calculate the statistical distribution of AQg,, versus NMVC for twelve video
sequences (Fig 4.2) [37].

The statistical results are shown as in Fig 4.3 and each coordinate means AQgqp
versus NMVC using a specific subsample ratio. From Fig 4.3, we can observe that the
statistical distribution of AQg,, versus NMVC focus on the right side. This situation
means the most video sequence must have a part of background region. The
background region means the MV is null. There is not video sequence without the
background region except for scene change. For scene change case, there is no

algorithm can be solved success.
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Fig 4.3: The statistical distribution of AQgy versus NMVC for twelve
video sequences



42

In order to efficiently use the statistical distribution to get the threshold values
between these subsample ratios, we propose an adaptive subsample ratio threshold
decision to decide the threshold values. The method is to statistically calculate the
maximum distributed range of NMVC in which the number of AQg, under a
desired threshold of quality degradation are smaller than or equal to a fixed
percentage of total using a selected subsample ratio and this method is proposed as
Fig4.4.

[ Stat |

|
Stepl:

Given Q, frame size=/-by-J,

macro-block size=N-by-N,

subsample set={sr1=16:2,

sr2=16:4, sr3=16:8,s14=16:16}
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Set the value of APSNRY Ster 3
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and NMVC of each level

Sct NMVCmaxzthf]

True ] False

U=~

L J
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equal to APSNRY < x% total
number of AGOP from thi; to
th: at sr: [ minimun total
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smaller than or equal to APSNRY] [

is 10

i=it+|

Fig 4.4: Flow chart of the threshold decision algorithm
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We first set the quality degradation threshold is 0.3 dB. We define the first
region is the selected 16:2 subsample ratio. The second region is the selected 16:4
subsample ratio. The selected 16:8 subsample ratio is the third region. The last region,
fourth region, is the selected 16:16 subsample ratio. In the first region, we calculate
the percentage of the number of point with the quality degradation under 0.3dB using
the 16:2 subsample ratio in this region. For the second region, the percentage of the
number of point with the quality degradation under 0.3dB using the 16:2 subsample
ratio change to 16:4 subsample ratio. And third region is for 16:8 subsample ratio. So
we set the percentage threshold from 90% to 60%, every decreasing for 5%. We will
get the seven forms of the adaptive subsample ratio threshold value.

To get the threshold values between these subsample ratios, we use the threshold
decisions mentioned above to calculate the threshold values and the distribution of

threshold values is shown as Fig 4.5. We can.observe the size of every region directly

in Fig 4.5.
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Fig 4.5: The distribution of threshold values
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Table 2

Threshold Setting of the adaptive subsample ratio threshold decision
The adaptive subsample ratio threshold decision

90% 85% 80%  75% 70% 65% 60%
Threshold of 16:2 (TH 162) 393 387 376 344 305 232 190

Threshold of 16:4 (TH . 4) 368 356 344 251 239 190 49
Threshold of 16:8 (TH ) 265 242 227 207 179 49 X

Table 2 shows the summary of threshold values using different adaptive
subsample ratio decision. From the Table 2, we observe the adaptive subsample ratio
threshold value of 60% is not complete. There is not the TH,, value. That is
because the second region is too big and the rest region can make the percentage
down to 60%. About the 65%, the TH,.. value is too small so that the 16:16
subsample ratio is hardly selected. Fortheé 90%, 85%, 80%, 75% and 70%, the first
region increases. That means we can tolerate more change of the quality degradation

over 0.3 dB. The same situation is happened‘in-the second and third regions.
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Chapter 5 Experimental Result

In our simulation, the proposed algorithm is simulated in H.264/MPEG-4 AVC
[4] with software model JM9.2 [36] using AMD 2.0G Hz and the distortion measure
is sum of absolute difference (SAD) which is computed for a 16-by-16 macro-block.
We use twelve famous video sequences [37] to be tested and the simulation
environment in JM9.2 is shown as in Table 3. From Table 3, the file format of these
video sequences is CIF (352 x 288 pixels) and the search range is £16 in both
horizontal and vertical directions for a 16-16 macro-block. The bit-rate control is
turned on to maintain a fixed bit rate of 450k bits/s under displaying 30 frames / s. In
Chapter 4, we proposed an adaptive subsample ratio decision to pick the suitable
subsample ratio and the adaptive subsamplé. ratio threshold decision support six
different threshold values betwéen 16:16, 16:8, 16:4 and 16:2, which are shown as in
Table 2. To choose the optimal threshold-walues from Table 2, we simulate these
tested video sequences using these subsample‘ratio decisions respectively in the same
simulation condition and then analysis to decide the optimal threshold values from
these decisions based on two factors: average quality degradation (APSNRY) and

average subsample ratio. The PSNRY is defined as Eq.5 where the frame size is N %
M, I,(x,y) and I, (X,y) denote the Y components of original frame and

reconstructed frame at (x; y). The APSNRY is defined as Eq.6 and it means the
difference of PSNRY which is calculated by a chosen algorithm and PSNRY which is

calculated by using full-search block-matching algorithm (FSBM).

255?
PSNRY =10log,,x - ; (5)
(%N < M ))ZZ(IY (X, y)_ Iy (X= y))
APSNRY = PSNRYChosen algorithm — I:)SNRYFSME (6)



46

The average subsample ratio is also defined as Eq.7 and it averagely estimates
what subsample ratio can be used to execute the motion estimation for a video

sequence.

Average Subsample Rate
=16:[(# of P - frames,, )x16+(# of P — frames)x8+(# of P — frames,,)x4

+(# of P- frames,,)x2] / (Total # of P— frames) (7)
Table 3
Testing Video Sequences and Simulation Conditions

Video NDIEHEE HE - Initail Search GOP  Video

Sequence o Bgracact el el Q Range  Unit Type

£ Frames (frames/s)  (bits/s) ’ : e
o Dancer 250

as

Motion Foreman 300

Flower 250

Table 300

Mother 300
Normal = Daughter CIF N
Motion ~ Weather 300 (352 x 30 450k 34 116

frames IPPP---

Children 300 288)
Paris 300
News 300
Slow Akiyo 300
Motion  Silent 300
Container 300

To demonstrate that the proposed algorithm can adaptively select the suitable
subsample ratio to each GOP for a tested video sequence, we analysis the average
quality degradation of each GOP using Eq.4 for the video sequence “table” and the
results is shown as in Fig 5.1. This case is the same with the Fig 3.4 in chapter 3. But
the Fig 5.1 adds the distribution of the proposed algorithm to demonstrate the

performance of the proposed algorithm. From Fig 5.1, there exists the stronger
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temporal variation between third GOP and seventh GOP, the proposed algorithm can
adaptively support higher subsample ratio to efficiently reduce the AGOP. Besides,
the proposed algorithm can adaptively support lower subsample ratio to save power
dissipation without affecting the AGOP between eleventh GOP and twenty GOP

because of the weaker temporal variation.
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Fig 5.1: Te average quality degradation of each GOP for the video sequence
“table”

Table 4 shows the simulation results of PSNRY and APSNRY for these tested
video sequences using this threshold decision method. Table 5 shows the simulation
results of average subsample ratio and overall average subsample ratio for these tested
video sequences using this threshold decision method. Because threshold values of
Table 2 can be calculated according to the target of average quality degradation of 0.3
dB, the average quality degradation of 0.3 dB is an important index for all tested
video sequences. From Table 4 and Table 5, 90%, 85% and 80% statistics of threshold

decision method can satisfy all tested video sequences under the average quality
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degradation of 0.3 dB, however their overall average subsample ratio are higher than
75% and 70% statistics of threshold decision method. Among 75% and 70% statistics
of threshold decision method, 70% statistics causes average quality degradation
exceed 0.3 dB for sequences “Dancer”, “Foreman”, “Mother Daughter”, “Weather”
and “Paris”, but these average quality degradations are very close to the target of 0.3
dB. For the video sequences “Dancer” and “Mother Daughter”, their quality
degradations in this 70% method are the same and are equal to 0.36 dB. And the
quality degradation in this 70% method of video sequence “Foreman” is equal to 0.33
dB. For “Paris”, it is 0.35 dB. And 0.33 dB is for “Weather”. Although the overall
average subsample ratio of 65% statistics of threshold decision method is the lowest,
the average quality degradation of it exceeds 0.3 dB too much. For example, the
average quality degradations of the sequences “Dancer” and “Foreman” are 0.77dB
and 0.59 dB. These quality degradations are not acceptable. For the 70% statistics, we
can observe the video sequences of fast motion-have'the maximum acceptable quality
degradation for near 0.3 dB. In this quality degradation, the power consumption is the
maximum. We can save the power efficiently. For the other threshold values, they can
also keep the quality degradation acceptable. But they waste the power to gain the
better quality degradation under 0.3 dB. For the low motion video sequences, the
algorithm using the threshold value of 70% statistics can select adaptively the
minimum power consumption to save power efficiently. The minimum power
consumption is the average subsample ratio 16:3. That contains the number of the first
P-frame in the GOP using 16:16 subsample ratio and all the rest P-frame using 16:2
subsample ratio. Therefore, in order to minimize the power consumption of motion
estimation and maintain the average visual quality about 0.3dB, threshold values of
70% statistics is the optimal choice for adaptively selecting the suitable subsample

ratio.And we save 69.6% power consumption and keep quality degradation under 0.36
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dB.
Table 4
Analysis of quality degradation using adaptive subsample ratio decision
The adaptive subsample ratio threshold decision
. Full
s 90% 85% 80% 75% 70%
Sequence
PSNRY A A A A
PSNRY ponpy  PSNRY poypy  PSNRY popy PSNRY oy PSNRY ponmy
Dancer 3342 334 -0.02 334 -0.02 334 -0.02 3333  -0.09 33.06 -0.36
Foreman ~ 29.51 2942 -0.09 2936 -0.15 2935 -0.16 29.2 -0.31  29.18  -0.33
Flower 19.58  19.58 0 1954 -0.04 1954 -0.04 1943 -0.15 1931 -0.27
Table  31.04 3099 -0.05 3098 -006 3093 -0.11 3085 -0.19 3078 -0.26
DMOther 3934  39.14 -0.2 3912 -022 39.11 -0.23 39.01 -033 3898 -0.36
aughter
Weather 32,26 32.06 -0.2 3204 -022 3201 -025 3197 -029 3193 -0.33
Children 29 28.87 013 2884 -0.16 2881 -0.19 2872 -028 2871 -0.29
Paris 30.67 30.5 -0.17 3045 -022 3046 -021 3036 -031 3032 -0.35
News 3727 3719 -0.08 37.17 -0.1 3715  -0.12 37.12  -0.15  37.07 -0.2
Akiyo 4236 4227 009 4224 -0.12 4224 -0.12 4221 -0.15 4221  -0.15
Silent 3462 3456 -0.06 3457 -0.05 3458 -0.04 3456 -006 3453 -0.09
Container 3547 3545 -0.02 3545 -002 3545 002 3545 002 3545 -0.02
Table-5
The simulation results of average subsample ratio and overall average subsample ratio
Threshold Decision
Video 90% 85% 80% 75% 70% 65%
Sequence Average Average Average Average Average Average
Subsample Subsample Subsample Subsample Subsample Subsample
ratio ratio ratio ratio ratio ratio
Dancer 16:15.55 16:15.55 16:15.55 16:14.43 16:11.75 16: 6.91
MF?'[ Foreman 16:14.32 16:13.31 16:12.93 16:10.61 16:10.24 16: 6.06
otion
Flower 16:16.00 16:15.10 16:15.10 16:11.98 16: 8.80 16:5.12
Table 16:9.50 16:9.03 16:7.17 16:5.32 16: 4.67 16:3.55
Mother 16708 16:643  16:634  16:392  16:355  16:3.00
Normal Daughter
Motion Weather 16: 5.87 16:5.32 16:4.39 16:3.18 16:3.00 16: 3.00
Children 16:7.82 16: 7.27 16: 6.43 16:3.83 16:3.27 16:3.00
Paris 16: 6.52 16: 6.25 16:5.22 16:3.46 16:3.00 16:3.00
News 16:7.45 16:6.71 16:4.95 16: 3.09 16: 3.00 16: 3.00
Slow Akiyo 16:4.76 16:3.83 16:3.46 16: 3.00 16:3.00 16:3.00
Motion Silent 16:7.27 16: 7.08 16: 6.34 16:3.92 16:3.00 16:3.00
Container 16:3.18 16: 3.00 16: 3.00 16: 3.00 16: 3.00 16: 3.00
Overall Average Subsample 16 g 58 16:8.04  16:7.35  16:560  16:4.87  16:3.74

ratio

65%
PSNRY PSI\AIRY
32.65  -0.77
2892 -0.59
19.14  -044
30.7  -0.34
38.89  -045
3193 -0.33
2871 -0.29
3032 -0.35
3707 -0.2
4221  -0.15
3453 -0.09
3545  -0.02
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After choosing the optimal threshold values between 16:16, 16:8, 16:4 and 16:2,
we compare the proposed algorithm using the optimal threshold value with generic
subsample ratio algorithms. The PSNRY and APSNRY of the proposed algorithm and
generic subsample ratio algorithm are shown in Table 6 and Table 7. Fig 5.2 and Fig
5.3 are similar with Fig 3.2 and Fig 3.3 respectively. Fig 5.2 and Fig 5.3 add the
location of the proposed algorithm with the optimal threshold value. We can easily
observe the relation between the generic subsample ratio algorithm and the proposed
algorithm with the optimal threshold value. For Fig 5.2, the quality degradations of
these testing sequences using generic subsample ratio algorithms are strong. The
maximum quality degradation is 0.93 dB. It happens in “Dancer” sequence using the
16:2 generic subsample ratio. From Fig 5.3, the proposed algorithm can adaptively
maintain APSNRY under the threshold of about'0:3 dB and has lower subsample ratio
to substantially save power dissipation than-the.generic subsample ratio algorithm
under the same APSNRY for- tested video-sequences. For Fig 5.3, the quality
degradations of these testing sequences.using generic subsample ratio algorithms are
light. The maximum quality degradation is 0.33 dB and it is acceptable. It happens in
“Weather” and “Paris” sequences using the 16:2 generic subsample ratio. From Fig
5.3, therefore, the proposed algorithm can select the lowest subsample ratio and
maintain APSNRY under the threshold of about 0.3 dB. We can determine the
performance of the proposed algorithm with different threshold value from Fig 5.2
and Fig 5.3. The optimal threshold value can make the quality degradation of high and
low motion video sequence keep near by 0.3 dB. That will save the maximum power
consumption. And for low motion video sequence, the selected subsample ratio is the
lowest one, 16:2. The power consumption is the minimum, for 16:3. If the other
threshold value is used in the proposed algorithm, the location will be away from 0.3

dB and have no the minimum power consumption case.
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The PSNRY of the proposed algorithm and generic subsample ratio algorithm
Full Search Block Matching

video
Sequence

Dancer
Foreman
Flower

Table

Mother
Daughter

Weather
Children
Paris
News
Akiyo

Silent

Generic
16:16

Generic
16:14

Subsample  Subsample

ratio

ratio

Generic
16:12
Subsample
ratio

Generic
16:10
Subsample
ratio

Generic
16:8

Subsample  Subsample

ratio

Generic
16:6

ratio

Generic
16:4

ratio

Generic
16:2

Subsample  Subsample

ratio

Proposed
Algorithm
Method
(70%)

PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY

33.42
29.51
19.58
31.04

39.34

32.26
29
30.67
37.27
42.36
34.62

Container 35.47

33.24
29.42
19.53
31.02

39.31

32.2
28.99
30.67
37.25
42.37
34.59
35.47

33.09

29.33

19.48
31

39.32

32.16
28.95
30.63
37.26
42.35
34.59
35.46

32.89
29.24
19.4
30.95

39.26

32.17
28.89
30.62
37.23
42.34
34.59
35.46

Table 7

32.72
29.11
19.3
30.91

39.19

32.11
28.86
30.57
37.21
42.33
34.6
35.47

32.56
28.96
19.18
30.88

39.09

32.04
28.83
30.54
37.18
42.11
34.6
35.45

32.5
28.79
19.09

30.8

38.99

31.98
28.78
30.4
37.14
42.27
34.56
35.45

32.49
28.73
19.07
30.69

38.88

31.93
28.71
30.34
37.05
42.2
34.54
35.45

The APSNRY of the proposed algorithm and generic subsample ratio algorithm
Full Search Block Matching

Generic
. 16:14
e || 0T
APSNRY
Dancer -0.18
Foreman -0.09
Flower -0.05
Table -0.02
r T
Weather -0.06
Children -0.01
Paris 0
News -0.02
Akiyo 0.01
Silent -0.03
Container 0

Generic
16:12
Subsample
ratio

APSNRY
-0.33

-0.18
-0.1
-0.04
-0.02
-0.1
-0.05
-0.04
-0.01
-0.01
-0.03
-0.01

Generic
16:10
Subsample
ratio

APSNRY

-0.53
-0.27
-0.18
-0.09
-0.08
-0.09
-0.11
-0.05
-0.04
-0.02
-0.03
-0.01

Generic Generic Generic
16:8 16:6 16:4
Subsample ~ Subsample  Subsample
ratio ratio ratio
APSNRY  APSNRY  APSNRY
-0.7 -0.86 -0.92
-0.4 -0.55 -0.72
-0.28 -0.4 -0.49
-0.13 -0.16 -0.24
-0.15 -0.25 -0.35
-0.15 -0.22 -0.28
-0.14 -0.17 -0.22
-0.1 -0.13 -0.27
-0.06 -0.09 -0.13
-0.03 -0.25 -0.09
-0.02 -0.02 -0.06

0 -0.02 -0.02

Generic
16:2
Subsample
ratio

APSNRY
-0.93

-0.78
-0.51
-0.35
-0.46
-0.33
-0.29
-0.33
-0.22
-0.16
-0.08
-0.02

33.06
29.18
19.31
30.78

38.98

31.93
28.71
30.32
37.07
42.21
34.53
35.45

Proposed
Algorithm
Method1
(70%)

APSNRY
-0.36

-0.33
-0.27
-0.26
-0.36
-0.33
-0.29
-0.35
-0.2
-0.15
-0.09
-0.02
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Fig 5.2: The results APSNRY of testing sequences “Dancer®, “Foreman®,
“Flower", “Table®, “Mother Daughter'* and “Weather and the
proposed algorithm results location
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Fig 5.3: The results APSNRY of testing sequences “Children®, “Paris®,
“News®, “Akiyo®, “Silent* and “Container* and “Weather* and the
proposed algorithm results location
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The subsample algorithm, also called the pixel decimation algorithm, can be, in
general, classified into two categories. One is fixed patterns [11]-[15], and the other is
adaptive patterns [16] [17]. For the subsample algorithm using fixed patterns
[11]-[15], they have to choose the only subsample pattern. In our Experimental Result,
it is obvious that the only subsample pattern is not suitable for every video sequence.

Although the subsample algorithm using the fixed pattern make sure the power
consumption is low, they can not keep the quality degradation of all video sequence
near 0.3 dB. If we want to keep the quality degradation of all video sequence near 0.3
dB using the fixed pattern, we have to choose the subsample ratio of 16:12. Because
the worse case is the “Dancer” video sequence shown in Fig 5.2. In order to make the
quality degradation of “Dancer” near 0.3 dB, we choose the 16:12 fixed subsample
ratio. But it is waste the power consumption to using the 16:12 fixed subsample ratio
in the low motion video sequence. Therefore, we have to using the adaptive
subsample ratios in all video sequences.-In-out, proposed algorithm with the optimal
threshold value, it is achieved the ‘best.tradeoff between the quality degradation and
the power consumption. It can keep the quality degradation near 0.3 dB, and save the
maximum power consumption at the same time.

In order to save more power consumption, we also can combine our algorithm
with some fast algorithms, like [4]-[17]. The quality is also near 0.3 dB. We can make
the video sequences keep their quality near 0.3 dB. At the same time, the power
comsuption can be redued more. We simulate that our algorithm is combined with
FME mode [38] in IM9.2. We compare the proposed algorithm in FME mode [38]
with generic subsample ratio algorithms in FME mode [38]. The PSNRY and
APSNRY of the proposed algorithm in FME mode [38] and generic subsample ratio
algorithm in FME mode [38] are shown in Table 8, Table 9 and Table 10. Fig 5.4 and

Fig 5.5 are similar with Fig 5.2 and Fig 5.3 respectively. Fig 5.2 and 5.3 are result of
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full search mode and Fig 5.4 and 5.5 are result of FME mode [38]. We can easily
observe the relation between the generic subsample ratio algorithm in FME mode [38]
and the proposed algorithm in FME mode [38]. In table 8, we can observe the quality
and average subsample ratio of our proposed algorithm in FME mode [38]. The
quality of our proposed algorithm in FME mode [38] is still near 0.3 dB. This can be
acceptable. And the power consumption can be got from the average subsample ratio.
We can save the power consumption up to 73.6% in FME mode [38]. For Fig 5.4, the
quality degradations of these testing sequences using generic subsample ratio
algorithms in FME mode [38] are strong. The maximum quality degradation is 1.05
dB. It happens in “Dancer” sequence using the 16:2 generic subsample ratio in FME
mode [38]. From Fig 5.4, the proposed algorithm can adaptively maintain APSNRY
under the threshold of about 0.3 dB and has lower subsample ratio to substantially
save power dissipation than the generic subsample-ratio algorithm under the same
APSNRY for tested video sequences.-For Fig. 5.5, the quality degradations of these
testing sequences using generic subsample ratio algorithms in FME mode [38] are
light. The maximum quality degradation is 0.3 dB and it is acceptable. It happens in
“Childern” sequence using the 16:2 generic subsample ratio in FME mode [38]. From
Fig 5.5, therefore, the proposed algorithm can select the lowest subsample ratio and
maintain APSNRY under the threshold of about 0.3 dB. The situation in FME mode
[38] is the same in full search mode. Therefore, we can know that our algorithm can
be combined with FME [38] and the result is similar with in full search mode. We can
save more power consumption using this method, combined with some fast

algorithms.



video Sequence

Table 8

The result of the proposed algorithm in FME mode [38]

Full search

in FME mode [38]

Dancer
Fast F
Motion oreman
Flower
Table
| Mother Daughter
Norma
Moftion Weather
Children
Paris
News
Slow Akiyo
Motion Silent
Container

Fast
Motion

Normal
Motion

Slow
Motion

PSNRY

33.48
29.63
19.64
31.07
39.44
32.34
29.12
30.75
37.37
42.43
34.7
35.52

PSNRY

33.23
29.31
19.35
30.84
39.2
32.08
28.85
30.5
37.25
42.32
34.64
35.48

Overall Average Subsample Rate

Table 9

[38]
APSNRY

-0.25
-0.32
-0.29
-0.23
-0.24
-0.26
-0.27
-0.25
-0.12
-0.11
-0.06
-0.04
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Average
Subsample Rate

16:12.35

16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:

6.23
4.24
3.00
3.55
3.00
3.27
3.00
3.00
3.00
3.00
3.00
4.22

The PSNRY of the proposed algorithm and generic'subsample ratio algorithm in FME

video
Sequence

Dancer
Foreman
Flower

Table

Mother
Daughter

Weather
Children
Paris
News
Akiyo
Silent

Container

Generic
16:16
Subsample
ratio
33.48
29.63
19.64

31.07

39.44

32.34
29.12
30.75
37.37
42.43
34.7
35.52

Generic
16:14
Subsample
ratio
33.31
29.57
19.63

31.05

39.42

32.33
29.06
30.73
37.35
42.42
34.68
35.51

mode [38]

FME Search Block Matching

Generic
16:12
Subsample
ratio
33.17
29.52
19.61

31.04

394

32.32
29.04
30.71
37.34
42.41
34.66
35.51

Generic
16:10
Subsample
ratio
33.01
29.46
19.58

31.01

39.37

32.29
29.01
30.7
37.32
42.41
34.65
35.51

Generic
16:8
Subsample
ratio
32.85
29.42
19.56

31

39.33

32.25
28.97
30.68
373
424
34.64
355

Generic
16:6

Subsample  Subsample

ratio

32.64
29.34
19.49
30.96

39.29

32.27
28.96
30.65
37.28
42.37
34.64
355

Generic
16:4

ratio

32.47
29.18
19.39
30.9

39.25

32.21
28.89
30.58
37.25
42.36
34.63
35.49

Generic
16:2
Subsample
ratio

PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY
3243

28.94

19.16

30.82

39.12

32.07

28.82

30.48
37.24
42.31

34.63

35.47

Proposed Algorithm Method in FME mode

Proposed
Algorithm
Method
(70%)
33.23
29.31
19.35

30.84
39.2

32.08
28.85
30.5
37.25
42.32
34.64
35.48



Fast
Motion

Normal
Motion

Slow
Motion

The APSNRY of the proposed algorithm and generic subsample ratio algorithm in
FME mode [38]

video
Sequence

Dancer
Foreman
Flower

Table

Mother
Daughter

Weather
Children
Paris
News
Akiyo
Silent

Container

Generic Generic Generic
16:14 16:12 16:10
Subsa_mple Subsa_mple Subsa_mple
ratio ratio ratio

APSNRY APSNRY APSNRY APSNRY
-0.17 -0.31 -0.47
-0.06 -0.11 -0.17
-0.01 -0.03 -0.06
-0.02 -0.03 -0.06
-0.02 -0.04 -0.07
-0.01 -0.02 -0.05
-0.06 -0.08 -0.11
-0.02 -0.04 -0.05
-0.02 -0.03 -0.05
-0.01 -0.02 -0.02
-0.02 -0.04 -0.05
-0.01 -0.01 -0.01

APSNRY (dB)

-0.2

-0.3

-0.4

-0.6

Table 10

FME Search Block Matching

Generic
16:8
Subsample
ratio
-0.63
-0.21
-0.08
-0.07
-0.11
-0.09
-0.15
-0.07
-0.07
-0.03
-0.06
-0.02

Generic
16:6
Subsample
ratio

APSNRY
-0.84

-0.29
-0.15
-0.11
-0.15
-0.07
-0.16
-0.1
-0.09
-0.06
-0.06
-0.02

Generic
16:4
Subsample
ratio

APSNRY
-1.01

-0.45
-0.25
-0.17
-0.19
-0.13
-0.23
-0.17
-0.12
-0.07
-0.07
-0.03

Generic
16:2
Subsample
ratio

APSNRY
-1.05

-0.69
-0.48
-0.25
-0.32
-0.27
-0.3
-0.27
-0.13
-0.12
-0.07
-0.05

——

-0.8H

xeeskel tdto

dancer cif
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weather cif
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weather cif
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16:8

16:86

16:4

16:2
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Fig 5.4: The results APSNRY of testing sequences “Dancer®, “Foreman®,
“Flower®, “Table®, “Mother Daughter and “Weather and the
proposed algorithm results location in FME mode [38]
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Proposed
Algorithm
Method1
(70%)

APSNRY
-0.25

-0.32
-0.29
-0.23
-0.24
-0.26
-0.27
-0.25
-0.12
-0.11
-0.06
-0.04
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APSNRY (dB)
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Fig 5.5: The results APSNRY of testing sequences “Children®, “Paris®,
“News®, “Akiyo’s “Silent"-and “*Container* and “Weather* and the
proposed algorithmiresults location'in FME mode [38]

We simulate our algorithm “in-.H.264 software model JM 9.2[36] for two
situations, full search and FME [38]. We can keep the quality degradation near 0.3 dB
and save the maxium power consumption. For full search in JM 9.2, we save 69.6%
power consumption and keep quality degradation under 0.36 dB. For FME in JM 9.2,
we save 73.6% power consumption and keep quality degradation under 0.33 dB.
Therefore, the proposed algorithm can steady the video quality in power-saving

situation.
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Chapter 6 Conclusion

In modern video standard, such as MPEG-1 [1], MPEG-2 [2], MPEG-4 [3] and
H.264/MPEG-4 AVC [4], motion estimation requires the heaviest computational load
and hence dominates main power requirement in video compression. Lots of
published papers [4]-[17] have presented efficient algorithms for motion estimation.
But they don’t consider the influence of the video content. Among these fast
algorithms [4]-[17], the subsample algorithm [11]-[17] can not only easily combine
with other approaches mentioned above but also reduce the number of matching
points with flexibly changing subsample ratio. The reason why we choose the
adaptive subsample ratios is because we believe that the subsample ratios should be
varying with the video content.

An adaptive motion estimation algorithm with variable subsample ratios has
been presented. This proposed algorithm-can ‘adaptively select the compatible
subsample ratio for each current group ‘'of picture (GOP). The proposed algorithm is
first to analyze the degree of the object-moving between the first P-frame and I-frame
for the current GOP and then adaptively selects the suitable subsample ratio to the
current GOP according to analysis result. This proposed algorithm has been
successful implemented in H.264 with software model JM9.2. An adaptive subsample
ratio threshold decision is used to set the compatible threshold values and get the
optimal result. The static science is adopted in the adaptive subsample ratio threshold
decision. Experimental results has shown that the proposed algorithm can not only
adaptively select the suitable subsample ratio to various video sequences but also
maintain APSNRY of 0.36 dB at most to save about 69.6% power consumption of

motion estimation in a fixed bit rate control on average. The proposed algorithm can
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also easily combine with other fast algorithms which reduce the computational
complexity of FSBM. For FME in JM 9.2, we save 73.6% power consumption and
keep quality degradation under 0.33 dB. Hence the proposed algorithm is suitable for
real-time implementation of high quality and power-saving video applications using a

powerful CPU.
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