it o SRR E 2 AR i B i T e R A T

An Empirical Analysis of Source-level Energy Optimization for
Embedded Processors

R A
hrE 2 7% #L

PoE R R4 LA E 4

¥ ’J’qlly\)\‘\‘/f@"w\}ﬁ,'ﬁr’ﬁﬂbﬁ F v e e T
An Empirical Analysis of Source-level Energy Optimization for
Embedded Processors

Student : Yung-Wen Huang

o4 F ke

hERE IR TS L Advisor : Dr. Yu-Lun Huang

B i x 7
CE T e sl 3 B R I 4
oLl 2
A Thesis

Submitted to Department of Electrical and Control Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Electrical and Control Engineering

September 2007

Hsinchu, Taiwan, Republic of China

=W EAREE A

BEd o~ NASEE2 RGN B A D %
P& 44

B4 F BEFEF TS L

2|
I+
pas
(=

A B e eg (T AT) AT
£ &

AP AL AR T LG Rk R D L B T £ nliel T p £ A TR

X pTenfs g o 8@ TE MO PR IRCs R et el or T eha £ AR o 4220 R de AR i g
PEA 4T R 4 9 18 RSB e (7 e % > AP LS R ARSI AT f i
B o E RPN R SR AR B I A R REL A PRT 2 A
TRARTI G A R e AR RN 25 o d 30 H % Fhoa §E 7
B REFIFLRFRIEAMEL > B e R A B 30t
oo A o it URILE p T E AR E T 0 AP R e 24

jer B oot et o SN2 B ihdn £ B 7F fi(Instruction Set Architecture » ISA)™ § ¥ 7

K

,x/‘

B e
Flow
i

*

FY M

\

P
%
I&
o
4y

BT

?Qﬁﬂﬁoﬁéi’ﬁﬁ@%%ﬁﬁﬁ%ﬁ@ﬁiﬁﬁéiﬁ%§§%¥ﬁ€%#ﬁ
2k @ AR P AR AT T REREY SRS R BER TR a4
FoREEBL IR EPAFEF A T AR o AP LB T
R E o e EATA A T RARSE R £ R H ﬁw%mww’ruAmwﬁ@
Fipn £ BN S BATOE R S 2 0 ¢ B AR EATE AL 2 2 R
SR AL S SRRSO P VAE N E L R E S AP R sl SN
AORE LR T TR AR AR E PR AR - @
F % > 12 EMSIM 1% 3 2% i ¢ Strong ARM AJZ B et £ #o B $145 2958 engo i Az 2
FHETH o ihfgdk o BiF L TR T UBE LR 2 ri I ha 2
FAF L BT kR Al 0 AN AE A] R RS ki B

e

énhn

N o
CF

An Empirical Analysis of Source-level Energy
Optimization for Embedded Processors

Student: Yung-Wen Huang Advisor: Dr. Yu-Lun Huang
Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

Source-level transformations can reduce the number of assembly instructions and the
miss rate of instruction or data cache, resulting in an optimization of energy consumption and
retaining the same execution results for software modules. Recently, the increasing market
demand has become major a driving force for industries to create more energy-efficient
applications and products. In addition to power-electronics, because of the advantage of
hardware circuit remaining unchanged researchers alse devote a lot to energy optimization in
software modules, such as applying the source-level transformations to data structures, loops,
procedures, control structures, operators and so on. We found that energy consumption of
software modules is highly related to the instruction set architecture (ISA) of the embedded
processors, which means that the expected energy consumption is affected by the ISA of the
processors. The result might not be what we expected upon applying the source-level
transformations. In this thesis, we re-classify the source-level transformations, and add a new
ISA-specific sub-category. Based on ARM ISA, we propose two transformations for energy
optimization, called dummy variables insertion and arrays declaration permutation, to reduce
the instructions in calculating the base addresses of the arrays. These transformations are
verified via a series of experiments based on the EMSIM, the energy simulator of StrongARM.
From these experiments, the energy optimization for each transformation can be analyzed and

the side effects, such as code size and executing performance, can also be evaluated.

il

=+ 2
S

&

WA E R AR RSO A R TR 7Y

Th
$ % w;su;m f 2038 B B AL AP 0 i S A -

e

e I PN £
SO B 0 1R SR LR R 4 o RS ren AL 2 B A PR S AP
FUAEIFIRRETRASY o RHMEHATL A EZF 2wt o B aoflee
WL m i A 2o o x (FEAPayfi @ APEZ s BN P RERFE
AR R ERE HHIE L FR Lt S R RE R PR R MR

FrE AREFE LH AR P ERE R RAT R L S I

Foobod R TR o N AR AR BAMRY § EE- £

SRR G R b e gt (RS R fs R RAR B R 0L AR ARSI

BTREFFT > PR i it n s B#e08 Ak FE R

EFEGPRENA- Loy S AR A R R A AR
¥

PR endp sl B S 4 R CEERERE o e T 2 G kil P ang

BN LR o AFERZ AR RAPFIX PR £fET p RS

N

BAA AR 0 R 0 E o - AT P e RS S B g

Bfd o b A A ER o - BREAL kit AP Rt N e

il

Table of Contents

¥ USRS i
N 0] 1 - (o] PSSR i
B = SRR iii
I Lo] (o) 0] 01 =] o | £ ST iv
I TS 0 1= o] 1= USSR vii
I TS o) T U 1SS viii
(O gF- 1o (=1 gl | oY 1 0o [1Tox £ o] o USSR 1
1.1 BACKOIOUNG ...ttt ettt et sb e e taeae e e e reebeesaeennenns 1

1.2 CONTEIDUTIONoiiiiiieieeece ettt ettt sttt se et et ebensesbe s 3

1.3 SYNOPSIS ottt ettt ettt ettt et et e e b e at e be e b e e raeteenbeereebeenaeeanenns 3
Chapter 2 Related WOIKcc.ooiiiiee ettt 5
2.1 Transformations in Source Code LEeVElccoveiereriniiicieceeeeee e 5

2.2 ISA 0N Energy COoNSUMPLIONcceieiiiiieieiieieieteeie ettt 7
2.2.1 Data Processing Instructions 0f ARMcccoooveiieiieiiiieeceeeee e 8

2.2.2 Load and Store InstructionS0f ARM...........cooiiiiiininieeeeee e 9

2.3 APCS on Energy CONSUMPTION ... vves. e ceifinnienieeeeeeieeieeieeereeie et eieeae s svee e ene e 10

2.4 Compiler Options that-Control Optimization................ccccceevievieeieiecieeee, 11

2.5 Evaluation of Energy ConsUMPRION..........cciiuioiiiiieieeieeeee et 12

2.6 SUIF2 Compiler SYStem..... i il i ittt 15
Chapter 3 Transformations ... e oo eciiiint e e e aneenneas 17
3.1 Classification / CAtEQOTYcuooiiiieeeeeeee ettt 17

3.2 Data TransfOrMATIONSccccveieieieierieeeeee ettt ettt ene e 18
3.2.1 Scratch-pad Array INtroducCtioncccoeieevieiiieiiceeeeeeece e 18

3.2.2 Local copy of global variable..............ccoooiiiiiieiiciececeeeeeeeeee 18

3.2.3 Common Sub-expression EIminationccccoeeveiievieiisiceeieceeees 18

324 IMHSCRITANY ...ttt ettt et e e e sreeseeneans 19

3.3 L0o0P TransfOrmMatioNS...........c.ocuveiieieiiieieeieete ettt ettt 19
3.3, LOOP FUSION ...ttt et ae e eaaans 19

3.3.2 L0OP FISSION ...ttt ettt e ve e e sae e ennans 20

3.3.3 L00P REVEISALcevieieeeeeeetee ettt 20

3.3.4 LOOP INVEFSIONccvieiiiiiiieieceeeete ettt ettt e sve s eaaesaeeseennans 20

3.3.5 L00P INTEICRANGE........cceiieieeeeeteee e 21

3.3.6 LOOP UNKOIINGcoiiiiiiiiiceceeeee ettt 21

3.3.7 LOOP UNSWITCNINGviiiiiiieiieiecieeie ettt 22

3.3.B MISCRIIANY ...ttt 22

3.4 Control Structures and Operators Transformations..............cccccoevvevvieeeneeieenee. 23
3.4.1 Conditional Sub-expression ReOrderingcceceveeviieeenienieeieceeieeeans 23

iv

3.4.2 Special Cases OPtiIMIZAtiONc.cccveeuieiiieieeiieieeee et 23

3.4.3 Special Cases Pre-evaluationc.ccceeovieieiiieiiieieceeeceeeece e 24

3.5 Procedural Transformations............cocoviiiiirieieieieeiese e 24
3.5.1 Procedure INHNINGc.ccoooiiiiiiieieeeeeee et 24
3.5.2 Procedure INtegrationccooueeviieiieiieieeeeeeeeeee e 24
3.5.3 ProCeaUIe SOMTINGcccviiiieiieeieeieeie ettt ettt aesaeeseeanans 25
3.5.4 Procedure ClONINGc.coieiiiieeiieieeieee ettt ae e 25
3.5.5 L00P EMBEATING ...oovviiiiieeeceeeeee et 25
3.5.6 Substitution of a Variable Passed as an Address with a Local Variable...26
357 MISCRIANY ...ttt e ae e eaeeas 26

3.6 ISA-SpecCific Transformations............ccccveovieiiiiieieceeeece e 26
3.6.1 Arrays Declaration SOFtiNg..........cccoecveeieiiieieeiieieeeece et 26
3.6.2 Dummy Variables INSErtioN............cccveeieiiiiiieiieieeeeeeee et 27
3.6.3 Arrays Declaration Permutation.............cccceeieviieiiiiecieeeeeeee e 29

.7 SUMIMAIY .ttt ettt ettt et e st e e teeesbeeteeesseenseeessaesseessseensaessseenseennns 32
Chapter 4 EXPEIIMENTSeoiiiie ettt ae et re e esta et e enaesteeseeeneenneeneenreas 33
4.1 Experimental FrameworK. ... s fllfs ., oo eeeiieeeieeeeeie e sse e 33
4.2 Data TranSTOrMAaTIONS s senssse s eesfineeseeeeeneeneeneesentensessesseeseeseeneeneensensessessesses 37
4.2.1 Common Sub-expression EHMINGLIONcccoeevieieiieiiciceeeeeee 37

4.3 Loop TranstormationS:..... .o ettt 38
4.3.1 L0OP FUSION...... 0 e T ettt et eanan 38
4.3.2 LOOP FISSION ... i iiiieei e eciitionshn et eeeeeteeeseeeeesteesseeteesteessesseeseessessseseensans 38
4.3.3 L00P REVEISA ...ttt s 39
4.3.4 L0OP INVEISION ...ttt ettt et eve v e saeeseeanans 40
4.3.5 L00P INTEICNANGE.ooiieeiieeeeeeeeeeee et 40
4.3.6 LOOP UNTOIINGooiiiiiiiiciieeeeeeee ettt e 41
4.3.7 LOOP UNSWITCHINGviiiieiiiiicieceeeee ettt 42

4.4 Control Structures and Operators Transformations.............cccoceevveeieienienneennnns 43
4.4.1 Conditional Sub-expression REOrderingccceeeeveveecieeienieeieeieieennns 43

4.5 Procedural Transformations...........cc.ecvevierierieieieieieeee et 43
4.5.1 Procedure INHNINGcccoooiiiiiiecieceeeeeee ettt 44
4.5.2 Procedure INTegrationccocviiieiiieieieeeceeeteee et 45
4.5.3 L00P EMBDEATING ..ooviiiieeieeeeeeeeee ettt 46

4.6 ISA-SPecCific TransformMationS...........c.ooveviieiiiieiececeee e 46
4.6.1 Arrays Declaration SOrting...........ccooveeveiieiiieieceeeeeeeeee et 46
4.6.2 Dummy Variables INSErtioN...........ccooueeiiiiiiiieiecieeeeeeeeee et 47
4.6.3 Arrays Declaration Permutation.............cccoceeeeviieiieiesecieeeeeeee e 48
Chapter 5 ReSUItS anNd ANAIYSESccveiieiieie et sres 49
5.1 Data Transformationscccocuerirerireeieeeeee ettt 50

5.1.1 Common Sub-expression Eminationccccoeeeiieiieiiiiceeieceeee 50

5.2 LOOP TransformMatioNS...........c.ocieiieieiieieeeieeteete ettt 51
5.2.1 LOOP FUSION ..ottt ettt aeenaan 51
5.2.2 LOOP FISSION ..ottt ettt ettt sve e e aaesaeeaeeneens 52
5.2.3 L00P REVEISALccvieiieiiieeeeeetee ettt 53
5.2.4 LOOP INVEFSION ..ottt ettt e sveeseeaaesaeeseennans 54
5.2.5 L00P INTEICRANGE........cceiieieeeceeeee e 54
5.2.6 LOOP UNFOIINGcuiiiiiiiiieeceeeeeeeee ettt 56
5.2.7 LOOP UNSWITCNINGviiiiiiieiieiecieeeeee ettt 59

5.3 Control Structures and Operators Transformations.............ccccccoeveevveeieneecieenee. 60
5.3.1 Conditional Sub-expression ReOrderingcceceveeviieeenieiieeieceeieeens 60

5.4 Procedural Transformations.............ocoviiiiieieieieieeiese et 60
5.4.1 Procedure INHNINGc.ccooviiiiiieieeeeeee et 61
5.4.2 Procedure INtegrationccoouieiieiiiieieceeceee ettt 62
5.4.3 L00P EMDBEAUING ...oovvieiiieeeeeeeeeeee et 63

5.5 ISA-SpeCific Transformations............cccvevvieiiiieiiicieeeeeeeee e 64
5.5.1 Arrays Declaration SOFIMEGEsscc.eeveeveeeiieieeiieieeeecte et 65
5.5.2 Dummy VariableS ANSErtioN.....c..ccifiuveouieiiieieeiieieeeeeeee et 67
5.5.3 Arrays Declaration Permutation:.....c.........cccoeveeviieieiieieeieeeeeeie e 69

5.6 SUMIMBIY ..oniiiiiieiiee et esta e eadiataaase e e et e e snmt e seesseeenseeseeesseeseeasseesseessseenseessseenseennns 71

Chapter 6 Conclusion and FULUIe WOEKI T i e 73
] (=] =] o0+ USSR 74

vi

List of Tables

Table 2-1 ARM Data processing instructions (Seal [27]).....cccvervveeriieniienieniieiieeieeiee e 8
Table 2-2 General and program counter re@isters [28]........cccuiirieriiierieriieeiiieeie e see e 11
Table 2-3 The optimization levels of gcC 2.95.3 [30].ccuieiiiiiiiieieeeeeeeee e 12
Table 3-1 Sub-categories of code transformationsecceeeviieriiierieniieenie e 17
Table 4-1 The ARM toOIChaINc..cooiiiiiiiiiiiiee e 34
Table 4-2 The target architecture of our experimental framework............ccoceeveriiniincnicnnnn. 37
Table 5-1 The definition Of NOLALIONSccueeruiiiiiieriieiiieeece e e 49
Table 5-2 The result Of EXPHL.L .oc.uiiiiiiiieeie ettt s 50
Table 5-3 The definition of notations used in Section 5.1.1.......cccccieiiiiiiiiiiiiiieeeeee 50
Table 5-4 The result Of EXPH2.1 .oc.eiiiiiiee ettt et st ens 51
Table 5-5 The definition of notations used in Section 5.2.1........cccccvevieiiiiiiiiniiieieeieeeeee 52
Table 5-6 The result Of EXPH2.2ooiiiiieeeeeeeee ettt ettt sttt ens 53
Table 5-7 The result Of EXPH2.3eoi ettt ettt et ens 53
Table 5-8 The result Of EXPH2.4ooniiiie ettt ettt et ens 54
Table 5-9 The result of EXPH2.5.8 ..ot Bl S ettt ettt seae e ens 55
Table 5-10 The result of EXpH2.5. D00 0 ..t ies s et e eieeeire et eteeite e eteesreeaeeseaeeseesnaeens 55
Table 5-11 The result of EXPH2.7:@. ..o i ittt 59
Table 5-12 The result of EXpH2. D ..ttt 59
Table 5-13 The result of EXpH#3. 15 . o i T ettt ettt et 60
Table 5-14 The definition of notationsused in Seetion 5.4ccceevieiiieiieniienieeieeee e, 61
Table 5-15 The result Of EXpHA.1 ... ettt 62
Table 5-16 The result Of EXPHA.2 ...oocviiiiieiieeeeee ettt et 62
Table 5-17 The result Of EXPHA.3 ..ottt sttt 64
Table 5-18 The definition of notations used in Section 5.5.......ccccccvevieriiieiieniieieeieeee e 65
Table 5-19 The result Of EXPH#S. 1.2 ocooiiiiiiiieiiieeeec ettt 66
Table 5-20 The result Of EXPH#S.1.D oottt e 66
Table 5-21 The result Of EXPHS.2 c..oooiiiiieeiieiee ettt ens 68
Table 5-22 The result Of EXPHS.3 ...oooiiiiee ettt 69
Table 5-23 The results after transformation in our €Xperiments...........c.cceerveeeveerueenveeneenneans 71
Table 5-24 The expected results after transformationcccceeveiierieniiienieniieieee e, 72

vii

List of Figures

Figure 2-1 Data processing operands - Immediate (Seal [27]).....cccccvvervieniineevenieneniicneeeenne. 9
Figure 2-2 Modeled embedded system in EMSIM (Tan et al. [32]) ccccoovveveeeieieieeieciee, 13
Figure 2-3 Energy analysis framework of EMSIM (Tan et al. [32])....ccccccevivinnininieieeee 14
Figure 2-4 The 32-way set-associative cache in EMSIM.........ccccoccooiiiniiiiniinnniniieccnee 14
Figure 2-5 The SUIF system architecture (Aigner €t al. [35]) c.coevvevviviiieieieieieeeee 15
Figure 2-6 A typical SUIF compiler (Aigner et al. [35])...cceoveirineiiiieeeeeeeeeee 16
Figure 3-1 Some examples of macro definition for procedures (Brandolese et al. [16])......... 24
Figure 3-2 A linked list L used by the algorithm of dummy variables insertion...................... 28
Figure 4-1 The execution results 0Of EMSIM......ccccooiiiiiiiiiiiiiniiiiiecesceeeeee e 34
Figure 4-2 The overall experimental framework.............ccoceeviiiiiiiiiiiiiee e, 35
Figure 4-3 The execution result of the Energy Report program.............cccceeviiiiieniiiiniennnnnen. 36
Figure 4-4 C source code of common sub-expression elimination for Exp#1.1 37
Figure 4-5 C source code of loop fusion for EXp#2.1 ...c..ccccoiiiniiiiniiniiiiniceneeccecee 38
Figure 4-6 C source code of 1oop fission for EXp#2.2.......cccoeiiiiiiiniininiiiniineneeceecee 39
Figure 4-7 C source code of loop reversalfor EXp#2.3........cociniiiiniiniiiinicnenieceececee 39
Figure 4-8 C source code of loop inversion for EXpH2.4cocovviriinieiinicnineniceeeneeee 40
Figure 4-9 C source code of loop-interchange for EXp#2.5.a.......ccccocvviiiiniininiiniiiiicnenn 40
Figure 4-10 C source code of loop interchange for Exp#2.5.b........cocoviviiniininniniiniicnene 41
Figure 4-11 C source code of loop unrollingfor-EXp#2.6........cccocoviiiiiiiniinie 42
Figure 4-12 C source code of loop unswitching for EXp#2.7.a.......ccccoovevviniininnininincnnn 42
Figure 4-13 C source code of loop unswitching for EXp#2.7.b.......cccccoveeiiniininiininincnen 42
Figure 4-14 C source code of conditional sub-expression reordering for Exp#3.1.................. 43
Figure 4-15 C source code of procedure inlining for EXp#4.1......c.cocoviiiiniininniniininicnene 44
Figure 4-16 C source code of procedure integration for EXp#4.2cc.cccceviininiininenncneenn 45
Figure 4-17 C source code of loop embedding for EXp#4.3cccooiviiniiiiniininiinicecicne 46
Figure 4-18 C source code of arrays declaration sorting for Exp#5.1.a.....cccccocevviniininninnnne 47
Figure 4-19 C source code of arrays declaration sorting for EXp#5.1.b..c..coccovininiininninnnn 47
Figure 4-20 C source code of dummy variables insertion for EXp#5.2......c.cccocevviniincnncnnnn 48
Figure 4-21 C source code of arrays declaration permutation for EXp#5.3cccccoovininiinnnn 48
Figure 5-1 The results of the code size in EXp#2.6cccooiiiiiiiiiiiiiccee e, 56
Figure 5-2 The results of the instruction cache misses in EXp#2.6ccccevviiiiiiiiiiiinniennnen. 56
Figure 5-3 The results of the CPU cycles in EXp#2.6 ...c..cocooiiniiiiiniiniiicnicneccceecee 57
Figure 5-4 The results of the energy consumption in EXp#2.6........c.cccceeiiiniiiiiiniiiiieneeen. 57
Figure 5-5 The stack content of EXpH#5.1.a....ccciiiiiiiiiiiiiiiee e 67
Figure 5-6 The stack content of EXpH#5.1.D ..ooouiiiiiiiiii e 67
Figure 5-7 The stack content of EXPH#S5.2 ..cc.ooiiiiiiiiieee e 68
Figure 5-8 The stack content of EXPH#5.3 ...coioiiiiiieeeeee e 69

viii

Chapter 1

Introduction

Recently, energy consumption in design of embedded systems has become a major issue
due to the popularity of portable and mobile products. In software aspect, several approaches
are proposed to reduce energy consumption. Transformations in source code level among
these approaches are weakly tied to target architecture and are application-independent, so it
attracts many researchers’ interesting. However, there are many impact factors for
transformations and it usually accompanies side effects by using transformations. Hence, it is
important to understand these impact factors and evaluate the side effects to get a better

trade-off between energy consumption savings, code size and performance.

1.1 Background

With the arrival of mobile generation, there are more and more mobile and portable
products of embedded systems on the market. In order to lengthen lifetime of batteries in such
products; therefore, energy consumption savings of embedded systems becomes a very
important issue. Researches of energy consumption savings are divided into two aspects:
hardware and software. Because software programs control the behavior of hardware, energy
consumption of the overall embedded systems depend heavily on software design.

It is a critical step to evaluate software energy consumption prior to low energy software
design. There are a number of researches about software energy evaluation. Some researches
evaluate energy consumption based on physical measurements [1]-[3], and some do it based
on simulation [4]-[6].

Low energy software design can be achieved at three levels of abstraction: instruction

level, program or source code level, and algorithm level [7], [8]. There are different research
groups devoted to investigation on different levels, respectively. It is natural to hypothesize
that the efficiency of analysis, and the amount of energy savings obtainable, are much larger
at higher levels [9].

Instruction level approaches focus on better code generation for a program by using
energy consumption as the design metric. Such approaches include register allocation to
minimize memory access, register relabeling to minimize the switching cost in the instruction
register and the decoder [10], and instruction reordering to minimize the switching on the
control path [1], etc. Although these approaches can be implemented automatically (the
back-end of most compiler can implement many performance-oriented optimizations), the
overall energy consumption savings is not remarkable and is strongly tied to the target
architecture.

In algorithm level, it can-get the highest energy consumption savings by selecting
appropriate algorithms in software. Fer-example, Mehta et al. [10] evaluated several sorting
algorithms, including quicksort, heapsost and bubblesort. They observe that quicksort has less
energy consumption than heapsort by using less pointer arithmetic. But algorithm selection is
strongly based on programmers’ experience and knowledge, it is difficult to implement
automatically and needs very large manual effort.

In source code level, it reduces energy consumption by restructuring program code. It
also gets balance between efficiency and energy savings. It is weakly target
architecture-dependent and is easy to be implemented automatically. There are many
approaches in source code level. Tan et al. [9] proposed software architectural transformations
based on OS-driven multi-process. By analyzing and macro-modelling the energy
consumption of various components in an embedded OS [11], they can optimize the energy
consumption of embedded software by performing a series of selected software architectural

transformations. Peymandoust et al. [12] proposed a new methodology based on symbolic

manipulation of polynomials and energy profiling. They use floating-point to fixed-point data
conversion and polynomial approximation to achieve a new embedded software optimization
methodology. Simunic et al. [5] proposed data optimization to match the characteristics of the
target architecture with the processed data. They developed a fixed-precision library for
processor SA-1100 to replace floating-point arithmetic operations. In [15]-[21], a series of
transformations in source code level were presented to reduce energy consumption. This
technique is application-independent and can be implemented automatically. The basic
principle of transformations is to transform the source code of program such that the
transformed result is functionally identical to the original but is much more energy-efficient.
In this thesis, we focus on transformations in source code level due to the feature of

application-independent and being implemented automatically.

1.2 Contribution

In this thesis, we collect a Series of transformations in source code level. Because the
impact of ISA on transformations was not considered in previous work, we re-classify the
transformations and propose new ones which are ISA-specific on the ARM. We also present
an experimental framework and design a number of experiments to verify energy-efficiency
of the transformations presented and proposed. The side effects after transformation are also

evaluated and discussed.

1.3 Synopsis

The remainder of this thesis is organized as follows. Chapter 2 discusses related work. In
Chapter 3, we redefine categories of transformations in source code level and detail the
transformations presented. In Chapter 4, an experimental framework is presented and a

number of experiments of the transformations are designed to verify their energy-efficiency,

followed by the results and analyses in Chapter 5. Finally the conclusion and future work are

given in the last chapter.

Chapter 2
Related Work

As energy consumption in design of embedded systems becomes more and more
important, several transformations in source code level [13]-[26] have been proposed to
achieve the goal of low energy software design. A number of transformations have been
proposed by using different evaluation metrics, such as performance and energy consumption,
etc. Besides, researchers don’t consider the impact of instruction set architecture (ISA) on
energy consumption. In our research, we adopt StrongARM as our target processor and do a
number of experiments for the transformations to check if they can be used for energy
consumption savings. The impacts.of ISA and APCS on energy consumption are discussed,
too. Besides, we also find that.the optimization levels and options of compiler impact on
energy consumption. In order to evaluate energy.consumption of software programs, we adopt
EMSIM energy simulator [31] as a part-of our framework. Finally, the SUIF compiler system
[34] which is a compiler infrastructure is discussed. In the system, passes can be developed to
do transformations automatically. We use some passes released by other researchers’ groups in

our experiments.

2.1 Transformations in Source Code Level

According to different requirements such as better performance, smaller code size or
lower energy consumption, several transformations in source code level are presented and
proposed in [13]-[26]. Russell et al. [2] concluded that minimizing software execution time
(i.e. improved performance) results in minimized energy consumption. Although it is not

always true, we find that improved performance usually accompanies energy consumption

savings.

Optimization is the heart of advanced compiler design. A number of optimizations which
may be valuable in improving the performance of the object code produced by a compiler
were presented in [13], [14]. Muchnick [13] divided compiler optimizations into two mainly
areas: intraprocedural and interprocedural optimizations. Intraprocedural optimizations
include redundancy elimination, loop optimizations, procedure optimizations, register
allocation, code scheduling, and control-flow and low-level optimizations, etc. Optimization
for the memory hierarchy was also presented. Morgan [14] pointed out that the optimizing
compiler attempts to use all of the resources of the processor and memory as effectively as
possible in executing the application program. Hence, a number of optimizations which are
used for transforming the program to get better performance were presented. The
optimizations include dominator .optimization, interprocedural optimization, dependence
optimization, global optimization, instruction scheduling, register allocation, and instruction
rescheduling, etc. Compiler optimizations-in.[13], [14] included many transformations which
may reduce energy consumption in seurce code-level.

Brandolese et al. [15], [16] presented a methodology and a set of models supporting
energy-driven source to source transformations. They grouped source to source
transformations into four main categories according to the code structures they operate on:
loops, data structures, procedures, and control structures and operators. And a number of
transformations in different categories were presented.

Chung et al. [17] proposed a new transformation which reduces computational effort by
using value profiling and specializing a program for highly expected situations. The goal of
this technique is to improve energy consumption and performance by reducing computational
effort.

In [18]-[21], a number of transformations which are expected to reduce energy

consumption were presented for the purpose of system level power optimization, compiler

optimizations for low power systems, reducing instruction cache energy consumption, and
iterative compilation for energy reduction, respectively.

Besides, some transformations presented for different purpose are still useful for energy
consumption savings, such as improving data locality with loop transformations [22],
augmenting loop tiling with data alignment for improved cache performance [23],
optimization of computer programs in C [24], writing efficient C for ARM [25], and

transforming and parallelizing ANSI C programs using pattern recognition [26], etc.

2.2 ISA on Energy Consumption

Different ISA of target machine may impact on energy consumption because the source
code of program needs to be compiled, and assembled to object code according to the
instruction set of target machineg: The number of*.instructions generated and which style
instructions executed will impact on energy consumption.

In this thesis, we focused on the.impact of ARM ISA on energy consumption after
transformations, so ARM ISA will be' discussed below. The ARM instruction set can be
divided into six broad classes of instruction [27]:

e Branch instructions

e Data processing instructions

e Status register transfer instructions
e Load and store instructions

e Coprocessor instructions

e Exception-generating instructions

In our research, we find that data processing, and load and store instructions will impact

on energy consumption, so we will detail the two groups later. Based on the following

discussions, we propose new transformations tied to ARM ISA in the ISA-specific

transformations section.

2.2.1 Data Processing Instructions of ARM

ARM has 16 data processing instructions as shown in Table 2-1.

Table 2-1 ARM Data processing instructions (Seal [27])

Mnemonic | Opcode Action

AND 0000 | Rd := Rn AND shifter operand

EOR 0001 | Rd := Rn EOR shifter_operand

SUB 0010 | Rd :=Rn - shifter_operand

RSB 0011 | Rd := shifter_operand — Rn

ADD 0100 | Rdy:=:Rn + shifter_operand

ADC 01017} Rd := Rn + shifter operand + Carry Flag

SBC 0110 |-Rd :=Rn -shifter .operand — NOT(Carry Flag)
RSC 0111} Rd :=shifter operand -Rn — NOT(Carry Flag)
TST 1000 [Updateflags after.Rn AND shifter operand
TEQ 1001 |-Update flags‘after Rn EOR shifter _operand
CMP 1010 | Update flags after Rn - shifter operand

CMN 1011 | Update flags after Rn + shifter operand

ORR 1100 | Rd :=Rn OR shifter_operand

MOV 1101 | Rd := shifter_operand (no first operand)

BIC 1110 | Rd := Rn AND NOT(shifter_operand)

MVN 1111 | Rd :=NOT shifter operand (no first operand)

There are 11 addressing modes used to calculate the shifter operand in an ARM data
processing instruction. The impact of the immediate addressing mode on energy consumption
is discussed below. As shown in Figure 2-1, this data processing operand provides a constant
operand to a data processing instruction. It is encoded in the instruction as an 8-bit immed_8
and 4-bit rotate_imm, so that immediate value is equal to the result of rotating immed_8

(which will be zero extend to 32-bit firstly) right by twice the value in the rotate_imm. Hence,

immediate value must be the value as follows:

o <=255

e amultiple of 4 between 256 and 1023;

e amultiple of 16 between 1024 and 4095
e amultiple of 64 between 4096 and 16383

If you want to assign a value which is not equal to the above value, you will need more

than one instruction to complete your operation.

31 28 272625 24 21 20 19 16 15 12 11 8 7 0

cond 0 0 1 opcode S Rn Rd rotate_imm immed_8

Figure 2-1 Data processing operands - Immediate (Seal [27])

2.2.2 Load and Store Instructions of ARM

Load and store register instructions of-load and store instructions are discussed in this
section. They use a base register and an offset ‘'specified by the instruction. In offset addressing,
the memory address is formed by adding or subtracting an offset to or from the base register
value. The offset can be either an immediate or the value of an index register. Register-based
offsets can also be scaled with shift operations. For the word and unsigned byte instructions,
the immediate offset is a 12-bit number. For the halfword and signed byte instructions, it is an
8-bit number. From the above information, we can find that for the word and unsigned byte
instructions (or for the halfword and singed byte instructions), if the absolute value of the
offset of the memory address from the base address is greater than 4095 (or 255), it can not
use an immediate offset and needs another instruction to store the offset to a register; as a
result, it needs more than one instruction to load or store the value of a single register from or

to memory.

2.3 APCS on Energy Consumption

The APCS (ARM Procedure Call Standard) is a set of rules which regulate and facilitate
calls between separately compiled or assembled program fragments [28]. It defines
constraints on the use of registers, stack conventions, the format of a stack-based data
structure, the passing of machine-level arguments and the return of machine-level results at
externally visible procedure calls, and support for the ARM shared library mechanism.

In this section, we discuss that the rules in the APCS that may impact on energy
consumption. The ARM has fifteen visible general registers, a program counter register and
eight floating-point registers. As shown in Table 2-2, the role of general and program counter
registers in the APCS is described. The APCS defines that each contiguous chunk of the stack
shall be allocated to activation records, in, descending address order. At all instants of
execution, sp shall point to the lowest usedraddress’of the most recently allocated activation
record. The value of sl, fp and sp:shall be multiples of four.

It is noted that the mapping from.languages-level data types and arguments to APCS
words is defined by each language implementation, not by the APCS. Because our research
about transformations is focused on C language, C language calling conventions in the APCS
are discussed. In an argument list, char, short, pointer and other integral values occupy one
word. Char and short values are widened by the C compiler during argument marshalling.
Argument values are marshalled in the order written in the source code of programs. The first
four of the remaining argument words are loaded into al-a4, and the remainder are pushed on
to the stack in reverse order. A structure is called integer-like if its size is less than or equal to
one word, and the offset of each of its addressable sub-fields is zero. An integer-like
structured result is returned in al.

Now the APCS is obsolete, and the AAPCS (Procedure Call Standard for the ARM

Architecture) should be noted. The AAPCS embodies the fifth major revision of the APCS

10

and third major revision of the TPCS (Thumb Procedure Call Standard). It forms part of the

complete ABI (Application Binary Interface) specification for the ARM architecture [29].

Table 2-2 General and program counter registers [28]

Register Name APCS Role

10 al argument 1 / integer result / scratch register

rl a2 argument 2 / scratch register

2 a3 argument 3 / scratch register

3 a4 argument 4 / scratch register

r4 vl register variable

5 v2 register variable

r6 v3 register variable

r7 v4 register variable

r8 v5 register variable

9 sb/v6 static base / register variable

r10 sl/v7 stacklimit / stack chunk handle / register variable
rll fp frame pointer

rl2 ip scratch'register / new-sb in inter-link-unit calls
rl3 sp lower end of current stack frame

rl4 Ir link-address /'scratch register

rl5 pc program counter

2.4 Compiler Options that Control Optimization

In this thesis, gcc 2.95.3 is used as our cross compiler to compile our C source code.
Because optimization level and options of compiler impact on energy consumption
remarkably, we need to decide what optimization level and options to be used firstly.
Optimization levels of gcc 2.95.3 are shown in Table 2-3.

In embedded systems, there are three optimization levels used frequently, -O0, -O2 and
-Os. We use -O0 as our optimization level due to stable consideration in embedded systems
and clear analysis of the impact of transformations. Besides, we also use -fomit-frame-pointer

option to avoid keeping the frame pointer in a register for procedures that don’t need one and

11

avoid the instructions to save, set up and restore frame pointers; as a result, it makes an extra

register available to be used. It also makes debugging impossible on ARM.

Table 2-3 The optimization levels of gcc 2.95.3 [30]

Optimization Level Description

-O0 (default) This is the default. Do not optimize. In this level, the compiler’s goal is to
reduce the cost of compilation and to make debugging produce the expected

results. The compiler only allocates variables declared register in registers.

-01 (-0) Optimize. The compiler tries to reduce code size and execution time.

-02 Optimize even more. GCC performs nearly all supported optimizations that do
not involve a space-speed trade-off. It turns on all optional optimizations except
for loop unrolling, function inlining, and strict aliasing optimizations. It also

turns on the ** option on all machine.

-03 Optimize yet more. It turns on all optimizations specified by *-O2’ and also

turns on the ‘inline=functions’ option

-Os Optimize:for size.

2.5 Evaluation of Energy Consumption

In order to analyze the impact of transformations on energy consumption, we need to
find a way to evaluate software energy consumption. Tan et al. [31] presented an energy
simulation framework that can be used to analyze the energy consumption characteristics of
an embedded system featuring the embedded Linux OS running on the StrongARM processor.

As shown in Figure 2-2, the simulator includes the following component:

1) a model for the StrongARM SA-1100 core, consisting of an instruction set simulator
(ISS), simulation models for the instruction cache and data cache and a memory
management unit (MMU);

2) asimulation model for 32 MB of system memory;

3) asimulation model for an interrupt controller;

4) simulation models for two timers;

12

5) simulation models for two UARTSs conforming to the Intel 8250 series.

| !

Icache (16K)

I-MMU ¢

h 4
S

ARM
core

D-MMU ¢

Dcache (16K)

Write Read
. buffer buffer
Processing Core

T St AR Interupt
controller

h 4
S

Memory

Figure 2-2 Modeled embedded system in EMSIM (Tan et al. [32])

The simulation models are shown on the right half of Figure 2-3 and the sequence of
steps involved in using the simulation framework is show on the left. The energy accounting
mechanism of EMSIM is task-based. And a function energy stack for each task is used for
evaluating the energy consumption of every function in the task. From energy profiling report,
we can get information about the number of invoked times, CPU cycles consumed and energy
consumption of every function.

The SA-1100 microprocessor is a general-purpose, 32-bit RISC microprocessor with a
16 Kbytes instruction cache, an 8 Kbytes write-back data cache, a minicache, a write buffer, a
read buffer, and a memory management unit (MMU) combined in a single chip [33]. Besides,
it is software compatible with the ARM V4 architecture processor family. In EMSIM, the 8
Kbytes write-back data cache is replaced by 16 Kbytes one and it doesn’t simulate a

minicache. As shown in Figure 2-4, the size of the cache line (block) is 32 bytes and the

13

caches are 32-way set-associative caches. Replacement policy is round robin within a set.

Application

source code

source code

Linux

Linux
binary code

Tag memory

0

31

— 24 bits

Tag bits + valid flag bit

Application
binary code

A WOWDN-~O

11
12
13
14
15

A W

Figure 2-3 Energy é’ii%l

'-'!2":“‘»

S

L |

Cache memory

0

32 bytes

Energy profiling
report

14

Figure 2-4 The 32-way set-associative cache in EMSIM

/(;é’f EMSIM (Tan et al. [32])

Main memory Tag number
0 1 2 3
0 16 32 48
1 17 33 49
2 18 34 50
3 19 35 51
4 20 36 52
11 27 43 59
12 28 44 60
13 29 45 61
14 30 46 62
15 31 47 63

Main memory address : ‘ ‘ 4 ‘ 5 ‘

Set Byte

2.6 SUIF2 Compiler System

The SUIF (Stanford University Intermediate Format) system [34] was developed by
Stanford Compiler Group. It is a free compiler infrastructure designed to support collaborative
research in optimizing and parallelizing compilers, based upon a program representation,
SUIF. It maximizes code reuse by providing useful abstractions and frameworks for
developing new compiler passes and by providing an environment that allows compiler passes
to inter-operate easily. Now the SUIF group has moved its effort on from SUIF1 to SUIF2.

It also supports some useful tools, such as front ends, converters from SUIF1 to SUIF2
and vice versa, and converters from SUIF2 back to C, etc. Hence, we can write our SUIF
compiler to do operations between SUIF intermediate representations (IRs).

Figure 2-5 shows the SUIF system architecture. The components of the architecture are
described as follows.

1) Kernel provides all basic functionality of the SUIF system.
2) Modules can be one of two Kinds: a set-of-nodes in the intermediate representation and a
program pass.

3) Suifdriver provides execution control over modules.

suifdriver

MODULES:

Passes

analyses
optimizations

suifnodes
basicnodes

suifkernel
iokernel

Figure 2-5 The SUIF system architecture (Aigner et al. [35])

15

Passes are the mainly part of a SUIF compiler. It typically performs a single analysis or
transformation and then writes the results out to a file. To create a compiler or a standalone
pass, the user needs to write a “main” program that creates the SuifEnv, imports the relevant
modules, loads a SUIF program and applies a series of transformations on the program and
eventually writes out the information, as show in Figure 2-6.

Some passes which do transformations were implemented and released in [36], [37]. We
would like to thank for their release, so we can use the passes to do some transformations for

our experiments.

save & delete
SUIF
environment

initialize &
load SUIF
environment

\ 4
\ 4

passes (easy to.reoder)

Figure 2-6 A typical SUIE-compiler (Aigner et al. [35])

16

Chapter 3

Transformations

A series of transformations operating in source code level were presented in [13]-[25]. In
the first section, we firstly explain how we classify transformations, followed by the detail of
the transformations in different categories in section 3.2-3.6. Finally the summary of the

transformations is given in the last section.

3.1 Classification / Category

According to transformations operating on data or code segments, we firstly divide
transformations into two main categoriesyndata and code transformations. In [16], code
transformations were grouped into three sub-categori€s according to the code structures they
operate on, including loop, procédural, and-control structures and operators transformations.

But they don’t consider the influence of ISA on'energy consumption.

Table 3-1 Sub-categories of code transformations

Sub-category of code transformations Description

Loop transformations Modify either the body or control structure of
the loop

Control structures and operators transformations Change either specific control structures or
operators

Procedural transformations Modify the interface, declaration or body of
procedures

ISA-specific transformations Transformations are impacted by ISA

In our research, we find that some code transformations are strongly tied to ISA of target

machine. Therefore, our code transformations will include four sub-categories: loop, control

17

structures and operators, procedural, and ISA-specific transformations. Sub-categories of code

transformations are described in Table 3-1.

3.2 Data Transformations

In this section, we present a series of transformations used in modifying data segment of
source code. These transformations may result in reduced data cache misses and memory

access, etc., and then energy consumption savings is expected.

3.2.1 Scratch-pad Array Introduction

Allocating a smaller array is used in storing the most frequently accessed elements of the
larger array [16]. It is expected that spatial. locality is improved contributing to reduced data
cache misses. It is noted that the increasedtinstructions which are used in refreshing the
elements of arrays may reduce:-performance and increase code size (i.e. instruction cache

misses). As a result, it may not reduce-energy- consumption.

3.2.2 Local copy of global variable

In the procedure which needs to operate on global variables, we can declare local
variables and assign the value of global variables to them before the procedure invoked [15].
We then refresh global variables after leaving the procedure. In such a way, this
transformation can increase the possibility for compiler to store variables in registers instead
of memory (i.e. it reduces data cache misses). But it has the same side effects as above

transformation, it may not reduce energy consumption.

3.2.3 Common Sub-expression Elimination

An existence of an expression in a program is a common sub-expression if there is

18

another existence of the expression whose evaluation always precedes this one in execution
order and if the operands of the expression remain unchanged between the two evaluations
[13]. Common sub-expression elimination is a transformation which stores the same
computation results of common sub-expressions into variables and assigns the value of
variables to replace common sub-expressions.

It is noted that this transformations may not always be valuable, because it may be less
energy consumption to recompute, rather than allocate another register (or memory) to hold

the value. As a result, it does not always reduce energy consumption.

3.2.4 Miscellany

In [15], [16], there are still a number of data transformations presented. Scalarization of
array elements introduces temporaty. variables as a.substitute of the most frequently accessed
elements of an array. Multiple indirection elimination finds common chains of indirections
and uses a temporary variable-to store.the_address. At present, researches about code

transformations are still continued proceeding.

3.3 Loop Transformations

Loop transformations operate on the statements which comprise a loop (i.e. these
transformations modify either the body or control structure of the loop). Because a large
percentage of the execution time of programs is spent in loops, these transformations can have
a very remarkable impact on energy consumption. Hence, there are a number of researches
and approaches based on loop transformations because of the importance of loop

transformations.

3.3.1 Loop Fusion

19

This transformation combines one or more loops with the same bounds into a single loop
[21]. It reduces loop overhead; as a result, the number of the instructions executed is reduced.
Besides, it can also be used for improving data cache locality by bringing the statements that
access the same set of data to the same loop [20]. But it is noted that if the increased loop
body becomes larger than instruction cache, it will increase instruction cache misses; as a

result, energy consumption will be increased.

3.3.2 Loop Fission

Loop fission does the opposite operation to loop fusion [21]. The goal of this
transformation is to break down larger loop body into smaller ones to reduce the size of loop
body to fit into instruction cache, and then it reduces instruction cache misses. It is noted that
computation energy is increased due to the new loop overheads. Therefore, we need to be
careful to decide that loop fusion or loop fission should be applied to loops in order to reduce

energy consumption effectively.

3.3.3 Loop Reversal

This transformation reverses the order in which a specific loop’s iterations are performed
[13]. In some loops of which loop body exists dependence, loop reversal may eliminate the
dependence; as a result, it allows other transformations to be applied. Besides, a special case
of loop reversal which is useful in ARM architecture was presented in [25]. To apply loop
reversal transformation makes an incrementing loop to a decrementing loop which becomes a
count-down-to-zero loop. It causes the original ADD/CMP instruction pair to be replaced by a
single SUBS instruction; because of this, it saves compares in critical loops, leading to

reduced code size, increased performance and reduced energy consumption.

3.3.4 Loop Inversion

20

Loop inversion transforms a while loop to a repeat loop (i.e. it moves the loop
conditional test from before the loop body to after it) [13]. It results in only one branch
instruction needed to be executed to leave the loop, rather than one needed to return to the
beginning and another needed to leave after the loop conditional test at beginning. Hence, it is
expected that energy consumption is reduced due to the reduced number of the instructions
executed. It is noted that this transformation is only safe when the loop body is executed at

least once.

3.3.5 Loop Interchange

This transformation reverses the order of two adjacent loops in a loop nest to change the
access paths to arrays [14]. It improves the chances that consecutive references are in the
same cache line, leading to reduced data cache misses. Hence, reduced energy consumption

can be expected.

3.3.6 Loop Unrolling

Loop unrolling replaces the body of a loop by U (the unrolling factor) times copies of the
body and modifies the iteration step from 1 to U [13]. The original loop is called the rolled
loop. Loop unrolling reduces the overhead of a loop by performing less compare and branch
instructions (i.e. better performance) and may improve the effectiveness of other
transformations, such as common-sub-expression elimination and software pipelining, etc. It
also allows the compiler to get a better register usage of the larger loop body.

On the other hand, the unrolled loop is larger than the rolled loop, so it increases code
size and may impact the effectiveness of the instruction cache, leading to increased instruction
cache misses. So deciding which loops to unroll and by what unrolling factors is very
important.

Besides, there is another form of loop unrolling that applies to the loop which is not a

21

counting loop [14]. It can unroll the loop and leave the termination conditions in place. This
technique has benefits when dealing with a while loop in which later transformations can be

used.

3.3.7 Loop Unswitching

This transformation moves loop-invariant conditional branches to the outside of loops
[13]. It reduces the number of the instructions executed due to the reduced number of codes
executed in the loop body. If the conditional only has if part, loop unswitching has little
impact on code size. But if the conditional has else parts, it will need to copy the loop into

every else parts of conditional. Hence, it increases code size and instruction cache misses.

3.3.8 Miscellany

In addition to the above loop transformations; other energy-efficiency strategies on loop
transformations can be envisioned.

Loop permutation is a general version of loop interchange [13]. It allows more than two
loops to be reordered to reduce data cache misses; as a result, it is expected to reduce energy
consumption.

Loop tiling achieves the goal of reduction of capacity and conflict misses which are
resulted from cache size limitations [21]. It improves cache performance by dividing the loop
iteration space into smaller tiles. This also results in a logical division of arrays into tiles, so it
may increase reuse of array elements within each tile. By the correct selection of tile sizes,
conflict misses which occur when several data elements compete for the same cache line can
be eliminated. But it also increases the number of instructions executed and code size because
of the increased nesting loops.

Software pipelining can improve the execution performance of loops [16]. It eliminates

the dependences between adjacent statements by breaking the operations of single loop

22

iteration into S stages, and arranges the code in such a way that stage 1 is executed on the
instructions originally belonging to iteration i, stage 2 on those of iteration i-1, etc. It makes
pipeline performance better through pipeline stalls reduction. Hence, CPU cycles consumed
are expected to reduce. But it may increase the number of instructions executed due to the
calculation of iteration i. It also increases code size because startup code is generated before

the loop to initialize and cleanup code is generated after the loop to finish operations.

3.4 Control Structures and Operators Transformations

In this section, we present a series of transformations which modify control structures

and operators of source code to reduce energy consumption.

3.4.1 Conditional Sub-expression Reordering

It is possible to reorder sub-expressions in conditional to reduce energy consumption
[16]. In OR conditions, we can sort the sub-expressions in which the possibility of being true
in front of others. In AND conditions, we ¢an sort the sub-expressions in which the possibility
of being false in front of others. By using this transformation, it reduces the number of the

instructions executed; as a result, it reduces energy consumption. It has no side effects.

3.4.2 Special Cases Optimization

Brandolese et al. [16] presented special cases optimization transformation which replaces
calls to generic library or user-defined functions with optimized ones. For example, someone
needs to call mathematic functions of which arguments need floating-point variables, but he
only wants to do operations for integers. Hence, he can re-write optimized ones for integers to
reduce energy consumption. This transformation is only a suggestion, and it can not be

implemented by an automation tool.

23

3.4.3 Special Cases Pre-evaluation

Some functions would return a known value when a special value for an argument is
passed. So we could avoid real calls to the functions by defining suitable macros testing for
the special cases [16]. Hence, it may reduce real function calls (i.e. the number of the

instructions executed) but increases code size. Figure 3-1 shows some examples.

Macro name | Macro definition

acos(x) ((x==-1) ?3.141592653589793238462643383 : acos(x))
asin(x) ((x==0) ? 0 : asin(x))

pow(x,y) ((y==1) ? x: pow(x, y))

sqrt(x) (x==0)?0:(x==1) ?x : sqrt(x))

fabs(x) ((x>=0) ?x : -x)

Figure 3-1 Some examples of macro definition for procedures (Brandolese et al. [16])

3.5 Procedural Transformations

Procedural transformations-are used-for modifying the interface, declaration or body of
procedures. There are also a number of researches in this sub-category for the purpose of

performance improved and energy consumption savings.

3.5.1 Procedure Inlining

This transformation is supported by many compilers. It replaces the invoked procedure
with the procedural body [16]; as a result, it increases the spatial locality and decreases the
number of procedure invoked. But it increases the code size which will result in increased

instruction cache misses.

3.5.2 Procedure Integration
It has almost the same behavior as procedure inlining [13], but procedure inlining does

not consider the call site. This transformation can differentiate among call sites which invoke

24

the same procedure and decide which call site is need to do procedure integration or only
invokes the original procedure. As a result, it may get a better trade-off between code size and

energy consumption than procedure inlining.

3.5.3 Procedure Sorting

This transformation is the easiest instruction cache optimization approach to implement.
It sorts the statically linked procedures according to the call graph and frequency of use [13].
This transformation has two advantages. Firstly, it places procedures near their callers in
virtual memory so as to reduce paging traffic. Secondly, it places frequently used and related
procedures so they have less possibility to collide with each other in the instruction cache. To

implement this transformation, we only need to reorder the procedural declarations.

3.5.4 Procedure Cloning

This transformation is based ‘on procedural parameters which are constant at one or more
call sites. For every call site that calls the same procedure and passes the same constant values
of parameters, we clone a copy of the procedure and rename its procedural name [13]. The
new version of the procedure has reduced parameters and in the body of which constant
parameters are replaced by constant values; as a result, it allows compilers to do advanced

optimization.

3.5.5 Loop Embedding

Loop embedding is an interprocedural transformation which moves the loop from the
outside of a procedure to the body of the procedure [26]; as a result, it reduces the overhead of
the procedure call. The original procedure is needed to be reserved if it is called from more

than one call site.

25

3.5.6 Substitution of a Variable Passed as an Address with a Local Variable
This transformation replaces a procedural argument passed as an address with a local
copy of variable [15]. In optimization level of compilers, compilers tend to allocate local
variables in registers instead of memory. Hence, it reduces the number of memory access and
the data cache misses. But it increases the number of codes which assigns and restores values,
it will increase the number of the instructions executed; as a result, it may not reduce energy

consumption.

3.5.7 Miscellany
Other transformations which operate on procedure include soft inlining which replaces
calls and returns with jumps [16], and procedure splitting which divides each procedure into a

primary and a secondary component{13], etc.

3.6 ISA-specific Transformations

Some transformations are dependent toiwhat ISA you operate on. In this section, we
present one transformation which is not independent of ISA of target machine. We also
propose two transformations which are specific to ARM ISA, including dummy variables
insertion and arrays declaration permutation transformations. It is noted that the proposed

ones are also strongly tied to the strategies of calculating base addresses of compilers.

3.6.1 Arrays Declaration Sorting

This transformation is to modify the order of local arrays declaration, so that the most
frequently accessed array is allocated on the top of the stack; in such a way, the memory
locations frequently accessed by exploiting direct access mode [15]. It is less energy

expensive in this access mode. When using this transformation, you need to know the stack

26

allocation strategies of local arrays implemented by compliers.

3.6.2 Dummy Variables Insertion

This transformation proposed is based on the feature of ARM ISA. When elements of
arrays are accessed, it is necessary to calculate the base addresses of the arrays firstly. This
transformation tries to reduce the number of the instructions executed for calculating the base
addresses by inserting dummy variables which are declared as volatile ones between the
arrays. In such a way, the offsets of the base addresses of arrays from the stack are changed,
so that it is possible to use one instruction to get the base addresses of arrays. Because the
order of array declarations is changed and the size of stack allocation is increased, it might
increase data cache misses and page fault slightly. It is expected that code size and energy
consumption will be reduced because of the reduced number of the instructions executed. It is
noted that we need to take care of checking: if ‘stack overflow will happen after dummy
variables insertion.

In this thesis, we follow the pséudecode writing rules in [38] to write our algorithms. We
design an algorithm for dummy variables insertion transformation, and we also take some
assumptions as follows.

1) Offset is equal to or less than 2%° (for the procedure DUMMY-VARIABLE-SIZE(offset) to
operate correctly).

2) We suppose that compilers only use ‘add’ instruction to calculate the base addresses of
arrays, and the immediate value of the instruction must not be negative value.

3) In order to simplify our algorithm, we also suppose that initial offset passed to the
procedure DUMMY-VARIABLES-INSERT(L, init_offset) is equal to or less than 1024
(because the initial offset is a multiple of 4, we don’t need to insert dummy variable in the

above situation). It is large enough in general cases.

27

List L passed to the procedure DUMMY-VARIABLES-INSERT(L, init_offset) is used in
storing attributes of local array variables by the reverse order of declaration (i.e. the first
element of list L stores the attributes of the rightmost array variable, and the last element of
list L stores those of the leftmost one). As shown in Figure 3-2, each element of a linked list L
is an object with a string field: var_name, two integer fields: sizeof_type and no_elements, and
a pointer field: next. Given an element X in the list, var_name stores the name of the array
variable, sizeof type stores the size of the element of that, no_elements stores the number of
the elements stored in this array, and next[x] points to its successor in the linked list. Besides,
an attribute head[L] points to the first element of the list and an attribute length[L] stores the
number of elements of the list.

Because compilers will allocate memory space on the top of stack, when the procedure
invokes other procedures of which the numbers of the arguments are greater than 4, the initial
offset from the top of stack may-not be zero. We pass the integer init_offset to the procedure
DUMMY-VARIABLES-INSERT(L, init"offet).to point out this offset.

And the procedure DUMMY-VARIABLE-SIZE(offset) is used in calculating the size of

dummy array variable which needs to insert between arrays.

var_name sizeof type no_elements next

head[L] —» > L

Figure 3-2 A linked list L used by the algorithm of dummy variables insertion

The following is the algorithm of dummy variables insertion.

Algorithm 3.1 Dummy Variables Insertion

DUMMY-VARIABLES-INSERT(L, init_offset)
1 no_dummy vars < 0
2 offset < init_offset

28

3 sizeof typely] — 4

4 X« head[L]

5 n<«<length[L] - 1

6 fori—1ton

7 do sizeof array < sizeof type[x] x no_elements[x]
8 remainder < sizeof array mod 4

9 if remainder # 0

10 then padding <— 4 - remainder

11 else padding < 0

12 offset «— offset + sizeof array + padding

13 dummy_size «— DUMMY-VARIABLE-SIZE(offset)
14 if dummy_size # 0

15 then no_dummy_vars <« no_dummy_vars + 1
16 offset «— offset + dummy_size

17 var_name[y] « “dummy” + to_string(no_dummy_vars)
18 no_elements[y] < dummy_size / 4

19 nextly] < next[x]

20 next[x] <y

21 X «— next[y]

22 else x < next[x]

DUMMY-VARIABLE-SIZE(offset)
1 if offset < 256

2 then return O

3 bound « 1024

4 mul 4

5 while TRUE

6 do if offset < bound

7 then return mul - (offset mod mul)
8 else bound < bound x 4

9 mul «— mul x 4

3.6.3 Arrays Declaration Permutation
This transformation uses arrays declaration permutation instead of dummy variables
insertion to try to reduce the number of the instructions executed for calculating the base

addresses of arrays. It modifies the order of local arrays declaration to change the offsets of

29

the base addresses of arrays from the stack.

We design an algorithm for arrays declaration permutation transformation, and we take
the same assumptions used in Algorithm 3.1 (but the procedural names in the assumptions
must be replaced suitably). In addition, in order to simplify this algorithm, we use the
procedure ENERGY-COST/(offset) to get energy cost for calculating base address of an array;
in the procedure, if we only need one instruction for calculating base addresses it will return 1
and if we take more than one instruction for calculating base addresses it will return 2 simply.

We refer to the recursive algorithm of permutation algorithms in [39] to design the
procedure PERMUTATION(V, k, A, init offset). In Algorithm 3.2, we use G_varname to
indicate that this variable is a global variable.

Comparing with Section 3.6.2, list L used in this section is similar except that the object
of the element of a linked list L hasian extra integer field: no_cal_base_address. It stores the
number of calculating base address of an array.

The following is the algorithm of.artays.declaration permutation.

Algorithm 3.2 Arrays Declaration Permutation
ARRAYS-DECLARATION-PERMUTATION(L, init_offset)

1 G_min_t_energy_cost < «
2 G_n < length[L]
3 G_level — -1

4 X« head[L]

5 fori—1toG_n
6 do V[i]< 0

7 Ali] < x

8 X «— next[x]

9 PERMUTATION(V, 1, A, init_offset)
10 head[L] < A[G_min_V[1]]

M fori—1toG n - 1

12 do x « A[G_min_VIJi]]

13 y — A[G_min_VI[i+1]]

14 next[x] <« vy

15 x «— A[G_min_V[G_n]]

30

16 next[x] < NIL

PERMUTATION(V, k, A, init_offset)

1 G_level «— G_level + 1

2 VIK] < G_level

3 ifG level=G n

4 then t_energy cost «— TOTAL-ENERGY-COST(V, A, init_offset)
5 if t energy_cost < G_min_t _energy cost

6 then G_min_t energy cost <t _energy cost
7 fori<—1t0G. n

8 do G_min_VI[i] «V]i]

9 elsefori<—1to G _n

10 do if V[i]=0

11 then PERMUTATION(V, i, A, init_offset)
12 G_level — G_level - 1

13 V[K] < O

TOTAL-ENERGY-COST(V, A, init_offset)
offset — init_offset
t energy cost« 0

do x — A[VIil]

1
2
3 fori—1ton
4
5 t energy cost < t_energy cost + no_cal_base_ address|[x] x

ENERGY-COST(offset)

6 sizeof array « sizeof type[x] x no_elements[x]
7 remainder < sizeof array mod 4

8 if remainder # 0

9 then padding <— 4 - remainder

10 else padding < 0

11 offset «— offset + sizeof array + padding
ENERGY-COST(offset)

1 if offset < 256

2 then return 1

3 bound « 1024

4 mul 4

5 while TRUE

6 do if offset < bound

7 then if (offset mod mul) # 0

31

8 then return 2

9 else return 1

10 else bound < bound % 4
11 mul «<— mul x 4

3.7 Summary

Some transformations are strongly tied to which optimization level of the compiler used.
For example, because the gcc compiler only allocates variables declared register in registers.
When optimization is not enabled [30], transformations such as local copy of global variable
and substitution of a variable passed as an address with a local variable are useless in this case.
In addition, some transformations have better energy-efficiency when optimization is enabled.

Besides, some transformations may have no impact on energy consumption, but they can
reduce dependency for other transformations ‘to be applied. Or after doing some
transformations, it is possible .to increase the: energy-efficiency by wusing other
transformations.

Although a number of transformations can reduce energy consumption remarkably, it is
not easy to find which transformations should be used, in which order to apply, and to which
code sections [21]. This long standing open problem is called the phase-order problem. In this
thesis, we mainly focus on applying one transformation to the source code every time and

evaluate the impact on energy consumption on our target architecture.

32

Chapter 4

Experiments

Hill et al. [40] subdivided set-associative misses into three categories: (set-)conflict
misses (due to too many active blocks mapping to a fraction of the sets), capacity misses (due
to fixed cache size), and compulsory misses (those necessary misses caused by the first data
access). In Chapter 4 and 5, we use their categories of set-associative misses to explain the
experiments designed and the impact of different categories of cache misses on energy
consumption respectively.

In Chapter 3, we collect a series of transformations in source code level. The efficiency
of the transformations is needed to:be evaluated-and verified on our target architecture by
doing experiments. In this chapter, we design an’'experimental framework to profile the
experimental results in the first section.“In-the last five sections, the experiments of different

categories are designed and completed:

4.1 Experimental Framework

EMSIM 2.0 energy simulator of StrongARM is adopted as a part of our experimental
framework to get the energy information of the experiments.

In addition to energy consumption, we need other information to analyze and evaluate
side effects when every time simulation functions run. Because the main impact factors on
energy consumption include CPU cycles consumed, and the number of instruction and data
cache misses, we modify EMSIM energy simulator to get such information. The addresses of
instruction and data cache miss are outputted to verify the correctness of cache misses. In

addition, in order to get more accurate information about cache misses, we detect if

33

simulation function will be executed. Before being executed, we flush instruction and data
caches. The execution results of EMSIM before and after modified are shown in Figure 4-1.
And the information about function code size is got by using arm-linux-objdump program of

the GNU Binutils which are a collection of binary tools.

Execution result before modified Execution result after modified

energy report sim_func 20855.388350 | Flush caches

energy report sim_func 18225.000000 | reading: the address of instruction cache miss: 0x81ec
energy_report sim_func 18225.000000 | writing: the address of data cache miss: Oxbfffff18
energy report sim_func 18225.000000 | reading: the address of instruction cache miss: 0x8200
reading: the address of instruction cache miss: 0x8220
writing: the address of data cache miss: Oxbffffbcc

reading: the address of instruction cache miss: 0x82a0
energy report sim_func 21199.077670
11492 cycles, 7 Icache_misses, 80 Dcache misses

Flush caches
reading: the address of instruction cache miss: 0x81ec

reading: the address of instruction cache miss: 0x82a0
energy report sim_func 21199.077670
11492 cycles, 7 Icache_misses, 80 Dcache misses

Figure 4-1 The execution results of EMSIM

Since the EMSIM simulation framework is about running the Linux OS in a StrongARM
simulator, several Linux and StrongARM related components are needed [31], including
Linux OS kernel and the ARM toolchain. Linux 2.4.18 and patch-2.4.18-rmk3 are used in

building our Linux kernel. Besides, the ARM toolchain which we build are listed in Table 4-1.

Table 4-1 The ARM toolchain

binutils 2.11

gcc 2.95.3

The ARM toolchain
glibc 2.2.3

glibc-linuxthreads 2.2.3

34

Step one :

Original C source code file

_,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-

parameters |

|

| J
|
e TheSUIr
I compiler
|

The SUIF system

H Transform manually H Transformed C source code file

Step two :
Linux kernal
J
C source code Cross Executable o EMSIM
file compiler program

Output file

L‘ arm-linux-objdump

Executing shell script “run_batch’; sto.repeat the above process for
every C source code file in the'same directory.

Step three :
Output Energy Report Experimental
—>
files program result

Figure 4-2 The overall experimental framework

Our experiments for every transformation involve three steps, comprised of generating C
source code files in the same directory, generating output files which record execution results
of EMSIM and arm-linux-objdump, and executing “Energy Report” program to profile energy
consumption and side effects by parsing output files. The overall experimental framework is
shown in Figure 4-2. In step one, we firstly design an original C source code file and use two
ways to generate transformed ones, including using SUIF passes which do transformations,
and transforming manually. In step two, in order to get the simulation results for every source

code file, we write a shell script, namely “run_batch”, to repeat the process of generating

35

executable program, running simulation and writing out information to output file. In the last
step, an “Energy Report” program is designed to parse output files, and to calculate and show

the results in GUI, as shown in Figure 4-3.

(]

|;E.L Energy Report E] @

BEE REE WR0 REm

HIBIER [Coygninthonel Copasi S\ ENS I Lc - WRBER [0 Voyewinthome\Toposis NS M Lc bl
PR S R I RAGHE R
Function code size (bytes) infoimation: Code Bize
Fize [~ Text sime: 252, Data sime: 0, Bss size: O
locp_url: 128 Object total size: 252
loop ur2: 204 59.38%
loop_urd: 388 203.133
locp_urd: 343 171,589 T, _
loop_ur5: 432 237,508 unction Name: |slm_func
loop_urk: 616 361,253 F 5 add
locp_ur?: 692 440. 639 unction Address: 0x000081ac
locp_urd: 760 493,759 ; ;
loop_urf: g4 539.389 » Function Code Bize: |123
Cache misses information
Tnstr_ON q Data_OM % Total_OM i A Function Information:
loop_url:) 32 =i
loop_ur2: 1 40.00% 32 0.00% 39 5.41% Invoked count: 4
locp_urd: 12 160,008 32 0.00% 45 21.62% Tatal cycles: 72436
loop_uréd: 12 140.00% 32 0.00% 44 15 92% Total energy: 124129 3514363
loop_urd: 15 200.00% 32 0.00% 17 27.033
locp_ur: 20 300.00% 32 0.00% 52 40,543
lacp_ur?: 23 360,009 32 0.00% 55 45,659
loop_urf: 25 400.00% 32 0.00% 37 54.05%
loop_uzd: 21 440,001] 0.00% 53 59460 v [Count [Energy [Cyeles [T M [D o [Toral oo
ol el 0 4 31032... 18109 H 32 37
First % Min energy % Max count i A
loap_url: 15109 15169 15109
loop_urd: 15391 -15.01% 15391 -15.01% 15391 -15.01%
locp_urd: 14595 -10.408 14535 19,408 14595 -10.408
lacp_urd: 13844 22,559 13344 -23.558 13844 22,559
loop_urs: 13869 -23.41% 13869 -23.41% 13869 -23.41%
loop_urf: 13794 -23.62% 13794 -23.63% 13794 -23.62%
locp_ur?: 13721 -24.239 12721 -24.23% 13721 -24.239
loop_urd: 13539 -25.248 13539 35,249 13539 -25.248
loop_urd: 13631 -24.73% 13631 -24.73% 13631 -24.73% v
Energy consumption (nl}) information:
First % Min energy % Max count T A
loop_url: 31032 31032 31032
loop_url: 26613 -14.24% 26613 -14.24% 26613 -14.24%
locp_urd: 25432 -16.05% 25432 -18.05% 25432 -16.05%
loop_urd: 24185 22 068 24185 22 0E% 24185 22 068
loop_urs: 24282 21,75 24252 -21.75% 24282 21,75
locp_ur: 24265 -21.81% 24265 -21.81% 24265 -21.81%
locp_ur?: 24209 -21.999 24208 21,998 24209 -21.999
locp_uré: 23954 .22 818 23954 22 81% 23954 .22 818
loop_urd: 24148 -22.168 24145 -22.16% 24148 -22.18% v

Figure 4-3 The execution result of the Energy Report program

Transformations in source code level lead to very different results depending on a
number of factors, including the specific structure of code, the target architecture, and the
parameters of the transformations, etc. [16]. But what compiler you use and of which the
options you choose also have a significant impact. Because the EMSIM energy simulator is
adopted, the target architecture is fixed in our experimental framework. Table 4-2 shows the
target architecture in our experimental framework. In addition, we adopt gcc 2.95.3 as our

cross compiler and use optimization level -O0 and option -fomit-frame-pointer to compile the

36

source code files of our experiments. Hence, the experiments of the transformations are
designed to observe the results between the specific structure of code and the different

parameters of the transformations in this thesis.

Table 4-2 The target architecture of our experimental framework

The component of the target architecture Description

The processor StrongARM SA-1100 (CPU clock: 206 MHz)

The cache architecture 32-way set-associative instruction cache:
Cache size: 16 KB
Cache line size: 32 bytes
Replacement policy: round robin

32-way set-associative write-back data cache:
Cache size: 16 KB
Cache line size: 32 bytes

Replacement policy: round robin

4.2 Data Transformations

In this section, the experiment ‘of jonly one data transformation which is common

sub-expression elimination is designed to verify its energy-efficiency.

4.2.1 Common Sub-expression Elimination

Original C source code

Transformed C source code

void sim_func(void) {
inta, b, c,d,e,f;

a=e/f;
b=21+a;
c=14+d;
d=e/f;

void sim_func(void) {
inta,b,c,d, e, f;
int _testTmp0;

_testTmpO=¢e/f;
a=_testTmpO0;
b=21+a;
c=14+d;
d=_testTmp0;

Figure 4-4 C source code of common sub-expression elimination for Exp#1.1

37

We use the JuanCSE pass [36] which is free released to do common sub-expression
elimination to transform the original C source code. The C source code before and after

transformation are shown in Figure 4-4.

4.3 Loop Transformations

In this section, a number of experiments of loop transformations are designed to verify
their energy-efficiency, including loop fusion, loop fission, loop reversal, loop inversion, loop

interchange, loop unrolling and loop unswitching.

4.3.1 Loop Fusion

Original C source code Transformed C source code
void sim_func(void) { void sim_func(void) {
int i, a[410], b[410]; int’i, a[410], b[410];
for (i=0;i<410;i++) for (1=0;i<410;i++) {
a[i]=41; ali]=41;
for (i=0;i<410;i++) blil=14;
b[i]=14; j
} !

Figure 4-5 C source code of loop fusion for Exp#2.1

As shown in Figure 4-5, we design an experiment in which the simulation function has
two loops. After adding the code size of the two loop bodies, we find that the size is smaller
than the size of the instruction cache, so we can use loop fusion transformation to reduce the
loop overhead but not increase the number of the instruction cache misses. Hence, it is

expected that the energy consumption is reduced after transformation.

4.3.2 Loop Fission
In our experimental framework, the size of the instruction cache is 16 KB. As shown in

Figure 4-6, we design a simple experiment in which the loop body size in the simulation

38

function of the original C source code is larger than 16 KB, so there are not only compulsory
misses but also capacity misses happened when the loop is executed. We then apply loop
fission transformation to the loop of the original C source code to break down the loop into
two ones of which the body size is a half of the original one. It is expected that after
transformation, the number of the instruction cache misses are reduced remarkably resulting

in reduced energy consumption.

Original C source code Transformed C source code
void sim_func(void) { void sim_func(void) {
int i, a[410], b[410], c[410], d[410]; int i, a[410], b[410], c[410], d[410];
for (i=0;i<410;i++) { for (i=0;i<410;i++) {
------ //the loop body size: 21008 -+++++ // the loop body size: 10504
} J
} for (i=0;i<410;i++) {
------ // the loop body size: 10504
}
}

Figure 4-6 C source code-ofloop fission for Exp#2.2

4.3.3 Loop Reversal
In section 3.3.3, it is expected that energy consumption will be reduced because loop
reversal causes the original ADD/CMP instruction pair to be replaced by a single SUBS

instruction on the ARM. We design a simple experiment to verify its hypothesis, as shown in

Figure 4-7.
Original C source code Transformed C source code
void sim_func(void) { void sim_func(void) {
int i, a[400], b[400]; int i, a[400], b[400];
for (i=0;1<400;i++) for (i=399;1>=0;i--)
a[i]=b[i]+14; ali]=b[i]+14;
} }

Figure 4-7 C source code of loop reversal for Exp#2.3

39

4.3.4 Loop Inversion
As shown in Figure 4-8, Exp#2.4 is designed to verify energy-efficiency of loop

inversion. By transforming a for loop to a do-while loop, it is expected to reduce the number

of the instructions executed, leading to reduced energy consumption.

Original C source code

Transformed C source code

void sim_func(void) {
int i, a[2107;

for (i=0;1<210;i++)
a[i]=41;

void sim_func(void) {
inti, a[210];

i=0;
do {
a[i]=41;
i+t
} while (i<210);
}

Figure 4-8 C source code.of loop inversion for Exp#2.4

4.3.5 Loop Interchange

Original C source-code

Transformed C source code

void sim_func(void) {
int1, j;
char a[16][512];

for (j=0;j<=511;j++)
for (i=0;1<=15;i++)

afi][jI=41;

void sim_func(void) {
int 1, j;
char a[16][512];

for (i=0;1<=15;i++)
for (j=0;j<=511;j++)
ali][j]=41;

H

Figure 4-9 C source code of loop interchange for Exp#2.5.a

This transformation is very useful to reduce conflict misses. In our experiments, we
focus on the case in which the array size is smaller than the size of the data cache in our target
architecture. Figure 4-9 shows the first experiment of this transformation. When executing the
loop of the original program of Exp#2.5.a, it will result in compulsory misses in the same set

of the data cache because of the row size of the two dimensional array is 512 Bytes. Conflict

40

misses will not be happened, because the number of the columns in this array is equal to 16
which is smaller than the number of the ways. Hence, it is expected that the energy
consumption will not be changed after transformation.

In the second experiment, we use the same row size of the array as the first experiment,
as shown in Figure 4-10. But the number of the columns is greater than the number of the
ways; as a result, it will result in conflict misses when the 33rd column of the array is
accessed in the original loop. Hence, it is useful to do loop interchange to eliminate the

conflict misses resulting in reduced energy consumption.

Original C source code Transformed C source code

void sim_func(void) { void sim_func(void) {

int1, j; int 1, j;

char a[33][512]; char a[33][512];

for (j=0;j<=511;j++) for (i=0;i<=32;i++)

for (i=0;i<=32;i++) for (j=0;j<=511;j++)
afi][jl=41; afi][j]=41;

} h

Figure 4-10 C source code of loop interchange for Exp#2.5.b

4.3.6 Loop Unrolling

This transformation has a parameter, the unrolling factor. Because the unrolling factor
has a significant impact on energy consumption, we design a C source code file generator
program to generate 100 files of which the unrolling factor are 1 to 100 respectively.

As shown in Figure 4-11, the left is the original C source code of which the unrolling
factor is 1 and the right is the transformed C source code of which the unrolling factor is U
(2~100). It is noted that when U is not a divisor of the loop counts, it is necessary to copy the
original loop and put the duplicated loop below the original one to complete the operations;

otherwise, the loop copy can be eliminated.

41

Original C source code

Transformed C source code

void sim_func(void) {
int i;
char a[500], b[500];

for (i=0;i<500;i++) {
a[i]=14;
bli]=a[i]*4+21;
H
}

void sim_func(void) {
int i;
char a[500], b[500];

for (1=0;i1<501-U;i++) {
a[i]=14;
bli]=a[i]*4+21;

}

for (;i<500;i++) {
a[i]=14;
b[i]=a[i]*4+21;

§

H

Figure 4-11 C source code of loop unrolling for Exp#2.6

4.3.7 Loop Unswitching

Original C source code

Transformed C source code

void sim_func(void) {
int1i,j, a[200];

=21
for (i=0;i<200;i++) {
if (j%4==0)
a[i]=140;

voidssim_func(void) {
int iy, a[200];

1728
if (j%4==0) {
for (i=0;1<200;i++)
a[i]=140;

Figure 4-12 C source code of loop unswitching for Exp#2.7.a

Original C source code

Transformed C source code

void sim_func(void) {
int i, j, a[200];

=21
for (i=0;1<200;i++) {
if (j%4==0)
a[i]=140;
else
a[i]=210;

-

void sim_func(void) {
int 1, j, a[200];

=21
if (j%4==0) {
for (i=0;1<200;i++)
a[i]=140;
} else {
for (1i=0;1<200;i++)
ali]=210;

Figure 4-13 C source code of loop unswitching for Exp#2.7.b

42

It is expected that this transformation reduces energy consumption, but it may increase
code size due to the loop copy for else parts of conditional. We design two experiments for
this transformation to evaluate the impact on the code size. One has only if part and another

has else part, as shown in Figure 4-12 and Figure 4-13, respectively.

4.4 Control Structures and Operators Transformations

In this section, the conditional sub-expression reordering of the control structures and

operators transformations is discussed.

4.4.1 Conditional Sub-expression Reordering
This transformation is very simple to understand its operational principle. It reorders the
conditional sub-expressions by their probability to,reduce the number of the instructions

executed. Hence, it is expected that the energy consumption will be reduced.

Original C source code Transformed C source code

void sim_func(void) { void sim_func(void) {

int i, a; int 1, a;

a=0; a=0

for (1i=0;1<210;i++) for (i=0;1<210;i++)

if (1%3!1=0 && 1%2==0 || i<105) if (i<105 || i%2==0 && 1%3!=0)
at+; at++;

} !

Figure 4-14 C source code of conditional sub-expression reordering for Exp#3.1

4.5 Procedural Transformations

A number of experiments of the procedural transformations which include procedure
inlining, procedural integration and loop embedding are designed to evaluate their

energy-efficiency in this section.

43

4.5.1 Procedure Inlining

Original C source code

Transformed C source code

intx,y;

int sim_funcA(void) {
int result;

result=x*2+21,
result=result+y*+41;
result=result*result+2;
result=result/2;

return result;

}

void sim_func(void) {
int i, a[100];

x=210;
y=140;
a[0]=sim_funcA();

for (1i=1;1<98;i++) {

X=x+i1*41;
y=y*14;
a[i]=sim_funcA();
}
x=21;
y=14;
a[98]=sim_funcA();
x=14;
y=21;

a[99]=sim_funcA();

intx,y;

void sim_func(void) {
int 1, a[100];
int suif tmp0, suif tmpl, suif tmp2;

x=210;
y=140;
{

int result;

suif tmpO=result;

H
a[0]=suif tmp0;

for (i=1;1<98;i++) {
{
int suif tmp00;

X=x+i1*41;
y=y*14;

{
int result;

suif tmp00=result;
;[i]=suif7tmp00;
}
H
x=21;
y=14;
{

int result;

suif tmpl=result;

}
a[98]=suif tmpl;

x=14;
y=21;
{
int result;
suif tmp2=result;

}
a[99]=suif tmp2;

Figure 4-15 C source code of procedure inlining for Exp#4.1

44

As shown in Figure 4-15, the simulation function in the original C source code has four
call sites at which the function ‘sim_funcA’ is invoked. We use the JuanInlining pass [36]

which is free released to do procedure inlining to transform the original C source code.

4.5.2 Procedure Integration

Original C source code

Transformed C source code

int x, y;

int sim_funcA(void) {
int result;

result=x*2+21;
result=result+y*+41;
result=result*result+2;
result=result/2;

return result;

}

void sim_func(void) {
int i, a[100];

x=210;
y=140;
a[0]=sim_funcA();

for (i=1;1<98;i++) {

x=x+1*41;
y=y*14;
a[i]=sim_funcA();
}
x=21;
y=14;
a[98]=sim_funcA();
x=14;
y=21;

a[99]=sim_funcA();

intx,y;

int sim_funcA(void) {
int result;

result=x*2+21;
result=result+y*+41;
result=result*result+2;
result=result/2;

return result;

j

void sim_func(void) {
int 1,7a[100];

x=210;
y=140;
a[0]=sim_funcA();;

for (i=1;1<98;i++) {
{
int suif tmp00;

x=x+1*41;
y=y*14;

{
int result;
suif tmpOO0=result;

}
a[i]=suif tmp00;

)

)

x=21;

y=14;
a[98]=sim_funcA();
x=14;

y=21;
a[99]=sim_funcA();

Figure 4-16 C source code of procedure integration for Exp#4.2

45

Procedure integration is a general version of procedure inlining. It can decide which call
site to do integration. As shown in Figure 4-16, we design Exp#4.2 which uses the same
original file as Exp#4.1. But we only select the call site which is in the loop to do integration.
Hence, it is expected that this transformation not only reduce energy consumption effectively

but also control the increased code size within a reasonable range.

4.5.3 Loop Embedding

This transformation is expected to reduce energy consumption. We design a simple

experiment to verify its energy-efficiency.

Original C source code Transformed C source code
int sim_funcA(int x, int y, int ¢) { void sim_funcAA(int x, int y, int *a) {
return x*x+y*y+c; int i;

}
for'(1=0;i<100;i++)

void sim_func(void) { alil=x*x+y*y+i;
inti, x, y, a[100]; H
x=140; void sim_func(void) {
y=210; mti, x,y, a[100];
for (i=0;i<100;i++)
ali]=sim_funcA(x, y, i); x=140;
) y=210;

sim_funcAA(x, y, a);

}

Figure 4-17 C source code of loop embedding for Exp#4.3

4.6 ISA-specific Transformations

In this section, a number of experiments of ISA-specific transformations are designed to

verify their energy-efficiency on ARM ISA.

4.6.1 Arrays Declaration Sorting

We design two experiments to observe the results on ARM ISA. Figure 4-18 and Figure

46

4-19 show the original and transformed source code for the two experiments respectively.

Original C source code

Transformed C source code

void sim_func(void) {
int i, a[305], b[210], c[110];

for (i=0;1<305;i++)
a[i]=41;

for (1i=0;1<210;i++)
b[i]=41;

for (1i=0;1<110;i++)
c[i]=41;

void sim_func(void) {
int i, b[210], c[110], a[305];

for (i=0;i<305;i++)
a[i]=41;

for (i=0;1<210;i++)
b[i]=41;

for (i=0;1<110;i++)
c[i]=41;

Figure 4-18 C source code of arrays declaration sorting for Exp#5.1.a

Original C source code

Transformed C source code

void sim_func(void) {
int i, a[440], b[220], c[140], d[707;

for (i=0;1<440;i++)
a[i]=41;

for (i=0;i<220;i++)
bli]=41;

for (i=0;i<140;i++)
c[i]=41;

for (i=0;i<70;i++)
d[i]=41;

void sim_func(void) {
int 1,’b[220], c[140], d[70], a[440];

for (i=0;1<440;i++)
afi]=41;

for (i=0;1<220;i++)
b[i]=41;

for (i=0;i<140;i++)
c[i]=41;

for (i=0;i<70;i++)
d[i]=41;

Figure 4-19 C source code of arrays declaration sorting for Exp#5.1.b

4.6.2 Dummy Variables Insertion
As shown in Figure 4-20, this transformation insert dummy variables to reduce the
number of the instructions executed to calculate the bases addresses of the arrays; as a result,

it is expected to reduce energy consumption on ARM ISA.

47

Original C source code

Transformed C source code

void sim_func(void) {
int i, a[440], b[220], c[140], d[70];

for (1=0;1<440;i++)
a[i]=41;

for (i=0;i<220:i++)
b[i]=41;

for (i=0;i<140;i++)
c[i]=41;

for (i=0;1<70;i++)
d[i]=41;

void sim_func(void) {
int i, b[220], c[140];
volatile int dummy1[2];
int d[70], a[440];

for (i=0;1<440;i++)
a[i]=41;

for (i=03i<220;i++)
bli]=41;

for (i=0;i<140;i++)
c[i]=41;

for (i=0;1<70;i++)
d[i]=41;

Figure 4-20 C source code of dummy variables insertion for Exp#5.2

4.6.3 Arrays Declaration Permutation
As shown in Figure 4-21, this transformation suitably permutes the order of the arrays
declaration to reduce the numbet of the instructions executed to calculate the bases addresses

of the arrays; as a result, it is expected to reduce energy consumption on ARM ISA.

Original C source code

Transformed C source code

void sim_func(void) {
int i, a[440], b[220], ¢[140], d[70];

for (i=0;i<440;i++)
a[i]=41;

for (i=0;i<220;i++)
b[i]=41;

for (i=0;i<140;i++)
c[i]=41;

for (i=0;i<70;i++)
d[i]=41;

void sim_func(void) {
int i, d[70], c[140], b[220], a[440];

for (i=0;i<440;i++)
a[i]=41;

for (i=0;i<220;i++)
b[i]=41;

for (i=0;i<140;i++)
c[i]=41;

for (i=0;i<70;i++)
d[i]=41;

Figure 4-21 C source code of arrays declaration permutation for Exp#5.3

48

Chapter 5

Results and Analyses

In this chapter, we list the results of the experiments which are designed in Chapter 4.
From the results, we try to analyze the relationship between energy consumption and side

effects such as code size and performance.

Table 5-1 The definition of notations

Notation Definition
| x| The greatest integer less than or equal to x
[x] The least integer greater than or equal to x
U Unrolling factor
LO Loop overhead
LB Loop body
ICM Instruction cache miss
DCM Data cache miss
Nic The loop counts
Npeum The number of data cache misses
Npem”’ The number of data cache misses after transformation
SicL The size of the instruction cache line
Sio The loop overhead size
Sis The loop body size
Eio The energy consumption of the instructions executed for the loop overhead
Eip The energy consumption of the instructions executed for the loop body
Ecmp The energy consumption of the compare operation before transformation
Ecmp’ The energy consumption of the compare operation after transformation
Eicm The energy consumption of memory access for every instruction cache miss
Epcum The energy consumption of memory access for every data cache miss
Eos The energy consumption of the affected code before transformation
Ean The energy consumption of the affected code after transformation
AE The energy consumption savings after transformation (/\E=E,4-E,;)

49

In order to simplify our analyses, we take assumptions for some transformations. After
analyses, we will show the limitations of transformations resulting from compilers and ISA if
necessary. We also create energy equations to express the energy consumption savings for
transformations if possible. In our energy equations, we only consider the three main factors
on energy consumption, including the energy consumption of the instructions executed and
the energy consumption of memory access for the instruction and data cache misses. Table

5-1 lists the definition of notations used in the following sections.

5.1 Data Transformations

In this section, the experimental results of the data transformations are listed and

analyzed.

5.1.1 Common Sub-expression Elimination

Tdble 5-2 The result of Exp#1.1

Parameters Original Transformed %
Code Size (bytes) 80 76 -5.00
Instruction Cache Misses 4 3 -25.00
Data Cache Misses 1 1 0.00
CPU Cycles 308 240 -22.08
Energy Consumption (nJ) 747 613 -17.92

Table 5-3 The definition of notations used in Section 5.1.1

Notation Definition
Nese The number of common sub-expression
Ecse The energy consumption of the instructions executed for the common sub-expression
ELpr cse The energy consumption of loading the computation result of the common sub-expression
Estr cse The energy consumption of storing the computation result of the common sub-expression

50

As shown in Table 5-2, the number of the data cache misses is not affected. But it is
noted that it may result in the increased number of the data cache misses due to the introduced
variables used in storing the computation result of common sub-expressions. In addition, the
code size and the number of the instruction cache misses are reduced due to the reduced
number of the instructions for recomputing; as a result, the CPU cycles consumed and the
energy consumption are reduced. Table 5-3 lists the definition of notations used in this section.

The energy consumption savings can be expressed as:

AE = (1= Ncgg)X Ecse + Nese X Eor_cse + Estr_cse Eq. (5.1)

5.2 Loop Transformations

In this section, the experimental resultSzof the loop transformations are listed and

analyzed.

5.2.1 Loop Fusion
Assumption: the size of the loop which is the fusion of several loops is equal to or less than

the size of the instruction cache.

Table 5-4 The result of Exp#2.1

Parameters Original Transformed %
Code Size (bytes) 176 124 -29.55
Instruction Cache Misses 7 5 -28.57
Data Cache Misses 103 103 0.00
CPU Cycles 20241 14047 -30.60
Energy Consumption (nJ) 36288 25845 -28.78

As shown in Table 5-4, the number of the data cache misses is not affected. The code

size and the number of the instruction cache misses are reduced due to the reduced number of

51

the instructions of the loop overheads; as a result, the CPU cycles consumed and the energy
consumption are reduced. Table 5-5 lists the definition of notations used in this section. The

energy consumption of the loops before and after transformation can be expressed as follows:

N -1
N, -1 Ni xS0+ 2 Susi
Eori:N|XNLc><ELo+NLc><_Z;,) Ewsit 5 = XEicm+NpomXEpem EQ- (5.2)
i= IcL
=
N, -1 Sot 2 Sisi
Eat = NicXELot NicX .ZO Evsi+| —————— |XEicm *+ N peum % Epeu Eq. (5.3)
i= IcL

Because Ny’ is equal to Ny, the energy consumption savings can be derived as:

SicL

1-N
AEz(l_NI)XNLCXELO*”Vﬂ—‘XEICM Eq. (5.4)

Table 5-5 The definition of:notations used in Section 5.2.1

Notation Definition
LB; The loop body of the itliloop
N The number of the loops which-have the same loop counts
Sisi The loop body size of the ith loop
Epg;i The energy consumption of the instructions executed for the loop body of the ith loop

5.2.2 Loop Fission
Assumption: the size of the loop before transformation is greater than the size of the
instruction cache, and the size of the every loop after transformation is equal to or less than

the size of the instruction cache.

As shown in Table 5-6, the number of the data cache misses is not affected. The code

size is increased due to the increased number of the instructions of the loop overheads. It is

very noted that the number of the instruction cache misses are reduced remarkably due to the

52

reduced number of the capacity misses; as a result, the CPU cycles consumed and the energy

consumption are reduced.

Table 5-6 The result of Exp#2.2

Parameters Original Transformed %
Code Size (bytes) 21100 21168 0.32
Instruction Cache Misses 270193 663 -99.75
Data Cache Misses 206 206 0.00
CPU Cycles 8917588 4606762 -48.34
Energy Consumption (nJ) 20210333 7526457 -62.76

5.2.3 Loop Reversal

As shown in Table 5-7, the code_size is almost unchanged after loop reversal
transformation. The number of the instruetion:and: the data cache misses are not affected.
From the assembly code files, we ‘find that the CPU"cycles consumed are reduced because
comparing with zero only needsone instruction and comparing to another value may need
more than one instruction; as a result, the energy consumption may be reduced or not.
However, it is noted that this transformation may reduce the dependence of the codes in loop

body to make other transformations applied. The energy consumption savings can be express

as: AE ~Egy, '~ Ecmp Eq. (5.5)

Table 5-7 The result of Exp#2.3

Parameters Original Transformed %
Code Size (bytes) 116 112 -3.45
Instruction Cache Misses 5 5 0.00
Data Cache Misses 101 101 0.00
CPU Cycles 13315 12514 -6.02
Energy Consumption (nJ) 24667 23379 -5.22

53

Limitation: it is affected by the compiler and the ISA used if you want to reduce energy

consumption.

5.2.4 Loop Inversion

As shown in Table 5-8, the code size and the number of the instruction cache misses are
almost unchanged after loop inversion transformation. The number of the data cache misses is
not affected. The CPU cycles consumed are reduced due to the reduced compare and branch

instructions; as a result, the energy consumption is reduced.

Table 5-8 The result of Exp#2.4

Parameters Original Transformed %
Code Size (bytes) 80 76 -5.00
Instruction Cache Misses 4 3 -25.00
Data Cache Misses 27 27 0.00
CPU Cycles 4711 4685 -0.55
Energy Consumption (nJ) 8599 8446 -1.77

5.2.5 Loop Interchange

As shown in Table 5-9 and Table 5-10, the code size and the number of the instruction
cache misses are not affected after loop interchange transformation. In Exp#2.5.a, as the same
as expected, the number of the data cache misses is not affected due to no changes in the
conflict misses after transformations. But the CPU cycles consumed and the energy
consumption are not the same as expected. From the assembly code, we find that comparing
the loop bound with 15 needs only one instruction but comparing the loop bound with 511
needs three instructions. Because comparing with 511 is in the outer loop before
transformation but in the inner loop after transformation; as a result, it will increase the

number of the instructions executed to do compare operations. Hence, it increases the CPU

54

cycles consumed and the energy consumption slightly.

In Exp#2.5.b, as the same as expected, the number of the data cache misses is reduced

due to the conflict misses eliminated; as a result, the CPU cycles consumed and the energy

consumption are reduced remarkably.

We conclude that when the size of the array is equal to or less than the size of the data

cache, loop interchange can reduce energy consumption if the conflict misses exist. On the

other hand, if the conflict misses do not exist, it may reduce or increase energy consumption

according to the number of the instructions executed to do compare operations reduced or

increased. When the size of the array is greater than the size of the data cache, this

transformation is very useful to reduce energy consumption due to the capacity and conflict

misses eliminated.

Table 5-9 The result of Exp#2.5.a

Parameters Original Transformed %
Code Size (bytes) 204 204 0.00
Instruction Cache Misses 7 7 0.00
Data Cache Misses 257 257 0.00
CPU Cycles 289429 291427 0.69
Energy Consumption (nJ) 480971 483739 0.58

Table 5-10 The result of Exp#2.5.b

Parameters Original Transformed %
Code Size (bytes) 204 204 0.00
Instruction Cache Misses 7 7 0.00
Data Cache Misses 16905 530 -96.86
CPU Cycles 974301 601200 -38.29
Energy Consumption (nJ) 2168591 998158 -53.97

55

5.2.6 Loop Unrolling

(s814g) 8715 apog

Unralling factar (UF)

Figure 5-1-The results of the code size in Exp#2.6

250

1 1

H H

| |
fom] o
¥ =

SASS|L 8YIED UDIDNIISU |

Unralling factor (UF)

Figure 5-2 The results of the instruction cache misses in Exp#2.6

56

19000

e g SR
R TR R T R EEPEE R et L S R —
1 1 1
1 1 1
1 | | |
=] =] = = = ¥ =
= = = = = o =
Pl = = = = o =
o (o @ (73] -+ =+ o
= = = = = e =
5
581243 1420

90 95 100

85

30 3 40 45 AD 55 BD BS 70 V& 8D
Unralling factor (UF)

25

Figure 5-3 The resultstofithe CPU cycles in Exp#2.6

32000 |---
30000 -
28000 5

(ru) wondwnsuoa Afsug

24000 === 3--
23906

22000

15 20 25 30 35 40 45 50 55 6O GBS V0 75 80 85 90 95 100
Unralling factor (UF)

10

Figure 5-4 The results of the energy consumption in Exp#2.6

57

Assumption: The loop size after unrolling is equal to or less than the size of the instruction

cache.

The unrolling factor of loop unrolling transformation has a significant impact on energy
consumption. Hence, energy equations are created for us to get the relationship between
unrolling factor and energy consumption. Because of the assumption, we can know that there
are only compulsory misses needed to be considered in our equations. The energy

consumption of the loop before and after transformation can be expressed as follows:

Sio+Sis

ICL

EoriZNLCX(ELo"'ELB)'{ —IXEICM"'NDCMXEDCM Eq. (5.6)

(N %U)!=0:

(StotSexU)+(So+Sis)
SicL

Eaﬁ:[LNL%J“‘(N LC%U)]XELO“‘NLCXELB‘{ —‘XEICM + N pem % Epewm

Eq. (5.7)

(N%U)==0:

+S.sxU
Eatt :LN L%JXELO+ Nicx ELB"“Vw‘IX E'icv + Noew * Epem Eq. (5.8)
IcL

Because N’ is equal to Ny, the energy consumption savings can be derived as follows:

U
(Nic%U)=0: AE = [LN L%J +(Nc%U)=Nc]xELo '{SLOZA—IX Eicm Eq. (5-9)
ICL
U-1
(Nic%U)y=0: AE ~ (LN L%J ~Nw)*ELo ‘J%f‘x Eicm Eq. (5-10)
IcL

From the above equations, we can find that if the unrolling factor is not a divisor of the
loop counts, the (N..%U) may result in a very critical issue when the unrolling factor is big.
We also suppose that the minimum energy consumption will happen at the unrolling factor
which is a divisor of the loop counts, because the eliminated loop copy and its overhead.

As shown in Figure 5-1 and Figure 5-2, the number of the instruction cache misses is in

proportion to the code size. When unrolling factor is a divisor of the loop counts, the code size

58

and the number of instruction cache misses drop abruptly due to the loop copy eliminated. As
show in Figure 5-3 and Figure 5-4, the CPU cycles consumed and the energy consumption are
reduced due to the reduced number of the instructions executed for the loop overhead. When
the unrolling factor is equal to 10, the minimum energy consumption is achieved. Besides, we
also find some sharp increase at some unrolling factor. This is due to the impact of (N..%U).

For example, we find a sharp increase at UF=84. Because the reduced loop overhead is equal

500 500=— - i 500 500=—
to | 5004, |+(500%83)-500=-492 at UF=83 and is equal to | 5007, |+(500%84)~500=-415 at

UF=84, the energy consumption has a big increase from UF=83 to UF=84.

5.2.7 Loop Unswitching

Table 5-11_ The result of Exp#2.7.a

Parameters Qriginal Transformed %
Code Size (bytes) 100 100 0.00
Instruction Cache Misses 4 3 -25.00
Data Cache Misses 1 | 0.00
CPU Cycles 4096 78 -98.10
Energy Consumption (nJ) 7006 214 -96.95

Table 5-12 The result of Exp#2.7.b

Parameters Original Transformed %
Code Size (bytes) 128 168 31.25
Instruction Cache Misses 5 5 0.00
Data Cache Misses 26 26 0.00
CPU Cycles 5912 4519 -23.56
Energy Consumption (nJ) 10606 8276 -21.98

As shown in Table 5-11 and Table 5-12, the number of the data cache misses is not
affected after loop unswitching transformation. The number of the instruction cache misses is

almost unchanged. As the same as expected, the impacts on the code size are inconsistent in

59

Exp#2.7.a and Exp#2.7.b. It results from the loop copy for the else part of conditional.
Because the number of the instructions executed is reduced, the CPU cycles consumed and

the energy consumption are reduced.

5.3 Control Structures and Operators Transformations

In this section, the experimental results of the control structures and operators

transformations are listed and analyzed.

5.3.1 Conditional Sub-expression Reordering

Assumption: every sub-expression of the conditional consumes the same energy.

As shown in Table 5-13, the code sizerand the number of the instruction cache misses are
almost unchanged after conditional ‘sub-expression reordering transformation. The number of
the data cache misses is not affected. The-CPU cycles consumed are reduced due to the
reduced number of instructions executed for the sub-expressions computation; as a result, the

energy consumption is reduced.

Table 5-13 The result of Exp#3.1

Parameters Original Transformed %
Code Size (bytes) 140 136 -2.86
Instruction Cache Misses 5 5 0.00
Data Cache Misses 1 1 0.00
CPU Cycles 27050 10785 -60.13
Energy Consumption (nJ) 44075 18004 -59.15

5.4 Procedural Transformations

In this section, the experimental results of the procedural transformations are listed and

60

analyzed. Table 5-14 lists the definition of notations used in this section.

Table 5-14 The definition of notations used in Section 5.4

Notation Definition
PO Procedural overhead
PB Procedural body
CS; The ith call site which invokes the same procedure
Ncs The number of the call sites which invoke the same procedure
Np csi The number of the procedure invoked at the ith call site
Epo The energy consumption of the instructions executed for the procedural overhead
Epp The energy consumption of the instructions executed for the procedural body

5.4.1 Procedure Inlining

Before transformation, the code,sizes of the simulation procedure and the procedure
which the simulation procedure mvoked are:288.and 140 bytes respectively; the numbers of
the instruction cache misses of those are 10-and 4 respectively; the numbers of the data cache
misses of those are 15 and 2 respectively. After transformation, the procedure invoked is
eliminated. As shown in Table 5-15, the code size and the number of the instruction cache
misses are increased due to the procedure inlining. The number of the data cache misses is not
affected. The CPU cycles consumed are reduced due to the reduced overhead of the procedure
invoked. Although the number of instruction cache misses is increased resulting in the
increased energy consumption of memory access, the call site in the loop results in more
energy consumption savings; as a result, the energy consumption is reduced. The energy

consumption of the affected code before and after transformation can be expressed as follows:

Nes 1 Spot$S
Eori = (Epo+Eps)x Z%) Np csi J{M—IX Eicm + Noem X Epem Eq. (5.11)
i= IcL
Neg -1 N« xS '
Eart = Eps ZE) Np csi J{M—‘X Eicm + Npem X Epcm Eq. (5.12)
i= IcL

If we ignore the possible slight changes in the number of the data cache misses, Ny’ is equal

61

to Noow; as a result, the energy consumption savings can be derived as:

Nes —1 -S Neg —1
AE~—-Epox 2 Np csf"[po + (Nes)XSPB—‘XElcm Eq. (5.13)
i=0 - SicL
Table 5-15 The result of Exp#4.1
Parameters Original Transformed %
Code Size (bytes) 428 732 71.03
Instruction Cache Misses 14 24 71.43
Data Cache Misses 17 17 0.00
CPU Cycles 11023 10180 -7.65
Energy Consumption (nJ) 19058 17987 -5.62
5.4.2 Procedure Integration
Table 5-16 The tesult of Exp#4.2
Parameters Qriginal Transformed %
Code Size (bytes) 428 540 26.17
Instruction Cache Misses 14 18 28.57
Data Cache Misses 17 18 5.88
CPU Cycles 11023 10133 -8.07
Energy Consumption (nJ) 19058 17804 -6.58

The code size of the procedure which the simulation procedure invoked is 140 bytes, and

the code sizes of the simulation function before and after transformation are 288 and 400

bytes respectively. The numbers of the instruction cache misses of the simulation procedure

before and after transformation are 10 and 14 respectively, and those of the procedure invoked

before and after transformation are the same values, 4. The numbers of the data cache misses

of the simulation procedure before and after transformation are 15 and 16 respectively, and

those of the procedure invoked before and after transformation are the same values, 2. As

shown in Table 5-16, the code size and the number of the instruction cache misses are

increased due to the procedure integration. The number of the data cache misses is increased

62

slightly. The CPU cycles consumed are reduced due to the reduced overhead of the procedure
invoked. In this experiment, we only expand the procedure at the call site which is in the loop.
Compared with Exp#4.1, we can only not get better energy consumption savings, but also
smaller increased code size. We suppose that the first ‘m’ call sites are needed to do procedure
integration, and the others only invoke the original procedure. Hence, the energy consumption
of the affected code before transformation is the same as Eq. (5.11), and that after

transformation can be expressed as:

Spo +(M+1)xSpg

—IXEICM"'NDCM "X E pem
SicL

Ngs -1 Ngs -1
Eat ® Epox 2 Np cg+EpsX _ZO Npc5i+’7
I=m =

Eq. (5.14)

If we ignore the possible slight changes in the number of the data cache misses, Ny’ 1s equal

to Noow; as a result, the energy consumption savings can be derived as:

AEZ—EPOXE;NPcsﬁ[mSXSPB—lXEmM Eq. (5.15)

ICL

5.4.3 Loop Embedding

The code sizes of the simulation procedure before and after transformation are 112 and
52 bytes respectively, and those of the procedure which the simulation procedure invoked
before and after transformation are 68 and 124 bytes respectively. The numbers of the
instruction cache misses of the simulation procedure before and after transformation are 5 and
3 respectively, and those of the procedure invoked before and after transformation are 2 and 4
respectively. The numbers of the data cache misses of the simulation procedure before and
after transformation are 13 and 1 respectively, and those of the procedure invoked before and
after transformation are 1 and 13 respectively. As shown in Table 5-17, the code size is almost
unchanged after loop embedding transformation. The numbers of the instruction and the data
cache misses are not affected, but in fact, the numbers of the instruction and the data cache

misses may be affected slightly. The CPU cycles consumed are reduced due to the reduced

63

overhead of the procedure invoked; as a result, the energy consumption is reduced. If we

ignore the possible slight changes in the numbers of the instruction and the data cache misses,

the energy consumption savings can be derived as:

AE ~(1-Nc)XEpo Eq. (5.16)
Table 5-17 The result of Exp#4.3
Parameters Original Transformed %
Code Size (bytes) 180 176 -2.22
Instruction Cache Misses 7 7 0.00
Data Cache Misses 14 14 0.00
CPU Cycles 6857 4874 -28.92
Energy Consumption (nJ) 11893 8639 -27.36

5.5 ISA-specific Transformations

In this section, the experimental results of the ISA-specific transformations are listed and

analyzed. Table 5-18 lists the definition of notations used in Section 5.5. Besides, we create

general energy equations for Section 5.5.1-5.5.3 to use as follows:

1

N,-
Eori = ZO (Ngaj X Egai) +
i=

1

N, -
Eat = _Z;‘) (Ngai X Egai) +
=

N, -1

a

AE ~ _ZE) [Ngai X (Ega;i "= Egai)]+|

o

I

w

N, -1

; Sgai

ICL

-1

SBAi '

ICL

1
(SBAi - SBAi)

SicL

. =z
Loy

64

X Eicm T N pem X E pem

X Eicm + Npem X Epem

XEicm +(Npew "= N pem) X Epem

Eq. (5.17)

Eq. (5.18)

Eq. (5.19)

Table 5-18 The definition of notations used in Section 5.5

Notation Definition
a; The ith array in the simulation function
Na The number of local arrays in the simulation function
BA; The base address of a;
Npaj The number of calculating the base address of a;
Seai The total code size of calculating the base address of a; before transformation
Seai’ The total code size of calculating the base address of a; after transformation
Ega The minimum energy consumption of calculating the base address (only take one instruction)
Egai The energy consumption of calculating the base address of a; before transformation
Egai’ The energy consumption of calculating the base address of a; after transformation

5.5.1 Arrays Declaration Sorting

As shown in Table 5-19 and Table 5-20, the code size is increased after arrays
declaration sorting transformation. The number of the instruction and the data cache misses
are not affected. But in Exp#5.1:a and Exp#5.1.b, the impacts on the CPU cycles consumed
and the energy consumption are-inconsistént. Because N,.,’ is equal to Ny, according to Eq.
(5.19), the energy consumption savings can be derived as:

N, -1

o

(SBAi - SBAi)

N, -1)
AE = 5 [Noyy x (Egy = Egn)1+| “F———— <Erom Eq. (5.20)
i= ICL

Arrays declaration sorting puts the mostly accessed array on the top of the stack; as a
result, it changes the offsets of the arrays in the stack, so it may increase the number of the
instructions executed to calculate the base addresses of the arrays. Figure 5-5 shows the stack
content of Exp#5.1.a. Before transformation, it only needs one instruction to calculate the
base address of the every array. After transformation, it needs more than one instruction to
calculate the base addresses of the array ‘b’ and ‘c’. Hence, the CPU Cycles consumed are

increased resulting in the increased energy consumption.

65

Table 5-19 The result of Exp#5.1.a

Parameters Original Transformed %
Code Size (bytes) 224 232 3.57
Instruction Cache Misses 8 8 0.00
Data Cache Misses 79 79 0.00
CPU Cycles 13929 14249 2.30
Energy Consumption (nJ) 25328 25844 2.04

Table 5-20 The result of Exp#5.1.b

Parameters Original Transformed %
Code Size (bytes) 304 308 1.32
Instruction Cache Misses 11 11 0.00
Data Cache Misses 109 109 0.00
CPU Cycles 20689 20609 -0.39
Energy Consumption (nJ) 37316 37191 -0.33

As shown in Figure 5-6, the transformation results in the two arrays ‘b’ and ‘¢’ instead of
the one array ‘a’ needed to take more than'one instriction to calculate the base addresses in
Exp#5.1.b. And from the assembly code, we ‘find that the base address of the array ‘a’ is
calculated 440 times and the base addresses of the arrays ‘b’ and ‘¢’ are calculated 360 times
(220 times +140 times) and we also find all of the base addresses of the arrays ‘a’ in original
code, and ‘b’ and ‘c’ in transformed code needed to take two instructions to calculate; as a
result, 80 instructions executed are saved. Hence, the CPU cycles consumed and the energy
consumption are reduced.

From the above discussion, we conclude that this transformation does not always result
in energy consumption due to ARM ISA, so we propose two transformations based on ARM

ISA to improve the behavior of this transformation.

Limitation: it is affected by the ISA used and the strategies of the compiler to allocate stack

66

space for local variables.

<«—oldsp—»
i (4 bytes) High Address |i (4 bytes)

b (840 bytes)

a (1220 bytes) : TG
sp+1280 > . ¢ (440 bytes)

b (840 bytes)

) a (1220 bytes
sp+440 —» Low Address (ytes)
sp __p/€ (440 bytes) « sp > “«sp
Before transformation After transformation

Figure 5-5 The stack content of Exp#5.1.a

<«—oldsp—»

i (4 bytes) High Address |i (4 bytes)
b (880 byt
a (1760 bytes) (880 bytes)
:
% - ¢ (560 bytes)
b (880 bytes) £ d (280 bytes) |¢ sp+1760
sp+840 W™
¢ (560 bytes) a (1760 bytes)
sp+280 —» Low Address
sp _ »/d (280 bytes) < sp > <—sp
Before transformation After transformation

Figure 5-6 The stack content of Exp#5.1.b

5.5.2 Dummy Variables Insertion
Assumption: the modified data structures will not result in changes in the number of the

conflict misses.

As shown in Table 5-21, the code size and the number of the instruction cache misses are

reduced after dummy variables insertion transformation. The number of the data cache misses

is increased slightly due to the dummy variables insertion (because it may increase the

67

number of the compulsory misses).

Table 5-21 The result of Exp#5.2

Parameters Original Transformed %
Code Size (bytes) 304 300 -1.32
Instruction Cache Misses 11 10 -9.09
Data Cache Misses 109 110 0.92
CPU Cycles 20689 20609 -2.13
Energy Consumption (nJ) 37316 37191 -1.88

From Figure 5-7, we find that it needs more than one instruction to calculate the base
address of the array ‘a’ before transformation. After transformation, it only needs one
instruction to calculate the bases address of the every array. Hence, the CPU cycles consumed
are reduced resulting in the reduced energy.consumiption. Because VEg, '=Eg,, according to
Eq. (5.19), the energy consumption savings can be derived as:

N.~1

&

N, -1 b2, (Sgai "~ Seai)
AE =~ _ZO[NaAi><(EE;A—E|3Ai)]Jr = e %Eicm +(Npow —Npem)*Epem Eq. (5.21)
i= icL
i (4 bytes)
<«—oldsp
i (4 bytes) High Address |b (880 bytes)
<4— sp+2608
a (1760 bytes)) ¢ (560 bytes)
_ <—sp+2048
. dummy1
. (8 bytes)
b (880 bytes)) d (280 bytes) | sp+1760
sp+840 —™
¢ (560 bytes) a (1760 bytes)
spt280 —» Low Address
sp _ d (280 bytes) « sp > «sp
Before transformation After transformation

Figure 5-7 The stack content of Exp#5.2

68

Limitation: It is proposed according to ARM ISA. Besides, it is strongly tied to the strategies

of the compiler to calculate the base addresses of the arrays.

5.5.3 Arrays Declaration Permutation
Assumption: the modified data structures will not result in changes in the number of the

conflict misses.

As shown in Table 5-22, the code size and the number of the instruction cache misses are

reduced after arrays declaration permutation transformation. The number of the data cache

misses is not affected.

Table'5-22 The result.of Exp#5.3

Parameters Original Transformed %
Code Size (bytes) 304 300 -1.32
Instruction Cache Misses 11 10 -9.09
Data Cache Misses 109 109 0.00
CPU Cycles 20689 20233 -2.20
Energy Consumption (nJ) 37316 36567 -2.01

<«—oldsp—»p

i (4 bytes) High Address |i (4 bytes)
d (280 bytes) <« sp+3200
a (1760 bytes)) ¢ (560 bytes)
. <— sp+2640
@D > -
_ b (880 bytes)
b (880 bytes) « spt1760
spt840 —¥
¢ (560 bytes) a (1760 bytes)
spt280 —» Low Address
sp N d (280 bytes) « sp > “«sp
Before transformation After transformation

Figure 5-8 The stack content of Exp#5.3

69

Figure 5-8 shows the stack content of Exp#5.3. The goal of this transformation is the
same as dummy variables insertion one. It tries to reduce the number of the instructions
executed to calculate the bases address of the every array. Hence, the CPU cycles consumed
are reduced resulting in the reduced energy consumption. When this transformation can get
the best solution, VEg, '=Eg,. And because Ny’ is equal to Ny, according to Eq. (5.19), the

energy consumption savings can be derived as:

N, -1

B

! (SBAi - SBAi)

N, -1 _
AE = _% [Ngai X (Ega — Ega)]+| - X E1cm Eq. (5.22)

SicL

Limitation: It is proposed according to ARM ISA. Besides, it is strongly tied to the strategies

of the compiler to calculate the base addtesses of the arrays.

70

5.6 Summary

Table 5-23 The results after transformation in our experiments

Transformation Exp. No. Code Performance Energy
Size Consumption

Common sub-expression elimination Exp#1.1 1 5.00% 122.08% 1 17.92%
Loop fusion Exp#2.1 | | 29.55% | 130.60% 1 28.78%
Loop fission Exp#2.2 | 10.32% 1 48.34% 1 62.76%
Loop reversal Exp#2.3 - 16.02% 15.22%
Loop inversion Exp#2.4 — 10.55% 1 L.77%
Loop interchange Exp#2.5.a | — 1 0.69%* 10.58%%*

Exp#2.5.b | — 138.29% 153.97%
Loop unrolling (at best unrolling factor) Exp#2.6 1534.38% | 125.48% 122.96%
Loop unswitching Exp#2.7.a | — 1 98.10% 196.95%

Exp#2.7.b | 131.25% 123.56% 121.98%
Conditional sub-expression reordering Exp#3.1 — 160.13% 159.15%
Procedure inlining Exp#4.1 171.03% 17.65% 15.62%
Procedure integration Exp#4.2 126.17% 1 8.07% 1 6.58%
Loop embedding Exp#4.3 — 128.92% 127.36%
Arrays declaration sorting Exp#5:l.a [/ 13.57% 12.30% 12.04%

Exp#5.4b| 11.32% 10.39% 10.33%
Dummy variables insertion Exp#5.2 1 1.32% 12.13% 1 1.88%
Arrays declaration permutation Exp#5.3 1 1.32% 12.20% 12.01%

({: fall, 1: rise, —: unchanged or almost unchanged) *: impacted by ARM ISA

As a summary, Table 5-23 lists the results after transformation in our experiments. From
the experimental results of the transformations, the expected results of the energy
consumption and the side effects are listed in Table 5-24. It is noted that loop fusion, loop
fission, conditional sub-expression reordering, dummy variables insertion and arrays
declaration permutation are under the assumptions which are listed in their related sections.
And loop reversal, arrays declarations sorting, dummy variables insertion and arrays

declaration permutation are expected to reduce the energy consumption when the limitations

71

which are listed in their related sections are met. Besides, we also find that loop interchange

and loop reversal are impacted by ARM ISA.

Table 5-24 The expected results after transformation

Transformation Code Size Performance Energy
Consumption

Common sub-expression elimination l 1 l
Loop fusion ! 1 !
Loop fission 1 1 !
Loop reversal - — or 1* —or | *
Loop inversion — 1 l
Loop interchange - l*or? T*or |
Loop unrolling (at best unrolling factor) T T l
Loop unswitching —ort T l
Conditional sub-expression reordering —) 1
Procedure inlining e tor] lor?t
Procedure integration i 1 l
Loop embedding = 7 !
Arrays declaration sorting - - -
Dummy variables insertion T 1 l
Arrays declaration permutation l 1 l
({: fall, 1: rise, —: unchanged or almost unchanged, - : uncertain) *: impacted by ARM ISA

72

Chapter 6

Conclusion and Future work

We present an experiment framework to evaluate and analyze the impacts of the
transformations in source code level on energy consumption. A series of transformations have
been verified for both their energy-efficiency and their side effects on our target architecture.
From the experimental results, we find that loop interchange and arrays declaration sorting
transformations are impacted by the ISA. Based on ARM ISA, two transformations which
include dummy variables insertion and arrays declaration permutation are proposed. It is
expected that the two transformations will reduce energy consumption by reducing the
number of the instructions executed to calculate the base addresses of arrays. Their
experimental results are also the same as expected.

Thus far, a series of transformations.are.collected and verified their energy-efficiency. In
the future, we can write our SUIF passes to implement the transformations. Besides, it is a
critical topic to solve the phase-order problem for us to implement an automatic tool. The
automatic tool is very useful to do transformations on source code files automatically and to
generate better energy-efficient ones under some constraint, such as code size and

performance.

73

2]

[3]

[6]

References

V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded Software: A First Step
towards Software Power Minimization,” IEEE Transactions on VLSI Systems, Vol. 2,
No.4, pp. 437-445, December 1994.

J. T. Russell and M. F. Jacome, “Software Power Estimation and Optimization for High
Performance, 32-bit Embedded Processors,” in Proc. International Conference on
Computer Design: VLIS in Computers and Processors, October 1998, pp. 328-333.

S. Nikolaidis, T. Laopoulos, and A. Chatzigeorgiou, “Developing an Environment for
Embedded Software Energy Estimation,” in Proc. Second IEEE International Workshop
on Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications, September 2003; pp. 20=24:

Y. Li and J. Henkel, “A Framework for Estimating and Minimizing Energy Dissipation
of Embedded HW/SW Systems, *in Proc¢::35th- Design Automation Conference, June
1998, pp. 188-193.

T. Simunic, L. Benini, and G. De Micheli, “Energy-Efficient Design of Battery-Powered
Embedded Systems,” IEEE Transactions on Very Large Scale Integration Systems, Vol. 9,
No. 1, pp. 15-28, February 2001.

T. K. Tan, A. Raghunathan, and N. K. Jha, “A Simulation Framework for
Energy-Consumption Analysis of OS-Driven Embedded Applications,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 22, No.
9, pp. 1284-1294, September 2003.

E. Y. Chung, L. Benini, and G. De Micheli, “Source Code Transformation based on
Software Cost Analysis,” in Proc. 14th International Symposium on System Synthesis,

September-October 2001, pp. 153-158.

74

[8] Y. Fei, S. Ravi, A. Raghunathan, and N. K. Jha, "Energy-Optimizing Source Code
Transformations for OS-driven Embedded Software,” in Proc. 17th International
Conference on VLSI Design, January 2004, pp. 261-266.

[9] T. K. Tan, A. Raghunathan, and N. K. Jha, “Software Architectural Transformations: A
New Approach to Low Energy Embedded Software,” in Proc. Design, Automation and
Test in Europe Conference and Exhibition, March 2003, pp. 1046-1051.

[10] H. Mehta, R. M. Owens, M. J. Irwin, R. Chen, and D. Ghosh, “Techniques for Low
Energy Software,” in Proc. International Symposium on Low Power Electronics and
Design, 1997, pp. 72-75.

[11] T. K. Tan, A. Raghunathan, and N. K. Jha, “Embedded Operating System Energy
Analysis and Macro-modeling,” in Proc. 2002 IEEE International Conference on
Computer Design: VLSI in computers and Processors, September 2002, pp. 515-522.

[12] A. Peymandoust, T. Simunie, and G. De-Micheli, *Low Power Embedded Software
Optimization using Symbolic'Algebra," in-Proc. Design, Automation and Test in Europe
Conference and Exhibition, March-2002, pp. 1052-1058.

[13] S. Muchnick, Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers Inc, August 1997.

[14] R. Morgan, Building an Optimizing Compiler. Digital Press, 1998.

[15] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “The Impact of Source Code
Transformations on Software Power and Energy Consumption,” Journal of Circuits,
Systems and Computers, Vol. 11, No. 5, pp. 477-502, May 2002.

[16] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “Analysis and Modeling of
Energy Reducing Source Code Transformations,” in Proc. Design, Automation and Test
in Europe Conference and Exhibition Designers’ Forum, February 2004, pp. 306-311.

[17] E. Y. Chung, G. De Micheli, M. Carilli, L. Benini, and G. Luculli, “Value-base Source

Code Specialization for Energy Reduction,” ST Journal of System Research, Vol. 3, No.

75

1, pp. 29-48, April 2002.

[18] L. Benini and G. De Micheli, “System-Level Power Optimization: Techniques and
Tools,” ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, pp.
115-192, April 2000.

[19] M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Compiler Optimizations for Low
Power Systems,” in Power Aware Computing, pp. 191-210. Kluwer Academic Publishers,
Jun 2002.

[20] W. Zhang, J. S. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J.

Irwin, "Reducing Instruction Cache Energy Consumption Using a Compiler-Based
Strategy,” ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, pp.
3-33, March 2004.

[21] S. V. Gheorghita, H. Corporaal;and T. Basteny:‘Iterative Compilation for Energy
Reduction,” Journal of Embedded Computing,, Vol. 1, No. 4, pp. 509-520, December
2005.

[22] K. S. Mckinley, S. Carr, and C."W.-Tseng, “Improving Data Locality with Loop
Transformations,” ACM Transactions on Programming Languages and Systems, Vol. 18,
No. 4, pp. 424-453, July 1996.

[23] P. R. Panda, H. Nakamura, N. D. Dutt, and A. Nicolau, ”Augmenting Loop Tiling with
Data Alignment for Improved Cache Performance,” IEEE Transaction on Computers,
Vol. 48, No. 2, pp. 142-149, February 1999.

[24] M. E. Lee, “Optimization of Computer Programs in C,” April 1999. [Online]. Available:
http://leto.net/docs/C-optimization.php

[25] Application Note 34: Writing Efficient C for ARM, Advanced RISC Machine Ltd,
January 1998. [Online]. Available: http://www.arm.com/pdfs/DAIO034A _efficient c.pdf

[26] M. Boekhold, I. Karkowski, and H. Corporaal, “Transforming and Parallelizing ANSI C

Programs using Pattern Recognition,” in Proc. 7th International Conference on High

76

Performance Computing and Networking, April 1999, pp. 673-682.

[27] D. Seal, ARM Architecture Reference Manual. Addison-Wesley, December 2000.
[Online]. Available: http://www.arm.com/community/university/eulaarmarm.html

[28] ARM Procedure Call Standard. [Online]. Available:
http://www.chiark.greenend.org.uk/~theom/riscos/docs/CodeStds/APCS.txt

[29] Procedure Call Standard for the ARM Architecture, Development System Division,
Compiler Tools Group, January 2007. [Online]. Available:
http://www.arm.com/pdfs/aapcs.pdf

[30] GCC 2.95.3 Manual. [Online]. Available:
http://gcc.gnu.org/onlinedocs/gcc-2.95.3/gcc.html

[31] Embedded StrongARM Energy Simulator (EMSIM-2.0): Year 2003. Available:
http://www.princeton.edu/~cad/emsim/

[32] T. K. Tan, A. Raghunathan, and N. K. Jha,“EMSIM: An Energy Simulation Framework
for an Embedded Operating.System;” in.Proc. International Symposium on Circuits and
Systems, May 2002, pp. 464-467.

[33] Intel StrongARM SA-1100 Microprocessor Developer’s Manual, Intel Corporation,
August 1999. [Online]. Available: http://www.lartmaker.nl/278088.pdf

[34] The Stanford SUIF Compiler Group. Available: http://suif.stanford.edu

[35] G. Aigner, A. Diwan, D. L. Heine, M. S. Lam, D. L. Moore, B. R. Murphy, and C.
Sapuntzakis, “An Overview of the SUIF2 compiler Infrastructure,” Computer Systems
Laboratory in Stanford University and Portland Group, Inc. [Online]. Available:
http://suif.stanford.edu/suif/suif2/doc-2.2.0-4/overview.ps

[36] ExPress Group. Available: http://express.ece.ucsb.edu/index.html

[37] BRASS Research Group. Available: http://brass.cs.berkeley.edu/index.html

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.

MIT Press, 2001.

77

[39] Alexander Bogomolny's Permutations Web Page. Available:
http://www.cut-the-knot.org/do_you know/AllPerm.shtml
[40] M. D. Hill and A. J. Smith, “Evaluating Associativity in CPU Caches,” IEEE

Transactions on computers, Vol. 38, No. 12, pp. 1612-1630, December 1989.

78

	An Empirical Analysis of Source-level Energy Optimization for
	Embedded Processors
	An Empirical Analysis of Source-level Energy Optimization for Embedded Processors

