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針對嵌入式處理器之原始碼能量最佳化的實驗

性分析 

學生：黃詠文                                指導教授：黃育綸 博士 

國立交通大學電機與控制工程學系（研究所）碩士班 

摘    要 

適度地轉換程式原始碼可以有效地減少處理器執行指令的數量、降低指令或資料快

取失敗的機會，進而降低存取外部記憶體的次數與所需的能量消耗。程式原始碼的轉換

概念始於保持轉換前後原始碼的執行結果，但卻可以節省整個程式執行所需耗費的能

量。近年來嵌入式系統的市場需求趨勢，強力地引導產業提供更省能的應用與產品，除

了電力電子方面的相關研究，在軟體模組能量最佳化方面，由於其不用變動硬體電路的

優點，使得許多研究學者投注其相關研究，例如，改變資料結構、迴圈、函式、控制流

程與運算子等。然而，在嵌入式處理器日漸普及的趨勢下，我們發現軟體模組能量耗損

情形與其所在嵌入式處理器的指令集架構(Instruction Set Architecture，ISA)亦有著密不

可分的關係。換言之，程式原始碼的轉換對軟體能量消耗產生的影響會隨著指令集架構

的不同，而有所差異。此差異甚至可能改變套用早期程式原始碼轉換所預期的能量耗

損，使得轉換後的能量消耗不降反升。因此，在本論文中，我們針對各種軟體能量最佳

化轉換方法，加以重新分類，增加了與處理器指令集架構相關的類別，並以 ARM 處理

器指令集架構提出兩種新的轉換方法，包括插入冗餘變數、重新排列陣列宣告，嘗試減

少存取陣列變數時，計算陣列基底位址時所需的指令個數，藉以降低能量的消耗。此外，

為了驗證各種轉換方法所能貢獻的能量最佳化程度以及邊際效應，我們設計了一連串的

實驗，以 EMSIM 作為我們的 StrongARM 處理器的能量模擬器，對特定形式的軟體程式

碼進行不同的轉換。透過這些實驗，可以取得各種轉換方法所能得到的能量消耗情形，

並探討各種轉換所帶來的成本效應，如程式碼大小及程式執行效率的變化等影響。 
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Abstract 
 Source-level transformations can reduce the number of assembly instructions and the 

miss rate of instruction or data cache, resulting in an optimization of energy consumption and 

retaining the same execution results for software modules. Recently, the increasing market 

demand has become major a driving force for industries to create more energy-efficient 

applications and products. In addition to power electronics, because of the advantage of 

hardware circuit remaining unchanged researchers also devote a lot to energy optimization in 

software modules, such as applying the source-level transformations to data structures, loops, 

procedures, control structures, operators and so on. We found that energy consumption of 

software modules is highly related to the instruction set architecture (ISA) of the embedded 

processors, which means that the expected energy consumption is affected by the ISA of the 

processors. The result might not be what we expected upon applying the source-level 

transformations. In this thesis, we re-classify the source-level transformations, and add a new 

ISA-specific sub-category. Based on ARM ISA, we propose two transformations for energy 

optimization, called dummy variables insertion and arrays declaration permutation, to reduce 

the instructions in calculating the base addresses of the arrays. These transformations are 

verified via a series of experiments based on the EMSIM, the energy simulator of StrongARM. 

From these experiments, the energy optimization for each transformation can be analyzed and 

the side effects, such as code size and executing performance, can also be evaluated. 
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Chapter 1  

Introduction 

 
Recently, energy consumption in design of embedded systems has become a major issue 

due to the popularity of portable and mobile products. In software aspect, several approaches 

are proposed to reduce energy consumption. Transformations in source code level among 

these approaches are weakly tied to target architecture and are application-independent, so it 

attracts many researchers’ interesting. However, there are many impact factors for 

transformations and it usually accompanies side effects by using transformations. Hence, it is 

important to understand these impact factors and evaluate the side effects to get a better 

trade-off between energy consumption savings, code size and performance. 

 

1.1 Background 

 With the arrival of mobile generation, there are more and more mobile and portable 

products of embedded systems on the market. In order to lengthen lifetime of batteries in such 

products; therefore, energy consumption savings of embedded systems becomes a very 

important issue. Researches of energy consumption savings are divided into two aspects: 

hardware and software. Because software programs control the behavior of hardware, energy 

consumption of the overall embedded systems depend heavily on software design. 

 It is a critical step to evaluate software energy consumption prior to low energy software 

design. There are a number of researches about software energy evaluation. Some researches 

evaluate energy consumption based on physical measurements [1]-[3], and some do it based 

on simulation [4]-[6]. 

Low energy software design can be achieved at three levels of abstraction: instruction 
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level, program or source code level, and algorithm level [7], [8]. There are different research 

groups devoted to investigation on different levels, respectively. It is natural to hypothesize 

that the efficiency of analysis, and the amount of energy savings obtainable, are much larger 

at higher levels [9]. 

Instruction level approaches focus on better code generation for a program by using 

energy consumption as the design metric. Such approaches include register allocation to 

minimize memory access, register relabeling to minimize the switching cost in the instruction 

register and the decoder [10], and instruction reordering to minimize the switching on the 

control path [1], etc. Although these approaches can be implemented automatically (the 

back-end of most compiler can implement many performance-oriented optimizations), the 

overall energy consumption savings is not remarkable and is strongly tied to the target 

architecture. 

In algorithm level, it can get the highest energy consumption savings by selecting 

appropriate algorithms in software. For example, Mehta et al. [10] evaluated several sorting 

algorithms, including quicksort, heapsort and bubblesort. They observe that quicksort has less 

energy consumption than heapsort by using less pointer arithmetic. But algorithm selection is 

strongly based on programmers’ experience and knowledge, it is difficult to implement 

automatically and needs very large manual effort. 

In source code level, it reduces energy consumption by restructuring program code. It 

also gets balance between efficiency and energy savings. It is weakly target 

architecture-dependent and is easy to be implemented automatically. There are many 

approaches in source code level. Tan et al. [9] proposed software architectural transformations 

based on OS-driven multi-process. By analyzing and macro-modelling the energy 

consumption of various components in an embedded OS [11], they can optimize the energy 

consumption of embedded software by performing a series of selected software architectural 

transformations. Peymandoust et al. [12] proposed a new methodology based on symbolic 
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manipulation of polynomials and energy profiling. They use floating-point to fixed-point data 

conversion and polynomial approximation to achieve a new embedded software optimization 

methodology. Simunic et al. [5] proposed data optimization to match the characteristics of the 

target architecture with the processed data. They developed a fixed-precision library for 

processor SA-1100 to replace floating-point arithmetic operations. In [15]-[21], a series of 

transformations in source code level were presented to reduce energy consumption. This 

technique is application-independent and can be implemented automatically. The basic 

principle of transformations is to transform the source code of program such that the 

transformed result is functionally identical to the original but is much more energy-efficient. 

In this thesis, we focus on transformations in source code level due to the feature of 

application-independent and being implemented automatically. 

 

1.2 Contribution 

In this thesis, we collect a series of transformations in source code level. Because the 

impact of ISA on transformations was not considered in previous work, we re-classify the 

transformations and propose new ones which are ISA-specific on the ARM. We also present 

an experimental framework and design a number of experiments to verify energy-efficiency 

of the transformations presented and proposed. The side effects after transformation are also 

evaluated and discussed. 

 

1.3 Synopsis 

The remainder of this thesis is organized as follows. Chapter 2 discusses related work. In 

Chapter 3, we redefine categories of transformations in source code level and detail the 

transformations presented. In Chapter 4, an experimental framework is presented and a 

number of experiments of the transformations are designed to verify their energy-efficiency, 
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followed by the results and analyses in Chapter 5. Finally the conclusion and future work are 

given in the last chapter. 
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Chapter 2  

Related Work 

 
As energy consumption in design of embedded systems becomes more and more 

important, several transformations in source code level [13]-[26] have been proposed to 

achieve the goal of low energy software design. A number of transformations have been 

proposed by using different evaluation metrics, such as performance and energy consumption, 

etc. Besides, researchers don’t consider the impact of instruction set architecture (ISA) on 

energy consumption. In our research, we adopt StrongARM as our target processor and do a 

number of experiments for the transformations to check if they can be used for energy 

consumption savings. The impacts of ISA and APCS on energy consumption are discussed, 

too. Besides, we also find that the optimization levels and options of compiler impact on 

energy consumption. In order to evaluate energy consumption of software programs, we adopt 

EMSIM energy simulator [31] as a part of our framework. Finally, the SUIF compiler system 

[34] which is a compiler infrastructure is discussed. In the system, passes can be developed to 

do transformations automatically. We use some passes released by other researchers’ groups in 

our experiments. 

 

2.1 Transformations in Source Code Level 

According to different requirements such as better performance, smaller code size or 

lower energy consumption, several transformations in source code level are presented and 

proposed in [13]-[26]. Russell et al. [2] concluded that minimizing software execution time 

(i.e. improved performance) results in minimized energy consumption. Although it is not 

always true, we find that improved performance usually accompanies energy consumption 
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savings. 

Optimization is the heart of advanced compiler design. A number of optimizations which 

may be valuable in improving the performance of the object code produced by a compiler 

were presented in [13], [14]. Muchnick [13] divided compiler optimizations into two mainly 

areas: intraprocedural and interprocedural optimizations. Intraprocedural optimizations 

include redundancy elimination, loop optimizations, procedure optimizations, register 

allocation, code scheduling, and control-flow and low-level optimizations, etc. Optimization 

for the memory hierarchy was also presented. Morgan [14] pointed out that the optimizing 

compiler attempts to use all of the resources of the processor and memory as effectively as 

possible in executing the application program. Hence, a number of optimizations which are 

used for transforming the program to get better performance were presented. The 

optimizations include dominator optimization, interprocedural optimization, dependence 

optimization, global optimization, instruction scheduling, register allocation, and instruction 

rescheduling, etc. Compiler optimizations in [13], [14] included many transformations which 

may reduce energy consumption in source code level. 

Brandolese et al. [15], [16] presented a methodology and a set of models supporting 

energy-driven source to source transformations. They grouped source to source 

transformations into four main categories according to the code structures they operate on: 

loops, data structures, procedures, and control structures and operators. And a number of 

transformations in different categories were presented. 

Chung et al. [17] proposed a new transformation which reduces computational effort by 

using value profiling and specializing a program for highly expected situations. The goal of 

this technique is to improve energy consumption and performance by reducing computational 

effort. 

In [18]-[21], a number of transformations which are expected to reduce energy 

consumption were presented for the purpose of system level power optimization, compiler 
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optimizations for low power systems, reducing instruction cache energy consumption, and 

iterative compilation for energy reduction, respectively. 

Besides, some transformations presented for different purpose are still useful for energy 

consumption savings, such as improving data locality with loop transformations [22], 

augmenting loop tiling with data alignment for improved cache performance [23], 

optimization of computer programs in C [24], writing efficient C for ARM [25], and 

transforming and parallelizing ANSI C programs using pattern recognition [26], etc. 

 

2.2 ISA on Energy Consumption 

 Different ISA of target machine may impact on energy consumption because the source 

code of program needs to be compiled and assembled to object code according to the 

instruction set of target machine. The number of instructions generated and which style 

instructions executed will impact on energy consumption. 

 In this thesis, we focused on the impact of ARM ISA on energy consumption after 

transformations, so ARM ISA will be discussed below. The ARM instruction set can be 

divided into six broad classes of instruction [27]: 

 Branch instructions 

 Data processing instructions 

 Status register transfer instructions 

 Load and store instructions 

 Coprocessor instructions 

 Exception-generating instructions 

 

In our research, we find that data processing, and load and store instructions will impact 

on energy consumption, so we will detail the two groups later. Based on the following 
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discussions, we propose new transformations tied to ARM ISA in the ISA-specific 

transformations section. 

 

2.2.1 Data Processing Instructions of ARM 

 ARM has 16 data processing instructions as shown in Table 2-1. 

 

Table 2-1 ARM Data processing instructions (Seal [27]) 

Mnemonic Opcode Action 

AND 0000 Rd := Rn AND shifter_operand 

EOR 0001 Rd := Rn EOR shifter_operand 

SUB 0010 Rd := Rn - shifter_operand 

RSB 0011 Rd := shifter_operand – Rn 

ADD 0100 Rd := Rn + shifter_operand 

ADC 0101 Rd := Rn + shifter_operand + Carry Flag 

SBC 0110 Rd := Rn - shifter_operand – NOT(Carry Flag) 

RSC 0111 Rd := shifter_operand –Rn – NOT(Carry Flag) 

TST 1000 Update flags after Rn AND shifter_operand 

TEQ 1001 Update flags after Rn EOR shifter_operand 

CMP 1010 Update flags after Rn - shifter_operand 

CMN 1011 Update flags after Rn + shifter_operand 

ORR 1100 Rd := Rn OR shifter_operand 

MOV 1101 Rd := shifter_operand (no first operand) 

BIC 1110 Rd := Rn AND NOT(shifter_operand) 

MVN 1111 Rd := NOT shifter_operand (no first operand) 

 

There are 11 addressing modes used to calculate the shifter_operand in an ARM data 

processing instruction. The impact of the immediate addressing mode on energy consumption 

is discussed below. As shown in Figure 2-1, this data processing operand provides a constant 

operand to a data processing instruction. It is encoded in the instruction as an 8-bit immed_8 

and 4-bit rotate_imm, so that immediate value is equal to the result of rotating immed_8 

(which will be zero extend to 32-bit firstly) right by twice the value in the rotate_imm. Hence, 
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immediate value must be the value as follows: 

 <= 255 
 a multiple of 4 between 256 and 1023; 
 a multiple of 16 between 1024 and 4095 
 a multiple of 64 between 4096 and 16383 
 … 

 

If you want to assign a value which is not equal to the above value, you will need more 

than one instruction to complete your operation. 

 

 

Figure 2-1 Data processing operands - Immediate (Seal [27]) 

 

2.2.2 Load and Store Instructions of ARM 

 Load and store register instructions of load and store instructions are discussed in this 

section. They use a base register and an offset specified by the instruction. In offset addressing, 

the memory address is formed by adding or subtracting an offset to or from the base register 

value. The offset can be either an immediate or the value of an index register. Register-based 

offsets can also be scaled with shift operations. For the word and unsigned byte instructions, 

the immediate offset is a 12-bit number. For the halfword and signed byte instructions, it is an 

8-bit number. From the above information, we can find that for the word and unsigned byte 

instructions (or for the halfword and singed byte instructions), if the absolute value of the 

offset of the memory address from the base address is greater than 4095 (or 255), it can not 

use an immediate offset and needs another instruction to store the offset to a register; as a 

result, it needs more than one instruction to load or store the value of a single register from or 

to memory. 
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2.3 APCS on Energy Consumption 

The APCS (ARM Procedure Call Standard) is a set of rules which regulate and facilitate 

calls between separately compiled or assembled program fragments [28]. It defines 

constraints on the use of registers, stack conventions, the format of a stack-based data 

structure, the passing of machine-level arguments and the return of machine-level results at 

externally visible procedure calls, and support for the ARM shared library mechanism. 

In this section, we discuss that the rules in the APCS that may impact on energy 

consumption. The ARM has fifteen visible general registers, a program counter register and 

eight floating-point registers. As shown in Table 2-2, the role of general and program counter 

registers in the APCS is described. The APCS defines that each contiguous chunk of the stack 

shall be allocated to activation records in descending address order. At all instants of 

execution, sp shall point to the lowest used address of the most recently allocated activation 

record. The value of sl, fp and sp shall be multiples of four. 

It is noted that the mapping from languages-level data types and arguments to APCS 

words is defined by each language implementation, not by the APCS. Because our research 

about transformations is focused on C language, C language calling conventions in the APCS 

are discussed. In an argument list, char, short, pointer and other integral values occupy one 

word. Char and short values are widened by the C compiler during argument marshalling. 

Argument values are marshalled in the order written in the source code of programs. The first 

four of the remaining argument words are loaded into a1-a4, and the remainder are pushed on 

to the stack in reverse order. A structure is called integer-like if its size is less than or equal to 

one word, and the offset of each of its addressable sub-fields is zero. An integer-like 

structured result is returned in a1. 

Now the APCS is obsolete, and the AAPCS (Procedure Call Standard for the ARM 

Architecture) should be noted. The AAPCS embodies the fifth major revision of the APCS 
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and third major revision of the TPCS (Thumb Procedure Call Standard). It forms part of the 

complete ABI (Application Binary Interface) specification for the ARM architecture [29]. 

 

Table 2-2 General and program counter registers [28]

Register Name APCS Role 

r0 a1 argument 1 / integer result / scratch register 

r1 a2 argument 2 / scratch register 

r2 a3 argument 3 / scratch register 

r3 a4 argument 4 / scratch register 

r4 v1 register variable 

r5 v2 register variable 

r6 v3 register variable 

r7 v4 register variable 

r8 v5 register variable 

r9 sb/v6 static base / register variable 

r10 sl/v7 stack limit / stack chunk handle / register variable 

r11 fp frame pointer 

r12 ip scratch register / new-sb in inter-link-unit calls 

r13 sp lower end of current stack frame 

r14 lr link address / scratch register 

r15 pc program counter 

 

2.4 Compiler Options that Control Optimization 

In this thesis, gcc 2.95.3 is used as our cross compiler to compile our C source code. 

Because optimization level and options of compiler impact on energy consumption 

remarkably, we need to decide what optimization level and options to be used firstly. 

Optimization levels of gcc 2.95.3 are shown in Table 2-3. 

In embedded systems, there are three optimization levels used frequently, -O0, -O2 and 

-Os. We use -O0 as our optimization level due to stable consideration in embedded systems 

and clear analysis of the impact of transformations. Besides, we also use -fomit-frame-pointer 

option to avoid keeping the frame pointer in a register for procedures that don’t need one and 
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avoid the instructions to save, set up and restore frame pointers; as a result, it makes an extra 

register available to be used. It also makes debugging impossible on ARM. 

 

Table 2-3 The optimization levels of gcc 2.95.3 [30]

Optimization Level Description 

-O0 (default) This is the default. Do not optimize. In this level, the compiler’s goal is to 

reduce the cost of compilation and to make debugging produce the expected 

results. The compiler only allocates variables declared register in registers. 

-O1 (-O) Optimize. The compiler tries to reduce code size and execution time. 

-O2 Optimize even more. GCC performs nearly all supported optimizations that do 

not involve a space-speed trade-off. It turns on all optional optimizations except 

for loop unrolling, function inlining, and strict aliasing optimizations. It also 

turns on the ‘’ option on all machine. 

-O3 Optimize yet more. It turns on all optimizations specified by ‘-O2’ and also 

turns on the ‘inline-functions’ option 

-Os Optimize for size. 

 

2.5 Evaluation of Energy Consumption 

In order to analyze the impact of transformations on energy consumption, we need to 

find a way to evaluate software energy consumption. Tan et al. [31] presented an energy 

simulation framework that can be used to analyze the energy consumption characteristics of 

an embedded system featuring the embedded Linux OS running on the StrongARM processor. 

As shown in Figure 2-2, the simulator includes the following component: 

1)  a model for the StrongARM SA-1100 core, consisting of an instruction set simulator 

(ISS), simulation models for the instruction cache and data cache and a memory 

management unit (MMU); 

2)  a simulation model for 32 MB of system memory; 

3)  a simulation model for an interrupt controller; 

4)  simulation models for two timers; 
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5)  simulation models for two UARTs conforming to the Intel 8250 series. 

 

 

Figure 2-2 Modeled embedded system in EMSIM (Tan et al. [32]) 

 

The simulation models are shown on the right half of Figure 2-3 and the sequence of 

steps involved in using the simulation framework is show on the left. The energy accounting 

mechanism of EMSIM is task-based. And a function energy stack for each task is used for 

evaluating the energy consumption of every function in the task. From energy profiling report, 

we can get information about the number of invoked times, CPU cycles consumed and energy 

consumption of every function. 

The SA-1100 microprocessor is a general-purpose, 32-bit RISC microprocessor with a 

16 Kbytes instruction cache, an 8 Kbytes write-back data cache, a minicache, a write buffer, a 

read buffer, and a memory management unit (MMU) combined in a single chip [33]. Besides, 

it is software compatible with the ARM V4 architecture processor family. In EMSIM, the 8 

Kbytes write-back data cache is replaced by 16 Kbytes one and it doesn’t simulate a 

minicache. As shown in Figure 2-4, the size of the cache line (block) is 32 bytes and the 
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caches are 32-way set-associative caches. Replacement policy is round robin within a set. 

 

 

Figure 2-3 Energy analysis framework of EMSIM (Tan et al. [32]) 
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Figure 2-4 The 32-way set-associative cache in EMSIM 
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2.6 SUIF2 Compiler System 

The SUIF (Stanford University Intermediate Format) system [34] was developed by 

Stanford Compiler Group. It is a free compiler infrastructure designed to support collaborative 

research in optimizing and parallelizing compilers, based upon a program representation, 

SUIF. It maximizes code reuse by providing useful abstractions and frameworks for 

developing new compiler passes and by providing an environment that allows compiler passes 

to inter-operate easily. Now the SUIF group has moved its effort on from SUIF1 to SUIF2. 

It also supports some useful tools, such as front ends, converters from SUIF1 to SUIF2 

and vice versa, and converters from SUIF2 back to C, etc. Hence, we can write our SUIF 

compiler to do operations between SUIF intermediate representations (IRs). 

Figure 2-5 shows the SUIF system architecture. The components of the architecture are 

described as follows. 

1)  Kernel provides all basic functionality of the SUIF system. 

2)  Modules can be one of two kinds: a set of nodes in the intermediate representation and a 

program pass. 

3)  Suifdriver provides execution control over modules. 

 

suifdriver

analyses
optimizations

suifnodes
basicnodes

suifkernel
iokernel

Executable

Passes

Kernel

IR

MODULES:

 

Figure 2-5 The SUIF system architecture (Aigner et al. [35]) 
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Passes are the mainly part of a SUIF compiler. It typically performs a single analysis or 

transformation and then writes the results out to a file. To create a compiler or a standalone 

pass, the user needs to write a “main” program that creates the SuifEnv, imports the relevant 

modules, loads a SUIF program and applies a series of transformations on the program and 

eventually writes out the information, as show in Figure 2-6. 

 Some passes which do transformations were implemented and released in [36], [37]. We 

would like to thank for their release, so we can use the passes to do some transformations for 

our experiments. 

 

initialize & 
load SUIF 

environment

save & delete 
SUIF 

environment
...

passes (easy to reoder)  

Figure 2-6 A typical SUIF compiler (Aigner et al. [35]) 
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Chapter 3  

Transformations 

 
A series of transformations operating in source code level were presented in [13]-[25]. In 

the first section, we firstly explain how we classify transformations, followed by the detail of 

the transformations in different categories in section 3.2-3.6. Finally the summary of the 

transformations is given in the last section. 

 

3.1 Classification / Category 

 According to transformations operating on data or code segments, we firstly divide 

transformations into two main categories, data and code transformations. In [16], code 

transformations were grouped into three sub-categories according to the code structures they 

operate on, including loop, procedural, and control structures and operators transformations. 

But they don’t consider the influence of ISA on energy consumption. 

 

Table 3-1 Sub-categories of code transformations 

Sub-category of code transformations Description 

Loop transformations Modify either the body or control structure of 

the loop 

Control structures and operators transformations Change either specific control structures or 

operators 

Procedural transformations Modify the interface, declaration or body of 

procedures 

ISA-specific transformations Transformations are impacted by ISA 

 

In our research, we find that some code transformations are strongly tied to ISA of target 

machine. Therefore, our code transformations will include four sub-categories: loop, control 
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structures and operators, procedural, and ISA-specific transformations. Sub-categories of code 

transformations are described in Table 3-1. 

 

3.2 Data Transformations 

 In this section, we present a series of transformations used in modifying data segment of 

source code. These transformations may result in reduced data cache misses and memory 

access, etc., and then energy consumption savings is expected. 

 

3.2.1 Scratch-pad Array Introduction 

 Allocating a smaller array is used in storing the most frequently accessed elements of the 

larger array [16]. It is expected that spatial locality is improved contributing to reduced data 

cache misses. It is noted that the increased instructions which are used in refreshing the 

elements of arrays may reduce performance and increase code size (i.e. instruction cache 

misses). As a result, it may not reduce energy consumption. 

  

3.2.2 Local copy of global variable 

 In the procedure which needs to operate on global variables, we can declare local 

variables and assign the value of global variables to them before the procedure invoked [15]. 

We then refresh global variables after leaving the procedure. In such a way, this 

transformation can increase the possibility for compiler to store variables in registers instead 

of memory (i.e. it reduces data cache misses). But it has the same side effects as above 

transformation, it may not reduce energy consumption. 

 

3.2.3 Common Sub-expression Elimination 

 An existence of an expression in a program is a common sub-expression if there is 
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another existence of the expression whose evaluation always precedes this one in execution 

order and if the operands of the expression remain unchanged between the two evaluations 

[13]. Common sub-expression elimination is a transformation which stores the same 

computation results of common sub-expressions into variables and assigns the value of 

variables to replace common sub-expressions. 

 It is noted that this transformations may not always be valuable, because it may be less 

energy consumption to recompute, rather than allocate another register (or memory) to hold 

the value. As a result, it does not always reduce energy consumption. 

 

3.2.4 Miscellany 

 In [15], [16], there are still a number of data transformations presented. Scalarization of 

array elements introduces temporary variables as a substitute of the most frequently accessed 

elements of an array. Multiple indirection elimination finds common chains of indirections 

and uses a temporary variable to store the address. At present, researches about code 

transformations are still continued proceeding.  

 

3.3 Loop Transformations 

Loop transformations operate on the statements which comprise a loop (i.e. these 

transformations modify either the body or control structure of the loop). Because a large 

percentage of the execution time of programs is spent in loops, these transformations can have 

a very remarkable impact on energy consumption. Hence, there are a number of researches 

and approaches based on loop transformations because of the importance of loop 

transformations. 

 

3.3.1 Loop Fusion 
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This transformation combines one or more loops with the same bounds into a single loop 

[21]. It reduces loop overhead; as a result, the number of the instructions executed is reduced. 

Besides, it can also be used for improving data cache locality by bringing the statements that 

access the same set of data to the same loop [20]. But it is noted that if the increased loop 

body becomes larger than instruction cache, it will increase instruction cache misses; as a 

result, energy consumption will be increased. 

 

3.3.2 Loop Fission 

Loop fission does the opposite operation to loop fusion [21]. The goal of this 

transformation is to break down larger loop body into smaller ones to reduce the size of loop 

body to fit into instruction cache, and then it reduces instruction cache misses. It is noted that 

computation energy is increased due to the new loop overheads. Therefore, we need to be 

careful to decide that loop fusion or loop fission should be applied to loops in order to reduce 

energy consumption effectively. 

 

3.3.3 Loop Reversal 

 This transformation reverses the order in which a specific loop’s iterations are performed 

[13]. In some loops of which loop body exists dependence, loop reversal may eliminate the 

dependence; as a result, it allows other transformations to be applied. Besides, a special case 

of loop reversal which is useful in ARM architecture was presented in [25]. To apply loop 

reversal transformation makes an incrementing loop to a decrementing loop which becomes a 

count-down-to-zero loop. It causes the original ADD/CMP instruction pair to be replaced by a 

single SUBS instruction; because of this, it saves compares in critical loops, leading to 

reduced code size, increased performance and reduced energy consumption. 

 

3.3.4 Loop Inversion 
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 Loop inversion transforms a while loop to a repeat loop (i.e. it moves the loop 

conditional test from before the loop body to after it) [13]. It results in only one branch 

instruction needed to be executed to leave the loop, rather than one needed to return to the 

beginning and another needed to leave after the loop conditional test at beginning. Hence, it is 

expected that energy consumption is reduced due to the reduced number of the instructions 

executed. It is noted that this transformation is only safe when the loop body is executed at 

least once. 

 

3.3.5 Loop Interchange 

This transformation reverses the order of two adjacent loops in a loop nest to change the 

access paths to arrays [14]. It improves the chances that consecutive references are in the 

same cache line, leading to reduced data cache misses. Hence, reduced energy consumption 

can be expected. 

 

3.3.6 Loop Unrolling 

Loop unrolling replaces the body of a loop by U (the unrolling factor) times copies of the 

body and modifies the iteration step from 1 to U [13]. The original loop is called the rolled 

loop. Loop unrolling reduces the overhead of a loop by performing less compare and branch 

instructions (i.e. better performance) and may improve the effectiveness of other 

transformations, such as common-sub-expression elimination and software pipelining, etc. It 

also allows the compiler to get a better register usage of the larger loop body. 

On the other hand, the unrolled loop is larger than the rolled loop, so it increases code 

size and may impact the effectiveness of the instruction cache, leading to increased instruction 

cache misses. So deciding which loops to unroll and by what unrolling factors is very 

important. 

Besides, there is another form of loop unrolling that applies to the loop which is not a 
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counting loop [14]. It can unroll the loop and leave the termination conditions in place. This 

technique has benefits when dealing with a while loop in which later transformations can be 

used. 

 

3.3.7 Loop Unswitching 

 This transformation moves loop-invariant conditional branches to the outside of loops 

[13]. It reduces the number of the instructions executed due to the reduced number of codes 

executed in the loop body. If the conditional only has if part, loop unswitching has little 

impact on code size. But if the conditional has else parts, it will need to copy the loop into 

every else parts of conditional. Hence, it increases code size and instruction cache misses.  

 

3.3.8 Miscellany 

In addition to the above loop transformations, other energy-efficiency strategies on loop 

transformations can be envisioned. 

Loop permutation is a general version of loop interchange [13]. It allows more than two 

loops to be reordered to reduce data cache misses; as a result, it is expected to reduce energy 

consumption. 

Loop tiling achieves the goal of reduction of capacity and conflict misses which are 

resulted from cache size limitations [21]. It improves cache performance by dividing the loop 

iteration space into smaller tiles. This also results in a logical division of arrays into tiles, so it 

may increase reuse of array elements within each tile. By the correct selection of tile sizes, 

conflict misses which occur when several data elements compete for the same cache line can 

be eliminated. But it also increases the number of instructions executed and code size because 

of the increased nesting loops. 

Software pipelining can improve the execution performance of loops [16]. It eliminates 

the dependences between adjacent statements by breaking the operations of single loop 

 22



iteration into S stages, and arranges the code in such a way that stage 1 is executed on the 

instructions originally belonging to iteration i, stage 2 on those of iteration i-1, etc. It makes 

pipeline performance better through pipeline stalls reduction. Hence, CPU cycles consumed 

are expected to reduce. But it may increase the number of instructions executed due to the 

calculation of iteration i. It also increases code size because startup code is generated before 

the loop to initialize and cleanup code is generated after the loop to finish operations. 

 

3.4 Control Structures and Operators Transformations 

 In this section, we present a series of transformations which modify control structures 

and operators of source code to reduce energy consumption. 

 

3.4.1 Conditional Sub-expression Reordering 

 It is possible to reorder sub-expressions in conditional to reduce energy consumption 

[16]. In OR conditions, we can sort the sub-expressions in which the possibility of being true 

in front of others. In AND conditions, we can sort the sub-expressions in which the possibility 

of being false in front of others. By using this transformation, it reduces the number of the 

instructions executed; as a result, it reduces energy consumption. It has no side effects. 

 

3.4.2 Special Cases Optimization 

 Brandolese et al. [16] presented special cases optimization transformation which replaces 

calls to generic library or user-defined functions with optimized ones. For example, someone 

needs to call mathematic functions of which arguments need floating-point variables, but he 

only wants to do operations for integers. Hence, he can re-write optimized ones for integers to 

reduce energy consumption. This transformation is only a suggestion, and it can not be 

implemented by an automation tool. 
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3.4.3 Special Cases Pre-evaluation 

 Some functions would return a known value when a special value for an argument is 

passed. So we could avoid real calls to the functions by defining suitable macros testing for 

the special cases [16]. Hence, it may reduce real function calls (i.e. the number of the 

instructions executed) but increases code size. Figure 3-1 shows some examples. 

 

 

Figure 3-1 Some examples of macro definition for procedures (Brandolese et al. [16]) 

 

3.5 Procedural Transformations 

Procedural transformations are used for modifying the interface, declaration or body of 

procedures. There are also a number of researches in this sub-category for the purpose of 

performance improved and energy consumption savings. 

 

3.5.1 Procedure Inlining 

 This transformation is supported by many compilers. It replaces the invoked procedure 

with the procedural body [16]; as a result, it increases the spatial locality and decreases the 

number of procedure invoked. But it increases the code size which will result in increased 

instruction cache misses. 

 

3.5.2 Procedure Integration 

 It has almost the same behavior as procedure inlining [13], but procedure inlining does 

not consider the call site. This transformation can differentiate among call sites which invoke 
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the same procedure and decide which call site is need to do procedure integration or only 

invokes the original procedure. As a result, it may get a better trade-off between code size and 

energy consumption than procedure inlining. 

 

3.5.3 Procedure Sorting 

 This transformation is the easiest instruction cache optimization approach to implement. 

It sorts the statically linked procedures according to the call graph and frequency of use [13]. 

This transformation has two advantages. Firstly, it places procedures near their callers in 

virtual memory so as to reduce paging traffic. Secondly, it places frequently used and related 

procedures so they have less possibility to collide with each other in the instruction cache. To 

implement this transformation, we only need to reorder the procedural declarations. 

 

3.5.4 Procedure Cloning 

 This transformation is based on procedural parameters which are constant at one or more 

call sites. For every call site that calls the same procedure and passes the same constant values 

of parameters, we clone a copy of the procedure and rename its procedural name [13]. The 

new version of the procedure has reduced parameters and in the body of which constant 

parameters are replaced by constant values; as a result, it allows compilers to do advanced 

optimization. 

 

3.5.5 Loop Embedding 

 Loop embedding is an interprocedural transformation which moves the loop from the 

outside of a procedure to the body of the procedure [26]; as a result, it reduces the overhead of 

the procedure call. The original procedure is needed to be reserved if it is called from more 

than one call site. 
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3.5.6 Substitution of a Variable Passed as an Address with a Local Variable  

 This transformation replaces a procedural argument passed as an address with a local 

copy of variable [15]. In optimization level of compilers, compilers tend to allocate local 

variables in registers instead of memory. Hence, it reduces the number of memory access and 

the data cache misses. But it increases the number of codes which assigns and restores values, 

it will increase the number of the instructions executed; as a result, it may not reduce energy 

consumption. 

 

3.5.7 Miscellany 

 Other transformations which operate on procedure include soft inlining which replaces 

calls and returns with jumps [16], and procedure splitting which divides each procedure into a 

primary and a secondary component [13], etc. 

 

3.6 ISA-specific Transformations 

 Some transformations are dependent to what ISA you operate on. In this section, we 

present one transformation which is not independent of ISA of target machine. We also 

propose two transformations which are specific to ARM ISA, including dummy variables 

insertion and arrays declaration permutation transformations. It is noted that the proposed 

ones are also strongly tied to the strategies of calculating base addresses of compilers. 

 

3.6.1 Arrays Declaration Sorting 

 This transformation is to modify the order of local arrays declaration, so that the most 

frequently accessed array is allocated on the top of the stack; in such a way, the memory 

locations frequently accessed by exploiting direct access mode [15]. It is less energy 

expensive in this access mode. When using this transformation, you need to know the stack 
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allocation strategies of local arrays implemented by compliers. 

 

3.6.2 Dummy Variables Insertion 

 This transformation proposed is based on the feature of ARM ISA. When elements of 

arrays are accessed, it is necessary to calculate the base addresses of the arrays firstly. This 

transformation tries to reduce the number of the instructions executed for calculating the base 

addresses by inserting dummy variables which are declared as volatile ones between the 

arrays. In such a way, the offsets of the base addresses of arrays from the stack are changed, 

so that it is possible to use one instruction to get the base addresses of arrays. Because the 

order of array declarations is changed and the size of stack allocation is increased, it might 

increase data cache misses and page fault slightly. It is expected that code size and energy 

consumption will be reduced because of the reduced number of the instructions executed. It is 

noted that we need to take care of checking if stack overflow will happen after dummy 

variables insertion. 

 In this thesis, we follow the pseudocode writing rules in [38] to write our algorithms. We 

design an algorithm for dummy variables insertion transformation, and we also take some 

assumptions as follows. 

1)  Offset is equal to or less than 226 (for the procedure DUMMY-VARIABLE-SIZE(offset) to 

operate correctly). 

2)  We suppose that compilers only use ‘add’ instruction to calculate the base addresses of 

arrays, and the immediate value of the instruction must not be negative value. 

3)  In order to simplify our algorithm, we also suppose that initial offset passed to the 

procedure DUMMY-VARIABLES-INSERT(L, init_offset) is equal to or less than 1024 

(because the initial offset is a multiple of 4, we don’t need to insert dummy variable in the 

above situation). It is large enough in general cases. 
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 List L passed to the procedure DUMMY-VARIABLES-INSERT(L, init_offset) is used in 

storing attributes of local array variables by the reverse order of declaration (i.e. the first 

element of list L stores the attributes of the rightmost array variable, and the last element of 

list L stores those of the leftmost one). As shown in Figure 3-2, each element of a linked list L 

is an object with a string field: var_name, two integer fields: sizeof_type and no_elements, and 

a pointer field: next. Given an element x in the list, var_name stores the name of the array 

variable, sizeof_type stores the size of the element of that, no_elements stores the number of 

the elements stored in this array, and next[x] points to its successor in the linked list. Besides, 

an attribute head[L] points to the first element of the list and an attribute length[L] stores the 

number of elements of the list. 

Because compilers will allocate memory space on the top of stack, when the procedure 

invokes other procedures of which the numbers of the arguments are greater than 4, the initial 

offset from the top of stack may not be zero. We pass the integer init_offset to the procedure 

DUMMY-VARIABLES-INSERT(L, init_offet) to point out this offset. 

And the procedure DUMMY-VARIABLE-SIZE(offset) is used in calculating the size of 

dummy array variable which needs to insert between arrays. 

 

 

Figure 3-2 A linked list L used by the algorithm of dummy variables insertion 

 

The following is the algorithm of dummy variables insertion. 

Algorithm 3.1 Dummy Variables Insertion 
DUMMY-VARIABLES-INSERT(L, init_offset) 
1  no_dummy_vars ← 0 
2  offset ← init_offset 
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3  sizeof_type[y] ← 4 
4  x ← head[L] 
5  n ← length[L] ﹣ 1 
6  for i ← 1 to n 
7      do sizeof_array ← sizeof_type[x] × no_elements[x] 
8         remainder ← sizeof_array mod 4 
9         if remainder ≠ 0 
10          then padding ← 4 ﹣ remainder 
11          else padding ← 0 
12        offset ← offset + sizeof_array + padding 
13        dummy_size ← DUMMY-VARIABLE-SIZE(offset) 
14        if dummy_size ≠ 0 
15          then no_dummy_vars ← no_dummy_vars + 1 
16               offset ← offset + dummy_size 
17               var_name[y] ← “dummy” + to_string(no_dummy_vars) 
18               no_elements[y] ← dummy_size / 4 
19               next[y] ← next[x] 
20               next[x] ← y 
21               x ← next[y] 
22          else x ← next[x] 
 
DUMMY-VARIABLE-SIZE(offset) 
1  if offset < 256 
2    then return 0 
3  bound ← 1024 
4  mul ← 4 
5  while TRUE 
6      do if offset < bound 
7           then return mul ﹣ (offset mod mul) 
8           else bound ← bound × 4 
9                mul ← mul × 4 

 

3.6.3 Arrays Declaration Permutation 

 This transformation uses arrays declaration permutation instead of dummy variables 

insertion to try to reduce the number of the instructions executed for calculating the base 

addresses of arrays. It modifies the order of local arrays declaration to change the offsets of 
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the base addresses of arrays from the stack. 

 We design an algorithm for arrays declaration permutation transformation, and we take 

the same assumptions used in Algorithm 3.1 (but the procedural names in the assumptions 

must be replaced suitably). In addition, in order to simplify this algorithm, we use the 

procedure ENERGY-COST(offset) to get energy cost for calculating base address of an array; 

in the procedure, if we only need one instruction for calculating base addresses it will return 1 

and if we take more than one instruction for calculating base addresses it will return 2 simply. 

 We refer to the recursive algorithm of permutation algorithms in [39] to design the 

procedure PERMUTATION(V, k, A, init_offset). In Algorithm 3.2, we use G_varname to 

indicate that this variable is a global variable. 

 Comparing with Section 3.6.2, list L used in this section is similar except that the object 

of the element of a linked list L has an extra integer field: no_cal_base_address. It stores the 

number of calculating base address of an array. 

The following is the algorithm of arrays declaration permutation. 

Algorithm 3.2 Arrays Declaration Permutation 
ARRAYS-DECLARATION-PERMUTATION(L, init_offset) 
1  G_min_t_energy_cost ← ∞ 
2  G_n ← length[L] 
3  G_level ← -1 
4  x ← head[L] 
5  for i ← 1 to G_n 
6      do V[i] ← 0 
7         A[i] ← x 
8         x ← next[x] 
9  PERMUTATION(V, 1, A, init_offset) 
10 head[L] ← A[G_min_V[1]] 
11 for i ← 1 to G_n ﹣ 1 
12     do x ← A[G_min_V[i]] 
13        y ← A[G_min_V[i+1]] 
14        next[x] ← y 
15 x ← A[G_min_V[G_n]] 
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16 next[x] ← NIL 
 
PERMUTATION(V, k, A, init_offset) 
1  G_level ← G_level + 1 
2  V[k] ← G_level 
3  if G_level = G_n 
4    then t_energy_cost ← TOTAL-ENERGY-COST(V, A, init_offset) 
5         if t_energy_cost < G_min_t_energy_cost 
6           then G_min_t_energy_cost ← t_energy_cost 
7                for i ← 1 to G_n  
8                    do G_min_V[i] ←V[i] 
9    else for i ← 1 to G_n 
10           do if V[i]=0 
11                then PERMUTATION(V, i, A, init_offset) 
12 G_level ← G_level ﹣ 1 
13 V[k] ← 0 
 
TOTAL-ENERGY-COST(V, A, init_offset) 
1  offset ← init_offset 
2  t_energy_cost ← 0 
3  for i ← 1 to n 
4      do x ← A[V[i]] 
5         t_energy_cost ← t_energy_cost + no_cal_base_address[x] × 
ENERGY-COST(offset) 
6         sizeof_array ← sizeof_type[x] × no_elements[x] 
7         remainder ← sizeof_array mod 4 
8         if remainder ≠ 0 
9           then padding ← 4 ﹣ remainder 
10          else padding ← 0 
11        offset ← offset + sizeof_array + padding 
 
ENERGY-COST(offset) 
1  if offset < 256 
2    then return 1 
3  bound ← 1024 
4  mul ← 4 
5  while TRUE 
6      do if offset < bound 
7           then if (offset mod mul) ≠ 0 
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8                  then return 2 
9                  else return 1 
10          else bound ← bound × 4 
11               mul ← mul × 4 

 

3.7 Summary 

 Some transformations are strongly tied to which optimization level of the compiler used. 

For example, because the gcc compiler only allocates variables declared register in registers. 

When optimization is not enabled [30], transformations such as local copy of global variable 

and substitution of a variable passed as an address with a local variable are useless in this case. 

In addition, some transformations have better energy-efficiency when optimization is enabled. 

Besides, some transformations may have no impact on energy consumption, but they can 

reduce dependency for other transformations to be applied. Or after doing some 

transformations, it is possible to increase the energy-efficiency by using other 

transformations. 

Although a number of transformations can reduce energy consumption remarkably, it is 

not easy to find which transformations should be used, in which order to apply, and to which 

code sections [21]. This long standing open problem is called the phase-order problem. In this 

thesis, we mainly focus on applying one transformation to the source code every time and 

evaluate the impact on energy consumption on our target architecture. 
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Chapter 4  

Experiments 

 
Hill et al. [40] subdivided set-associative misses into three categories: (set-)conflict 

misses (due to too many active blocks mapping to a fraction of the sets), capacity misses (due 

to fixed cache size), and compulsory misses (those necessary misses caused by the first data 

access). In Chapter 4 and 5, we use their categories of set-associative misses to explain the 

experiments designed and the impact of different categories of cache misses on energy 

consumption respectively. 

In Chapter 3, we collect a series of transformations in source code level. The efficiency 

of the transformations is needed to be evaluated and verified on our target architecture by 

doing experiments. In this chapter, we design an experimental framework to profile the 

experimental results in the first section. In the last five sections, the experiments of different 

categories are designed and completed. 

 

4.1 Experimental Framework 

EMSIM 2.0 energy simulator of StrongARM is adopted as a part of our experimental 

framework to get the energy information of the experiments. 

In addition to energy consumption, we need other information to analyze and evaluate 

side effects when every time simulation functions run. Because the main impact factors on 

energy consumption include CPU cycles consumed, and the number of instruction and data 

cache misses, we modify EMSIM energy simulator to get such information. The addresses of 

instruction and data cache miss are outputted to verify the correctness of cache misses. In 

addition, in order to get more accurate information about cache misses, we detect if 
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simulation function will be executed. Before being executed, we flush instruction and data 

caches. The execution results of EMSIM before and after modified are shown in Figure 4-1. 

And the information about function code size is got by using arm-linux-objdump program of 

the GNU Binutils which are a collection of binary tools. 

 

 

Figure 4-1 The execution results of EMSIM 

 

Since the EMSIM simulation framework is about running the Linux OS in a StrongARM 

simulator, several Linux and StrongARM related components are needed [31], including 

Linux OS kernel and the ARM toolchain. Linux 2.4.18 and patch-2.4.18-rmk3 are used in 

building our Linux kernel. Besides, the ARM toolchain which we build are listed in Table 4-1. 

 

Table 4-1 The ARM toolchain 

binutils 2.11 

gcc 2.95.3 

glibc 2.2.3 
The ARM toolchain 

glibc-linuxthreads 2.2.3 
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Figure 4-2 The overall experimental framework 

 

Our experiments for every transformation involve three steps, comprised of generating C 

source code files in the same directory, generating output files which record execution results 

of EMSIM and arm-linux-objdump, and executing “Energy Report” program to profile energy 

consumption and side effects by parsing output files. The overall experimental framework is 

shown in Figure 4-2. In step one, we firstly design an original C source code file and use two 

ways to generate transformed ones, including using SUIF passes which do transformations, 

and transforming manually. In step two, in order to get the simulation results for every source 

code file, we write a shell script, namely “run_batch”, to repeat the process of generating 
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executable program, running simulation and writing out information to output file. In the last 

step, an “Energy Report” program is designed to parse output files, and to calculate and show 

the results in GUI, as shown in Figure 4-3. 

 

 

Figure 4-3 The execution result of the Energy Report program 

 

Transformations in source code level lead to very different results depending on a 

number of factors, including the specific structure of code, the target architecture, and the 

parameters of the transformations, etc. [16]. But what compiler you use and of which the 

options you choose also have a significant impact. Because the EMSIM energy simulator is 

adopted, the target architecture is fixed in our experimental framework. Table 4-2 shows the 

target architecture in our experimental framework. In addition, we adopt gcc 2.95.3 as our 

cross compiler and use optimization level -O0 and option -fomit-frame-pointer to compile the 
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source code files of our experiments. Hence, the experiments of the transformations are 

designed to observe the results between the specific structure of code and the different 

parameters of the transformations in this thesis. 

 

Table 4-2 The target architecture of our experimental framework 

The component of the target architecture Description 

The processor StrongARM SA-1100 (CPU clock: 206 MHz) 

The cache architecture 32-way set-associative instruction cache: 

Cache size: 16 KB 

Cache line size: 32 bytes 

Replacement policy: round robin 

32-way set-associative write-back data cache: 

Cache size: 16 KB 

Cache line size: 32 bytes 

Replacement policy: round robin 

 

4.2 Data Transformations 

 In this section, the experiment of only one data transformation which is common 

sub-expression elimination is designed to verify its energy-efficiency. 

 

4.2.1 Common Sub-expression Elimination 

 

Figure 4-4 C source code of common sub-expression elimination for Exp#1.1 
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 We use the JuanCSE pass [36] which is free released to do common sub-expression 

elimination to transform the original C source code. The C source code before and after 

transformation are shown in Figure 4-4. 

 

4.3 Loop Transformations 

 In this section, a number of experiments of loop transformations are designed to verify 

their energy-efficiency, including loop fusion, loop fission, loop reversal, loop inversion, loop 

interchange, loop unrolling and loop unswitching. 

 

4.3.1 Loop Fusion 

 

Figure 4-5 C source code of loop fusion for Exp#2.1 

 

 As shown in Figure 4-5, we design an experiment in which the simulation function has 

two loops. After adding the code size of the two loop bodies, we find that the size is smaller 

than the size of the instruction cache, so we can use loop fusion transformation to reduce the 

loop overhead but not increase the number of the instruction cache misses. Hence, it is 

expected that the energy consumption is reduced after transformation. 

 

4.3.2 Loop Fission 

 In our experimental framework, the size of the instruction cache is 16 KB. As shown in 

Figure 4-6, we design a simple experiment in which the loop body size in the simulation 
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function of the original C source code is larger than 16 KB, so there are not only compulsory 

misses but also capacity misses happened when the loop is executed. We then apply loop 

fission transformation to the loop of the original C source code to break down the loop into 

two ones of which the body size is a half of the original one. It is expected that after 

transformation, the number of the instruction cache misses are reduced remarkably resulting 

in reduced energy consumption. 

 

 

Figure 4-6 C source code of loop fission for Exp#2.2 

 

4.3.3 Loop Reversal 

In section 3.3.3, it is expected that energy consumption will be reduced because loop 

reversal causes the original ADD/CMP instruction pair to be replaced by a single SUBS 

instruction on the ARM. We design a simple experiment to verify its hypothesis, as shown in 

Figure 4-7. 

 

 

Figure 4-7 C source code of loop reversal for Exp#2.3 
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4.3.4 Loop Inversion 

 As shown in Figure 4-8, Exp#2.4 is designed to verify energy-efficiency of loop 

inversion. By transforming a for loop to a do-while loop, it is expected to reduce the number 

of the instructions executed, leading to reduced energy consumption. 

 

 

Figure 4-8 C source code of loop inversion for Exp#2.4 

 

4.3.5 Loop Interchange 

Original C source code Transformed C source code

void sim_func(void) {
    int i, j;
    char a[16][512];

    for (j=0;j<=511;j++)
        for (i=0;i<=15;i++)
            a[i][j]=41;
}

void sim_func(void) {
    int i, j;
    char a[16][512];

    for (i=0;i<=15;i++)
        for (j=0;j<=511;j++)
            a[i][j]=41;
}  

Figure 4-9 C source code of loop interchange for Exp#2.5.a 

 

 This transformation is very useful to reduce conflict misses. In our experiments, we 

focus on the case in which the array size is smaller than the size of the data cache in our target 

architecture. Figure 4-9 shows the first experiment of this transformation. When executing the 

loop of the original program of Exp#2.5.a, it will result in compulsory misses in the same set 

of the data cache because of the row size of the two dimensional array is 512 Bytes. Conflict 
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misses will not be happened, because the number of the columns in this array is equal to 16 

which is smaller than the number of the ways. Hence, it is expected that the energy 

consumption will not be changed after transformation. 

 In the second experiment, we use the same row size of the array as the first experiment, 

as shown in Figure 4-10. But the number of the columns is greater than the number of the 

ways; as a result, it will result in conflict misses when the 33rd column of the array is 

accessed in the original loop. Hence, it is useful to do loop interchange to eliminate the 

conflict misses resulting in reduced energy consumption. 

 

Original C source code Transformed C source code

void sim_func(void) {
    int i, j;
    char a[33][512];

    for (j=0;j<=511;j++)
        for (i=0;i<=32;i++)
            a[i][j]=41;
}

void sim_func(void) {
    int i, j;
    char a[33][512];

    for (i=0;i<=32;i++)
        for (j=0;j<=511;j++)
            a[i][j]=41;
}  

Figure 4-10 C source code of loop interchange for Exp#2.5.b 

 

4.3.6 Loop Unrolling 

 This transformation has a parameter, the unrolling factor. Because the unrolling factor 

has a significant impact on energy consumption, we design a C source code file generator 

program to generate 100 files of which the unrolling factor are 1 to 100 respectively. 

 As shown in Figure 4-11, the left is the original C source code of which the unrolling 

factor is 1 and the right is the transformed C source code of which the unrolling factor is U 

(2~100). It is noted that when U is not a divisor of the loop counts, it is necessary to copy the 

original loop and put the duplicated loop below the original one to complete the operations; 

otherwise, the loop copy can be eliminated. 
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Original C source code Transformed C source code

void sim_func(void) {
    int i;
    char a[500], b[500];

    for (i=0;i<500;i++) {
        a[i]=14;
        b[i]=a[i]*4+21;
    }
}

void sim_func(void) {
    int i;
    char a[500], b[500];

    for (i=0;i<501-U;i++) {
        a[i]=14;
        b[i]=a[i]*4+21;
    }
    for (;i<500;i++) {
        a[i]=14;
        b[i]=a[i]*4+21;
    }
}

 

Figure 4-11 C source code of loop unrolling for Exp#2.6 

 

4.3.7 Loop Unswitching 

 

Figure 4-12 C source code of loop unswitching for Exp#2.7.a 

 

Original C source code Transformed C source code

void sim_func(void) {
    int i, j, a[200];

    j=21;
    for (i=0;i<200;i++) {
        if (j%4==0)
            a[i]=140;
        else
            a[i]=210;
    }
}

void sim_func(void) {
    int i, j, a[200];

    j=21;
    if (j%4==0) {
        for (i=0;i<200;i++)
            a[i]=140;
    } else {
        for (i=0;i<200;i++)
            a[i]=210;
    }
}

 

Figure 4-13 C source code of loop unswitching for Exp#2.7.b 
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 It is expected that this transformation reduces energy consumption, but it may increase 

code size due to the loop copy for else parts of conditional. We design two experiments for 

this transformation to evaluate the impact on the code size. One has only if part and another 

has else part, as shown in Figure 4-12 and Figure 4-13, respectively. 

 

4.4 Control Structures and Operators Transformations 

 In this section, the conditional sub-expression reordering of the control structures and 

operators transformations is discussed. 

 

4.4.1 Conditional Sub-expression Reordering 

 This transformation is very simple to understand its operational principle. It reorders the 

conditional sub-expressions by their probability to reduce the number of the instructions 

executed. Hence, it is expected that the energy consumption will be reduced. 

 

Original C source code Transformed C source code

void sim_func(void) {
    int i, a;

    a=0;
    for (i=0;i<210;i++)
        if (i%3!=0 && i%2==0 || i<105)
            a++;
}

void sim_func(void) {
    int i, a;

    a=0
    for (i=0;i<210;i++)
        if (i<105 || i%2==0 && i%3!=0)
            a++;
}  

Figure 4-14 C source code of conditional sub-expression reordering for Exp#3.1 

 

4.5 Procedural Transformations 

 A number of experiments of the procedural transformations which include procedure 

inlining, procedural integration and loop embedding are designed to evaluate their 

energy-efficiency in this section. 
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4.5.1 Procedure Inlining 

Original C source code Transformed C source code

int x, y;

int sim_funcA(void) {
    int result;

    result=x*2+21;
    result=result+y*+41;
    result=result*result+2;
    result=result/2;

    return result;
}

void sim_func(void) {
    int i, a[100];

    x=210;
    y=140;
    a[0]=sim_funcA();

    for (i=1;i<98;i++) {
        x=x+i*41;
        y=y*14;
        a[i]=sim_funcA();
    }
    x=21;
    y=14;
    a[98]=sim_funcA();
    x=14;
    y=21;
    a[99]=sim_funcA();
}

int x, y;

void sim_func(void) {
    int i, a[100];
    int suif_tmp0, suif_tmp1, suif_tmp2;

    x=210;
    y=140;
    {
        int result;

……
        suif_tmp0=result;
    }
    a[0]=suif_tmp0;

    for (i=1;i<98;i++) {
        {
            int suif_tmp00;

            x=x+i*41;
            y=y*14;

            {
                int result;

……
                suif_tmp00=result;
            }
            a[i]=suif_tmp00;
        }
    }
    x=21;
    y=14;
    {
        int result;

……
        suif_tmp1=result;
    }
    a[98]=suif_tmp1;

    x=14;
    y=21;
    {
        int result;

……
        suif_tmp2=result;
    }
    a[99]=suif_tmp2;
}  

Figure 4-15 C source code of procedure inlining for Exp#4.1 
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 As shown in Figure 4-15, the simulation function in the original C source code has four 

call sites at which the function ‘sim_funcA’ is invoked. We use the JuanInlining pass [36] 

which is free released to do procedure inlining to transform the original C source code.  

 

4.5.2 Procedure Integration 

 

Figure 4-16 C source code of procedure integration for Exp#4.2 

 45



 Procedure integration is a general version of procedure inlining. It can decide which call 

site to do integration. As shown in Figure 4-16, we design Exp#4.2 which uses the same 

original file as Exp#4.1. But we only select the call site which is in the loop to do integration. 

Hence, it is expected that this transformation not only reduce energy consumption effectively 

but also control the increased code size within a reasonable range. 

 

4.5.3 Loop Embedding 

 This transformation is expected to reduce energy consumption. We design a simple 

experiment to verify its energy-efficiency. 

 

 

Figure 4-17 C source code of loop embedding for Exp#4.3 

 

4.6 ISA-specific Transformations 

 In this section, a number of experiments of ISA-specific transformations are designed to 

verify their energy-efficiency on ARM ISA. 

 

4.6.1 Arrays Declaration Sorting 

We design two experiments to observe the results on ARM ISA. Figure 4-18 and Figure 
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4-19 show the original and transformed source code for the two experiments respectively. 

 

Original C source code Transformed C source code

void sim_func(void) {
    int i, a[305], b[210], c[110];

    for (i=0;i<305;i++)
        a[i]=41;

    for (i=0;i<210;i++)
        b[i]=41;

    for (i=0;i<110;i++)
        c[i]=41;
}

void sim_func(void) {
    int i, b[210], c[110], a[305];

    for (i=0;i<305;i++)
        a[i]=41;

    for (i=0;i<210;i++)
        b[i]=41;

    for (i=0;i<110;i++)
        c[i]=41;
}

 

Figure 4-18 C source code of arrays declaration sorting for Exp#5.1.a 

 

 

Figure 4-19 C source code of arrays declaration sorting for Exp#5.1.b 

 

4.6.2 Dummy Variables Insertion 

As shown in Figure 4-20, this transformation insert dummy variables to reduce the 

number of the instructions executed to calculate the bases addresses of the arrays; as a result, 

it is expected to reduce energy consumption on ARM ISA. 
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Figure 4-20 C source code of dummy variables insertion for Exp#5.2 

 

4.6.3 Arrays Declaration Permutation 

 As shown in Figure 4-21, this transformation suitably permutes the order of the arrays 

declaration to reduce the number of the instructions executed to calculate the bases addresses 

of the arrays; as a result, it is expected to reduce energy consumption on ARM ISA.  

 

 

Figure 4-21 C source code of arrays declaration permutation for Exp#5.3 
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Chapter 5  

Results and Analyses 

 
 In this chapter, we list the results of the experiments which are designed in Chapter 4. 

From the results, we try to analyze the relationship between energy consumption and side 

effects such as code size and performance. 

 

Table 5-1 The definition of notations 

Notation Definition 

x⎢ ⎥⎣ ⎦  The greatest integer less than or equal to x 

x⎡ ⎤⎢ ⎥  The least integer greater than or equal to x 

U Unrolling factor 

LO Loop overhead 

LB Loop body 

ICM Instruction cache miss 

DCM Data cache miss 

NLC The loop counts 

NDCM The number of data cache misses 

NDCM’ The number of data cache misses after transformation 

SICL The size of the instruction cache line 

SLO The loop overhead size 

SLB The loop body size 

ELO The energy consumption of the instructions executed for the loop overhead 

ELB The energy consumption of the instructions executed for the loop body 

Ecmp The energy consumption of the compare operation before transformation 

Ecmp’ The energy consumption of the compare operation after transformation 

EICM The energy consumption of memory access for every instruction cache miss 

EDCM The energy consumption of memory access for every data cache miss 

Eori The energy consumption of the affected code before transformation 

Eaft The energy consumption of the affected code after transformation 

△E The energy consumption savings after transformation (△E=Eaft-Eori) 
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In order to simplify our analyses, we take assumptions for some transformations. After 

analyses, we will show the limitations of transformations resulting from compilers and ISA if 

necessary. We also create energy equations to express the energy consumption savings for 

transformations if possible. In our energy equations, we only consider the three main factors 

on energy consumption, including the energy consumption of the instructions executed and 

the energy consumption of memory access for the instruction and data cache misses. Table 

5-1 lists the definition of notations used in the following sections. 

 

5.1 Data Transformations 

In this section, the experimental results of the data transformations are listed and 

analyzed. 

 

5.1.1 Common Sub-expression Elimination 

Table 5-2 The result of Exp#1.1 

Parameters Original Transformed % 

Code Size (bytes) 80 76 -5.00

Instruction Cache Misses 4 3 -25.00

Data Cache Misses 1 1 0.00

CPU Cycles 308 240 -22.08

Energy Consumption (nJ) 747 613 -17.92

 

Table 5-3 The definition of notations used in Section 5.1.1 

Notation Definition 

NCSE The number of common sub-expression 

ECSE The energy consumption of the instructions executed for the common sub-expression 

ELDR_CSE The energy consumption of loading the computation result of the common sub-expression 

ESTR_CSE The energy consumption of storing the computation result of the common sub-expression 
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As shown in Table 5-2, the number of the data cache misses is not affected. But it is 

noted that it may result in the increased number of the data cache misses due to the introduced 

variables used in storing the computation result of common sub-expressions. In addition, the 

code size and the number of the instruction cache misses are reduced due to the reduced 

number of the instructions for recomputing; as a result, the CPU cycles consumed and the 

energy consumption are reduced. Table 5-3 lists the definition of notations used in this section. 

The energy consumption savings can be expressed as: 

        Eq. (5.1) _ _(1 ) CSE LDR CSECSE CSE STR CSEE N N EE EΔ ≈ − × + × +

 

5.2 Loop Transformations 

In this section, the experimental results of the loop transformations are listed and 

analyzed. 

 

5.2.1 Loop Fusion 

Assumption: the size of the loop which is the fusion of several loops is equal to or less than 

the size of the instruction cache. 

 

Table 5-4 The result of Exp#2.1 

Parameters Original Transformed % 

Code Size (bytes) 176 124 -29.55

Instruction Cache Misses 7 5 -28.57

Data Cache Misses 103 103 0.00

CPU Cycles 20241 14047 -30.60

Energy Consumption (nJ) 36288 25845 -28.78

 

As shown in Table 5-4, the number of the data cache misses is not affected. The code 

size and the number of the instruction cache misses are reduced due to the reduced number of 
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the instructions of the loop overheads; as a result, the CPU cycles consumed and the energy 

consumption are reduced. Table 5-5 lists the definition of notations used in this section. The 

energy consumption of the loops before and after transformation can be expressed as follows: 
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Because NDCM’ is equal to NDCM, the energy consumption savings can be derived as: 

 (1 )
(1 ) LOl

LOLCl
ICL

N SE N N E
S

− ×⎡ ⎤
Δ ≈ − × × + ×⎢ ⎥

⎢ ⎥
ICME        Eq. (5.4) 

 

Table 5-5 The definition of notations used in Section 5.2.1 

Notation Definition 

LBi The loop body of the ith loop 

Nl The number of the loops which have the same loop counts 

SLBi The loop body size of the ith loop 

ELBi The energy consumption of the instructions executed for the loop body of the ith loop 

 

5.2.2 Loop Fission 

Assumption: the size of the loop before transformation is greater than the size of the 

instruction cache, and the size of the every loop after transformation is equal to or less than 

the size of the instruction cache. 

 

As shown in Table 5-6, the number of the data cache misses is not affected. The code 

size is increased due to the increased number of the instructions of the loop overheads. It is 

very noted that the number of the instruction cache misses are reduced remarkably due to the 
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reduced number of the capacity misses; as a result, the CPU cycles consumed and the energy 

consumption are reduced. 

 

Table 5-6 The result of Exp#2.2 

Parameters Original Transformed % 

Code Size (bytes) 21100 21168 0.32

Instruction Cache Misses 270193 663 -99.75

Data Cache Misses 206 206 0.00

CPU Cycles 8917588 4606762 -48.34

Energy Consumption (nJ) 20210333 7526457 -62.76

 

5.2.3 Loop Reversal 

As shown in Table 5-7, the code size is almost unchanged after loop reversal 

transformation. The number of the instruction and the data cache misses are not affected. 

From the assembly code files, we find that the CPU cycles consumed are reduced because 

comparing with zero only needs one instruction and comparing to another value may need 

more than one instruction; as a result, the energy consumption may be reduced or not. 

However, it is noted that this transformation may reduce the dependence of the codes in loop 

body to make other transformations applied. The energy consumption savings can be express 

as:             Eq. (5.5) ' cmpcmpE E EΔ ≈ −

 

Table 5-7 The result of Exp#2.3 

Parameters Original Transformed % 

Code Size (bytes) 116 112 -3.45

Instruction Cache Misses 5 5 0.00

Data Cache Misses 101 101 0.00

CPU Cycles 13315 12514 -6.02

Energy Consumption (nJ) 24667 23379 -5.22
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Limitation: it is affected by the compiler and the ISA used if you want to reduce energy 

consumption. 

 

5.2.4 Loop Inversion 

 As shown in Table 5-8, the code size and the number of the instruction cache misses are 

almost unchanged after loop inversion transformation. The number of the data cache misses is 

not affected. The CPU cycles consumed are reduced due to the reduced compare and branch 

instructions; as a result, the energy consumption is reduced. 

 

Table 5-8 The result of Exp#2.4 

Parameters Original Transformed % 

Code Size (bytes) 80 76 -5.00

Instruction Cache Misses 4 3 -25.00

Data Cache Misses 27 27 0.00

CPU Cycles 4711 4685 -0.55

Energy Consumption (nJ) 8599 8446 -1.77

 

5.2.5 Loop Interchange 

 As shown in Table 5-9 and Table 5-10, the code size and the number of the instruction 

cache misses are not affected after loop interchange transformation. In Exp#2.5.a, as the same 

as expected, the number of the data cache misses is not affected due to no changes in the 

conflict misses after transformations. But the CPU cycles consumed and the energy 

consumption are not the same as expected. From the assembly code, we find that comparing 

the loop bound with 15 needs only one instruction but comparing the loop bound with 511 

needs three instructions. Because comparing with 511 is in the outer loop before 

transformation but in the inner loop after transformation; as a result, it will increase the 

number of the instructions executed to do compare operations. Hence, it increases the CPU 
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cycles consumed and the energy consumption slightly. 

In Exp#2.5.b, as the same as expected, the number of the data cache misses is reduced 

due to the conflict misses eliminated; as a result, the CPU cycles consumed and the energy 

consumption are reduced remarkably. 

 We conclude that when the size of the array is equal to or less than the size of the data 

cache, loop interchange can reduce energy consumption if the conflict misses exist. On the 

other hand, if the conflict misses do not exist, it may reduce or increase energy consumption 

according to the number of the instructions executed to do compare operations reduced or 

increased. When the size of the array is greater than the size of the data cache, this 

transformation is very useful to reduce energy consumption due to the capacity and conflict 

misses eliminated. 

 

Table 5-9 The result of Exp#2.5.a 

Parameters Original Transformed % 

Code Size (bytes) 204 204 0.00

Instruction Cache Misses 7 7 0.00

Data Cache Misses 257 257 0.00

CPU Cycles 289429 291427 0.69

Energy Consumption (nJ) 480971 483739 0.58

 

Table 5-10 The result of Exp#2.5.b 

Parameters Original Transformed % 

Code Size (bytes) 204 204 0.00

Instruction Cache Misses 7 7 0.00

Data Cache Misses 16905 530 -96.86

CPU Cycles 974301 601200 -38.29

Energy Consumption (nJ) 2168591 998158 -53.97
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5.2.6 Loop Unrolling 

 

Figure 5-1 The results of the code size in Exp#2.6 

 

Figure 5-2 The results of the instruction cache misses in Exp#2.6 
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Figure 5-3 The results of the CPU cycles in Exp#2.6 

 

Figure 5-4 The results of the energy consumption in Exp#2.6 
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Assumption: The loop size after unrolling is equal to or less than the size of the instruction 

cache. 

 

 The unrolling factor of loop unrolling transformation has a significant impact on energy 

consumption. Hence, energy equations are created for us to get the relationship between 

unrolling factor and energy consumption. Because of the assumption, we can know that there 

are only compulsory misses needed to be considered in our equations. The energy 

consumption of the loop before and after transformation can be expressed as follows: 

 ( ) LO LB
ori LO LB ICM DCMLC DCM

ICL

S SNE E E E E
S

⎡ ⎤+
= × + + × + ×⎢ ⎥

⎢ ⎥
N      Eq. (5.6) 

(NL%U)!=0: 

( ) ( )[ ( % )] 'LO LB LO LBLC
aft LO LB ICM DCMLC LC DCM

ICL

US S S SN UN N NE E E EU S
⎡ ⎤+ × + +⎢ ⎥= + × + × + × + ×⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥

E

                Eq. (5.7) 

(NL%U)==0: 

 'LO LBLC
aft LO LB ICM DCMLC DCM

ICL

US SN NE E E EU S
⎡ ⎤+ ×⎢ ⎥= × + × + × + ×⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥

N E    Eq. (5.8) 

Because NDCM’ is equal to NDCM, the energy consumption savings can be derived as follows:  

(NLC%U)!=0: [ ( % ) ] LO LBLC
LOLC LC

ICL

US SNE UN N EU S
⎡ ⎤+ ×⎢ ⎥Δ ≈ + − × + ×⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥

ICME   Eq. (5.9) 

(NLC%U)==0: 
( 1)( ) LBLC

LOLC
ICL

USNE N EU S
⎡ ⎤× −⎢ ⎥Δ ≈ − × + ×⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥

ICME     Eq. (5.10) 

 

 From the above equations, we can find that if the unrolling factor is not a divisor of the 

loop counts, the (NLC%U) may result in a very critical issue when the unrolling factor is big. 

We also suppose that the minimum energy consumption will happen at the unrolling factor 

which is a divisor of the loop counts, because the eliminated loop copy and its overhead. 

 As shown in Figure 5-1 and Figure 5-2, the number of the instruction cache misses is in 

proportion to the code size. When unrolling factor is a divisor of the loop counts, the code size 
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and the number of instruction cache misses drop abruptly due to the loop copy eliminated. As 

show in Figure 5-3 and Figure 5-4, the CPU cycles consumed and the energy consumption are 

reduced due to the reduced number of the instructions executed for the loop overhead. When 

the unrolling factor is equal to 10, the minimum energy consumption is achieved. Besides, we 

also find some sharp increase at some unrolling factor. This is due to the impact of (NLC%U). 

For example, we find a sharp increase at UF=84. Because the reduced loop overhead is equal 

to 500 (500%83) 500 49283
⎢ ⎥ + − = −⎣ ⎦  at UF=83 and is equal to 500 (500%84) 500 41584

⎢ ⎥ + − = −⎣ ⎦  at 

UF=84, the energy consumption has a big increase from UF=83 to UF=84. 

 

5.2.7 Loop Unswitching 

Table 5-11 The result of Exp#2.7.a 

Parameters Original Transformed % 

Code Size (bytes) 100 100 0.00

Instruction Cache Misses 4 3 -25.00

Data Cache Misses 1 1 0.00

CPU Cycles 4096 78 -98.10

Energy Consumption (nJ) 7006 214 -96.95

 

Table 5-12 The result of Exp#2.7.b 

Parameters Original Transformed % 

Code Size (bytes) 128 168 31.25

Instruction Cache Misses 5 5 0.00

Data Cache Misses 26 26 0.00

CPU Cycles 5912 4519 -23.56

Energy Consumption (nJ) 10606 8276 -21.98

 

As shown in Table 5-11 and Table 5-12, the number of the data cache misses is not 

affected after loop unswitching transformation. The number of the instruction cache misses is 

almost unchanged. As the same as expected, the impacts on the code size are inconsistent in 
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Exp#2.7.a and Exp#2.7.b. It results from the loop copy for the else part of conditional. 

Because the number of the instructions executed is reduced, the CPU cycles consumed and 

the energy consumption are reduced. 

 

5.3 Control Structures and Operators Transformations 

In this section, the experimental results of the control structures and operators 

transformations are listed and analyzed. 

 

5.3.1 Conditional Sub-expression Reordering 

Assumption: every sub-expression of the conditional consumes the same energy. 

 

As shown in Table 5-13, the code size and the number of the instruction cache misses are 

almost unchanged after conditional sub-expression reordering transformation. The number of 

the data cache misses is not affected. The CPU cycles consumed are reduced due to the 

reduced number of instructions executed for the sub-expressions computation; as a result, the 

energy consumption is reduced. 

 

Table 5-13 The result of Exp#3.1 

Parameters Original Transformed % 

Code Size (bytes) 140 136 -2.86

Instruction Cache Misses 5 5 0.00

Data Cache Misses 1 1 0.00

CPU Cycles 27050 10785 -60.13

Energy Consumption (nJ) 44075 18004 -59.15

 

5.4 Procedural Transformations 

In this section, the experimental results of the procedural transformations are listed and 
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analyzed. Table 5-14 lists the definition of notations used in this section. 

 

Table 5-14 The definition of notations used in Section 5.4 

Notation Definition 

PO Procedural overhead 

PB Procedural body 

CSi The ith call site which invokes the same procedure 

NCS The number of the call sites which invoke the same procedure 

NP_CSi The number of the procedure invoked at the ith call site 

EPO The energy consumption of the instructions executed for the procedural overhead 

EPB The energy consumption of the instructions executed for the procedural body 

 

5.4.1 Procedure Inlining 

Before transformation, the code sizes of the simulation procedure and the procedure 

which the simulation procedure invoked are 288 and 140 bytes respectively; the numbers of 

the instruction cache misses of those are 10 and 4 respectively; the numbers of the data cache 

misses of those are 15 and 2 respectively. After transformation, the procedure invoked is 

eliminated. As shown in Table 5-15, the code size and the number of the instruction cache 

misses are increased due to the procedure inlining. The number of the data cache misses is not 

affected. The CPU cycles consumed are reduced due to the reduced overhead of the procedure 

invoked. Although the number of instruction cache misses is increased resulting in the 

increased energy consumption of memory access, the call site in the loop results in more 

energy consumption savings; as a result, the energy consumption is reduced. The energy 

consumption of the affected code before and after transformation can be expressed as follows: 
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     Eq. (5.12) 

If we ignore the possible slight changes in the number of the data cache misses, NDCM’ is equal 
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to NDCM; as a result, the energy consumption savings can be derived as: 
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Table 5-15 The result of Exp#4.1 

Parameters Original Transformed % 

Code Size (bytes) 428 732 71.03

Instruction Cache Misses 14 24 71.43

Data Cache Misses 17 17 0.00

CPU Cycles 11023 10180 -7.65

Energy Consumption (nJ) 19058 17987 -5.62

 

5.4.2 Procedure Integration 

Table 5-16 The result of Exp#4.2 

Parameters Original Transformed % 

Code Size (bytes) 428 540 26.17

Instruction Cache Misses 14 18 28.57

Data Cache Misses 17 18 5.88

CPU Cycles 11023 10133 -8.07

Energy Consumption (nJ) 19058 17804 -6.58

 

The code size of the procedure which the simulation procedure invoked is 140 bytes, and 

the code sizes of the simulation function before and after transformation are 288 and 400 

bytes respectively. The numbers of the instruction cache misses of the simulation procedure 

before and after transformation are 10 and 14 respectively, and those of the procedure invoked 

before and after transformation are the same values, 4. The numbers of the data cache misses 

of the simulation procedure before and after transformation are 15 and 16 respectively, and 

those of the procedure invoked before and after transformation are the same values, 2. As 

shown in Table 5-16, the code size and the number of the instruction cache misses are 

increased due to the procedure integration. The number of the data cache misses is increased 
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slightly. The CPU cycles consumed are reduced due to the reduced overhead of the procedure 

invoked. In this experiment, we only expand the procedure at the call site which is in the loop. 

Compared with Exp#4.1, we can only not get better energy consumption savings, but also 

smaller increased code size. We suppose that the first ‘m’ call sites are needed to do procedure 

integration, and the others only invoke the original procedure. Hence, the energy consumption 

of the affected code before transformation is the same as Eq. (5.11), and that after 

transformation can be expressed as: 

1 1
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CS CSN N
PO PB

aft PO PB ICM DCMDCMP CSi P CSi
i m i ICL

S m S
N N NE E E E E
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Eq. (5.14) 

If we ignore the possible slight changes in the number of the data cache misses, NDCM’ is equal 

to NDCM; as a result, the energy consumption savings can be derived as: 
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E         Eq. (5.15) 

 

5.4.3 Loop Embedding 

 The code sizes of the simulation procedure before and after transformation are 112 and 

52 bytes respectively, and those of the procedure which the simulation procedure invoked 

before and after transformation are 68 and 124 bytes respectively. The numbers of the 

instruction cache misses of the simulation procedure before and after transformation are 5 and 

3 respectively, and those of the procedure invoked before and after transformation are 2 and 4 

respectively. The numbers of the data cache misses of the simulation procedure before and 

after transformation are 13 and 1 respectively, and those of the procedure invoked before and 

after transformation are 1 and 13 respectively. As shown in Table 5-17, the code size is almost 

unchanged after loop embedding transformation. The numbers of the instruction and the data 

cache misses are not affected, but in fact, the numbers of the instruction and the data cache 

misses may be affected slightly. The CPU cycles consumed are reduced due to the reduced 
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overhead of the procedure invoked; as a result, the energy consumption is reduced. If we 

ignore the possible slight changes in the numbers of the instruction and the data cache misses, 

the energy consumption savings can be derived as: 

(1 ) POLCE N EΔ ≈ − ×             Eq. (5.16) 

 

Table 5-17 The result of Exp#4.3 

Parameters Original Transformed % 

Code Size (bytes) 180 176 -2.22

Instruction Cache Misses 7 7 0.00

Data Cache Misses 14 14 0.00

CPU Cycles 6857 4874 -28.92

Energy Consumption (nJ) 11893 8639 -27.36

 

5.5 ISA-specific Transformations 

In this section, the experimental results of the ISA-specific transformations are listed and 

analyzed. Table 5-18 lists the definition of notations used in Section 5.5. Besides, we create 

general energy equations for Section 5.5.1-5.5.3 to use as follows: 

1

1
0

0
( )

a

a

N

BAiN
i

ori ICM DCMDCMBAi BAi
i ICL

S
N E NE E

S

−

−
=

=

⎡ ⎤
∑⎢ ⎥

= × + × + ×∑ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥

E      Eq. (5.17) 

1

1
0

0

'
( ') '

a

a

N

BAiN
i

aft ICM DCMDCMBAi BAi
i ICL

S
N E NE E

S

−

−
=

=

⎡ ⎤
∑⎢ ⎥

= × + × + ×∑ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥

E      Eq. (5.18) 

1

1
0

0

( ' )
[ ( ' )] ( ' )

a

a

N

BAi BAiN
i

ICM DCMDCM DCMBAi BAi BAi
i ICL

S S
E N E E N NE E

S

−

−
=

=

⎡ ⎤−∑⎢ ⎥
Δ ≈ × − + × + − ×∑ ⎢ ⎥

⎢ ⎥
⎢ ⎥⎢ ⎥

 Eq. (5.19) 
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Table 5-18 The definition of notations used in Section 5.5 

Notation Definition 

ai The ith array in the simulation function 

Na The number of local arrays in the simulation function 

BAi The base address of ai

NBAi The number of calculating the base address of ai

SBAi The total code size of calculating the base address of ai before transformation 

SBAi’ The total code size of calculating the base address of ai after transformation 

EBA The minimum energy consumption of calculating the base address (only take one instruction) 

EBAi The energy consumption of calculating the base address of ai before transformation 

EBAi’ The energy consumption of calculating the base address of ai after transformation 

 

5.5.1 Arrays Declaration Sorting 

As shown in Table 5-19 and Table 5-20, the code size is increased after arrays 

declaration sorting transformation. The number of the instruction and the data cache misses 

are not affected. But in Exp#5.1.a and Exp#5.1.b, the impacts on the CPU cycles consumed 

and the energy consumption are inconsistent. Because NDCM’ is equal to NDCM, according to Eq. 

(5.19), the energy consumption savings can be derived as: 
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     Eq. (5.20) 

Arrays declaration sorting puts the mostly accessed array on the top of the stack; as a 

result, it changes the offsets of the arrays in the stack, so it may increase the number of the 

instructions executed to calculate the base addresses of the arrays. Figure 5-5 shows the stack 

content of Exp#5.1.a. Before transformation, it only needs one instruction to calculate the 

base address of the every array. After transformation, it needs more than one instruction to 

calculate the base addresses of the array ‘b’ and ‘c’. Hence, the CPU Cycles consumed are 

increased resulting in the increased energy consumption. 
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Table 5-19 The result of Exp#5.1.a 

Parameters Original Transformed % 

Code Size (bytes) 224 232 3.57

Instruction Cache Misses 8 8 0.00

Data Cache Misses 79 79 0.00

CPU Cycles 13929 14249 2.30

Energy Consumption (nJ) 25328 25844 2.04

 

Table 5-20 The result of Exp#5.1.b 

Parameters Original Transformed % 

Code Size (bytes) 304 308 1.32

Instruction Cache Misses 11 11 0.00

Data Cache Misses 109 109 0.00

CPU Cycles 20689 20609 -0.39

Energy Consumption (nJ) 37316 37191 -0.33

 

 As shown in Figure 5-6, the transformation results in the two arrays ‘b’ and ‘c’ instead of 

the one array ‘a’ needed to take more than one instruction to calculate the base addresses in 

Exp#5.1.b. And from the assembly code, we find that the base address of the array ‘a’ is 

calculated 440 times and the base addresses of the arrays ‘b’ and ‘c’ are calculated 360 times 

(220 times +140 times) and we also find all of the base addresses of the arrays ‘a’ in original 

code, and ‘b’ and ‘c’ in transformed code needed to take two instructions to calculate; as a 

result, 80 instructions executed are saved. Hence, the CPU cycles consumed and the energy 

consumption are reduced. 

 From the above discussion, we conclude that this transformation does not always result 

in energy consumption due to ARM ISA, so we propose two transformations based on ARM 

ISA to improve the behavior of this transformation. 

 

Limitation: it is affected by the ISA used and the strategies of the compiler to allocate stack 
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space for local variables. 

 

 
Figure 5-5 The stack content of Exp#5.1.a 

 

 
Figure 5-6 The stack content of Exp#5.1.b 

 

5.5.2 Dummy Variables Insertion 

Assumption: the modified data structures will not result in changes in the number of the 

conflict misses. 

 

As shown in Table 5-21, the code size and the number of the instruction cache misses are 

reduced after dummy variables insertion transformation. The number of the data cache misses 

is increased slightly due to the dummy variables insertion (because it may increase the 
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number of the compulsory misses). 

 

Table 5-21 The result of Exp#5.2 

Parameters Original Transformed % 

Code Size (bytes) 304 300 -1.32

Instruction Cache Misses 11 10 -9.09

Data Cache Misses 109 110 0.92

CPU Cycles 20689 20609 -2.13

Energy Consumption (nJ) 37316 37191 -1.88

 

From Figure 5-7, we find that it needs more than one instruction to calculate the base 

address of the array ‘a’ before transformation. After transformation, it only needs one 

instruction to calculate the bases address of the every array. Hence, the CPU cycles consumed 

are reduced resulting in the reduced energy consumption. Because 'BAi BAE E∀ = , according to 

Eq. (5.19), the energy consumption savings can be derived as: 
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Figure 5-7 The stack content of Exp#5.2 
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Limitation: It is proposed according to ARM ISA. Besides, it is strongly tied to the strategies 

of the compiler to calculate the base addresses of the arrays. 

 

5.5.3 Arrays Declaration Permutation 

Assumption: the modified data structures will not result in changes in the number of the 

conflict misses. 

 

As shown in Table 5-22, the code size and the number of the instruction cache misses are 

reduced after arrays declaration permutation transformation. The number of the data cache 

misses is not affected. 

 

Table 5-22 The result of Exp#5.3 

Parameters Original Transformed % 

Code Size (bytes) 304 300 -1.32

Instruction Cache Misses 11 10 -9.09

Data Cache Misses 109 109 0.00

CPU Cycles 20689 20233 -2.20

Energy Consumption (nJ) 37316 36567 -2.01

 

 
Figure 5-8 The stack content of Exp#5.3 
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Figure 5-8 shows the stack content of Exp#5.3. The goal of this transformation is the 

same as dummy variables insertion one. It tries to reduce the number of the instructions 

executed to calculate the bases address of the every array. Hence, the CPU cycles consumed 

are reduced resulting in the reduced energy consumption. When this transformation can get 

the best solution, 'BAi BAE E∀ = . And because NDCM’ is equal to NDCM, according to Eq. (5.19), the 

energy consumption savings can be derived as: 
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     Eq. (5.22) 

 

Limitation: It is proposed according to ARM ISA. Besides, it is strongly tied to the strategies 

of the compiler to calculate the base addresses of the arrays. 
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5.6 Summary 

Table 5-23 The results after transformation in our experiments 

Transformation Exp. No. Code 

Size 

Performance Energy 

Consumption

Common sub-expression elimination Exp#1.1 ↓ 5.00% ↑ 22.08% ↓ 17.92% 

Loop fusion Exp#2.1 ↓ 29.55% ↑ 30.60% ↓ 28.78% 

Loop fission Exp#2.2 ↑ 0.32% ↑ 48.34% ↓ 62.76% 

Loop reversal Exp#2.3 → ↑ 6.02% ↓ 5.22% 

Loop inversion Exp#2.4 → ↑ 0.55% ↓ 1.77% 

Exp#2.5.a → ↓ 0.69%* ↑ 0.58%* Loop interchange 

Exp#2.5.b → ↑ 38.29% ↓ 53.97% 

Loop unrolling (at best unrolling factor) Exp#2.6 ↑ 534.38% ↑ 25.48% ↓ 22.96% 

Exp#2.7.a → ↑ 98.10% ↓ 96.95% Loop unswitching 

Exp#2.7.b ↑ 31.25% ↑ 23.56% ↓ 21.98% 

Conditional sub-expression reordering Exp#3.1 → ↑ 60.13% ↓ 59.15% 

Procedure inlining Exp#4.1 ↑ 71.03% ↑ 7.65% ↓ 5.62% 

Procedure integration Exp#4.2 ↑ 26.17% ↑ 8.07% ↓ 6.58% 

Loop embedding Exp#4.3 → ↑ 28.92% ↓ 27.36% 

Exp#5.1.a ↑ 3.57% ↓ 2.30% ↑ 2.04% Arrays declaration sorting 

Exp#5.1.b ↑ 1.32% ↑ 0.39% ↓ 0.33% 

Dummy variables insertion Exp#5.2 ↓ 1.32% ↑ 2.13% ↓ 1.88% 

Arrays declaration permutation Exp#5.3 ↓ 1.32% ↑ 2.20% ↓ 2.01% 

(↓: fall, ↑: rise, →: unchanged or almost unchanged)      *: impacted by ARM ISA 

 

As a summary, Table 5-23 lists the results after transformation in our experiments. From 

the experimental results of the transformations, the expected results of the energy 

consumption and the side effects are listed in Table 5-24. It is noted that loop fusion, loop 

fission, conditional sub-expression reordering, dummy variables insertion and arrays 

declaration permutation are under the assumptions which are listed in their related sections. 

And loop reversal, arrays declarations sorting, dummy variables insertion and arrays 

declaration permutation are expected to reduce the energy consumption when the limitations 
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which are listed in their related sections are met. Besides, we also find that loop interchange 

and loop reversal are impacted by ARM ISA. 

 

Table 5-24 The expected results after transformation 

Transformation Code Size Performance Energy 

Consumption 

Common sub-expression elimination ↓ ↑ ↓ 

Loop fusion ↓ ↑ ↓ 

Loop fission ↑ ↑ ↓ 

Loop reversal → → or ↑* → or ↓* 

Loop inversion → ↑ ↓ 

Loop interchange → ↓* or ↑ ↑* or ↓ 

Loop unrolling (at best unrolling factor) ↑ ↑ ↓ 

Loop unswitching → or ↑ ↑ ↓ 

Conditional sub-expression reordering → ↑ ↓ 

Procedure inlining ↑ ↑ or ↓ ↓ or ↑ 

Procedure integration ↑ ↑ ↓ 

Loop embedding → ↑ ↓ 

Arrays declaration sorting – – – 

Dummy variables insertion ↓ ↑ ↓ 

Arrays declaration permutation ↓ ↑ ↓ 

(↓: fall, ↑: rise, →: unchanged or almost unchanged, –: uncertain)      *: impacted by ARM ISA 
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Chapter 6  

Conclusion and Future work 

 
 We present an experiment framework to evaluate and analyze the impacts of the 

transformations in source code level on energy consumption. A series of transformations have 

been verified for both their energy-efficiency and their side effects on our target architecture. 

From the experimental results, we find that loop interchange and arrays declaration sorting 

transformations are impacted by the ISA. Based on ARM ISA, two transformations which 

include dummy variables insertion and arrays declaration permutation are proposed. It is 

expected that the two transformations will reduce energy consumption by reducing the 

number of the instructions executed to calculate the base addresses of arrays. Their 

experimental results are also the same as expected. 

Thus far, a series of transformations are collected and verified their energy-efficiency. In 

the future, we can write our SUIF passes to implement the transformations. Besides, it is a 

critical topic to solve the phase-order problem for us to implement an automatic tool. The 

automatic tool is very useful to do transformations on source code files automatically and to 

generate better energy-efficient ones under some constraint, such as code size and 

performance. 

 73



References 
 

[1] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded Software: A First Step 

towards Software Power Minimization,” IEEE Transactions on VLSI Systems, Vol. 2, 

No.4, pp. 437-445, December 1994. 

[2] J. T. Russell and M. F. Jacome, “Software Power Estimation and Optimization for High 

Performance, 32-bit Embedded Processors,” in Proc. International Conference on 

Computer Design: VLIS in Computers and Processors, October 1998, pp. 328-333. 

[3] S. Nikolaidis, T. Laopoulos, and A. Chatzigeorgiou, “Developing an Environment for 

Embedded Software Energy Estimation,” in Proc. Second IEEE International Workshop 

on Intelligent Data Acquisition and Advanced Computing Systems: Technology and 

Applications, September 2003, pp. 20-24. 

[4] Y. Li and J. Henkel, “A Framework for Estimating and Minimizing Energy Dissipation 

of Embedded HW/SW Systems,” in Proc. 35th Design Automation Conference, June 

1998, pp. 188-193. 

[5] T. Simunic, L. Benini, and G. De Micheli, “Energy-Efficient Design of Battery-Powered 

Embedded Systems,” IEEE Transactions on Very Large Scale Integration Systems, Vol. 9, 

No. 1, pp. 15-28, February 2001. 

[6] T. K. Tan, A. Raghunathan, and N. K. Jha, “A Simulation Framework for 

Energy-Consumption Analysis of OS-Driven Embedded Applications,” IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 22, No. 

9, pp. 1284-1294, September 2003. 

[7] E. Y. Chung, L. Benini, and G. De Micheli, “Source Code Transformation based on 

Software Cost Analysis,” in Proc. 14th International Symposium on System Synthesis, 

September-October 2001, pp. 153-158. 

 74



[8] Y. Fei, S. Ravi, A. Raghunathan, and N. K. Jha, ”Energy-Optimizing Source Code 

Transformations for OS-driven Embedded Software,” in Proc. 17th International 

Conference on VLSI Design, January 2004, pp. 261-266. 

[9] T. K. Tan, A. Raghunathan, and N. K. Jha, “Software Architectural Transformations: A 

New Approach to Low Energy Embedded Software,” in Proc. Design, Automation and 

Test in Europe Conference and Exhibition, March 2003, pp. 1046-1051. 

[10] H. Mehta, R. M. Owens, M. J. Irwin, R. Chen, and D. Ghosh, “Techniques for Low 

Energy Software,” in Proc. International Symposium on Low Power Electronics and 

Design, 1997, pp. 72-75. 

[11] T. K. Tan, A. Raghunathan, and N. K. Jha, “Embedded Operating System Energy 

Analysis and Macro-modeling,” in Proc. 2002 IEEE International Conference on 

Computer Design: VLSI in computers and Processors, September 2002, pp. 515-522. 

[12] A. Peymandoust, T. Simunic, and G. De Micheli, "Low Power Embedded Software 

Optimization using Symbolic Algebra," in Proc. Design, Automation and Test in Europe 

Conference and Exhibition, March 2002, pp. 1052-1058. 

[13] S. Muchnick, Advanced Compiler Design and Implementation. Morgan Kaufmann 

Publishers Inc, August 1997. 

[14] R. Morgan, Building an Optimizing Compiler. Digital Press, 1998. 

[15] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “The Impact of Source Code 

Transformations on Software Power and Energy Consumption,” Journal of Circuits, 

Systems and Computers, Vol. 11, No. 5, pp. 477-502, May 2002. 

[16] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “Analysis and Modeling of 

Energy Reducing Source Code Transformations,” in Proc. Design, Automation and Test 

in Europe Conference and Exhibition Designers’ Forum, February 2004, pp. 306-311. 

[17] E. Y. Chung, G. De Micheli, M. Carilli, L. Benini, and G. Luculli, “Value-base Source 

Code Specialization for Energy Reduction,” ST Journal of System Research, Vol. 3, No. 

 75



1, pp. 29-48, April 2002. 

[18] L. Benini and G. De Micheli, “System-Level Power Optimization: Techniques and 

Tools,” ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, pp. 

115-192, April 2000. 

[19] M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Compiler Optimizations for Low 

Power Systems,” in Power Aware Computing, pp. 191-210. Kluwer Academic Publishers, 

Jun 2002. 

[20] W. Zhang, J. S. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J. 

Irwin, ”Reducing Instruction Cache Energy Consumption Using a Compiler-Based 

Strategy,” ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, pp. 

3-33, March 2004. 

[21] S. V. Gheorghita, H. Corporaal, and T. Basten, “Iterative Compilation for Energy 

Reduction,” Journal of Embedded Computing, Vol. 1, No. 4, pp. 509-520, December 

2005. 

[22] K. S. Mckinley, S. Carr, and C. W. Tseng, “Improving Data Locality with Loop 

Transformations,” ACM Transactions on Programming Languages and Systems, Vol. 18, 

No. 4, pp. 424-453, July 1996. 

[23] P. R. Panda, H. Nakamura, N. D. Dutt, and A. Nicolau, ”Augmenting Loop Tiling with 

Data Alignment for Improved Cache Performance,” IEEE Transaction on Computers, 

Vol. 48, No. 2, pp. 142-149, February 1999. 

[24] M. E. Lee, “Optimization of Computer Programs in C,” April 1999. [Online]. Available: 

http://leto.net/docs/C-optimization.php 

[25] Application Note 34: Writing Efficient C for ARM, Advanced RISC Machine Ltd, 

January 1998. [Online]. Available: http://www.arm.com/pdfs/DAI0034A_efficient_c.pdf 

[26] M. Boekhold, I. Karkowski, and H. Corporaal, “Transforming and Parallelizing ANSI C 

Programs using Pattern Recognition,” in Proc. 7th International Conference on High 

 76



Performance Computing and Networking, April 1999, pp. 673-682. 

[27] D. Seal, ARM Architecture Reference Manual. Addison-Wesley, December 2000. 

[Online]. Available: http://www.arm.com/community/university/eulaarmarm.html 

[28] ARM Procedure Call Standard. [Online]. Available: 

http://www.chiark.greenend.org.uk/~theom/riscos/docs/CodeStds/APCS.txt 

[29] Procedure Call Standard for the ARM Architecture, Development System Division, 

Compiler Tools Group, January 2007. [Online]. Available: 

http://www.arm.com/pdfs/aapcs.pdf 

[30] GCC 2.95.3 Manual. [Online]. Available: 

http://gcc.gnu.org/onlinedocs/gcc-2.95.3/gcc.html 

[31] Embedded StrongARM Energy Simulator (EMSIM-2.0): Year 2003. Available: 

http://www.princeton.edu/~cad/emsim/ 

[32] T. K. Tan, A. Raghunathan, and N. K. Jha, “EMSIM: An Energy Simulation Framework 

for an Embedded Operating System,” in Proc. International Symposium on Circuits and 

Systems, May 2002, pp. 464-467. 

[33] Intel StrongARM SA-1100 Microprocessor Developer’s Manual, Intel Corporation, 

August 1999. [Online]. Available: http://www.lartmaker.nl/278088.pdf 

[34] The Stanford SUIF Compiler Group. Available: http://suif.stanford.edu 

[35] G. Aigner, A. Diwan, D. L. Heine, M. S. Lam, D. L. Moore, B. R. Murphy, and C. 

Sapuntzakis, “An Overview of the SUIF2 compiler Infrastructure,” Computer Systems 

Laboratory in Stanford University and Portland Group, Inc. [Online]. Available: 

http://suif.stanford.edu/suif/suif2/doc-2.2.0-4/overview.ps 

[36] ExPress Group. Available: http://express.ece.ucsb.edu/index.html 

[37] BRASS Research Group. Available: http://brass.cs.berkeley.edu/index.html 

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. 

MIT Press, 2001. 

 77



[39] Alexander Bogomolny's Permutations Web Page. Available: 

http://www.cut-the-knot.org/do_you_know/AllPerm.shtml 

[40] M. D. Hill and A. J. Smith, “Evaluating Associativity in CPU Caches,” IEEE 

Transactions on computers, Vol. 38, No. 12, pp. 1612-1630, December 1989. 

 78


	An Empirical Analysis of Source-level Energy Optimization for 
	Embedded Processors 
	An Empirical Analysis of Source-level Energy Optimization for Embedded Processors 

