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國立交通大學電機與控制工程系 碩士班 

 

摘要 

本論文提出一個具有自我學習能力之模糊控制方法，整個控制法則包

含一模糊規則調節器和一模糊控制器兩大部份，前者主要針對即時的輸出

訊號誤差以及模糊推論運算決定規則調節量；後者主要將依據前者規則調

節器產生的模糊規則來進行模糊運算求得所需之控制量。此方法的優點在

於同時結合了即時線上學習的能力和模糊邏輯的特性，對於輸入變動或負

載變動較大的受控系統有較佳的控制能力以及適應能力。最後，我們以 FPGA

實現此控制法則並運用在直流對直流電源轉換器上，經由實驗結果證明所

提出之方法優於傳統 PI 控制器以及模糊控制器。 

 

關鍵字：自我學習模糊控制，模糊控制，FPGA 實現，直流對直流電源轉換

器 
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ABSTRACT 

In this thesis, a control strategy with the ability of self-learning, automatically-tuned 

fuzzy control is proposed. The proposed control strategy is composed of two parts—rule 

modifier and fuzzy controller. The rule modifier is designed to compute the modification of 

rules according to output error and fuzzy inference operation; the fuzzy controller is 

designed to decide the control effort of the modified fuzzy rules. The advantage of the 

proposed method is that it combines on-line real-time information and fuzzy control, so it 

achieves satisfactory control performance and has adaptability to large input variation and 

load variation of controlled plant. Finally, the control algorithm is implemented via FPGA.  

The experimental results show that the proposed control strategy can achieve better 

performance than PI control and fuzzy control do. 

 

Key words: Self-learning fuzzy control, fuzzy control, FPGA implementation, DC-DC 

converters 
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Chapter 1   

Introduction 

 

1.1 General remark and overview of reviews 

The DC-DC converters are power electronic systems that convert one level of electrical 

voltage into another level by switching action [1-3]. The DC-DC converters have been used 

widely in our common lives and in industrial manufactory, such as, desktop PCs, notebooks, 

office automations, industrial computers, networking devices etc. The control technique for the 

DC-DC converter must cope with their wide input voltage and load variations to ensure stability 

in any operating condition while providing fast transient response. For many years, the control 

approaches are limited to PI controller structures based on the traditional frequency domain 

methods [4-6]. Recently, a series of papers have considered the control of the DC-DC converters 

based on robust control theory [7, 8], sliding-mode control approach [9-11] and fuzzy control(FC) 

technique [12-17]. In the feedback linearization control design, its performance generally 

depends on the working point. In the sliding-mode control design, the system model is required 

for the controller design. In the fuzzy control design, too many fuzzy rules need to be constructed 

by trial-and-error tuning procedure. 

Fuzzy control using linguistic information possesses several advantages such as robustness, 

model-free, universal approximation theorem and rule-based algorithm. However, most of the 

design of fuzzy rules has relied on the knowledge of the expert and via the trial-and-error design 

process. Recently, the developed design using adaptive techniques [18-20] and genetic algorithms 

[21, 22] have provided another approach for FC design. In [18-20], a FC design method based on 

the Lyapunov synthesis approach has been studied. The key element is the merger of adaptive 
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systems with fuzzy approximation theory, where the fuzzy system can approximate the unknown 

control system dynamics or controllers. With these approaches, the fuzzy rules can be 

automatically adjusted to achieve satisfactory system response by some dynamic adaptation laws. 

However, these design methods always need a complex analysis and heavy computation load. In 

[21, 22], a FC design method that used the genetic algorithm to find the membership functions 

and the rule sets was proposed. The genetic algorithm design method can be used to learn 

different types of fuzzy rules, including fuzzy rules with singleton consequent, fuzzy rules with 

fuzzy set consequent, and linear-equations fuzzy rules. However, this design method lacks the 

on-line adaptation ability to meet the variations of the controlled plant or changing environments. 

From these present studies about control algorithms for DC-DC converters, fuzzy control has 

shown that the method is proper because of its fast and precise computing. Fuzzy control is based 

on expert knowledge and human language to form control algorithms and does not need any 

complicated mathematical models. The self-learning approach is presented in this paper in order 

to obtain more adaptability of different power converter plant models.  

 The ways to implement a fuzzy system using microcontroller technique for DC-DC 

converters have been used for a long time [10, 25, 26]. But the microcontroller lacks flexibility of 

hardware implementation. In the recent studies, implementation of control algorithms on field 

programmable gate array (FPGA) becomes more and more popular [28-30]. And it shows the 

feasibility and flexibility of the control algorithms. We use FPGA to implement our controller 

because it is (1) easily implemented and verified, (2) high sampling rate and switching frequency, 

(3) without using a PWM IC (the PWM signal is easily generated by FPGA), (4) able to control 

the DC-DC converter in different FPGA boards with the same VHDL code.  
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1.2 Contribution of the thesis 

The motivation of this thesis is to design a self-learning fuzzy control (SLFC) system for 

the DC-DC converters on an FPGA development board. The proposed SLFC system using a 

back-propagation method is expressed. The proposed SLFC system contains two sets of fuzzy 

inference logic; one is the fuzzy controller and the other is the rule modifier. The rule modifier is 

a fuzzy learning algorithm that will modify the control rules. The modification value of each rule 

is based on the fuzzy firing weight, so that the fuzzy learning algorithm can proceed reasonably 

and quickly. Then, the proposed SLFC system can automatically tune the fuzzy rules to achieve 

satisfactory performance. We will show the response of PI control, fuzzy control, and 

self-learning control. And the results show that the SLFC is indeed better than the others. 

The idea of this study is to design an intelligent control PWM chip based on the FPGA. 

And we make it possible to implement the fuzzy and self-learning fuzzy control on an FPGA. 

The input of the FPGA is an 8-bit A/D Vout data and the output of the FPGA is a one-bit PWM 

signal. The block diagram of the developed FPGA-based experimental setup is shown in Fig. 1.1. 

 

Fig. 1.1 Block diagram of the control system 
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1.3 Scope of the Thesis 

In this thesis, we will show the mathematical models of two common DC-DC converters: 

forward and flyback type converters in Chapter 2. Forward converters drop the input voltage and 

flyback ones pull up and drop input voltage. In Chapter 3, we will introduce the fuzzy control 

algorithm and the self-learning fuzzy control algorithm. Then we will show the hardware 

implementation via FPGA of the fuzzy control and self-learning fuzzy control in Chapter 4.  The 

experimental results, including the PI controller, the fuzzy controller and the self-learning fuzzy 

controller, are compared in Chapter 5. Finally, conclusion and future work are given in Chapter 6. 
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Chapter 2   

Modeling and Control of DC-DC Converters 

 

2.1 Introduction of DC-DC converters 

DC-DC converters have two categories: (1) basic-type converters (2) derivative-type 

converters. Basic-type converters have no electrical isolation between input and output, and there 

is only one active power transistor in the DC-DC converter circuit. Generally, the bipolar junction 

transistor (BJT), metal-oxide semiconductor field-effect transistor (MOSFET) and insulated gate 

bipolar transistor (IGBT) are the most common power transistors. Basic-type converters include 

the buck-type (step down) converter and the boost-type (step up) converter. Derivative-type 

converters have electrical isolation between input and output, and there are one or more active 

power transistors in the DC-DC converter circuit. Derivative-type converters include flyback, 

forward, push-up, half -bridge and full-bridge converters.     

Switching power converters could control the average output voltage by setting the on-time 

ton and off-time toff of the power transistor within the specific input voltage range. In other words, 

the average value of output voltage is decided by ton and toff with certain switching period ( Ts= ton 

+ toff ). We could control its average output voltage by adjusting on-time ton of the power transistor. 

The control strategy is called the Pulse-Width Modulation, PWM. And we call the ratio of ton and 

Ts the duty cycle. Duty cycle (D) = ton/Ts. Fig. 2.1 depicts the duty cycle.  
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Fig. 2.1 Duty cycle of PWM 

The forward DC-DC converter and flyback DC-DC converter are introduced in the next two 

paragraphs. The output voltage of the forward DC-DC converter is smaller than input voltage, 

and the output voltage of flyback DC-DC converter can be either higher or lower than input 

voltage. These are the plants we will propose to examine the control algorithm in this thesis. 

 

2.2 Modeling of forward DC-DC converter 

A forward DC-DC converter, which can provide isolation between input and output and is 

commonly used at power levels up to about 5kW, is shown in simplified form, open-loop, in Fig. 

2.2. The transformer provides both isolation and the possibility of a very wide output voltage 

range.  

During the transistor on-time, diode D1 is forward biased, and energy is transferred from the 

input voltage to the output load resistance R. During the off-time, diode D1 is reversed biased and 

diode D2 is forward biased to maintain continuous current of the output voltage. An inductance L 

in the circuit is an energy-storage element during the switching action. The low-pass filter across 

the output voltage included an capacitance C and a resistor Rc in order to keep the output voltage 

close to constant between the transistor on-time and off-time. The two situations of the power 

transistor are discussed separately. 
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Fig. 2.2 Forward DC-DC converter  

(1). When the transistor Q is on, the transformer is induced a voltage Vs. Diode D1 is on and 

diode D2 is off. We can neglect the voltage drop across diode D1 if Vo is much larger than 5V. If 

the change of current of inductance L is Li∆ , the voltage across L is (neglect the voltage drop of 

RC and RL) 

 L
s o

on

i
V V L

t
∆− =  (2.1)  

And Li∆  can be rewritten as 

 s o
L on

V V
i t

L
−∆ =  (2.2) 

(2). When the transistor Q is off, D1 is off and D2 is on. And the D2 forward biased voltage is also 

neglected. The output voltage is 

 L
o

off

i
V L

t
∆=  (2.3) 

And the change of current Li∆  of L is 

 o
L off

V
i t

L
∆ =  (2.4) 

The change of current of inductance L is the same whether ON or OFF of the transistor. So  
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 s o o
on off

V V V
t t

L L
− =  (2.5) 

Substituting Vs = Vin / n, ton = D Ts , and toff = (1-D) Ts, we obtain 

 o

in

V D
V n

=  (2.6) 

where n is the ratio of the transformer induction coil, D is the duty cycle of PWM signal.  

The forward type DC-DC converter is used to drop the dc voltages. The circuit of a forward 

type DC-DC converter is shown in the previous page, where C is output capacitance, L is 

inductance, R is load resistance, RL is inductance series resistance, RC is capacitance series 

resistance, Vin is input voltage, and Vo is output voltage. From [23], we can obtain the transfer 

function in continuous conduction mode as 

 
( )2

( ) 1
( ) 1

o C

in C L

V s SR C
nD

LV s S LC S R R C R

+=
� �+ + + +� �

 (2.7) 

 From this transfer function, we can apply the frequency domain analysis to determine the 

parameters of the PI controller. 

 

2.3 Modeling of flyback DC-DC converter 

The flyback DC-DC converter is a buck-boost type converter with electrical isolation [3]. 

The flyback converter can be developed as an extension of the buck-boost converter. Fig. 2.3 

shows the basic converter topology. It replaces the inductance of buck-boost converter by a 

transformer. The buck-boost converter works by storing energy in the inductance during the ON 

phase and releasing it to the output during the OFF phase. With the transformer the energy 

storage is in the magnetization of the transformer core. 
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Fig. 2.3 Flyback DC-DC converter 

The magnetic element is not really a transformer; it is used to transfer energy as a coupling 

inductance. The most important point of the circuit is to store and release the magnetic energy. 

The advantage of this type DC-DC converter is that it is low cost, simple structure, and easy to 

obtain multiple output voltage. Therefore, it is often used to aid the design of power supply. We 

omitted the circuit derivation of the flyback converter [3], the relation between input and output 

of an ideal forward DC-DC converter is 

 1
1

o

in

V D
V n D

= ⋅
−

 (2.8) 

Also from reference [23], the transfer function of the flyback DC-DC converter between input 

and output voltage in continuous conduction mode is 

 
2 2 2

2
2 2 2

(1 )
( ) (1 )
( )

1
(1 ) (1 ) (1 )

C
o

in m
m C L

D
n SR C

V s D
V s Ln n n

S L C S R R C
D D R D

+
−=

� �� �
+ + + +� �	 
− − −� �� �

 (2.9) 

where Lm is the magnetizing inductance of the transformer. We can apply the final value theorem 

to examine the steady-state value as (2.8) shows. In the same way, the frequency domain analysis 

method is also applied to the flyback converter in order to obtain the suitable parameters of PI 

controller.  

n  :  1 
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2.4 Control of DC-DC converters 

The popular technique of the DC-DC converters is pulse-width modulation (PWM), where 

the switching frequency is constant and the duty cycle, ( )D k , varies with the load resistance 

variations at the k-th sampling time. The output of the designed controller, ( )D kδ , is the change 

of the duty cycle. Then, the duty cycle is determined by adding the previous duty cycle ( 1)D k −  

to the calculated change in duty cycle  

 ( ) ( 1) ( )D k D k D kδ= − + . (2.10)  

The calculated duty cycle signal is then sent to a PWM output stage that generates the appropriate 

switching pattern for the power switch(transistor) in the DC-DC converter. The control problem 

of the DC-DC converter is to control the duty cycle so that the output voltage )(kVo
 can provide 

a fixed voltage under the occurrence of the uncertainties such as the wide input voltage and load 

variations. The output error voltage is defined as 

 )()( kVVke oref −= . (2.11)  

where refV  is the output voltage command. The control law of the duty cycle is determined by 

the error voltage signal to provide fast transient response and small overshoot in the output 

voltage. The control algorithms will be introduced in Chapter 3. 
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Chapter 3 

Intelligent Control Design for DC-DC Converters 

 

3.1 Introduction of fuzzy control theory 

The general structure of fuzzy controller (FC), represented in Fig. 3.1, comprises four 

principle components: (1). A fuzzification which converts input data into suitable linguistic 

values; (2). A knowledge-base which consists of a data base with the necessary linguistic 

definitions and control rule set; (3). A decision-making logic which simulates a human decision 

process, infers the fuzzy control action from the knowledge of the control rules and the linguistic 

variable definitions; and (4). A defuzzification which yields a nonfuzzy control action from an 

inferred fuzzy control action. Descriptions are given in the following: 

 

Fig. 3.1 Basic configuration of fuzzy control system 

3.1.1 Fuzzification 

Fuzzification could be defined as a mapping from an observed input space to fuzzy sets in 

certain input universe of discourse. Fuzzification plays an important role in dealing with 
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uncertain information. In fuzzy control applications, the observed data are usually crisp. Since the 

data manipulation in a FC system is based in fuzzy set theory, fuzzification is necessary during an 

earlier stage. However, the fuzzification interface always involves the following functions: 

(1) Determine the values of input variables. 

(2) Performs a scale mapping that transfers the range of values of input variables into 

corresponding universe of discourse.  

(3) Converts input data into suitable linguistic values, which may be viewed as labels of fuzzy 

sets. 

Suppose that the part of the control rules takes inputs from the sensor readings, which are usually 

real numbers. These real-valued sensor measurements are matched to their corresponding fuzzy 

variables by finding the matching membership values. 

 

3.1.2 Knowledge base 

In general, the design of FC is based on the operators understanding of the behavior of the 

process instead of its detailed mathematical model. The main advantage of this approach is that it 

is easy to implement a significant experience and heuristics. On the other hand, based on this 

view it is difficult to automate the design process. Nevertheless, there are a few guidelines for 

selecting control rules. Rules can be derived in several ways, including the following: 

a. Based on the expert experience or knowledge base. 

The database provides necessary definitions, which are used to define linguistic control rules 

and fuzzy data manipulation in a FC system. These concepts are based on experience and 

engineering judgment. 

b. Based on observing the operator’s control action. 

It should be noted that the correct choice of the membership functions of a term set plays an 
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essential role in the success of an application. 

c. Based on learning algorithms. 

The rules base characterizes the control goals and control policy of the domain experts by 

means of a set of linguistic control rules. In other words, a fuzzy system is characterized by a 

set of linguistic statements based on expert knowledge. The expert knowledge is usually in 

the form of “if - then” rules, which are easily implemented by fuzzy conditional statements in 

fuzzy logic. The collection of fuzzy control rules that are expressed as fuzzy conditional 

statements forms the rule base of the rule set of a FC system. 

 

3.1.3 Decision making logic 

The decision-making logic is the kernel of FC, it has the capability of simulating human 

decision-making base on fuzzy concepts and of inferring fuzzy control actions employing fuzzy 

implication and the rules of inference in fuzzy logic. In general, fuzzy reasoning is based on a 

compositional rule of inference, which can be viewed as an approximate extension of the modus 

ponens. Herein two most popular fuzzy reasoning methods are discussed. 

(1) Min-product-max method 

For simplicity, assume that we have two fuzzy control rules as follow 

 Rule 1: If x1 is A1 and x2 is B1 then y is C1 (3.1) 

 Rule 2: If x1 is A2 and x2 is B2 then y is C2 

Given x1 is x1’ and x2 is x2’, where x1’ and x2’ are real numbers. Then the firing weights f1 and f2 

can be represented as 

 
1 11 1 2( ') ( ')A Bf u x u x= ∗  (3.2) 

 
2 22 1 2( ') ( ')A Bf u x u x= ∗  (3.3) 
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where * represents the product inference. 

The output of each control rule from its action part is represented by the fuzzy sets 1 '( )C y  and 

2 '( )C y  and is given by 

 1 1 1'( ) ( )C y f C y= ∧  (3.4) 

 2 2 2'( ) ( )C y f C y= ∧  (3.5) 

where ∧  is the minimum operation. Then the output membership function uc(y) is written as 

 1 2( ) '( ) '( )cu y C y C y= ∪  (3.6) 

where ∪  represents the maximum operation. Fig.3.2 shows the min-product-max reasoning 

method. 

(2) Simplified reasoning method 

As a special case of the Min-product-max method, we can give a simplified fuzzy reasoning 

method. For the following fuzzy reasoning form: 

 

1 1 1

2 2 2

n n n

Rule 1:        and 

Rule 2:        and 

    
Rule n:        and 

A B C

A B C

A B C







�
 (3.7) 

In which the consequent parts of the fuzzy rules are not fuzzy sets but real number C1, C2, … , Cn 

in y , called the fuzzy singleton . Fig.3.3 shows the consequence y0 by the simplified fuzzy 

reasoning method. The degree of the fact [x1 and x2] to the antecedent part (Ai and Bi) is given as 

 1 2( ) ( )
i ii A Bf u x u x= ∗  (3.8) 

The firing weight fi, may be regarded as the degree with which Ci is obtained.    
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Fig. 3.2 Min-product-max reasoning method 

 

Fig. 3.3 Simplified fuzzy reasoning method 

3.1.4 Defuzzification 

The defuzzification inference performs the following functions: 

(1) A scale mapping, which converts the range of output variables into corresponding universe 

discourse. 

(2) Defuzzification, which yields a nonfuzzy control action from an inferred fuzzy control action. 

The purpose of the defuzzification process is to transform the output of the inference, which 
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is a fuzzy set to a crisp value so that it could be used to control a process. There are many 

ways to defuzzify the inference results but we use the most common method, called the 

Center-of-Area (COA) method and (3.9) is the COA method. 

 
1

0

1

n

i i

n

i

f C
y

f

∗
=
�

�
 (3.9) 

where y0
 is the crisp output value, control action. 

A simplified fuzzy reasoning method, which operation schemes are shown in Fig. 3.3. The 

final consequence of simplified fuzzy reasoning method is obtained as the weighted average of 

C1, C2 by the firing weight f1, f2.(COA method) 

 1 1 2 2
0

1 2

f C f C
y

C C
∗ + ∗=

+
 (3.10) 

In the general form, the defuzzification result is 

 
1 1 2 2

0
1 2

...
...

n n

n

f C f C f C
y

f f f
∗ + ∗ + + ∗=

+ + +  (3.11) 

 

3.2 Fuzzy controller design for DC-DC converters 

The block diagram of the fuzzy control scheme of DC-DC converters is shown in Fig. 3.4. 

The fuzzy controller is divided into two parts: fuzzy controller and human knowledge. The inputs 

of the fuzzy controller are the error (e) and the change of error (ce), which are defined as (2.13) 

and ( ) ( 1)ce e k e k= − −  (3.12) 

(3.12) denotes the change of error is that the difference between the present error and the last 

sampling-time error.  
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Fig. 3.4 Fuzzy controller of DC-DC converter 

In order to reduce the computation, the fuzzy variables e and ce are described by fuzzy 

singletons, meaning that the measured values of these variables are used in the inference process 

without being fuzzified. Specifically the fuzzy rules are in the form 

  : IF ( ) is  and ( ) is , then ( ) is i i i iR e k A ce k B D k Cδ  (3.13) 

where Ai and Bi are fuzzy subsets in their universes of discourse, and Ci is a fuzzy singleton. Each 

universe of discourse is divided into five fuzzy subsets: 

(1). PB: Positive Big, 

(2). PS: Positive Small, 

(3). ZO: Zero, 

(4). NS: Negative Small, 

(5). NB: Negative Big 

 

ce 
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The partition of fuzzy subsets and the shape of the membership function are shown in Fig. 

3.5. The values of e and ce are normalized. The triangular shape of the membership function of 

this arrangement presumes that there is only one dominant fuzzy subset for any particular input. 

Also for any combination of e and ce, a maximum of four rules are adopted. The computation 

time can thus be further reduced. For example, if e is 0.1 and ce is -0.7, only (ZO, NS), (ZO, NB), 

(PS, NS), and (PS, NB) are in effect. The inferred grades of membership of the rest of the rules 

are zero.  

 

Fig. 3.5 Membership functions of c and ce 

The derivation of the fuzzy control rules is heuristic in nature and based on the following 

criteria: 

(1) When the output of the converter is far from the set point, the change of duty cycle must be 

large so as to bring the output to the set point quickly. 

(2) When the output of the converter is approaching the set point, a small change of duty cycle is 

necessary. 

(3) When the output of the converter is near the set point and is approaching it rapidly, the duty 

cycle must be kept constant so as to prevent overshoot. 

(4) When the set point is reached and the output is still changing, the duty cycle must be changed 

a little bit to prevent the output from moving away. 
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(5) When the set point is reached and the output is steady, the duty cycle remains unchanged. 

(6) When the output is above the set point, the sign of the change of duty cycle must be negative, 

and vice versa. 

According to these criteria, a rule table is derived and shown in Table 3.1, where the fuzzy rules 

are normalized between -1 and 1. 

Table 3.1 Fuzzy rules of the DC-DC converters 

   

The inference results are composed of the firing weight fi for each value, and the degree of 

duty cycle change Ci. That is given by product fuzzy implication in (3.14). 

 { ( ), ( )}i e ce i i iy mul u e u ce C f C= ∗ = ∗  (3.14) 

where mul{*} represents multiplication or product operation. 

yi is the change of duty cycle inference by the ith rule. As yi of (3.14) is the linguistic result, it is 

necessary to transfer the result into the output of the fuzzy controller through the defuzzification 

procedure. The defuzzification result can be written as (3.15) by using the COA method. 

 

4 4

1 1
4 4

1 1

( )
i i i

i i

i i
i i

y f C
D k

f f
δ = =

= =

∗
= =
� �

� �
 (3.15) 

The output of the fuzzy controller is the duty cycle and is defined as 

 ( ) ( 1) ( )D k D k D kλ δ= − + ⋅  (3.16) 
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where ( )D kδ  is the inferred change of duty cycle by the fuzzy controller at the kth sampling 

time, and λ  is the gain factor of the fuzzy controller. Adjusting λ  can change the effective 

gain of the controller. Then the inferred value D(k) of the control action is applied to control the 

converter. 

 In summary, the principle of fuzzy control algorithm is described as follows: 

1. Sample the output signal of the plant. 

2. Calculate the error and change of error. 

3. Determine the fuzzy subset and membership function for error and change of error. 

4. Determine the change of control action according to the individual fuzzy rule. 

5. Calculate the actual change of control action by defuzzification operation. 

6. Send the change of control action (PWM) to control the converter. 
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3.3 Self-learning fuzzy controller design for DC-DC converters 

 

Fig. 3.6 Self-learning fuzzy control system 

In the above section, the fuzzy rules shown in Table 3.1 should be determined by 

time-consuming trial-and-error tuning procedure, and no one knows if they are the best control 

rules to achieve favorable control performance. In this section, the self-learning fuzzy 

control(SLFC) design method will be proposed such that the fuzzy rules can be automatically 

learned and the system can achieve favorable control performance. The block diagram of 

self-learning fuzzy control for a DC-DC converter is shown in Fig. 3.6. It is composed of two 

parts:(1)fuzzy controller and (2) rule modifier. Considering the fuzzy control rules given in (3.13), 

an iterative learning algorithm is adopted to adjust the control actions. The central part of the 

iterative learning algorithm for a SLFC system is to change the control action in the direction of 

the negative first-order derivative (to rule values) of a cost function E which is defined as 

following 
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( ) ( )

2
E k e k= ⋅          (3.17) 

where e(k) is the error function. By using the concept of back-propagation neural network method, 

we minimize the energy function. When E is approaching to zero, the error is also approaching to 

zero. The system achieves the target. Then the rule is generated as 
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( )i i

i

E k
k k

k
α α η
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∂

  (3.18) 

where  is the learning rate. And substitute ( )E k = 21
( )

2
e k  and ( )e k = ref oV V− , we get  
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From (3.19), the Jacobin term 
[ ( )]

oV
D kδ

∂
∂

 can be calculated by the type of converter. As the 

controlled converter is a forward type converter. Substitute ( )D kδ =
i i

i

i
i

f

f

α⋅�

�
 and substitute 

( 1)D k + = ( ) ( )D k D kδ+ , the (3.19) can be rewritten as 
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So the self-learning fuzzy controller rule modifier of forward type converter is 

 
1
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Moreover, as the controlled converter is a flyback type converter, the (3.19) can be rewritten as 
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Therefore, SLFC rule modifier of flyback type converter is 
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The actual meaning of (3.21) and (3.23) is when error function is minimized, we have to 

minus the first-order derivative to rule values of E(k). (The error is as small as possible when the 

desire output voltage is reached.) The rule modifier �i is negative learning rate when Vo > Vref , 

and positive learning rate when Vo < Vref. We could rewrite (3.21) and (3.23) into (3.24), where 

'η  represents the term 
1

inV
n

η ⋅ ⋅  in (3.21) and the term 2

1 1
[1 ( ) ( )]inV

n D k D k
η

δ
⋅ ⋅ ⋅

− −
 in (3.23), 

when considering them as constants. The term 2

1
[1 ( ) ( )]D k D kδ− −

 is approximated as constant 

when ( )D kδ  is very small. 

 ( 1) ( ) ( ' ( ) )i
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f
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α α η+ = − − ⋅ ⋅

�
 (3.24) 

 ( 1) ( ) ( )i i ik k kα α δα+ = −  (3.25) 
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where iδα  is a modification value to be added to the i-th control rule in (3.13). Equation (3.24) 

shows that the modification value of each control rule is proportional to real-time error and firing 

weight of fuzzy inference. And the defuzzification of the controller output is given as 

 

4

1
4

1

i i
i

i
i

f
D

f

α
δ =

=

∗
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 (3.26) 

where if  is the firing weight of the i-th rule. In summary, the fuzzy rules of SLFC are given in 

(3.13) with the control actions iα  updated with (3.24). In the design of the FC system, the fuzzy 

rules should be pre-constructed to achieve the design performance by trial and error; however, 

this trial-and-error tuning procedure is time consuming. The proposed SLFC system can 

automatically tune the fuzzy rules to achieve satisfactory performance. 

 In summary, the principle of self-learning fuzzy control algorithm is described as follows: 

1. Sample the output signal of the plant. 

2. Calculate the error and change of error. 

3. Determine the fuzzy subset and membership function for error and change of error. 

4. Calculate the self-learning fuzzy rules according to real-time error and inference results. 

5. Determine the change of control action according to the new-learned fuzzy rules. 

6. Calculate the actual change of control action by defuzzification operation. 

7. Send the change of control action (PWM) to control the converter. 
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Chapter 4 

FPGA-based Implementation 

 

4.1 Introduction of DC-DC controlled system 

In the Fig. 4.1, the feedback voltage is transformed into an 8-bit digital signal by ADC0804. 

The 8-bit signal is transferred to FPGA board. And after one-sampling-period computation of 

control algorithm, a 1-bit PWM output is connected to the gate of the power MOS of the DC-DC 

converter to control the reference voltage. We implement the control algorithms on FPGA using 

VHDL(very high speed ICs hardware description language) [31, 32] Table 4.1 is the converter 

specification, including the forward and flyback type converters, and the picture of the two type 

converters are shown in Appendix I. 

 

 

Fig. 4.1 Overall FPGA control system 
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Table 4.1 Specifications of DC-DC Converters 

 

Some hardware that are required for implementation are presented as following. 

FPGA (ALTERA stratix series: EP1S10F780C6) 

The FPGA board we use is the NIOS II development board of ALTERA company. It can be 

also taken as an embedded system board. We will show the board picture and some specifications 

in Appendix II. The reason why we use FPGA to implement the control algorithm for DC-DC 

converters is that (1) FPGA can generate PWM without a PWM IC, (2) Switching DC-DC 

converters need high switching frequency, (3) The DC-DC converters require high precision so 

the control action must be very fast. (4) The digital control sampling rate can be very fast to 

handle the variation of the power converter system. Among all the reasons, we choose FPGA to 

implement our controller. 

ADC0804 

The feedback voltage signal is the analog signal, so we have to transform it into the digital 

signal for digital control system. ADC0804 is a 8-bits A/D converter IC and is the most 

commonly used. 

74LS07 

It is a digital signal buffer IC. It is necessary to prevent the reverse current of the power 

transistor from destroying the FPGA board. 



 27 

4.2 Implementation of fuzzy control on FPGA 

The fuzzy controller circuit contains four parts – “fuzzifier unit”, “inference unit”, 

“defuzzifier unit” and “control unit”. The specifications are as following: 

(1) The fuzzy chip has 2 inputs (e and ce) and 1 output (PWM). 

(2) The precision of the membership functions is 8 bits (0~255). 

(3) The precision of the membership degree is 6 bits (0~63). 

(4) Each input variable (e or ce) corresponds to 5 membership functions. 

(5) The overlapped number of every membership function is 2. 

(6) There are 25 fuzzy rules. 

(7) We use COA(center of area) method in the defuzzifier unit. 

(8) Membership functions and gravity values(fuzzy rules) are saved in ROMs. 

 

4.2.1 Design of fuzzifier unit 

The main job of fuzzifier is to transform crisp value of e and ce into corresponding 

information of membership functions. Then decide the inference value and gravity value to 

compute the two values in the defuzzifier unit. We use two ROMs to save the information about 

how to transform the crisp values into fuzzy data. Input values are taken as memory addresses.  

 

4.2.1.1 The way to save input membership functions 

Due to the symmetric triangular membership functions in the fuzzifier unit, the way we 

save addresses and data is the same. In order to control the target voltage without much 

oscillation, we have to set the membership function near zero (ZO) thinner and make the 

membership functions away from zero fatter. Fig. 4.2 and 4.3 show the membership function data 

of input variables (e and ce), which the number of membership functions is 5 and overlapped 
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number is 2. Then we classify four orders:”000” “001” “010” “100”, and every order includes 

“low” and “high” two parts, where “low” or “high” means the decrease or increase side of every 

membership function. Data “order”, “low”, and “high” are saved in the form of 3-bit memory. 

The total memory space we need in the fuzzifier unit is two 255*9-bit ROMs—ROM1 and 

ROM2. The actual memory mapping of “order” is listed in Table 4.2. Fig. 4.4 and Fig. 4.5 

represent the memory mapping of “low” and “high” respectively, but we only show the coarse 

line for simplicity. Others not mentioned in these figures can be obtained via the same way. 

 

 

Fig. 4.2 Membership functions of input variables e and ce (order) 

 

 

Fig. 4.3 Membership functions of input variables e and ce (high/low) 

 

Table 4.2: Input variable e and ce storage data (order) 

 

 

low 
high 
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Fig 4.4 Input variables e and ce storage data (low) 
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Fig. 4.5 Input variables e and ce storage data (high) 
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4.2.1.2 Working principle of fuzzifier unit 

Fig. 4.6 shows the block diagrams of fuzzifier unit— e and ce (up and down). It clearly 

shows that the block diagram is composed of multiplexer, ROM and control signals.  

 

 

Fig. 4.6 Fuzzifier unit of input variables e and ce 

The control unit gwnerates a signal to multiplexer to take e and ce as address bus, and it 

also generates a trigged signal to read data from ROM at the same time. The data read from ROM 

are “order”, “high”, and “low”, where “order” becomes “order_1” through the increment circuit. 

Signals “order” and “order_1” represent membership functions of input variables (such as NB, 

PS etc.) and “low” represents the membership degree of “order”, “high” represents the 

membership degree of “order_1”. Then transfer these data to inference unit. 
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4.2.2 Design of inference unit 

4.2.2.1 The way to save data of fuzzy output 

 

Fig. 4.7 Fuzzy rule values (gravity values) 

 

Fig. 4.7 shows the fuzzy rule values (Ci). The fuzzy rule values are also called gravity 

values (gi) in this thesis. The normalized control actions from -1 to +1 are mapping to 8-bit data 

0~255, so the fuzzy singleton values in Table 3.1 are -1, -0.3, 0, +0.3, +1 corresponding to 0, 89, 

127, 165, and 255. These values are saved in a ROM. Table 4.3 shows the memory mapping of 

fuzzy rule table in Table 3.1. Every gravity value is an 8-bit data saved in a 6-bit address. So we 

need 25x6 bits for memory storage of the fuzzy rule table. 

 

Table 4.3 ROM of fuzzy rule values 
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4.2.2.2 Working principle of inference unit 

Fig. 4.8 shows the inference unit. Inference unit receives 3-bit data — included “order”, 

“order_1”, “low” and “high” from fuzzifier unit. Because the fuzzy controller has 2 inputs and 2 

overlaps, there are 4 rules in effect during every sampling time. There are two values gi and fi 

generated in the inference unit: (1). gi: Combine signals “order1”, “order1_1”, “order2” and 

“order2_1”, such as “001”&“100” � “001100”. After a multiplexer process we obtain 4 

addresses corresponding to 4 gravity values, gi, saved in a ROM. (2). fi: Multiply signals “low” 

and “high” in turn via a multiplexer in the Product block to generate firing weights, fi. Then send 

the values “gi” and “fi” to defuzzifier unit. The multiplexer selects different data by a 2-bit 

control signal— “s”, which is shown in Table 4.4. 

 

Fig. 4.8 Fuzzy inference unit  

 

Table 4.4 Multiplexer of four effective fuzzy rules 
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4.2.3 Design of defuzzifier unit 

The COA method is applied to the defuzzifier unit. It deals with the firing weight fi and 

gravity value gi from inference unit and generates a crisp output control action. The crisp control 

action is as following 
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fi gi
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fi

=

=

∗
=
�

�
 (4.1) 

where 0y  is the crisp control action of the PWM signal. 

Fig. 4.9 is the block diagram of the defuzzifier unit (COA method), gi is the fuzzy rule 

values, fi is the firing weight. At first, the two values multiply with each other. Then, send the 

value to the accumulator after a multiplier. The accumulator is composed of an adder and a 

register. When the trigger signal ‘load’ is at the rising edge, add the value saved in the register. 

�fi equals to unity (63 in binary) so we don’t need a divider in this design. Just shift � fi*gi right 

6 bits and get an 8-bit result (for example: 01101100100101� 01101100). After accumulating 

four times, shift the result of � fi*gi right 6 bits using combinational logic, where the actual 

meaning is to divide � fi*gi by 64(unity). After the defuzzifier unit, we multiply a scale factor to 

the 8-bit control action signals. In the end, we send the control action values to change the duty 

cycle of a PWM signal. Thus, one-sampling-time computation is done. 
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Fig. 4.9 Defuzzifier unit (COA method) 

4.2.4 Design of control unit 

Control unit produces the sequential synchronized signals. The signals are shown at Fig. 

4.10. They are simulated with Quartus  simulator. Signal ‘clk’ is an input clock with 50 MHz 

freguency. And rst, sample, sample1, I_clk, load, load1, div, and s are the signals generated by 

‘clk’. 

Fig. 4.10 Control unit simulation waveform (FC) 

 

4.2.5 Fuzzy controller overall circuit diagram 

Fuzzy control FPGA circuits are shown in Fig. 4.11. They are all implemented in VHDL. 

ROM1 and ROM2 blocks are the process of fuzzification—it is the memory of addresses and 
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data of input membership functions. Blocks MUX, Product and ROM3 are the process of the 

inference engine—it computes the product inference and read the gravity values in turn with four 

different “s”. The last blocks MUL, OUTSF, and DUTY are the defuzzification process doing the 

jobs of multiplying and accumulating, multiplying a suitable output scale factor, and generating 

the PWM signal respectively. The control block is responsible for the trigger signals in order to 

synchronize the process. The number of logic elements (LEs) for fuzzy control system design is 

950. 

 

Fig. 4.11 Overall fuzzy control FPGA circuits 
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4.3 Implementation of self-learning fuzzy control on FPGA 

From (3.24) and (3.25), it can be observed that the self-learning fuzzy control algorithm is: 

 ( 1) ( ) ( ' ( ) )i
i i

i
i

f
k k e k

f
α α η+ = − − ⋅ ⋅

�
 (3.24) 

In short, the current rule value iα is modified by a minus term of iδα . The equation is rewritten as: 

 ( 1) ( ) ( )i i ik k kα α δα+ = −  (3.25) 

The fuzzy rule values(gravity values) are set as zeros initially. Then the controller generates 4 

gravity values in effect every sampling time by (3.24) or (3.25). The defuzzifier process is the 

same as the fuzzy controller. As shown in Table 4.5, for instance, four rules (8, 10, 18, and 20) are 

in effect in the first sampling time. The zero values of these effective rules are replaced by �8, �10, 

�18, and �20 respectively after the algorithm is applied. Then the four learned rule values are sent 

to the ROM of defuzzifier unit and decide the control actions to the DC-DC converter. 

Table 4.5 Learned fuzzy rules at the first time 

 

The implementation of SLFC on FPGA is different from FC in several ways: 

(1) ROM3 block updates every sampling time. 

(2) The signal “learn0” represents the term – ' ( ) i

i
i

f
e k

f
η ⋅ ⋅

�
 in (3.24). 
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Where signal “err0” is ( )e k , “y2” is i

i
i

f
f�

, and after multiplying each other along with 

learning rate 'η  in MUL block, it generates signal “learn0”.  

(3) The fuzzy rule values (gravity values)—gi is generated by “learn0” and “err0”. The meaning 

of “learn0” is the modification value of rule modifier ( ( )i kδα− ). We choose “learn0” as 

0~7(000~111) to modify the fuzzy rule values in this thesis. When “err0”>127, add “learn0” 

to the corresponding gravity values; while “err0”<127 subtract “learn0” from the 

corresponding gravity values. 

(4) The fuzzy rule table is modified recursively by (3.24), and the modified fuzzy rule values are 

sent to inference and defuzzifier unit to decide the control action. 

The number of logic elements(LEs) of the SLFC system design is 2,478. The control unit 

simulation waveform is shown in Fig. 4.12 via Quartus II, and the overall SLFC circuits are 

shown in Fig. 4.13. 

 

 

Fig. 4.12 Control unit simulation waveform (SLFC) 



 39 

 

Fig. 4.13 Overall self-learning fuzzy control FPGA circuits 
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At last, we make a comparison table of hardware implementation on FPGA of three control 

methods. Table 4.6 shows the comparison of the hardware resource requirement of each method. 

Total number of logic elements (LEs) is 10,570. Total number of pins is 427. Total number of 

memory bits is 920,448. 

 

Table 4.6 Comparison of hardware resource requirement for PI control, FC and SLFC 
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Chapter 5 

Experimental Results 

 

5.2 Experimental setup 

The proposed control algorithms are realized on an FPGA using VHDL. The DC-DC 

converter plants are forward and flyback DC-DC converters. The VHDL code is compiled on the 

software platform of Quartus II 4.0 into a *.cdf file and the file is downloaded to the FPGA board 

through USB JTAG. The FPGA board is NIOS II embedded system development board of 

ALTERA company. The processor type number is EP1S10F780C6. In short, the overall system is 

inclusive of an FPGA board, controlled DC-DC converter, A/D interface, power supply, and a 

programming and download computer. The picture of the system is shown in Fig. 5.1. 

 

Fig. 5.1 Experimental system setup 

 

 

A/D interface 

forward / flyback 
DC-DC converters 

FPGA board 
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5.2 Experimental descriptions 

There are three control algorithms we implement on FPGA, inclusive of PI control, fuzzy 

control(FC), self-learning fuzzy control(SLFC). In order to test the adaptability of different input 

voltages, we choose 50V and 60V as input voltages. Two tests in this experiment are described as 

following. (1). Transient-response test is to set output voltage from 10V to 15V after some 

duration. (2). Load-variation test is to set load resistance from 0  to 100  in a period of time.  

Fig. 5.2~5.4 are forward converter responses, while Fig. 5.5~5.7 are flyback ones. On the 

top of each figure is the output response of controlled plant and on the bottom of that is the 

control action. Next, we describe the forward-converter experiments. The responses of PI 

controller are shown in Fig. 5.2(a)~(d), reference output voltage(Vref) of Fig. 5.2(a) is 10V in the 

beginning and 15V after some duration. Fig. 5.2(b) is the experimental result of load-variation 

test. The timing of the load-changing point (from 0  to 100 ) is pointed out in every 

load-variation test. Fig5.2(c), (d) with 60V input voltage corresponds to Fig. 5.2(a), (b). Fuzzy 

control responses are shown in Fig.5.3(a)~(d). Self-learning fuzzy control responses are depicted 

in Fig. 5.4(a)~(h), where the fuzzy rules of (a) are set as zeros initially, while those of (b) are 

learned. The reference output voltages(Vo) of Fig. 5.4(a), (b) are 15V and 20V, and Fig. 5.4(c), (d) 

are load-variation tests with initially not learned and learned fuzzy rules. Fig. 5.4(e)~(h) with 60V 

input voltage corresponds to Fig. 5.4(a)~(d). Flyback converter experimental results are in the 

same order of forward ones. 

p.s. The control action is an 8-bit output from OUTSF block and we measure it via a 

DAC0804, which is a digital to analog converter IC.  
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5.3 Experimental results  

The unit of output response is 10V/div, and control action is 5V/div. The time interval is 

400ms/div. And the timing of load-variation test is pointed out in the following figures. 

         

(a)                                      (b) 

 Input: 50V ; Output: 10V & 15V                   load-variation test  

                                            Input: 50V; Output: 10V  

         

(c)                          (d) 

Input: 60V ; Output: 10V & 15V                    load-variation test  

                                            Input: 60V; Output: 10V  

Fig. 5.2 Experimental results of PI control for forward DC-DC converter 

KP=0.13, KI=0.016 

load variation 
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(a)                                  (b) 

Input: 50V ; Output: 10V & 15V                    load-variation test  

                                            Input: 50V; Output: 10V  

 

  

         

 (c)                                      (d) 

Input: 60V ; Output: 10V & 15V                    load-variation test  

                                            Input: 60V; Output: 10V  

 

Fig. 5.3 Experimental results of fuzzy control for forward DC-DC converter 
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 (a)                                     (b) 

Input: 50V ; Output: 15V & 20V              Input: 50V ; Output: 15V & 20V 

      Fuzzy rules have not been learned              Fuzzy rules have been learned 

 

 

                 

 (c)                                     (d) 

load-variation test                          load-variation test 

Input: 50V ; Output: 15V                   Input: 50V ; Output: 15V 

 Fuzzy rules have not been learned              Fuzzy rules have been learned   

Fig. 5.4 Experimental results of self-learning fuzzy control for forward DC-DC converter 

'η =0.03125 
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 (e)                                     (f) 

Input: 60V ; Output: 15V & 20V              Input: 60V ; Output: 15V & 20V 

      Fuzzy rules have not been learned              Fuzzy rules have been learned 

 

  

             

 (g)                                     (h) 

load-variation test                          load-variation test 

Input: 60V ; Output: 15V                   Input: 60V ; Output: 15V 

 Fuzzy rules have not been learned              Fuzzy rules have been learned  

Fig. 5.4 Experimental results of self-learning fuzzy control for forward DC-DC converter (Cont.) 
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 (a)                                      (b) 

Input: 50V ; Output: 10V & 15V                    load-variation test 

                                         Input: 50V; Output: 10V 

 

 

         

(c)                                     (d) 

 Input: 60V ; Output: 10V & 15V                  load-variation test  

                                        Input: 60V; Output: 10V 

 

Fig. 5.5 Experimental results of PI control for flyback DC-DC converter 
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(a)                                      (b) 

Input: 50V ; Output: 10V & 15V                    load-variation test 

                                          Input: 50V; Output: 10V  

 

  

         

 (c)                                     (d) 

Input: 60V ; Output: 10V & 15V                    load-variation test  

                                        Input: 60V; Output: 10V 

 

 

Fig. 5.6 Experimental results of fuzzy control for flyback DC-DC converter 
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(a)                                     (b) 

Input: 50V ; Output: 10V & 15V              Input: 50V ; Output: 10V & 15V 

      Fuzzy rules have not been learned              Fuzzy rules have been learned 

 

 

         

 (c)                                     (d) 

load-variation test                          load-variation test 

Input: 50V ; Output: 10V                   Input: 50V ; Output: 10V 

 Fuzzy rules have not been learned             Fuzzy rules have been learned  

Fig. 5.7 Experimental results of self-learning fuzzy control for flyback DC-DC converter 
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 (e)                                      (f) 

Input: 60V ; Output: 10V & 15V              Input: 60V ; Output: 10V & 15V 

      Fuzzy rules have not been learned              Fuzzy rules have been learned 

 

 

         

 (g)                                     (h) 

load-variation test                          load-variation test 

Input: 60V ; Output: 10V                   Input: 60V ; Output: 10V 

      Fuzzy rules have not been learned              Fuzzy rules have been learned  

Fig. 5.7 Experimental results of self-learning fuzzy control for flyback DC-DC converter (Cont.) 
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6.4 Experimental discussions 

(1). Experimental results show that fuzzy control achieve better transient response than PI control. 

And self-learning fuzzy control has more adaptability of load-variation test. In other words, 

the steady state of SLFC is more stable and smooth than others. 

(2). Self-learning fuzzy control has smaller overshoot after learning algorithm is applied. 

(3). Transient oscillation is obvious in the first time when the SLFC is applied, after the rules are 

modified by the learning algorithm, the oscillatory condition has been improved. 

(4). The flyback type DC-DC converter plant achieves better performance than the forward one, 

because input and output scale factors of the fuzzy controller are more suitable for the flyback 

converter system. 

(5). The reason why the forward converter does not achieve ideal performance is that the scale 

factors of the fuzzy controller have not been suitably chosen. 

Table 6.1 shows the comparison of experimental results for three methods. 

 

Table 6.1 The comparison of the experimental results 
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

This thesis has demonstrated the self-learning fuzzy control(SLFC) system for forward type 

and flyback type DC-DC conveters, where the new type control algorithm SLFC has been 

developed in which the rule bases do not need to be prior defined. The SLFC design method can 

automatically generate the rule bases to achieve better performance. In the rule modifier, the 

modification value is obtained from fuzzy inference of modification rules so that the learning 

algorithm can proceed reasonably and quickly. Experimental results have been provided to 

demonstrate the robust control performance of the proposed control systems under the occurrence 

of uncertainties. 

6.2 Future Work 

In the future, we can apply other intelligent control strategy to implement the DC-DC 

converters on the FPGA board. Such as, sliding-mode self-learning control and other adaptive 

fuzzy control, etc. In this thesis, the FPGA implementation of the proposed control method is 

more complicated than PI control and fuzzy control. So what we have to do is to reduce the chip 

area of the FPGA processor. So the SLFC control algorithm needs to be simplified in order to 

make the SLFC more efficient and low cost.  
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Appendix I 

Two kinds of DC-DC converters in the thesis 

(1). Forward DC-DC converter: 

 

(2). Flyback DC-DC converter: 
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Appendix II 

AlTERA NIOS II development board: 

 

Features and specifications:����

��A StratixTM EP1S10F780C6 device 
��8 Mbytes of flash memory 
��1 Mbyte of static RAM 
��16 Mbytes of SDRAM 
��On board logic for configuring the Stratix device from flash memory 
��On-board Ethernet MAC/PHY device 
��Two 5-V-tolerant expansion/prototype headers each with access to 

41 Stratix user I/O pins 
��Compact FlashTM connector header for Type I Compact Flash (CF) 

cards 
��Mictor connector for hardware and software debug 
��Two RS-232 DB9 serial ports 
��Four push-button switches connected to Stratix user I/O pins 
��Eight LEDs connected to Stratix user I/O pins 
��Dual 7-segment LED display 
��JTAG connectors to Altera® devices via Altera download cables 
��50 MHz oscillator and zero-skew clock distribution circuitry 
�Power-on reset circuitry 
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Nios Development Board, Stratix Edition Block Diagram: 
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