隨著光儲存等應用系統中的光點不斷的縮小,對於光點品質的直接量測變得 越來越困難。這種情況在利用近場光做記錄時更爲明顯,因爲光點的近場分布無 法利用傳統的遠場成像等方法來量測。要量出近場光場的分佈,光感測元件必須 放置於待測光場的近場範圍內,這種測量一般是利用近場光學顯微鏡來進行,但 其缺點爲近場探針製作不易、系統複雜,而且解析度受限於探針的孔徑。因此, 本論文將探討一種利用掃描刀緣法(scanning knife-edge method),整合微機電系統 中的梳狀致動器、奈米級平整度的刀緣結構以及光偵測元件來測量光點大小。 本文已成功利用包含 MUMPs 元件製作之含有掃描鏡面的致動器以及一外接

光偵測放大電路之反射式刀緣掃描系統來驗證此概念。為了提高量測系統的解析 度,本文利用<111>矽基板微加工技術來製作一吸收式刀緣掃描系統。在此系統 中,同一晶片上包含有梳狀致動器、奈米級平整度的刀緣結構以及光偵測元件, 另外亦針對此晶片上的元件做一特性分析包含光二極體的響應度等。在研發吸收 式系統的過程中,除了能夠開發新型光電元件及整合技術成一製程平台外,並能 為下一階段整合積體電路及微光機電系統而成為微光電系統晶片(photonic system on chip, PSOC)的研發工作奠定良好基礎。

<u>Abstract</u>

As the optical spot size in applications such as optical data storage gets smaller, to measure the quality of the focused spot directly becomes more difficult. This problem is particularly prominent in near-field recording because the near-field optical distribution can not be measured with traditional far-field methods. To measure the near-field optical distribution, the detector must be placed in the near-field proximity. Presently these measurements are performed with near field scanning optical microscopes (NSOM). However, the shortcomings of this instrument include fragile probes, complex system and limit to the resolution by the probe aperture. Therefore, a microelectromachanical system (MEMS)-based knife-edge scanning method which integrated comb drive actuator, a smooth knife-edge plate and photo detector with amplifier is proposed to measure the optical spot size in the thesis.

A reflection type spot scan system, which contains a MUMPs actuator with scanning knife-edge reflective mirror and an external amplified photo detector were used to successfully prove the concept and sever as the prototype. To improve the resolution, <111> silicon substrate was adopted to fabricate the absorption type spot scan system. The system integrates a comb actuator, a smooth knife-edge plate and a photo detector into a chip. The characteristics of the devices in the chip such as the responsivity of the photo diode were measured. During the fabrication of the chip, not only a new type optoelectrical component but also a integration process platform was developed. Moreover, it can provide fundamentals for the integration of integrated circuits (IC) and optical MEMS in the next generation.

I would especially like to thank my advisor, Prof. Yi Chiu. In these two years, he gave me a lot of guidance and taught me the right attitude. He also inspired my interest in MEMS research, and widened my horizon.

I would also like to thank National Nano Device Laboratories for the providing of the clean rooms and the instruments. I also thank the people who have taught me and helped me in the clean room, especially Mrs. Huang and Mrs. Hsu. I will not accomplish my work without their kind help.

1896

Thank all the people in the PSOC laboratory. They gave me attention and accompany me in my hard time. My life was full of happiness with them.

Thank my parents and families. They encouraged and supported me, so I could keep research with nothing to worry. And my girl friend, she relaxed my when I felt nervous, and also inspired me.

Thank you very much!

Table of Content

中文論文摘要i
Abstractii
Acknowledgementiii
Table of Contentiv
List of Figuresvii
List of Tablesxi
Chapter 1 Introduction1
1-1 Motivation
1-2 Knife-edge scanning method
1-3 <111> Silicon wafer crystallography and microstructure fabrication6
1-4 Literature survey
1-4-1 Optical microelectromechanical system9
1-4-2 Devices in <111> silicon substrate12
1-5 Objectives and thesis organization14
Chapter 2 Design and analysis15
2-1 Comb actuator
2-1-1 Spring constant17

2-1-2 Theoretical analysis of comb actuator18
2-1-3 Resonance frequency20
2-1-4 MUMPs device in reflection type system22
2-1-5 <111> silicon substrate device in absorption type system26
2-2 Photo detector design
2-1-1 Theoretical analysis of photo detector
2-1-2 Photo detector design on absorption type system
2-3 Definition of optical spot size
2-4 Summary
Chapter 3 Device fabrication
3-1 MUMPs fabrication process
3-2 MUMPs fabrication result
3-3 <111> silicon substrate fabrication process42
3-4 Junction isolation
3-5 Discussion of <111> silicon substrate fabrication process
3-5-1 First run
3-5-2 Second run
3-5-3 Third run
3-6 Summary

Chapter 4 Measurement	61
4-1 Comb actuator	61
4-2 Optical spot size measurement by MUMPs devices	67
4-3 Responsivity of photo detector	80
4-4 Summary	83
Chapter 5 Conclusion and future work	85
Reference	87

Fig 1-1 Traditional far-field CCD optical spot measurement system2
Fig 1-2 Schematic of a near-field scanning optical microscope (NSOM) [2]3
Fig 1-3 Photonic system on chip (PSOC) architecture4
Fig 1-4 (a) Scanning knife-edge system schematic, (b) relation between optical power
distribution P(x) and readout photocurrent signal I(x ₀)5
Fig 1-5 Crystallography of <111> silicon (a) <111> direction (b) six normal (110)
planes(c) six oblique (110) planes7
Fig 1-6 <111> silicon fabrication process: (a) pattern transfer and first RIE, (b)
sidewall protection, (c) releasing gap definition by second RIE, (d) releasing
in alkaline solution
Fig 1-7 Free space micro optical bench [7]9
Fig 1-8 (a) Standing wave microspectrometer schematic, (b) photograph of the MEMS
component bonded with the mirror [8]10
Fig 1-9 Integrated optical pickup head schematic [9]11
Fig 1-10 CMOS Fabry-Parot filter and photo detector [10]11
Fig 1-11 High efficiency NSOM probe [11]12
Fig 1-12 Released structure fabricated in a <111> silicon substrate13
Fig 1-13 BELST process application (a) dual-mass spring resonator (DMSR), (b)
moving vibrating gyroscope (MVG) [12]13
Fig 1-14 Comb drive actuator by the SBM fabrication process [13]14
Fig 2-1 MEMS optical spot scanning system, (a) top view, (b) transmission type, (c)

reflection type, (d) absorption type16
Fig 2-2 Spring structure of a (a) spring element, (b) serious connection of (a), and (c)
folded structure18
Fig 2-3 Comb drive actuator and single comb drive cell schematics20
Fig 2-4 Schematic of a two degree of freedom model used to analyze the resonate
frequency21
Fig 2-5 MUMPS comb actuator layout
Fig 2-6 MUMPs comb actuator mode: (a) first (torsional), (b) second (vertical), (c)
third (lateral mode)25
Fig 2-7 Knife-edge plate in three resonance modes (a) lateral (b) torsional and (c)
vertical
Fig 2-8 <111> silicon comb actuator layout
Fig 2-9 <111> silicon comb actuator mode: (a) first (torsional), (b) second (vertical),
(c) third (lateral mode)
Fig 2-10 Absorption coefficient of common detector material [17]33
Fig 2-11 Calculated responsivity
Fig 2-12 Corresponding FWHM and the full width at 36.8% definition in power and
photocurrent distribution36
Fig 3-1 Cross section view showing all 7 layers of POLYMUMPs process (not scaled)
[21]
Fig 3-2 MUMPs process steps40
Fig 3-3 SEM photographs of the MUMPs comb actuator, (a) top view (b) side view.41
Fig 3-4 Close-up view of the MUMPs comb actuator
Fig 3-5 <111> silicon device process steps
Fig 3-6 The integration process (a) Isolation scheme (b) equivalent circuit51

Fig 3-7 Sidewall passivation layer of the first run process after releasing52
Fig 3-8 Sidewall passivation oxide deposited with RF power of 200W, pressure of
150mTorr, and annealing in O ₂ rich environment after releasing53
Fig 3-9 Second run device etched for (a) 3 minutes (b) 7 minutes in TMAH
solution54
Fig 3-10 Second run device etched for 10 more minutes in TMAH55
Fig 3-11 <111> silicon fabrication in (a) the ideal case (b) real case with corner
bombardment56
Fig 3-12 SEM photograph of the trapezoidal oxide and exposed silicon in the
corner
Fig 3-13 Isotropic dry releasing process (a) polymer deposition (b) bottom polymer
removal (c) SF ₆ dry releasing59
Fig 3-14 SEM photograph of (a) the first test run (b) the second test run
Fig 3-15 SEM photograph of the bottom structure after releasing60
Fig 4-1 Experimental setup for resonance frequency measurement62
Fig 4-2 WYKO interferometer measurement of the width of the bottom of triangular
reflective mirror63
Fig 4-3 Microscope image of the resonance of the device
Fig 4-4 Spring width by SEM measurement65
Fig 4-5 Spring width by WYKO measurement65
Fig 4-6 (a) Microscope image of the 2µm device (b) resonance at 4.15 KHz66
Fig 4-7 Spring width of 2µm device by WYKO measurement
Fig 4-8 (a) Schematic (b) setup of the reflection type spot size measurement
Fig 4-9 Spectral responsivity curve of PDA 15569
Fig 4-10 (a) Observed waveform of photocurrent in an oscilloscope for a full scan

cycle, (b) beam profile derived from the photocurrent measurement70
Fig 4-11 Observed signals of spots focused with a (a) 20X and (b) 40X objective lens
for green (543nm) light72
Fig 4-12 Observed signals of spots focused with a (a) 20X and (b) 40X objective lens
for red (633nm) light73
Fig 4-13 Measured photocurrent and derived power distribution of the spot with (a)
20X and (b) 40X objective lens for the green (543nm) light76
Fig 4-14 Measured photocurrent and derived power distribution of the spot with (a)
20X and (b) 40X objective lens for the red (633nm) light78
Fig 4-15 Experimental setup for I-V curve measurement
Fig 4-16 (a) Photo detector layout (b) area of the photo detector measured by the
WYKO interferometer
Fig 4-17 Measured I – V characteristics of the photo detector
Fig 4-18 Measured responsivity and simulation characteristics of photo detector84
Thingson

List of Tables

Table 2-1 MUMPS comb actuator layout parameters	24
Table 2-2 Mode frequencies of MUMPs device calculated by CoventorWare	25
Table 2-3 <111> silicon comb actuator layout parameters	29
Table 2-4 <111> silicon substrate device mode frequencies by CoventorWare	30
Table 3-1 <111> silicon substrate fabrication process	46
Table 4-1 Measured displacement at resonance	64
Table 4-2 Specification of photo detector PDA 155 by THORLABS	69
Table 4-3 Measured and theoretical spot size	74