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Chapter 2  MPEG-4 Video Encoder 

Hardware Design 

2.1 MPEG-4 Video Encoder Algorithm 

Overview 

Before designing the hardware architecture, the algorithm and complexity of each 

MPEG-4 video encoder component are analyzed. Therefore, software model are used to 

evaluate the performance of our algorithm before starting to design the hardware architecture, 

and the software model will be used to verify our hardware design in the future. The MPEG-4 

video encode flow diagram is shown in Fig. 2-1 

 

 
Figure  2-1 MPEG-4 video encode flow diagram 
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The first frame is called “I frame” which is sent into the DCT module to transfer the 

image data from the spatial domain to the frequency domain. The DCT algorithm is a loss-less 

and reversible mathematical transformation that converts a spatial amplitude representation of 

data into a frequency representation. The 2-D DCT equation is shown as below. 
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One of the advantages of the DCT is its energy compaction property, that is, the signal 

energy is concentrated on a few components while most other components are zero or are 

negligibly small. The energy compaction property of the DCT is well suited for image 

compression, since as in most images, the energy is concentrated in the low to middle 

frequencies, and the human eye is more sensitive to the low and middle frequencies. From  

Fig. 2.2, we can see that most of the energy of the frequency domain is concentrated at the 

upper left corner. 
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Figure  2-2 Lena image transferred from spatial domain to frequency domain 

 

The DCT coefficient output will then be sent into the quantizer module. In Fig. 2-3, the 

Q(x) is mapped from x, in this way we could reduce the expression bit numbers for x. 

 

Figure  2-3 Quantization mapping 

 

Fig. 2-4 is a macro block coded in intra mode, and Fig. 2-5 is the coefficient amplitude 

distribution of four blocks. We can see that the high relationship between neighboring DCT 

coefficient blocks. Therefore, the MPEG-4 uses the AC/DC prediction technique to reduce the 

expression amplitude of DC and AC values in I frame. 
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Figure  2-4 Macro block coded in intra mode 

 

 

Figure  2-5 DCT coefficient (luma blocks) 

 

The selection of AC/DC prediction direction is based on comparison of the horizontal 

and vertical DC differences around the block which is encoded currently. In Fig.2-6, the X is 

currently encoded block, and the DC prediction behavior is shown in Table 2-1. 
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Table  2-1 DC prediction pseudo code 

IF (|FA [0][0]-FB[0][0]|<|FB[0][0]-FC[0][0]|) 

  Predict from block C 

Else 

  Predict from block A 

Where F [0][0] is the DC value of a block. 

 

 

Figure  2-6 DC Prediction 

 

After the direction of DC prediction is decided, the direction of AC prediction is the 

same as the direction of DC prediction which is shown in Fig. 2-7.  
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Figure  2-7 AC Prediction 

 

The scan order supported by the MPEG-4 is shown in Fig. 2-8. After the re-ordering scan, 

the non-zero coefficient will be gathered in the head of scan sequences and this will help to 

improve the back-end entropy coding efficiency. 

 

 
Figure  2-8 VLC Scan Order 

 

The VLC is a look-up table operation, it will look for a code word according to the 3-D 

run length coding (Run, Level, Last). In addition, the encoder will reconstruct the quantized 

coefficient by the inverse quantizer and the inverse DCT and then store it in the previous 
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frame memory. 

In the “P frame”, current frame will be input into the motion estimation to compare with 

the previous frame and derived a motion vector. In this way, the motion compensation could 

subtract the predicted macro block from the current macro block. Then, the error residue is 

input into texture coding module. Fig. 2-9 shows the concept of motion estimation.  

 

 

Figure  2-9 Motion Estimation Concept 

 

Fig. 2-10 shows a moving car and Fig. 2-11 is derived by subtracting previous frame 

from current frame directly without motion estimation and plus an offset value 128. Fig. 2-12 

shows the motion vector distribution after doing a full search of search range = 16. Fig. 2-13 

shows the error residue distribution which is derived by subtracting previous frame from 

current frame according to the motion vector and plus an offset value 128. We can see that the 

car and background contour in Fig. 2-13 is unobvious contrast with Fig. 2-11, so that the 

motion estimation and the motion compensation subtraction could decrease the image 

differences to be close to zero. This will improve the coding efficiency in advance. 
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Figure  2-10 Moving car 

 

 

Figure  2-11 Error residue without Motion estimation 

 

 

Figure  2-12 Motion vector distribution 
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Figure  2-13 Error residues with motion estimation 

 

2.2Motion Estimation Architecture Design 

2.2.1 Algorithm Analysis and Design 

The motion estimation is an important part in the MPEG-4 video encoder. It dominants 

the encoded image quality, the compression ratio, the computation time and it requires the 

largest hardware resource in the whole encoder. In all algorithms of the motion estimation, 

full search block matching algorithm (FSBMA) is well known and have been developed for 

fast implementation [5]-[7] because of its good image quality and regularity data flow in 

hardware design. Fig. 2-14 shows a 16x16 current macro block doing a full search of search 

range = 16, and the pseudo code is shown in Table 2-2. 
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Figure  2-14 Search area and current MB of full search 
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Table  2-2 Full search pseudo code 

begin 

  min_SAD=Large_Number; 

  for i= -16 to 16 

    for j= -16 to 16 

      { 

        cur_SAD=SAD(i,j) ; 

          if cur_SAD < min_SAD 

            { 

              min_SAD = cur_SAD ; 

              motion_vector_x = i ; 

              motion_vector_y = j ; 

            } 

      } 

end 
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In Table 2-2, the full search algorithm is a four levels loop operation and whose 

operation require 3.3 giga times per second for subtracting to get absolute value for 30Hz CIF 

image size processing. Due to the high computational complexity, the full search algorithm 

has a significant problem in real-time applications. To resolve this problem, we proposed a 

hierarchical motion estimation algorithm (HMEA) which is based on full search algorithm 

and could reduce the computation complexity and retain good image quality. 

Our proposed HMEA consists of three resolution levels of images： 
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Level0：It is the original image resolution. 

Level1：It is the image which downsampled from Level0, the downsampling filter is 

expressed as following： 
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Level2：It is the image which downsampled from Level1 ,the downsampling filter is 

expressed as following： 
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Our experiments show that downsizing the image without low pass filter will degrade 

2dB PSNR on average contrast with downsizing image with low pass-filter, and the 

experimental results are shown in Table 2-3. That’s the reason we adopt low pass filter 

process in our image downsizing procedure. 

 

Table  2-3 PSNR comparison of different downsizing strategies 

Video Sequence Downsizing without low pass filter 

PSNR 

Downsizing with low pass filter 

PSNR 

News 31.06 32.88 

Foreman 29.33 31.29 

Flower garden 23.16 24.59 

Table tennis 28.29 31.63 

 

After the downsampling procedure, the macro block size in Level0, Level1, Level2 are 
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16x16, 8x8 and 4x4 which are shown in Fig. 2-15. 

 

 

Figure  2-15 Downsampling procedure 

 

The HMEA is based on a multi-resolution frame structure mentioned above. The overall 

procedure is shown in Fig. 2-16. 

Search at Level2：The Level2_Cur is a 4x4 block which downsampled 2 times from the 

original resolution macro block and the Level2_Pre is a 12x12 previous frame search area. 

How many candidates should be chosen on Level2 is evaluated, and the results are shown in 

Table 2-4. Table 2-4 includes different types of the video sequences, “News” is an almost 

static video sequence, “Foreman” is a middle motion video sequence, “Flower garden” is a 

video sequence whose whole scene is moving and contains many tiny objects in the scene, 

and “Table tennis” is a big motion video sequence. From all the sequences, we can see that the 

effect of 3rd candidate does not have big impact on the improvement of PSNR. On the 

contrary, too many candidates in Level2 might cause local minimum problem to direct the 

next level search to a wrong motion vector, so that we choose two candidates in the Level2. 
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For search range=16 case, Level2_Cur do a full search of search range = 4 on the Level2_Pre 

and get two motion vectors with SADs. These two motion vectors will be the start point of 

next level full search. 

 

Table  2-4 PSNR comparison of different candidate number in Level2 

Video sequence 1 candidate 2 candidates 3 candidates Full Search 

News 32.56 32.88 33.17 33.46 

Foreman 30.29 31.29 31.60 32.06 

Flower garden 24.37 24.59 25.46 25.81 

Table tennis 28.55 31.63 31.74 32.07 

 

Search at Level1：The Level1_Cur is a 8x8 block which downsampled 1 time from 

original resolution macro block. Level1_Pre is a 12x12 previous frame search area. 

Level1_Cur do 2 times of full search of search range = 2 on the Level1_Pre to refine the 

Level2 search results and get one motion vector with SAD. This motion vector will be the 

start point of next level search. 

Search at Level0：The Level0_Cur is a 16x16 block which is the original resolution 

macro block. Level0_Pre is a 20x20 previous frame search area. Level0_Cur do a full search 

of search range = 2 to refine the result of Level1 on the Level0_Pre. 
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Figure  2-16 Hierarchical search procedure 

 

Before hardware design, software mode are used to simulate the HMEA and other 

motion estimation algorithm such as full search, diamond search (radius is one pixel) and 

three step search behavior. The results are shown in Table 2-5, and the PSNR of HMEA is 

very close to Full search algorithm. 
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Table  2-5 PSNR comparison between different algorithms 

 Video sequences Full search Proposed 

HMEA 

Diamond search Three step 

search 

Foreman 32.06 31.29 30.80 30.85 

Akiyo 42.95 42.82 42.92 42.8 

Flower garden 25.81 24.59 25.68 24.58 

News 33.46 32.88 32.54 32.7 

Mobile 24.23 23.93 24.15 23.92 

Table Tennis 32.07 31.63 30.66 30.5 

 

2.2.2 Hierarchical Motion Estimation Hardware 

Architecture Design 

 Downsampling Unit 

Four rows of Level0 are downsampled and two rows of Level1 and one row of Level2 

are got each loop, and totally 72 loops are needed for one CIF image.  

In a loop, four original resolution row data are input into the downsampling unit, the 

L0_row0, L0_row1, L0_row2, L0_row3 which are shown in Fig. 2-17, and Fig. 2-18 shows 

the data path to downsample Level0 image to Level1 image. 

1. Input 1st row：At first, input the L0_row0 in Fig. 2-17 into the L0_even_data_path in  

Fig. 2-18. After processing the L0_row0, the P1+P2 and P3+P4 temporary values are 

stored in RAM1. 

2. Input 2nd row：Second, input the L0_row1 into the L0_row1_data_path, the data flow 
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through the three stages pipeline registers and L1_row0 result are stored in the RAM2. 

At the same time, the data output from the 2nd stage pipeline register in the 

L0_row1_data_path, the L1_P11, the L1_P12, the L1_P13, and the L1_P14 will be input 

into the L1_row0_data_path and the temporary value of L1_P11+L1_P12 and 

L1_P13+L1_P14 are stored in RAM4. 

3. Input 3rd row：Third, the L0_row2 is sent into the L0_even_data_path, and the P1+P2 

and P3+P4 temporary values of the L0_row2 are stored in RAM1. 

4. Input 4th row：Fourth, the L0_row3 is sent into the L0_row3_data_path. The same 

condition as “Input 2nd row”, the L1_row1 result will be stored in the RAM3, and the 

L1_P21, the L1_P22, the L1_P23 and the L1_P24 will be input into the 

L1_row1_data_path. Then, the L2_row result will be stored in the RAM5.  

5. Finally, the RAM2, the RAM3, and the RAM5 contain the Level1 and Level2 result 

respectively. 

6. Repeat step 1. ~ step 5.  71 times to finish one CIF image downsampling. 

Using this architecture, only need 25344 + 3168 + 1584 = 30096 cycles are needed to 

finish one CIF image downsampling. That is, 76 cycles per macro block on average. 
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Figure  2-17 Downsample 4 Level0 rows 

 

 
Figure  2-18 Level0 downsampling 

+
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Figure  2-19 Level1 downsampling 

 

 Motion Estimation Architecture 

After downsampling process, the hierarchical motion estimation is started. 

In [8], the BSU (Basic Search Unit) is a one dimension systolic processing element array. The 

data reuse is not good enough so that the current block and previous block data must be 

reloaded once again. This architecture needs 40 mega clock cycles to finish 30 CIF images 

motion estimation. If it adds other system overhead into the consideration (such as bus 

arbitration or software overhead), it will be difficult to achieve real-time encoding. Therefore, 

we propose an enhanced 2-D semi-systolic BSU (2DBSU) architecture to improve the data 

reuse capability and use two 2DBSU to improve the processing speed. Our proposed 

architecture decreases 80% bandwidth requirement and only needs 4.396 mega clock cycles to 

achieve 30 CIF images motion estimation. 
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Fig. 2-20 shows the 2DBSU architecture, this architecture could do a 4x4 current block 

full search whose search range = 2 and the basic data flow is shown in Fig. 2-21. 

 

 

Figure  2-20 2DBSU architecture 
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Figure  2-21 2DBSU basic data flow 

 

In Fig. 2-21, the current MB is a 4x4 block and the search window is a 12x12 block, the 

search window is partitioned into two parts, the left part and the right part (that is “Pl” and 

“Pr” in Fig. 2-21), then input the data into the 2DBSU architecture from the C, the Pl and the 

Pr input ports as shown in Fig. 2-20. The PE00 in 2DBSU will accumulate the SAD of the 

search position (-2, -2), and the PE10 will accumulate the SAD of the search position (-1, -2), 

in the similar way, the other PEs will accumulate the SADs of the other search position. Based 
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on this 2DBSU architecture and the basic data flow, we develop a motion estimation 

architecture which is shown in Fig. 2-22. Two 2DBSU are used to accelerate the motion 

estimation and improve the data-reuse capability. This architecture is commonly used among 

different levels and could extend search range without adding additional hardware. 

 

 

Figure  2-22 Motion unit architecture 

 

1. In Level2 search: the current MB is a 4x4 block and the search window is a 12x12 block, 

the search window is partitioned into two parts, one part is input into the BSU0 and the 

other is input into BSU1. The data partition and data flow is shown in Fig. 2-23. The C0 

is fed the current MB twice and the C1 is fed the same data as the C0 fed but delayed 4 

cycles. And the Pl0 is fed the left part data of search window row by row. The Pr0 and 

the Pl1 are fed the middle part of search window four cycles later than the Pl0. The Pr1 is 

fed the right part of search window four cycles later than the Pl1. After 17 cycles, the 1st 

Level2 SAD will be output with relative motion vector from BSU0 and the other SADs 

and motion vectors will also be output from the BSU0 and the BSU1 continuously. The 
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SADs output from the BSU0 and the BSU1 will be input into the comparator. The 

minimum SAD and its corresponding motion vector will be retained in the comparator 

until the Level2 search is finished. After 56 cycles the two candidate motion vectors are 

found. 

 

Figure  2-23 Level2 data flow 
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2. In Level1 search: the two candidate motion vectors found in Level2 are used as the 

starting point and do a full search of search range = 2 to refine the motion vector. In 

Level1, the current MB is an 8x8 block and the search window is a 12x12 block. The 

current block is partitioned into four parts (the left-upper, left-bottom, right-upper and 

right-bottom) and the search window are partitioned into three parts as shown in Fig. 

2-24. Then, the left two parts (left-upper and left-bottom) of the current MB are input 

row by row into the C0, and the right two parts (right-upper and right-bottom) of the 

current MB are input row by row into the C1 four cycles later than the C0. In the search 

window, the condition is the same as searching at Level2, the Pl0 is fed with the left part 

data of search window row by row. The Pr0 and the Pl1 are fed with the middle part of 

search window four cycles later than the Pl0, and the Pr1 is fed with the right part of 

search window four cycles later than the Pl1. After 17 cycles, the 25 partial SADs of 

left-upper and right-upper part are begin to be output from BSU0 and BSU1 sequentially, 

and these partial SADs are sent into the “Level0/Level1 path” in Fig. 2-22 to accumulate 

with the partial SADs of left-bottom and right-bottom later. After 56 cycles, the 1st SAD 

of Level1 with the relative motion vector will be output from the “25 words circular 

buffer”, and the rest of the other 24 SADs with the motion vectors are also output 

sequentially. The Level1 SADs will be sent into the comparator and the minimum SAD 

with the corresponding motion vector will be retained in the comparator. After 56+25 = 

81 cycles, the first time Level1 search is finished. Because Level2 has two candidates, 

Level1 search must be done two times according to these two motion vector candidates, 

and decide which motion vector is proper one. The Level1 search totally need 162 cycles 

per MB. 
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Figure  2-24 Level1 data flow 

 

3. In Level0 search: The most proper motion vector found in Level1 is the search start point 

in Level0 search. A full search whose search range = 2 is done to refine the motion 

vector found in Level1. In Level0, the current MB is a 16x16 block and the search 

window is a 20x20 block. The current block is partitioned into sixteen parts and the 

search window into five parts as shown in Fig. 2-25. 

(1) In the first round: The “LL” part is input into the C0, and the “LR” part is input into 
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the C1 four cycles later than the “LL” part. The part1 of search window is input into 

the Pl0, the part 2 is input into the Pr0 and the Pl1 four cycles later than the part1, the 

part3 is input into the Pr1 four cycles later than the part2. At the 17th cycle, the 1st 

partial SAD with relative motion vector is input into the “25 word circular buffer” as 

shown in Fig. 2-22 to accumulate with other partial SADs of the rest parts later. After 

88 cycles, the 25 sums of partial SADs of the “LL” and the “LR” are stored in the 

“25 word circular buffer”. 

(2) In the second round: The second round is started at the 89th cycle, the “RL” is begin 

to be input into the C0, and the “RR” is input into the C1 four cycles later than the 

“RL”. In the search window, the part3 is input into the Pl0 and the part4 is input into 

the Pr0 and Pl1 four cycles later than the part3. The part5 is input into the Pr1 four 

cycles later than the part4. The 25 partial SADs are input into the “Level0/Level1 

path” and accumulate with the 25 sums of partial SADs gotten in the 1st round. At the 

152th cycle, the 1st Level0 SAD with relative motion vector is output from the “25 

word circular buffer” and input into the comparator. The minimum SAD and its 

corresponding motion vector will be retained in the comparator. At the 176th cycle, 

the 1st motion vector is output from the “25 word circular buffer”, and the Level0 

search totally need 176+25 = 201 cycles. 
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Figure  2-25 Level0 data flow 

 

In Table.2-5, the image quality of HMEA is very close to full search. In addition to 
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quality, another important character of the motion estimation is its processing speed. The 

processing speed and the ASIC implementation cost of the HMEA are compared in Table 2-6.  

The [8]-[10] use the similar algorithm as HMEA. In Table 2-6, HMEA only needs 495 cycles 

to find one motion vector. The 495 cycles include the downsampling cycles needed per MB. 

The on-chip memory usage also includes the memory required in downsampling unit. The 

HMEA costs an acceptable ASIC area and needs the fewest cycle to accomplish the motion 

estimation computation. 

 

Table  2-6 Performance comparison with other architectures (search range = 16) 

Architecture Cycles 

per MV 

Required cycles 

for 30 CIF 

Gate 

counts 

On-chip 

memory usage

Proposed HMEA 

(Hierarchical) 

495 5.88 mega clock 

cycles 

59K gates 1393 bytes 

Kun-Bin Lee [9] 

(Subsampling) 

615 7.31 mega clock 

cycles 

24.8K 

gates 

2623 bytes 

Seongsoo [10] 

(Low Bit-Resolution) 

1320 52.27 mega 

clock cycles 

110K gates 90K bytes 

Jae Hun Lee [8] 

(Hierarchical) 

2640 40 mega clock 

cycles 

25K gates 288 bytes 

 

 Motion unit integration 

The motion compensation subtracts and compensation add will be described in the 

following, and the whole motion unit integration will also be explained. 

The motion unit contains the motion estimation, the motion compensation add, the 

motion compensation subtract and the downsampling. The architecture is shown in Fig. 2-26. 
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The “MC current MB” and “MC previous MB” are on-chip memory. The “MC controller” is a 

finite state machine which could latch off-chip pixel data according to motion vector, and the 

“MC interpolator” is a bilinear interpolator which could do the pixel interpolation according 

to the motion vector. The “MC downsampling” is a downsampling circuit to downsample the 

MB level data. 

 

 

Figure  2-26 Motion unit integration 

 

When the motion estimation (ME) input buffer is fed with the current MB, the “MC 

current MB” is also fed with the same data. Therefore, the bandwidth can be saved to avoid 
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re-loading current MB again. 

When the ME is finished, the “MC controller” will latch the previous MB from the 

“External Memory” according to the motion vector got from the ME. Because the UV image 

is half size of the Y image, the “MC interpolator” must interpolate the UV data if the motion 

vector is odd. After interpolation, the previous MB data will be stored in the “MC previous 

MB” temporarily and be subtracted from the “MC current MB” later. The subtracted 

difference will be sent into DCT buffer. 

In the same time slot (please refer to section 2.4 system scheduling), the data from 

inverse DCT will add with the data in the other “MC previous MB” (Considering the whole 

MPEG-4 encoder system pipeline scheduling, the “MC previous MB” is a ping-pong buffer 

mode. That is, when “MC controller” is writing data into the buffer1 in the “MC previous 

MB” the IDCT could read out the buffer2 in the “MC previous MB” to do reconstruct 

operation. In the next MB, the “MC controller” will write into the buffer2 and the IDCT will 

read out the buffer1.) . 

Since the HMEA needs Level2 and Level1 reconstructed frame, we design a “MB 

downsampling” circuit which could do a MB level downsampling without wasting any extra 

time (we use the interval which IDCT does not output data to the motion unit). In this way, 

the “downsampling” circuit just has to downsample the current frame in each “P frame” 

processing time and do not need to downsample the reference frame. The MB relation is 

shown in Fig. 2-27, and the “MB downsampling” circuit is shown in Fig. 2-28. When the 

IDCT input 16 pixels into the motion unit, we could get 4 pixels of Level1, and two pixels of 

Level2. When the “MC downsampling” gets 4 Level1 pixels, it will write out to the “External 

Memory”. Finally, when the IDCT finish outputing Y1~Y4, U and V data, the Level1 macro 

block all write out to “External Memory”. The “Level2 data register1 ~ register4” have stored 

the Level2 macro block, and the “MC downsampling” could write out to the “External 

Memory”. Therefore, the reference frame of the next P frame is downsampled without 
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wasting extra time. 

 

 

Figure  2-27 Relationship of different level MB 
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Figure  2-28 MB downsampling circuit 

 

 Off-chip memory Organization 

In the off-chip memory organization design, two main parts of off-chip memory are used 

to store two frames, “Mem1” and “Mem2”. For the I frame, the frame source is always the 

“Mem1”, and the IDCT throughs the reconstructed frame to the “Mem2”. For the 1st P frame, 

the current frame is stored in the “Mem1”, and the reference frame is stored in the “Mem2”. 

The reconstructed frame is written to the “Mem1”. And for the 2nd P frame, the current frame 
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is stored in the “Mem2”, and the reference frame is stored in the “Mem1”. In this way, the 

frame memory status is switch mutually until arrive the next I frame. When it arrives the next 

I frame, the “Mem1” is switched back to current frame. The switch condition is shown in  

Fig. 2-29. 

 

 
Figure  2-29 Memory organization 

 

2.3 Variable Length Coding Architecture 

Design 

2.3.1 VLC Hardware Architecture Design 

The MPEG-4 bit stream syntax hierarchy is shown in Fig. 2-30. The video object 
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sequence delivers the complete MPEG-4 visual scene, which may contain 2-D or 3-D natural 

or synthetic objects. The video object consists of video object layers, the video object layer 

can be of arbitrary shape corresponding to an object or background of the scene. The group of 

video object plane is an optional level which is used for random access or error-resilience. 

The video object plane is a snapshot of a video object at a particular moment. The macro 

block is a 16x16 block in a frame. The block is an 8x8 block in a macro block. The 

computational complexity is dramatically increased in the macro block and block level. The 

bit stream processing is partitioned into two parts. The hardware is responsible for macro 

block and block level bit stream processing, and the software or firmware is responsible for 

the other higher levels. The hardware/software bit stream work partition is shown in Fig. 2-31 

 

 

Figure  2-30 MPEG-4 bitstream syntax hierarchy 
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Figure  2-31 Hardware/Software bitstream partition 

 

The VLC hardware architecture is shown in Fig. 2-32. Considering the overall encoder 

system scheduling, the VLC module has a ping-pong buffer, so that the VLC could achieve 

pipeline work with motion unit and texture coding. In the ping-pong buffer, we design a 

re-order mapping mechanism to support the three kinds of scan order in I frame (please refer 

to the section 2.1 “MPEG-4 Video Encoder Algorithm Overview” and Fig. 2-7). When the DC 

predict from vertical, the alternate-horizontal scan is used. When the DC predict from 

horizontal, the alternate-vertical scan is applied. When the I frame predict flag is zero or in P 

frame mode, the zig-zag scan is used. On average, the AC/DC prediction could improve 14% 

of I frame coding efficiency. In order to use an efficient method to implement these three 

kinds of scan order without wasting additional hardware cost. The alternate-horizontal and 

alternate-vertical scan have some regular relationship in the memory addressing between each 

other. The texture coding write in one of the buffers of VLC component, and the write order is 

shown in Fig. 2-33. In next “time slot” (please refer to the section 2.4 “System Scheduling”), 

the RLC module sends a sequence of number from 0 to 63 to read out the qcoefficient. In the 

“Qcoefficient RAM”, a simple case statement is used to re-mapping the read address. The 

alternate- horizontal and alternate-vertical read address is simply exchanged the lowest three 

bits and the highest three bits with each other (which is shown in Fig. 2-34). So only the 

zig-zag scan and alternate-horizontal scan re-order mapping implementations are needed and 

three kinds of scan order can be achieved. 
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Figure  2-32 VLC architecture 

 

 

Figure  2-33 Texture coding write-in order 

 



 42

 

Figure  2-34 VLC memory read-out order 

 

The “RLC controller” is a finite state machine, which will read out the qcoefficient from 

VLC ping-pong buffer into the “Run Length Coding” module and control the DC、cbp、mvd 

look up table operation. The “Run Length Coding” will generate a 3-D symbol that is the 

(Run, Length, Last). 

Run：This number represents how many zeros has been encountered in the scan order 

before each non-zero term arrived. 

Level：This number represents the absolute number of the non-zero term. 

Last：This bit represents if this symbol is the last one in a block. 

Because the “Last” parameter can not be decided until encounter the last non-zero term 

or last qcoefficient in a block, a specific FIFO buffer is adopted between the “Run Length 

Coding” and “Coefficient Table”. This specific FIFO architecture is shown in Fig. 2-35. 
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Figure  2-35 RLC FIFO architecture 

 

The “full”, “almost_full” are signals to indicate “RLC controller” whether stop read out 

the qcoefficient or not. And the valid output is a signal to indicate the “Huff_coder” to fetch 

the (Level, Run, Last) symbol on the output port of the FIFO when there are more than two or 

equivalent to two successive (Level, Run) symbols in the FIFO register. When the “RLC” 

encounters the last qcoefficient, the “last” input port will be set to HIGH to set the “Last” 

register of the last symbol. 

The “Huff_coder” is mainly doing a look up table (LUT) for one symbol. The MPEG-4 

use 3-D LUT, that is, there are 3 parameters to map one symbol to a unique code word. When 

the symbol does not exist in the specific table, it will be encoded by escape mode. The 

MPEG-4 standard code table is analyzed and the arrangement of the distribution of encoding 
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mode which is shown in Fig. 2-36. The three kinds of escape mode encoding method is 

described as following： 

Escape type1 mode：When the code word is not in the normal mode table (Fig. 2-36 

black color area). Looking up table for a LMAX [1] and calculate the Level+, 

( ) ( )( )LMAXLevelabsLevelsignLevel −∗=+  and use the (Level+, Run, Last) to do LUT. 

When a symbol is on the cyan color area of Fig. 2-36, the escape type1 mode is used. And the 

bit stream is in the form of  code word 00000011 . 

Escape type2 mode：When the code word is not exist in the code table when using escape 

type1 mode. Looking up table for a RMAX [1], and calculate the Run+, 

( )1+−=+ RMAXRunRun  and use the (Level, Run+, Last) to do LUT. When a symbol is on 

the red color area of Fig. 2-36, the escape type2 mode is used. And the bit stream is in the 

form of  code word 100000011 . 

Escape type3 mode：When the code word is not exist in the code table when using escape 

type2 mode, using the escape type3 mode to encode this symbol. The code word is in the form 

of . When a symbol is 

on the white color area of Fig. 2-36, the escape type3 mode is used. 
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Figure  2-36 Encoding mode distribution 

 

The “Huff_coder” will output one stream word to the “packer”. The packer is responsible 

for packaging bit stream into 32-bits packet and writes out to the external memory. Due to the 

irregular length of code word, a FIFO buffer is used between the “Huff_coder” and the 

“Packer”. The architecture of “Packer” is shown in Fig. 2-37. When the “Packer” read in one 

code word, the code word will be stored in the “D1” register and the length of this code word 

will be stored in the “D2” register. Considering the area and timing issues, two 16-bits barrel 

shifters are adopted instead of two 32-bits barrel shifters. The “Barrel shifter 1” and the 

“Barrel shifter 2” are both right shift window, which would locate the code word according to 

the code length and threw the located code word to “D3” register and the “D4/D5” register. 

The “D3” register contains the effective residue bits which hasn’t put into the “D4/D5” 

register, and the “D6” register stores the effective residue bit numbers in the “D3”. The VLC 

hardware implementation results are shown in Table 2-7. 
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Figure  2-37 Packer architecture 

 

Table  2-7 Variable length coding ASIC implementation result 

Process UMC 0.18 um 

Max. Operation Frequency 85 MHz 

Power 125 mW 

Gate count 8860 gates 

 

2.4 System Scheduling 

After analyzing the clock cycles needed for processing one macro block, three stages 

pipeline scheduling is applied in the whole MPEG-4 video encoder system. The “Motion 
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Unit”, “Texture Coding” and “VLC” are three pipeline stages respectively. The whole encoder 

system architecture is shown in Fig. 2-38. The “controller” is a finite state machine which 

could control these three components and assurance that they could work together compatibly. 

Besides, the controller is also responsible for handling the data flow and multiplexer control 

in different frame type (I frame and P frame). 

 

 

Figure  2-38 Encoder architecture 

 

The controller finite state machine is shown in Fig. 2-39. When the controller jump out 

from the idle state, it will initialize the VLC internal register in the init_vlc_st state.  

In I frame: The controller jump into a loop between the i_text_en state and the 

i_text_vlc_en state. After 396 loops, it jumps to the dn_en state to downsample the 

reconstructed frame. After finish downsampling, it writes 0x03 to the DMAC status register to 

start the DMAC to move bitstream from the SSRAM to the SDRAM at the finish_frame_st 

state. Then it goes back to idle state. 

In P frame: The controller must downsampling the current frame first at the dn_en state. 

Then it jumps into the loop between the p_ME_text_en state and the p_text_vlc_en state. 

After 396 loops, it jumps to the finish_frame_st state to writes 0x03 to the DMAC status 
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register to start the DMAC to move bitstream from the SSRAM to the SDRAM and then goes 

back to the idle state. 

 

Figure  2-39 Encoder controller finite state machine 

 

Fig. 2-40 shows the pipeline scheduling in the “Intra MB” and the “Inter MB” mode. The 

“IDCT” output timing is distributed in a whole time slot (the duration of two dotted line is 
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called “1 time slot”) uniformly. The “VLC” has highest priority to use the system bus, and the 

ME has second priority to use the system bus. Two pairs of FIFO buffer is adopted, the 

reconstructed frame is written into these two pairs of FIFO. When the system bus is free, the 

data in the two pairs of FIFO are written to external memory. In this scheduling, each time 

slot is 1200 cycles on average (the time slot length is depend on the cycle time which VLC 

occupies the bus). We suppose the SDRAM latency is 5 cycles at 20MHz (that is 250 ns 

latency time per word). Combining the downsampling cycle number, this MPEG-4 video 

encoder could achieve 30 CIF images encoding in 21 mega clock cycles. 
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Figure  2-40 Encoder scheduling 

 

2.5 Summary 

In this chapter, an enhanced hierarchical motion estimation architecture is proposed, and 

MPEG-4 variable length coding hardware architecture is proposed to handle the irregular 

stream length smoothly. All modules pipeline work with each other in the MPEG-4 video 

encoder system such that it could achieve 30 CIF images encoding in 21 mega clock cycles. 


