
 6

Chapter 2 MPEG-4 Video Encoder

Hardware Design

2.1 MPEG-4 Video Encoder Algorithm

Overview

Before designing the hardware architecture, the algorithm and complexity of each

MPEG-4 video encoder component are analyzed. Therefore, software model are used to

evaluate the performance of our algorithm before starting to design the hardware architecture,

and the software model will be used to verify our hardware design in the future. The MPEG-4

video encode flow diagram is shown in Fig. 2-1

Figure 2-1 MPEG-4 video encode flow diagram

 7

The first frame is called “I frame” which is sent into the DCT module to transfer the

image data from the spatial domain to the frequency domain. The DCT algorithm is a loss-less

and reversible mathematical transformation that converts a spatial amplitude representation of

data into a frequency representation. The 2-D DCT equation is shown as below.

() () () () () ()∑∑
−

=

−

=
⎥⎦
⎤

⎢⎣
⎡ +

⎥⎦
⎤

⎢⎣
⎡ +

=
1

0

1

0 2
12cos

2
12cos,2,

M

m

N

n N
vn

M
umnmfvCuC

MN
vuF ππ

，

()

efficient domain co FrequencyF(u,v)
 domain frequencydex in the Column inv
mainequency do in the fr Row indexu

in data Time domaf(m,n)
 N- n in time domadex in the Column inn

 M- m me domain in the ti Row indexm
t data setn the inpu columns i Number ofN

tut data sein the inprowofNumberM

elsexwhenx

where

=
=
=

=
≤≤=

≤≤=
=
=
=

==

10
10

1

 0
2

1C

,

One of the advantages of the DCT is its energy compaction property, that is, the signal

energy is concentrated on a few components while most other components are zero or are

negligibly small. The energy compaction property of the DCT is well suited for image

compression, since as in most images, the energy is concentrated in the low to middle

frequencies, and the human eye is more sensitive to the low and middle frequencies. From

Fig. 2.2, we can see that most of the energy of the frequency domain is concentrated at the

upper left corner.

 8

Figure 2-2 Lena image transferred from spatial domain to frequency domain

The DCT coefficient output will then be sent into the quantizer module. In Fig. 2-3, the

Q(x) is mapped from x, in this way we could reduce the expression bit numbers for x.

Figure 2-3 Quantization mapping

Fig. 2-4 is a macro block coded in intra mode, and Fig. 2-5 is the coefficient amplitude

distribution of four blocks. We can see that the high relationship between neighboring DCT

coefficient blocks. Therefore, the MPEG-4 uses the AC/DC prediction technique to reduce the

expression amplitude of DC and AC values in I frame.

 9

Figure 2-4 Macro block coded in intra mode

Figure 2-5 DCT coefficient (luma blocks)

The selection of AC/DC prediction direction is based on comparison of the horizontal

and vertical DC differences around the block which is encoded currently. In Fig.2-6, the X is

currently encoded block, and the DC prediction behavior is shown in Table 2-1.

 10

Table 2-1 DC prediction pseudo code

IF (|FA [0][0]-FB[0][0]|<|FB[0][0]-FC[0][0]|)

 Predict from block C

Else

 Predict from block A

Where F [0][0] is the DC value of a block.

Figure 2-6 DC Prediction

After the direction of DC prediction is decided, the direction of AC prediction is the

same as the direction of DC prediction which is shown in Fig. 2-7.

 11

Figure 2-7 AC Prediction

The scan order supported by the MPEG-4 is shown in Fig. 2-8. After the re-ordering scan,

the non-zero coefficient will be gathered in the head of scan sequences and this will help to

improve the back-end entropy coding efficiency.

Figure 2-8 VLC Scan Order

The VLC is a look-up table operation, it will look for a code word according to the 3-D

run length coding (Run, Level, Last). In addition, the encoder will reconstruct the quantized

coefficient by the inverse quantizer and the inverse DCT and then store it in the previous

 12

frame memory.

In the “P frame”, current frame will be input into the motion estimation to compare with

the previous frame and derived a motion vector. In this way, the motion compensation could

subtract the predicted macro block from the current macro block. Then, the error residue is

input into texture coding module. Fig. 2-9 shows the concept of motion estimation.

Figure 2-9 Motion Estimation Concept

Fig. 2-10 shows a moving car and Fig. 2-11 is derived by subtracting previous frame

from current frame directly without motion estimation and plus an offset value 128. Fig. 2-12

shows the motion vector distribution after doing a full search of search range = 16. Fig. 2-13

shows the error residue distribution which is derived by subtracting previous frame from

current frame according to the motion vector and plus an offset value 128. We can see that the

car and background contour in Fig. 2-13 is unobvious contrast with Fig. 2-11, so that the

motion estimation and the motion compensation subtraction could decrease the image

differences to be close to zero. This will improve the coding efficiency in advance.

 13

Figure 2-10 Moving car

Figure 2-11 Error residue without Motion estimation

Figure 2-12 Motion vector distribution

 14

Figure 2-13 Error residues with motion estimation

2.2Motion Estimation Architecture Design

2.2.1 Algorithm Analysis and Design

The motion estimation is an important part in the MPEG-4 video encoder. It dominants

the encoded image quality, the compression ratio, the computation time and it requires the

largest hardware resource in the whole encoder. In all algorithms of the motion estimation,

full search block matching algorithm (FSBMA) is well known and have been developed for

fast implementation [5]-[7] because of its good image quality and regularity data flow in

hardware design. Fig. 2-14 shows a 16x16 current macro block doing a full search of search

range = 16, and the pseudo code is shown in Table 2-2.

 15

Figure 2-14 Search area and current MB of full search

 16

Table 2-2 Full search pseudo code

begin

 min_SAD=Large_Number;

 for i= -16 to 16

 for j= -16 to 16

 {

 cur_SAD=SAD(i,j) ;

 if cur_SAD < min_SAD

 {

 min_SAD = cur_SAD ;

 motion_vector_x = i ;

 motion_vector_y = j ;

 }

 }

end

()

()21

21

15

0

15

0
2121 ,)1,,(),,(),(

1 2

,nn ition t and pose e when timpixel valu

 is the ,t,nnBtjninBtnnBjiSAD
n n

==

−−−−= ∑∑
= =

In Table 2-2, the full search algorithm is a four levels loop operation and whose

operation require 3.3 giga times per second for subtracting to get absolute value for 30Hz CIF

image size processing. Due to the high computational complexity, the full search algorithm

has a significant problem in real-time applications. To resolve this problem, we proposed a

hierarchical motion estimation algorithm (HMEA) which is based on full search algorithm

and could reduce the computation complexity and retain good image quality.

Our proposed HMEA consists of three resolution levels of images：

 17

Level0：It is the original image resolution.

Level1：It is the image which downsampled from Level0, the downsampling filter is

expressed as following：

() () () () ()⎣ ⎦4/]12,1212,22,122,2[, 00001 +++++++= jipjipjipjipjip kkkkk ，

ee kth frami,j) of thposition (ue at the pixel valls the Leve(i,j) meanp

ee kth frami,j) of thposition (ue at the pixel valels the Lev(i,j) meanwhere p

k

k

0

1
0

1

Level2：It is the image which downsampled from Level1 ,the downsampling filter is

expressed as following：

() () () () ()⎣ ⎦4/]12,1212,22,122,2[, 11112 +++++++= jipjipjipjipjip kkkkk ，

ee kth frami,j) of thposition (ue at the pixel valls the Leve(i,j) meanp

ee kth frami,j) of thposition (ue at the pixel valels the Lev(i,j) meanwhere p

k

k

1

2
1

2

Our experiments show that downsizing the image without low pass filter will degrade

2dB PSNR on average contrast with downsizing image with low pass-filter, and the

experimental results are shown in Table 2-3. That’s the reason we adopt low pass filter

process in our image downsizing procedure.

Table 2-3 PSNR comparison of different downsizing strategies

Video Sequence Downsizing without low pass filter

PSNR

Downsizing with low pass filter

PSNR

News 31.06 32.88

Foreman 29.33 31.29

Flower garden 23.16 24.59

Table tennis 28.29 31.63

After the downsampling procedure, the macro block size in Level0, Level1, Level2 are

 18

16x16, 8x8 and 4x4 which are shown in Fig. 2-15.

Figure 2-15 Downsampling procedure

The HMEA is based on a multi-resolution frame structure mentioned above. The overall

procedure is shown in Fig. 2-16.

Search at Level2：The Level2_Cur is a 4x4 block which downsampled 2 times from the

original resolution macro block and the Level2_Pre is a 12x12 previous frame search area.

How many candidates should be chosen on Level2 is evaluated, and the results are shown in

Table 2-4. Table 2-4 includes different types of the video sequences, “News” is an almost

static video sequence, “Foreman” is a middle motion video sequence, “Flower garden” is a

video sequence whose whole scene is moving and contains many tiny objects in the scene,

and “Table tennis” is a big motion video sequence. From all the sequences, we can see that the

effect of 3rd candidate does not have big impact on the improvement of PSNR. On the

contrary, too many candidates in Level2 might cause local minimum problem to direct the

next level search to a wrong motion vector, so that we choose two candidates in the Level2.

 19

For search range=16 case, Level2_Cur do a full search of search range = 4 on the Level2_Pre

and get two motion vectors with SADs. These two motion vectors will be the start point of

next level full search.

Table 2-4 PSNR comparison of different candidate number in Level2

Video sequence 1 candidate 2 candidates 3 candidates Full Search

News 32.56 32.88 33.17 33.46

Foreman 30.29 31.29 31.60 32.06

Flower garden 24.37 24.59 25.46 25.81

Table tennis 28.55 31.63 31.74 32.07

Search at Level1：The Level1_Cur is a 8x8 block which downsampled 1 time from

original resolution macro block. Level1_Pre is a 12x12 previous frame search area.

Level1_Cur do 2 times of full search of search range = 2 on the Level1_Pre to refine the

Level2 search results and get one motion vector with SAD. This motion vector will be the

start point of next level search.

Search at Level0：The Level0_Cur is a 16x16 block which is the original resolution

macro block. Level0_Pre is a 20x20 previous frame search area. Level0_Cur do a full search

of search range = 2 to refine the result of Level1 on the Level0_Pre.

 20

Figure 2-16 Hierarchical search procedure

Before hardware design, software mode are used to simulate the HMEA and other

motion estimation algorithm such as full search, diamond search (radius is one pixel) and

three step search behavior. The results are shown in Table 2-5, and the PSNR of HMEA is

very close to Full search algorithm.

 21

Table 2-5 PSNR comparison between different algorithms

 Video sequences Full search Proposed

HMEA

Diamond search Three step

search

Foreman 32.06 31.29 30.80 30.85

Akiyo 42.95 42.82 42.92 42.8

Flower garden 25.81 24.59 25.68 24.58

News 33.46 32.88 32.54 32.7

Mobile 24.23 23.93 24.15 23.92

Table Tennis 32.07 31.63 30.66 30.5

2.2.2 Hierarchical Motion Estimation Hardware

Architecture Design

 Downsampling Unit

Four rows of Level0 are downsampled and two rows of Level1 and one row of Level2

are got each loop, and totally 72 loops are needed for one CIF image.

In a loop, four original resolution row data are input into the downsampling unit, the

L0_row0, L0_row1, L0_row2, L0_row3 which are shown in Fig. 2-17, and Fig. 2-18 shows

the data path to downsample Level0 image to Level1 image.

1. Input 1st row：At first, input the L0_row0 in Fig. 2-17 into the L0_even_data_path in

Fig. 2-18. After processing the L0_row0, the P1+P2 and P3+P4 temporary values are

stored in RAM1.

2. Input 2nd row：Second, input the L0_row1 into the L0_row1_data_path, the data flow

 22

through the three stages pipeline registers and L1_row0 result are stored in the RAM2.

At the same time, the data output from the 2nd stage pipeline register in the

L0_row1_data_path, the L1_P11, the L1_P12, the L1_P13, and the L1_P14 will be input

into the L1_row0_data_path and the temporary value of L1_P11+L1_P12 and

L1_P13+L1_P14 are stored in RAM4.

3. Input 3rd row：Third, the L0_row2 is sent into the L0_even_data_path, and the P1+P2

and P3+P4 temporary values of the L0_row2 are stored in RAM1.

4. Input 4th row：Fourth, the L0_row3 is sent into the L0_row3_data_path. The same

condition as “Input 2nd row”, the L1_row1 result will be stored in the RAM3, and the

L1_P21, the L1_P22, the L1_P23 and the L1_P24 will be input into the

L1_row1_data_path. Then, the L2_row result will be stored in the RAM5.

5. Finally, the RAM2, the RAM3, and the RAM5 contain the Level1 and Level2 result

respectively.

6. Repeat step 1. ~ step 5. 71 times to finish one CIF image downsampling.

Using this architecture, only need 25344 + 3168 + 1584 = 30096 cycles are needed to

finish one CIF image downsampling. That is, 76 cycles per macro block on average.

 23

Figure 2-17 Downsample 4 Level0 rows

Figure 2-18 Level0 downsampling

+

 24

Figure 2-19 Level1 downsampling

 Motion Estimation Architecture

After downsampling process, the hierarchical motion estimation is started.

In [8], the BSU (Basic Search Unit) is a one dimension systolic processing element array. The

data reuse is not good enough so that the current block and previous block data must be

reloaded once again. This architecture needs 40 mega clock cycles to finish 30 CIF images

motion estimation. If it adds other system overhead into the consideration (such as bus

arbitration or software overhead), it will be difficult to achieve real-time encoding. Therefore,

we propose an enhanced 2-D semi-systolic BSU (2DBSU) architecture to improve the data

reuse capability and use two 2DBSU to improve the processing speed. Our proposed

architecture decreases 80% bandwidth requirement and only needs 4.396 mega clock cycles to

achieve 30 CIF images motion estimation.

 25

Fig. 2-20 shows the 2DBSU architecture, this architecture could do a 4x4 current block

full search whose search range = 2 and the basic data flow is shown in Fig. 2-21.

Figure 2-20 2DBSU architecture

 26

Figure 2-21 2DBSU basic data flow

In Fig. 2-21, the current MB is a 4x4 block and the search window is a 12x12 block, the

search window is partitioned into two parts, the left part and the right part (that is “Pl” and

“Pr” in Fig. 2-21), then input the data into the 2DBSU architecture from the C, the Pl and the

Pr input ports as shown in Fig. 2-20. The PE00 in 2DBSU will accumulate the SAD of the

search position (-2, -2), and the PE10 will accumulate the SAD of the search position (-1, -2),

in the similar way, the other PEs will accumulate the SADs of the other search position. Based

 27

on this 2DBSU architecture and the basic data flow, we develop a motion estimation

architecture which is shown in Fig. 2-22. Two 2DBSU are used to accelerate the motion

estimation and improve the data-reuse capability. This architecture is commonly used among

different levels and could extend search range without adding additional hardware.

Figure 2-22 Motion unit architecture

1. In Level2 search: the current MB is a 4x4 block and the search window is a 12x12 block,

the search window is partitioned into two parts, one part is input into the BSU0 and the

other is input into BSU1. The data partition and data flow is shown in Fig. 2-23. The C0

is fed the current MB twice and the C1 is fed the same data as the C0 fed but delayed 4

cycles. And the Pl0 is fed the left part data of search window row by row. The Pr0 and

the Pl1 are fed the middle part of search window four cycles later than the Pl0. The Pr1 is

fed the right part of search window four cycles later than the Pl1. After 17 cycles, the 1st

Level2 SAD will be output with relative motion vector from BSU0 and the other SADs

and motion vectors will also be output from the BSU0 and the BSU1 continuously. The

 28

SADs output from the BSU0 and the BSU1 will be input into the comparator. The

minimum SAD and its corresponding motion vector will be retained in the comparator

until the Level2 search is finished. After 56 cycles the two candidate motion vectors are

found.

Figure 2-23 Level2 data flow

 29

2. In Level1 search: the two candidate motion vectors found in Level2 are used as the

starting point and do a full search of search range = 2 to refine the motion vector. In

Level1, the current MB is an 8x8 block and the search window is a 12x12 block. The

current block is partitioned into four parts (the left-upper, left-bottom, right-upper and

right-bottom) and the search window are partitioned into three parts as shown in Fig.

2-24. Then, the left two parts (left-upper and left-bottom) of the current MB are input

row by row into the C0, and the right two parts (right-upper and right-bottom) of the

current MB are input row by row into the C1 four cycles later than the C0. In the search

window, the condition is the same as searching at Level2, the Pl0 is fed with the left part

data of search window row by row. The Pr0 and the Pl1 are fed with the middle part of

search window four cycles later than the Pl0, and the Pr1 is fed with the right part of

search window four cycles later than the Pl1. After 17 cycles, the 25 partial SADs of

left-upper and right-upper part are begin to be output from BSU0 and BSU1 sequentially,

and these partial SADs are sent into the “Level0/Level1 path” in Fig. 2-22 to accumulate

with the partial SADs of left-bottom and right-bottom later. After 56 cycles, the 1st SAD

of Level1 with the relative motion vector will be output from the “25 words circular

buffer”, and the rest of the other 24 SADs with the motion vectors are also output

sequentially. The Level1 SADs will be sent into the comparator and the minimum SAD

with the corresponding motion vector will be retained in the comparator. After 56+25 =

81 cycles, the first time Level1 search is finished. Because Level2 has two candidates,

Level1 search must be done two times according to these two motion vector candidates,

and decide which motion vector is proper one. The Level1 search totally need 162 cycles

per MB.

 30

Figure 2-24 Level1 data flow

3. In Level0 search: The most proper motion vector found in Level1 is the search start point

in Level0 search. A full search whose search range = 2 is done to refine the motion

vector found in Level1. In Level0, the current MB is a 16x16 block and the search

window is a 20x20 block. The current block is partitioned into sixteen parts and the

search window into five parts as shown in Fig. 2-25.

(1) In the first round: The “LL” part is input into the C0, and the “LR” part is input into

 31

the C1 four cycles later than the “LL” part. The part1 of search window is input into

the Pl0, the part 2 is input into the Pr0 and the Pl1 four cycles later than the part1, the

part3 is input into the Pr1 four cycles later than the part2. At the 17th cycle, the 1st

partial SAD with relative motion vector is input into the “25 word circular buffer” as

shown in Fig. 2-22 to accumulate with other partial SADs of the rest parts later. After

88 cycles, the 25 sums of partial SADs of the “LL” and the “LR” are stored in the

“25 word circular buffer”.

(2) In the second round: The second round is started at the 89th cycle, the “RL” is begin

to be input into the C0, and the “RR” is input into the C1 four cycles later than the

“RL”. In the search window, the part3 is input into the Pl0 and the part4 is input into

the Pr0 and Pl1 four cycles later than the part3. The part5 is input into the Pr1 four

cycles later than the part4. The 25 partial SADs are input into the “Level0/Level1

path” and accumulate with the 25 sums of partial SADs gotten in the 1st round. At the

152th cycle, the 1st Level0 SAD with relative motion vector is output from the “25

word circular buffer” and input into the comparator. The minimum SAD and its

corresponding motion vector will be retained in the comparator. At the 176th cycle,

the 1st motion vector is output from the “25 word circular buffer”, and the Level0

search totally need 176+25 = 201 cycles.

 32

Figure 2-25 Level0 data flow

In Table.2-5, the image quality of HMEA is very close to full search. In addition to

 33

quality, another important character of the motion estimation is its processing speed. The

processing speed and the ASIC implementation cost of the HMEA are compared in Table 2-6.

The [8]-[10] use the similar algorithm as HMEA. In Table 2-6, HMEA only needs 495 cycles

to find one motion vector. The 495 cycles include the downsampling cycles needed per MB.

The on-chip memory usage also includes the memory required in downsampling unit. The

HMEA costs an acceptable ASIC area and needs the fewest cycle to accomplish the motion

estimation computation.

Table 2-6 Performance comparison with other architectures (search range = 16)

Architecture Cycles

per MV

Required cycles

for 30 CIF

Gate

counts

On-chip

memory usage

Proposed HMEA

(Hierarchical)

495 5.88 mega clock

cycles

59K gates 1393 bytes

Kun-Bin Lee [9]

(Subsampling)

615 7.31 mega clock

cycles

24.8K

gates

2623 bytes

Seongsoo [10]

(Low Bit-Resolution)

1320 52.27 mega

clock cycles

110K gates 90K bytes

Jae Hun Lee [8]

(Hierarchical)

2640 40 mega clock

cycles

25K gates 288 bytes

 Motion unit integration

The motion compensation subtracts and compensation add will be described in the

following, and the whole motion unit integration will also be explained.

The motion unit contains the motion estimation, the motion compensation add, the

motion compensation subtract and the downsampling. The architecture is shown in Fig. 2-26.

 34

The “MC current MB” and “MC previous MB” are on-chip memory. The “MC controller” is a

finite state machine which could latch off-chip pixel data according to motion vector, and the

“MC interpolator” is a bilinear interpolator which could do the pixel interpolation according

to the motion vector. The “MC downsampling” is a downsampling circuit to downsample the

MB level data.

Figure 2-26 Motion unit integration

When the motion estimation (ME) input buffer is fed with the current MB, the “MC

current MB” is also fed with the same data. Therefore, the bandwidth can be saved to avoid

 35

re-loading current MB again.

When the ME is finished, the “MC controller” will latch the previous MB from the

“External Memory” according to the motion vector got from the ME. Because the UV image

is half size of the Y image, the “MC interpolator” must interpolate the UV data if the motion

vector is odd. After interpolation, the previous MB data will be stored in the “MC previous

MB” temporarily and be subtracted from the “MC current MB” later. The subtracted

difference will be sent into DCT buffer.

In the same time slot (please refer to section 2.4 system scheduling), the data from

inverse DCT will add with the data in the other “MC previous MB” (Considering the whole

MPEG-4 encoder system pipeline scheduling, the “MC previous MB” is a ping-pong buffer

mode. That is, when “MC controller” is writing data into the buffer1 in the “MC previous

MB” the IDCT could read out the buffer2 in the “MC previous MB” to do reconstruct

operation. In the next MB, the “MC controller” will write into the buffer2 and the IDCT will

read out the buffer1.) .

Since the HMEA needs Level2 and Level1 reconstructed frame, we design a “MB

downsampling” circuit which could do a MB level downsampling without wasting any extra

time (we use the interval which IDCT does not output data to the motion unit). In this way,

the “downsampling” circuit just has to downsample the current frame in each “P frame”

processing time and do not need to downsample the reference frame. The MB relation is

shown in Fig. 2-27, and the “MB downsampling” circuit is shown in Fig. 2-28. When the

IDCT input 16 pixels into the motion unit, we could get 4 pixels of Level1, and two pixels of

Level2. When the “MC downsampling” gets 4 Level1 pixels, it will write out to the “External

Memory”. Finally, when the IDCT finish outputing Y1~Y4, U and V data, the Level1 macro

block all write out to “External Memory”. The “Level2 data register1 ~ register4” have stored

the Level2 macro block, and the “MC downsampling” could write out to the “External

Memory”. Therefore, the reference frame of the next P frame is downsampled without

 36

wasting extra time.

Figure 2-27 Relationship of different level MB

 37

Figure 2-28 MB downsampling circuit

 Off-chip memory Organization

In the off-chip memory organization design, two main parts of off-chip memory are used

to store two frames, “Mem1” and “Mem2”. For the I frame, the frame source is always the

“Mem1”, and the IDCT throughs the reconstructed frame to the “Mem2”. For the 1st P frame,

the current frame is stored in the “Mem1”, and the reference frame is stored in the “Mem2”.

The reconstructed frame is written to the “Mem1”. And for the 2nd P frame, the current frame

 38

is stored in the “Mem2”, and the reference frame is stored in the “Mem1”. In this way, the

frame memory status is switch mutually until arrive the next I frame. When it arrives the next

I frame, the “Mem1” is switched back to current frame. The switch condition is shown in

Fig. 2-29.

Figure 2-29 Memory organization

2.3 Variable Length Coding Architecture

Design

2.3.1 VLC Hardware Architecture Design

The MPEG-4 bit stream syntax hierarchy is shown in Fig. 2-30. The video object

 39

sequence delivers the complete MPEG-4 visual scene, which may contain 2-D or 3-D natural

or synthetic objects. The video object consists of video object layers, the video object layer

can be of arbitrary shape corresponding to an object or background of the scene. The group of

video object plane is an optional level which is used for random access or error-resilience.

The video object plane is a snapshot of a video object at a particular moment. The macro

block is a 16x16 block in a frame. The block is an 8x8 block in a macro block. The

computational complexity is dramatically increased in the macro block and block level. The

bit stream processing is partitioned into two parts. The hardware is responsible for macro

block and block level bit stream processing, and the software or firmware is responsible for

the other higher levels. The hardware/software bit stream work partition is shown in Fig. 2-31

Figure 2-30 MPEG-4 bitstream syntax hierarchy

 40

Figure 2-31 Hardware/Software bitstream partition

The VLC hardware architecture is shown in Fig. 2-32. Considering the overall encoder

system scheduling, the VLC module has a ping-pong buffer, so that the VLC could achieve

pipeline work with motion unit and texture coding. In the ping-pong buffer, we design a

re-order mapping mechanism to support the three kinds of scan order in I frame (please refer

to the section 2.1 “MPEG-4 Video Encoder Algorithm Overview” and Fig. 2-7). When the DC

predict from vertical, the alternate-horizontal scan is used. When the DC predict from

horizontal, the alternate-vertical scan is applied. When the I frame predict flag is zero or in P

frame mode, the zig-zag scan is used. On average, the AC/DC prediction could improve 14%

of I frame coding efficiency. In order to use an efficient method to implement these three

kinds of scan order without wasting additional hardware cost. The alternate-horizontal and

alternate-vertical scan have some regular relationship in the memory addressing between each

other. The texture coding write in one of the buffers of VLC component, and the write order is

shown in Fig. 2-33. In next “time slot” (please refer to the section 2.4 “System Scheduling”),

the RLC module sends a sequence of number from 0 to 63 to read out the qcoefficient. In the

“Qcoefficient RAM”, a simple case statement is used to re-mapping the read address. The

alternate- horizontal and alternate-vertical read address is simply exchanged the lowest three

bits and the highest three bits with each other (which is shown in Fig. 2-34). So only the

zig-zag scan and alternate-horizontal scan re-order mapping implementations are needed and

three kinds of scan order can be achieved.

 41

Figure 2-32 VLC architecture

Figure 2-33 Texture coding write-in order

 42

Figure 2-34 VLC memory read-out order

The “RLC controller” is a finite state machine, which will read out the qcoefficient from

VLC ping-pong buffer into the “Run Length Coding” module and control the DC、cbp、mvd

look up table operation. The “Run Length Coding” will generate a 3-D symbol that is the

(Run, Length, Last).

Run：This number represents how many zeros has been encountered in the scan order

before each non-zero term arrived.

Level：This number represents the absolute number of the non-zero term.

Last：This bit represents if this symbol is the last one in a block.

Because the “Last” parameter can not be decided until encounter the last non-zero term

or last qcoefficient in a block, a specific FIFO buffer is adopted between the “Run Length

Coding” and “Coefficient Table”. This specific FIFO architecture is shown in Fig. 2-35.

 43

Figure 2-35 RLC FIFO architecture

The “full”, “almost_full” are signals to indicate “RLC controller” whether stop read out

the qcoefficient or not. And the valid output is a signal to indicate the “Huff_coder” to fetch

the (Level, Run, Last) symbol on the output port of the FIFO when there are more than two or

equivalent to two successive (Level, Run) symbols in the FIFO register. When the “RLC”

encounters the last qcoefficient, the “last” input port will be set to HIGH to set the “Last”

register of the last symbol.

The “Huff_coder” is mainly doing a look up table (LUT) for one symbol. The MPEG-4

use 3-D LUT, that is, there are 3 parameters to map one symbol to a unique code word. When

the symbol does not exist in the specific table, it will be encoded by escape mode. The

MPEG-4 standard code table is analyzed and the arrangement of the distribution of encoding

 44

mode which is shown in Fig. 2-36. The three kinds of escape mode encoding method is

described as following：

Escape type1 mode：When the code word is not in the normal mode table (Fig. 2-36

black color area). Looking up table for a LMAX [1] and calculate the Level+,

() ()()LMAXLevelabsLevelsignLevel −∗=+ and use the (Level+, Run, Last) to do LUT.

When a symbol is on the cyan color area of Fig. 2-36, the escape type1 mode is used. And the

bit stream is in the form of code word 00000011 .

Escape type2 mode：When the code word is not exist in the code table when using escape

type1 mode. Looking up table for a RMAX [1], and calculate the Run+,

()1+−=+ RMAXRunRun and use the (Level, Run+, Last) to do LUT. When a symbol is on

the red color area of Fig. 2-36, the escape type2 mode is used. And the bit stream is in the

form of code word 100000011 .

Escape type3 mode：When the code word is not exist in the code table when using escape

type2 mode, using the escape type3 mode to encode this symbol. The code word is in the form

of . When a symbol is

on the white color area of Fig. 2-36, the escape type3 mode is used.

 45

Figure 2-36 Encoding mode distribution

The “Huff_coder” will output one stream word to the “packer”. The packer is responsible

for packaging bit stream into 32-bits packet and writes out to the external memory. Due to the

irregular length of code word, a FIFO buffer is used between the “Huff_coder” and the

“Packer”. The architecture of “Packer” is shown in Fig. 2-37. When the “Packer” read in one

code word, the code word will be stored in the “D1” register and the length of this code word

will be stored in the “D2” register. Considering the area and timing issues, two 16-bits barrel

shifters are adopted instead of two 32-bits barrel shifters. The “Barrel shifter 1” and the

“Barrel shifter 2” are both right shift window, which would locate the code word according to

the code length and threw the located code word to “D3” register and the “D4/D5” register.

The “D3” register contains the effective residue bits which hasn’t put into the “D4/D5”

register, and the “D6” register stores the effective residue bit numbers in the “D3”. The VLC

hardware implementation results are shown in Table 2-7.

 46

Figure 2-37 Packer architecture

Table 2-7 Variable length coding ASIC implementation result

Process UMC 0.18 um

Max. Operation Frequency 85 MHz

Power 125 mW

Gate count 8860 gates

2.4 System Scheduling

After analyzing the clock cycles needed for processing one macro block, three stages

pipeline scheduling is applied in the whole MPEG-4 video encoder system. The “Motion

 47

Unit”, “Texture Coding” and “VLC” are three pipeline stages respectively. The whole encoder

system architecture is shown in Fig. 2-38. The “controller” is a finite state machine which

could control these three components and assurance that they could work together compatibly.

Besides, the controller is also responsible for handling the data flow and multiplexer control

in different frame type (I frame and P frame).

Figure 2-38 Encoder architecture

The controller finite state machine is shown in Fig. 2-39. When the controller jump out

from the idle state, it will initialize the VLC internal register in the init_vlc_st state.

In I frame: The controller jump into a loop between the i_text_en state and the

i_text_vlc_en state. After 396 loops, it jumps to the dn_en state to downsample the

reconstructed frame. After finish downsampling, it writes 0x03 to the DMAC status register to

start the DMAC to move bitstream from the SSRAM to the SDRAM at the finish_frame_st

state. Then it goes back to idle state.

In P frame: The controller must downsampling the current frame first at the dn_en state.

Then it jumps into the loop between the p_ME_text_en state and the p_text_vlc_en state.

After 396 loops, it jumps to the finish_frame_st state to writes 0x03 to the DMAC status

 48

register to start the DMAC to move bitstream from the SSRAM to the SDRAM and then goes

back to the idle state.

Figure 2-39 Encoder controller finite state machine

Fig. 2-40 shows the pipeline scheduling in the “Intra MB” and the “Inter MB” mode. The

“IDCT” output timing is distributed in a whole time slot (the duration of two dotted line is

 49

called “1 time slot”) uniformly. The “VLC” has highest priority to use the system bus, and the

ME has second priority to use the system bus. Two pairs of FIFO buffer is adopted, the

reconstructed frame is written into these two pairs of FIFO. When the system bus is free, the

data in the two pairs of FIFO are written to external memory. In this scheduling, each time

slot is 1200 cycles on average (the time slot length is depend on the cycle time which VLC

occupies the bus). We suppose the SDRAM latency is 5 cycles at 20MHz (that is 250 ns

latency time per word). Combining the downsampling cycle number, this MPEG-4 video

encoder could achieve 30 CIF images encoding in 21 mega clock cycles.

 50

Figure 2-40 Encoder scheduling

2.5 Summary

In this chapter, an enhanced hierarchical motion estimation architecture is proposed, and

MPEG-4 variable length coding hardware architecture is proposed to handle the irregular

stream length smoothly. All modules pipeline work with each other in the MPEG-4 video

encoder system such that it could achieve 30 CIF images encoding in 21 mega clock cycles.

