
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 140.113.38.11

This content was downloaded on 25/04/2014 at 08:06

Please note that terms and conditions apply.

Commensurate lock-in and incommensurate supersolid phases of hard-core bosons on

anisotropic triangular lattices

View the table of contents for this issue, or go to the journal homepage for more

2009 EPL 87 36002

(http://iopscience.iop.org/0295-5075/87/3/36002)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0295-5075/87/3
http://iopscience.iop.org/0295-5075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


August 2009

EPL, 87 (2009) 36002 www.epljournal.org

doi: 10.1209/0295-5075/87/36002

Commensurate lock-in and incommensurate supersolid phases
of hard-core bosons on anisotropic triangular lattices

Sergei V. Isakov
1
, Hong-Chi Chien

2
, Jian-Jheng Wu

3
, Yung-Chung Chen

4
, Chung-Hou Chung

3
,

Krishnendu Sengupta
5 and Yong Baek Kim1

1Department of Physics, University of Toronto - Toronto, Ontario M5S 1A7, Canada
2Department of Physics, National Tsing Hua University - Hsinchu, Taiwan 30013 ROC
3 Electrophysics Department, National Chiao Tung University - Hsinchu, Taiwan 300 ROC
4Department of Physics, Tunghai University - Taichung, Taiwan 407 ROC
5 Theoretical Physics Division, Indian Association for the Cultivation of Sciences - Kolkata-700032, India

received 1 May 2009; accepted 24 July 2009
published online 28 August 2009

PACS 67.80.kb – Supersolid phases on lattices
PACS 05.30.Jp – Boson systems
PACS 75.40.Mg – Numerical simulation studies

Abstract – We investigate the interplay between commensurate lock-in and incommensurate
supersolid phases of the hard-core bosons at half-filling with anisotropic nearest-neighbor hopping
and repulsive interactions on triangular lattice. We use numerical quantum and variational
Monte Carlo as well as analytical Schwinger boson mean-field analysis to establish the ground
states and phase diagram. It is shown that, for finite-size systems, there exist a series of jumps
between different supersolid phases as the anisotropy parameter is changed. The density ordering
wave vectors are locked to commensurate values and jump between adjacent supersolids. In the
thermodynamic limit, however, the magnitude of these jumps vanishes leading to a continuous set
of novel incommensurate supersolid phases.

Copyright c© EPLA, 2009

Introduction. – Supersolid phases with coexisting
long-range diagonal and off-diagonal orders have long
been recognized as interesting conceivable ground states of
superfluid systems in the presence of mobile vacancies [1].
Recent experiments have also reported possible evidence
for such a state in 4He [2]. Another, relatively new, route
to supersolid phases has recently been explored in the
hard-core boson models on frustrated two-dimensional
(2D) lattices [3,4]. In such lattices, supersolid phases may
arise due to intricate competition between kinetic and
interaction energies, and as a result present an excellent
playground for discovery of possible novel universality
classes of quantum phase transitions [5,6]. Further interest
in these systems stems from potential realization of these
models in ultracold atomic systems on optical lattices [7].
The diagonal (density) orders of the supersolid phases

discovered so far have been restricted to commensurate
orders. For example, a commensurate supersolid was
discovered for the hard-core bosons on the isotropic
triangular lattice [3] with the density ordering wave
vector Q0 = (4π/3, 0) along with non-vanishing superfluid
order parameter [3]. A qualitative understanding of such

a supersolid state can be obtained by considering the
deviation from a commensurate boson filling fraction at
which the ground state is a perfect Mott crystal with
a long-range diagonal order. The additional particles or
holes resulting from such a deviation condense to produce
a superfluid while retaining the backbone of the existing
Mott solid. This leads to the coexistence of off-diagonal
(superfluid) and diagonal (Mott) orders. One may expect
that the incommensurate version of the supersolid phases
may arise when there are more than one competing inter-
actions or length scales in the system. If such a phase exists
in lattice models, this may be a much closer analog of the
supersolid phases originally proposed for the continuum.
In this letter, we investigate the possible presence of

incommensurate supersolid phases of the hard-core bosons
at half-filling with anisotropic nearest-neighbor hopping
and repulsive interactions on triangular lattices. We estab-
lish the ground states and phase diagram using several
different and complementary methods, namely numerical
quantum and variational Monte Carlo (QMC) techniques
as well as analytical Schwinger boson mean-field theory.
It is found that, for finite-size systems, there exist a series
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of jumps between different supersolid phases as a func-
tion of the anisotropy parameter. The (density) ordering
wave vectors of these phases are pinned to commensurate
values and jump upon entering a nearby supersolid phase.
The ordering wave vectors assume every single commen-
surate values for an interval of the anisotropy parame-
ters. In the thermodynamic limit, however, we find that
these ordering wave vectors become a continuous function
of the anisotropy parameter, leading to a continuous set
of incommensurate supersolids. We emphasize that such
a continuous set of supersolid orders represent exciting
discovery of novel quantum structures that have not been
seen in previous studies of lattice boson systems.

Lattice model. – We begin with the following hard-
core boson model on an anisotropic triangular lattice.

Hb =
∑
〈i,j〉

[
−tij(b†i bj +H.c.)+Vijninj

]
−µ
∑
i

ni, (1)

where bi denotes the boson annihilation operator at site
i and 〈ij〉 runs over the nearest-neighbor sites. The
hopping tij and repulsive interaction Vij are given by
tij = t1(Vij = V1) and tij = t2(Vij = V2) for the nearest-
neighbor sites along the diagonal and horizontal bonds of
a triangular lattice (if it is viewed as a square lattice with
one additional diagonal bond per each plaquette). Here
we shall fix the anisotropy parameter η= t2/t1 = V2/V1.
For η= 1, the model reduces to the well-known isotropic-
triangular-lattice model. Such a hard-core boson model is
also equivalent to an anisotropic spin-1/2 XXZ model via
the well-known Holstein-Primakoff mapping [3].
In the isotropic case, the classical limit of this model

(t1,2 = 0) has an extensive ground-state degeneracy and
power law density-density correlations (or Sz-Sz correlator
in the XXZ model) at zero temperature [8]. The ground-
state degeneracy at the isotropic point is completely lifted
for η < 1 and the system orders at Q1 = (π, π). On the
contrary, the degeneracy is only partially lifted for η > 1.
Here each diagonal chain is ordered antiferromagnetically
at Q2 = (π, 0) but the chains can be shifted with respect
to each other giving rise to 2L ground states, where L
is the linear system size. We expect the first (second)
type of ordering in the quantum model for η� (�)1 and
call these phases solid I(II) for future reference. For the
quantum model, when t1,2 is turned on, it is well known
that the system exhibits a supersolid phase at η= 1 and
large enough values of V1/t1 [3]. The key point which we
want to address in this paper is the fate of the supersolid
phase when η �= 1.
Quantum Monte Carlo. – To address this prob-

lem, we perform QMC simulations using a plaquette
generalization [9] of the Stochastic Series expansion (SSE)
algorithm [10], where the elementary lattice unit is a trian-
gle; this results in improved efficiency for large values
of V1/t1. We measure the superfluid density along the
diagonal (a2) and horizontal (a1) lattice directions by
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Fig. 1: (Colour on-line) The superfluid density along a2 as a
function of the anisotropy parameter η for different system sizes
and temperatures with V1/t1 = 10. The inset shows a similar
plot for the superfluid density along a1. Lines are guides to the
eye. The number of steps for L= 12, 24, 48, 96 are 3, 5, 9, 17,
respectively. The number of jumps between adjacent steps is
hence 2, 4, 8, 16, respectively.

measuring the corresponding winding numbers W 2ai [11]:
ρs1(2) =W

2
a1(2)
/βt1, where β is the inverse temperature.

We also measure the equal-time density-density correlator
S(q)/N = 〈ρ†qτρqτ 〉, where ρqτ = (1/N)

∑
i ρiτ exp(iq · ri)

and ρiτ is the boson density at site i and imaginary
time τ .
We begin with the case η� 1. A plot of the superfluid

density ρs2 along the a2 lattice direction is shown in fig. 1
as function of η for different system sizes and tempera-
tures. Notice that it exhibits a staircase structure with
the number of steps proportional to the system size. Also,
when the system size is doubled, the number of jumps
between adjacent steps doubles and the gap between them
decreases by half. The corresponding plot for ρs1 is shown
in the inset of fig. 1. As can be clearly seen from both
plots, the superfluid density undergoes several discontinu-
ous jumps before reaching zero at η� 1.8. Also, as shown
in fig. 2, the density-density correlator (in the thermo-
dynamic limit) in each segment of η is finite at some
ordering wave vector Q(η) in the corresponding parameter
range. Further, the ordering wave vectorQ(η) is a constant
along the “plateau” and changes discontinuously upon
entering the next phase. Thus, for these finite-size systems,
the “plateaus” for 1� η� 1.8 correspond to distinct super-
solid phases with sharp transitions between them.
Next we address the anisotropy dependence of the

ordering wave vectors. The evolution of Q= (kx, ky)
as a function of η is shown in fig. 3. Here we have
chosen (kx, ky/

√
3) = (n1b1+n2b2)/2πL, where b1 =

2π(1, 1/
√
3), b2 = 2π(0, 2/

√
3) are the reciprocal lattice

vectors and n1, n2 are integers. Comparing figs. 3 and 1 we
find that the system locks at rational wave vectors that are
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Fig. 2: (Colour on-line) The equal-time structure factor
S(Q(η)) at the ordering wave vector Q(η) as a function of η for
different system sizes and temperatures. All other parameters
are the same as in fig. 1. Judging from the size dependence of
the data, the structure factor is clearly finite in the thermody-
namic limit.
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Fig. 3: (Colour on-line) The ordering wave vectors Q(η) =
(kx, ky) as a function of η for different system sizes and
temperatures. All the parameters are the same as in fig. 1.
Note that for odd kxL, ky cannot be zero and hence is off the
axis. The data for L= 96 for η > 1.6 are not fully equilibrated,
leading to the noisy behavior.

commensurate with the lattice in the “plateau” regions.
The ordering wave vector goes from Q0 = (4π/3, 0) at
the isotropic point (η= 1) to Q1 = (π, 0) at the transition
point to the solid II phase (η� 1.8), picking all possible
commensurate values in between. The discontinuous
jumps of Q(η) between these commensurate values
decrease in magnitude with increasing system size. The
nature of the phase diagram for η < 1, with 0.84� η� 1,
turns out to be qualitatively similar. We again find a
series of supersolid phase with the ordering wave vector
pinned to commensurate values along the “plateaus”,
before the system reaches the Mott phase solid I at
η= 0.84. The only difference comes from the fact that for
η < 1, kxL is always even, so that ky remains pinned to
zero throughout the phase diagram.

Fig. 4: (Colour on-line) Ground-state phase diagram obtained
by VMC as a function of η and V1/t1 for L= 24. The supersolid
phase exists for V1 � 10t1 and between 0.8� η� 1.5. The inset
shows the superfluid order parameter and the density-density
correlators S(π, π) and S(2π/3, 2π/3) as a function of η for
V1/t1 = 9. The transition from the Mott solid I to supersolid
phase occurs at η� 0.8.

Variational Monte Carlo. – We now supplement the
QMC results with the VMC studies of the global phase
diagram. Following ref. [12], we use a variational wave
function:

|Ψ〉= e− 12
∑
i,j vi,jninj |Φ0〉, (2)

where |Φ0〉= (b†k=0)N |0〉 is the non-interacting superfluid
wave function and N is the total number of bosons. The
components of the Jastrow potential, vi,j = v(|Ri−Rj |)
are independently optimized to take into account the
correlations between particles at different sites. The vari-
ational ground-state energy decreases with larger number
of vi,j . For the present study, we have incorporated 15
vi,j parameters to make our result qualitatively and semi-
quantitatively consistent with the QMC results. The Stan-
dard Metropolis algorithm is used to calculate the vari-
ational energy. The method of statistical reconfiguration
by Sorella [12] is employed to obtain the optimized para-
meters. With the optimized wave function, we compute
the superfluid density ρ(k) =

∑
i,j e

i(Ri−Rj)·k〈b†i bj〉, the
density-density correlator S(q), and obtain the ground-
state phase diagram from these quantities [13].
The VMC results are summarized in fig. 4 where the

ground-state phase diagram is shown as a function of η and
V1/t1 for L= 24. Notice that a supersolid phase exists in
the range 0.8� η� 1.5 for V1/t1 � 8, which is qualitatively
consistent with the QMC results. We have found that the
upper limit of the phase boundary ηu � 1.5 depends on
the system size, and progresses towards larger values with
increasing L. The lower phase boundary ηl � 0.8 is virtu-
ally independent of the system size. For η� ηl(� ηu), the
system enters the Mott phase I(II) provided V1/t1 � 8. For
weaker interactions, the superfluid phase prevails for all η.
The inset of fig. 4 shows the transition from the Mott I to
the supersolid phase at η� 0.8 for L= 12 and V1/t1 = 9.
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Note that the density-density correlator S(2π/3, 2π/3)
and the superfluid order parameter ρ(k= 0) rise sharply
while S(π, π) drops to zero around this point, signifying a
transition from the Mott I to the supersolid phase.

Schwinger boson analysis. – Next, to obtain an
analytical understanding of the η dependence of the
ordering wave vector, and to determine the fate of the
ordering wave vector plateaus in the thermodynamic limit,
we carry out a mean-field Schwinger boson analysis of
eq. (1). To this end, we start from the XXZ spin model
description of eq. (1) [3] and rewrite these spins in terms

Schwinger bosons: S+i = a
†
i ci and S

z
i = (a

†
iai− c†i ci)/2.

Following standard procedure [14], we decouple the
resultant Hamiltonian using the mean-field order parame-
ters Aα = 〈a†iai+α+ c†i ci+α〉 and Bα = 〈aici+α− ciai+α〉,
where α= x, y for the horizontal/vertical and α= z for
the diagonal bonds emanating from site i, to get the
Schwinger boson mean-field free energy

fMF =
A2x+A

2
y +A

2
z

η(1+V1/t1)
− B

2
x+B

2
y +B

2
z

η(1+V1/t1)

−(S+1/2)λ− 1
N

∑
k

Ak+
1

2N

∑
k

ωk. (3)

Here Ak = Ax cos(kx) + Ay cos(ky) + Az cos(kx + ky),
Bk = Bx sin(kx) + By sin(ky) + Bz sin(kx + ky), ωk =√|λ−Ak|2−B2k is the spinon dispersion, and the parame-
ter λ is used to enforce the constraint of 2S = a†iai+ c

†
i ci

at the mean-field level.
We obtain the values of mean-field variables at ground

state by solving the saddle-point equations ∂fMF
∂Aα

=
∂fMF
∂Bα

= ∂fMF
∂λ
= 0. The minima of the spinon dispersion

ω(k) at kmin =±(q/2, q/2) gives the spin order of the XXZ
model with ordering wave vector 	Q= (q, q) as shown in
fig. 5, both at finite sizes and in the thermodynamic limit.
In the thermodynamic limit, for small t1/V1 � 0.04, we
find the supersolid phase for 0.8� η� 1.3 with continually
varying ordering wave vector Q(η) = (q, q) as shown in
fig. 5. The corresponding spinon dispersion is gapless
around both k= 0 (which is a signature of superfluidity)
and k=±(q/2, q/2) (which signifies the long-ranged
solid order). For finite-size systems, we find that the
spinon dispersion at k=±(q/2, q/2) acquires a gap which
decreases with increasing system size and vanishes in the
thermodynamic limit. Such a gap of the spinon dispersion
leads to the staircase behavior of the ordering wave vector
as shown in fig. 5. Our analytical Schwinger boson results
are in qualitative agreement with both QMC and VMC
results for finite system sizes and we therefore expect it to
predict the correct behavior of the ordering wave vector
in the thermodynamic limit.
To conclude, we found that the hard-core boson system

with competing interactions on anisotropic triangular
lattices is locked to a series of commensurate supersolid
phases for finite-size systems, separated by series of jumps.
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Fig. 5: (Colour on-line) Plot of q (ordering wave vector is given
by �Q= (q, q)) as a function of η for several finite system sizes
(colored symbols) and in the thermodynamic limit (dashed
line) as obtained from Schwinger boson mean-field analysis.

This behavior is expected to occur, for example, in cold
atom (bosons) systems on finite-size optical lattices. In
the thermodynamic limit, however, the ordering wave
vector Q(η) becomes a continuous function of η, leading
to a smooth crossover between a continuous set of novel
incommensurate supersolids phases.
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