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We propose a new renormalization scheme of the running coupling constant in general gauge theories

using the Wilson loops. The renormalized coupling constant is obtained from the Creutz ratio in lattice

simulations and the corresponding perturbative coefficient at the leading order. The latter can be

calculated by adopting the zeta-function resummation techniques. We perform a benchmark test of our

scheme in quenched QCD with the plaquette gauge action. The running of the coupling constant is

determined by applying the step-scaling procedure. Using several methods to improve the statistical

accuracy, we show that the running coupling constant can be determined in a wide range of energy scales

with a relatively small number of gauge configurations.

DOI: 10.1103/PhysRevD.80.034507 PACS numbers: 11.10.Gh, 11.15.Ha

I. INTRODUCTION

One of the key subjects upon which recent attention has
been focused is the flavor dependence of SUðNÞ Yang-
Mills theories. In particular, given a number of flavors Nf,

the question is whether the theory has an (approximate)
infrared fixed point. This question is triggered by efforts to
construct an alternative mechanism of electroweak sym-
metry breaking, via assuming the existence of a new,
strongly interacting sector beyond the electroweak scale
[1]. The earliest model of this sort, the so-called techni-
color [2,3], gives rise to a dynamical electroweak symme-
try breaking by introducing a QCD-like sector scaled up to
some TeV. While theoretically appealing, the simplest
form of the technicolor model and its variants with QCD-
like dynamics are ruled out or disfavored by electroweak
precision measurements. However, the possibility of such a
mechanism with a non-QCD-like theory [4–9] is still open,
and may provide observable signatures at the LHC. It is
thus an important but challenging task to investigate the
low-energy landscape of spontaneously broken, strongly
interacting gauge theories [10].

Among the theoretical tools at hand, the numerical
approach to lattice gauge theories has made it possible to
gain quantitative information about strong dynamics of
gauge theories. The current understanding can be summa-
rized as follows. A vectorlike gauge theory, e.g. QCD, is
known to exhibit confinement and dynamical chiral sym-
metry breaking for a small number of massless fermions,
Nf, in the fundamental representation of the gauge group.

When Nf is just below the value Naf
f at which the asymp-

totic freedom sets in, the theory is conformal (unbroken
chiral symmetry, no confinement) in the infrared. Such a
theory is believed to remain conformal down to some
critical value Nc

f, where the coupling becomes strong

enough and the transition to the confined chirally broken

phase occurs. The range Nc
f � Nf � Naf

f is called the

conformal window.
It is thus essential to investigate strongly interacting

gauge theories in a wide range of parameters, such as the
number of colors, the number of flavors, and the fermion
representations [11]. Several modern lattice studies in this
research direction have recently been performed [12–24].
In particular, the authors of Refs. [13,23] performed the
calculation of the running coupling constant using the
Schrödinger functional scheme, and found evidence for
an infrared fixed point in SUð3Þ gauge theory with Nf ¼
12. However, it is important to study the running coupling
constant in different renormalization schemes in order to
conclude that the fixed point is not an artifact due to a
particular renormalization prescription but a physical one.
For this purpose, we propose a new renormalization
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scheme which uses the Wilson loops (WL) as a key ingre-
dient. Such a scheme is applicable to general gauge theo-
ries as long as the Wilson loops can be defined, and
provides an efficient computational method for lattice
gauge theories. Specifically, a renormalized amplitude is
defined as the ratio among the Wilson loops, namely, the
Creutz ratio, and its perturbative counterpart. The former
can be evaluated nonperturbatively by the Monte Carlo
simulation, while the latter calculated analytically once
the underlying theory is specified. By properly defining
the nonperturbatively renormalized coupling constant, its
scale dependence is extracted using the step-scaling pro-
cedure, i.e., from the volume dependence of the coupling
[25].

Applying our scheme will provide not only an indepen-
dent check on the extent of the conformal window, but also
several computational advantages. The Creutz ratio can be
obtained withoutOðaÞ discretization errors, provided these
errors are absent in the lattice action. This means our
scheme is in principle free from any OðaÞ systematic
effect. Furthermore, this scheme only involves simple
gluonic observables, therefore does not introduce any par-
ticular kinematical setup which can deteriorate the discre-
tization error or break chiral symmetry. Therefore it can be
applied to simulations with dynamical fermions of any
type, without restrictions on Nf. For these features, this

scheme may be an attractive alternative to the Schrödinger
functional scheme or the twisted Polyakov loop scheme
[26–28].

Before performing calculations for the gauge theories
with dynamical fermions, as a benchmark test, we apply
this new scheme to the computation of the running cou-
pling constant in quenched lattice QCD. The numerical
calculation is performed using the plaquette gauge action
with periodic boundary conditions. These boundary con-
ditions are chosen for simplicity. Nevertheless, it results in
effects of degenerate vacua known as the ‘‘toron’’ [29]. Our
scheme can, however, be applied in principle to any choice
of boundary conditions, such as twisted boundary condi-
tions, which ensure no unwanted zero-mode contributions
by inducing nontrivial background configurations.
Adopting several methods to improve statistical accuracy,
we can determine the running of the coupling constant in a
wide range of energy scales with a relatively small number
of gauge configurations.

Another essential ingredient of our scheme is the per-
turbative calculation of the renormalization constant. This
is performed analytically using zeta-function resummation
techniques, which prove to be quite convenient. First of all,
zeta-function techniques offer a natural method to study
the analyticity (and regularity) properties of the perturba-
tive counterpart of the Creutz ratio. In addition, some
algebraic rearrangements of zeta functions, originally due
to Chowla and Selberg [30], allow us to recast the expres-
sions in terms of analytic functions accompanied by some

exponentially converging series, whose evaluation is al-
most trivial and requires little computer power. The zeta-
function methods we apply can be easily extended to any
boundary conditions and to the case of the Polyakov lines
[31].
This paper is organized as follows. In the next section we

give the definition of the new scheme. The perturbative
calculation is illustrated in Sec. III. Section IV is devoted to
the details of our numerical simulations, after a brief
introduction to the step-scaling procedure. Section V con-
tains a discussion on the numerical results and a compari-
son with other results in the literature. Finally, Sec. VI
summarizes our conclusions. The paper contains two ap-
pendices where technical details and simulation parame-
ters are reported. Preliminary results of this work have
been presented in Ref. [32].

II. WILSON-LOOP SCHEME

In this section, we define a new renormalization scheme,
the ‘‘Wilson-loop scheme.’’ Let us consider an amplitude
A whose tree-level approximation is

A tree ¼ kg20; (2.1)

where g0 is the bare coupling constant, and k is a coeffi-
cient of proportionality that does not depend on g0 and can
be explicitly calculated for a given underlying theory. With
a nonperturbatively calculated amplitudeANP at the scale
�, the renormalization constant Zð�Þ � ANPð�Þ=Atree

relates the renormalized coupling constant, gð�Þ, to the
bare one, leading to the relation

g2ð�Þ ¼ ANPð�Þ
k

: (2.2)

Although in particle physics an S-matrix element, i.e. a
scattering amplitude, is usually adopted as A, to define
gð�Þ one can equivalently use any physical quantity that
can be perturbatively expanded and is proportional to g20 at
the tree level.
We define the Wilson-loop scheme by taking the ‘‘am-

plitude’’ to be

AWðR;L0; g0Þ � �R2 @2

@R@T

� lnhWðR; T;L0; T0ÞijT¼R;T0¼L0
;

(2.3)

whereWðR; T;L0; T0Þ is the Wilson loop with the temporal
and spatial sizes T and R, on a lattice of the physical size
L3
0 � T0. In this work, we take T0 to be the same as L0, and

drop it in the argument of the Wilson loop. The scale L0

will be identified as the renormalization scale later. On a
finite lattice, W, and thus AW , also depend on the lattice
spacing awhich is determined by the bare coupling g0. The
dependence of AW on a is removed by taking the con-
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tinuum limit, a ! 0. A pictorial definition of the Wilson
loop is shown in Fig. 1.

Using lattice perturbation theory (see Fig. 2), AW can
be shown to be proportional to g20 at the lowest order. Thus,
once the value of k is calculated, relation (2.2) leads to,
after taking the continuum limit, a prescription to obtain
the renormalized coupling:

g2
�
L0;

R

L0

�
¼ � R2

kðR=L0Þ
@2

@R@T
lnhWðR; T;L0ÞiNPjT¼R:

(2.4)

In the above expression we have made explicit that in the
continuum limit k is a regular function of R=L0 only. This
will be proved in the next section. The remaining factor on
the right hand side of Eq. (2.4) can be evaluated on the
lattice as the Creutz ratio

�ðR̂þ 1=2;L0=aÞ

¼ � ln

�
WðR̂þ 1; T̂ þ 1;L0=aÞWðR̂; T̂;L0=aÞ
WðR̂þ 1; T̂;L0=aÞWðR̂; T̂ þ 1;L0=aÞ

���������T̂¼R̂
;

(2.5)

where T̂ � T=a and R̂ � R=a. The value of � is evaluated
by a Monte Carlo simulation.

The renormalized coupling constant in the Wilson-loop
scheme can be written as

g2w

�
L0;

Rþa=2

L0

;
a

L0

�
¼ ðR̂þ 1=2Þ2 ��ðR̂þ 1=2;L0=aÞ=k:

(2.6)

The quantity g2w depends on three different scales, L0, R,
and a; by taking the ratio to L0, we use r � ðRþ a=2Þ=L0,
a=L0, and L0 as the independent parameters. Fixing r to a
specific value means fixing the renormalization scheme.
The ratio a=L0 specifies the discretization of the box, and
can be removed by taking the continuum limit, a=L0 ! 0.
After fixing the two dimensionless parameters r and a=L0,
g2w becomes a function of a single scale, L0. In our scheme,
following the step-scaling procedure, L0 is identified as the
scale at which the renormalized coupling is defined.
There are several advantages in using the Wilson-loop

scheme. An evident one is that our scheme does not contain
OðaÞ systematic effects as long as they are absent in the
lattice action. This is because the Creutz ratio is free from
OðaÞ discretization errors, due to the automatic OðaÞ im-
provements of the heavy quark propagator after the rede-
finition of the mass and the wave function [33]. This is in
contrast to the case of the Schrödinger functional scheme,
in which the boundary counter terms give rise to additional
OðaÞ systematic errors. Such a particular kinematical setup
also breaks chiral symmetry. Furthermore, this scheme
only involves simple gluonic observables and can be easily
applied to the case with any type of dynamical fermions
without restriction to the number of flavors.

III. COMPUTATION OF k

One of the indispensable ingredients of the scheme
presented in the previous section is the calculation of the
coefficient k in Eq. (2.1). It can be generically split into two
terms:

k ¼ k0 þ k1; (3.1)

where k0 represents the zero-mode contribution, while k1
can be expressed as

k1 ¼�2R2CF

@2

@R@T

�
4

ð2�Þ4
X0

n

�sin�n0TL0

n0

�
2 eið2�n3R=L0Þ

n2

�
T¼R

;

(3.2)

where the summation is taken over integer values of ni (i ¼
0; . . . ; 3) except for the case n0 ¼ n1 ¼ n2 ¼ n3 ¼ 0 (in-
dicated by the prime in the sum), and n2 � n20 þ n21 þ
n22 þ n23. The zero-mode contribution depends on the

0

0L

T

a

R

T

FIG. 1 (color online). Wilson loop defined on the latticized
space-time box. T0, L0 and T, R represent the size of the box and
the Wilson loop in the temporal and spatial directions, respec-
tively; a is the lattice spacing.

FIG. 2. Schematic illustration of the perturbative expansion of the Wilson loop.
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boundary conditions. In the following, we will concentrate
on the case of periodic boundary conditions. In this case, k0
was initially calculated in Ref. [29]. For SUð3Þ gauge
group, k0 is given by

k0 ¼ 2

3
CF

�
R

L0

�
4
: (3.3)

The scope of this section is to present a method to
compute the quantity k. The method we develop will be
illustrated for the case of periodic boundary conditions, but
it can be applied, with minor changes, to the case of twisted
or mixed boundary conditions. As we have seen, the con-
tribution from the zero mode, k0, can be separated from the
rest and is obviously regular. Thus to compute (and to
prove the regularity of) k, we only need to consider k1.
Our starting point is the quantity:

SðT=L0; R=L0Þ �
X1

n0¼�1

sin2�TL0
n0

n0

�
�
2
X
n1;n2

X1
n3¼1

cos2�RL0
n3

n20 þ n21 þ n22 þ n23

þ X0

n1;n2

1

n20 þ n21 þ n22

�
: (3.4)

k1 can be obtained from SðT=L0; R=L0Þ via

k1 ¼ � R2CF

2�3L0

@S

@R
ðT=L0; R=L0Þ:

Although it is not possible to find a closed form for

SðT=L0; R=L0Þ in terms of elementary functions, the use
of zeta-function resummation techniques and basic ana-
lytic continuation allows us to recast SðT=L0; R=L0Þ into
the form of a practically computable quantity, and to prove
the regularity of k through an explicit calculation. The
computation is carried out in a few steps. The first is the
evaluation of the sum over n3 by using the Poisson sum-
mation formula. Then, the summation over n1 and n2, is
written in terms of the Epstein zeta functions. After these
steps, the expression of SðT=L0; R=L0Þ becomes compact.
However, without further rearrangements, it is of little
practical use. To this aim, it is convenient to rewrite the
Epstein zeta functions using the Chowla-Selberg formula
that renders the zeta functions into the form of elementary
analytic functions plus some rapidly converging series.
The subsequent step is to analytically perform the integrals
introduced when using the Poisson summation formula,
and finally perform the remaining summations numeri-
cally. Although the above procedure may seem involved,
the actual implementation is rather simple. The method has
also the bonus of providing a proof of the regularity of the
Creutz ratio, as we will explicitly show in the following.
The first step of our procedure is to employ the Poisson

summation formula:

X1
n3¼1

fðn3Þ ¼ � 1

2
fð0Þ þ

Z 1

0
dtfðtÞ

þ 2
X1
n¼1

Z 1

0
fðtÞ cosð2�ntÞdt: (3.5)

A straightforward application of the above relation to the
function SðT=L0; R=L0Þ gives:

SðT=L0; R=L0Þ ¼ 2
X1

n0¼�1

sin2�TL0
n0

n0

X1
m¼�1

Z 1

0
cosð2�ðmþ R=L0ÞtÞ�tðs; n0Þdt; (3.6)

where we have used the standard definition of the gener-
alized Epstein zeta function:

�tðs; n0Þ �
X1

n1¼�1

X1
n2¼�1

ðn20 þ n21 þ n22 þ t2Þ�s: (3.7)

The parameter s is a regulator, introduced to perform the
necessary analytical continuations. The limit s ! 1 will be
taken at the end of the calculation. It is interesting that the
function SðT=L0; R=L0Þ can be entirely written in terms of
the integral function

Z ð�Þ ¼
Z 1

0
cosð2��tÞ�tðs; n0Þdt: (3.8)

Although compact, the result Eq. (3.6) requires further
manipulation. A useful way to handle these functions is

to make use of the Chowla-Selberg formula. Refs. [34,35]
develop the appropriate formalism that allows us to express
�tðs;n0Þ as the sum of analytic functions plus a rapidly
converging series:

�tðs;n0Þ ¼ �
�ðs� 1Þ
�ðsÞ jn20 þ t2jð1�sÞ

þ 2�

�ðsÞ
X10

p;q¼�1
½�2ðp2 þ q2Þ��ð1�sÞ=2

� ðn20 þ t2Þð1�sÞ=2K1�sð2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 þ t2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

q
Þ:

(3.9)

The other tool is the following integral formula (see
Ref. [36]):
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Z 1

0
cosð2��tÞðt2 þ n20Þð1�sÞ=2K1�sð2�ðp2 þ q2Þ1=2ðt2 þ n20Þ1=2Þdt

¼
ffiffiffiffi
�

2

r
ð2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

q
Þ1�sn1=2þð1�sÞ

0 ð4�2ð�2 þ p2 þ q2ÞÞððs�1Þ=2Þ�ð1=4ÞKðs�1Þ�1=2ð2�n0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þ q2Þ þ�2

q
Þ: (3.10)

The procedure is now straightforward and consists in using the relations (3.9) and (3.10) in Eq. (3.6). Some computations
lead to

Zð�Þ ¼
ffiffiffiffi
�

p
�ð2� sÞ
�ðsÞ 2�ðs� 1Þ cosð�ðð1� sÞ þ 1=2ÞÞ

�
n0
��

�ð1�sÞþ1=2
Kðs�1Þ�1=2ð2��n0Þ þ ð2�Þ3=2 2�s

�ðsÞ

� X10

p;q¼�1
n1=2þð1�sÞ
0 ½4�2ðp2 þ q2 þ�2Þ�ðs�1Þ=2�1=4Kðs�1Þ�1=2½2�n0ðp2 þ q2 þ�2Þ�1=2: (3.11)

It can be easily checked that, in the above expression, the
limit s ! 1 can be taken safely giving

Zð�Þ ¼ �

2j�j e
�2�j�jn0

þ �

2

X10

p;q¼�1
ðp2 þ q2 þ�2Þ�1=2e�2�n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þq2þ�2

p
:

(3.12)

It is evident that the quantity Zð�Þ is regular. We can now
substitute Eq. (3.12) into Eq. (3.4), and rearrange it as

SðT=L0; R=L0Þ ¼ 4�2T

L0

½S0ðR=L0Þ þ S1ðT=L0; R=L0Þ�;
(3.13)

where we have separated the n0 ¼ 0 contribution from the
remaining part which is exponentially suppressed. This
separation leads to the definition

S0ðR=L0Þ ¼ A1ðR=L0Þ þ A2ðR=L0Þ þ A3ðR=L0Þ; (3.14)

S1ðT=L0; R=L0Þ ¼ B1ðT=L0; R=L0Þ
þ B2ðT=L0; R=L0Þ þ B3ðT=L0; R=L0Þ;

(3.15)

where

A1ðR=L0Þ �
Xþ1

m¼�1

1

2jmþ ðR=L0Þj ; (3.16)

A2ðR=L0Þ � 2
Xþ1

m¼�1

X1
p;q¼1

1

ðp2 þ q2 þ jmþ ðR=L0Þj2Þ1=2
;

(3.17)

A3ðR=L0Þ � 2
Xþ1

m¼�1

X1
p¼1

1

ðp2 þ jmþ ðR=L0Þj2Þ1=2
;

(3.18)

B1ðT=L0; R=L0Þ �
X1
n0¼1

sin2�TL0
n0

�n0T=L0

Xþ1

m¼�1

e�2�jmþðR=L0Þjn0

2jmþ ðR=L0Þj ;

(3.19)

B2ðT=L0; R=L0Þ � 2
X1
n0¼1

sin2�TL0
n0

�n0T=L0

Xþ1

m¼�1

X1
p;q¼1

� e�2�n0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þq2þjmþðR=L0Þj2

p

ðp2 þ q2 þ jmþ ðR=L0Þj2Þ1=2
;

(3.20)

B3ðT=L0; R=L0Þ � 2
X1
n0¼1

sin2�TL0
n0

�n0T=L0

Xþ1

m¼�1

X1
p¼1

� e�2�n0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þjmþðR=L0Þj2

p

ðp2 þ jmþ ðR=L0Þj2Þ1=2
: (3.21)

Because of the exponential suppression, the terms B1, B2,
and B3, and thus S1ðT=L0; R=L0Þ, are clearly regular.
Therefore, to prove the regularity of k, we only have
to show that S0ðR=L0Þ is also regular. To show that the
terms (3.16), (3.17), and (3.18) also lead to a regular
expression for S0ðR=L0Þ (and to compute them), it requires
further manipulations.
The first term, (3.16), can be computed analytically:

A1ðR=L0Þ ¼ 1

2

�
�L0

R
� c ðR=L0Þ þ c ð�R=L0Þ

�
;

(3.22)

where c ðxÞ is the Euler psi function [36]. The remaining
two terms, A2 and A3, can be rearranged by performing first
the summation over m, and then by using the Chowla-
Selberg formula. We leave the details in Appendix A, and
present the results here:

A2ðR=L0Þ ¼ 8
X1
j¼1

cosð2j�R=L0ÞK0ð2j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

q
Þ

þ ðR-independent termsÞ; (3.23)
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A3ðR=L0Þ ¼ 8
X1
q;j¼1

cosð2j�R=L0ÞK0ð2j�qÞ

þ ðR-independent termsÞ: (3.24)

Written as above, it is a trivial matter to see that, after
taking the derivative of A1, A2, and A3 with respect to R,
S0ðR=L0Þ, and thus k, is nicely behaved due to the expo-
nential falloff of the Kelvin functions K�ðzÞ.

The last step of our procedure consists in evaluating the
above expressions. The numerical computation of the sums
in Eqs. (3.19), (3.20), (3.21), (3.22), and (3.24), does not
present any problem due to the exponential suppression.
Differentiating with respect to R, substituting T=L0 ¼
R=L0, and combining the results according to Eqs. (3.2),
(3.3), and (3.4) lead to the result for k. Figure 3 shows the
dependence of the function k with respect to R=L0. Table I
provides some indicative values for k.

IV. NUMERICAL SIMULATION

In this section, we will describe the details of our nu-
merical simulations. For later use, we define the coupling-

squared, ~g2w,

~g 2
w

�
�; r;

L0

a

�
� kg2w; (4.1)

where r � ðRþ a=2Þ=L0. Note that we express ~g2w as a
function of �, r, and a=L0 instead of L0, r, and L0=a. The
above redefinition is chosen for convenience, since �, r,
and a=L0 are the actual input parameters for the
simulations.

A. Step scaling

We begin by briefly reviewing the step-scaling proce-
dure (see Refs. [25,37,38] for details), that we use to
evaluate the evolution of the running coupling in a wide
range of the energy scale on the lattice.
The first step is to fix a value for r, and find a set of

parameters, ð�;L0=aÞ, which produce the same value of ~g2w
for several different choices of L0=a:

fð�ð1Þ
1 ; ðL0=aÞð1Þ1 Þ; ð�ð1Þ

2 ; ðL0=aÞð1Þ2 Þ; . . .g: (4.2)

We achieve this by tuning the value of � in such a way that
the physical volume L0 is fixed for different values of
L0=a. We denote this fixed physical volume for the starting
point of the step-scaling procedure by ~L0.
The next step is to vary the physical volume from ~L0 to

s ~L0, which gives the evolution of the running coupling
from the energy scale ~L�1

0 to ðs ~L0Þ�1, where s is the scaling
factor. This step can be performed by changing the lattice

size from ðL0=aÞð1Þ to sðL0=aÞð1Þ, leaving each value of�ð1Þ
unchanged. Values of g2w calculated with these new pa-
rameter sets should be considered as the coupling at the
energy scale ðs ~L0Þ�1 up to discretization errors, and the
extrapolation to the continuum limit can be taken

g2R

�
1

s ~L0

�
� lim

a!0

�
Z

�
1

s ~L0

;
a

s ~L0

�
g20ðaÞ

�
; (4.3)

where Z is the renormalization factor as defined below
Eq. (2.1). The resultant value of the coupling, g2R, should
be considered as the renormalized coupling at the energy
scale ðs ~L0Þ�1. This is the way to obtain a single discrete
step of evolution of the running coupling with scaling
factor s.

Next, we find a new parameter set for ð�ð2Þ; ðL0=aÞð2ÞÞ,
which reproduces the value of g2wð1=s ~L0Þ obtained in the
previous step. Here, we chose the parameter set in such a

way that the new lattice size ðL0=aÞð2Þ is equal to the

original one, ðL0=aÞð1Þ. From here, we can repeat exactly
the same procedure described so far: we calculate g2w with

the parameter set ð�ð2Þ; sðL0=aÞð1ÞÞ. By iterating this pro-
cedure n times, we obtain the evolution of the running
coupling from the energy scale 1= ~L0 to ðsn ~L0Þ�1.

R/L0

FIG. 3. The figure shows the dependence of k on R=L0. The
solid line represents k, in the continuum limit, according to the
analytical expressions given in the text. The squares are results
obtained using numerical lattice calculation for the sum in
Eq. (3.2). As can be seen from the figure, the (continuum) limit
of k for L0=a ! 1 exists and is finite. Also, the convergence of
the lattice computation to the continuum value is faster for larger
values of R=L0.

TABLE I. Values for k from the continuum calculation.

R=L0 k R=L0 k

0.02 0.173 65 0.30 0.166 08

0.10 0.173 60 0.35 0.156 94

0.15 0.173 36 0.40 0.139 70

0.20 0.172 59 0.45 0.108 85

0.25 0.170 58 0.50 0.055 56
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B. Simulation parameters

We use the standard Wilson plaquette gauge action
defined on a four-dimensional Euclidean lattice with finite
volume L4

0. In this work, we adopt untwisted periodic

boundary conditions. However, it is straightforward to
use other boundary conditions (e.g., twisted boundary
conditions) when necessary. Gauge configurations are gen-
erated by using the pseudoheatbath algorithm with over-
relaxation, mixed in the ratio of 1:5. In the remainder of
this paper, we use the word ‘‘a sweep’’ to refer to the
combination of one pseudoheatbath update sweep followed
by five over-relaxation sweeps. In order to eliminate the
influence of autocorrelation, we either take large enough
number of sweeps between measurements, or adopt the
method of binning with a large enough size of bin to
estimate the statistical error reliably. We perform the nu-
merical simulations based on the step-scaling procedure
explained in the previous section for a fixed value r ¼ 0:3.
(The reason for this choice will be given in the next
subsection.) We set the scaling parameter s ¼ 1:5 with

five different starting lattice sizes being L0

a ¼ 10, 12, 14,

16, and 18, which means lattice sizes after the scaling at

each step are L0

a ¼ 15, 18, 21, 24, and 27, respectively. We

take ~g2w ¼ 0:2871 (which corresponds to g2w ¼ ~g2w
kðr¼0:3Þ ’

1:728) as the starting value of the first step of the step-
scaling procedure. Tunings of the values of � (namely,

finding values of � which satisfy ~g2wð�; r ¼ 0:3; L0

a Þ ¼
0:2871 for each L0

a ¼ 10, 12, 14, 16, and 18 in the first

step) are carried out by interpolating the data obtained
from simulations for different values of L0=a and � shown
in Fig. 4. Each data point in the figure is calculated from
200 gauge configurations with a 1000-sweep separation
between configurations. Once we obtain values of � which

reproduce ~g2wð�; r ¼ 0:3; L0

a Þ ¼ 0:2871 for L0

a ¼ 10, 12, 14,

16, and 18, we carry out simulation for s ¼ 1:5 step scal-

ing, namely, simulations for L0

a ¼ 15, 18, 21, 24, and 27

with the values of � we tuned. These results are used to
take the continuum limit, then the resultant value of ~g2w
becomes a starting value for the next step. We iterate this
procedure 7 times. The combination of L0=a and � used
for the simulations are shown in Table II.1

C. Simulation details

There are several practical steps to calculate the quantity
~g2wð�; r; L0=aÞ from numerical simulations. Here we ex-
plain various technical details of our computations.
We use the APE smearing [39] of link variables defined

by the following equation:

Uðnþ1Þ
x;� ¼ ProjSUð3Þ

�
UðnÞ

x;� þ 1

c
�4

���U
ðnÞ
x;�U

ðnÞ
xþ�;�U

ðnÞy
xþ�;�

�
;

(4.4)

where n and c denote the smearing level and the smearing
parameter, respectively. The smearing is done for links in
all four directions. The result does not depend on the value
of c significantly, and we take c ¼ 2:3 in the present study.

Here, we need to find the optimal values of r � Rþa=2
L0

and

the smearing level n, by considering the following require-
ments. For better control of discretization error, it is pref-
erable to choose a larger value of r. Meanwhile, for the
purpose of reducing the statistical error, it is better to take a
smaller value of r and higher number of n. Figure 5 shows
the smearing-level dependence of ~g2w in the case of � ¼
8:25 and L0=a ¼ 18 as an example. From this figure, we
find the statistical error is notably reduced even at the
smearing-level one. In order to avoid over smearing, n

should be smaller than R̂=2. This condition leads to the
lower bound, L0=a > ð4nþ 1Þ=ð2rÞ. We summarize the
bound from this requirement in Table III. We observe
(see Fig. 5 for the example of the case L0=a ¼ 18 at � ¼
8:25) that the data of ðR̂þ 1=2Þ ¼ 1:5 and 2.5 in a higher
smearing level are not reliable because of over smearing.
By considering all the above requirements, we find that
ðr; nÞ ¼ ð0:3; 1Þ is the optimal choice.
Once we fix the value of r (r ¼ 0:3 in our current study),

we need to estimate the value of ~g2w for noninteger R̂. We
interpolate the value of ~g2w using a quadratic function:

fðR̂þ 1=2Þ ¼ c0 þ c1ðR̂þ 1=2Þ þ c2ðR̂þ 1=2Þ2; (4.5)

with interpolation ranges for each lattice size listed in

0

18

16

14

12

10

2~
wg

=a

L 0 a =

L 0 a =

L 0 a =

L 0 a =

L

β

 0.2
 8 7.5 7 6.5 6

 1.4

 1.2

 1

 0.8

 0.6

 0.4

 8.5

FIG. 4. ~g2w obtained from simulations for different values of
L0=a and �.

1The values of � in Table II have numerical ambiguities
coming from the statistical errors of the data used for the
interpolation. These ambiguities propagate to the error of the
physical scale at each step which we are trying to fix. However, it
turned out that the effect of that fluctuation to the result of
simulation for s ¼ 1:5 at each lattice size was negligibly small
compared to the statistical error of the simulation itself. Thus, we
ignore those errors and resultant fluctuation of the physical scale
in the rest of our analysis.
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Table IV. An example is shown in Fig. 5 where ðR̂þ
1=2Þ ¼ 5:4 corresponds to the interpolation to r ¼ 0:3 in
the case of L0=a ¼ 18.

The last step of the calculation is to take the continuum
limit of ~g2w from data obtained for different combinations
of � and L0=a listed in each column of Table II. We show
two example plots in Fig. 6, which are the continuum
extrapolations for step 1 and step 7. Since our Wilson-
loop scheme does not contain OðaÞ systematic errors, we
extrapolate to the continuum limit using a fit function
linear in ða=L0Þ2. Four data points (L0=a ¼ 27, 24, 21,
and 18) are used for this extrapolation (shown as red solid
lines in Fig. 6), and the resultant value is adopted as the
central value of ~g2w in the continuum limit. We also take the
continuum limit by using a fit function quadratic in ða=L0Þ2
with five data points (L0=a ¼ 27, 24, 21, 18, and 15)
(indicated by pink dashed curves in Fig. 6), and the differ-
ence between the central values of two fits are adopted as
the systematic error coming from possible higher order
discretization effects. In Fig. 6, we have also plotted ex-
trapolation by a linear function with five points of data for
comparison. In this figure, resultant values of the contin-
uum limit obtained from different fit functions are plotted
at ða=L0Þ2 ¼ 0. (For better visibility, we slightly displaced

the data obtained from 5-point quadratic and 5-point linear
extrapolations.) All the error bars shown in Fig. 6 are
statistical only.

D. Numerical results

We now show the results of our simulations which
were performed using parameters in Table II with proce-
dures explained in the previous section. Details of our
parameter choice and numerical results are summarized
in Appendix B.

1. Running coupling

In Fig. 7, we plot the resulting values of ~g2w and their
statistical errors for L0=a ¼ 18, 21, 24, and 27 for steps 1–
7. The continuum limit was taken using a linear function in
ða=LÞ2. In Fig. 7 the values of ~g2w in the continuum-limit
are shown with statistical and systematic errors added in
quadrature.
The running coupling constant g2w is extracted by divid-

ing ~g2w by kðr ¼ 0:3Þ ¼ 0:1661. The evolution of the run-
ning coupling constant is obtained by connecting the
resultant values for steps 1–7 by assigning appropriate
scales to these steps. We plot the results in Fig. 8. We
define the starting energy scale of Step 1 as 1= ~L0, and the
evolution of the running coupling constant is plotted as a
function of energy in units of 1= ~L0. In this figure, errors are
accumulated with the evolution of the running coupling

TABLE II. Parameter sets, L0=a and �, used for the simulation.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

L0=a � L0=a � L0=a � L0=a � L0=a � L0=a � L0=a �

15 8.31 15 7.80 15 7.44 15 6.968 15 6.571 15 6.207 15 5.907

18 8.25 18 7.83 18 7.45 18 7.040 18 6.656 18 6.303 18 6.000

21 8.27 21 7.86 21 7.49 21 7.076 21 6.734 21 6.377 21 6.087

24 8.32 24 7.91 24 7.55 24 7.156 24 6.797 24 6.463 24 6.170

27 8.40 27 7.97 27 7.61 27 7.243 27 6.871 27 6.546 27 6.229

TABLE III. The lower bound on L0=a to avoid over smearing.

n r ¼ 0:25 r ¼ 0:30 r ¼ 0:35

n ¼ 1 L0=a > 10 L0=a > 8:3 L0=a > 7:1
n ¼ 2 L0=a > 18 L0=a > 15 L0=a > 12:8
n ¼ 3 L0=a > 26 L0=a > 21:6 L0=a > 18:5

R

2
g w

n
n

= 1
= 2

= 0n

+1/2^

~

 0.1
 2  3  4  5  6  7  8

 0.5

 0.45

 0.4

 0.35

 0.3

 0.25

 0.2

 0.15

 1

FIG. 5. The values of ~g2w with a statistical error for several
values of (R̂þ 1=2) in the case of � ¼ 8:25 and L0=a ¼ 18.
Data connected by solid, dotted, and dashed lines denote the data
with 0, 1, and 2 smearing levels, respectively.

TABLE IV. Ranges used to interpolate the value of ~g2w. The
column ‘‘R̂þ 1=2’’ is the value that corresponds to r ¼ 0:3.

L0=a R̂þ 1=2 R̂min R̂max L0=a R̂þ 1=2 R̂min R̂max

10 3.0 2 4 18 5.4 4 6

12 3.6 2 4 21 6.3 5 7

14 4.2 2 5 24 7.2 5 7

16 4.8 3 5 27 8.1 6 8
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appropriately2 in the same way as explained in Ref. [40].
For comparison, we also plot scheme-independent pertur-
bative running couplings with one-loop and two-loop ap-

proximation as well as three-loop approximation in theMS
scheme (from bottom to top). In the high-energy region,
where the perturbative computation is reliable, the Wilson-
loop scheme is consistent with the perturbation theory. The
figure also shows that our simulation is reaching deep into

the low-energy region, in which the perturbative calcula-
tion is no longer reliable.

2. Beta function

From the results of the simulation, we can also extract
the nonperturbative � function by using the method ex-
plained in Ref. [41]. To this end, it is useful to define the
step-scaling function in the continuum limit as [40]

	ðuÞ ¼ g2wðsLÞ; u � g2wðLÞ: (4.6)

We list the simulation results for the step-scaling function
in Table V. In the week coupling region, 	ðuÞ can be
perturbatively expanded as [41]

~
wg

5−point quadratic

4−point linear
5−point linear

(a L0)2

2

0.32

0.29

0.28

 0.001  0.002  0.003  0.004  0.005

0.34

0.31

0.27

 0

0.33

 0.3

5−point linear

L0)2

g w
~ 2

(

5−point quadratic

4−point linear

a

 1.75

 1.95

 2

 0  0.001  0.002  0.003  0.004  0.005

 1.85

 1.8

 1.9

FIG. 6. The continuum limit of ~g2w. The left and right panels show Steps 1 and 7, respectively.

~
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 2

 1.8
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 1

 0.8

 0.6

 0.4
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FIG. 7. Results of simulations and the continuum limit of g2w in
Steps 1� 7 (from bottom to top).
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FIG. 8 (color online). Evolution of the running coupling con-
stant in the Wilson-loop scheme, g2w, obtained from the step-
scaling procedure. The horizontal axis shows the energy scale in
units of 1= ~L0. Three curves, from bottom to top, show scheme-
independent perturbative running couplings with the one-loop
and two-loop approximation, as well as that with the three-loop
approximation in the MS scheme.

2For the appropriate procedure of accumulating error, we need
the values of the derivative of the step-scaling function 	ðuÞ.
Here, we used the result of the u5 polynomial global fitting of
	ðuÞ to obtain approximate values of 	0ðuÞ. See the next sub-
subsection for details.
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	ðuÞ ¼ uþ s0u
2 þ s1u

3 þ � � � ; (4.7)

with the coefficients

s0 ¼ 2b0 lns; (4.8)

s1 ¼ ð2b0 lnsÞ2 þ 2b1 lns; (4.9)

where b0 and b1 are the one-loop and the two-loop coef-
ficients of the � function, respectively. In Fig. 9, we plot
the data listed in Table V together with the two-loop
perturbative curve for 	ðuÞ (solid), as well as two curves
which are the result of the following two kinds of poly-
nomial fit. For the upper (dashed) curve, we fitted uþ
s0u

2 þ s1u
3 þ s2u

4 to the data in the range of u < 5, and
obtained s2 ¼ 0:0019ð3Þ. For the middle (dotted) curve, we
fitted uþ s0u

2 þ s1u
3 þ s2u

4 þ s3u
5 to all the data, and

obtained s2 ¼ 0:0033ð6Þ and s3 ¼ �0:00048ð9Þ. As is ex-
pected, in the weak coupling region, the data is well
explained by the two-loop perturbative result, and poly-
nomial functions fit well to the data also. Meanwhile, the
figure clearly shows that neither the two-loop perturbative
curve, nor simple polynomial fits can explain the behavior

of the data in larger values of u. This is nothing but an
indication of the emergence of the nonperturbative effect.
The formula to obtain nonperturbative � function from

the step-scaling function was given in Ref. [41] as

�ð ffiffiffiffiffiffiffiffiffiffi
	ðuÞp Þ ¼ �ð ffiffiffi

u
p Þ

ffiffiffiffiffiffiffiffiffiffi
u

	ðuÞ
s

	0ðuÞ: (4.10)

By applying this formula recursively, we obtained the
discrete � function as shown in Fig. 10. Here, while the
values of the 	ðuÞ are directly given by the results of the
simulation,3 we need to use the result of the fitting to obtain
the values of 	0ðuÞ. To obtain the latter, we adopted the u5

global fitting explained above. As we noted, it fails to fit to
the data in larger values of u, however, as can be seen from
the figure, we can expect that it gives numerically approxi-
mate values. Also, we used the value of the perturbative
two-loop approximation for the value of �ðuÞ at the small-
est u as an initial input value to use Eq. (4.10) recursively.
In the figure, we also plotted the one-loop and two-loop
perturbative � function for comparison. From this result,
we confirmed again that for the smaller coupling region,
the data consistently reproduce the perturbative picture,
while the nonperturbative effect begins to emerge for larger
coupling region.

V. DISCUSSION

We have hitherto concentrated on how the coupling
constant runs under the relative change of the scale without
referring to its absolute value. The absolute scale can be
estimated using the Sommer scale, r0, defined by

TABLE V. Simulation results for the step-scaling function
	ðuÞ. The values in parentheses represent total errors in units
of the last digits.

u 	ðuÞ
1.728 1.97(6)

1.97 2.23(7)

2.23 2.68(5)

2.68 3.29(2)

3.29 4.33(14)

4.33 6.89(22)

6.89 11.5(3)

(uσ )

u
 7

 2

 4

 6

 8

 10

 12

 0  1  2  3  4  5  6
 0

FIG. 9 (color online). Polynomial fit (dashed and dotted
curves) of the data for the step-scaling function 	ðuÞ. The fit
ansatz and resultant values of fitting parameters for two curves
are explained in the text. The two-loop perturabative curve
(solid) is also plotted for comparison.
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FIG. 10 (color online). Nonperturbative � function in the
Wilson-loop scheme. One-loop (green dashed curve) and two-
loop (blue dotted curve) perturbative � functions are also plotted
for comparison.

3Unlike was done in Ref. [41], we do not have to carry out
interpolation in u since we have the data exactly on the value of
u that we need.
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r2FðrÞjr¼r0 ¼ 1:65: (5.1)

Based on the phenomenological potential models, r0 cor-
responds to about 0.5 fm. In this work, however, we use r0
only to set the reference scale for a comparison with the
other scheme. The formula relating � and r0 is given in
Ref. [42],

lnða=r0Þ ¼ �1:6805� 1:7139ð�� 6Þ þ 0:8155ð�� 6Þ2
� 0:6667ð�� 6Þ3; (5.2)

which is valid in the region 5:7 � � � 6:57. For our
lattices, � values in Step 7 in Table II are in this range.
In Table VI, we summarize r0=a calculated using Eq. (5.2),
and the corresponding r0= ~L0. In Ref. [42], the values of r0
in the range 5:7 � � � 6:57 are determined with errors
linearly increasing from 0.3% to 0.6%. These errors are
mainly statistical. Since we are only aiming at a rough
estimate of the absolute scale in this work, we assign the
corresponding size of errors to the results in Table VI. By
extrapolation to the continuum limit, we obtain4

r0
~L0

¼ 4:75� 0:26: (5.3)

Here, the statistical error is negligibly small compared to
the systematic error.

We can now estimate the
 scale in units of r0. Since it is
obvious from Fig. 8 that g2w is well approximated by a two-
loop perturbative running coupling at the high-energy re-
gion, it is reasonable to estimate the scale 
 by using the
value of g2wð1= ~L0Þ from the following two-loop relation5

between ~L0
 and g2wð1= ~L0Þ,

~L 0

2-loop
WL ¼ e�ð1=2b0g2wð1= ~L0ÞÞ

�
b20g

2
wð1= ~L0Þ

b0 þ b1g
2
wð1= ~L0Þ

��ðb1=2b20Þ
;

(5.4)

where b0 ¼ 11=ð4�Þ2 and b1 ¼ 102=ð4�Þ4 are the one-
loop and the two-loop coefficients of the � function of

quenched QCD. By substituting the value g2wð1= ~L0Þ ¼
1:728, we find

~L 0

2-loop
WL ’ 0:0399: (5.5)

Combining this result with the value of r0= ~L0 in Eq. (5.3),

we obtain the value of 

2-loop
WL in units of r0 as

r0

2-loop
WL ¼ 0:190� 0:010: (5.6)

We also estimated, in the similar way as above, the value of
r0


2-loop in the case of the SF scheme by using the data
reported in Ref. [40], and found the following result:

r0

2-loop
SF ¼ 0:301� 0:025: (5.7)

By fixing r0 as a reference scale, we obtain the following

ratio of 
2-loop
SF to 
2-loop

WL :



2-loop
SF



2-loop
WL

¼ 1:58� 0:16: (5.8)

As a consistency check, we have also extracted the ground-
state potential from our data at the largest physical volume
via double exponential fits [43], then used the potential to
estimate r0 and rc defined as

r2FðrÞjr¼rc ¼ 0:65: (5.9)

Our results on these quantities are well compatible with
those obtained in Ref. [33].

We also estimated the value of 
2-loop
SF =
2-loop

WL without

relying on the measurement of any low-energy physical
quantity. This can be achieved by comparing results ob-
tained from the same combinations of values of � and
L0=a in the two schemes, with a fixed physical box size L0

which is much smaller than 1=
QCD. To this purpose, we

have carried out simulations using exactly the same values
of � and L0=a as one of the data sets in Ref. [40]. In
Table VII, we list the values of the coupling constant in the
SF scheme, g2SF (which is denoted by �g2 in Ref. [40]), and

results of 

2-loop
SF estimated from them by using Eq. (5.4).

The values of g2w and the corresponding 
2-loop
WL are also

listed in this table.6 These values result from an interpola-
tion procedure using the data points shown in Fig. 4. The

results for 
2-loop
SF =
2-loop

WL at each L0=a is also listed in the

same table. A fit linear in a=L0 to these results gives the
following continuum-limit estimation:

TABLE VI. The Sommer scale at each � of the Step 7,
estimated using Eq. (5.2).

L0=a � r0=a r0= ~L0

15 5.907 4.543(17) 5.174(19)

18 6.000 5.368(22) 5.096(21)

21 6.087 6.196(27) 5.041(22)

24 6.170 7.040(33) 5.012(23)

27 6.229 7.677(37) 4.858(23)

4Here we take the continuum limit and estimate the systematic
error in the same way as we did in Sec. IVC.

5From the difference between two-loop and three-loop �
function in the Schrödinger function (SF) scheme, the error in
the estimation to 
 due to the higher order effect is about 3%.
This is reasonably small compared to other errors in this work.

6We notice that the a=L0 dependence of g2w is rather large
partly due to the fact that we used the results of the SF-scheme
study as inputs to set the scale for each �. Therefore, the
discretization error could be a combination (or the difference)
of those from the WL scheme and SF scheme. This error may be
dominated by the error from the WL scheme since the effective
physical scale is the Wilson-loop size R but not L0 so that one
expects Oðða=RÞ2Þ error.
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2-loop
SF


2-loop
WL

¼ 1:78� 0:07ðstat:Þ � 0:04ðsys:Þ (5.10)

Here the systematic error was estimated by the difference
between values in the continuum limit with linear and
quadratic extrapolations.

A comparison between the results of Eqs. (5.8) and
(5.10) shows the ‘‘universality’’ of the estimate of


2-loop
SF =
2-loop

WL , namely, the two different estimates are

consistent with each other.7 From the theoretical point of
view, this universality might be a trivial result since
quenched QCD has only one scale in the theory.
However, from the numerical point of view, it is a rather
nontrivial consistency check since one estimation involves
the measurement of a low-energy physical quantity while
the other is completely from high-energy physics.

We notice that the error of g2w is large partly due to the
fact that we used the SF as inputs to set the scale for each
�. Therefore, the discretization error could be a combina-
tion (or the difference) of those from the WL scheme and
SF scheme. This error may be dominated by the error from
the WL scheme since the effective physical scale is the
Wilson-loop size R but not L0 so that one expects
Oðða=RÞ2Þ error.

VI. SUMMARY

We proposed a new scheme for the determination of the
running coupling on the lattice. Our method is based on the
measurement of the finite volume dependence of the
Wilson loop. Unlike the SF scheme, our method does not
have anyOðaÞ discretization error, therefore the systematic
effect arising from the extrapolation to the continuum limit
is expected to be quite small. We showed results of nu-
merical study for the quenched QCD as a feasibility test of
our scheme. These results confirmed that our method led to
the step scaling of the coupling which is consistent with the
perturbative running coupling at high energy. We also
showed that the coupling calculated by this newly pro-

posed scheme deviates from the two-loop approximation
below a certain energy scale. This deviation arises from the
effects that are not captured by the two-loop approxima-
tion.We have confirmed that our schemeworks well for the
calculation of the running coupling with a relatively small
number of gauge configurations, demonstrating that the
statistical error is under control by properly choosing the
smearing level and r. We expect that this new method is
also applicable to the calculation of the running coupling in
other gauge theories, including the SUðNÞ gauge theory
with a large number of dynamical fermions, which will be
studied in our future work.
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APPENDIX A: FORMULAS (3.23) AND (3.24)

In the following, we will briefly show how to obtain
formulas (3.23) and (3.24). Basically the method we use is
a repetition of the generic technique we have adopted in
Sec. III: we first perform the sum over m, and then use the
Chowla-Selberg formula, which rearranges the expression
as a sum of some analytic function plus a series, suppressed
by the presence of the Kelvin functions K�ðxÞ. For the first
term one has:

TABLE VII. Values for g2 and L0

2-loop in the SF and the WL schemes for several sets of L0=a and �. Results of g2SF are taken from

Ref. [40]. The values in parentheses represent statistical errors in units of the last digits.

L0=a � g2SF L0

2-loop
SF g2w L0


2-loop
WL 


2-loop
SF =


2-loop
WL

10 7.8538 1.8776(93) 0.0539(9) 1.9427(68) 0.06043(71) 0.891(18)

12 7.9993 1.8811(38) 0.0542(4) 1.8620(66) 0.05232(65) 1.036(15)

14 8.1380 1.884(11) 0.0545(11) 1.8028(73) 0.04667(68) 1.168(29)

16 8.2500 1.864(10) 0.0525(10) 1.7662(79) 0.04331(72) 1.213(30)

7Three-loop perturbative calculation (though quite challenging
to carry out it in the WL scheme, while already done in the SF
scheme), together with the improvement of systematic and
statistical errors, would enable us to perform a even more precise
test of this universality by defining the 
 scale with three-loop �
function.
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Xþ1

m¼�1

X1
p;q¼1

1

ðp2 þ q2 þ jmþ R=L0j2Þs
¼ X1

p;q¼1

� ffiffiffiffi
�

p ðp2 þ q2Þð1=2Þ�s�ðs� 1
2Þ

�ðsÞ þ 4�s

�ðsÞ ðp
2 þ q2Þð1=4Þ�ðs=2Þ

� X1
j¼1

js�ð1=2Þ cosð2j�R=L0ÞKs�ð1=2Þð2j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

q
Þ
�

¼ X1
p;q¼1

�
i

ffiffiffiffi
�

p ðp2 þ q2Þð1=2Þ�s�ðs� 1
2Þ

�ðsÞ þ 4
X1
j¼1

cosð2j�R=L0ÞK0ð2j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

q
Þ
�
:

(A1)

In the above formula, the first term disappears upon derivation with respect to R and thus will not contribute to k. The
second term is exponentially suppressed due to the presence of K0ðzÞ and, thus, regular. An analogous procedure applies to
A3ðR=L0Þ:

Xþ1

m¼�1

X1
q¼1

1

ðq2 þ jmþ R=L0j2Þs
¼ X1

q¼1

ffiffiffiffi
�

p
�ð2s� 1Þ
�ð12Þ

þ 4
X1
q;j¼1

cosð2j�R=L0ÞK0ð2j�qÞ: (A2)

As before, the first term is independent of R and disap-
pears, when differentiated with respect to R. The second
term is exponentially suppressed and regular.

APPENDIX B: SUMMARY OF SIMULATION
PARAMETERS AND NUMERICAL RESULTS

Here, we summarize simulation parameters, and nu-
merical results obtained from those simulations. In
Tables B.I–B.VII, Nconf , Nsweep, and Nbin size, respectively,

TABLE B.I. Step 1. Continuum limit: ~g2w ¼ 0:328� 0:010.

L0=a � Nconf Nsweep Nbin size ~g2w

15 8.31 200 1000 1 0.2846(24)

18 8.25 200 1000 1 0.2999(24)

21 8.27 400 1000 1 0.3100(21)

24 8.32 400 1000 1 0.3119(27)

27 8.40 200 1000 1 0.3137(51)

TABLE B.II. Step 2. Continuum limit: ~g2w ¼ 0:371� 0:012.

L0=a � Nconf Nsweep Nbin size ~g2w

15 7.80 200 1000 1 0.3371(26)

18 7.83 200 1000 1 0.3465(29)

21 7.86 200 1000 1 0.3482(36)

24 7.91 200 1000 1 0.3585(48)

27 7.97 200 1000 1 0.3632(66)

TABLE B.III. Step 3. Continuum limit: ~g2w ¼ 0:445� 0:009.

L0=a � Nconf Nsweep Nbin size ~g2w

15 7.44 200 1000 1 0.3831(31)

18 7.45 400 1000 1 0.4056(25)

21 7.49 400 1000 1 0.4125(33)

24 7.55 400 1000 1 0.4278(50)

27 7.61 200 1000 1 0.4249(92)

TABLE B.VI. Step 6. Continuum limit: ~g2w ¼ 1:144� 0:037.

L0=a � Nconf Nsweep Nbin size ~g2w

15 6.207 10 000 1 100 0.978(3)

18 6.303 10 000 1 100 1.016(5)

21 6.377 10 000 1 100 1.069(6)

24 6.463 10 000 1 100 1.075(7)

27 6.546 10 000 1 100 1.074(9)

TABLE B.V. Step 5. Continuum limit: ~g2w ¼ 0:719� 0:024.

L0=a � Nconf Nsweep Nbin size ~g2w

15 6.571 10 000 1 100 0.6307(14)

18 6.656 10 000 1 100 0.6489(19)

21 6.734 10 000 1 100 0.6606(27)

24 6.797 10 000 1 100 0.6794(33)

27 6.871 10 000 1 100 0.6931(41)

TABLE B.IV. Step 4. Continuum limit: ~g2w ¼ 0:547� 0:004.

L0=a � Nconf Nsweep Nbin size ~g2w

15 6.968 10 000 1 100 0.4829(9)

18 7.040 10 000 1 100 0.4959(12)

21 7.076 10 000 1 100 0.5146(15)

24 7.156 10 000 1 100 0.5204(20)

27 7.243 10 000 1 100 0.5181(24)

TABLE B.VII. Step 7. Continuum limit: ~g2w ¼ 1:914� 0:042.

L0=a � Nconf Nsweep Nbin size ~g2w

15 5.907 10 000 1 100 1.811(5)

18 6.000 10 000 1 100 1.833(7)

21 6.087 10 000 1 100 1.846(12)

24 6.170 10 000 1 100 1.861(13)

27 6.229 10 000 1 100 1.917(27)
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represent the number of gauge configurations from which
measurement were taken, the number of sweeps between
each configurations, and the number of the bin size when
we estimate the statistical error. The values in parentheses

in the column of ~g2w represent statistical errors in units of
the last digits. We also listed the values of ~g2w in the
continuum limit with the magnitude of total error at each
step.
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