
Chapter 1 

Introduction 

 

 Image segmentation is a technique to obtain a compact, summary representation 

of an image [1]. This representation is meaningful and often can be used to improve 

the performance of the followed image processing, if possible. For example, if we 

want to find an object in the image, searching each pixel in the image to find out the 

object is not very efficient. Instead, if the image could be represented by some regions 

that possibly comprise the object in one of them, then the object searching can take 

advantage of this representation to find out the object more efficiently or accurately. 

Of course, the representation may depend on the problem we are going to deal with. If 

we are browsing a large collection of video sequences, they may be represented by 

subsequences that look similar; if we are searching people in an image, body 

segments might be first identified, and then be assembled to form a people. Despite of 

the dependency on the problems, image segmentation still often plays an important 

role as a preprocessing to improve the performance of many applications, such as 

object searching [2] [3], pattern recognition [4] and image or video compression [5]. 

It is not easy to judge what segmentation of an image is good. In fact, good 

segmentation can be defined to be segmentation that well matches our expectation for 
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a specific problem. For instance, if we are doing license plate recognition, it is 

expected that the license plate is just enclosed in one of the regions represented by the 

image segmentation. However, the best segmentation is usually not available because 

of the diversity of the input images. Therefore, except for good segmentation, the 

results of image segmentation can be classified into over-segmentation and 

under-segmentation [6]. Segmentation is said to be over-segmentation if the object 

interesting is excessively divided into many parts; and it is said to be 

under-segmentation if the object interesting is enclosed in one of the segmented 

regions. For over-segmentation, it might be necessary to assemble several segmented 

regions to recover the object interesting, and the assembled regions might worse 

become under-segmentation. Besides, assembling segmented regions to recover the 

object interesting may be difficult because the characteristics of the object have been 

divided into several fractions. As a result, under-segmentation is obviously more 

preferable than over-segmentation because under-segmentation retains the integrity of 

the object interesting and can provide useful information to facilitate the following 

image processing. 

In chapter 2, some conventional image segmentation methods and their 

corresponding problems are briefly reviewed. Chapter 3 and 4 respectively describe 

the first and second stages of the image segmentation method in this thesis. Some 
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experimental results and comparison are given in chapter 5. And this thesis ends up 

with a conclusion given in chapter 6. 
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Chapter 2 

Conventional Image Segmentation Methods and Their Problems 

 

 It is known that image segmentation methods can be mainly classified into two 

categories, contour-based and region-based approaches [7]. These two types of image 

segmentation approaches and their inherent problems are respectively reviewed here 

briefly to give an overview for problems in image segmentation. 

 

2.1 Contour-Based Methods 

As its name indicates, contour-based methods take advantage of the contour 

information in the image to accomplish image segmentation. In general, contour 

analysis can be done by a two-stages processing. In the first stage, an edge detection 

technology, such as Sobel [8], Canny [9], or Oriented Energy edge detectors [10], is 

usually applied to the image. After edge detection, an image which reveals the 

probability of pixels being edge can be obtained, i.e., pixels with large brightness 

change in the original image will have high response in edge detection. Usually, this 

image is further binarized by a threshold. The binarization treats the pixels with 

values greater than the threshold as edge pixels and others as non-edge pixels. These 

edge pixels are usually assembled to form more meaningful edges by linking 
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procedures in the second stage. 

Consider an untextured image shown in fig. 2.1(a). The result of the image 

processed by the Sobel edge detector is shown in fig. 2.1(b), and the binarized image 

of fig. 2.1(b) with a threshold 10 is shown in fig 2.1(c). The binarization is to treat 

pixels with values greater than the threshold as edge pixels. The edge pixels in 2.1(c) 

reasonably correspond to the object boundary, and, after edge linking, can easily 

achieve the actual object boundary. Therefore, for untextured images, satisfactory 

results of segmentation usually can be obtained by contour-based methods. However, 

in the case of textured images, in addition to the pixels corresponding to the boundary 

of the objects, the pixels related to the grain in the texture may be also detected in the 

edge detection process. Hence, further using edge linking process to these detected 

pixels will yield wrong results, i.e., the boundary of the objects can not be 

appropriately identified. To illustrate this, consider the results of edge detection for 

the image in fig. 2.2(a), shown in fig. 2.2(c) and (d) which are binarized from (b) with 

thresholds 0.2 and 0.1, respectively. It is very difficult to set a threshold for the edge 

detector to obtain a group of edge pixels, which could correctly indicate the location 

of the object boundary in the image. If the threshold value is set high, boundary could 

be better identified in the texture area, but corrupted poor detection for the real object 

boundary could also be obtained. On the other hand, if the threshold value is set low, 
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in addition to real object boundaries, the grain in the texture would be also treated as 

object boundaries. Thus, both threshold values, too high and too low, would produce 

wrong object boundary detection or, moreover, unnecessarily complicate the 

processing of the following edge linking, i.e., it is very difficult to set an adequate 

threshold value, which can suppress wrong edge pixels corresponding to the grain 

inside the texture and let pass the edge pixels corresponding to real object boundary. 

As a result, the contour-based method is useful to determine the boundary of 

non-textured regions in an image while not suitable for textured regions. 

 
(a) 

   

 (b) (c) 

Figure 2.1 (a) An untextured image, (b) a result using Sobel operator, and (c) a 
binarized image 
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 (a) (b) 

   
 (c) (d) 
Figure 2.2 (a) A textured image, (b) a result using Sobel operator, and binarized 
images using threshold (c) 0.2 and (d) 0.1 
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2.2 Region-Based Methods 

The most commonly used region-based segmentation methods include region 

growing, and region merging and splitting [8]. Typical region-based method first 

chooses one or more starting points in the image, called seeds, and then appending to 

these seeds their adjacent pixels recursively with a merging criterion. The generation 

of seed points may depend on the problem under consideration. However, this 

information is usually not available if the image data is not limited to a specific kind, 

such as images that contain some known objects. Generally, features of each pixels 

corresponding to some properties are computed, and if they form some clusters in the 

feature space, pixels corresponding to the center of these clusters will be treated as 

seeds. On the other hand, the stopping rule for region growing is also a problem. In 

general, the growing process will stop when no more pixels satisfy the merging 

criterion. If the images to be processed are limited to a specific category, then 

expected results can be obtained more effectively by the use of additional information 

such as color, texture, size, and shape. 

The above discussion reveals that if the content of the input images have some 

special property, then both seed generation and the stopping rule for region growing 

can be more effectively determined. Therefore, region-based methods are more 

powerful for specific kind of images. 
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2.3 Motivation of the Hierarchical Segmentation Method 

 Conventional contour-based image segmentation methods are more suitable for 

non-textured images and region-based image segmentation methods can be more 

powerful for images with special properties. Therefore, the necessary of a method is 

evident to find the boundaries of objects in an image consisting of both textured and 

non-textured regions. Commonly, the object boundaries in an image can be found 

from many cues simultaneously, including the edges corresponding to the brightness, 

color, and textures [4], [7], [11]. In addition to these frequently used cues, other 

properties such as proximity, similarity, common region, and familiar configuration 

can also help in image segmentation [1]. Although these cues may facilitate the 

performance of image segmentation, it is not easy to consider all of them at the same 

time, and inclusion of a new cue may result in a reconstruction of a new segmentation 

method. Therefore, a hierarchical segmentation which deals with one cue in each 

stage of segmentation is adopted. Different to the method proposed in [12], the 

method in this thesis provides a segmentation scheme in a coarse-to-fine manner. The 

hierarchical processing has an advantage of separate the consideration of cues and 

hence could simplify the image segmentation problem. In addition, this method could 

easily integrate some other information, such as geometry and range data, for 

improvement of the performance of segmentation, if possible. 
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Despite of the dependency for image segmentation on problems, this thesis tries 

to provide a general segmentation method which may be direct used or easily 

modified to tackle the problems on hand. Based on the assumption that, for natural 

images, an object is defined as a group of connected pixels with similar color and 

texture, the goal of the image segmentation method in this thesis tries to 

under-segment the image into regions respectively with coherent color and texture. 

This image segmentation method proposed a two stages segmentation related to 

color and textures, respectively. Fig. 2.3 shows the processing flow of this 

segmentation method. The original image is first processed by a Gaussian low pass 

filter to reduce the influence of noise and then contiguously processed by color and 

texture segmentation to accomplish the whole segmentation. 
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Figure 2.3 The processing flow of the image segmentation method in this thesis 
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Chapter 3 

Image Segmentation by Color Cue 

 

It is usually expected that an object in a natural image would possess similar 

color with some variable brightness caused by the texture in the object or non-uniform 

illumination. Due to the fact that the eye has less acuity for color than for luminance 

[8] and color feature hue has resistance to the non-uniform illumination caused by 

shade, shadow, reflect lights, and so on [13], the color feature is exploited to obtain a 

coarse segmentation in the first stage. This may retain the integrity of objects, avoid 

the disturbance of the brightness change within an object, and allow further 

processing in the following segmentation stage. 

 

3.1 Some Relationships between Pixels 

To continue our discussion, some spatial relations between pixels are reviewed in 

this section. 4-adjacency and 8-adjacency, the two most commonly used types of 

adjacency, are introduced here. Assume pixel p is at coordinate (x,y) and pixel q is at 

(s,t). Two pixels p and q are said to be 4-adjacency if pixel q is at (x+1,y), (x-1,y), 

(x,y+1), or (x,y-1), and vice versa. Two pixels p and q are said to be 8-adjacency if 

pixel q is at (x+1,y), (x-1,y), (x,y+1), (x,y-1), (x+1,y+1), (x-1,y+1), (x+1,y-1), or 
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(x-1,y-1), and vice versa. These two types of adjacency are illustrated in fig 3.1. The 

light gray pixels are said to be 4- and 8- adjacency with the central points in fig. 3.1(a) 

and (b), respectively. 

Let S be a subset of pixels in an image. Two pixels are said to be connected in S 

if, with 4- or 8-adjacency, there is a path between them consisting entirely of the other 

pixels in the set. For any pixel in S, the set of pixels that are connected to it in S is 

called a connected component of S. If a set of pixels has only one connected 

component, then the set is called a connected set or a region [8]. Fig. 3.2 shows a set 

of points to be processed (dark gray). There are 5 regions if they are viewed with 

4-adjacency and 4 regions with 8-adjacency. 

 

    
 (a) (b) 

Figure 3.1 Images to demonstrate (a) 4-adjacency, and (b) 8-adjacency 

 

 

Figure 3.2 An example to demonstrate connected components 
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3.2 Transformation to HSI Color Space 

 Color images are most commonly stored and described by the combination of 

three color primaries, Red, Green, and Blue. Images described in such way is said to 

be presented in RGB color space. RGB color space makes sense because human eye 

has strong perception to these three color primaries, and hardware implementation of 

RGB color space is suited and straightforward. Fig. 3.3 shows an RGB color cube to 

illustrate the RGB color space. 

 B 

 

255

0 
255 G 

255 

R 
Figure 3.3 RGB color cube 

 

 Although RGB color space is very useful, it does not intuitively match human 

interpretation of color, i.e., the use of RGB percentage is not the way fulfilled in 

human eyes. Rather than in the RGB color space, a color to humans is more 

intuitively described with hue, saturation, and intensity in the HSI color model, which 

is obtained by transforming the RGB color space to a cylindrical space. The 
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coordinate along the cylindrical axis represents the brightness, which corresponds to 

the points of R=G=B in the RBG color space. The coordinate to represent saturation is 

along the radius perpendicular to the brightness axis and measures the distance to the 

brightness axis. Finally, the coordinate to represent hue is the angle between the 

radius axis and a reference direction corresponding to red color. The transformation 

formulas from RGB to HSI are  
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 The hue stands for the name of the color. For example, 0 degree means red, 120 

degree means green, 240 degree means blue, and 60 degree means yellow. The 

saturation indicates how much the color is mixed by white color. The intensity 

concerns about the brightness intensity. Note that the range of θ is from 0 to 359 

degree, S is from 0 to 1, and I is from 0 to 255 if R, G, and B are respectively 

represented by 8 bits and has values from 0 to 255. Moreover, hue is not defined in 

the case that R=G=B. Fig. 3.4 shows a RGB color cube fitted by the HSI coordinate, 
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and an intersection of the RGB color cube and a plane for certain I value to illustrate 

the HSI color model. 
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Figure 3.4 HSI color model 

 

For pixels with R=G=B, the denominator within the arc cosine function in 

equation (3-4) will be zero and thus the hue for these pixels is not defined. In other 

words, although hue is useful as an index of color, it is not defined for gray pixels 

because of their lack of color information. Usually, there are hue undefined pixels 

after RGB to HSI transformation and, for natural images, the hue undefined points 

often from small regions scattered over the image. The hue of these pixels can be 

computed by the average value of the hue of the adjacent pixels. This makes sense 

S Red

Yellow

Green 

Cyan 

Blue 

Magenta

 16



because in natural images, hue undefined small region often appears due to noise and 

quantization error during image acquisition and storage. 

When only single hue undefined point appears, it is probably a noisy point 

because its adjacent points all possess their own hue values, respectively. Therefore, 

this hue undefined point can be easily removed by the average value of the hue of the 

8 neighbors. When a region of hue undefined points appears, the following procedure 

is used to eliminate this region: 

(1) Find out the points which have most neighbors that have hue. 

(2) Determine the hue for these points respectively by the average of hue of the 

neighbors that have hue. 

(3) Treat the remaining hue undefined region in step 2 as a new one and repeat 

this procedure until all hue undefined points are eliminated. 

Fig. 3.5 is an example to demonstrate the method of eliminating the hue 

undefined region. Fig. 3.5(a) shows a hue undefined region, labeled by white and 

enclosed by points with hue calculated by equation (3-1), which are labeled by dark 

gray. This hue undefined region only has one point with 7 neighbors whose hue had 

been calculated, and it is labeled as light gray in (b). Thus in step (2), only the hue of 

the light gray point in (b) has to be determined. This is done by averaging the hue of 

the 7 dark gray neighbors. The average value is filled into the light gray point and, as 
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a result, a new hue undefined region is produced as in (c). Repeat the procedure for 

(c). To find points with most hue calculated neighbors, only 3 points with 6 hue 

calculated neighbors are found as the light gray in (d). Then, the hue of these 3 points 

are respectively filled in by the average of hue of its 6 hue calculated neighbors. Fig. 

3.5 (e) to (n) contiguously finished the whole process. 

 

    
 (a) (b) (c) (d) 

    
 (e) (f) (g) (h) 

    
 (i) (j) (k) (l) 

  
 (m) (n) 

Figure 3.5 An example to demonstrate the elimination of a hue undefined region 
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3.3 Multilevel Thresholding by Hue Histogram 

In this thesis, the angle of the hue is uniformly quantized into 256 parts. The 

histogram of hue is defined as ( ) kk nrh = , where  is the kth hue value and  is 

the number of pixels in the image with this kth hue value. After the hue histogram is 

computed, it can be normalized by dividing each value by the maxima. 

kr kn

Modes in the hue histogram represent the dominant colors for the image. Thus, 

to segment an image into regions corresponding to these dominant colors is equivalent 

to assign each pixel in the image to one of these modes. This can be achieved by 

multilevel thresholding the hue histogram. First, to determine the boundaries of the 

modes in the hue histogram, a peak finding algorithm proposed in [12] is used: 

(1) Search local maxima in the histogram for the mode candidates. 

(2) Find the local maxima again among those mode candidates to eliminate 

spurious candidates caused by noise. 

(3) Eliminate candidates that are too small, too close, and not obvious. 

Experiments show that if we drop the candidates with value less than a 

threshold, say 0.05, then better results of color segmentation would be 

obtained. On the other hand, two modes are not expected to be close because 

of the similarity of the dominant hue value. Finally, the candidate is also not 

expected as mode if it is not very obvious. That is, if a candidate doesn’t look 
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like a peak, it is not considered as a mode. Mathematically, whether the peak 

is obvious is determined by comparing the average value of the two 

candidate, , and that of the points between the two 

candidate, 
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. This is illustrated in fig. 3.6. The candidate 

of the two (red dotted) with smaller value will not be identified as a mode 

and only one mode is in this histogram. 
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Figure 3.6 An example of the peak finding algorithm 

 

After the determination of peaks of the modes, the boundaries of the modes can 

be respectively chosen as the positions with minima values between the peaks. Now 

multilevel thresholding can be performed by the determined boundaries of the modes 

in the hue histogram. Each pixel with hue value between two adjacent boundaries is 

assigned to the corresponding dominant color. Fig 3.7(a) and 3.8(a) show the result 
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after hue undefined region elimination and multilevel thresholding the hue histogram, 

shown in fig. 3.7(b) and 3.8(b). In each hue histogram, the red dots mark the peak of 

each mode after the peak finding algorithm and the green circles mark the boundaries 

of the modes or the thresholds for multilevel thresholding. 

 

   
 (a) (b) 
Figure 3.7 (a) Result after multilevel thresholding and (b) the hue histogram of (a) 
 

   
 (a) (b) 
Figure 3.8 (a) Result after multilevel thresholding and (b) the hue histogram of (a) 

 

Multilevel thresholding treats pixels with hue values within a certain range as a 

class. In the best case, the pixels of one class might tend to form one region 

corresponding to one object. However, these pixels might often be distributed into 

 21



two or more regions respectively corresponding to objects in the image. Moreover, in 

the worst case, these pixels might be grouped into several small regions which 

respectively correspond to some part of the interior of some objects as shown in fig. 

3.8(a). This is because that histogram is a statistical operation that accounts for the 

whole image, but it lacks for consideration to the spatial information. As a result, it is 

often the case that, after multilevel thresholding the hue histogram, many small 

fractional regions might appear as in fig. 3.7(a) and 3.8(a). A complement to the pure 

global characteristic of histogram is to take spatial information into account [14]. The 

small fractional parts obtained by multilevel thresholding will be treated as fault 

segmentation and be merged to the adjacent region with the closest average of hue. 

The results of adding this spatial information to the segmentation result in fig. 3.7(a) 

and 3.8(a) are shown in fig. 3.9(a) and (b), respectively. 

 

   
 (a) (b) 
Figure 3.9 (a) and (b) are results after merging small regions to their most similar 
adjacent regions 
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Chapter 4 

Segmentation by Texture Cue 

 

After the segmentation by color cue, several coarse regions had been generated. 

Ideally, each coarse region would contain only one non-textured or textured object 

with similar color, and no more segmentation for that region is necessary. But in the 

case that two or more objects with similar color yet distinguishable textures are 

segmented to one region after the first stage segmentation, they are expected to be 

further segmented. This leads to the need of the second stage to segment one region 

into two or more with different textures. 

It is hard to define exactly what texture is. Usually, texture can be thought as the 

orderly pattern that looks like large numbers of small objects [1]. In this thesis, texture 

is treated as the pattern that comprises high density of orderly arranged edges. 

 

4.1 The Filter Bank for Human Receptive Field 

It has been proposed that there are cells in primate visual system which has 

similar operations as those commonly used in image processing [15]. Dots and lines 

of different orientations, lengths, and moving directions could respectively cause 

different responses to these cells; that is, for instance, a line at a certain orientation 
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and scale may result in a strong response to one cell but weak to another. Moreover, 

the operation corresponding to such cells is analogous to convolving the image with a 

certain linear filter. The models of these filters can be classified into three categories 

[7], [15]: filters that are radially symmetric, filters that are oriented even-symmetric, 

and filters that are oriented odd-symmetric. The radially symmetric filter is usually a 

Laplacian of Gaussian (LOG) or a Difference of Gaussian (DOG), which is an 

effective approximation to LOG. [16], [17]. The even-symmetric filter is usually an 

oriented Gaussian derivative. For example, the horizontal version of the filter is in the 

form: 
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where C is a normalization constant and xσ  and yσ  determine the scale of the 

filter in the x and y direction, respectively. Other even-symmetric filters are rotated 

copies of the horizontal even-symmetric filter. Finally, the oriented odd-symmetric 

filters can be modeled as the Hilbert transform of each line parallel to the direction of 

the even-symmetric filters. 

 Equation (4-1) can be viewed as a Gaussian low pass function differentiated two 

times in one direction. The Fourier transform of a Gaussian function with standard 

deviation σ  is still a Gaussian function with standard deviation σ
1 . Therefore, 

Gaussian kernel can be treated as a low pass filter. Because both derivative and 
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convolution are linear operation, they satisfy the communitative property. As a result, 

the convolution of the image with the filter described in equation (4-1) is the same as 

convolving the image first with the Gaussian low pass filter and then differentiating 

the result. This can be qualitatively viewed as first denoising the image with a 

Gaussian low pass filter and this blurred image is then applied by a second derivative 

to find the gradient change in the image. Therefore, to denoise the image and find the 

change of gradient can be done by just one convolution of the image with the filter 

described by equation (4-1). From the viewpoint of frequency characteristics, due to 

the fact that differentiation enhances the high frequency signal, the combination of the 

Gaussian low pass filter and differentiation will form an effect of band pass filtering. 

Therefore, the oriented filter can be treated as a band pass filters for one direction and 

a low pass function for the other perpendicular direction. As a summary, the radially, 

even, and odd symmetric filters can be viewed as isotropic and oriented band pass 

filters. 

 

4.2 Texture Analysis 

Texture is a pattern with periodic characteristics. In other words, a texture region 

tends to consist of signals within a certain frequency band. In addition, slow change 

signals are usually caused by non-uniform illumination. Therefore, based on these two 
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basic observations, band pass filters can be reasonably used for texture analysis. 

However, although a large set of filters had been used in texture analysis [7] [11], to 

handle vectors which are constituted by the response of these filters in such a large 

dimension vector space is not very easy. As a result, only filters with orientations of 0 

and 90 degree are used in this thesis to distinguish the textured and untextured regions. 

Fig. 4.1 shows the filters used in this thesis where the mid-gray level represents zero 

and darker gray level represents negative value while lighter gray level represents 

positive value. Fig. 4.1(a) and (b) are respectively the even- and odd-symmetric filters 

in horizontal direction, and (c) and (d) in vertical direction. 

 

  
 (a) (b) 

  
 (c) (d) 
Figure 4.1 (a) and (b) are the even and odd symmetric filters in the horizontal 
direction, and (c) and (d) in the vertical direction 
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Assume that a region segmented in the first stage consists of textured and 

untextured patterns. The periodic textured pattern in the region is mainly composed of 

band pass signals, and band pass filtering will retain the characteristics of the texture. 

This remaining band pass signal can be treated as a clue to distinguish the textured 

pattern from the untextured one. To make the clue clearer and easier to use, the 

responses obtained by the band pass filters are absolutely added to form hills 

respectively corresponding to texture in the image. And this result is further low pass 

filtered to get the texture feature. To be a summary, the region is first filtered with the 

texture analysis filter bank, and the responses are absolutely added up and then low 

pass filtered to form the texture feature. 

To illustrate this, an easy but comprehensive example is given first. Consider the 

one dimensional signal extracted from fig. 4.2(a), which is white labeled in (b) and 

shown in (c). Note that the signal is normalized to be in the range from 0 to 1. Then, 

after band pass filtering of fig. 4.2(c) with (d) and (f), only band pass signal will be 

retained as shown in (e) and (g), respectively. The absolute sum of the band pass 

signals (e) and (g) is shown in (h). Result of low pass filtering (h) is shown in (i). It is 

obvious that to classify the textured and untextured region is equivalent to distinguish 

the two plains with different height in fig. 4.2(i). 
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 (a) (b) 

 
(c) 

 
 (d) (e) 

 
 (f) (g) 

 
 (h) (i) 

Figure 4.2 An example of texture analysis 
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Now consider the whole image clip shown in fig. 4.2(a), which is reprinted in fig. 

4.3(a). This image clip consists of a textured pattern composed of windows of a 

building on the left hand side and an untextured region caused by sky on the right 

hand side. Fig. 4.3(b) is the absolute sum of the responses of band pass filtering of (a) 

with the filters used in this thesis. The texture feature is the result of low pass filtering 

(b) with a Gaussian low pass filter and is shown in fig. 4.3(c). In fig. 4.3(c), regions 

with higher values correspond to the texture in the original image clip. 

 

 
(a) 

  
 (b) (c) 

Figure 4.3 The result of texture analysis shown as images 

 

4.3 Region Merging 

To determine the textured and untextured regions, the remaining task is to find 

regions with different average feature values in the result of texture analysis. The 
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pixels within the regions of higher average values correspond possibly to textured 

regions in the image. However, texture is usually not composed of a signal of single 

frequency for natural objects. Instead, in addition to the main frequency of the texture, 

signals of other frequencies comprise the texture and, as a result, some pixels within 

the textured region would possess values quit different to the average feature values 

of this region. Therefore, to find out such regions with high average feature values, an 

adaptive region merging method is adopted here [6]. This method is constituted by 

two parts: First, in place of seeds determination, the order of merging is determined, 

i.e. the order to check if two regions are to be merged is first obtained. Second, a 

merging predicate to check the merging of two regions is developed. 

 

4.3.1 Order of Merging 

 The order of merging can play a significant role in region merging. Traditionally, 

the order of merging is just to scan an image, say, from top to bottom, left to right. As 

demonstrated in [6], the order of merging can be deliberately arranged such that better 

results can be obtained than the conventional order of merging. It is shown that bad 

ordering would result in wrong region merging even for images with little noise; yet 

good ordering is capable of tackling the noise in the image and helps to produce a 

good result. 
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Assume true regions are regions in the final segmentation result. A rule for the 

order of merging is: when any merging test between two (parts of) true regions occurs, 

all tests inside each of the two true regions have previously occurred. To simulate this 

order of merging, observe that, especially for non-textured regions, pixels in a true 

region tend to have low gradient and pixels near the boundary between true regions 

tend to have high gradient with respect to their adjacent pixels. Thus, the rule for the 

order of merging can be approximated by the increasing order of the gradient of 

adjacent pixels, i.e., check the merging predicate for pixels with low gradient first and 

then those with high gradient. 

As an example for the order of merging, consider two adjacent pixels p and q 

with values  and , respectively, the gradient of these two pixels is computed 

as: 

vp vq

 vv qpqpf −=),(  (4-2) 

For 4-adjacency, gradient of pixels are computed either in the horizontal or vertical 

directions using (4-2). For an image with height h and width w, h*(w-1) horizontal 

gradients and w*(h-1) vertical gradients can be computed. Then these gradients are 

sorted in the ascending order and this order is used as an approximation for the 

merging order. 
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4.3.2 Merging Predicate 

To derive the merging predicate, first consider the novel model of image 

generation proposed in [6]. This model treats the image we have as an observed image 

I, which is sampled from a true image I*. In a true image, each pixel is represented by 

Q independent random variables. The sampling process of a pixel in the observed 

image from the true image is shown in fig. 4.4. Each pixel in the observed image is 

the sum of the outcomes of the Q independent random variables corresponding to that 

pixel in the true image. Assume each independent random variable takes positive 

values bounded by g/Q, then any possible sum of outcomes of the Q random variables 

is bounded by g and each pixel in the observed image has value no more than g. 

To continue the derivation of the merging predicate, consider the following 

theorem: 

Theorem 4.1 [6]: 

Let be a family of n independent random variables with 

 taking values in a set  for each k. Suppose that the real-valued function f 

defined on  satisfies 

),...,,( 21 nXXXX =

kX kA

kk AΠ kcxfxf ≤− )'()(  whenever vectors x and x’ differ 

only in the kth coordinate. Let μ  be the expected value of the random variable 

. Then, for any )(Xf 0≥τ , 

  (4-3) ⎟
⎠

⎞
⎜
⎝

⎛
−≤≥− ∑ 22 )(/2exp))(Pr(

k
kcXf ττμ
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 Let R  be the number of pixel in region R. Then, for two regions R and R’, 

there are ( 'RRQ + ) independent random variables. If a change of value of only one 

random variable that belongs to R occurs, the change of value of 'RR −  will be 

bounded to ( RQgcR /= ); if a change of value of only one random variable that 

belongs to R’, the change of value of 'RR −  will be bounded to ( )'/' RQgcR = . 

Therefore, ( ) ( ) ( )( ) ( )( )'/1/1/' 22
'

22 RRQgcRcRQc RRk k +=+=∑ . Let X be the 

vector constituted by the ( 'RRQ + )  random variables and f be defined as 

')( RRXf −= , where R  is the average values of observed pixels with in R.  

Substitute these into (4-3) and using the fact that the deviation with the absolute value 

is at most twice that without, then 

 ( )τ≥−−− )'()'(Pr RRERR  

 ( )( )( ) δτ =+−≤ '/1/1//2exp2 22 RRQg   (4-4) 

If δ  is chosen, then τ  can be determined by 

 ( )( )( ) δτ =+− '/1/1//2exp2 22 RRQg  

 => 
δ

τ 2ln
'

11
2
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

RRQ
g  (4-5) 

In other words, we have, with probability no more than δ , 

 
δ
2ln

'
11

2
1)'()'( ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+≥−−−

RRQ
gRRERR  (4-6) 

This leads to the following corollary. 
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Corollary 4.1: 

Consider a fixed couple  of regions of I., )',( RR 10 ≤<∀ δ , the probability is 

no more than δ  that 

 
δ
2ln

'
11

2
1)'()'( ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+≥−−−

RRQ
gRRERR  

Because that each random variable is independent, all couples of regions  

whose merging are tested will satisfy 

)',( RR

δ
2ln

'
11

2
1)'()'( ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+≤−−−

RRQ
gRRERR  

with a probability . If ( )Nδ−≥ 1 δ  is small, then ( ) δδ NN −≈− 11 . When pixels of 

'RR∪  actually come from the same statistical region in the true image I*, then 

0)'( =− RRE . Thus, it can be summarized as that 'RR −  does not exceed 

δ
2ln

'
11

2
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

RRQ
g  with a high probability. This is the merging predicate used in 

for region merging. It is summarized as following: 

 
⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+≤−=

otherwisefalse
RRQ

gRRiftrueRRP δ
2ln

'
11

2
1)'()',(  (4-7) 

Qualitatively, the merging predicate can be treated as an adaptive merging rule. If 

two small regions are tested by the merging predicate, the threshold in the right hand 

side of (4-7) will be large and these two regions will be merged to one as long as the 

difference between the average values of these two regions is not too much. On the 

other hand, two large regions only merged when their average values are very similar. 
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For example, by the above order of merging, most pixels within the left and right 

hand side regions in fig. 4.3(c) will be first checked and merged because their values 

are similar to their adjacent pixels. Although some pixels with different feature values 

will appear within the two regions, they will be merged due to high threshold because 

these pixels are scattered separately within the regions. This can be viewed as a 

denoising property of this region merging method. Fig. 4.5 shows the result of 

applying this region merging method to fig. 4.3(c). 

 

Figure 4.4 The model of image generation 

 

   

 (a) (b) 

Figure 4.5 Results of region merging after texture analysis 
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Chapter 5 

Experimental Results 

 

 The test images used in the experiments are taken form the Berkeley 

segmentation dataset [18] with sizes of either 481x321 or 321x481. Experiments are 

done for these images to determine the parameters of the method in this thesis. The 

standard deviation of the low pass Gaussian denoising filter is set to 2=σ . Regions 

that are less than 2.5 percent of the total number of the pixels in the image are merged 

to their most similar adjacent region after multilevel thresholding of the hue histogram. 

The scales in each of the band pass filters are 1 and 3 corresponding to the direction 

of the filters. The standard deviation of the Gaussian low pass filters for texture 

analysis is set to 4. And, finally, the parameters for the region merging are set to 

g=255, Q=8, and 2)*(
1
wh

=δ , where h and w are respectively the height and width 

of the input image. The following experiments are done based on these parameter 

settings if not mentioned. 

 

5.1 Experiments for Texture Segmentation 

 Some experiments for the texture segmentation are shown in this section. It has 

been discussed that conventional region merging methods or even the region merging 
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method used in this thesis are more suitable for untextured image segmentation. Due 

to the lack of the information of texture, a texture region is often improperly 

segmented to many regions using region merging. Fig. 5.1(a) shows an image clip 

composed of two regions with similar color but different texture at the upper and 

bottom side, respectively. Fig. 5.1(b), (c), and (d) are the results of applying directly 

the region merging method introduced in section 4.3 to fig. 5.1(a), respectively with 

Q=4, Q=2, and Q=1. It is obvious that the upper texture region tends to be segmented 

to several regions each of which is of an average brightness value different to those of 

its adjacent regions. Obviously, direct utilization of region merging to separate two 

regions with different texture is difficult. 

On the other hand, the pixels within the textured region reveal their common 

feature after texture analysis. And region merging based on this texture feature would 

produce a better segmentation of textured and untextured regions than that obtained 

by direct use of the region merging. Fig. 5.2 shows some results of region merging for 

the texture feature. Clearly, region merging for the texture feature improves the 

performance of the segmentation for textured and untextured regions. Other examples 

are shown in fig. 5.3 and 5.4 to demonstrate the resistance of the texture segmentation 

in this thesis to the influence of shadow. Note that in fig. 5.3, the textured and 

untextured regions are segmented mainly due to the darker region between them 
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caused by shadow. 

   

 (a) (b) 

   

 (c) (d) 
Figure 5.1 (a) An image clip and the results of region merging with (b) Q=4 and (c) 
Q=2 and (d) Q=1 

 

   

 (a) (b) 

   

 (c) (d) 
Figure 5.2 Results of the region merging after texture analysis with (a) Q=8, (b) Q=4, 
(c) Q=2, (d) Q=1 
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 (a) (b) 

   
 (c) (d) 
Figure 5.3 (a) An image clip and the results of region merging with (b) Q=4 and (c) 
Q=2 and (d) Q=1 

 

   
 (a) (b) 

   
 (c) (d) 
Figure 5.4 Results of the region merging after texture analysis with (a) Q=8, (b) Q=4, 
(c) Q=2, (d) Q=1 
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Generally speaking, the segmentation in one of the stages in the hierarchical 

segmentation method can take advantage of the segmentation result of its preceding 

stage. Because only a two-stage-segmentation is used in this thesis, experiments will 

be done for the textured segmentation with and without the information given by the 

color segmentation. If the texture segmentation is applied to the texture feature of the 

whole image in fig. 5.5(a), then the segmentation results are obtained in fig. 5.5(b), 

and (c). These results can be compared to that shown in fig. 5.5 (d), which is the result 

of texture segmentation based on the result of color segmentation. The improvement 

of the performance by using the hierarchical segmentation is evident. 
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Figure 5.5 (a) Original image and results of texture segmentation with (b) Q=8 and (c) 
Q=4 to the whole image, and (d) a result of our segmentation method with Q=8 
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5.2 Comparison of the Segmentation Results 

The image segmentation method in this thesis is compared with a segmentation 

method (JSEG) which segments color-texture regions in an image [19]. This method 

uses color quantization and spatial segmentation to achieve the segmentation task. By 

the inherence of JSEG, its performance is heavily influenced by the spatially varying 

illumination, and thus an object with same color would be segmented to several 

regions due to the influence of non-uniform illumination. Fig 5.6 and 5.7 show results 

of our one-stage and two-stage segmentation, and the results obtained by JSEG. It can 

be seen that the JSEG segments the flower in fig 5.6(a) and the sky in fig 5.7(a) into 

several regions due to non-uniform illumination while the results obtained by the 

segmentation method in this thesis retain the completeness of color objects. Note that 

the results of JSEG are obtained with its default parameter setting. 

Experiments are also done for some car images as shown in fig. 5.8. The results 

of one-stage and two-stage segmentation are shown respectively in the second and 

third row in fig. 5.8. It is believed that even if only the results of one-stage 

segmentation are obtained, the information can still facilitate the searching of license 

plate. For the cases shown in fig. 5.8, license plates are successfully found in the 

results of the two-stage segmentation. 
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 (a) (b) 

   
 (c) (d) 
Figure 5.6 (a) The original image, (b) the result after 1st stage segmentation, (c) the 
result after 2nd stage segmentation, and (d) a result obtained by JSEG 

 

 

 43



  
 (a) (b) 

  
 (c) (d) 

  
 (e) (f) 

  
 (g) (h) 
Figure 5.7 (a)(e) The original images, (b)(f) the results after 1st stage segmentation, 
(c)(g) the results after 2nd stage segmentation, and (d)(h) results obtained by JSEG 

 44



 

 

  

  

  

Figure 5.8 Results of image segmentation for car images 
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Chapter 6 

Conclusions and Future Works 

 

A hierarchical scheme for natural image segmentation is proposed in this thesis. 

This thesis demonstrates a segmentation scheme using color and texture at different 

stage to hierarchically segment an image into regions with similar color and texture. 

Experiments show that the segmentation in the first stage by color hue has resistance 

to the influence of non-uniform illumination and tends to produce coarse or 

under-segmentation results for natural images. The regions obtained in the result of 

first stage segmentation have the advantage of purifying the information in each of the 

regions and, as a result, the second stage of segmentation can deal with these 

meaningful regions rather than the whole confused image. In addition, the second 

stage of segmentation has chance to selectively process the regions in the result of the 

first stage of segmentation by some simple examination. This can facilitate the speed 

or performance of the segmentation. The segmentation by texture in the second stage 

provides an easy and intuitive way to segment the textured and non-textured regions. 

The separation of each cue in different segmentation stages can simplify the use 

of each cue. Besides, it is easy for the extension to append more segmentation stages 

based on other information. For example, if the range data of an image is obtainable, 
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then it can be used for the first or second stage segmentation, resulting in a three-stage 

segmentation method. Moreover, segmentation method in each of the stage can be 

easily replaced by others according to the need of users. Of course, wrong 

segmentation in one stage will mislead all the following segmentation. Therefore, the 

selection of information used in each segmentation stage is important and a rule might 

be established to detect if the regions in the preceding segmentation result are usable. 

However, there are some inherent difficulties in this method. First, hue is not a 

uniform color space, i.e. the degree of the perception of human for the difference of 

two colors is not the same to the difference of their hue. As a result, two regions with 

distinguishable hue may look like regions with similar color. In addition, hue is not 

capable of dealing with black and white color and is not stable for dark brightness. 

For example, the black and white regions in the image shown in fig. 6.1 can not be 

segment perfectly by the use of only hue information. Thus, it is necessary to do some 

modification or improvement for the segmentation by color in the first stage to tackle 

the black or white regions in the image. Second, the result for texture segmentation 

can be heavily infected by the sizes and ratios of the band pass filters and the Q of 

region merging. Although these parameters have been set to some value, in fact, they 

may be set automatically according to the information of the images. For the 

segmentation method in this thesis, the parameters for the second stage segmentation 
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have chance to be adaptively and respectively set corresponding to each of the regions 

in the first stage. 

 

   

Figure 6.1 Bad segmentation results for black-white regions 
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