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利用模糊類神經網路之音頻信號分類與切割技術 

 

學生：陳瑞正      指導教授：林進燈 博士 

               

 

國立交通大學電機與控制工程研究所 

摘  要 

在本論文中我們提出了一個針對音頻信號之分類與切割的系統，此系統可將

含有靜音、純語音、純音樂以及歌曲之檔案，根據其類型加以分類與切割。我們

針對上述各種音訊的特徵的作分析與比較，並根據這些分析與比較的結果，設計

一套分類流程將輸入的音訊分兩階段依序完成分類與切割。一開始的靜音偵測根

據一個門檻值標示出音訊中屬於靜音的部分。之後，第一階段將輸入音訊中非靜

音部分分為純語音與「含有音樂成分」兩類，第二階段將在第一階段中被歸類為

「含有音樂成分」的部分，進一步分為純音樂以及歌曲。為了解決傳統特徵在進

行純音樂與歌曲分類時分類效果不佳的問題，本論文提出了一個名為「前三峰值

之頻率變化量(FVTP)」的新特徵。此特徵描述了歌曲的頻譜結構會隨著時間而顯

著地改變而純音樂之頻譜結構改變量相對較小之特性。因此該特徵能在進行純音

樂與歌曲分類時，改善分類效果不佳的問題。而在分類器的選用方面，本系統採

用一前向式自我建構類神經模糊推理網路(SONFIN)做為核心分類器。該網路具

有可自我建構並調整的架構與參數學習的功能，以及優異的模糊類神經推論過

程。我們利用這些特性達到較佳之分類結果。實驗結果顯示，本系統可達到平均

90%以上的分類正確率。因此，本系統可作為許多如語音辨識、語者辨識等應用

系統的前端處理，使輸入這些應用系統的內容符合系統要求以提升應用系統的效

能。 
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ABSTRACT 
 

In this thesis, we proposed an audio classification and segmentation system. The 
system is used to classify and segment audio files which contain silence, pure speech, 
pure music, and song according to their contents. We analyzed and compared features 
of audio signals and designed a two-stage classification flow to classify and segment 
input audio signals sequentially. The flow starts with the silence detection which 
indexes silence according to a threshold. Then, stage 1 classifies the nonsilence parts 
into pure speech and “with music components”. Stage 2 classifies the “with music 
components” parts in stage 1 into pure music and song. In order to solve the problem 
that traditional features do not work well when it comes to pure music/song 
classification, we proposed a novel feature named FVTP. The feature describes the 
property that variations of the spectrum structure are larger for song but smaller for 
pure music. Thus, the feature can improve the performance of pure music/song 
classification. On the other hand, an on-line self-constructing neural fuzzy inference 
network (SONFIN) was adopted as the main classifier in this system. The SONFIN 
finds its optimal structure as well as parameters automatically and it has a superior 
inference process. We achieved a better classification result by utilizing these 
properties. Experimental results showed that an accuracy rate of more than 90% was 
achieved. Thus, the proposed system is capable of being a front-end for many 
application systems such as speech recognition and speaker identification to improve 
the performance of these application systems. 

 



 iii

誌   謝 

本論文能順利完成實需感謝眾多師長同學的指導與幫助。首先感謝指導教授

林進燈博士這兩年來的指導與提攜，在研究上一方面給予我極大的自由度，讓我

能完全的發揮想像力與創造力，而另一方面研究在遇到瓶頸時，亦提供了我正確

的方向，使研究能繼續順利進行。 

其次要感謝的是實驗室的劉得正學長，學長在研究的細節上給了我許多的幫

助與建議，讓我在能很快的瞭解這個研究領域。 

此外也要謝謝實驗室裡眾多的學長、同學與學弟們，在日常生活中的協助與

陪伴，讓研究的日子充實也充滿歡笑。 

最後感謝家人的支持，讓我沒有後顧之憂地完成我的學業。 



 iv

Contents 

Chinese Abstract.................................................................................... i 
Abstract ................................................................................................. ii 
Acknowledgement ............................................................................... iii 
List of Figures ...................................................................................... vi 
List of Tables ...................................................................................... viii 

 
Chapter 1 Introduction .........................................................................1 

 
1.1 Motivation....................................................................................................1 
1.2 The Goal of the Research.............................................................................3 
1.3 Thesis Organization .....................................................................................5 

 
Chapter 2 Background..........................................................................6 

 
2.1 Related Works ..............................................................................................6 
2.2 Introduction to Audio Signal Processing ...................................................10 

2.2.1 The Characteristics of Audio Signals................................................10 
2.2.2 Audio Signal Processing Techniques................................................12 

2.2.2.1 Short Time Analysis of Audio Signals .....................................13 
 

Chapter 3 Audio Feature Analysis and Selection .............................17 
 

3.1 Zero-Crossing Rate ....................................................................................19 
3.2 Spectrum Flux............................................................................................22 
3.3 Normalized Root Mean Square Variance...................................................24 
3.4 Low Short-Time Energy Ratio...................................................................27 
3.5 High Zero-Crossing Rate Ratio .................................................................28 
3.6 Frequency Variation of Top-3 peaks ..........................................................29 

 
Chapter 4 SONFIN-Based Audio Signal Classification and 
Segmentation System ..........................................................................38 

 
4.1 Neural Fuzzy Inference Network...............................................................38 
4.2 Classification Flow and Post-processing ...................................................41 

 
Chapter 5 Experimental Results ........................................................46 

 
5.1 Audio Database..........................................................................................46 
5.2 Evaluation with SONFIN and k-NN..........................................................46 
5.3 Discussion..................................................................................................51 



 v

Chapter 6 Conclusion..........................................................................53 
References.............................................................................................55 

 



 vi

List of Figures 
 
Fig. 1 The proposed ASC system...................................................................4 
Fig. 2 A 10-second audio signal...................................................................13 
Fig. 3 The first 600 points of the signal in Fig. 2.........................................14 
Fig. 4 The concept of short-time analysis and a hamming window.............15 
Fig. 5 Two major components of pattern classification. ..............................17 
Fig. 6 ZCR and variance of ZCR. .................................................................20 
Fig. 7 ZCR_var histograms for speech and music signals...........................21 
Fig. 8 Spectrum flux values. ........................................................................23 
Fig. 9 SF histograms for pure speech and the signals with music 

components. .........................................................................................23 
Fig. 10 SF histograms for pure speech and song. ........................................24 
Fig. 11 The normalized RMS variance value of a period of speech and 

signal with music components. ............................................................26 
Fig. 12 Normalized RMS variance histograms for pure speech and the 

signals with music components. ..........................................................26 
Fig. 13 LSTER values..................................................................................28 
Fig. 14 HZCRR values.................................................................................29 
Fig. 15 ZCR_var histograms for pure music and song. ...............................30 
Fig. 16 SF histograms for pure music and song...........................................30 
Fig. 17 Normalized RMS variance histograms for pure music and song. ...31 
Fig. 18 Five adjacent frames of pure music. ................................................32 
Fig. 19 Five adjacent frames of song. ..........................................................33 
Fig. 20 Five adjacent frames of speech........................................................34 
Fig. 21 (a) A 1-second music waveform with two notes. (b) RMS of 40 

frames of the signal in (a) ....................................................................35 
Fig. 22 The differences between 40 RMSs ..................................................35 
Fig. 23 The transition point is marked by ‘o’. .............................................36 
Fig. 24 FVTP histograms for pure music signals and song .........................37 
Fig. 25 Network structure of SONFIN. .......................................................39 
Fig. 26 The proposed audio classification flow. ..........................................42 
Fig. 27 The concept of “smoothing”............................................................44 
Fig. 28 Result of practical audio stream classification and segmentation in 

stage 1. .................................................................................................50 
Fig. 29 Result of practical audio stream classification and segmentation in 

stage 2. .................................................................................................50 



 vii

Fig. 30 practical experimental result of music and song. ............................51 
 



 viii

List of Tables 

TABLE I Relation between physical and perceptual features. ....................11 
TABLE II Classification performance of different features in stage 1 ........47 
TABLE III Classification performance of different features in stage 2.......48 
TABLE IV Classification performance of stage 2 with the influence of stage 

1............................................................................................................48 
TABLE V Classification performance of speech/song discrimination ........49 

 

 



 1

Chapter 1 
Introduction 

 

1.1  Motivation 

Sound is an extremely useful medium for conveying information. In 

addition to explicit semantic information such as the meaning of words 

used in speech, the acoustic signals conveyed to our ears carry a wealth of 

other information. These signals play important roles in our daily life. For 

example, audio including music, speech and kinds of sound is 

indispensable in modern multimedia applications which become essential 

in human’s daily life with the development of digital technology such as 

computers and digital signal processing. With these digital technologies, 

audio signals can be sampled, digitized, processed and stored in digital 

form. Furthermore, in order to benefit from digital signals, it is important 

to dig out different contents of audio by some signal processing methods 

according to different applications. 

One of these applications is classifying audio signals automatically 

which is interesting for people since humans classify audio signals all the 

time. To tell the difference between music and speech, to recognize which 

word is pronounced, and to identify one speaker to another are named 

speech/music classification, speech recognition and speaker identification, 

respectively [1], [2]. All of these tasks can be viewed as audio signal 

classification (ASC) problems. 

As mentioned in the previous paragraph, speech/music classification 
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is one of ASC domains. More precisely speaking, speech/music 

classification is a front-end for other ASC domains. The front-end 

processing is important because different types of audio need different 

processing techniques. Only with a good speech/music classifier can we 

have a better input for speech recognition systems or musical genre 

classifiers. For example, a speech recognition system assumes input is 

speech, and a musical genre classifier can work well only when input is 

music. Another example is that a system designed to translate broadcast 

news into text on radio channels will work better if the unknown input 

stream (which may consist of music and speech) is segmented and 

classified first. 

On the other hand, since the amount of audio data in multimedia 

databases and on the Internet increases swiftly, to retrieve the data 

manually becomes more and more impossible. Furthermore, most search 

engines nowadays like Google and Yahoo are text-based. Therefore, it 

seems to be a “mission impossible” for one who is not good at 

memorizing names to search databases and the Internet for audio data. 

Thus, ASC systems which can segment, classify, index, and retrieve audio 

data automatically according to its contents are now necessary.  

Take a realistic application for example, after indexing an audio 

database with the ASC technique, a song can be retrieved by humming 

the tune of it. This is a useful system since people sometimes can only 

remember the melody of a song instead of its title.  
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1.2  The Goal of the Research 

In the thesis, we developed an audio classification and segmentation 

system and focused on the differences between instrument music, speech, 

song and silence. This is an important and challenging topic since neither 

in time domain nor in frequency domain are these signals readily 

separable. However, these classes of signals are common in our daily life. 

In order to classify these signals with high accuracy for practical 

applications, it is essential and indispensable to analysis the signals. We 

applied some signal processing techniques on the signals to acquire some 

good features, which are critical to get great accuracy. Then, we analyzed 

the features and compared their properties. In the thesis, features such as 

zero-crossing rate, spectrum flux, and normalized RMS variance and so 

on are applied since their distributions are different for different types of 

audio signals. After grasping the distributions of these features in 

different types of audio signals, we can integrate the features and set a 

classification flow which is based on the concept of decision trees and 

applies an on-line self-constructing neural fuzzy inference network 

(SONFIN) to classify the signals with different content sequentially with 

a high accuracy rate. 

Figure 1 shows the ASC system proposed in the thesis. Audio 

features are first extracted. Then, silence segments are detected and 

indexed according to some features extracted in the previous step. The 

non-silent sounds are classified into speech segments and segments with 

music components. After that, segments with music components are 

categorized into two groups, namely song and pure music. We will 
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discuss the processes in detail in the latter chapters.  

 

 
 

Fig. 1 The proposed ASC system. 
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1.3  Thesis Organization 

The thesis is organized as follows. In chapter 2, related works will be 

reviewed and some audio signal processing techniques will be briefly 

introduced for further discussion. In chapter 3, we give a detail analysis 

of features used in our system. Chapter 4 discusses the proposed audio 

classification system which includes a neural fuzzy inference network, 

and the post processing process. The experimental results are shown in 

chapter 5, and some comments are also provided. Chapter 6, which 

summarizes the thesis, will give concluding remarks and possible future 

works. 
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Chapter 2 
Background 

 

2.1  Related Works 

As mentioned previously, ASC includes many research areas such as 

speech recognition, music genre classification, speaker identification, and 

so on. Although research in speech recognition, a domain of ASC, has 

existed for many years [3], there were not significant research output in 

other areas of ASC until recent years (after 1990’s). Some of related 

works on this topic will be presented in the following paragraphs. 

In [4], audio was classified into music, speech and others. For music, 

the system computes peaks in the magnitude spectrum, and then bases its 

decision on the average length of time that peaks exist in a narrow 

frequency region. To separate out speech, the pitch track is examined. 

Kimber and Wilcox [5] classified and segmented discussion 

recordings in meetings into speech, silence, laughter, and nonspeech 

sound using cepstral coefficients and a hidden Markov model (HMM).  

In [6], Pfeiffer et al. presented the analysis of the amplitude, 

frequency, pitch, onset, offset and frequency transitions of audio signals. 

With the analysis results, violence in movie soundtracks can be detected 

by recognizing shots, cries and explosions. Furthermore, music indexing 

can be an application of the analysis results. 

In [7], the goal of automatic retrieval, classification and clustering of 

musical instruments, sound effects, and environmental sounds can be 
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achieved by using statistical values (mean, variance, autocorrelation) of 

features (pitch, loudness, brightness, and bandwidth). In the article, some 

applications such as audio databases and file systems, audio database 

browsers, audio editors, and surveillance were also provided.  

A simple approach to discriminate music from speech was presented 

by John Saunders [8]. The discriminator used straightforward features 

such as the energy contour and the zero-crossing rate (ZCR). Experiments 

were performed with four measures of the skewness of the distribution of 

ZCR, and 90% correct classification rate was obtained using these 

features. Improved performance of 98% correct classification rate was 

reported by including an energy contour dip measure into the 

discrimination process. 

Scheirer and Slaney [9] introduced 13 features for speech/music 

discrimination. Statistical pattern recognition classifiers such as MAP, 

GMM, and KNN were evaluated. They used a 2.4-second window and 

got an error rate of 1.4%. When smaller windows as well as more classes 

were taken into consideration, the error rate would increase. 

A method for content-based audio classification and retrieval was 

presented in [10]. The audio feature vector, named PercCepsL, consisted 

of an 18-dimensional perceptual feature vector and a 2L-dimensional 

cepstral feature vector. The perceptual feature vector was composed of 

the silence ratio, the pitched ratio, the means and standard deviations of 

total power, 4 subband powers, brightness, bandwidth and pitch. The 

2L-dimensional cepstral feature vector came from the L MFCCs. A new 

pattern classification method called the nearest feature line (NFL) was 

also reported in this paper. Applying the proposed method to the audio 
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database of 409 sounds from Muscle Fish, NFL+PercCeps8 yielded the 

lowest error rate of 9.78%.  

Zhang and Kuo [11] proposed a heuristic rule-based ASC system. 

The system was divided into two stages. They used four features 

including the energy function, the average zero-crossing rate, the 

fundamental frequency, and the spectral peak tracks to achieve 

classification accuracy of more than 90%. 

Lu et al. [12] classified an audio stream into speech, music, 

environment sound and silence using a robust two-stage audio 

classification and segmentation method. The features which were selected 

for classification such as high zero-crossing rate ratio (HZCRR), low 

short-time energy ratio (LSTER), spectrum flux (SF), band periodicity 

(BP), noise frame ratio (NFR), and LSP distance measure were described 

and discussed. An accuracy rate of over 96% was reported. 

In [13], an audio clip was classified into five classes—silence, music, 

background sound, pure speech, and nonpure speech by using kernel 

SVM with Gaussian Radial basis. The feature set included 8 order 

MFCCs, zero-crossing rates (ZCR), short time energy (STE), sub-band 

powers distribution, brightness, bandwidth, spectrum flux (SF), band 

periodicity (BP), and noise frame ratio (NFR). The accuracy rate of the 

proposed method using SVM distributed from 87.62% to 96.20% for each 

individual class. 

Panagiotakis and Tziritas [14] dealt with the characterization of an 

audio signal and developed a system for speech/music discrimination. 

They fitted the amplitude distribution measured by the root mean square 
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(RMS) with the generalized 2χ distribution, and used the distribution to 

segment an audio signal. And then these segments were classified into 

music and speech by utilizing five actual features (normalized RMS 

variance, the probability of null zero-crossings, joint RMS/ZC measure, 

silence intervals frequency, and maximum mean frequency) deriving from 

two basic characteristics, i.e. the amplitude and the zero-crossings. The 

proposed system segmented signals with an accuracy rate of about 97% 

and classified signals with an accuracy rate of about 95%. 

Although most of the systems mentioned previously classify general 

audio signals into various classes such as speech, pure music, song etc, 

some systems specifically aimed to classify musical genres [15]–[17]. In 

[18], Tzanetakis and Cook proposed three feature sets which resulted in a 

30-dimentional feature vector to describe timbral texture, rhythmic 

content and pitch content. After feature extraction, they used standard 

statistical pattern recognition classifiers for classification. Several 

classifiers such as Gaussian classifiers, Gaussian mixture model (GMM) 

classifiers, and K-nearest neighbor (KNN) classifiers were trained to 

evaluate the proposed feature sets, and an accuracy rate of 61% for 10 

genres was achieved by using GMM classifiers. 

To deserve to be mentioned, although the above systems mainly 

focus on processing audio signals individually, it is intriguing that audio 

segmentation and classification can be applied to video indexing. 

Researches showed that audio parts are often more useful than the visual 

images for indexing films or news programs [19]. In [20], an audio-based 

approach for video indexing was provided. Minami et al. applied image 
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processing techniques to analyze the spectrogram of audio signals in 

video, and detect music by image edge detection. After detecting music 

components, the music components were removed from speech detection. 

Speech detection was then accomplished by a comb filter. After music 

and speech detection, they used the information to construct two video 

indexing systems.  

In this thesis, we focus on audio classification and segmentation, a 

critical problem in audio content analysis. Some audio signal processing 

techniques utilized in the thesis are provided in the following section. 

 

2.2  Introduction to Audio Signal Processing 

An audio signal is an extremely useful medium for conveying 

information. Humans are surrounded by audio signals as long as he or she 

is able to listen. In this section, we will introduce some important 

characteristics of audio signals related to audio signal classification, and 

audio signal processing techniques in order to extract information from 

these characteristics. 

 

2.2.1  The Characteristics of Audio Signals 

An audio signal, i.e. sound, is a form of energy. After vibrating, an 

object will carry particles of the air near the object and produce a 

longitudinal wave with velocity about 343 meters per second. The 

frequency of a wave refers to how often the particles of the air vibrate 

when a wave passes through the medium. The frequency of a wave is 
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measured as the number of complete back-and-forth vibrations of a 

particle of the medium per unit time.  

In addition to frequency, sound has two other important 

characteristics, amplitude and complexity. These three physical 

characteristics influence three perceptual characteristics, pitch, loudness, 

and timbre, respectively. Roughly speaking, human can perceive what 

kind of sound he or she hears because the characteristics of each kind of 

sound are different. TABLE I lists the relationship [21].  

 

TABLE I Relation between physical and perceptual features. 

Physical characteristics Amplitude Frequency Complexity 

Perceptual characteristics Loudness Pitch Timbre 

 

In human’s daily life, music and speech are two main classes of 

audio signals. From the characteristics discussed above, we can 

summarize some salient differences between speech and music as 

following [22].  

Tonality: Music tends to be composed of a multiplicity of tones, each 

with a unique distribution of harmonics. Speech consists of an alternating 

sequence of tonal and noise-like segments. 

Bandwidth: The frequency of music is up to 20000 Hz while the 

frequency of speech is limited to 4000 Hz. 

Energy sequences: Music usually has more stable energy sequences 

than speech does. 

Some of these characteristics might be helpful to discriminate 
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between these two kinds of audio signals, and they can be extracted using 

signal processing techniques.  

As mentioned previously, an audio signal can be represented as a 

function of density of air varying with time. Thus, it is a continuous 

function. In order to be processed in a computer, the function needs to be 

sampled and digitized, and becomes a discrete-time audio signal. There 

are two parameters, i.e. the sampling rate and the bit resolution which 

influence the quality of the digital signal. 

Any discrete-time audio signal can be created by adding infinite 

number of discrete-time sinusoidal signals with different frequencies and 

amplitudes. That is 

 [ ] cos( )k k
k

s n A nω=∑ . (2.1) 

This implies that we can decompose an audio signal into its component 

sinusoids. To perform the function, we need Fourier analysis, which will 

be introduced in the following subsection. 

 

2.2.2 Audio Signal Processing Techniques 

With the development of digital technology such as computers and 

digital signal processing (DSP), not only audio signals can be sampled, 

digitized, processed and stored in digital form, but also complex 

algorithms are able to be implemented cheaply and speedily. In this 

section, we will discuss short time analysis of audio signals owing to the 

non-stationary property of audio signals.  
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2.2.2.1  Short Time Analysis of Audio Signals [23] 

Generally speaking, an audio signal is time-varying. That is, the 

signal changes rapidly with time. Fig. 2 is an example of a 10-second 

audio signal. It has a quite large variation and lacks a regular pattern. 

 

 

Fig. 2 A 10-second audio signal. 

 

As we can see, it is difficult to acquire effective information from 

this kind of time-varying signal. However, when we examine the signal 

from a micro standpoint, the signal is stable and has a regular pattern as 

illustrated on Fig. 3. The waveform is extracted from the first 600 points 

of the signal in Fig. 2.  
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Fig. 3 The first 600 points of the signal in Fig. 2. 

 

Thus, most audio signal processing techniques assume that the 

variation of an audio signal in a short time is relatively small. Based on 

this assumption, every small segment of an audio signal is independent of 

each other, and the properties in a single segment are fixed. Therefore, we 

can view the small segments as short-time stationary signals. These small 

segments are called frames. To deal with these frames, short-time 

processing techniques are adopted. 

Most of the short-time processing techniques can be represented 

mathematically in the form 
 

 [ ( )] ( )n
m

Q T x m w n m
∞

=−∞
= −∑  (2.2) 

 
The audio signal is subjected to a transform, T[ ], which may be 

linear or nonlinear. The transform is determined according to what 

features are to be extracted. Thus, Qn can be viewed as one of features 

that represent the short-time signal. For example, the short-time energy 
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function is defined as 21 [ ( ) ( )]n
m

E x m w n m
N

= −∑ . w(n) is a short-time 

window such as Gaussian window, Hamming window, and Kaiser 

window. The function of a window is to gently scale the amplitude of the 

signal to zero at each end, reducing the discontinuity at frame boundaries. 

Using no windowing function is the same as using a rectangular window. 

The windowing functions do not completely remove the frame boundary 

effects, but they do reduce the effects substantially.  

When these windowing functions are applied to a signal, it is clear 

that some information near the frame boundaries is lost. For this reason, a 

further improvement is to overlap the frames. When each part of the 

signal is analyzed in more than one frame, information that is lost at a 

frame boundary is picked up between the boundaries of the next frame. 

Figure 4 illustrates the concept of short-time analysis techniques and 

a windowing function.  

Fig. 4 The concept of short-time analysis and a hamming window. 
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Among various types of short-time signal analysis methods, the 

Short Time Fourier Transform (STFT) is one of the most common and 

useful methods, and has the advantage of fast calculation based on the 

Fast Fourier Transform algorithm. The STFT of the nth frame is define as 
 

2 2
( ) ( )         0 1j k j kmN N

n
m

X e x m w nL m e k N
π π∞ −

=−∞

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= − ≤ ≤ −∑  (2.3) 

 
where w(n) is a short-time window, and L is the window length. Many 

features used in the purposed system are based on the short-time 

magnitude of the STFT of the signal. The features will be introduced and 

discussed in detail in the next chapter. 
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Chapter 3 
Audio Feature Analysis and Selection 

 

It is difficult to classify audio signals directly based on raw data since 

raw data contain too much information for analysis, and important 

characteristics are lost in the noise of unreduced data. Thus, it is 

necessary to reduce the amount of data. The process is called feature 

extraction, which computes a numerical representation that can be used to 

characterize a segment of audio. The important information to 

characterize a segment of audio is usually in the form of quantities such 

as frequency, rhythm, pitch and so on. To extraction features or a feature 

vector (which consists of some features) is the first step in any pattern 

classification system as shown in Fig. 5.  

A feature vector can be thought of as a short term description of the 

sound for that particular moment. For example, MFCCs (Mel-Frequency 

Cepstral Coefficients) characterize the vocal tract resonances and are 

commonly used in speech recognition. 

 

Fig. 5 Feature extraction and the classification of the features are two major components of pattern 

classification. 

 

Typically, the feature vectors are extracted within successive frames 

that overlap. For example, frames of 20 to 40 milliseconds overlapped by 
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10 milliseconds are often used because characteristics of the signal are 

relatively stable in this kind of frame. And feature vectors can be 

extracted from these frames. 

After representing the raw data with the feature vectors, the audio 

classification problem can be viewed as a pattern classification problem 

based on a time series of feature vectors, which are points in a 

multi-dimensional feature space. 

In the thesis, we break a long audio signal into small segments and a 

feature vector is computed for each segment. Therefore, the feature vector 

can be viewed as points in the feature space. Therefore, our goal is 

simplified as to classify the points into different classes. 

Since the goal is to classify the points into different classes, it is true 

that the more discriminative the features are, the better the problem is 

solved. However, the problem is how to find a good feature to classify 

audio signals effectively.  

As mentioned in the previous chapter, different types of audio signals 

bear different characteristics. Thus, if we are able to know how the 

characteristics behave in different types of audio signals, and quantify the 

characteristics, we can find a good feature for classification. In other 

words, the knowledge about audio signals is the key point. 

The features used in audio signal classification systems are usually 

divided into two categories: perceptual and physical features [24]. 

Perceptual features rely on a great deal of perceptual modeling. Physical 

features are directly related to physical properties of the signal and are 

easier to define and measure.  

In the following sections, we will introduce main features used in our 
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system. All of these features are computed from successive frames of 200 

sampling points for a 1-second sample which contains 8000 sampling 

points. In other words, each frame is 25-millisecond long, and the 

sampling rate for the audio signals is 8k Hz. 

 

3.1  Zero-Crossing Rate 

The zero-crossing rate (ZCR) of the nth frame is defined as 
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x(m) is a discrete time audio signal and w(n) is a 200-sample rectangular 

window. In other word, ZCR is how often an audio signal goes through 

the zero point in a frame. 

The properties of ZCR are different in different types of audio signals. 

Take speech signals for example, speech signals consist of alternating 

voiced and unvoiced sounds. For unvoiced sounds, they tend to have 

higher ZCR. For voiced sounds, they tend to have lower ZCR. Thus, the 

variation of ZCR of a series of speech tends to be large. On the other hand, 

music signals usually have lower variation as well as lower ZCR. In this 

way, we cannot only discriminate unvoiced from voiced speech using 

ZCR, but also use the variation of ZCR to distinguish between music and 

speech. The variance of ZCR in a 1-second window is defined as  
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where ZCR  is the average of all ZCRs in a 1-second sample. 

The ZCR and ZCR_var of different type of audio signals in plotted in 

Fig. 6. As we can see, the ZCR curve of music is relatively smooth, and 

ZCR_var is smaller. For speech signals, the ZCR curve varies rapidly, and 

ZCR_var curve is relatively larger. 

 

 

Fig. 6 ZCR and variance of ZCR. 

 

Another way to show that ZCR_var can discriminate between speech 

and music effectively is illustrated in Fig. 7. The figure shows the 

(a) ZCR of music (b) ZCR of speech 

(c) ZCR_var of music (d) ZCR_var of speech 
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histograms of ZCR_var for speech and music signals. The overlap is quite 

small. If ZCR_var is used alone to discriminate speech from pure music, 

the discrimination error rate would be only about 9%. 
 

 
Fig. 7 ZCR_var histograms for speech and music signals. 

 

The most attractive property of ZCR and the variance of ZCR is that 

these features have slight computation consumption. This is because ZCR 

can be calculated simply on time domain. Thus, no transformation is 

needed. This is an important feature for systems which is designed for 

real-time usage. For example, broadcast monitors which keep monitoring 

the content of radio to decide whether the content should be discarded is a 

real-time system. 

Although ZCR and the variance of ZCR are good features for 

speech/music discrimination, they are not sufficiently good when it 

comes to other classification. Thus, other features are necessary for 

further classification. 
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3.2  Spectrum Flux 

Spectrum flux measures the average variation value of spectrum 

between two adjacent frames in a 1-second segment. It is defined as 
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where 
2j kN

nX e
π⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠

 is the amplitude of the discrete Fourier transform of 

the nth frame of the input signal as defined in (2.3) and K is the order of 

DFT, N is the total number of frames and δ = 0.000001, which is a very 

small value to avoid calculation overflow. 

Generally speaking, speech has larger SF value than pure music, 

song, and mix of speech and music. This is because the tone tends to vary 

in a short time when human speak, and a music note usually remains at 

the same level for a certain period of time. When people sing, the vocal 

sound follows the music note. Thus, the vocal sound also remains at the 

same level for a certain period of time. The difference between pure 

music and vocal sound is that vocal sound might lasts for more than one 

musical note, and vocal cords are apt to vibrate. This causes a ripple-like 

shape spectrogram and a higher SF value for music. 

The spectrum flux value of different types of audio signals is plotted 

in Fig. 8. As we can see, the SF value of speech signals is generally larger 

than that of signals with music components. From the statistical 

viewpoint, as shown in Fig. 9, there are small overlaps between the 
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histogram for pure speech signals and that for the signals with music 

components. Thus, spectrum flux value is another good feature to 

discriminate speech from signals with music components. 

 

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 8 Spectrum flux values. (a) Signal with music components and (b) speech. 

 

 
Fig. 9 SF histograms for pure speech and the signals with music components. 

 

Unfortunately, the SF value does not work well if we apply it 
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independently to discriminate pure music from song. As shown in Fig. 10, 

their distributions have a significant overlap. Thus, only about 60% 

average recognition rate can be achieved. 

 

 

Fig. 10 SF histograms for pure speech and song. 

 

3.3  Normalized Root Mean Square Variance 

As we mentioned in 2.2.1, an audio signal is characterized by three 

physical characteristics, i.e. amplitude, frequency, and complexity. This 

implies that in addition to information provided by frequency, there 

should be more information hidden in other characteristics which can 

help us to classify audio signals. The amplitude, measured by the root 

mean square (RMS) value, is a good example. 

RMS of the nth frame of the input signal is defined as 
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where w(m) is a rectangular window of length 200-point.  

Both ZCR and RMS are typical time domain features which can be 

calculated fast, but they are almost independent [14], [25]. Thus, they are 

good features to discriminate speech from music simultaneously. 

As ZCR, the variation of RMS can be applied as a feature since 

speech tends to have unstable amplitude owing to the pauses between 

utterances and the voiced and unvoiced components in speech. 

Although RMS and RMS_var are good features for speech/music 

discrimination, it fails for some cases that the volume is either extremely 

large or extremely small. To overcome the problem, some 

volume-independent feature should be employed.  

The normalized RMS variance is defined as 
 

 2
2

_
A

RMS Var
RMS

σ =  (3.5) 

 
where  

 _RMS Var   variance of RMS in a 1-second window; 

 RMS       mean of RMS in a 1-second window. 

The normalized RMS variance value of a period of speech and signal with 

music components is plotted in Fig. 11. The plot in Fig. 12 is the 

histogram for pure speech signals and that for the signals with music 

components. Both of these two figures reveal that normalized RMS 

variance is a good feature to discriminate speech from signals with music 

components. 
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Fig. 11 The normalized RMS variance value of a period of speech and signal with music components. 

 

 
Fig. 12 Normalized RMS variance histograms for pure speech and the signals with music components. 
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3.4  Low Short-Time Energy Ratio 

It has been proven that short-time energy is useful in characterizing 

different audio signals. Furthermore, the variation of short-time energy is 

more discriminative. A measure of variation of short-time energy called 

low short-time energy ratio (LSTER)is defined in [12] as 
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where 

nE  the short-time energy of the nth frame; 

N    the total number of frames; 

E  the average of all short-time energy in a 1-second sample; 
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The value of LSTER means the ratio of the number of frames whose 

short-time energy are less than 0.5 time of average short-time energy in a 

1-second window. Fig. 13 illustrates LSTER values for a period of speech 

and music signals. From the distribution, we know that LSTER value of 

speech is usually larger than that of music. This is because speech signals 

contain more silence than music signals do. Thus, LSTER is a good 

feature to classify speech and music signals. 
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Fig. 13 LSTER values (0-150 sec is speech, and 151-290 sec is signals with music components). 

 

3.5  High Zero-Crossing Rate Ratio 

As mentioned in 3.1, ZCR and its variation are good features to 

classify speech and music. Thus, a feature called high zero-crossing rate 

ratio (HZCRR) to quantify the variation of ZCR is proposed in [12]. 

HZCRR of a 1-second sample is defined as  
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where 

nZCR   the zero-crossing rate of the nth frame; 

N     the total number of frames; 
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ZCR   the average of all ZCRs in a 1-second sample; 
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The value of HZCRR means the ratio of the number of frames whose 

ZCR are above 1.5-fold average zero-crossing rate in a 1-second window. 

Fig. 14 illustrates HZCRR values for a period of speech and music signals. 

From the distribution, we know that HZCRR is a good feature to classify 

speech and music signals, too. 

 
Fig. 14 HZCRR values (0-150 sec is speech, and 151-290 sec is signals with music components). 

 

3.6  Frequency Variation of Top-3 peaks 

Although the features mentioned in previous sections are excellent 

features for speech/pure music discrimination, their performance are not 

sufficiently good when it comes to other kinds of classification such as 

pure music and song discrimination. Take ZCR_var, spectrum flux, and 
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normalized RMS variance for examples, their histograms for pure music 

and song are highly overlapped as shown in Fig. 15, 16, and 17. The solid 

lines represent histograms for these three features of pure music, and the 

dot lines represent histograms for these three features of song. Clearly, if 

only these features are employed for pure music/song discrimination, the 

recognition rate will take a nosedive. 

 

Fig. 15 ZCR_var histograms for pure music and song. 

 
Fig. 16 SF histograms for pure music and song. 
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Fig. 17 Normalized RMS variance histograms for pure music and song. 

 

To sort out the problem, a feature called frequency variation of top-3 

peaks (FVTP) was proposed. FVTP was derived from the idea that the 

spectrum structure of pure music during a note is much more stable than 

that of song and speech. Fig. 18, 19, and 20 show the spectrums of five 

adjacent frames of pure music, song and speech, respectively.  

As we can see, the three largest peaks in the spectrum of music do 

not change their locations. On the other hand, the locations of the three 

largest peaks in the spectrum of song vary significantly. Thus, FVTP is 

defined as the sum of the variations of frequencies of the three largest 

peaks over 500 Hz in the spectrum during a note (for music) or a word 

(for song). That is, FVTP of kth note or word is defined mathematically 

as 

 ( )
3 2

1 1

N

ij ik
i j

FVTP f f
= =

= −∑∑  (3.8) 

where fij is the frequency of the ith peak of the jth frame, if  is the 
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average frequency of the ith peak in a note or word, and N is the number 

of frames in a note or word. The average of FVTPs of all notes or words 

in a 1-second sample is then calculated to be the feature, i.e. 

1

1 K

k
k

FVTP FVTP
K =

= ∑ . 

 
Fig. 18 Five adjacent frames of pure music. 

(a) The first frame (b) The second frame 

(c) The third frame (d) The fourth frame 

(e) The fifth frame 
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Fig. 19 Five adjacent frames of song. 

 

 

 

 

(a) The first frame (b) The second frame 

(c) The third frame (d) The fourth frame 

(e) The fifth frame 
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Fig. 20 Five adjacent frames of speech. 

 

 

 

 

 

(a) The first frame (b) The second frame 

(c) The third frame (d) The fourth frame 

(e) The fifth frame 
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To find the boundaries between notes or words in one second, notes 

or words are segmented by amplitude. First, the average amplitude of the 

nth frame is calculated by RMSn defined in (3.4). For example, a 1-second 

music waveform with two notes and its RMSn are illustrated in Fig. 21. 

 
(a)                                        (b) 

Fig. 21 (a) A 1-second music waveform with two notes. (b) RMS of 40 frames of the signal in (a) 

 

Generally speaking, there will be a sudden change in the RMS value 

when the audio signal changes from one note to another. Thus, in order to 

locate the point, the differences between RMSs in Fig. 21 should be 

calculated as illustrated in Fig. 22.  

 
Fig. 22 The differences between 40 RMSs 
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Then, all local maximums of RMS differences which are larger than 

one-fifth of the global maximum of RMS differences are viewed as the 

transition points as shown in Fig. 23. In this case, only the global 

maximum of RMS differences is indexed and it is exactly where the note 

change happens. 

 

 
Fig. 23 The transition point is marked by ‘o’. 

 

Last of all, two FVTPs are computed separately, and the average of 

these two FVTPs can be obtained to be the FVTP of the 1-second sample.  

FVTP is an effective feature to discriminate pure music from song. 

Generally speaking, vocal components are prominent in song, so peaks in 

the spectrum are usually generated by vocal components. Vocal 

components in song might last for more than one musical note and human 

vocal cords tend to vibrate when singing, so the locations of the top-3 

peaks in spectrum will fluctuate constantly. This causes a large FVTP 

value for song. In contrast, pure music produced by musical instruments 

normally has a stable spectrum structure and caused a relatively small 
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FVTP value. Fig. 24 shows the histogram for pure music signals and the 

histogram for song. As we can see clearly, that FVTP value of pure music 

is around 60.1 10× , while FVTP value of song is around 60.2 10×  to 
61 10× . Thus, FVTP is a good discriminator between pure music and song. 

 

Fig. 24 FVTP histograms for pure music signals and song 

 

With the features introduced in previous sections, we have 

accomplished the feature extraction for audio classification. In next 

chapter, we will step forward to discuss the framework of our audio 

classification system. 
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Chapter 4 
SONFIN-Based Audio Signal Classification 

and Segmentation System 
 

The proposed audio classification system consists of four major parts. 

Those are feature extraction, silence detection, SONFIN classifier, and a 

post-processing process. The framework of the system and the 

classification flow will be introduced in the following sections. 

 

4.1  Neural Fuzzy Inference Network 

The main classifier employed in the proposed system is a particular 

neural fuzzy network named SONFIN [26] (self-constructing neural 

fuzzy inference network). SONFIN is a general connectionist model of a 

fuzzy logic system, which is able to find its optimal structure and 

parameters automatically. Initially, there are no rules in the SONFIN, and 

rules are created and adapted as on-line learning proceeds via 

simultaneous structure and parameter learning.  

The structure of the SONFIN is shown in Fig. 25. This 6-layered 

network realizes a fuzzy model of the following form: 
 
 Rule i: IF x1 is Ai1 and … and xn is Ain 

   THEN y is m0i + ajixj + …         (4.1) 

 
where Aij is a fuzzy set, m0i is the center of a symmetric membership 

function on y, and aji is a consequent parameter. It is noted that unlike the 
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traditional TSK model where all the input variables are used in the output 

linear equation, only the significant ones are used in the SONFIN. The 

functions of the nodes in each of the six layers of the SONFIN are 

described in the following paragraph. 

 
Fig. 25 Network structure of SONFIN. 

 

Each node in Layer 1, which corresponds to one input variable, only 

transmits input values to the next layer directly. Each node in Layer 2, the 

membership value that specifies the degree how an input value belongs to 

a fuzzy set is calculated. Each node in Layer 3 represents one fuzzy logic 

rule and performs precondition matching of a rule. The number of nodes 

in layer 4 is equal to that in Layer 3, and the result (firing strength) 

calculated in Layer 3 is normalized in this layer. Layer 5 is called the 

consequent layer. Two types of nodes are used in this layer. The node 
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denoted by a blank circle is the essential node representing a fuzzy set of 

the output variable. The shaded node is generated only when necessary. 

One of the inputs to a shaded node is the output delivered from Layer 4, 

and the other possible inputs are the selected significant input variables 

from Layer 1. Combining these two types of nodes in Layer 5, we obtain 

the whole function performed by this layer as the linear equation on the 

THEN part of the fuzzy logic rule in (4.1). Each node in Layer 6 

corresponds to one output variable. The node integrates all the actions 

recommended by Layer 5 and acts as a defuzzifier to produce the final 

inferred output. 

Two types of learning, i.e. structure and parameter learning are used 

concurrently to construct the SONFIN. The structure learning includes 

both the precondition and consequent structure identification of a fuzzy 

if-then rule. For the parameter learning, based upon supervised learning 

algorithms, the parameters of the linear equations in the consequent parts 

are adjusted to minimize a given cost function. The SONFIN can be used 

for normal operation at any time during the learning process without 

repeated training on the input-output patterns when on-line operation is 

required. There are no rules in the SONFIN initially, and rules are created 

dynamically as learning proceeds upon receiving on-line incoming 

training data by performing the following learning processes 

simultaneously, 

(A) Input/output space partitioning, 

(B) Construction of fuzzy rules, 

(C) Optimal consequent structure identification, 

(D) Parameter identification. 



 41

Processes A, B, and C belong to the structure learning phase and process 

D belongs to the parameter learning phase. 

 

4.2  Classification Flow and Post-processing 

The proposed audio classification flow is illustrated in Fig. 26. After 

an audio stream comes in, all input signals are downsampled into 8k Hz 

sampling rate and segmented into 1-second subsegments (samples) which 

is the classification unit in the system. Although it is possible that there is 

a mixture of two types of audio signals in a subsegment, the dominant 

type is chosen to index the subsegment.  

After the pre-processing, audio features are first extracted. Then, 

silence segments are detected and indexed by a silence detector according 

to some features extracted in the previous step. The non-silent sounds are 

classified into speech segments and segments with music components. 

After that, segments with music components are categorized into two 

groups, namely song and pure music. Different sets of feature vectors are 

applied in these two stages. In both classifying stages, a post-processing 

technique is utilized to correct the misclassification according to the 

property of continuity of an audio stream. The following will describe 

each of these processes. 

 

 

 



 42

 

Fig. 26 The proposed audio classification flow. 

 
A. Feature Extraction 

Audio features including ZCR, ZCR_var, spectrum flux, normalized 

RMS variance ( 2
Aσ ), LSTER, HZCRR, and FVTP introduced in chapter 3 

are first computed for 1-second duration to represent these samples.  
 

B. Silence Detection 
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Silence segments are detected and indexed by a silence detector 

according to ZCR and P which is a measure of signal amplitude [14]. The 

criteria are defined as  
 

 
( )
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P median RMS RMS

<
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 (4.2) 

where nRMS  and RMS  were defined in chapter 3. The criteria are 

robust estimate of signal amplitude from experiment results. If a segment 

satisfies the criteria, it is indexed as silence or 0 in our system.  
 
C. Stage 1: Speech and Sound with Music Components Classification 

The non-silent sounds are then classified into speech and segments 

with music components. In this stage, spectrum flux, normalized RMS 

variance, LSTER, and HZCRR are employed to form a feature vector, 

{SF, 2
Aσ , LSTER, HZCRR}, to represent the audio samples. Then, the 

SONFIN is employed for classification. 

The classification works well in most cases. However, in some 

special cases, classification errors might occur. Thus, in order to optimize 

the classification performance, a post-processing technique is 

indispensable. 

 

D. Post-processing Technique 

As mentioned previously, there might be some potential 

classification errors. To deal with the problem, a post-processing named 

“smoothing” is applied to correct the classification errors. The main idea 
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of smoothing was derived from the fact that a genuine audio stream 

possesses the property of continuity. That is, there are few abrupt changes 

in a real audio stream. For example, there should not be a sudden 

1-second speech segment in a pure music track. There should not be a 

sudden 1-second music segment in news broadcasting, either. 

 

 
Fig. 27 The concept of “smoothing”. 

 

Smoothing searches for a 1-second-length discontinuity, and set the 

index of the sample the same as previous and following samples. Fig. 27 

illustrates the concept of smoothing. And the rule can be expressed as 

for i=1:length(x)-2{ 

 if ( x(i+1)!=x(i) and x(i+1)!=0 and x(i+2)!=x(i+1) ) 

 then x(i+1) = x(i); 

} 

where x(i) is the index number of the ith input audio segment. In the 

system, “smoothing” is applied to both classification stages to refine the 

classification result.  

 

E. Stage 2: Music and Song Discrimination 

In the second classification stage, segments with music components 

are categorized into two groups, namely song and pure music. FVTP and 

x(i) x(i+1) x(i+2)

smoothing 

speech music speech 

x(i) x(i+1) x(i+2)

speech speech speech 

music 
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short-time energy are chosen to form a feature vector instead of {SF, 2
Aσ , 

LSTER, HZCRR} because the distributions of these features for pure 

music and song overlap significantly and result in a high classification 

error. As how the first classification stage is designed, SONFIN and 

smoothing are employed for classification and refinement, respectively.  

F. Segmentation 

Technically, segmentation of an audio signal is accomplished once 

the 1-second segments classification and “smoothing” are done. For 

example, a 100-second audio stream with silence, speech, pure music and 

song is about to be segmented. The audio stream is segmented into 100 

subsegments and classified into the four classes using the proposed 

classification flow. Next, the “smoothing” is applied to search for the 

classification errors. This procedure works well for most cases. The 

experimental results are provided in the next chapter. 
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Chapter 5 
Experimental Results 

 

5.1  Audio Database 

In order to evaluate the proposed audio classification system, an 

audio database was built. The database contains three types of audio 

signals, i.e. speech, pure music and song. The number of speech, pure 

music and song are 2460 seconds, 2884 seconds and 1843 seconds, 

respectively. These data were acquired randomly from language teaching 

radio programs, TV news, music CD tracks, and MP3 files. They were 

hand-labeled into the three categories: speech, pure music and song. All 

the files of the database are in a format of 8000 Hz sample rate, 16-bit 

resolution, and a mono channel.  
 

5.2  Evaluation with SONFIN and k-NN  

As mentioned previously, SONFIN was employed as the main 

classifier in the proposed system. Moreover, in order to verify the 

classification flow and the proposed feature vectors, a k-NN decision rule 

for classification is also applied. Here, a 1-NN decision rule combined 

with leave-one-out cross-validation is employed. In TABLE II, we 

present the experimental result of classification in stage 1 of the proposed 

system. The various features are evaluated alone with 1-NN decision rule 

combined with leave-one-out cross-validation. The feature vector 



 47

combing {SF, 2
Aσ , LSTER, HZCRR} has the best classification 

performance. Listed in the last row is the experimental result by using 

SONFIN in stage 1. The performance is so good that almost all samples 

can be classified correctly.  

 

TABLE II 

Classification performance of different features in stage 1 of the proposed system. The “average” 

column shows the average accuracy rate of all samples while the other two columns show the accuracy 

rate of speech and “with music components”, respectively. 

Accuracy (%) 

Features 
Average Pure Speech

with music 
components 

ZCR_var 84.8 77.8 88.5 

SF 93.2 90.2 94.8 

Normalized RMS Variance( 2
Aσ ) 87.4 80.8 90.9 

FVTP 79.3 69.5 84.4 

LSTER 38.2 100 6.1 

HZCRR 34.2 100 0 

{SF, 2
Aσ , LSTER, HZCRR} + 1-NN 98.3 97.8 98.6 

{SF, 2
Aσ , LSTER, HZCRR} + SONFIN 99.7 99.67 99.72 

 

The results of stage 2 of the proposed system are listed in TABLE III. 

It should be noted that these experiments are carried out individually. The 

result of “with music components” of stage 1 is not provided as the input 

of stage 2 in this experiment. In this way, the evaluation can be carried 
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out without interference. On the other hand, TABLE IV lists the result of 

stage 2 where the result of “with music components” of stage 1 is 

considered.  

From TABLE III, we can see that when features are applied alone to 

discriminate “pure music” from “song”, the proposed feature, FVTP, has 

the best performance. Furthermore, an accuracy rate of over 90% will be 

achieved when the proposed feature, FVTP, is combined with a basic 

feature, Energy. 

TABLE III 

Classification performance of different features in stage 2. The “average” column shows the average 

accuracy rate of all samples while the other two columns show the accuracy rate of pure music and 

song, respectively. 

Accuracy (%) 
Features 

Average
Pure 

music 
Song 

ZCR_var 70.8 77.8 60 

SF 58.9 66.1 47.7 

Normalized RMS Variance( 2
Aσ ) 57.3 66.3 43.2 

FVTP 77.2 82.0 69.8 

LSTER 61 100 0.1 

HZCRR 61 100 0.1 

 
TABLE IV 

Classification performance of stage 2 with the influence of stage 1. 

Accuracy (%) 
Features 

Average
Pure 

music 
Song 

{FVTP, Energy} + 1-NN 93.35 94.72 91.17 

{FVTP, Energy} + SONFIN 95.39 96.53 93.6 
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In addition to stage 1 and stage 2 of the proposed system, we also 

conducted experiments on speech/song discrimination. The experimental 

result is listed in TABLE V. 
 

TABLE V 

Classification performance of speech/song discrimination 

Accuracy (%) 
Features 

Average
Pure 

speech 
Song 

{SF, 2
Aσ , LSTER} with 1-NN LOO 98.04 98.3 97.7 

{SF, 2
Aσ , LSTER} with SONFIN 99.76 99.59 100 

 

For practical audio stream classification and segmentation, the results 

are illustrated in Fig. 28 and 29. Stage 1 and stage 2 are combined to 

perform classification when a real audio stream is about to be classified 

and segmented. The first 40-second audio clip was recorded from an 

English language teaching program called Studio classroom. There are 

two short musical interludes in the clip. The last 32 seconds are a 

10-second song clip, a 12-second music clip, and an another 10-second 

song clip, respectively. 

Figure 28 shows the result of stage 1. The upper plot is the original 

input audio waveform which is 72-second long, and the middle plot is the 

result after classification without “smoothing”. The lower plot illustrates 

the result of the middle plot after “smoothing”. In the middle plot of Fig. 

28, we can see that a 1-second segment indicated by an ellipse is 

misclassified. However, it is corrected after “smoothing”, as shown in the 
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lower plot. 

Figure 29 shows the final segmentation result where 0 corresponds to 

silence, 1 corresponds to pure speech, 2 corresponds to pure music, and 3 

corresponds to song. In Fig. 29, we can see from the final result that the 

system successfully classified and segmented the audio stream. 

 
Fig. 28 Result of practical audio stream classification and segmentation in stage 1.  

 

 
Fig. 29 Result of practical audio stream classification and segmentation in stage 2. 
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Another practical experimental result with slightly erroneous 

classification is illustrated in Fig. 30. The first 12 seconds of the 

18-second audio clip are pure music and others are song. In stage 1 (the 

second and the third plot), the performance is good. All segments are 

classified into “with music components” correctly. In stage 2 (the fourth 

plot), the last two seconds are song but misclassified as music. The main 

reason might be that in these two seconds, vocal components are 

relatively weak and lead the system into a misclassification. 

 

 

Fig. 30 Practical experimental result of music and song. 

 

5.3 Discussion 

It was shown by these experiments that the proposed classification 



 52

system and the proposed feature, FVTP, performed well for audio 

classification and segmentation. Speech/music discrimination achieves a 

recognition rate of 99% using the proposed system and the combination 

of features. When it comes to pure music/song classification, most of 

existing features performs poorly except FVTP. When FVTP is combined 

with energy, the problem of pure music/song classification which is quite 

difficult can be solved effectively. 

To deserve to be mentioned, FVTP should have performed better 

theoretically according to our experiments on a single musical note and a 

speech or song utterance. FVTP of a musical note indeed has quite small 

variation and FVTP of a speech or song utterance has relatively large 

variation as illustrated in Fig. 18, 19, and 20 in 3.6. The main reason 

which decreases the classification accuracy might be that the transition 

point between notes or utterances is not located precisely enough. This 

might result in a larger FVTP for pure music or a smaller FVTP for song. 

Thus, an attempt to develop a technique which is able to locate the 

transition point more precisely is one of our future works. 

A general k-NN decision rule combined with leave-one-out 

cross-validation was also applied for verification and the result was 

consistent with that of our system. Thus, the results are quite believable. 

Indeed, there are some misclassifications under certain circumstances. 

Nevertheless, the “smoothing” technique performs well for errors 

correcting since real audio streams possess the property of continuity. 
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Chapter 6 
Conclusion 

 

In this thesis, we have presented an audio classification and 

segmentation system which distinguishes the difference between 

instrument music, pure speech, song and silence.  

We have applied some signal processing techniques on the signals to 

acquire some good features. The features have been analyzed and 

discussed in detail. In addition to analyzing the existing features, we have 

also proposed a novel feature named FVTP in order to classify audio 

signals with musical components into pure music and song with a higher 

accuracy rate. 

The system consists of two main stages. Different sets of features 

have been applied in each of these two stages of the system. A neural 

fuzzy inference network named SONFIN has been adopted in the 

proposed system as the classifier. A simple k-NN decision rule combined 

with leave-one-out cross-validation was also applied for verification. Also 

integrated in the system is a post-processing procedure named 

“smoothing”. Both experiments showed that the classification flow and 

the proposed feature performed well. The accuracy rate was higher than 

90%. 

The system can be employed in many applications such as a 

front-end for current audio application, de-advertising, automatic 

equalization, audio indexing and retrieval and even audio-based video 

indexing. 



 54

Several future works can be conducted in the future. First of all, the 

ability to classify audio signals into more categories is necessary. More 

specifically, the design of music genre classifiers or instrument 

recognition systems is a very interesting topic. We will also try to 

improve the robustness of the system such that it can work well in all 

kinds of situations. 

Of course, to form a human-hearing-based audio signal processing 

system by combining the proposed audio classification system with our 

previous audio signal processing system such as speech recognition and 

speaker identification will be an exciting and practical future research 

topic. 
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