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Technique Using Fuzzy Neural Networks

Student: Jui-Cheng Chen Advisor: Dr. Chin-Teng Lin

Institute of Electrical and Control Engineering

National Chiao-Tung University

ABSTRACT

In this thesis, we proposed an audio classification and segmentation system. The
system is used to classify and segment audio files which contain silence, pure speech,
pure music, and song according to their,contents. We analyzed and compared features
of audio signals and designed a two-stage classification flow to classify and segment
input audio signals sequentially. The flow starts with the silence detection which
indexes silence according to a threshold. Then; stage 1 classifies the nonsilence parts
into pure speech and “with music ‘components”. Stage 2 classifies the “with music
components” parts in stage 1 into pure music and song. In order to solve the problem
that traditional features do not work well when it comes to pure music/song
classification, we proposed a novel feature named FVTP. The feature describes the
property that variations of the spectrum structure are larger for song but smaller for
pure music. Thus, the feature can improve the performance of pure music/song
classification. On the other hand, an on-line self-constructing neural fuzzy inference
network (SONFIN) was adopted as the main classifier in this system. The SONFIN
finds its optimal structure as well as parameters automatically and it has a superior
inference process. We achieved a better classification result by utilizing these
properties. Experimental results showed that an accuracy rate of more than 90% was
achieved. Thus, the proposed system is capable of being a front-end for many
application systems such as speech recognition and speaker identification to improve

the performance of these application systems.
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Chapter 1
Introduction

1.1 Motivation

Sound is an extremely useful medium for conveying information. In
addition to explicit semantic information such as the meaning of words
used in speech, the acoustic signals conveyed to our ears carry a wealth of
other information. These signals play important roles in our daily life. For
example, audio including music, speech and kinds of sound is
indispensable in modern multimedia applications which become essential
in human’s daily life with the development of digital technology such as
computers and digital signal processing. With these digital technologies,
audio signals can be sampléd, digitized, processed and stored in digital
form. Furthermore, in order to benefit from digital signals, it is important
to dig out different contents of audio by some signal processing methods
according to different applications.

One of these applications is classifying audio signals automatically
which is interesting for people since humans classify audio signals all the
time. To tell the difference between music and speech, to recognize which
word is pronounced, and to identify one speaker to another are named
speech/music classification, speech recognition and speaker identification,
respectively [1], [2]. All of these tasks can be viewed as audio signal
classification (ASC) problems.

As mentioned in the previous paragraph, speech/music classification



is one of ASC domains. More precisely speaking, speech/music
classification is a front-end for other ASC domains. The front-end
processing is important because different types of audio need different
processing techniques. Only with a good speech/music classifier can we
have a better input for speech recognition systems or musical genre
classifiers. For example, a speech recognition system assumes input is
speech, and a musical genre classifier can work well only when input is
music. Another example is that a system designed to translate broadcast
news into text on radio channels will work better if the unknown input
stream (which may consist of music and speech) is segmented and
classified first.

On the other hand, since the amount. of audio data in multimedia
databases and on the Internet increases.swiftly, to retrieve the data
manually becomes more and more-impossible. Furthermore, most search
engines nowadays like Google and Yahoo are text-based. Therefore, it
seems to be a “mission impossible” for one who is not good at
memorizing names to search databases and the Internet for audio data.
Thus, ASC systems which can segment, classify, index, and retrieve audio
data automatically according to its contents are now necessary.

Take a realistic application for example, after indexing an audio
database with the ASC technique, a song can be retrieved by humming
the tune of it. This is a useful system since people sometimes can only

remember the melody of a song instead of its title.



1.2 The Goal of the Research

In the thesis, we developed an audio classification and segmentation
system and focused on the differences between instrument music, speech,
song and silence. This is an important and challenging topic since neither
in time domain nor in frequency domain are these signals readily
separable. However, these classes of signals are common in our daily life.
In order to classify these signals with high accuracy for practical
applications, it is essential and indispensable to analysis the signals. We
applied some signal processing techniques on the signals to acquire some
good features, which are critical to get great accuracy. Then, we analyzed
the features and compared their properties:-In the thesis, features such as
zero-crossing rate, spectrum flux, and.normalized RMS variance and so
on are applied since their distributions-acre different for different types of
audio signals. After grasping the distributions of these features in
different types of audio signals, we can integrate the features and set a
classification flow which is based on the concept of decision trees and
applies an on-line self-constructing neural fuzzy inference network
(SONFIN) to classify the signals with different content sequentially with
a high accuracy rate.

Figure 1 shows the ASC system proposed in the thesis. Audio
features are first extracted. Then, silence segments are detected and
indexed according to some features extracted in the previous step. The
non-silent sounds are classified into speech segments and segments with
music components. After that, segments with music components are

categorized into two groups, namely song and pure music. We will
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discuss the processes in detail in the latter chapters.
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Fig. 1 The proposed ASC system.



1.3 Thesis Organization

The thesis is organized as follows. In chapter 2, related works will be
reviewed and some audio signal processing techniques will be briefly
introduced for further discussion. In chapter 3, we give a detail analysis
of features used in our system. Chapter 4 discusses the proposed audio
classification system which includes a neural fuzzy inference network,
and the post processing process. The experimental results are shown in
chapter 5, and some comments are also provided. Chapter 6, which
summarizes the thesis, will give concluding remarks and possible future

works.



Chapter 2
Background

2.1 Related Works

As mentioned previously, ASC includes many research areas such as
speech recognition, music genre classification, speaker identification, and
so on. Although research in speech recognition, a domain of ASC, has
existed for many years [3], there were not significant research output in
other areas of ASC until recent years (after 1990’s). Some of related
works on this topic will be presented in‘the following paragraphs.

In [4], audio was classified into music, speech and others. For music,
the system computes peaks'in the magnitude spectrum, and then bases its
decision on the average length of time that peaks exist in a narrow
frequency region. To separate out speech, the pitch track is examined.

Kimber and Wilcox [5] classified and segmented discussion
recordings in meetings into speech, silence, laughter, and nonspeech
sound using cepstral coefficients and a hidden Markov model (HMM).

In [6], Pfeiffer et al. presented the analysis of the amplitude,
frequency, pitch, onset, offset and frequency transitions of audio signals.
With the analysis results, violence in movie soundtracks can be detected
by recognizing shots, cries and explosions. Furthermore, music indexing
can be an application of the analysis results.

In [7], the goal of automatic retrieval, classification and clustering of

musical instruments, sound effects, and environmental sounds can be



achieved by using statistical values (mean, variance, autocorrelation) of
features (pitch, loudness, brightness, and bandwidth). In the article, some
applications such as audio databases and file systems, audio database
browsers, audio editors, and surveillance were also provided.

A simple approach to discriminate music from speech was presented
by John Saunders [8]. The discriminator used straightforward features
such as the energy contour and the zero-crossing rate (ZCR). Experiments
were performed with four measures of the skewness of the distribution of
ZCR, and 90% correct classification rate was obtained using these
features. Improved performance of 98% correct classification rate was
reported by including an energy contour dip measure into the
discrimination process.

Scheirer and Slaney {9]. introduced .13- features for speech/music
discrimination. Statistical pattern-recognition classifiers such as MAP,
GMM, and KNN were evaluated. They used a 2.4-second window and
got an error rate of 1.4%. When smaller windows as well as more classes
were taken into consideration, the error rate would increase.

A method for content-based audio classification and retrieval was
presented in [10]. The audio feature vector, named PercCepsL, consisted
of an 18-dimensional perceptual feature vector and a 2L-dimensional
cepstral feature vector. The perceptual feature vector was composed of
the silence ratio, the pitched ratio, the means and standard deviations of
total power, 4 subband powers, brightness, bandwidth and pitch. The
2L-dimensional cepstral feature vector came from the L MFCCs. A new
pattern classification method called the nearest feature line (NFL) was

also reported in this paper. Applying the proposed method to the audio
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database of 409 sounds from Muscle Fish, NFL+PercCeps8 yielded the
lowest error rate of 9.78%.

Zhang and Kuo [11] proposed a heuristic rule-based ASC system.
The system was divided into two stages. They used four features
including the energy function, the average zero-crossing rate, the
fundamental frequency, and the spectral peak tracks to achieve
classification accuracy of more than 90%.

Lu et al. [12] classified an audio stream into speech, music,
environment sound and silence using a robust two-stage audio
classification and segmentation method. The features which were selected
for classification such as high zero-crossing rate ratio (HZCRR), low
short-time energy ratio (LSEER), spectrum flux (SF), band periodicity
(BP), noise frame ratio (NFR),.and LSP distance measure were described
and discussed. An accuracy-raterofover-96% was reported.

In [13], an audio clip was'classified into five classes—silence, music,
background sound, pure speech, and nonpure speech by using kernel
SVM with Gaussian Radial basis. The feature set included 8 order
MFCCs, zero-crossing rates (ZCR), short time energy (STE), sub-band
powers distribution, brightness, bandwidth, spectrum flux (SF), band
periodicity (BP), and noise frame ratio (NFR). The accuracy rate of the
proposed method using SVM distributed from 87.62% to 96.20% for each
individual class.

Panagiotakis and Tziritas [14] dealt with the characterization of an
audio signal and developed a system for speech/music discrimination.

They fitted the amplitude distribution measured by the root mean square



(RMS) with the generalized »° distribution, and used the distribution to

segment an audio signal. And then these segments were classified into
music and speech by utilizing five actual features (normalized RMS
variance, the probability of null zero-crossings, joint RMS/ZC measure,
silence intervals frequency, and maximum mean frequency) deriving from
two basic characteristics, i.e. the amplitude and the zero-crossings. The
proposed system segmented signals with an accuracy rate of about 97%
and classified signals with an accuracy rate of about 95%.

Although most of the systems mentioned previously classify general
audio signals into various classes such as speech, pure music, song etc,
some systems specifically aimed to classify musical genres [15]-[17]. In
[18], Tzanetakis and Cook ptoposedthree féature sets which resulted in a
30-dimentional feature vector to describe- timbral texture, rhythmic
content and pitch content. “After. feature extraction, they used standard
statistical pattern recognition "‘classifiers for classification. Several
classifiers such as Gaussian classifiers, Gaussian mixture model (GMM)
classifiers, and K-nearest neighbor (KNN) classifiers were trained to
evaluate the proposed feature sets, and an accuracy rate of 61% for 10
genres was achieved by using GMM classifiers.

To deserve to be mentioned, although the above systems mainly
focus on processing audio signals individually, it is intriguing that audio
segmentation and classification can be applied to video indexing.
Researches showed that audio parts are often more useful than the visual
images for indexing films or news programs [19]. In [20], an audio-based

approach for video indexing was provided. Minami et al. applied image



processing techniques to analyze the spectrogram of audio signals in
video, and detect music by image edge detection. After detecting music
components, the music components were removed from speech detection.
Speech detection was then accomplished by a comb filter. After music
and speech detection, they used the information to construct two video
indexing systems.

In this thesis, we focus on audio classification and segmentation, a
critical problem in audio content analysis. Some audio signal processing

techniques utilized in the thesis are provided in the following section.

2.2 Introduction to AudioSignal Processing

An audio signal is an . extremely useful medium for conveying
information. Humans are surrounded-by-audio signals as long as he or she
is able to listen. In this section, we will introduce some important
characteristics of audio signals related to audio signal classification, and
audio signal processing techniques in order to extract information from

these characteristics.

2.2.1 The Characteristics of Audio Signals

An audio signal, i.e. sound, is a form of energy. After vibrating, an
object will carry particles of the air near the object and produce a
longitudinal wave with velocity about 343 meters per second. The
frequency of a wave refers to how often the particles of the air vibrate

when a wave passes through the medium. The frequency of a wave is
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measured as the number of complete back-and-forth vibrations of a
particle of the medium per unit time.

In addition to frequency, sound has two other important
characteristics, amplitude and complexity. These three physical
characteristics influence three perceptual characteristics, pitch, loudness,
and timbre, respectively. Roughly speaking, human can perceive what
kind of sound he or she hears because the characteristics of each kind of

sound are different. TABLE I lists the relationship [21].

TABLE I Relation between physical and perceptual features.

Physical characteristics Amplitude Frequency Complexity

Perceptual characteristics Loudness Pitch Timbre

In human’s daily life,”music and“speech are two main classes of
audio signals. From the characteristics discussed above, we can
summarize some salient differences between speech and music as
following [22].

Tonality: Music tends to be composed of a multiplicity of tones, each
with a unique distribution of harmonics. Speech consists of an alternating
sequence of tonal and noise-like segments.

Bandwidth: The frequency of music is up to 20000 Hz while the
frequency of speech is limited to 4000 Hz.

Energy sequences: Music usually has more stable energy sequences
than speech does.

Some of these characteristics might be helpful to discriminate

11



between these two kinds of audio signals, and they can be extracted using
signal processing techniques.

As mentioned previously, an audio signal can be represented as a
function of density of air varying with time. Thus, it is a continuous
function. In order to be processed in a computer, the function needs to be
sampled and digitized, and becomes a discrete-time audio signal. There
are two parameters, i.e. the sampling rate and the bit resolution which
influence the quality of the digital signal.

Any discrete-time audio signal can be created by adding infinite
number of discrete-time sinusoidal signals with different frequencies and

amplitudes. That is

S[n]:;Ak cos(@, ) (2.1

This implies that we can decompose-an audio signal into its component
sinusoids. To perform the function, we-need Fourier analysis, which will

be introduced in the following subsection.

2.2.2 Audio Signal Processing Techniques

With the development of digital technology such as computers and
digital signal processing (DSP), not only audio signals can be sampled,
digitized, processed and stored in digital form, but also complex
algorithms are able to be implemented cheaply and speedily. In this
section, we will discuss short time analysis of audio signals owing to the

non-stationary property of audio signals.

12



2.2.2.1 Short Time Analysis of Audio Signals [23]

Generally speaking, an audio signal is time-varying. That is, the
signal changes rapidly with time. Fig. 2 is an example of a 10-second

audio signal. It has a quite large variation and lacks a regular pattern.

0.6/

0.4/

02

0.4

067

0.8 -
o

Fig. 2 A 10-second-audio signal.

As we can see, it is difficult to acquire effective information from
this kind of time-varying signal. However, when we examine the signal
from a micro standpoint, the signal is stable and has a regular pattern as
illustrated on Fig. 3. The waveform is extracted from the first 600 points

of the signal in Fig. 2.
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Fig. 3 The first 600 points of the signal in Fig. 2.

Thus, most audio signal processing techniques assume that the
variation of an audio signal in a short time is relatively small. Based on
this assumption, every small.segment of an-audio signal is independent of
each other, and the propertiesin a single segment are fixed. Therefore, we
can view the small segments as short=time stationary signals. These small
segments are called frames. ‘Towdeal “with these frames, short-time
processing techniques are adopted.

Most of the short-time processing techniques can be represented

mathematically in the form
Q= D TIx(m)w(n—m) (2.2)
Mm=—o0

The audio signal is subjected to a transform, T[ ], which may be
linear or nonlinear. The transform is determined according to what
features are to be extracted. Thus, Q,can be viewed as one of features

that represent the short-time signal. For example, the short-time energy
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function is defined asE, :ﬁZ[X(m)W(n—m)]z. w(n) is a short-time
m

window such as Gaussian window, Hamming window, and Kaiser
window. The function of a window is to gently scale the amplitude of the
signal to zero at each end, reducing the discontinuity at frame boundaries.
Using no windowing function is the same as using a rectangular window.
The windowing functions do not completely remove the frame boundary
effects, but they do reduce the effects substantially.

When these windowing functions are applied to a signal, it is clear
that some information near the frame boundaries is lost. For this reason, a
further improvement is to overlap the frames. When each part of the
signal is analyzed in more than one,frame, information that is lost at a
frame boundary is picked up:between the boundaries of the next frame.

Figure 4 illustrates the-concept of short-time analysis techniques and

a windowing function.

0 0 40 G a0 08 12f| 140 180 180 Pl
samples

Fig. 4 The concept of short-time analysis and a hamming window.
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Among various types of short-time signal analysis methods, the
Short Time Fourier Transform (STFT) is one of the most common and
useful methods, and has the advantage of fast calculation based on the
Fast Fourier Transform algorithm. The STFT of the nth frame is define as

M=-—0o0

27k © ~i%%km
Xn[e N J: > x(mw(nL-mje "N 0<k<N-1 (2.3)

where w(n) is a short-time window, and L is the window length. Many
features used in the purposed system are based on the short-time
magnitude of the STFT of the signal. The features will be introduced and

discussed in detail in the next chapter.
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Chapter 3
Audio Feature Analysis and Selection

It 1s difficult to classify audio signals directly based on raw data since
raw data contain too much information for analysis, and important
characteristics are lost in the noise of unreduced data. Thus, it is
necessary to reduce the amount of data. The process is called feature
extraction, which computes a numerical representation that can be used to
characterize a segment of audio. The important information to
characterize a segment of audio is usually in the form of quantities such
as frequency, rhythm, pitch and.so on.Te. extraction features or a feature
vector (which consists of some features). is the first step in any pattern
classification system as shown in Fig: 5.

A feature vector can be‘thought of as'a'short term description of the
sound for that particular moment. For example, MFCCs (Mel-Frequency
Cepstral Coefficients) characterize the vocal tract resonances and are

commonly used in speech recognition.

—Pattern—» Feature extraction |—Feature Vectort— Classification ————» Result

Fig. 5 Feature extraction and the classification of the features are two major components of pattern

classification.

Typically, the feature vectors are extracted within successive frames

that overlap. For example, frames of 20 to 40 milliseconds overlapped by

17



10 milliseconds are often used because characteristics of the signal are
relatively stable in this kind of frame. And feature vectors can be
extracted from these frames.

After representing the raw data with the feature vectors, the audio
classification problem can be viewed as a pattern classification problem
based on a time series of feature vectors, which are points in a
multi-dimensional feature space.

In the thesis, we break a long audio signal into small segments and a
feature vector is computed for each segment. Therefore, the feature vector
can be viewed as points in the feature space. Therefore, our goal is
simplified as to classify the points into different classes.

Since the goal is to classify the pointsiinto different classes, it is true
that the more discriminative the features are, the better the problem is
solved. However, the problem is‘how-to find a good feature to classify
audio signals effectively.

As mentioned in the previous chapter, different types of audio signals
bear different characteristics. Thus, if we are able to know how the
characteristics behave in different types of audio signals, and quantify the
characteristics, we can find a good feature for classification. In other
words, the knowledge about audio signals is the key point.

The features used in audio signal classification systems are usually
divided into two categories: perceptual and physical features [24].
Perceptual features rely on a great deal of perceptual modeling. Physical
features are directly related to physical properties of the signal and are
easier to define and measure.

In the following sections, we will introduce main features used in our

18



system. All of these features are computed from successive frames of 200
sampling points for a 1-second sample which contains 8000 sampling
points. In other words, each frame is 25-millisecond long, and the

sampling rate for the audio signals is 8k Hz.

3.1 Zero-Crossing Rate

The zero-crossing rate (ZCR) of the nth frame is defined as

ZCR, =5

m

sgn[x(m)J—sgn[X(m—1)}‘W(n—m) (3.1)

where

sgn[x(n)} B {—1, X(n)<0

X(m) is a discrete time audio signal’and w(n) s a 200-sample rectangular
window. In other word, ZCR is how often-an audio signal goes through
the zero point in a frame.

The properties of ZCR are different in different types of audio signals.
Take speech signals for example, speech signals consist of alternating
voiced and unvoiced sounds. For unvoiced sounds, they tend to have
higher ZCR. For voiced sounds, they tend to have lower ZCR. Thus, the
variation of ZCR of a series of speech tends to be large. On the other hand,
music signals usually have lower variation as well as lower ZCR. In this
way, we cannot only discriminate unvoiced from voiced speech using
ZCR, but also use the variation of ZCR to distinguish between music and

speech. The variance of ZCR in a 1-second window is defined as
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1< ve-1%
ZCR_varz—Z(ZCRn—ZCR) (3.2)
N =

where ZCR is the average of all ZCRs in a 1-second sample.

The ZCR and ZCR_var of different type of audio signals in plotted in
Fig. 6. As we can see, the ZCR curve of music is relatively smooth, and
ZCR_var is smaller. For speech signals, the ZCR curve varies rapidly, and

ZCR_var curve is relatively larger.

ZCR value

0 40 50 50 70 [ E 100 o 20 40 &0 0 100 (-
BBCOH

(a) ZCR of music (b) ZCR of speech

(c) ZCR_var of music (d) ZCR var of speech

Fig. 6 ZCR and variance of ZCR.

Another way to show that ZCR_var can discriminate between speech

and music effectively is illustrated in Fig. 7. The figure shows the
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histograms of ZCR_var for speech and music signals. The overlap is quite
small. If ZCR var is used alone to discriminate speech from pure music,

the discrimination error rate would be only about 9%.

025

music

speech
005H

0 1000 2000 3000 4000 5000 5000 7000
ZCR Var value

Probability .

o

Fig. 7 ZCR_var histograms forspeech and music signals.

The most attractive property of ZCR and-the variance of ZCR is that
these features have slight computation-consumption. This is because ZCR
can be calculated simply on time-domain. Thus, no transformation is
needed. This is an important feature for systems which is designed for
real-time usage. For example, broadcast monitors which keep monitoring
the content of radio to decide whether the content should be discarded is a
real-time system.

Although ZCR and the variance of ZCR are good features for
speech/music discrimination, they are not sufficiently good when it
comes to other classification. Thus, other features are necessary for

further classification.
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3.2 Spectrum Flux

Spectrum flux measures the average variation value of spectrum

between two adjacent frames in a 1-second segment. It is defined as

2
—1K-1 27r 27r
SF = lo e N |+ 5)—1lo e Ny 33
27z'k
where X, e'N is the amplitude of the discrete Fourier transform of

the nth frame of the input signal as defined in (2.3) and K is the order of
DFT, N is the total number of frames,and & = 0.000001, which is a very
small value to avoid calculation overflow.

Generally speaking, speech has larger SF value than pure music,
song, and mix of speech and music. Fhis is because the tone tends to vary
in a short time when human speak, ‘and a music note usually remains at
the same level for a certain period of time. When people sing, the vocal
sound follows the music note. Thus, the vocal sound also remains at the
same level for a certain period of time. The difference between pure
music and vocal sound is that vocal sound might lasts for more than one
musical note, and vocal cords are apt to vibrate. This causes a ripple-like
shape spectrogram and a higher SF value for music.

The spectrum flux value of different types of audio signals is plotted
in Fig. 8. As we can see, the SF value of speech signals is generally larger
than that of signals with music components. From the statistical

viewpoint, as shown in Fig. 9, there are small overlaps between the
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histogram for pure speech signals and that for the signals with music
components. Thus, spectrum flux value is another good feature to

discriminate speech from signals with music components.

samples samples
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Fig. 8 Spectrum flux Valuc_s.: (a) S'ig.nékwf'r_ﬂ?fmuslic cbmponents and (b) speech.
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Fig. 9 SF histograms for pure speech and the signals with music components.

Unfortunately, the SF value does not work well if we apply it
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independently to discriminate pure music from song. As shown in Fig. 10,
their distributions have a significant overlap. Thus, only about 60%

average recognition rate can be achieved.

0.08
0.06
0.04

0.02

0.4

Fig. 10 SF+histograms for pure speech and song.

3.3 Normalized Root Mean'Square Variance

As we mentioned in 2.2.1, an audio signal is characterized by three
physical characteristics, i.e. amplitude, frequency, and complexity. This
implies that in addition to information provided by frequency, there
should be more information hidden in other characteristics which can
help us to classify audio signals. The amplitude, measured by the root
mean square (RMS) value, is a good example.

RMS of the nth frame of the input signal is defined as

m (3.4)
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where w(m) is a rectangular window of length 200-point.

Both ZCR and RMS are typical time domain features which can be
calculated fast, but they are almost independent [14], [25]. Thus, they are
good features to discriminate speech from music simultaneously.

As ZCR, the variation of RMS can be applied as a feature since
speech tends to have unstable amplitude owing to the pauses between
utterances and the voiced and unvoiced components in speech.

Although RMS and RMS_var are good features for speech/music
discrimination, it fails for some cases that the volume is either extremely
large or extremely small. To overcome the problem, some
volume-independent feature should be émployed.

The normalized RMS variance i1s defined as

RMS  Var
o i S — . (3.5)
RMS
where
RMS Var variance of RMS in a 1-second window;
RMS mean of RMS in a 1-second window.

The normalized RMS variance value of a period of speech and signal with
music components is plotted in Fig. 11. The plot in Fig. 12 is the
histogram for pure speech signals and that for the signals with music
components. Both of these two figures reveal that normalized RMS
variance is a good feature to discriminate speech from signals with music

components.
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Fig. 12 Normalized RMS variance histograms for pure speech and the signals with music components.
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3.4 Low Short-Time Energy Ratio

It has been proven that short-time energy is useful in characterizing
different audio signals. Furthermore, the variation of short-time energy is
more discriminative. A measure of variation of short-time energy called

low short-time energy ratio (LSTER)is defined in [12] as

LSTER :ﬁiz_l[sgn(o.SE— E,)+1] (3.6)

where

E, the short-time energy of the nth frame;

N the total number of frames;

E  the average of all short=timé enérgy in a 1-second sample;
1 X(n)=
sen[X(m)]=) ) x((n)) <%

The value of LSTER means the ratio of the number of frames whose
short-time energy are less than 0.5 time of average short-time energy in a
I-second window. Fig. 13 illustrates LSTER values for a period of speech
and music signals. From the distribution, we know that LSTER value of
speech is usually larger than that of music. This is because speech signals

contain more silence than music signals do. Thus, LSTER is a good

feature to classify speech and music signals.
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Fig. 13 LSTER values (0-150 sec is speech, and 151-290:sec.is signals with music components).

3.5 High Zero-Crossing‘Rate'Ratio

As mentioned in 3.1, ZCR and its variation are good features to
classify speech and music. Thus, a feature called high zero-crossing rate
ratio (HZCRR) to quantify the variation of ZCR is proposed in [12].
HZCRR of a 1-second sample is defined as

HZCRR =% :Z;;[sgn(ZCRn —1.5ﬁ)+1} 3.7)
where
ZCR, the zero-crossing rate of the nth frame;
N the total number of frames;
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ZCR the average of all ZCRs in a 1-second sample;
>
ol 0
The value of HZCRR means the ratio of the number of frames whose
ZCR are above 1.5-fold average zero-crossing rate in a 1-second window.
Fig. 14 illustrates HZCRR values for a period of speech and music signals.
From the distribution, we know that HZCRR is a good feature to classify

speech and music signals, too.

0.35

HZCRR

Fig. 14 HZCRR values (0-150 sec is speech, and 151-290 sec is signals with music components).

3.6 Frequency Variation of Top-3 peaks

Although the features mentioned in previous sections are excellent
features for speech/pure music discrimination, their performance are not
sufficiently good when it comes to other kinds of classification such as

pure music and song discrimination. Take ZCR_var, spectrum flux, and
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normalized RMS variance for examples, their histograms for pure music
and song are highly overlapped as shown in Fig. 15, 16, and 17. The solid
lines represent histograms for these three features of pure music, and the
dot lines represent histograms for these three features of song. Clearly, if
only these features are employed for pure music/song discrimination, the

recognition rate will take a nosedive.
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Fig. 15 ZCR_var histograms for pure music and song.
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Fig. 16 SF histograms for pure music and song.
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Fig. 17 Normalized RMS variance histograms for pure music and song.

To sort out the problem, a feature:called frequency variation of top-3
peaks (FVTP) was proposed. FVTP was derived from the idea that the
spectrum structure of pure:music during a note is much more stable than
that of song and speech. Fig. 18, 19,"and 20 show the spectrums of five
adjacent frames of pure music, song and speech, respectively.

As we can see, the three largest peaks in the spectrum of music do
not change their locations. On the other hand, the locations of the three
largest peaks in the spectrum of song vary significantly. Thus, FVTP is
defined as the sum of the variations of frequencies of the three largest
peaks over 500 Hz in the spectrum during a note (for music) or a word
(for song). That is, FVTP of kth note or word is defined mathematically
as

FVTR =33 (1~ T.) (3.8)

3
=1 J=1

where f; is the frequency of the ith peak of the jth frame, f, is the
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average frequency of the ith peak in a note or word, and N is the number
of frames in a note or word. The average of FVTPSs of all notes or words

in a l-second sample is then calculated to be the feature, i.e.

1 K
FVTP=—Y FVTP, .
<2 VTR
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Fig. 18 Five adjacent frames of pure music.
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To find the boundaries between notes or words in one second, notes

or words are segmented by amplitude. First, the average amplitude of the

nth frame is calculated by RMS, defined in (3.4). For example, a 1-second

music waveform with two notes and its RMS;, are illustrated in Fig. 21.

Amplitude

Y L L L
o 1000 2000 3000 4000
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Fig. 21 (a) A 1-second music waveform with two notes. (b) RMS of 40 frames of the signal in (a)

Generally speaking, there will-be a sudden change in the RMS value

when the audio signal changes from one nate to another. Thus, in order to

locate the point, the differences between RMSs in Fig. 21 should be

calculated as illustrated in Fig. 22.
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Fig. 22 The differences between 40 RMSs



Then, all local maximums of RMS differences which are larger than
one-fifth of the global maximum of RMS differences are viewed as the
transition points as shown in Fig. 23. In this case, only the global
maximum of RMS differences is indexed and it is exactly where the note

change happens.

difference
"

0 5 10 15 20 25 0 35 40
sample index

Fig. 23 The transition peint is marked by ‘o’.

Last of all, two FVTPs are computed separately, and the average of
these two FVTPS can be obtained to be the FVTP of the 1-second sample.

FVTP is an effective feature to discriminate pure music from song.
Generally speaking, vocal components are prominent in song, so peaks in
the spectrum are usually generated by vocal components. Vocal
components in song might last for more than one musical note and human
vocal cords tend to vibrate when singing, so the locations of the top-3
peaks in spectrum will fluctuate constantly. This causes a large FVTP
value for song. In contrast, pure music produced by musical instruments

normally has a stable spectrum structure and caused a relatively small
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FVTP value. Fig. 24 shows the histogram for pure music signals and the
histogram for song. As we can see clearly, that FVTP value of pure music
is around 0.1x10°, while FVTP value of song is around 0.2x10° to

1x10°. Thus, FVTP is a good discriminator between pure music and song.
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Fig. 24 FVTP histograms for pure music signals and song

With the features introduced in previous sections, we have
accomplished the feature extraction for audio classification. In next
chapter, we will step forward to discuss the framework of our audio

classification system.
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Chapter 4
SONFIN-Based Audio Signal Classification
and Segmentation System

The proposed audio classification system consists of four major parts.
Those are feature extraction, silence detection, SONFIN classifier, and a
post-processing process. The framework of the system and the

classification flow will be introduced in the following sections.

4.1 Neural Fuzzy Inference Network

The main classifier employed in-the proposed system is a particular
neural fuzzy network named SONFIN [26] (self-constructing neural
fuzzy inference network). SONFIN is a general connectionist model of a
fuzzy logic system, which is able to find its optimal structure and
parameters automatically. Initially, there are no rules in the SONFIN, and
rules are created and adapted as on-line learning proceeds via
simultaneous structure and parameter learning.

The structure of the SONFIN is shown in Fig. 25. This 6-layered

network realizes a fuzzy model of the following form:

Rule i: IF X1 is Aj; and ... and X, is Aj;
THEN y is mg; + ajix; + ... 4.1)

where Ajj 1s a fuzzy set, My is the center of a symmetric membership

function on Y, and a;; is a consequent parameter. It is noted that unlike the
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traditional TSK model where all the input variables are used in the output
linear equation, only the significant ones are used in the SONFIN. The
functions of the nodes in each of the six layers of the SONFIN are

described in the following paragraph.

Layer §

L

Layer 4

Layer3

Layer 2

Layer |

Fig. 25 Network structure of SONFIN.

Each node in Layer 1, which corresponds to one input variable, only
transmits input values to the next layer directly. Each node in Layer 2, the
membership value that specifies the degree how an input value belongs to
a fuzzy set is calculated. Each node in Layer 3 represents one fuzzy logic
rule and performs precondition matching of a rule. The number of nodes
in layer 4 is equal to that in Layer 3, and the result (firing strength)
calculated in Layer 3 is normalized in this layer. Layer 5 is called the

consequent layer. Two types of nodes are used in this layer. The node
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denoted by a blank circle is the essential node representing a fuzzy set of
the output variable. The shaded node is generated only when necessary.
One of the inputs to a shaded node is the output delivered from Layer 4,
and the other possible inputs are the selected significant input variables
from Layer 1. Combining these two types of nodes in Layer 5, we obtain
the whole function performed by this layer as the linear equation on the
THEN part of the fuzzy logic rule in (4.1). Each node in Layer 6
corresponds to one output variable. The node integrates all the actions
recommended by Layer 5 and acts as a defuzzifier to produce the final
inferred output.

Two types of learning, i.e. structure and parameter learning are used
concurrently to construct the!SONFIN. The structure learning includes
both the precondition and -consequent structure identification of a fuzzy
if-then rule. For the parameter llearning;-based upon supervised learning
algorithms, the parameters of the:linear €quations in the consequent parts
are adjusted to minimize a given cost function. The SONFIN can be used
for normal operation at any time during the learning process without
repeated training on the input-output patterns when on-line operation is
required. There are no rules in the SONFIN initially, and rules are created
dynamically as learning proceeds upon receiving on-line incoming
training data by performing the following learning processes
simultaneously,

(A) Input/output space partitioning,

(B) Construction of fuzzy rules,

(C) Optimal consequent structure identification,

(D) Parameter identification.
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Processes A, B, and C belong to the structure learning phase and process

D belongs to the parameter learning phase.

4.2 Classification Flow and Post-processing

The proposed audio classification flow is illustrated in Fig. 26. After
an audio stream comes in, all input signals are downsampled into 8k Hz
sampling rate and segmented into 1-second subsegments (samples) which
is the classification unit in the system. Although it is possible that there is
a mixture of two types of audio signals in a subsegment, the dominant
type is chosen to index the subsegment.

After the pre-processing; audio features are first extracted. Then,
silence segments are detected.and indexed by-a silence detector according
to some features extracted in the previous step. The non-silent sounds are
classified into speech segments-and segments with music components.
After that, segments with music components are categorized into two
groups, namely song and pure music. Different sets of feature vectors are
applied in these two stages. In both classifying stages, a post-processing
technique is utilized to correct the misclassification according to the
property of continuity of an audio stream. The following will describe

each of these processes.
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Fig. 26 The proposed audio classification flow.

A. Feature Extraction

Audio features including ZCR, ZCR_var, spectrum flux, normalized

RMS variance (o3 ), LSTER, HZCRR, and FVTP introduced in chapter 3

are first computed for 1-second duration to represent these samples.

B. Silence Detection
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Silence segments are detected and indexed by a silence detector
according to ZCR and P which i1s a measure of signal amplitude [14]. The

criteria are defined as

ZCR<5
OR (4.2)
P =0.7xmedian(RMS; )+ 0.3x RMS < 6000

where RMS, and RMS were defined in chapter 3. The criteria are

robust estimate of signal amplitude from experiment results. If a segment

satisfies the criteria, it is indexed as silence or 0 in our system.

C. Stage 1: Speech and Sound with.Music Components Classification
The non-silent sounds are theniclassified into speech and segments
with music components. In this stage, spectrum flux, normalized RMS

variance, LSTER, and HZCRR are-“employed to form a feature vector,

{SFo;, LSTER, HZCRR}, to represent the audio samples. Then, the

SONFIN is employed for classification.

The classification works well in most cases. However, in some
special cases, classification errors might occur. Thus, in order to optimize
the classification performance, a post-processing technique is

indispensable.

D. Post-processing Technique
As mentioned previously, there might be some potential
classification errors. To deal with the problem, a post-processing named

“smoothing” is applied to correct the classification errors. The main idea
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of smoothing was derived from the fact that a genuine audio stream
possesses the property of continuity. That is, there are few abrupt changes
in a real audio stream. For example, there should not be a sudden
I-second speech segment in a pure music track. There should not be a

sudden 1-second music segment in news broadcasting, either.

x(i) x(i+1) X(i+2)

smoothing

X(i+1) X(i+2)

Fig. 27 The concept of “smoothing”.

Fl

Smoothing searches for a 1- sdqond-length discontinuity, and set the
index of the sample the same as uprewous and following samples. Fig. 27

|

illustrates the concept of smoothmg And the rule can be expressed as
fori=l:length()-{
if (x(i+1)!=x(i) and x(i+1)!=0 and x(i+2)!=x(i+1) )
then x(i+1) = x(i);
}
where X(i) is the index number of the ith input audio segment. In the

system, “smoothing” is applied to both classification stages to refine the

classification result.

E. Stage 2: Music and Song Discrimination
In the second classification stage, segments with music components

are categorized into two groups, namely song and pure music. FVTP and
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short-time energy are chosen to form a feature vector instead of {SF, o7},

LSTER, HZCRR} because the distributions of these features for pure
music and song overlap significantly and result in a high classification
error. As how the first classification stage is designed, SONFIN and
smoothing are employed for classification and refinement, respectively.
F. Segmentation

Technically, segmentation of an audio signal is accomplished once
the 1-second segments classification and “smoothing” are done. For
example, a 100-second audio stream with silence, speech, pure music and
song is about to be segmented. The audio stream is segmented into 100
subsegments and classified into,  the, four classes using the proposed
classification flow. Next, the “‘smoothing”'is applied to search for the
classification errors. This-procedure  works"well for most cases. The

experimental results are provided in'the'next chapter.
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Chapter 5
Experimental Results

5.1 Audio Database

In order to evaluate the proposed audio classification system, an
audio database was built. The database contains three types of audio
signals, 1.e. speech, pure music and song. The number of speech, pure
music and song are 2460 seconds, 2884 seconds and 1843 seconds,
respectively. These data were acquired randomly from language teaching
radio programs, TV news, music CD tracks, and MP3 files. They were
hand-labeled into the three’categories: speech, pure music and song. All
the files of the database are in a format of 8000 Hz sample rate, 16-bit

resolution, and a mono channel.

5.2 Evaluation with SONFIN and k-NN

As mentioned previously, SONFIN was employed as the main
classifier in the proposed system. Moreover, in order to verify the
classification flow and the proposed feature vectors, a k-NN decision rule
for classification is also applied. Here, a 1-NN decision rule combined
with leave-one-out cross-validation is employed. In TABLE II, we
present the experimental result of classification in stage 1 of the proposed
system. The various features are evaluated alone with 1-NN decision rule

combined with leave-one-out cross-validation. The feature vector
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combing {SF, o; , LSTER, HZCRR} has the best classification

performance. Listed in the last row is the experimental result by using
SONFIN in stage 1. The performance is so good that almost all samples

can be classified correctly.

TABLE 11
Classification performance of different features in stage 1 of the proposed system. The “average”
column shows the average accuracy rate of all samples while the other two columns show the accuracy

rate of speech and “with music components”, respectively.

Accuracy (%)
Features . ]
with music
Average |Pure Speech
components
ZCR_var 84.8 77.8 88.5
SF 932 90.2 94.8
Normalized RMS Variance(o ;) 87.4 80.8 90.9
FVTP 79.3 69.5 84.4
LSTER 38.2 100 6.1
HZCRR 342 100 0
{SF, o, LSTER, HZCRR} + 1-NN 98.3 97.8 98.6
{SF, o}, LSTER, HZCRR} + SONFIN|  99.7 99.67 99.72

The results of stage 2 of the proposed system are listed in TABLE III.
It should be noted that these experiments are carried out individually. The
result of “with music components” of stage 1 is not provided as the input

of stage 2 in this experiment. In this way, the evaluation can be carried
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out without interference. On the other hand, TABLE IV lists the result of
stage 2 where the result of “with music components” of stage 1 is
considered.

From TABLE III, we can see that when features are applied alone to
discriminate “pure music” from “song”, the proposed feature, FVTP, has
the best performance. Furthermore, an accuracy rate of over 90% will be
achieved when the proposed feature, FVTP, is combined with a basic
feature, Energy.

TABLE III
Classification performance of different features in stage 2. The “average” column shows the average
accuracy rate of all samples while the other two columns show the accuracy rate of pure music and

song, respectively.

Accuracy (%)
Features
Pure
Average . Song
music
ZCR_var 70.8 77.8 60
SF 58.9 66.1 47.7
Normalized RMS Variance(o;) 573 66.3 432
FVTP 77.2 82.0 69.8
LSTER 61 100 0.1
HZCRR 61 100 0.1

TABLE IV

Classification performance of stage 2 with the influence of stage 1.

Accuracy (%)
Features
Pure
Average } Song
music
{FVTP, Energy} + 1-NN 93.35 94.72 91.17
{FVTP, Energy} + SONFIN 95.39 96.53 93.6
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In addition to stage 1 and stage 2 of the proposed system, we also
conducted experiments on speech/song discrimination. The experimental

result is listed in TABLE V.

TABLE V

Classification performance of speech/song discrimination

Accuracy (%)
Features
Pure
Average Song
speech
{SF, o, LSTER} with 1-NN LOO 98.04 98.3 97.7
{SF, o}, LSTER} with SONFIN 99.76 99.59 100

For practical audio stream classification and segmentation, the results
are illustrated in Fig. 28 and 29. Stage 1 and stage 2 are combined to
perform classification when-a real audio stream is about to be classified
and segmented. The first 40-second audio clip was recorded from an
English language teaching program called Studio classroom. There are
two short musical interludes in the clip. The last 32 seconds are a
10-second song clip, a 12-second music clip, and an another 10-second
song clip, respectively.

Figure 28 shows the result of stage 1. The upper plot is the original
input audio waveform which is 72-second long, and the middle plot is the
result after classification without “smoothing”. The lower plot illustrates
the result of the middle plot after “smoothing”. In the middle plot of Fig.
28, we can see that a 1-second segment indicated by an ellipse is

misclassified. However, it is corrected after “smoothing”, as shown in the
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lower plot.

Figure 29 shows the final segmentation result where 0 corresponds to

silence, 1 corresponds to pure speech, 2 corresponds to pure music, and 3

corresponds to song. In Fig. 29, we can see from the final result that the

system successfully classified and segmented the audio stream.

The original wave.

L | | |
10 20 30 40 50 60 70
Signal after classification and segmentation, O:silence, 1:speech, 2:music time (second)

|

10 20 30 40 50 80 70
Signal after removing and linking, O:silence, 1:speech, 2:music time (second)

Fig.

70
time (second)

28 Result of practical audio stream classification and segmentation in stage 1.

Sigmal after remowing and linking, O:silence, 1:speech, 2:music, 3:song
T T

' ' L '
1o 20 20 40 S0 [=te] 70
time (secand)

. 29 Result of practical audio stream classification and segmentation in stage 2.
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Another practical experimental result with slightly erroneous
classification 1is illustrated in Fig. 30. The first 12 seconds of the
18-second audio clip are pure music and others are song. In stage 1 (the
second and the third plot), the performance is good. All segments are
classified into “with music components” correctly. In stage 2 (the fourth
plot), the last two seconds are song but misclassified as music. The main
reason might be that in these two seconds, vocal components are

relatively weak and lead the system into a misclassification.

The original wave.

1 T T T T T
1 | 1 1 | 1 1 1 |
2 4 6 8 10 12 14 1 15
Signal after classification and segmentation, 0:silence, 1:speech, 2:music time (second)
3 T T T T T T
2
1 B el
0 ~ =
| | 1 1 | 1 1 1 |
2 4 6 8 10 12 14 16 15
Signal after connecting, O:silence, 1:speech, 2:music time (second)
3 T T T T T T
2
1 [~ o
0 ~ 4
| | 1 1 | 1 1 1 |
2 4 6 8 10 12 14 16 _ 13
Signal after classification and segmentation, 0:silence, 1:speech, 2:music. 3:song time (second)
4 T T T T T T
2
1 [~ o
0 ~ =
1 | | | | | | 1 |
2 4 6 8 10 12 14 16 18

time {second)

Fig. 30 Practical experimental result of music and song.

5.3Discussion

It was shown by these experiments that the proposed classification

51



system and the proposed feature, FVTP, performed well for audio
classification and segmentation. Speech/music discrimination achieves a
recognition rate of 99% using the proposed system and the combination
of features. When it comes to pure music/song classification, most of
existing features performs poorly except FVTP. When FVTP is combined
with energy, the problem of pure music/song classification which is quite
difficult can be solved effectively.

To deserve to be mentioned, FVTP should have performed better
theoretically according to our experiments on a single musical note and a
speech or song utterance. FVTP of a musical note indeed has quite small
variation and FVTP of a speech or song utterance has relatively large
variation as illustrated in Fig: 18, 19, and 20 in 3.6. The main reason
which decreases the classification accuracy might be that the transition
point between notes or utterances-is-not located precisely enough. This
might result in a larger FVTP for pure music or a smaller FVTP for song.
Thus, an attempt to develop a technique which is able to locate the
transition point more precisely is one of our future works.

A general k-NN decision rule combined with leave-one-out
cross-validation was also applied for verification and the result was
consistent with that of our system. Thus, the results are quite believable.

Indeed, there are some misclassifications under certain circumstances.
Nevertheless, the “smoothing” technique performs well for errors

correcting since real audio streams possess the property of continuity.
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Chapter 6
Conclusion

In this thesis, we have presented an audio classification and
segmentation system which distinguishes the difference between
instrument music, pure speech, song and silence.

We have applied some signal processing techniques on the signals to
acquire some good features. The features have been analyzed and
discussed in detail. In addition to analyzing the existing features, we have
also proposed a novel feature named FVTP in order to classify audio
signals with musical components_into,pure music and song with a higher
accuracy rate.

The system consists of two main stages. Different sets of features
have been applied in each®of these two stages of the system. A neural
fuzzy inference network named' 'SONFIN has been adopted in the
proposed system as the classifier. A simple k-NN decision rule combined
with leave-one-out cross-validation was also applied for verification. Also
integrated in the system 1is a post-processing procedure named
“smoothing”. Both experiments showed that the classification flow and
the proposed feature performed well. The accuracy rate was higher than
90%.

The system can be employed in many applications such as a
front-end for current audio application, de-advertising, automatic
equalization, audio indexing and retrieval and even audio-based video

indexing.
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Several future works can be conducted in the future. First of all, the
ability to classify audio signals into more categories is necessary. More
specifically, the design of music genre classifiers or instrument
recognition systems is a very interesting topic. We will also try to
improve the robustness of the system such that it can work well in all
kinds of situations.

Of course, to form a human-hearing-based audio signal processing
system by combining the proposed audio classification system with our
previous audio signal processing system such as speech recognition and
speaker identification will be an exciting and practical future research

topic.
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