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動態類神經網路控制系統之設計及其應用 

 

研究生：黃薰毅                 指導教授：王啟旭 教授 

 

國立交通大學電機學院電機與控制工程研究所 

 

摘要 

 

由於控制器的老化而造成控制系統的出錯是很普遍的，而這種情況發生，常常因

為某些原因，原本的控制器很難被修復。本篇論文探討以動態類神經網路控制器

取代原本控制器的可行性來設法解決上述問題。我們以霍普菲爾類神經網路控制

器做為動態類神經網路控制器。先以最陡坡降演算法離線訓練霍普菲爾類神經網

路的網路權重值使得霍普菲爾類神經網路的輸出能模仿原先的控制器。訓練完成

之後再將該霍普菲爾類神經網路當作控制系統的即時控制器。我們以倒單擺系統

及球桿系統來驗證該霍普菲爾類神經網路控制器的效果。模擬的結果顯示即使控

制系統在和訓練時有不同的初始條件，該霍普菲爾類神經網路控制器依然可以模

仿原先的控制器並達到令人滿意的效能。 
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ABSTRACT 

 

Faults due to the aging of a controller for a control system are very common; once 
they happen, the controller is quite difficult to be repaired for some reasons. To solve 
this problem, in this thesis, we discuss the feasibility of replacing the existing 
controller with a dynamical neural network (DNN) controller. A Hopfield neural 
network (HNN) controller is used as the DNN controller. The weightings of the HNN 
are first trained off line by the steepest descent algorithm to make the output of the 
HNN can mimic the existing controller. After the training is completed, the HNN is 
applied to the control system as a real-time controller. An inverted pendulum system 
(IPS) and a ball and beam system (BABS) are used to examine the effectiveness of 
the proposed HNN controller. The simulation results show that even with the initial 
condition different from that in the training data, the proposed HNN controller can 
mimic the existing controller and achieve favorable performance.   
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Chapter 1 

Introduction 
Many tasks involving intelligence or pattern recognition are extremely difficult to 
automate, but appear to be performed very easily by animals. It stands to reason that 
computing systems that attempt similar tasks will profit enormously from 
understanding how animals perform these tasks and simulation these processes to the 
extent allowed by physical limitations [1]. Learning is a fundamental aspect of neural 
networks and a major feature that makes the neural approach so attractive for 
applications that have from the beginning been an elusive goal for artificial 
intelligence [2].Artificial neural networks (ANNs) are systems that are constructed to 
make use of some organizational principles resembling those of human brain. The 
collective behavior of an ANN, like a human brain, demonstrates the ability to learn, 
recall, and generalize from training patterns or data [3].In recent years, the research of 
artificial neural networks (ANNs) is more and more popular. In [4], one of the 
interesting characteristic of an ANN is that it can present its adaptivity by adjusting 
the connection strengths to new data or information. In [5], we can use the supervised 
training to adjust the weighting factors of the ANN. During the training, we can give 
the ANN a good reference, and let the ANN modifies its weighting factors of all the 
neurons of it by minimizing the “error” between the ANN and the reference. What is 
the “error” between the ANN and the reference? We can define many cost (error) 
functions to present it, and we had better using the functions satisfy the following 
conditions: the value of each error function must be always positive or zero, and if 
and only if ANN and reference are identical, the value of each cost (error) function is 
zero. The procedure of getting the proper weighting factors of all the neurons of ANN 
is called the training of ANN. It is generally understood that the selection of the ANN 
training algorithm plays an important role for most ANN’s applications [6]. And the 
way of training of ANN most used is the steepest descent method [5, 7]. We will 
define the cost (error) function, and explain the steepest descent method in the latter 
chapters. ANNs consist of many interconnected simple nonlinear systems called 
neurons. Generally speaking, neuron models can be divided in two basic types, static 
and dynamic. A dynamic neuron is the one whose output is described by a differential 
equation, and the dynamic neural network is a neural network containing at least one 
dynamic neuron [8]. On the other hand, a recurrent neural network (RNN) usually 
belongs to a dynamical neural network (DNN). A recurrent neural network is a neural 
network with feedback connections and its techniques have been applied to a wide 
variety of problems [2]. In [9, 10], we know the Hopfield neural networks (HNNs) are 
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dynamical neural networks, and they have been extensively studied in many aspects 
and successfully applied to many fields [11]. We want to use HNN architecture 
controllers as mentioned in [12, 13]. The weights of the HNN architecture need to be 
updated using a dynamical learning algorithm during the control process. The learning 
algorithms adjust the weights of the network, so that the trained network will exhibit 
the required properties. The general algorithms used for HNN architecture are usually 
the steepest descent learning algorithms as mentioned before. By evaluating the 
gradient of a cost (error) function with respect to the weights of the networks, it is 
possible to iteratively adjust the value of the weights in the direction opposite to the 
gradient [14]. One of the famous nonlinear plants is the inverted pendulum system 
(IPS). Although the IPS is not a linear system, we want to know the ability of the 
HNN as to be a controller, so we try to use HNN controller to control the IPS. The 
problem is how we find the proper values of the parameters of HNN. First, we 
provided the architecture for IPS controlled well by a good reference controller and 
collecting the data of the control signal of the reference controller and the output of 
IPS. And by the data we collected, we trained the HNN controller to make the 
weighting factors between neurons of the HNN to be proper values. The process 
above is called the HNN in the training phase. In fact, the HNN controller after 
trained is used to mimic the well-designed controller of the IPS. After the training 
phase, the HNN controller is considered to be with proper values of parameters and it 
is used as a controller to control IPS in real time and called the HNN in the working 
phase. If the output of IPS controlled by the HNN controller is a good approximation 
of the output of IPS controlled by well-designed controller, then the HNN model for 
well-designed controller must be good [15]. After we succeed using HNN as a 
controller to control IPS in real time, we try to use it to control the ball and beam 
system (BABS). The BABS is a more complicated system, and the nonlinearity of 
BABS is very high, so it is a big challenge of the HNN controller to control BABS. 
Nevertheless, we can still get a nice result of the control of BABS by the HNN 
controller used the similar way to train the weighting factors between each two 
neurons of all neurons of the HNN. So, we think that the HNN architectures have the 
potential to be good controllers to control some nonlinear systems, and maybe some 
HNN controllers will be cheap controllers to control some complicated systems. 
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Chapter 2 

 Theoretical Foundation 
The dynamical (recurrent) neural networks can be classified as being globally or 
partially dynamical (recurrent). Globally dynamical (recurrent) neural networks have 
arbitrary feedback connections, including neurons with self-feedback. On the other 
hand, partially dynamical (recurrent) neural networks have their main structure 
non-recurrent, or recurrent but with restrictive properties associated with the feedback 
connections [2].  
We take the Hopfield neural network (HNN) as example. HNN belongs to the 
globally dynamical (recurrent) neural network, in fact, HNN is fully connected neural 
network, and we will explain the fully connected neural network later. 
 
2.1 Structure of Hopfield Neural Network 
.  

∑ ( )ϕ ⋅

1x

2x

Nx

1jw

2jw

jNw

ji i
i

w x∑

jC jR

jI
jv

jx

 
Fig-2.1. The circuit model of a Hopfield neuron 

 
In [16], the circuits model of a Hopfield neuron figure 2-1 shows the input of the 
neuron is the output voltages ),...,( 21 Nxxx  of each Hopfield neurons, and the output 
each of voltages ),...,( 21 Nxxx  multiple each of the weighting factors, conductance 

),...,(
21 Njjj www , become each of the currents ),...,( 2211 NjNjj xwxwxw  . Summation 

of the currents ),...,( 2211 NjNjj xwxwxw and adding the bias current jI  is the total 

current totaljI −  , and the total current is the sum of the current jCI  passing through 

capacitor to the ground, and the current jRI  passing through the resistor to the 
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ground. We can express as the following equation: 

jRjCj

N

i
ijitotalj IIIxwI +=+= ∑

=
−

1
              (2-1) 

The voltage drop between the resistor and the ground equals the resistance jR  

multiplying the current jRI , and the voltage drop make the node voltage jv , as the 

following equation: 

jRjj IRv =                         (2-2) 

And the current jcI  passing through the capacitor to ground equals the capacitance 

jC  multiplying the rate of the varying of the node voltage jv , as the following 

equation: 

dt
dv

CI j
jjC =                        (2-3) 

The node voltage jv  passing to the voltage amplifier )(•ϕ  will produce the output 

voltage jx  of the Hopfield neuron, and can be written as the following equation: 

  
jj

jj

vv

vv

jjj ee
eevvx −

−

+
−

=== )tanh()(ϕ                (2-4) 

We note the input impedance of the voltage amplifier )(•ϕ is infinity, so no current 
passing through it and the output impedance of the voltage amplifier )(•ϕ is zero, so 

the output voltage jx  of the Hopfield neuron will not reduce, no matter how much 

the output current is. In practice, we often let the bias current jI  to be zero, so it 

means that we actually don’t need the bias current jI  in the circuit model of a 

Hopfield neuron. 
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Fig-2.2. The architecture of a Hopfield neural network with Hopfield neurons 

Fig-2.2. is also a full connected neural network, that is an artificial neural network 
architecture in which every node is connected to every node, and these connections 
may be either excitatory (positive weights), inhibitory (negative weights), or 
irrelevant (almost zero weights).This is the most general neural network architecture, 
and every other architecture can be seen to be its special case, obtained by setting 
some weights to zeros. [1]. 
The whole Hopfield neural network contains all the individual of Hopfield neurons. 
Each of the individual of Hopfield neurons can be modeled by the figure 2-1. So by 
figure 2-2, we have an idea that the input of one Hopfield neuron is the output of all 
Hopfield neurons of the whole Hopfield neural network, and the output of one 
Hopfield neuron will be the one of the input of the all Hopfield neurons of the whole 
Hopfield neural network.  
 
2.2 Lyapunov Energy Function 
For any Hopfield neural network with symmetric weights, we can define a suitable 
Lyapunov energy function as following equation: 

∫ ∑∑∑ ∑
=

−

= = =

−+−= jx N

j
jj

N

j

N

i

N

j j
ijji xIdxx

R
xxwE

0
1

1

1 1 1

)(1
2
1 φ ,        (2-5) 

where vx =− )(1φ  is the inverse of the function )(vx ϕ= .To show that the equation 
(2-5) is a Lyapunov function for the Hopfield neural network with symmetric weights, 
we take the time derivative of equation (2-5): 

dt
dx

R
v

Ixwxw
dt
dE j

N

j

N

i j

j
jiijiji ])(

2
1[

1 1
∑ ∑
= =

−++−= .              (2-6) 
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According to the symmetric weights ijji ww = , so we can write the following equation 

from equation (2-6): 

dt
dx

R
v

Ixw
dt
dE j

N

j

N

i j

j
jiji ][

1 1
∑ ∑
= =

−+−= .                  (2-7) 

Use the equations (2-1), (2-2), and (2-3), we can write the following equation from 
equation (2-7): 

∑
=

−=
N

j

jj
j dt

dx
dt

dv
C

dt
dE

1
.                       (2-8) 

By chain rule, we can write the following equation from equation (2-8): 

∑
=

−=
N

j

j

j

jj
j dt

dv
dv
dx

dt
dv

C
dt
dE

1
.                     (2-9) 

Use the equation (2-4), we can write the following equation from equation (2-9): 

22

1
)}(])[tanh(1{

dt
dv

vC
dt
dE j

N

j
jj∑

=

−−= ,               (2-10) 

or we can write the other form of equation (2-10): 

2

1
2

)(
)(

4
dt

dv

ee
C

dt
dE j

N

j
vvj jj∑

=
−+

−= .                (2-11) 

Because 0>jC , 0
)(

4
2
>

+ − jj vv ee
, 0)( 2 ≥

dt
dv j , we get 0≤

dt
dE , and thus the 

Lyapunov energy function E  must decrease as the system evolves. Hence, if E  is 

bounded, the system will eventually reach a stable state where 0=
dt
dE , and 0=

dt
dv j  

But it is become increasing clear that the symmetric weights assumption has imposed 
serious constraints on both physical realizations and practical applications of the 
Hopfield neural networks [17], we will not use the symmetric weights condition of the 
Hopfield neural networks for our applications. But we still need the assumption that 

0=
dt

dv j  for we training the weighting factors of HNN. In the latter chapter, we will 

use the other view to show that in the training of weighting factors of HNN , we can 

use the assumption 0=
dt

dv j .  

 
2.3 Method of Steepest Descent 



 7

In [18], first, we set all weights to small values or zeros, and then we present the 
desired output ),...,...,( 21 nk uuuuU = , and we calculate the network output 

),...,...,( 21

∧∧∧∧∧

= nk uuuuU . Because ),...,...,( 21

∧∧∧∧∧

= nk uuuuU is a function of weighting 

vector W and the error between the desired output and network output ,that is the 

error function J  is a function of ku  and 
∧

ku , so we know J  is a function of 

weighting vector W , so we can write )(WJ  to emphasize the error function is the 
function of weighting vector W . 
In [7], we consider an error function )(WJ  is a continuously differentiable function 

of some weighting vectorW . We want to find an optimal solution *W  that satisfies 
the condition bellow: 

)()( * WJWJ ≤  .                      (2-12) 
This means minimize the error function )(WJ  with respect to the weighting 
vectorW , so the necessary condition for (2-12) is  

0)( * =∇ WJ  .                       (2-13) 
So we can use the idea of local iteration descent by starting with an initial guess 
denoted by )0(W , generating the a sequence of weighting vectors )1(W , )2(W ,…, 

)(kW , )1( +kW ,…, such that the error function )(WJ  being reduced at each 
iteration of the algorithm as shown by the following inequality: 

))(())1(( kWJkWJ <+                      (2-14) 
Where )(kW is the old value of the weighting vector and )1( +kW is its updated 
value. 
For convenience, we write the following equation: 

)(WJg ∇=                          (2-15) 
So the steepest descent algorithm can be written as the following equation: 

)()()1( kgkWkW η−=+                    (2-16) 
Whereη is a positive constant called learning rate parameter, and )(kg  is the 
gradient vector evaluated at the point )(kW .From (2-16), we can write the following 
equation: 

 )()()1()( kgkWkWkW η−=−+=Δ                (2-17) 
Now, we use the 1st order Taylor series expansion around )(kW  to approximate 

))1(( +kWJ  as the following equation: 
)()())(())1(( kWkgkWJkWJ T Δ+≈+             (2-18) 

Substituting equation (2-10) to equation (2-11), we can get the following equation: 
2)())(()()())(())1(( kgkWJkgkgkWJkWJ T ηη −=−≈+      (2-19) 

Becauseη is a positive learning rate parameter, so the error function is decreased as 
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the algorithm progresses from one iteration to the next.  
 
2.4 Training More than One Epoch  
As mentioned in the section 2.3, the desired output ),...,...,( 21 nk uuuuU = and we 

calculate the network output ),...,...,( 21

∧∧∧∧∧

= nk uuuuU  can train the weighting vector 

W  on the base of that the weighting vector W is the function of the network output 

),...,...,( 21

∧∧∧∧∧

= nk uuuuU  and the network output ),...,...,( 21

∧∧∧∧∧

= nk uuuuU  is the 

function of the error function J . But after one whole epoch, the training of the 
weighting vector W may be not enough. One way to solve this problem is to add the 
number of the time sequence point of the desired output ),...,...,( 21 mk uuuuU = , and 
calculate more number of time sequence point of the network output 

),...,...,( 21

∧∧∧∧∧

= mk uuuuU , nm > , but it is not a good method for take too many samples 

from a control system in the steady state. Even we just use the same total time with 
the higher sampling rate to get more points, it maybe produce big run-off error 
because of the difference of the two neighbor points maybe too small. To avoid the 
problems above, we can use more than one epoch. After one whole epoch training of 
the weighting vector W , we can take the final value of the weighting vector W  of 
the first epoch as the initial value of the weighting vector W  of the second epoch, 
and we will get the new value of the network output 

))2(),...2(),...2(,)2(()2( 21

∧∧∧∧∧

= nk uuuuU , because of the weighting vector W is the 

function of the network output ),...,...,( 21

∧∧∧∧∧

= nk uuuuU , and after the second epoch, 

we can take the final value of the weighting vector W  of the second epoch as the 
initial value of the weighting vector W  of the third epoch. And we can repeat this 
method till we finish the last epoch, and the training of the weighting vector W  is 
good enough.   
 

2.5 Fourth Order of Runge-Kutta Formula for Numerical Method  

In [19], we use the fourth order of Runge-Kutta formula which provides a good 
approximation and efficient way for numerical method. Let an initial value problem 
as following equations: 

00 )(
),('

yty
ytfy

=
=

                          (2-20) 
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Then, the fourth order of Runge-Kutta formula for this problem can be written by the 
following equations: 

),(

)
2
1,

2
(

)
2
1,

2
(

),(

)22(
6
1

34

23

12

1

1

43211

kyhthfk

kyhthfk

kyhthfk

ythfk
htt

kkkkyy

nn

nn

nn

nn

nn

nn

++=

++=

++=

=
+=

++++=

+

+

             (2-21) 

, where 1+ny  is the fourth order of Runge-Kutta approximation of )()( 1 htyty nn +=+ . 
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Chapter 3 

Control of Inverted Pendulum System (IPS) 

3.1 Dynamics of Inverted Pendulum System (IPS) 
 

M

m

u

l

θ

•

θ

 
Fig-3.1. The inverted pendulum system (IPS) 

 
In [16, 20], the half-axle length of the IPS l = 0.5 meter; the cart mass of the IPS M = 
1 kg; the pendulum mass of the IPS m = 0.1 kg. And we can get the equation: 

        
u

mM
m

l

mM

mM
m

l

mM
ml

g
×

+
−

++

+
−

+
−

=

=

•

•

)
cos

3
4(

cos

)
cos

3
4(

sincos
sin

1
2

1

1
2

11
2
2

1

2

21

θ

θ

θ

θθθ
θ

θ

θθ

           (3-1) 

 , where 1θ  is the bias angle of the IPS; 2θ is the angle velocity of the IPS; u  is the 
control force to push the cart. We substitute the values above, and we can get the 
following equation: 

u×
−
×

+××−×=

=
•

•

2
1

1
11

2
212

21

))(cos(667.14
)cos(20

)sin()cos()()sin(6.215
θ

θ
θθθθθ

θθ
   (3-2) 

 
3.2 Design of Reference Controller  

Linearize the equation (3-1), by setting 0 ,sin , 1cos 2
2  111 === θθθθ , and we 
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can get the following equation: 

u

mM
ml

mM

mM
ml

g
×

+
−

++×

+
−

=

=

•

•

)
3
4(

1

)
3
4(

12

21

θθ

θθ

           (3-3) 

Substitute the values ( 8.9,5.0,1.0,1M ==== glm ), we can get the 
following equation: 

u×+×=

=
•

•

1.4615.8 12

21

θθ

θθ               (3-4) 

 In [21], let 2211 kk  θθ +=u , we can get the following equation by (3-4):  

22112

21

1.46k)1.46k15.8( θθθ

θθ

×+×+=

=
•

•

               (3-5) 

And we present (3-5) by matrix form 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××+

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
•

•

2

1

212

1

k1.46k1.4615.8
10

θ
θ

θ
θ                (3-6) 

Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××+

=
21 k1.46k1.4615.8

10
A , so ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×−×−−

=−
21 k1.46k1.4615.8

1-
λ

λ
λ AI ,  

and if we ask the determinant of AI −λ  is zero ,we will get the following equation: 

01.46k15.81.46k
k1.46k1.4615.8

1-
det 12

2

21

=−−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−×−−

λλ
λ

λ
     (3-7) 

(3-7) is the form of the second order linear system 02 22 =++ nn ss ωξω , so we get 

1
2

2

1.46k15.8

k0.73

−−=

×−=×

n

n

ω

ωξ
                        (3-8) 

               
Let 1.8  ,  0.4 == nωξ , we can get 0.99k   ,  -13k 21 −== , so we have 

 
•

−−=−−= 1121 0.99310.9931 θθθθu                 (3-9) 

So the equation of the reference controller of IPS is equation (3-9). Let the IPS initial 
angle=20 degree and initial angular speed=20 degree/sec, and the simulation 
time=10 sec. With the equations (3-2) and (3-9), we can get the results of the IPS 
controlled by the reference controller, and we show them in the following figures: 
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Fig-3.2. The control force of the reference controller 

 
Fig-3.3. The output angle of IPS controlled by the reference controller  



 13

 
Fig-3.4. The output angular speed of IPS controlled by the reference controller  

 
3.3 Architecture and Algorithm of Weighting Training 

∑ ()ϕ ⋅
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∧
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Fig-3.5. The architecture of the HNN controller in the training phase  
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We use the following parameters of HNN controller: the resistor=1(ohm), the 
capacitor=0.01(Farr), the amplification constant=-30, and the learning rate=0.001.  
In the training phase, we note that the Hopfield neural network (HNN) doesn’t control 
the IPS. So we can imagine that when train 11w , 12w , 21w  and 22w  by the set of 

),,,,( 2211 ddu θθ (the value of the set is corresponding to this moment time 1t  ), the 

time of the reference controller and the IPS pauses until the HNN circuit is in the 
steady state. And we continue to train 11w , 12w , 21w  and 22w  by the next set of 

),,,,( 2211 ddu θθ (the value of the “next set” is corresponding to the next moment 

time 2t ). 
So we can consider that in the training phase, the circuit is already in the steady state, 
so no current passes to both capacitors C (it is equal to both capacitors C are open, 
C=0), so we can get the equation bellow (by the circuit theorem: the voltage drop 
equals the multiplication of the resistance and the current): 

22

11

iRv
iRv

×=
×=

                            (3-10) 

We have the equation bellow (by the circuit theorem: current equals the multiplication 
of the conductance and the voltage):  

)()(
)()(

22222111212

22212111111

dxwdxwi
dxwdxwi
−+×+−+×=
−+×+−+×=

θθ
θθ

           (3-11) 

The effect of )(•ϕ  is as voltage amplifier, so we can write the equations bellow: 

  )tanh()(
)tanh()(

222

111

vvx
vvx

==
==

ϕ
ϕ

                     (3-12) 

The equation of the output of Hopfield neural network, the HNN controller‘s control 

signal 
∧

u  is bellow:   

)( 21 xxcu amp +×=
∧

                    (3-13) 

We define the error J as the measurement of the half squared distance between the 

reference controller’s control signal u  and the HNN controller’s control signal
∧

u . 

And we write the equation bellow: 

2)(
2
1 ∧

−×= uuJ                      (3-14) 

Next, we have to find a good set of 11w , 12w , 21w  and 22w  to make J smaller, so the 
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half squared distance between the reference controller’s control signal u  and the 

HNN controller’s control signal 
∧

u  will be smaller. How can we reach this task? We 

can deal it by training 11w , 12w , 21w  and 22w with the steepest descent method as we 
introduced in the section 2.3. Let us take 11w  for example to show how it to be 
trained. First, we can write the equation bellow to show how we get the better next 
value of 11w : 

11
1111 )()1(

w
Jkwkw

∂
∂

×−=+ η ,                (3-15) 

where η  is the learning rate, and we should calculate the value of
11w
J

∂
∂ . We can use 

the chain rule to write the equation bellow: 

11

1

1

1

111 w
v

v
x

x
u

u

J
w
J

∂
∂

×
∂
∂

×
∂
∂

×
∂

∂
=

∂
∂

∧

∧                  (3-16) 

From the equation (3-14), we have the equation bellow: 

)( uu
u

J
−=

∂

∂ ∧

∧                        (3-17) 

From the equation (3-13), we have the equation bellow: 

ampc
x
u
=

∂
∂

∧

1

                        (3-18) 

From the equation (3-12), we have the equation bellow: 

2
1

1

1 )][tanh(1 v
v
x

−=
∂
∂                     (3-19) 

From the equation (3-10), (3-11), we have the equation bellow: 

)( 111
11

1 dxR
w
v

−+×=
∂
∂

θ                   (3-20) 

So, from the equations (3-16), (3-17), (3-18), (3-19) and (3-20), we have equation 
bellow: 

 )(})][tanh(1{)( 111
2

1
11

dxRvcuu
w
J

amp −+××−××−=
∂
∂ ∧

θ      (3-21) 

Substitute equations (3-21) to the equations (3-15), we have equation bellow: 

)(})][tanh(1{)()()1( 111
2

11111 dxRvcuukwkw amp −+××−××−×−=+
∧

θη   (3-22) 

Similarly, for training 12w , 21w  and 22w , we can write the equations bellow: 

)(})][tanh(1{)()()1( 222
2

11212 dxRvcuukwkw amp −+××−××−×−=+
∧

θη   (3-23) 
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)(})][tanh(1{)()()1( 111
2

22121 dxRvcuukwkw amp −+××−××−×−=+
∧

θη   (3-24) 

 )(})][tanh(1{)()()1( 222
2

22222 dxRvcuukwkw amp −+××−××−×−=+
∧

θη  (3-25) 
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Fig-3.6. The architecture of the IPS controlled by the HNN controller 

 
In the working phase, the HNN is a real time controller, responding to control the IPS. 
The value of the set of 11w , 12w , 21w  and 22w  is fixed. And as a real time controller, 
the circuit is dynamic, so we cannot ask the circuit always in the steady state, so we 
should know that the current passing the both capacitors C is not always zero. 
Actually, it is very complicated to calculate the output of IPS. In the working phase, 

the architecture is the recurrent neural network. The output of IPS is ))(),(( 21 tt θθ , 

and ))(),(( 21 tt θθ  will affect the values of the current ))(),(( 21 titi , and the 

current ))(),(( 21 titi  will affect the values of the voltage ))(),(( 21 tvtv , and the 

time-varying current passing the capacitors will affect the values of the 

voltage ))(),(( 21 tvtv , too. The voltage ))(),(( 21 tvtv  will be amplified by )(•ϕ  to 
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get the values of ))(),(( 21 txtx , and the values of )(1 tx  and )(2 tx  will affect )(1 ti  

and )(2 ti  respectively, and ampctxtx ×+ ))()(( 21  will get the control signal )(tu  . 

Of course, the control signal )(tu  will affect the output of the IPS ))(),(( 21 tt θθ  by 

the IPS equation (3-2). So this is a complicated recurrent control system. So we don’t 
calculate the analytic solution of this system. Instead, we try to use the numerical 
method to simulate this system. 
 
3.4 Simulation Result  

3.4.1 Seeking for Weighting Factors  
First, we should try to seek a good set of 11w , 12w , 21w  and 22w . With the equations 
(3-22), (3-23), (3-34) and (3-25), we may use many training epochs for get better 
training results. How can we use training epochs to get better results? First, we define 
a new parameter: the total error during the whole time tJ  as the following equation:  

∑
=

=
m

k
t kJ

m
J

1
)(1                       (3-27) 

Where the parameter )(kJ  is just the detailed presentation of J , with 

2))()((
2
1)( kukukJ

∧

−×= , to emphasize J  is the function of the parameter k  (the 

discrete time point). And to emphasize the inference of the epoch number to the total 
error during the whole time we can write the equation bellow: 

 ∑
=

=
m

k
t epokJ

m
epoJ

1
),(1)(                  (3-28) 

Because tJ  is the function of the parameter epo  (the epoch number), and generally 
speaking, tJ  will decrease as epo  increase. So we can use a big value of epo  to 
let tJ  become small enough. We can show this in the following figure, Fig-3.7, and 
we can find that using 6 epochs is good enough for simulation. 



 18

 
Fig-3.7. The total error )(epoJt  and the last epoch error )6,(kJ   

 
By the simulation, we can find a set of 11w , 12w , 21w  and 22w , and we write it down 
as )01367.0,1755.0,01367.0,1755.0(),,,( 22211211 =wwww .         
In fact, the seeking of a good set of 11w , 12w , 21w  and 22w  is the process of the 
training iteration in the whole time and every epoch, and we can show the training 
iteration process (in the last epoch) in the whole time by the following figure. 

 
Fig-3.8. The last epoch training iteration process of 11w , 12w , 21w  and 22w   
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 3.4.2 IPS Controlled by HNN Controller Trained with the Same 
Initial State  
After we seek the values of 11w , 12w , 21w  and 22w , we can begin to run the simulation 
of the IPS controlled by the HNN controller in real time. We use the Matlab with the 
4th order of Runge-Kutta formula to simulate IPS controlled by HNN controller. By 
the simulation, we can get the following figures as the results. 

 
Fig-3.9. The control forces of IPS: reference controller (dash line) and HNN 

controller (solid line) 
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Fig-3.10. The output angles of IPS: reference controller (dash line) and HNN 

controller (solid line) 

 
Fig-3.11. The output angular speeds of IPS: reference controller (dash line) and  

HNN controller (solid line) 
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Fig-3.12. The node 1 voltage 1v  of the HNN circuit 

 
Fig-3.13. The node 2 voltage 2v  of the HNN circuit 
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3.4.3 IPS Controlled by HNN Controller Trained with Different 
Initial State 
We use the following examples to examine the abilities of HNN controllers to control 
IPS with initial state different from the initial state of training the HNN controller. We 
can let the values of 11w , 12w , 21w  and 22w  be the same with section 3.4.1, so 

)01367.0,1755.0,01367.0,1755.0(),,,( 22211211 =wwww  is fixed for the initial state of 
IPS: the initial angle=20 (degree) and initial angular speed=20 (degree/sec) in the 
training phase. And then, we will examine the following pairs (initial angle (degree), 
initial angular speed (degree/sec)) of the initial state of IPS: (30, 20), (20, 30), (25, 25), 
and (10, 10) in the working phase as the following figures:  

 
Fig-3.14. The control forces of IPS with initial angle=30 degree, initial angular 

speed=20 degree/sec: reference controller (dash line) and HNN controller (solid line) 
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Fig-3.15. The output angles of IPS with initial angle=30 degree, initial angular 

speed=20 degree/sec: reference controller (dash line) and HNN controller (solid line) 

 
Fig-3.16. The output angular speeds of IPS with initial angle=30 degree, initial 

angular speed=20 degree/sec: reference controller (dash line) and HNN controller 
(solid line)  
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Fig-3.17. The node 1 (2) voltage 1v  ( 2v ) of the HNN circuit with IPS initial 
angle=30 degree, initial angular speed=20 degree/sec  

 
Fig-3.18. The control forces of IPS with initial angle=20 degree, initial angular 

speed=30 degree/sec: reference controller (dash line) and HNN controller (solid line) 
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Fig-3.19. The output angles of IPS with initial angle=20 degree, initial angular 

speed=30 degree/sec: reference controller (dash line) and HNN controller (solid line) 

 
Fig-3.20. The output angular speeds of IPS with initial angle=20 degree, initial 

angular speed=30 degree/sec: reference controller (dash line) and HNN controller 
(solid line) 
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Fig-3.21. The node 1 (2) voltage 1v  ( 2v ) of the HNN circuit with IPS initial 

angle=20 degree, initial angular speed=30 degree/sec  

 
Fig-3.22. The control forces of IPS with initial angle=25 degree, initial angular 

speed=25 degree/sec: reference controller (dash line) and HNN controller (solid line)  
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Fig-3.23. The output angles of IPS with initial angle=25 degree, initial angular 

speed=25 degree/sec: reference controller (dash line) and HNN controller (solid line) 

 
Fig-3.24. The output angular speeds of IPS with initial angle=25 degree, initial 

angular speed=25 degree/sec: reference controller (dash line) and HNN controller 
(solid line) 
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Fig-3.25. The node 1 (2) voltage 1v  ( 2v ) of the HNN circuit with IPS initial 

angle=25 degree, initial angular speed=25 degree/sec  

 
Fig-3.26. The control forces of IPS with initial angle=10 degree, initial angular 

speed=10 degree/sec: reference controller (dash line) and HNN controller (solid line)  
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Fig-3.27. The output angles of IPS with initial angle=10 degree, initial angular 

speed=10 degree/sec: reference controller (dash line) and HNN controller (solid line) 

 
Fig-3.28. The output angular speeds of IPS with initial angle=10 degree, initial 

angular speed=10 degree/sec: reference controller (dash line) and HNN controller 
(solid line) 
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Fig-3.29. The node 1 (2) voltage 1v  ( 2v ) of the HNN circuit with IPS initial 

angle=10 degree, initial angular speed=10 degree/sec  
 

3.4.4 IPS Controlled by HNN Controller Trained by Nonlinear 
Reference Controller with the Same Initial State 
To examine the ability of HNN controller to mimic the nonlinear reference controller, 
we use the following equation as the nonlinear reference controller of IPS: 
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++
+

++

++++
=u  (3-29) 

Let the IPS initial angle=20 degree and initial angular speed=20 degree/sec, and the 
simulation time=20 sec. We can get the following three figures of IPS controlled by 
the nonlinear reference controller:  
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Fig-3.30. The control force of the nonlinear reference controller 

 

 
Fig-3.31. The output angle of IPS controlled by the nonlinear reference controller 
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Fig-3.32. The output angular speed of IPS controlled by the nonlinear reference 

controller 
 

We use the same parameters of HNN controller: the resistor=1(ohm), the 
capacitor=0.01(Farr), the amplification constant=-30, the learning rate=0.001, and 10 
epochs for training, and we show the training process as the following two figures: 

 
Fig-3.33. The total error )(epoJt  and the last epoch error )10,(kJ  
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Fig-3.34. The last epoch training iteration process of 11w , 12w , 21w  and 22w   
 

By the simulation, we find the values of 11w , 12w , 21w  and 22w , and we write it down 
as )1876.0,1846.0,1876.0,1846.0(),,,( 22211211 =wwww .Then, we show the following 
four figures as simulation result of IPS controlled by trained HNN controller: 

  

Fig-3.35. The control forces of IPS: nonlinear reference controller (dash line) and 
HNN controller (solid line) 
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Fig-3.36. The output angles of IPS: reference controller (dash line) and HNN 

controller (solid line) 

 
Fig-3.37. The output angular speeds of IPS: reference controller (dash line) and HNN 

controller (solid line) 
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Fig-3.38. The node 1 (2) voltage 1v  ( 2v ) of the HNN circuit 
 

3.4.5 IPS Controlled by HNN Controller Trained by Nonlinear 
Reference Controller with Different Initial State 
We use the following examples to examine the abilities of HNN controllers to control 
IPS with initial state different from the initial state of training the HNN controller by 
the nonlinear reference controller. We let the values of 11w , 12w , 21w  and 22w  be the 
same with section 3.4.4, so )1876.0,1846.0,1876.0,1846.0(),,,( 22211211 =wwww  is 
fixed for the initial state of IPS: the initial angle=20 (degree) and initial angular 
speed=20 (degree/sec) in the training phase. And then, we will examine the following 
pairs (initial angle (degree), initial angular speed (degree/sec)) of the initial state of 
IPS: (30, 30), and (10, 10) in the working phase as the following figures:  
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Fig-3.39. The control forces of IPS with initial angle=30 degree, initial angular 
speed=30 degree/sec: the nonlinear reference controller (dash line) and HNN 

controller (solid line) 

 
Fig-3.40. The output angles of IPS with initial angle=30 degree, initial angular 
speed=30 degree/sec: the nonlinear reference controller (dash line) and HNN 

controller (solid line) 
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Fig-3.41. The output angular speeds of IPS with initial angle=30 degree, initial 

angular speed=30 degree/sec: the nonlinear reference controller (dash line) and HNN 
controller (solid line) 

 
Fig-3.42. The node 1 (2) voltage 1v  ( 2v ) of the HNN circuit with IPS initial 

angle=30 degree, initial angular speed=30 degree/sec  
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Fig-3.43. The control forces of IPS with initial angle=10 degree, initial angular 
speed=10 degree/sec: the nonlinear reference controller (dash line) and HNN 

controller (solid line) 

 

Fig-3.44. The output angles of IPS with initial angle=10 degree, initial angular 
speed=10 degree/sec: the nonlinear reference controller (dash line) and HNN 

controller (solid line) 
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Fig-3.45. The output angular speeds of IPS with initial angle=10 degree, initial 

angular speed=10 degree/sec: the nonlinear reference controller (dash line) and HNN 
controller (solid line) 

 
Fig-3.46. The node 1 (2) voltage 1v  ( 2v ) of the HNN circuit with IPS initial 

angle=10 degree, initial angular speed=10 degree/sec 
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Chapter 4 

Control of Ball and Beam System (BABS) 

4.1 Dynamics of Ball and Beam System (BABS) 

 

3θ
1θ

f M

2θ

4θ

bR

bP

P

 Fig-4.1. The ball and beam system (BABS) 
In [22], the moment of inertia of the beam is P=0.02 (kg- 2m ); the mass of the ball is 

M=0.05 (kg); the moment of inertia of the ball is 6102 −×=bP (kg- 2m ); the radius of 

the ball is R=0.01(m); the gravity acceleration is G.=9.8(m/ 2s ); the torque applied to 
the beam is f (nt-m). With the ball position 1θ  , the ball velocity 2θ , the beam angle 3θ , 
and the beam angular speed 4θ , we can get the equations bellow: 
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We substitute the values of B, G, M, P, bP above, and we can get the following 
equations: 
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4.2 Simulation of BABS Controlled by Reference Controller 
We use the following equation as reference controller of BABS: 

4321 5.137.07.0 θθθθ ×−×−×+×=f ,               (4-8) 
where f  is the control torque. Let the BABS initial position (ball’s position) =0.2 
meter, initial velocity (ball’s velocity) =0 meter/sec, initial angle (beam’s angle) =10 
degree and initial angular speed (beam’s angular speed) =0 degree/sec, and the 
simulation time=15sec. With equation (4-7) and (4-8), we can get the results of the 
BABS controlled by the reference controller, and we can show them in the following 
figures. 

 
Fig-4.2. The control torque of the reference controller 
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Fig-4.3. The ball’s position of BABS controlled by the reference controller 

 
Fig-4.4. The ball’s velocity of BABS controlled by the reference controller 
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Fig-4.5. The beam’s angle of BABS controlled by the reference controller 

 
Fig-4.6. The beam’s angular speed of BABS controlled by the reference controller 
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4.3 Architecture and Algorithm of Weighting Training  
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 Fig-4.7. The architecture of the BABS controlled by the HNN controller in the 
training phase  

 
We use the following parameters of HNN controller: the resistor=1(ohm), the 
capacitor=0.01(Farr), the amplification constant=-30, and the learning rate=0.001.  
In the training phase, we note that the Hopfield neural network (HNN) doesn’t control 
the ball and beam system (BABS). So we can imagine that when train 11w , 12w , 13w , 

14w , 21w , 22w , 23w , 24w , 31w , 32w , 33w , 34w , 41w , 42w , 43w  and 44w  by the 

set of ),,,,,,,,( 44332211 ddddu θθθθ (the value of the set is corresponding to this 

moment time 1t ), the time of the reference controller and the BABS pauses until the 
HNN circuit is in the steady state. And we continue to train 11w , 12w , 13w , 14w , 

21w , 22w , 23w , 24w , 31w , 32w , 33w , 34w , 41w , 42w , 43w  and 44w  by the next 

set of ),,,,,,,,( 44332211 ddddu θθθθ  (the value of the “next set” is corresponding 

to the next moment time 2t ). 
So we can consider that in the training phase, the circuit is already in the steady state, 

so no current passes to the four capacitors C (it equals that the four capacitors C are 
open, C=0), so we can get the equations bellow (by the circuit theorem: the voltage 
drop equals the multiplication of the resistance and the current): 
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And we have the equation bellow (by the circuit theorem: current equals the 
multiplication of the conductance and the voltage):  
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And the effect of )(•ϕ  is as voltage amplifier, so we can write the equations bellow: 
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And the equation of the output of Hopfield neural network, the HNN controller‘s 

control signal 
∧

f  is bellow:   

)( 4321 xxxxcf amp +++×=
∧

                 (4-12) 

 
We define the error J as the measurement of the half squared distance between the 

reference controller’s control signal f  and the HNN controller’s control signal
∧

f . 

And we write the equation bellow: 

2)(
2
1 ∧

−×= ffJ                        (4-13) 

Next, we have to find a good set of 11w , 12w , 21w  and 22w  to make J smaller, so the 
half squared distance between the reference controller’s control signal f  and the 

HNN controller’s control signal 
∧

f  will be smaller. How can we reach this task? We 

can deal it by training the 11w , 12w , 13w , 14w , 21w , 22w , 23w , 24w , 31w , 32w , 

33w , 34w , 41w , 42w , 43w  and 44w  with the steepest descent method. Let us take 

11w  for example to show how it to be trained. First, we can write the equation bellow 
to show how we get the better next value of 11w : 
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Where η  is the learning rate, and we should calculate the value of
11w
J
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use the chain rule to write the equation bellow: 
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From the equation (4-13), we have the equation bellow: 
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From the equation (4-12), we have the equation bellow: 
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From the equation (4-11), we have the equation bellow: 
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From the equation (4-9), (4-10), we have the equation bellow: 
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So, from the equations (4-15), (4-16), (4-17), (4-18) and (4-19), we have equation 
bellow: 
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Substitute equations (4-20) to the equations (4-14), we have equation bellow: 

)(})][tanh(1{)()()1( 111
2

11111 dxRvcffkwkw amp −+××−××−×−=+
∧

θη   (4-21) 

Similarly, for training 12w , 13w , 14w , 21w , 22w , 23w , 24w , 31w , 32w , 33w , 34w , 

41w , 42w , 43w  and 44w , we can write the equations bellow: 
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Fig-4.8. The architecture of the BABS controlled by HNN controller  

 
In the working phase, the HNN is a real time controller, responding to control the 
BABS. The value of the set of 11w , 12w , 13w , 14w , 21w , 22w , 23w , 24w , 31w , 32w , 

33w , 34w , 41w , 42w , 43w  and 44w  is fixed. And as a real time controller, the 
circuit is dynamic, so we cannot ask the circuit always in the steady state, so we 
should know that the current passing the both capacitors C is not always zero. 
Actually, it is very complicated to calculate the output of BABS. In the working phase, 
the architecture is the recurrent neural network. The output of BABS 

is ))(),(),(),(( 4321 tttt θθθθ , and ))(),(),(),(( 4321 tttt θθθθ  will affect the values 

of the current ))(),(),(),(( 4321 titititi , and the current ))(),(),(),(( 4321 titititi  will 

affect the values of the voltage ))(),(),(),(( 4321 tvtvtvtv , and the time-varying 

current passing the capacitors will affect the values of the voltage 
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))(),(),(),(( 4321 tvtvtvtv , too. The voltage ))(),(),(),(( 4321 tvtvtvtv will be 

amplified by )(•ϕ  to get the values of ))(),(),(),(( 4321 txtxtxtx , and the values of 

)(),(),( 321 txtxtx and )(4 tx  will affect ),(),(),( 321 tititi and )(4 ti  respectively, and 

ampctxtxtxtx ×+++ ))()()()(( 4321  will get the control signal )(tf  . Of course, 

the control signal )(tf  will affect the output of the BABS 

))(),(),(),(( 4321 tttt θθθθ  by the BABS equation (4-7). So this is a complicated 

recurrent control system. So we don’t calculate the analytic solution of this system. 
Instead, we try to use the numerical method to simulate this system. 
 
4.4 Simulation Result  

4.4.1 Seeking for Weighting Factors   
First, we should try to seek a good set of 11w , 12w , 13w , 14w , 21w , 22w , 23w , 24w , 

31w , 32w , 33w , 34w , 41w , 42w , 43w  and 44w . With the equations (4-21), (4-22), 
(4-23), (4-24), (4-25), (4-26), (4-27), (4-28), (4-29), (4-30), (4-31), (4-32), (4-33), 
(4-34), (4-35)and (4-36), and we may use many training epochs for get better training 
results. And we can show that the total error during the whole time is the function of 
the epoch number and the error is the function of the time(last epoch for example) in 
the following figure, Fig-4.9, and we can find that using 20 epochs is good enough for 
simulation. 



 50

 
Fig-4.9. The total error )(epoJt  and the last epoch error )20,(kJ  

 
By the simulation, we can find a good set of 11w , 12w , 13w , 14w , 21w , 22w , 23w , 

24w , 31w , 32w , 33w , 34w , 41w , 42w , 43w  and 44w , and we write it down as 
following equation in the matrix form: 
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     (4-37) 

In fact, the seeking of a good set of 11w , 12w , 13w , 14w , 21w , 22w , 23w , 24w , 31w , 

32w , 33w , 34w , 41w , 42w , 43w  and 44w  is the process of the training iteration in 
the whole time and every epoch, and we can show the training iteration process (in the 
last epoch) in the whole time by the following figures: 
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Fig-4.10. The last epoch training iteration process of 11w , 12w , 13w  and 14w   

 
Fig-4.11. The last epoch training iteration process of 21w , 22w , 23w  and 24w   
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Fig-4.12. The last epoch training iteration process of 31w , 32w , 33w  and 34w   

 
Fig-4.13. The last epoch training iteration process of 41w , 42w , 43w  and 44w   
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4.4.2 BABS Controlled by HNN Controller Trained with the Same 
Initial State 
After we have the values of the good set of 11w , 12w , 13w , 14w , 21w , 22w , 23w , 

24w , 31w , 32w , 33w , 34w , 41w , 42w , 43w  and 44w , we can begin to run the 
simulation of the BABS controlled by the HNN controller in real time. We use the 
Matlab with the 4th order of Runge-Kutta formula to simulate it. Because its 
nonlinearity is very high, so we use the 4th order of Runge-Kutta formula to simulate 
BABS controlled by HNN controller. By the simulation, we can get the following 
figures as the results: 

 
Fig-4.14. The control torques of BABS: reference controller (dash line) and HNN 

controller (solid line) 



 54

 
Fig-4.15. The ball’s positions of BABS: reference controller (dash line) and HNN 

controller (solid line) 

 
Fig-4.16. The ball’s velocities of BABS: reference controller (dash line) and HNN 

controller (solid line) 
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Fig-4.17. The beam’s angles of BABS: reference controller (dash line) and HNN 

controller (solid line)  

 
Fig-4.18. The beam’s angular speeds of BABS: reference controller (dash line) and 

HNN controller (solid line) 
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Fig-4.19. The node 1 voltage 1v  of the HNN circuit 

 
Fig-4.20. The node 2 voltage 2v  of the HNN circuit 
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Fig-4.21. The node 3 voltage 3v  of the HNN circuit 

 
Fig-4.22. The node 4 voltage 4v  of the HNN circuit 
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4.4.3 BABS Controlled by HNN Controller after Trained with 
Different Initial State 
We use the following examples to examine the abilities of HNN controllers to control 
BABS with initial state different from the initial state of training the HNN controller. 
We can let the values of 11w , 12w , 13w , 14w , 21w , 22w , 23w , 24w , 31w , 32w , 33w , 

34w , 41w , 42w , 43w  and 44w  be the same with section 4.4.1 as the equation (4-37): 
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is fixed for the initial state of BABS: the initial position of the ball=0.2 (meter),the 
initial velocity of the ball=0 (meter/sec),the initial angle of the beam=10 (degree), and 
the initial angular speed of the beam of the BABS=0 (degree/sec) in the training phase.  
And then, we will examine the following sets (initial position (meter), initial velocity 
(meter/sec), initial angle (degree), initial angular speed (degree/sec)) of the initial 
state of BABS: (0.1, 0, 5, 0) and (0.4, 0, 20, 0) in the working phase as the following 
figures:  

 
Fig-4.23. The control torques of BABS with initial ball’s position=0.1 meter, initial 
beam’s angle=5 degree: reference controller (dash line) and HNN controller (solid 

line) 
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Fig-4.24. The ball’s positions of BABS with initial ball’s position=0.1 meter, initial 
beam’s angle=5 degree: reference controller (dash line) and HNN controller (solid 

line) 

  
Fig-4.25. The ball’s velocities of BABS with initial ball’s position=0.1 meter, initial 
beam’s angle=5 degree: reference controller (dash line) and HNN controller (solid 

line) 
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Fig-4.26. The beam’s angles of BABS with initial ball’s position=0.1 meter, initial 
beam’s angle=5 degree: reference controller (dash line) and HNN controller (solid 

line) 

 
Fig-4.27. The beam’s angular speeds of BABS with initial ball’s position=0.1 meter, 
initial beam’s angle=5 degree: reference controller (dash line) and HNN controller 

(solid line) 
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Fig-4.28. The node 1 (2) (3) (4) voltage 1v  ( 2v ) ( 3v ) ( 4v ) of the HNN circuit with 

BABS initial ball’s position=0.1 meter, initial beam’s angle=5 degree  

 

Fig-4.29. The control torques of BABS with initial ball’s position=0.4 meter, initial 
beam’s angle=20 degree: reference controller (dash line) and HNN controller (solid 

line) 
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Fig-4.30. The ball’s positions of BABS with initial ball’s position=0.4 meter, initial 

beam’s angle=20 degree: reference controller (dash line) and HNN controller (solid 
line) 

 
Fig-4.31. The ball’s velocities of BABS with initial ball’s position=0.4 meter, initial 
beam’s angle=20 degree: reference controller (dash line) and HNN controller (solid 

line) 
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Fig-4.32. The beam’s angles of BABS with initial ball’s position=0.4 meter, initial 

beam’s angle=20 degree: reference controller (dash line) and HNN controller (solid 
line) 

 
Fig-4.33. The beam’s angular speeds of BABS with initial ball’s position=0.4meter, 
initial beam’s angle=20 degree: reference controller (dash line) and HNN controller 

(solid line)  
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Fig-4.34. The node 1 (2) (3) (4) voltage 1v  ( 2v ) ( 3v ) ( 4v ) of the HNN circuit with 

BABS initial ball’s position=0.4 meter, initial beam’s angle=20 degree 
 

4.4.4 BABS Controlled by HNN Controller Trained by Nonlinear 
Reference Controller with the Same Initial State 
To examine the ability of HNN controller to mimic the nonlinear reference controller, 
we try to find the nonlinear reference controller of BABS. First, we use the 
functions ballf  and beamf similar to 3.4.4 as the following equations. 
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Equations (4-38) and (4-39) represent the necessary control torques of ball and beam, 
respectively. So the total necessary control torque is the sum of (4-38) and (4-39). 
 

beamball fff +=                          (4-40) 
 
We use the equation (4-40) (with equations (4-38) and (4-39)) as the nonlinear 
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reference controller of BABS. 
Let the BABS initial position (ball’s position) =0.2 meter, initial velocity (ball’s 
velocity) =0 meter/sec, initial angle (beam’s angle) =10 degree, initial angular speed 
(beam’s angular speed) =0 degree/sec, and the simulation time=15sec. We can get the 
following five figures of BABS controlled by the nonlinear reference controller: 

 
Fig-4.35. The control torque of the nonlinear reference controller 
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Fig-4.36. The ball’s position of BABS controlled by the nonlinear reference 
controller 

 
Fig-4.37. The ball’s velocity of BABS controlled by the nonlinear reference 

controller 
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Fig-4.38. The beam’s angle of BABS controlled by the nonlinear reference 
controller 

 
Fig-4.39. The beam’s angular speed of BABS controlled by the nonlinear reference 

controller 
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We use the same parameters of HNN controller: the resistor=1(ohm), the 
capacitor=0.01(Farr), the amplification constant=-30, the learning rate=0.001, and 200 
epochs for training, and we show the training process as the following two figures: 

 
Fig-4.40. The total error )(epoJt  and the last epoch error )020,(kJ  
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Fig-4.41. The last epoch training iteration process of 

11w ( 12w , 13w , 14w ), 12w ( 22w , 32w , 42w ), 13w ( 23w , 33w , 43w ) and 14w ( 24w , 34w , 44w ) 
 

So, we find the values of 11w , 12w , 13w , 14w , 21w , 22w , 23w , 24w , 31w , 32w , 

33w , 34w , 41w , 42w , 43w  and 44w , and we write it down as following equation in 
the matrix form: 
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 (4-41) 

Then, we show the following six figures as simulation result of BABS controlled by 
trained HNN controller: 
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Fig-4.42. The control torques of BABS: the nonlinear reference controller (dash line) 

and HNN controller (solid line) 

 
Fig-4.43. The ball’s positions of BABS: the nonlinear reference controller (dash 

line) and HNN controller (solid line) 
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Fig-4.44. The ball’s velocities of BABS: the nonlinear reference controller (dash 

line) and HNN controller (solid line) 

 
Fig-4.45. The beam’s angles of BABS: the nonlinear reference controller (dash line) 

and HNN controller (solid line) 
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Fig-4.46. The beam’s angular speeds of BABS: the nonlinear reference controller 
(dash line) and HNN controller (solid line) 

 
Fig-4.47. The node 1 (2) (3) (4) voltage 1v  ( 2v ) ( 3v ) ( 4v ) of the HNN circuit 



 73

4.4.5 BABS Controlled by HNN Controller Trained by Nonlinear 
Reference Controller with Different Initial State 
We use the following examples to examine the abilities of HNN controllers to 
control IPS with initial state different from the initial state of training the HNN 
controller by the nonlinear reference controller. We let the values of 11w , 12w , 13w , 

14w , 21w , 22w , 23w , 24w , 31w , 32w , 33w , 34w , 41w , 42w , 43w  and 44w  be the 
same with section 4.4.3 as the equation (4-41): 
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is fixed for the initial state of BABS: the initial position of the ball=0.2 (meter),the 
initial velocity of the ball=0 (meter/sec),the initial angle of the beam=10 (degree), 
and the initial angular speed of the beam of the BABS=0 (degree/sec) in the training 
phase. And then, we will examine the following sets (initial position (meter), initial 
velocity (meter/sec), initial angle (degree), initial angular speed (degree/sec)) of the 
initial state of BABS: (0.1, 0, 5, 0) and (0.4, 0, 20, 0) in the working phase as the 
following figures: 
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Fig-4.48. The control torques of BABS with initial ball’s position=0.1 meter, initial 

beam’s angle=5 degree: the nonlinear reference controller (dash line) and HNN 
controller (solid line) 

 
Fig-4.49. The ball’s positions of BABS with initial ball’s position=0.1 meter, initial 

beam’s angle=5 degree: the nonlinear reference controller (dash line) and HNN 
controller (solid line) 
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Fig-4.50. The ball’s velocities of BABS with initial ball’s position=0.1 meter, initial 

beam’s angle=5 degree: the nonlinear reference controller (dash line) and HNN 
controller (solid line) 

 
Fig-4.51. The beam’s angles of BABS with initial ball’s position=0.1 meter, initial 
beam’s angle=5 degree: the nonlinear reference controller (dash line) and HNN 

controller (solid line) 
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Fig-4.52. The beam’s angular speeds of BABS with initial ball’s position=0.1 meter, 

initial beam’s angle=5 degree: the nonlinear reference controller (dash line) and 
HNN controller (solid line) 

 

Fig-4.53. The node 1 (2) (3) (4) voltage 1v  ( 2v ) ( 3v ) ( 4v ) of the HNN circuit 
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Fig-4.54. The control torques of BABS with initial ball’s position=0.4 meter, initial 

beam’s angle=20 degree: the nonlinear reference controller (dash line) and HNN 
controller (solid line) 

 
Fig-4.55. The ball’s positions of BABS with initial ball’s position=0.4 meter, initial 

beam’s angle=20 degree: the nonlinear reference controller (dash line) and HNN 
controller (solid line) 
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Fig-4.56. The ball’s velocities of BABS with initial ball’s position=0.4 meter, initial 

beam’s angle=20 degree: the nonlinear reference controller (dash line) and HNN 
controller (solid line) 

 
Fig-4.57. The beam’s angles of BABS with initial ball’s position=0.4 meter, initial 
beam’s angle=20 degree: the nonlinear reference controller (dash line) and HNN 

controller (solid line) 
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Fig-4.58. The beam’s angular speeds of BABS with initial ball’s position=0.4 meter, 

initial beam’s angle=20 degree: the nonlinear reference controller (dash line) and 
HNN controller (solid line) 

 
Fig-4.59. The node 1 (2) (3) (4) voltage 1v  ( 2v ) ( 3v ) ( 4v ) of the HNN circuit 
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Chapter 5 

Discussion and Conclusion 

5.1 Discussion of Parameters Setting  
The resistance R  of the HNN controller by the way that larger resistance causes 
larger node voltage v . Because a large voltage is not preferred, therefore a small R  
should be chosen. The time constant τ  can be express as 
 

RC=τ  ,                          (5-1) 
which is the product of the resistance R  and the capacitanceC . τ  cannot be 

chosen too large because it leads to slow response. The amplification constant ampc  

is also an important parameter of the HNN controller. According to the voltage 
amplifier )tanh()( •=•ϕ , the output of a neuron of the HNN is limited between the 
values -1 to +1, we express as the following inequality. 

1)tanh(1 ≤=≤− jj vx                     (5-2) 

From the inequality (5-2), we can show that the output control signal of HNN 
controller is limited as 

amp

n

j
jampamp ncxcunc ≤=≤− ∑

=

∧

1
    ,           (5-3) 

where n  is the number of neurons in the HNN. That is the absolute value of the 
output control signal of the HNN controller is limited by the product of the 

amplification constant ampc  and the number of neurons n .  

The learning rate η  must be a positive as we discussed in the section 2.3. The 
large η  is not preferred because that will contradict (2-14) [7]. However η  cannot 
be chosen too small or the weightings convergence will be too slow, so we use a 
proper value of the learning rate η  to let the simulation process well. 
The simulation time is chosen long enough so that the regulation state of the 

controlled system can be near the desired point.  
The time interval is set to be a small enough value to get the required accuracy of 

the differential equations of the system controlled by the HNN controller. 
In many cases one epoch is enough to achieve favorable training performance. 

More training epoch is unnecessary unless one epoch training cannot achieve the 
preferred performance.  
If we do not have prior knowledge of the proper weighting vector, we can just 
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simple initialize W  from zero vector. Notice that the values of the elements of W  
are the same in the same column. This can be briefly explained as following. We 
note the equations (3-22) and (3-24), they are very similar. We write them down in 
the simple form to show the difference. For (3-22), the equation 
is })][tanh(1{...)()1( 2

11111 vkwkw −×−=+ , while for (3-24), the equation 
is })][tanh(1{...)()1( 2

22121 vkwkw −×−=+ . And we note the equations (3-10) and 
(3-11), we find if 2111 ww =  and 2212 ww = , then we can get 21 ii =  by equation 
(3-11), and furthermore, we can get 21 vv =  by equation (3-10). So it is interesting 
that because we set the initial values of all the weighting factors zeros, so 

0)0()0( 2111 == ww and 0)0()0( 2212 == ww , so )0()0( 21 ii =  and )0()0( 21 vv = . 
According to the fact )0()0( 2111 ww =  and )0()0( 21 vv = , we can find 

)1()1( 2111 ww =  by the equations (3-22) and (3-24), and )1()1( 2212 ww =  by the 
equations (3-23) and (3-25). Thus, we have )1()1( 21 ii =  and )1()1( 21 vv = , and so on. 
At last, the important facts are obtained as following: 
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It should keep in mind that the equation (5-4) is satisfied on the premise of the 
following:   
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5.2 Conclusion 
After training the weighting factors of HNN controller, we find that the output 
(control signal) of HNN controller is approximated to the output (control signal) of 
the well-designed controller and the outputs of the plant controlled by the HNN 
controller are approximated to the outputs of the plant controlled by the 
well-designed controller. So, the trained HNN controller can be a good model of the 
well-designed controller with the controlled plant with the same initial state with 
HNN trained. Furthermore, although the weighting factors of HNN controller are 
trained by well-designed controller with the plant with initial state different from the 
initial state of the plant controlled by the HNN controller, the HNN controller can 
still control the plant well, and the output (control signal) of HNN controller is 
approximated to the output (control signal) of the well-designed controller and the 
outputs of the plant controlled by the HNN controller are still approximated to the 
outputs of the plant controlled by the well-designed controller. So, the trained HNN 
controller not only can “memorize” the output (control signal) of the well-designed 
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controller with the controlled plant in the same initial state, but it can also “simulate” 
the output (control signal) of the well-designed controller with the controlled plant in 
the different initial state. So, the HNN controller has ability more than just to 
memorize the training data, and this property of HNN controller is important for 
applications.        
Faults due to the aging of a controller for a control system are very common; once 
they happen, the controller is quite difficult to be repaired for some reasons. We 
proposed an HNN controller for a control system to solve this problem. After 
discussing the two examples of the nonlinear systems controlled by the HNN 
controllers, we understand that the HNN has the potential to be a good controller. The 
key point of the HNN controller is the parameters, especially the weighting factors 
between each two neurons of one HNN. To design an HNN controller for some 
specified nonlinear system is still a challenge. In this thesis, we trained the weighting 
factors of the HNN controller to mimic the existing controller. Then, the trained HNN 
controller is used to replace the existing controller. Can we control the system by an 
HNN controller trained online without a reference controller? We will focus our 
research interests on exploring the potential of this interesting question.          
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