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Statistical Metrology of Metal Nanocrystal Memories
With 3-D Finite-Element Analysis
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Abstract—We study the parametrical yield of memory windows
for the metal nanocrystal (NC) Flash memories with consideration
of the 3-D electrostatics and channel percolation effects. Monte
Carlo parametrical variation that accounts for the number and
size fluctuations in NCs as well as channel length is used to
determine the threshold voltage distribution and bit error rate
for gate length scaling to 20 nm. Devices with nanowire-based
channels are compared with planar devices having the same gate
stack structure. Scalability prediction by 1-D analysis is found to
be very different from 3-D modeling due to underestimation of
effective NC coverage and failure to consider the 3-D nature of
the channel percolation effect.

Index Terms—Nanocrystal (NC), nonvolatile memories, pro-
gramming window distribution, 3-D electrostatics.

I. INTRODUCTION

UE to the scaling limit of gate length and tunneling

oxide thickness, it is difficult for conventional floating
gate memories to achieve required retention and interference
characteristics while maintaining low-voltage program/erase
(P/E) operations [1]. To overcome this inherent design limita-
tion, nanocrystal (NC) [2] memory is considered as one of the
promising candidates that enable reduced intercell floating gate
coupling, tolerance to local dielectric defect, low P/E voltage,
fast P/E speed, and compatibility with current CMOS technol-
ogy [3]-[7]. In particular, metal NC memories can potentially
push further scaling due to large density of states, inherent
field enhancement, selectable work function, and tunneling
asymmetry between P/E and retention [5], [7]. Furthermore,
Coulomb blockade energy can be reduced by replacing the
insulating layer in the gate stack by a high-« dielectric, which
also leads to an increase in channel-NC coupling due to the
field enhancement effect [6], [8].
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Fluctuation in memory window due to NC size/density/
registry variations and gate length is one of the main concerns
for scalability [9], [10]. The goal of this paper is to illustrate the
importance of the 3-D electrostatics and channel percolation
effects that are not considered in previous Monte Carlo (MC)
statistical metrology of NC memories [9]-[15]. The new model
can be used for more accurate scaling prediction. We perform
the MC parametrical analysis, with inner loops by the finite-
element (FE) solver in COMSOL to predict the threshold
voltage (V41 ) variations and corresponding bit error rate (BER).
Furthermore, nanowire (NW)-based memories with sub-10-nm
Si-channel widths have been proposed to obtain large Viy
shifts and longer charge retention times by the bottleneck and
quantum confinement effects [16]. Metal NC memory with NW
[17] channel is studied in comparison with the planar device
for AV4y, variation analysis. Simulation results indicate that the
high percentage of erratic bits will still be one of the main
concerns for NW devices with sub-30-nm gate lengths due to
NC number density variation. Previously, it has been shown that
preferential self-alignment (SA) of NC to the carbon nanotube
(CNT) can be achieved [18]. Preferential growth of NC near
the channel can offer an effective solution to NC density
variation.

II. DEVICE MODELING AND ASSUMPTIONS

Schematics and a sample mesh of the simulated planar and
NW devices [17] are shown in Figs. 1 and 2, respectively.
Our model assumes a p-type silicon substrate with 107 cm—3
doping. For planar devices, a halo-doping profile is added to
control short-channel effects (SCEs), and the channel width is
fixed at 20 nm. Spherical NCs are embedded in a gate stack with
18 nm HfO, control oxide and a heterogeneous tunnel dielectric
of 2 nm HfO, and 1 nm SiO; [8]. The NC diameter is 6.1 +
1.2 nm, and the average number density is 5.0 x 10! cm~2
with percentage fluctuations of 51% and 34% for 20 and 30 nm
channel lengths, respectively, following the experimental distri-
bution from unconstrained self assembly in a gate-first process
[19]. Gaussian variations of NC size and channel length, Pois-
son variations of NC number density, and uniform variation on
NC registry have been included in the MC simulation, with
statistics extracted from the experiments [17]-[20]. The NW
device is 3 nm in diameter [17] and has the same gate stack
structure, doping level (but without halo), and source/drain
structures as the planar device for direct comparison. All sim-
ulation cases assume an electrostatic environment, where the
NCs either remain charged with five electrons or uncharged,
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Schematic of metal NC Flash memory with (a) a planar channel, (b) an NW channel, and (c) an NW channel with self-aligned NCs. For the SA case,

each NC is centered at locations on top of the channel region. The corresponding cross-sectional views are shown in (d), (e), and (f), respectively. Simulation

parameters of the structure: NC diameter dpc: 6.1 nm; NW diameter: 3 nm; average NC density: 5.0 x 101! cm

SiO2; and control oxide: 18 nm HfO2.
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Fig. 2. Sample mesh of the planar device with 20 nm gate length in the
COMSOL FE solver.

for calculating the control gate characteristics, unless stated
otherwise. Our FE model consists of 3-D Poisson and modified
drift-diffusion formalisms, implemented by COMSOL [21]. It
does not include detailed quantum transport effects that can
enhance the accuracy for sub-90-nm above-V;y, currents [22].
We also ignore quantum confinement and band-splitting effects,
which may be important in NW devices [23], [24]. The classical
transport is used to maintain acceptable computational effi-
ciency in the statistical metrology of 3-D geometrical design,
where total computation can be accomplished in several weeks
on a 64-bit central processing unit 8-GB memory platform.
For AV}, fluctuation prediction, our simulation model should
be acceptable since 3-D electrostatics and channel percolation
below V4, are self-consistently considered. We define BER as

~2; tunneling oxide: 2 nm HfO2 on top of 1 nm

the probability of a programmed bit with an offset in V4, that
falls below the nominal “0” state plus a fixed voltage Viol,
which is determined by the sense amplifier tolerance. Table I
shows the simulated Gaussian fitted mean threshold voltage
shift ©(AVi,) and standard deviation o(AV4y,) for various
device structures.

III. RESULTS AND DISCUSSION

A. Fringing Field Effect and Comparison With
1-D Analytical Model

To have a qualitative understanding on V4, fluctuation to
account for 3-D electrostatics, we can describe the nominal
memory window AV;y, in a semiempirical model as [9], [20]

e-N

AVih =R~ ey
where e is the elemental charge, R is a constant representing
the relative strength of channel-NC coupling, C'is the 3-D NC-
to-control-gate coupling capacitance, and N is the number of
electrons stored in each NC. The nominal memory window
AV;y, as well as V4, fluctuations increases with increasing R
through effective NC coverage over the channel. Clearly, the
charge in an NC perturbs the channel potential on a larger
coverage area than the NC cross-sectional area due to the
fringing effect [20]. As shown in Fig. 3, AV}, estimated by the
3-D MC FE solver is significantly greater than the cases where
the coverage area is assumed to be the NC cross-sectional area
in semi-1-D models. Good agreement can be obtained between
the 3-D model [20] and the MC FE solver for AV;}, versus the
number charges stored in each NC. Due to the discrete nature
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GAUSSIAN-FITTED MEAN THRESHOLD VOLTAGE SHIFT p(AVyy, ), STANDARD DEVIATION o (AV;y ), AND BER WITH V;) = 0.1 V. FC CASES REFER TO
THE CASES WHERE ALL NCs HAVE FIVE ELECTRONS STORED. PC CASES REFER TO THE CASES WHERE ONLY NCs CENTERED ON TOP OF THE
CHANNEL REGION ARE CHARGED. SA CASES REFER TO THE CASES WHERE THE NCs ARE SELF-ALIGNED ON THE CNT
BY SURFACE ENERGY PREFERENCE

Device Channel Gate Length Diameter/ wAVth) | o(AVth) BER
Type (nm) Width (nm) V) V) V=01V
A Planar 20 20 0.50 0.27 3.85x 107
B Planar 30 20 0.47 0.19 1.92x 107
C Nanowire, FC 20 3 0.53 0.28 341x107
D Nanowire, FC 20 7 0.41 0.26 6.65 x 107
E Nanowire, FC 30 3 0.65 0.21 34x 107
F Nanowire, FC 30 7 0.53 0.23 3.15x 107
G | Nanowire, PC 20 3 0.16 0.29 1.87 x 107!
H | Nanowire, PC 20 7 0.17 033 1.64x 10"
1 Nanowire, PC 30 3 0.24 0.26 142x 107!
J Nanowire, PC 30 7 0.34 0.21 7.54x10°
K | Nanowire, SA 20 3 0.32 0.11 227x10°
L | Nanowirc, SA 30 3 0.53 0.10 1.52x 10°
' ' 1 1 7 GATE GATE GATE
1.0F = MCresults . PR —
| — — Ref.[20] - o ] — —
0.8 Ref. [9] I ] —— — I —
E t Planar, 20nm = ’;” 1 § NG NC
ws 0.6 | = ’/’ u - — s e Sa—— e
>0 I g . | W W W)
" A
E 0.4} Lo -
m L] td -
2 L ™ /4 n .
o 02F . (@) (b) (©
| // . | 100 T T T - -
0.0 2z 1 1 N 1 N Il J N S v v V. S 1
0 1 2 3 4 5 5 1
Number of Nanocrystals € 10 1
(a) < ]
¥ T v T v T T T v ! _"g 106 '1'
10F ™ MCResults LI NC 5 NC 5 nm away
nm away 3
| — — Ref. [20] = 4 NC 10 nm away NC 10 nm away 4
0.8 Ref. [9] . Sy 109 . . . L L . . . . L
& " et 03 06 09 12 15 03 06 09 12 15
s - Planar, 30nm . P Gate Voltage (V) Gate Voltage (V)
s 0.6 ol () (e)
K 0.6 [ : /', . .
g » ‘,r" Fig. 4. Cross-sectional view of the 3-D electrostatic potential contours of the
5 04 - : /4" : . T NW devices with (a) no NC, (b) one NC centered on top of the NW, and (c) one
4 - o = 1 NC centered 10 nm away from the NW. Five electrons are stored in each NC.
o 02k ’,/‘ . .- Vi = 2V, and the contour spacing is 90 mV. Also shown are the corresponding
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(b) Fig. 4 shows the potential contours of an NW device with NC
located directly on top and away from the channel, where the
Fig. 3. Threshold voltage shift after programming versus the number of NCs

within each planar device with (a) 20 nm and (b) 30 nm gate lengths. Five
electrons are stored in each NC. Semi-1-D analytical model assumes that the
coverage area is equal to the NC’s cross-sectional area, whereas 3-D model
incorporates the fringing field enhancement effect on channel-NC coupling.
One hundred cases were simulated for each scenario.

of NC array and the spherical shape of NC, AV}, and Vi,
fluctuation prediction must be calculated rigorously considering
the entire 3-D potential profile in the channel.

channel potentials are affected by the NC fringing fields and the
corresponding I-V curves for NW devices with diameters of 3
and 7 nm. We have found minute fluctuation in AV;;, from NC
registry variation in planar or NW devices, which suggests an
enhanced channel-NC coupling dominated by the fringing field
effect. However, the NC registry can affect the charging state
during the P/E operations in the NW device since the tunneling
length, and hence, the program current can be very different.
We consider two asymptotic scenarios: 1) full coverage (FC),
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Fig. 5. MC simulation results showing the AV4y, distribution of the scenarios
where (a) all the NCs within the gate area are charged (FC) or (b) only the
NCs that overlap with the channel region are charged (PC). The NW is 3 nm in
diameter and 30 nm in gate length. Five electrons are stored in each NC. One
hundred cases were simulated for each scenario.

30 — T T v 30— T T T
I MC Simulation I VC Simulation
Analytical, Ref. [9] Analytical, Ref. [9]
—_ — = Gauss Fit ) = = Gauss F
S 20} ® 20} TV W
> Gauss 050 027 > Gauss 047 0.1
F D 012I £ D 0.13] 0.08]
i 3D 0.46) 0.24] o 3D 0.45] 0.16]
© ©
£ L 3
S 10 -g 10
[ o
0
00 04 08 12 16 00 04 08 12 16
Program V,, Shift (V) Program V,, Shift (V)
(a) (b)
100 T T T
o
S 10} 6/ 1
5 -z
£ _ - X~
[} V-
5 1k 2 A 1
vV _“  ——Gauss FittoMC
A —O— 1D Fit Ref. [9]
—4A— 3D Fit Ref. [20]
01 . ) L )
0.05 0.10 0.15 0.20
Viar V)

(©)

Fig. 6. AV, distribution probability density curves for planar devices with
(a) 20 nm and (b) 30 nm gate lengths. Gaussian-fitted and semi-1-D analytical
models are also shown. The inset is a table comparing u(AViy) and o(AVyy,)
estimated by semi-1-D, full 3-D electrostatic, and Gaussian-fitted models. Plot
(c) compares the corresponding BERs calculated from the three models versus
Viol- The solid lines represent the 20-nm device, and the dashed lines represent
the 30-nm device.

where every NC in the gate stack is uniformly charged, and
2) partial coverage (PC), where only NCs overlapping the NW
channel are charged. Fig. 5 compares AV, distribution plots
for the PC and FC configurations. The design combination of
planar and NW devices is summarized in Table I. Due to the
fringing fields coming from NCs that do not overlap with the
NW, devices A and D show larger AV, and slightly tighter
distribution than devices G and 1.

In either the 1-D [9] or 3-D [20] analytical models, the mean
threshold voltage shift pu(AViy) and the standard deviation
o (AV4y,) can be approximated by

N —
u(AVin) =R - % N 2
2 2
o(AVin) =pAViy - UjNZH-L (o(R)” 3)

Ngo Na R
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A4

30 nm z

Fig. 7. Contour plot of electron density for a 30 X 30 nm planar device.
Each NC is charged with one electron. Electrons in the channel are screened
by the NC, and the dominant percolation path of the channel leakage current is
highlighted.

where Nyq is the average number of NCs, and o(R) is the
standard deviation of substrate-NC coupling factor. Fig. 6
compares u(AVin), u(AVyy), and BER as a function of gate
length for the analytical models by (2) and (3) [9], [20] and
Gaussian-fitted MC simulation. It has been shown that R is
a relative weak function of NC diameter when the channel
coupling is adequate [20]. Since Gaussian-fitted parameters
agree well with the 3-D analytical model, the variation in AV;y,
is mainly determined by density fluctuation according to (3).
However, previous semi-1-D models [9]-[15] excluding 3-D
fringing and channel percolation underestimated NC coverage,
resulting in severe parametric distribution distortion.

B. Impact of Gate Length and NW Diameter

The channel percolation effect of the planar structure is
illustrated in Fig. 7. Typically, the percolation effect is enhanced
with increasing channel W/L ratio, resulting in more severe
AVyy, fluctuations [11]. Fig. 8 shows the percentage increase
in BER for various device structures by scaling down the
effective gate length from 30 to 20 nm. For gate length scaling
with a fixed channel width, the number of percolation paths
available increases, and a higher BER is observed. As the
diameter of NCs becomes larger than the diameter of NW
devices, channel-NC coupling is enhanced, and the number of
percolation path vanishes in comparison with planar devices.
Devices with a larger NW diameter (B and E) have a BER
larger than those of the smaller ones (A and D) in FC charging
as shown in Table I, dominated by the fringing field effect. In
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Fig. 9. V4, roll-off behavior with statistical error bars for the 3-nm-diameter
NW and planar devices. Each NC is charged with five electrons. NCs are
orthogonally aligned with a fixed inter-NC distance of 10 nm and an NC
diameter of 5 nm.

contrast, devices I and J with PC charging show a decreasing
BER with increasing NW diameter due to AV}, sensitivity to
NC density variation when NCs away from the channel are not
charged and do not exert additional fringing fields.

C. Templated Assembly of NC

NC placement can be regulated by polymer [25] or protein
[26] lattice, and hence, the NC size and position variation
becomes negligible. However, the number density and vertical
alignment with NW devices will still contribute to AV}, varia-
tions. Fig. 9 shows the V;}, roll-off behavior and statistical error
bars for an array of NCs orthogonally aligned with a fixed inter-
NC distance of 10 nm and an NC diameter of 5 nm. NW devices
have superior control on the SCE, even in sub-30-nm devices
and larger AV;y, for the same number of electrons stored in each
NC, but we observe NW devices having similar AV}, fluctua-
tions as the planar devices. Originally, the bottleneck effect [16]
with decreasing channel width in the NW device is expected
to eliminate the percolation leakage effect and increase mean
memory window as well as standard deviation. However, if we
consider 3-D fringing, AV;y, fluctuation should be less severe in
the NW device in comparison with previous semi-1-D models
[9], [16]. As illustrated in Fig. 10, planar and 3-nm NW devices
can have similar AV}, fluctuation. Although planar devices
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Fig. 10. Gaussian-fitted curves to the AV4y, distribution estimated by the MC
method for the (solid lines) planar and (dash lines) 3-nm NW devices. Gate
length is 20 nm, and all NCs within the gate area have five electrons stored.
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Fig. 11. MC simulation results of (a) planar (100 cases) and (b) 3-nm-
diameter self-aligned NW devices (25 cases). Gate length is set at 30 nm. Inset
shows an SEM image of self-aligned NC to carbon nanotubes, where NCs are
concentrated near the channel area.

are less sensitive to NC number density variation, it lacks the
channel-NC coupling enhancement effect in the NW devices.

D. SA of NC to NW or Nanotube Channels

Previous work has demonstrated that CNT devices can
achieve SA of NC to the CNT [18] by surface energy prefer-
ence. Fig. 11 compares planar to self-aligned NW devices with
an average number density of 10'2 cm~2 near the channel area.
With the NC diameter larger than that of the NW, NC—channel
coupling is dominant due to the fringing field enhancement.
Number density variation on AV}, becomes less severe with
increased density near the channel surface area. Thus, we
observe higher u(AVyy) and smaller o (AV4y, ), which suggests
that self-aligned NW devices can be the device candidate to
achieve a small BER.

IV. CONCLUSION

We have demonstrated the importance of including 3-D
electrostatics and channel percolation in metal NC memory
statistical metrology and examined BER in various channel
structures for scaling prediction. Contrary to previous semi-1-D
models, AV}, fluctuation is mainly due to number density
variation and is less sensitive to NC diameter variation within
the range of 6.1 & 1.2 nm. In addition, the field enhancement
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effect from NCs away from the channel has noticeable effects
on devices with small width/length ratios. NW devices benefit
from the field enhancement and the bottleneck effect to achieve
a higher threshold voltage shift, but with diminishing return as
the gate area is scaled down even with templated NC placement.
SA of NC to NW shows strong promise in both increasing
memory windows and controlling AV;y, fluctuation.
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