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EEG-Based Drowsiness Estimation Using Independent 
Component Analysis in Virtual-Reality 

Dynamic Driving Simulator 
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National Chiao Tung University 

ABSTRACT 
 

Preventing accidents caused by drowsiness has become a major focus of active safety 

driving in recent years. It requires an optimal estimation system to online continuously detect 

drivers’ cognitive state related to abilities in perception, recognition and vehicle control. The 

propose of this thesis is to develop an adaptive drowsiness estimation system based on 

electroencephalogram (EEG) by combining with independent component analysis (ICA), 

time-frequency spectral analysis, correlation analysis and fuzzy neural network model to 

estimate a driver’s cognitive state in Virtual-Reality (VR) dynamic driving simulator. 

Moreover, the VR-based motion platform with EEG measured system is the innovation of 

brain and cognitive engineering researches. 

    Firstly, there is good evidence to show that the necessary of VR-based motion platform 

for brain research in driving simulation. This is an important fact to stress that the kinesthetic 

stimuli obviously influence the cognitive states and the phenomenon can be indicated by the 

EEG signals. Secondly, a single-trial event-related potential (ERP) is applied to recognize 

different brain potentials by the five degrees of drowsiness in driving. And we demonstrate a 

close relationship between the fluctuations in driving performance and the EEG signal log 

bandpower spectrum. Our Experimental results show that it is feasible to accurately estimate 

the driving performance. Then we observe that the brain source related to drowsiness is on 

cerebral cortex. Finally, the spiked dry electrodes and the corresponding movement artifact 

removal technology were designed to replace the regular wet electrode for the purpose of 

applications in the realistic driving or working environments.  

 

Keyword : Drowsiness, Electroencephalogram, Virtual Reality, Dynamic Platform, Cognitive 

State, Event-Related Potential, Kinesthetic Stimulus, Independent Component Analysis, Dry 

Electrode.  
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中文摘要 
 摘  要  

 
 

近年來，預防瞌睡所導致的交通意外，已經成為交通安全研究的重要課題，我們需

要一個最理想的估測系統，可以即時連續的偵測駕駛員的精神認知狀態、知覺以及控制

車輛的能力。本論文的目的在發展一套有效的駕駛精神認知狀態估測系統，利用腦電波

訊號結合頻譜分析、獨立成分分析演算法、相關係數分析以及類神經網路模型，結合虛

擬實境動態模擬駕駛系統，開發駕駛員的瞌睡偵測技術；此外在虛擬實境的環境中，結

合腦波量測系統與動感平台，進行神經認知系統研究，在腦科學與認知工程領域上都是

一項創新。 

首先我們證明利用虛擬實境結合動感平台，以進行實用之認知工程研究是必要的，

動態刺激會明顯的影響腦波訊號認知狀態。我們亦利用單一試驗的事件相關腦電位分

析，去識別開車時不同瞌睡程度的腦電位變化，並且證明人類腦波特定的頻帶活動與開

車行為表現之間的關係非常密切，並經由實驗結果顯示，利用腦波訊號分析以估測駕駛

員行為表現是可行的。我們亦研究在大腦皮層上與發生瞌睡相關的區域，最後為了實際

應用的可行性，我們利用乾式電極結合獨特之雜訊消除技術取代傳統電極，以期將本論

文所開發的技術，未來應用於實際駕駛與工作環境中。 

 

關鍵字：瞌睡偵測，腦電波，虛擬實境，動態平台，認知狀態，事件相關電位，動覺刺

激，獨立成分分析，乾式電極。 
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Ⅰ.Introduction 

    During the past few years, driving safely has received extensive attention from the 

publics due to the growing number of traffic accidents. Drivers’ fatigue has been a causal 

factor in many accidents because the marked decline in the drivers’ abilities of perception, 

recognition and vehicle control abilities while sleepy. In the United States, according to the 

National Highway Traffic Safety Administration’s (NHTSA) conservative estimation, 

100,000 police-reported crashes are direct results of driver’s fatigue in each year [1], which 

results in about 1,550 deaths, 71,000 injuries and $12.5 billion in monetary losses. The 

National Science Foundation (NSF) also reported that 51% of adult drivers felt drowsy while 

driving vehicles and 17% actually fall asleep in 2002 [2]. Although many governments and 

vehicle manufacturers try to make policies, including strategies to address rates of speed, 

alcohol consumption, promotion of using helmets and seat belts, and enhancements of vehicle 

structures, etc [3-4], to prevent accidents, it is difficult to avoid disasters resulted from 

drivers’ loss of alertness and lack of attentions. 

Driving under drowsiness will cause: (a) longer reaction time, which increases the risk of 

crash, particularly at high speeds; (b) vigilance reduction, including no or delaying response 

to emergency; (c) deficits in information processing, which will reduce accuracy in 

decision-making tasks [5-7]. Many factors, including lack of sleep, long driving hours, use of 

sedating medications, consumption of alcohol and some driving patterns such as driving at 

midnight, early morning, or mid-afternoon hours, will cause drowsiness or fatigue in driving. 

In addition, the nature of the task, such as driving in a monotonous environment, may also 

cause fatigue. The improvement of vehicles has made drivers more and more effortless to 

operate their vehicles on the road. An examination of the situations when drowsiness occurred 

shows that most of the accidents occur on freeways [8]. Hence, accurate and non-intrusive 
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real-time monitoring of driver's drowsiness would be highly desirable, particularly if this 

measure could be further used to predict changes in driver's performance capacity. 

The purpose of this thesis is to develop an adaptive drowsiness estimation system based 

on electroencephalogram by using independent component analysis. In the following session, 

we first survey current researches of drowsiness estimation. Then we emphasize the 

importance of the Virtual-Reality-based dynamic motion platform to brain research in driving 

experiments. Finally, the organization of this thesis is summarized in the last section. 

 

1.1  Current Researches of Drowsiness Estimation 

Table 1-1 summarizes a number of methods that have been proposed to detect 

drowsiness [8]. For the sensing approaches of human physiological phenomena, these 

methods can be categorized into two main fields. For drowsiness estimation, these methods 

can be further classified in two categories, non-contact and direct-contact. Direct-contact 

methods require sensors attached to the driver’s body. Non-contact methods use optical 

sensors or video cameras to detect vigilance changes and achieve a satisfactory recognition 

rate. However, these parameters vary in different environmental situations and driving 

conditions. It is necessary to devise different detection logic for different types of vehicles. 
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Table 1-1  
Techniques for Detecting Drowsiness 

Detection Techniques Description 
Detection 

Accuracy 
Practicality Extendibility

Physiological 

Signals 

Detection by Changes in Brain Waves, Blinking, 

Heart Rate, Pulse Rate, Skin Electric Potential, 

etc. 

◎ ╳ △ Sensing of 

Human 

Physiological 

Phenomena Physical 

Reactions 

Detection by Changes in Inclination Driver’s 

Head, Sagging posture, Frequency at Which Eyes 

Close, Gripping force on Steering Wheel, etc. 

◎ ○ ╳ 

Sensing of Driving Operation 
Detection by Changes in Driving Operations 

(Steering, Accelerator, Braking, Shift Lever, etc.)
○ ◎ ╳ 

Sensing of Vehicle Behavior 
Detection by Changes in Driving Behavior (Speed, 

Lateral G, Yaw Rate, Lateral Position, etc.) 
○ ◎ ╳ 

Response of Driver Detection by Periodic Request for Response △ ╳ ◎ 

Traveling Conditions 
Detection by Measurement of Traveling Time and 

Conditions (Daytime or Nighttime, Speed, etc.) 
╳ ○ ◎ 

◎ : Very Good  ○ : Good  △ : Average  ╳ : Poor

Reference: Hiroshi Ueno and Masayuki Kaneda and Masataka Tsukino (1994) [8] 

 

1.1.1 Detecting Physical Changes 

The physical change during approaches detect of eye-closure over time, eye tracking as 

quantization of drowsiness level, driver’s head movements, and steering wheel angle [8]. In 

Hamouda’s study, all available information was collected by the police and recorded in the 

accident report. It showed that the presence of driver fatigue relating drowsiness is an 

important cause of truck accidents. This study also proposed to classify truck accident relating 

fatigue and non-fatigue by neural network model [9]. Richard Grace, a researcher at the 

Carnegie Mellon Driving Research Center, developed a driver monitoring system [11]. The 
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vehicle performance and physiological data were measured when drivers were driving trucks. 

This research proposed two drowsiness detection methods, including a video-based system 

that measures drowsiness associated with slow eye closure and the other based on vehicle 

performance data. The video-based system measured eye closure to obtain the percentage of 

eye-closure over time (PERCLOS) for detecting driver drowsiness in real time under 

nighttime driving conditions. A video-based system (CCD), the PERCLOS Camera, 

successfully measured eye closure and detect drowsiness in heavy vehicle truck operators [12]. 

Perez developed a non-invasive interface that tracks eye positions using digital image 

processing techniques. This approach detected eyes positions using image processing 

algorithms and a non-invasive interface and labeled eye tracking into five stages as a 

quantization index of driver’s drowsiness. Only gray-level images were processed in this 

research: 102 images from the Purdue University’s database and 897 images from a video 

sequence were pre-processed using face detection algorithm and the results of correct 

detection rates were very high. [13].  

Pilutti proposed an identification approach to assess driver’s state in lane-keeping tasks 

[14]. This approach used a driver model to simulate a real highway driving situation, 

including the perfectly smooth, asphalt, and concrete road surface. They obtained lateral 

positions of vehicles to assess drivers’ performance, using driver steering wheel as the input 

of the driver model, and extracted the parameters from the chosen candidate model (ARX 

model). The model parameters are estimated for driving task and the results are good for 

model fit with the ARX model to represent the relationship between vehicle lateral position 

and the driver steering wheel angular position for detecting driving patterns, assessing driver 

performance, and improving vehicle active safety [14]. Popieul proposed a set of drowsiness 

indicators using evolution of driver’s head movements for monitoring drivers’ drowsiness 

efficiently. They considered variables related to the head position and the driving performance. 
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The approach developed a driving simulator with basic highway section such as straight line, 

right line, and left line. The driving performance (steering wheel angle) and physiological 

signals (driver’s head movements) of the subjects participated in a long-term simulated 

highway trip were measured. [15].  

Ji et al. predicted driver’s fatigue by a real-time noninvasive monitoring system. They 

remotely acquired video images of the driver by using charge-coupled-device (CCD) cameras 

which are equipped with active infrared illuminators. Ji’s research team used the Support 

Vector Machine (SVM) to catch eyes in the facial images and the Kalman filter to track eyes. 

The approach indicated that the fatigue relating to eyelids’ movement of a person can be used 

as driver’s drowsiness index. They quantized the fatigue of the eyelids’ movement with two 

methods percentage of eye-closure over time (PERCLOS) and the average of eye-closure 

speed (AECS). They used the Bayesian network (BN) to model fatigue index, extract the level 

of alertness of a person, infer the driver’s fatigue level, and systematically display the fatigue 

level on fatigue evidence window in real-time [16]. 

 

1.1.2 Measuring Physiological Changes 

The other field focused on measuring drivers’ physiological changes such as the heart 

rate variability (HRV), the galvanic skin response (GSR), and especially the 

electroencephalogram (EEG), as a means of detecting the human cognitive states [17-21]. 

Studies show that the human EEG generated by synchronous post-synaptic currents in large 

populations of neurons in the cortex can reflect brain activities. It has been known that 

abundant information in EEG recording can be related to drowsiness, arousal, sleep, and 

attention [22]. Previous psychophysiological studies show that typical sleep rhythm regulated 
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by the circadian process can be divided into non-rapid-eye-movement (NREM) sleep and 

rapid-eye-movement (REM) sleep [23-24]. NREM sleep is further subdivided into 4 stages. In 

the first part of falling into sleep (micro-sleep at NREM), increasing amplitudes of slow alpha 

waves of the EEG signals are observed with positive correlation at occipital sites (O1 and O2) 

and negative correlation at central sites (C3 or C4) [25-26]. While the approaches based on 

EEG signals have the advantages for making accurate and quantitative judgments of alertness 

levels, relatively little information has been captured in real time until signal processing 

methods and computer power are fast enough to extract the relevant information from the 

EEG. Thus, it is practicable and appealing to know what information about human cognitive 

state and behavior are available through analyzing complex EEG signals. 

Roberts developed a tool to characterize the level of the vigilance of vehicle drivers by 

recording the physiological signals in real-time [19]. This approach builds up a portable 

device for the alertness detection of vehicle drivers by recording the EEG signals, then, 

studying the implementation of a decision algorithm based on Kohonen artificial neural 

networks by the variations of alpha, beta, theta and delta waves of the EEG signals according 

to a data base of 12 files of 24-hour EEG registered in volunteers. They observed a negative 

correlation between the score of vigilance and the percentage of the beta band and a positive 

correlation between the score of vigilance and the percentage of the other EEG (theta, alpha, 

and beta) spectral bands. 

Wilson detected the instance at which a person had lost the level of alertness necessary to 

assure safe operation of a vehicle or display vigilance. They proposed a neural network to 

detect the driver’s alertness state. The input of the neural network system is a feature vector 

composed of the Wavelet transforms representations of EEG signals at different scales, and 

the output of the system is a binary decision to decide the EEG represents either an alert state 

or a drowsy state [21]. In Parikh’s study, the subjects EEG data were recorded while driving a 
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vehicle simulator and the EEG data was analyzed using the four-ordered Wavelet Transform 

as an indicator. The subjects were asked to observe their driving in the same position without 

any movement. In this study, increasing amplitudes of slow alpha waves of the EEG signals 

were observed during the monotony of the long distance driving because of repeating driving, 

viewing of the same track, less tension, or the tendency to drowsiness [25]. 

Some issues remain in practical applications using EEG signals such as the handling of 

artifacts. While driving, subjects move their hands, torso, head, and eyes, which create huge 

muscle movements, eye movements, and blink artifacts. Low pass filtering cannot resolve this 

problem. Another issue is individual difference in EEG dynamics accompanying loss of 

alertness. It is not easy to accurately estimate or predict individual changes in alertness and 

performance [27-31].  

 

1.2 Virtual Reality Dynamic Simulator 

Virtual reality (VR) technology is gradually being recognized as a useful tool for the 

study and assessment of normal and abnormal brain function, as well as for cognitive 

rehabilitation. Virtual Environments (VE) are created by powerful computers that generate 

realistic animated graphics in three dimensions. The computers are configured with peripheral 

devices, such as immersible head-mounted displays (HMDs) that allow complex interactions 

within the VE with a sense of presence. Creating carefully controlled, dynamic, 3D stimulus 

environments combined with physiological and behavioral response recording can be offer 

more assessment options that are not available by traditional neuropsychological methods. 

The VR technique allows subjects to interact directly with a virtual environment rather 

than monotonic auditory and visual stimuli. It is an excellent strategy for brain research on 
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interactive and realistic tasks due to low cost and avoiding risk of operating on the actual 

machines. In recent years, some researchers designed the VR senses to provide the 

appropriate environments for brain activity study. In this study, a VR-based dynamic motion 

platform combined with EEG measured system is an innovation in brain and cognitive 

engineering researches. Without combining with dynamic motion platform, it is unable to 

study the influence of kinesthetic stimulus on cognitive state. Human brain can deal with 

complicated information. An example is the balance between optic scenes and kinesthetic 

perception. If the simulator environments cannot produce visual and kinesthetic stimuli 

simultaneously, the subjects may not correctly response in the real world.  

 

 

The relevant organ system of human body to kinesthetic perception is the vestibular 

system [32]. The vestibular system is a sensory apparatus located bilaterally in the inner ears. 

Its function is to detect the motion of the head and body in space [33]. A vestibular system is 

composed of two functional parts shown as Fig. 1-1: (1) the otolith organs (Fig. 1-1, blue and 

 

Fig. 1-1: The vestibular system and its measurement principles. 

Reference: Andras Kemeny and Francesco Panerai (2003) [32] 
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green colored areas), and (2) the semicircular canals (Fig. 1-1, red, pink and orange areas), 

which are selectively sensitive to linear and angular accelerations respectively. There are three 

semicircular canals filled with a viscous liquid, the endolymph. The pressure on the cupula, a 

specialized structure at the end of each canal, is increased by the liquid when the head moves. 

Pressure stimuli are transformed into nerve discharge, encoding the angular acceleration of 

the head. In the some way, the otolith receptors, composed of a mass of crystals floating in the 

endolymph, encode both linear acceleration and tilt of the head. [34]. Moreover, the otoliths 

signal the rotation of the head relative to gravity, that is, head tilt [35], which the nervous 

system resolves from linear acceleration by means of internal models [36].  

In many types of sensori-motor processes such as the postural control, normal 

functioning of this system is essential. Additionally, vestibular information plays an important 

role in perceptual tasks such as egomotion estimation [37]. Vestibular information was shown 

to disambiguate the interpretation of dynamic visual information experienced simultaneously 

during observer’s movement recently [38]. During the simulation process of driving, the 

absence of vestibular information increases steering reaction times to external movement 

perturbations [39], and also decreases safety margins in the control of lateral acceleration in 

curve driving [40]. In real driving, improper signals from disordered vestibular organs are 

reported to determine inappropriate steering adjustment [41]. Furthermore, the presence of 

vestibular information in driving simulators seems important because it influences the 

perception of illusory self-tilt and illusory self-motion [42]. 
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1.3 Organization of This Thesis 

The purpose of this study is to develop methods of using EEG signals to accurately and 

non-intrusively monitor the continuous fluctuations of driver's global level of drowsiness 

accompanying changes in driver's performance near real-time in a realistic driving task. We 

first construct a Virtual-Reality interactive driving environment consisting of a highway scene 

and a six degree-of-freedom (6-DOF) motion platform. By several simple driving actions such 

as deceleration, acceleration, and deviation, we demonstrate that distinct cognitive state 

responses are discernible between the dynamic platform which is motion and motionless. This 

is a good evidence to show that the dynamic motion platform is required for the study of 

human cognitive state estimation. Secondly, we design a lane-keeping driving experiment to 

indirectly quantify driver’s drowsiness level [43]. It helps to illustrate the changes of drowsy 

event-related-potential (ERP) between different drowsiness states. After we recognize the 

feature of brain activities in drowsiness, we develop a novel adaptive feature selection 

mechanism (AFSM) for EEG spectra. And then we build an individualized fuzzy neural 

network models to assess the EEG dynamics accompanying loss of alertness for each subject.  

Finally we consider the feasibility of the proposed method for practical applications. The 

main issue is to use less EEG channels to perform satisfactory results. The main purpose of 

the experiment is to investigate the cortical sources of drowsiness. The driving performance 

can be estimated according to the analysis of the number of dominated EEG channels and the 

source regions on the scalp. Finally, we try to use spiked dry electrodes to replace the 

standard wet electrodes on the prior experiment. The reason is that driver may be difficult to 

use electrodes cap and electrolytic gel in a realistic driving situation. 

This thesis is organized as follows. Section II describes the details the EEG-based 

drowsiness experimental setup, VR-based dynamic driving environment, EEG data collection, 
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instructions, and spiked dry electrode. In Section III, we design a series of experiments for 

drowsiness estimation for EEG processing. We explore the innovative methods by applying 

ICA, time-frequency spectral analysis, correlation analysis, and fuzzy neural network in 

Section IV. Detailed discussions of our experimental results are given in section V. Finally, 

we conclude our findings in SectionⅥ. 
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Ⅱ. System Architecture 

In this chapter, a VR-based dynamic driving environment is designed and built up for 

interactive driving experiments. It includes four major parts as shown in Fig. 2-1: (1) the 3D 

highway driving scene based on the virtual reality technology, (2) the driving cabin simulator 

mounted on a 6-DOF dynamic Stewart motion platform, (3) the EEG physiological signal 

measurement system with 36-channel EEG/EOG/ECG sensors, and (4) the proposed signal 

processing modules including ICA decomposition, power spectral analysis, and fuzzy neural 

work model. This environment will be presented in details as follows. In addition, the novel 

spiked dry electrodes used in our experiments for EEG acquisition are also being introduced. 

 

Fig. 2-1: The block diagram of the dynamic VR-based driving simulation environment 

with the EEG-based physiological measurement system. 
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2.1  3D Virtual Reality Environment 

In this thesis, a VR-based high-fidelity 3D interactive highway scene and its emulation 

software, WorldToolKit (WTK) library and application programmer’s interface (API) are 

developed [60]. The detailed development diagram of the VR-based scene is shown in Fig. 

2-2. Firstly, we create the models of various objects (such as cars, roads, and trees, etc.) for 

the scene and setup the corresponding positions, attitudes, and other relative parameters. Then 

we develop the dynamic models among these virtual objects and build a complete highway 

simulated scene of full functionality with the aid of the high-level C-based API program.  

 

Fig. 2-2: Flowchart of the VR-based highway scene development. The dynamic models 

and shapes of the 3D objects in the VR scene are created and linked to the WTK library to 

form a complete interactive VR simulated scene. 
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Generally, the VR scenes are projected onto a curved screen or one or more flat screens, 

and some simulators use head-mounted displays (HMDs) to provide stereoscopic viewing. In 

our laboratory, the VR-based four-lane highway scenes are projected into the 360° surround 

screen with seven projectors at different positions as shown in Fig. 2-3. 

 

Fig. 2-3: The VR-based four-lane highway scenes are projected into 360° surround screen 

with seven projectors. Several photos captured from different view angle at a fixed point 

are connected to form this wide figure. 

 

In order to increase stereoscopic perception and avoid the questions caused by using 

HMDs such as uncomfortableness, a little oppression, and the overheated instrument, we use 

two projectors to reach the binocular parallax. The VR scenes for the left and right eyes are 

projected onto the frontal screen with two projectors, respectively. By wearing the light 3D 

glasses, such configuration provides more stereoscopic VR scene than using HMDs. 
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2.2  Stewart Motion Platform 

Since Stewart developed a prototype of a six-degree-of-freedom (6-DOF) parallel 

manipulator in 1953 [61]. It has attracted tremendous attention from researchers for 

high-precision robotic tasks where the requirements of accuracy and sturdiness are more 

essential than those of a large workspace and manoeuvrability [62-64]. A typical Stewart 

platform has a lower base platform and an upper payload platform connected by six extensible 

legs with ball joints at both ends, as shown in Fig. 2-4. The parallel manipulator has 6-DOF 

including coordinates of X, Y, Z for position and roll, pitch, yaw for direction in space. In the 

following, an inverse kinematics analysis of the Stewart platform will first be made. Then a 

fuzzy control algorithm will be designed for the position control. Lastly, a washout filter is 

designed for the angular velocity/linear acceleration control of the Stewart platform [65]. 

 

 

(a) 

 

(b) 

Fig. 2-4: The Stewart platform. (a) The sketch map for the Stewart platform. (b) The 

actual Stewart platform. A driving cabin is mounted on this platform in our laboratory. 
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2.3  EEG Data Acquisition 

34 EEG/EOG channels (using sintered Ag/AgCl electrodes with an unipolar reference at 

right earlobe), 2 ECG channels (bipolar connections between the right clavicle and left rib), 

and one 8-bit digital signal produced form VR scene are simultaneously recorded by the Scan 

NuAmps Express system (Compumedics Ltd., VIC, Australia). All EEG/EOG channels were 

located based on a modified International 10-20 system as shown in Fig. 2-5 [66]. The 10-20 

system is based on the relationship between the location of an electrode and the underlying 

area of cerebral cortex. Before acquiring EEG data, the contact impedance between EEG 

electrodes and skin was calibrated to be less than 5kΩ by injecting NaCl based conductive gel. 

The EEG data were recorded with 16-bit quantization levels at a sampling rate of 500 Hz and 

were down sampled to 250 Hz for the simplicity of data processing. All EEG data were 

preprocessed using a simple low-pass filter with a cut-off frequency at 60 Hz in order to 

remove the line noise and other high-frequency noise. Similarly, a high-pass filter with a 

cut-off frequency at 0.5 Hz was applied to remove baseline drifts for further analysis. 

 
 

(a) (b) 

Fig. 2-5: The International 10-20 system of electrode placement. (a) A lateral view, (b) A 

top view [66]. 
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2.4  Subject 

It is known that the drowsiness often occurs during late nights, early morning and 

mid-afternoon. During these periods, alertness may easily diminish within one-hour 

monotonous working [7-8]. In drowsiness experiments, the subjects participated in the 

highway-driving simulation after lunch in the early afternoon.  

All the subjects were instructed to keep the car at the center of the cruising lane by 

controlling a steering wheel. In all sessions, the subjects drive the car continuously for 60 

minutes and were asked to try their best to stay alert. Participants then returned on different 

days to complete a second 60-minute driving session or more sessions if necessary. In 

opposition to the drowsiness experiments, for the kinaesthetic stimulus experiments, we 

arrange the experiment time in the morning or in the afternoon to keep the best condition for 

subjects. Each subject has to participate in two 30-minute sessions which replace the order of 

dynamic platform is motion and motionless of once experiment. In the same way, participants 

must return on different days to accumulate enough data to analyze. We collected EEG data 

from 16 subjects (ages from 20 to 35 year old) participating in the VR-based driving task. In 

drowsiness estimation experiment, we select participants who had two or more micro-sleeps 

checked by video recordings in both driving sessions for further analysis. Based on these 

criteria, five subjects were selected for further modeling and cross-session testing. 
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2.5  Spiked Dry Electrode 

In recent years, the fabrication and characterization of Micro-Electro-Mechanical 

-Systems (MEMS) based silicon micro probe arrays, namely spiked dry electrodes, were 

explored for EEG measurement applications. A series of practical in-vivo tests had showed 

that the MEMS based spiked dry electrodes have more advantages and conveniences than the 

conventional standard electrodes. Comparing to the standard wet electrodes, the spiked dry 

electrodes can collect stronger signal intensity with a smaller device area, which means the 

design of related amplifier circuit can be simpler and easier. In addition, the spiked dry 

electrodes can be used without electrolytic gel, and they will not cause an uncomfortable 

feeling for the tested subject [67]. 

 

 
(a)                              (b) 

Fig 2-6: Corresponding equivalent circuit illustrated below shows that spiked dry electrodes 

can perform a low-impedance interface better than the standard electrodes. (a) Standard wet 

electrode, (b) Spiked dry electrode. 

Reference: P. Griss, P. Enoksson, H. K.Tolvanen-Laakso, P. Merilainen, S. Ollmar (2001) 
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Biopotential electrode for EEG transforms the bio-signals from skin tissue to the 

amplifier circuit. Therefore, the most important characteristic of a biopotential electrode is 

low electrode-skin interface impedance to propagate signals without attenuation or production 

of noise. As the Fig. 2-6 indicates, the spiked dry electrode is designed to pierce the stratum 

corneum (SC) into the electrically conducting tissue layer of stratum germinativum (SG) in 

order to circumvent the high impedance characteristics of the SC. 

In the Brain Research Center of the University System of Taiwan, the μ System & 

Control Lab led by Prof. J.C. Chiou had already developed the spiked dry electrodes. Three 

types of spiked dry electrodes varied in dimension including 4×4 mm², 3×3 mm² and 2×2 

mm² are successfully fabricated using MEMS technology. Etch spiked dry electrode consists 

of 20×20 micro probes with 35 μm in diameter and 300 μm in height as shown in Fig. 2-7.  

 

Fig. 2-7: Photographing of fabrication result of spiked dry electrodes busing optics 

microscope. 

 

μSystem & Control Lab. 
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Ⅲ.Experimental Design 

    This study investigates the feasibility of using multi-channel EEG data to estimate and 

predict non-invasively the continuous fluctuations in human global level alertness in a 

realistic driving task. For this purpose, our concern is to carefully design a series of 

experiments for the scientific discovery and practical applications. Experimental designs are 

important because correct designs of experiments will distinctly acquire the expectable and 

incontrovertible results. Therefore, this chapter describes the design of each experiment in 

details and the flowchart is shown in Fig. 3-1. 

 

Fig. 3-1: The flowchart of designs and goals of all experiments. 
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3.1  The Influence of Kinesthetic Stimulus on Cognitive State 

    This topic intends to investigate the influence of kinesthetic stimulus on cognitive state 

and the purpose here is to justify the necessity of using VR-based motion platform. Through 

the movements of 6-DOF motion platform, this configuration provides drivers dynamic 

feeling with such as deceleration, acceleration, and deviation. We can investigate the 

cognitive states of the same driving actions with or without platform motion. For this 

fundamental research, we must simplify our concerned topic and reduce the other variations 

between the experiment and control. We develop a VR-based highway environment with a 

monotonic scene as shown in Fig. 3-2, because a complicated scene may bring unexpected 

visual stimulus. We keep the driving speed of simulation at 100 km/hr in order to avoid the 

stepping, that will cause large muscle activity on the throttle or brake. Similarly, the driving 

speed of simulation will automatically increase or decrease with the movements of motion 

platform if the traffic light is displayed on the screen. 

Fig. 3-2: The view of the driving cabin forward at rear in VR-based highway scene. 
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In this research, each subject participated in two 30-minute sessions in one single day of 

experiment until enough EEG data for the ERP analysis were accumulated. The procedure of 

this experiment which we must comply with is to alternate two conditions, with and without 

platform movement. The motion and motionless will appear randomly to avoid expecting 

effect with a fixed order of two conditions. During the session, the VR-based scene and the 

car will be stopped, started and deviated according to the traffic lights in order to simulate the 

driving situations in the real world.  

 

 

One trial in this experiment is explained as a combination of a stop and a start event with 

a 5 ~ 10 seconds time interval between two events. The stop and start events are maintained 

for 3 seconds with the displayed traffic light in red and green, respectively. Simultaneously, 

the movements of the platform, such as deceleration and acceleration, will depend on the 

corresponding events. In addition, the yellow light is displayed for 1 second before each trial 

so that the subject will not be shocked by the sudden deceleration of motion platform. The 

time interval between the trial and deviation event is 10 ~ 15 seconds. The time course of 

experiments is shown in Fig. 3-3. 

Fig. 3-3: Illustration of the design for stop and start experiments. 
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3.2  Investigation of Drowsiness Event-Related Potentials 

First of all, we have to find the relationship between the measured EEG signals and the 

subject’s behavioral performance. One point should be taken as a quantified level of the 

subject’s alertness while driving. Hence, we define the subject’s driving performance index as 

the deviation between the center of the vehicle and the center of the cruising lane [43]. By 

examining the video recordings, the pilot experimental studies show that when the subject is 

drowsy, the driving performance will decrease and vice versa. The four lanes from left to right 

are separated by a median stripe in the VR-based scene. The distance from the left side to the 

right side of the road is equally divided into 256 points for outputting digital signal from 

WTK program, and the width of each lane and the car is 60 units and 32 units, respectively. 

All the descriptions about the width are depicted in Fig. 3-4. 

 

Fig. 3-4: The width of highway is equally divided into 256 units and the width of the car is 

32 units. 

0         60  63        123   132         192  195    255 

0      32 
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The refresh rate of highway scene was set properly to emulate a car cruising at a fixed 

speed of 100 km/hr. The subject’s performance is defined as the deviations between the center 

of the vehicle and the center of the cruising lane. The car is randomly drifted away from the 

center of the cruising lane to mimic the consequences of a non-ideal road surface. So the 

driver must maintain high attention to immediately correct the direction of vehicle in the 

cruising lane. When the driver is drowsy, the reaction time between the onset of deviation and 

steering wheel is increased. This event can be used for ERP analysis of different drowsiness 

states using 30-channel EEG signals. The reaction time is continuously and simultaneously 

measured by the WTK program and recorded in the physiological measurement system 

accompanying with EEG/EOG/ECG physiological signals. In this design, the subjects are 

asked to participate in the 60 minutes experiment twice for data accumulation. Although we 

fix the experiment time in the early afternoon hours such that drowsiness time often occurs, 

the drivers must try to stay alert and not to fall asleep. Otherwise the wrong cognitive state 

will be erroneous judged due to intentionally sleeping in driving.  

 

3.3  Adaptive Estimation of Continuous Driving Performance 

In addition to recognize the feature of brain activity in drowsiness, we also want to 

develop a drowsiness estimation system for driving. In differentiation to Experiment 2 of 

single-trial analysis, we deal with the continuous 30-channel EEG signals of long-term 

recordings. This design is similar to Experiment 2 because we use the same VR-based 

highway scene and the same length of experimental time. Therefore, the subject’s 

performance is also defined as the deviations between the center of the vehicle and the center 

of the cruising lane. We select the participants who have two or more micro-sleeps checked 

by video recordings in both driving sessions for further analysis. The individual model which 



 25 
 
 

estimates driving performance using the features will be established by the two sessions for 

training and testing respectively. Fig. 3-5 shows driving performance recorded in a 60-minute 

session of one subject.  

 

(a) (b) 

Fig. 3-5: The continuous driving performance of long-term recordings in the driving 

simulation. (a) The distribution of driving performance, (b) Moving averaged driving error in a 

60-minute experiment with at least 2 drowsy periods. 

 

3.4  Search for Brain Source of Drowsiness on Cerebral Cortex 

    After establishing the individual model to estimate driving performance, we will assess 

the feasibility of proposed method for practical applications. The main purpose of this 

experiment is to investigate the brain source of drowsiness. Hence we can use less EEG 

channels on relative region to perform satisfactory result for estimating driving performance. 

In this research, the estimation of driving performance will be evaluated to analyze the 
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number of EEG channels and the regions on the scalp. We expect to find out the universal 

brain source of drowsiness on cerebral cortex among our participators.  

First we compare five results based on different number of EEG channels. These five 

conditions include 30, 20, 15, 10 and 6 EEG channels proportionally distributed on scalp by 

the International 10-20 system. We arbitrarily decide the locations of 6-channel EEG 

electrodes because they are unable to proportionally distribute in the International 10-20 

system. Therefore, six most frequently used channels for common experiment are selected in 

this design. The detailed channel locations on scalp map we consider are shown as Fig. 3-6.  

 

 

(a) (b) (c) 

  

(d) (e) 

Fig. 3-6: Five conditions for different number of EEG channels. (a) 30 channels, (b) 20 

channels, (c) 15 channels, (d) 10 channels, (e) 6 channels. 
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The Cz channel is the center of the International 10-20 system and the scalp is divided 

into four regions according to the position of Cz channel in this experiment. The frontal 

location is defined as the region from Cz to forehead as shown in Fig. 3-7 (a). The left and 

right temporal locations are defined as the regions from Cz to temples respectively as shown 

in Fig. 3-7 (b) (c). Finally, the parietal and occipital location is defined as the region including 

parietal and occipital bone as shown in Fig. 3-7 (d). Each region contains 7 electrodes for 

analysis. 

 

  

(a) (b) 

  

(c) (d) 

Fig. 3-7: Four clusters of electrodes on the scalp. (a) Frontal location, (b) Left temporal 

location, (c) Right temporal location, (d) Parietal and occipital location. 
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3.5  Application of Dry Electrodes in the Drowsiness Experiment 

    So far, we utilize a few channels from a region on the scalp to achieve a satisfactory 

result of estimating driving performance through a series of experiments. Although the 

estimation system has excellent performance in our experiments, it is difficult to apply the 

electrode cap with electrolytic gel in the realistic driving situations. The spiked dry electrode 

was designed in this experiment to replace the standard electrode to avoid using electrolytic 

gel. However, it still has difficulty in using the spiked dry electrodes at present. The first 

question is that the height of probes on the spiked dry electrodes, which are limited to the 

MEMS technology, is too short. The probes are difficult to contact stratum germinativum 

even stratum corneum because the thickness of human hair is usually about 80 μm. The hair 

elasticity also makes it difficult to fix the spiked dry electrode on the scalp. Therefore we try 

to fix the spiked dry electrodes in the places without hair in this experiment, such as the 

forehead.  

    In order to test the feasibility of using the spiked dry electrodes, we replace the standard 

electrodes on FP1 and FP2 channels with dry electrodes. We repeat the same experiment of 

drowsiness estimation in this design, but the only difference is that it includes two spiked dry 

electrodes as well as all EEG channels. The two EEG signals measured by the spiked dry 

electrodes will be used in our drowsiness estimation system in this experiment. We have 

adequate reason to believe that the cognitive state of drowsiness can be recognized in frontal 

region of the cerebral cortex. The result of estimation performance will verify the feasibility 

of practical application in the future. 
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Ⅳ.Data Analysis 

Our study includes five topics of experiments as described in Chapter Ⅲ. Two 

methodologies are used for data analysis. The first one is to deal with the single-trial EEG 

signals for ERP analysis in Experiment 1 and Experiment 2. The second one is to analyze the 

continuous EEG data of long-term recordings for the last three experiments. This chapter 

describes the data analysis procedure of the five experiments in terms of these two 

methodologies in details. The technology and algorithms applied in our experiments will also 

be presented in this chapter, including Independent Component Analysis (ICA), 

time-frequency spectral analysis, correlation analysis, adaptive feature selection mechanism 

(AFSM) and Self-cOnstructing Neuro-Fuzzy Inference Network (SONFIN). 

 

4.1  Event-Related Potential (ERP) Analysis 

    Dawson first reported to record the evoked potentials (EP) from cerebral cortex by taking 

pictures and accumulation skill in 1947 [66]. Dawson initiated the new field of 

neuro-physiology by introducing the technology of averaging evoked potentials (AEP) in 

1951. The AEP technology is extensively applied to many experiments due to the relative 

stimulus, so the AEP is gradually named event-related potentials (ERP) in recent years. The 

narrow definition of ERP is to present a specific region of perceptual systems and induce 

potential changes on the cerebral cortex when the stimulus appears or disappears. The board 

definition of ERP suggests the responses come from all neural system. 

    Generally, the ERP induced by the stimulus is 2 ~ 10 μV, much less than ongoing 

potential of EEG amplitude, and it is hidden among the EEG signals. EEG signals are 



 30 
 
 

composed of small signals and big noise so that the ERP is cannot to be directly measured and 

analyzed from EEG signal. In order to extract the ERP from EEG signal, the stimuli must be 

presented to the subject repeatedly. ERP is obtained by averaging EEG signals of 

accumulated single trials of the same condition. EEG signals across single trials are 

considered random and independent of the stimulus. However, it is assumed that the 

waveform and latency of ERP pattern are invariant to the same stimulus. After accumulating 

all ERP, the ERP increases proportionally to the number of trials and the EEG amplitude is 

the sum of adding according to random noise theorem. For example, if the number of trials for 

condition is n, the ERP will be n times the amplitude of original wave pattern and the EEG 

amplitude will only be n  times of the initial signal. Therefore, the signal to noise ratio 

(SNR) will be improved to n  multiples of the original ratio. ERP is the average of n trials 

of EEG epochs. Therefore, ERP sometimes can be named AEP and this is the basic theorem 

of extracting the ERP [68].  

    The ERP techniques are applied to Experiment 1 and Experiment 2 for analyzing events. 

We also use event-related spectral perturbation (ERSP) analysis in these experiments. In first 

experiment, we demonstrate the three events including stop, start and deviation events of 

VR-based driving simulation. The dynamic platform is either in moving or motionless 

conditions. For the stop and start events, the continuous EEG signals are extracted into several 

epochs, each of which contains the sampled EEG data from -1500 ms to 4000 ms with a light 

onset at 0 ms and the length of baseline is 500 ms foremost in each epoch. Similarly, the 

duration of the deviation event is 3000ms, ranging from -1000 ms to 2000 ms, with deviation 

onset at 0 ms. The baseline is computed from -1000 ms to 0 ms. Then we combine with the 

four events including the stop and start event in two conditions and use ICA algorithm to 

decompose 30-channel EEG signals into the 30 independent components. Simultaneously, we 

apply the ICA mixing matrix from above result to the deviation event and indicate reaction 
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time of each deviation event. Therefore we can compare with each component by ERP and 

ERSP analysis of these three events in the two conditions to justify the necessity of VR-based 

motion platform in driving simulation. The detailed flowchart of EEG data analysis is shown 

as Fig. 4-1. 

 

Fig. 4-1: The flowchart of EEG data analysis in the first experiment. 

 

For Experiment 2, we study the ERP and ERSP of drowsiness single-trial in different 

cognitive states. From design point of view, the drowsiness event is similar to the deviation 

event of above experiment because the stimulus of these two events is equal. The continuous 

EEG signals are separated into several epochs where an epoch contains the sampled EEG data 

from -500 ms to 3500 ms with deviation onset at 0 ms and the baseline region of each epoch 

is before the onset. The duration of drowsiness event is longer than the deviation event 

because the driver may need more reaction time while he/she is drowsy. Then we combine 

with all drowsiness events of recordings from different day and use ICA algorithm to 

decompose 30-channel EEG signals into the 30 independent components. The reaction time of 
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each event is recorded for the analysis of drowsiness in different cognitive states. The reaction 

time of each event is sorted in ascending order and the sorted trials are equally divided into 

five groups, where each group has 20 percentages in order. Obviously, the first one group 

indicates that the driver is more alert than other groups while driving. Therefore we can 

compare with the five conditions of different cognitive states corresponding to the ERSP of 

drowsiness related component. The detailed flowchart of analysis is shown as Fig. 4-2. 

 

Fig. 4-2: The flowchart of analysis in Experiment 2. 

 

4.2  Analysis of Continuous EEG Data 

    We attempt to apply the analysis from single-trial into continuous EEG signals for 

drowsiness for the last three experiments. By averaging accumulated single trials, the ERP 

analysis reduces noise and makes characteristic more visible in EEG signals. When dealing 

with the continuous EEG data, we must try to remove high-frequency noise by some 
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technology and the simplest way we used is moving average filter. In Experiment 3 we 

propose an adaptive alertness estimation methodology based on EEG, time-frequency spectral 

analysis, Independent Component Analysis and FNN models for continuously monitoring 

driver’s drowsiness level with concurrent changes in the driving performance. Fig. 4-3 shows 

the flowchart of the proposed signal processing procedure.  

 

 

Fig. 4-3: The flowchart of data processing procedure for the drowsy estimation system. 

 

    In this experiment, participants who demonstrated waves of drowsiness containing two 

or more micro-sleep in both sessions were selected for training and testing, respectively. In 

the training process, the 33-channel EEG signals are first applied to train the ICA model. By 

applying ICA algorithm to the EEG recordings from the scalp, we attempt to achieve the twin 

goals: removing artifacts and possible source separation based on stabilities of ICA spatial 

weighting matrix and temporal independence between artifacts and EEG signals. The 

effectiveness for removing eye blinking and other artifacts by using ICA had been 
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demonstrated in many studies [52-59]. Secondly, we use time-frequency spectral analysis to 

transfer all 33 ICA components into log subband power spectrum with time.  

Since the fluctuates of drowsiness level have cycle lengths longer than 4 minutes [27-28, 

30], the spectral signals of 33 components and driving performance are smoothed by a causal 

90-second square moving average filter advancing at 2-second steps to eliminate variance at 

cycle lengths shorter than 1~2 minutes. The correlation coefficients between the smoothed 

driving error and the subband power spectra of all ICA components at each frequency band 

form a correlation spectrum. The log subband power spectra of two ICA components with the 

highest correlation coefficient are further selected as features. Then we use the AFSM 

technology to select the log bandpower spectra of these two ICA components in some critical 

bands as the normalized input features to the linear regression or SONFIN model. Therefore 

the training data will establish the model to estimate the individual subject’s driving 

performance. 

The ICA weighting matrix, the EEG critical bands of the drowsy related source and the 

parameters of model in the training session were applied to estimate the individual subject’s 

driving performance in the testing session. Finally, we use correlation analysis between the 

estimated and actual driving performance to evaluate the performance of model. For 

comparing with the result by ICA algorithm, the 33-channel EEG signals are directly used for 

our procedure without using ICA decomposition. We also repeatedly test that finding the most 

appropriate frequency bands for the best estimating result to prove the dependability of the 

AFSM technology. Then the performance of estimating results will be discussed by using 

linear regression or SONFIN to establish model. Detailed analyses are described in the 

following sub sections.  

    After we developed an adaptive drowsiness estimation system for driving, we find that 

this estimation system can get excellent results with only 2-channel EEG signals even with 
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one single channel. In Experiment 4, the estimation of driving performance will be evaluated 

to analyze the number of EEG channels and the regions on the scalp. For the discussion about 

the number of EEG channels, only the optimal frequency bands of the two EEG channels or 

ICA components with the highest correlation coefficient offered into our estimation system. 

Then we only use linear regression model to evaluate the estimating results of the five 

conditions. We expect to find the relationship between the estimated performance and the 

number of channels with ICA decomposition, and to determine the number of channels should 

used in our estimating system.  

For the discussion about the regions on the scalp, we use the same way to evaluate the 

brain source of drowsiness on cerebral cortex. The only difference is that we use single 

channel in our estimating system for emphasizing the location of the four regions. By using a 

single channel or component with the highest estimating result in each of four regions, we 

except to find the brain source of drowsiness on cerebral cortex.  

Because it is difficult to apply electrode cap with electrolytic gel during realistic driving 

situations, the spiked dry electrodes will be a preferred solution. However, the spiked dry 

electrodes face the restriction to MEMS technology so that the electrodes may not be used to 

measure EEG signals from the regions we concerned. Hence we replace the standard 

electrodes on FP1 and FP2 channels with dry electrodes for testing the feasibility. By using 

the ICA technology, we expect to extract the features from FP1 and FP2 channels which 

might contain signals proposed from the brain source of drowsiness. We use two EEG signals 

measured from two dry electrodes for our drowsiness estimation system and compare it with 

the drowsiness estimation system that use the signals recorded by the standard electrodes in 

nearby regions. It demonstrates the feasibility of the drowsiness estimation system by using 

the spiked dry electrodes on the forehead according to the experimental results.  
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4.3  Independent Component Analysis (ICA) 

The joint problems of electroencephalographic (EEG) source segregation, identification, 

and localization are very difficult since the EEG data collected from any point on the human 

scalp includes activity generated within a large brain area. The problem of determining brain 

electrical sources from potential patterns recorded on the scalp surface is mathematically 

underdetermined. Although the resistivity between the skull and brain is different, the spatial 

smearing of EEG data by volume conduction does not cause significant time delay and 

suggests that the ICA algorithm is suitable for performing blind source separation on EEG 

data. The ICA methods were extensively applied to blind source separation problem since 

1990s [44-51]. In recent years, subsequent technical reports [52-59] demonstrated that ICA 

was a suitable solution to the problem of EEG source segregation, identification, and 

localization based on the following assumptions: (1) The conduction of the EEG sensors is 

instantaneous and linear such that the measured mixing signals are linear and the propagation 

delays are negligible. (2) The signal source of muscle activity, eye, and, cardiac signals are 

not time locked to the sources of EEG activity which is regarded as reflecting synaptic 

activity of cortical neurons [52-53]. 

In this thesis, we attempt to completely separate the twin problems of source 

identification and source localization by using a generally applicable ICA. Thus, the artifacts 

including the eye-movement (EOG), eye-blinking, heart-beating (EKG), muscle-movement 

(EMG), and line noises can be successfully separated from EEG activities. The ICA is a 

statistical “latent variables” model with generative form: 

 )t()t( sAx =  (1) 

where A is a linear transform called a mixing matrix and the is  are statistically mutually 

independent. The ICA model describes how the observed data are generated by a process of 
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mixing the components is  . The independent components is  (often abbreviated as ICs) are 

latent variables, meaning that they cannot be directly observed. Also the mixing matrix A is 

assumed to be unknown. All we observed are the random variables ix , and we must estimate 

both the mixing matrix and the IC’s is  using the ix . 

    Therefore, given time series of the observed data [ ]TN )t(x)t(x)t(x)t( L21=x  in 

N-dimension, ICA will find a linear mapping W such that the unmixed signals u(t) are 

statically independent. 

 )t()t( xWu = . (2) 

Supposed the probability density function of the observations x can be expressed as: 

 )(p)det()(p uWx = , (3) 

the learning algorithm can be derived using the maximum likelihood formulation with the 

log-likelihood function derived as: 
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Thus, an effective learning algorithm using natural gradient to maximize the log-likelihood 

with respect to W gives: 
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and WW T  rescales the gradient, simplifies the learning rule and speeds the convergence 

considerably. It is difficult to know a priori the parametric density function )(p u , which 
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plays an essential role in the learning process. If we choose to approximate the estimated 

probability density function with an Edgeworth expansion or Gram-Charlier expansion for 

generalizing the learning rule to sources with either sub- or super-Gaussian distributions, the 

nonlinearity )( uϕ  can be derived as: 
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Since there is no general definition for sub- and super-Gaussian sources, we choose 

( )1) (-1,1) (1,2
1 NN)(p +=u  and )(hsecN)(p uu 2(0,1)=  for sub- and super-Gaussian, 

respectively, where ( )2σμ ,N  is a normal distribution. The learning rules differ in the sign 

before the tanh function and can be determined using a switching criterion as: 
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where 
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represents the elements of N-dimensional diagonal matrix K. After ICA training, we can 

obtain 33 ICA components u(t) decomposed from the measured 33-channel EEG data x(t). 
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Fig. 4-4 shows an example of the scalp topographies of ICA weighting matrix W 

corresponding to each ICA component by projecting each wi,j onto the surface of the scalp, 

which provides spatial information about the contribution of each ICA component (brain 

source) to the EEG channels, e.g., eye activity was projected mainly to frontal sites, and the 

drowsiness-related potential is on the parietal lobe and occipital lobe, etc. We can observe that 

most artifacts and channel noises included in EEG recordings are effectively separated into 

independent components 1 and 4 as shown in Fig. 4-4 and independent components 5, 11, and 

13 may be considered as effective “sources” related to drowsiness in the VR-based driving 

experiment. 

 

 

 

Fig. 4-4: Scalp topography of ICA weighting matrix W by spreading each ijw  into the 

plane of the scalp corresponding to the thj  ICA components based on International 10-20 

system. 
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4.4  Time-Frequency Spectral Analysis 

Analysis of changes in spectral power and phase can characterize the perturbations in the 

oscillatory dynamics of ongoing EEG. Applying such measures to the activity time courses of 

separated independent component sources avoids confounds caused by miscancellation of 

positive and negative potentials from different sources to the recording electrodes, and by 

misallocation to the recording electrodes activity that originates in various and commonly 

distant cortical sources. The spectral analysis for each ICA component or EEG channel signal 

is shown in Fig 4-5.  

 

 

 Frequency Response of ICA Component 

Time 2s
750 

250

125 

25 Averaged

256-pts 
FFT 

 

Fig. 4-5: Moving-averaged log power spectral analysis for ith ICA component. 

 

Detailed moving-averaged spectral analysis [69] of the ICA data was accomplished as 

follows: The ICA component )(tui  was first divided into several epochs using a 750-point 
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Hanning window with 250-point overlap, i.e., stepping in 2 seconds at sampling rate 

250=Ω s Hz. 

 ))m(t(u)t(h)t(p im 1500 −+= , (12) 

where t = 1, 2, …, 750, m is the index of thm  epoch, and N-point Hanning window is 

 ⎩
⎨
⎧ −≤≤−

= −

otherwise                        0       
10460540 1

2 Nt)cos(..
)t(h N

tπ
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Windowed 750-point epochs were sub-divided into several 125-point frames using Hanning 

windows again, with 25-point step size. 

 ))n(t(p)t(h)t(q mn 125 −+= , (14) 

where t = 1, 2, …, 125, and n is the index of thn frames. Each frame was extended to 256 

points by zero-padding for a 256-point FFT. 
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Where N=255, to normalize the expected multiplicative effects of sub cortical systems 

involved in wake-sleep regulation of ICA data amplitudes, ICA data spectra were further 

converted to a logarithmic scale for spectral calculation and driving performance estimation 

[70]. Then we averaged the bandpower corresponding to each frequency band in all the 

sub-windows to form a log bandpower spectrum. 
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Thus, the time-frequency analysis of ICA component )(tui  of 1 ~ 60Hz stepping in 2 

seconds can be expressed as ),(~ kmpi , where m is the index of time-stepping, and k is the 

index of thk  frequency bands.  
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Finally, a median filtering using a moving averaged 90-second window was used to further 

minimize the presence of artifacts in the ICA/EEG signals. 

 

4.5  Correlation Analysis 

In order to find the relations between the brain activities and subject’s driving 

performance, and to quantify the level of the subject’s drowsiness, we computed the 

correlation coefficient between the time course of minute-scale fluctuations in driving error 

( )(nDp ) and the concurrent changes in the ICA spectrum of EEG signals by using the 

Pearson Correlation Coefficient defined as a statistical measure of the linear relationship 

between two random variables: 
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where )(kPi  and pD  are the expected value of ),( knPi  and )(nDp , respectively. 

Therefore, the correlation coefficients between the driving performance and the ICA 

component i  in the frequency band k  can be expressed as a matrix: 
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Fig. 4-6 shows the results of correlation spectra of Subject 3 in 33 ICA components. The 

horizon axis indexes frequency bands between 1 and 60 Hz and the vertical axis indexes the 

ICA components. The correlation spectra shows a strong evidence between fluctuations in 

ICA bandpower of frequency bands within 9 to 25 Hz and driving performance index with 

high positive correlations in ICA components 11 and 13. As driving error increases, so does 

ICA bandpower. 

 

 

Fig. 4-6: Canonical correlation spectral matrix of subject 3. Note that the higher correlation 

coefficients appear at 9 ~ 25 Hz in ICA components 11 and 13, respectively. 
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4.6  Adaptive Feature Selection Mechanism 

Signal features in many studies are extracted empirically and become a problem when 

applied for an on-line monitoring system. To solve this problem, an adaptive feature 

extracting mechanism is developed to extract useful frequency bands of representative ICA 

component selection according to the information of the correlation coefficients between log 

bandpower of ICA components and driving performance index. In this thesis, to extract the 

most representative ICA component and frequency bands, we first sort the correlation 

coefficients CC(i,k) in frequency bands k for each component i in descending order by: 

 ⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅⋅== )),((min),((max)),((),( kiCCkiCCkisortki

kkk
CCSC , i = 1, 2, …,33, (20) 

where the corresponding matrix indices K(i,k) is: 
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where the first five frequency bands with the largest correlation coefficients of ith component 

are expressed as SC(i,1)~SC(i,5) with frequency band index recorded in K(i,k), k=1~5. 

    We then sort the SC(i, k) in descending order in the column direction to select the ICA 

components having the maximum value in the summations of the largest 5 correlation 

coefficients in frequency bands as: 

 ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

5

15
1

ki
)k,i(sort)i( SCSC , i = 1, 2, …, 33, (22) 

where the component indices in K(i,k) is also updated. Therefore, the first 2 ICA components 

with 5 largest correlation coefficients in the frequency bands can be derived as )(SC 1  and 

)(SC 2  with matrix index K(i,k), i = 1~2 and k = 1~5.  
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An example of the adaptive feature selection mechanism for subject 3 is given in Fig. 4-7. 

 

Fig. 4-7: Example of the adaptive feature selection mechanism for subject 3. Note that the 

band power of ICA components 11 and 13 at frequency bands 10 ~ 14 Hz are selected as 

input feature of the estimators. 

 

4.7  Self-cOnstructing Neuro-Fuzzy Inference Network (SONFIN) 

We developed a Self-cOnstructing Neural Fuzzy Inference Network called SONFIN 

shown in Fig. 4-8 and it is used for the drowsiness estimation in this thesis [71]. The SONFIN 

can always find its optimal structure and parameters automatically. Both the structure and 

parameter identification schemes are done simultaneously during on-line learning without any 

assignment of fuzzy rules in advance. The SONFIN can always construct itself with an 

economic network size, and the learning speed as well as the modeling ability is well 

appreciated. Comparing with other neural networks in different areas including control, 
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communication, and signal processing, the on-line learning capability of the SONFIN has 

been demonstrated. 

 

Fig. 4-8: The network structure of SONFIN. 

 

This 6-layered network realizes a fuzzy model of the following form: 

 Rule i : IF x1 is Ai1 and … and xn is Ain 

 THEN y is m0i + ajixj + …, (23) 

where Aij is a fuzzy set, m0i is the center of a symmetric membership function on y, and aji is a 

consequent parameter. Unlike the traditional TSK model where all the input variables are 

used in the output linear equation, only the significant ones are used in the SONFIN; i.e., 

some ajis in the above fuzzy rules are zero. 

    Each node in Layer 1, which corresponds to one input variable, only transmits input 

values to the next layer directly. Each node in Layer 2 corresponds to one linguistic label 
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(small, large, etc.) of one of the input variables in Layer 1. A node in Layer 3 represents one 

fuzzy logic rule and performs precondition matching of a rule. The number of nodes in Layer 

4 is equal to that in Layer 3, and the result (firing strength) calculated in Layer 3 is normalized 

in this layer. Layer 5 is called the consequent layer. Two types of nodes are used in this layer, 

and they are denoted as blank and shaded circles in Fig. 4-8, respectively. The node denoted 

by a blank circle (blank node) is the essential node representing a fuzzy set of the output 

variable. The shaded node is generated only when necessary. One of the inputs to a shaded 

node is the output delivered from Layer 4, and the other possible inputs (terms) are the 

selected significant input variables from Layer 1. Combining these two types of nodes in 

Layer 5, we obtain the whole function performed by this layer as the linear equation on the 

THEN part of the fuzzy logic rule in Eq. (23). Each node in Layer 6 corresponds to one output 

variable. The node integrates all the actions recommended by Layer 5 and acts as a defuzzifier 

to produce the final inferred output. 

    Two types of learning, structure and parameter learning are used concurrently for 

constructing the SONFIN. The structure learning includes both the precondition and 

consequent structure identification of a fuzzy if-then rule. Here the precondition structure 

identification corresponds to the input-space partitioning and can be formulated as a 

combinational optimization problem with the following two objectives: to minimize the 

number of rules generated and to minimize the number of fuzzy sets on the universe of 

discourse of each input variable. As to the consequent structure identification, the main task is 

to decide when to generate a new membership function for the output variable and which 

significant terms (input variables) should be added to the consequent part (a linear equation) 

when necessary. For the parameter learning based upon supervised learning algorithms, the 

parameters of the linear equations in the consequent parts are adjusted by either LMS or RLS 

algorithms and the parameters in the precondition part are adjusted by the back-propagation 

algorithm to minimize a given cost function. 
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    The SONFIN can be used for normal operation at any time during the learning process 

without repeated training on the input-output patterns when on-line operation is performed. 

There are no rules (i.e., no nodes in the network except the input-output nodes) in the 

SONFIN initially. They are created dynamically as learning proceeds upon receiving on-line 

incoming training data by performing the following learning processes simultaneously: (1) 

input/output space partitioning; (2) construction of fuzzy rules; (3) optimal consequent 

structure identification; (4) parameter identification. In the above, learning processes (1), (2), 

and (3) belong to the structure learning phase and 4) belongs to the parameter learning phase. 
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.ResultsⅤ  and Discussions 

    The analysis procedures of the five experiments have been introduced in Chapter 4. In 

this chapter, the corresponding results of all experiments are discussed in details. One or few 

extension discussions are specified respecting to each experimental results. Moreover, the 

comparisons between the experiments are also given in this chapter.  

 

5.1  The Influence of the VR-based Motion Platform on Cognitive 

States 

In this section, we demonstrate the influence of kinesthetic stimulus on cognitive states. 

Firstly, we show the brain source of kinesthetic stimulus on cerebral cortex by the scalp 

topographies of the ICA components. Then we compare the results in two conditions, which 

the dynamic platform is moving and motionless, by the analysis of ERP and ERSP. The 

results of comparison indicate the necessity of VR-based motion platform for brain research 

in driving simulation 

 

5.1.1 The Brain Source of Kinesthetic Stimulus on the Cerebral Cortex 

First of all, we compare each component by ERP and ERSP analysis of the three events 

in the two conditions that the dynamic platform is moving and motionless. The scalp 

topographies of 30 ICA components obtained from Subject 1 is shown in Fig. 5-1 and two 

ICA components have different responses between the two conditions are shown in Fig. 5-2.  
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Fig. 5-1: The scalp topographies of all ICA components trained by EEG data from Subject 1.

 

 

(a) (b) 

Fig. 5-2: Two ICA components have different responses between the two conditions of all 

events. (a) The source near FC3 location, (b) The source near FC4 location. 
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There is evidence in plenty to show that the vestibular system is related to kinesthetic 

perception of human body, and the brain can deal with the information of balance between 

optic scenes and kinesthetic perception [32]. This cognitive state will respond on the cerebral 

cortex and we can observe this phenomenon from EEG data. By the experiment design of the 

experiment group and control group, we can compare with each ICA component by ERP or 

ERSP analysis of two groups to determine the components related to kinesthetic stimulus. 

Beside we have excluded the difference between two groups due to the appearing order of 

experiments with the dynamic platform is moving and motionless.  

All of the five participants of this experiment have exactly two ICA components related 

to kinesthetic stimulus and the results are presented in Table 5-1. The two scalp topographies 

of these ICA components are symmetrical on the left and right sides of all participants and the 

sources of these ICA components are near FC3 and FC4 channel locations, respectively. 

Especially, the vestibular system is just about under the sources we indicated on cerebral 

cortex. These two ICA components we selected are reasonable according to the results.  
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Table 5-1 indicates that the only two ICA components of all have the difference in the 

two conditions.  

Table 5-1 

The scalp topographies of two ICA components have different response in the two conditions.

ICA Components Near FC3 Location Near FC4 Location 

Subject 1 

Subject 2 

Subject 3 

Subject 4 

Subject 5 
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5.1.2 Necessity of VR-based Motion Platform 

Then we select component 20 to demonstrate the results because the result of the other 

one component is similar. The ERP and ERSP analysis for stop event between the two 

conditions are shown in Fig. 5-3. We will begin with a sample observation for subject 1 as 

shown in Fig. 5-3 (a)(b). For driving stop event, the amplitude of ERP is a little smaller in the 

motion condition than the response in the motionless condition. The important point to note is 

the power spectra of ERP in two conditions as shown in Fig. 5-3 (c). When the dynamic 

platform is moving, the frequency near 10 Hz and its harmonic frequency will be obviously 

suppressed. The same results can be observed in driving start and driving deviation events as 

shown in Fig. 5-4 (c) and Fig. 5-5 (c).  

Then we consider the ERSP of driving stop event in two conditions as shown in Fig. 5-3 

(d)(e). One may notice that long-lasting suppression of near 10 Hz is conspicuous while the 

dynamic platform is in operation. The power spectra of driving stop event in two conditions 

are affected due to this phenomenon. There is other thing to note in driving stop event. When 

the vehicle has exactly stopped at the third second in the motionless condition, the perception 

of human is the most unbalanced corresponding to response of the ERSP analysis.  

The influence of dynamic platform in driving start and driving deviation events are 

similar to the driving stop event as shown in Fig.5-4 and Fig. 5-5. The differences are the 

magnitude near 10 Hz and the amplitude of the response between the two conditions whether 

the ERP analysis or ERSP analysis for these two events. It is noted that in ERSP analysis of 

the driving start event as shown in Figs. 5-4 (d)(e), all frequency bands are suppressed 

accompanying the vehicle is accelerating while the dynamic platform is in operation. During 

the periods of acceleration, the driver may feel much centrifugal perception in the driving 
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cabin by the dynamic platform. The influence on cognitive state of kinesthetic stimulus can be 

also discussed in next experiment. 

  

(a) (b) 

 
(c) 

  
(d) (e) 

Fig. 5-3: The ERP and ERSP analyses of component 20 for stop event. (a) The ERP of 

motion condition, (b) The ERP of motionless condition, (c) Overplot power spectrum of two 

conditions, (d) The ERSP of motion condition, (e) The ERSP of motionless condition. 
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(a) (b) 

 
(c) 

  
(d) (e) 

Fig. 5-4: The ERP and ERSP analyses of component 20 for start event. (a) The ERP of 

motion condition, (b) The ERP of motionless condition, (c) Overplot power spectrum of 

two conditions, (d) The ERSP of motion condition, (e) The ERSP of motionless condition. 
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(a) (b) 

 
(c) 

  
(d) (e) 

Fig. 5-5: The ERP and ERSP analyses of component 20 for deviation event. (a) The ERP of 

motion condition, (b) The ERP of motionless condition, (c) Overplot power spectrum of 

two conditions, (d) The ERSP of motion condition, (e) The ERSP of motionless condition. 
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(a) (b) 

(c) (d) 

Fig. 5-6: The ERP analysis of component 20 for deviation event with reaction time. (a) The 

ERP with reaction time of motion condition, (b) The ERP with reaction time of motionless 

condition, (c) Aligning onset by reaction time from (a), (d) Aligning onset by reaction time 

from (b). 

 

There is further evidence to suggest that the ICA components we concern about are 

related to the movement of the dynamic platform as shown in Fig. 5-6. The reaction time 

represents when the subject steers wheel to keep the vehicle in the cruising lane following the 

movement of dynamic platform. In Figs. 5-6 (a)(b), the black line at 0 ms is the onset of 
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deviation and the black curve with sorted trials means the reaction time. The onset of 

deviation and reaction time will company the movement of the dynamic platform if we 

consider the kinesthetic stimulus. When the dynamic platform is motion, the response of ERP 

with automatic vehicle deviation is larger and faster than the other condition. In Figs. 5-6 

(c)(d), after aligning the onset of reaction time for two conditions, the response of steering 

wheel only occurs in motion condition. Therefore, it makes sure that the ICA components we 

concern about are related to the movement of the dynamic platform.  

In addition to the results of Subject 1 in this experiment, the other four participants have 

similar results of the different responses between the two conditions and the most obvious 

difference is the spectral magnitude near 10 Hz.  
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5.2  The Brain Activity of Drowsiness in Different Cognitive States 

In this section, we investigate the event-related potential of drowsiness in different 

cognitive states and we can recognize the features of brain drowsy activity for further analysis. 

Then we also discuss the influence of the dynamic motion platform on drowsiness in this 

section.  

 

5.2.1 The Degree of Cognitive States in Drowsiness 

    Firstly, the trials are sorted according to the length of reaction time and equally divided 

into five groups as the index for further analysis. Each group has 20 percentages of trials in 

order and an example of Subject 4 is shown in Fig. 5-7. Then we select one component which 

is related to drowsiness for analysis as shown in Fig. 5-8.  

 

Fig. 5-7: The trials are sorted according to reaction time and equally divided into five 

groups of subject 4. 

20% 20% 20%
20%

20%

Drowsy

Aler
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Fig. 5-7 provides a start-point to observe the reaction time of all single-trials in this 

experiment. When the driver is drowsy, the reaction time between the onset of deviation and 

steering wheel is increasing. Because the onset of deviation is random and unanticipated in 

each drowsiness single-trial, it has sufficient demonstration to show the reaction time can be 

the index for the degree of drowsiness. By equally dividing all single-trials into five groups, 

we can discuss five degrees of cognitive states in drowsiness prior to falling into micro-sleep 

at NREM. We may indicate by Fig. 5-8 what the responses of cognitive states will follow the 

reaction time and occur before the onset of reaction time and behind the onset of reaction 

time. 

 

 

 

Fig. 5-8: One component is related to drowsiness and the ERP analysis with all single-trials.
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(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 5-9: The results of ERSP analysis in five different cognitive states. (a) Drowsiness level 

from 1 ~ 20 %, (b) Drowsiness level from 21 ~ 40 %, (c) Drowsiness level from 41 ~ 60 %, 

(d) Drowsiness level from 61 ~ 80 %, (e) Drowsiness level from 81 ~ 100 %. 



 62 
 
 

    Fig. 5-9 is a series of five diagrams illustrating the different cognitive states in five 

degrees of drowsiness. We can imply the approximate reaction time of ERSP analysis by Fig. 

5-7 in all conditions. In the first stage of the five degrees as shown in Fig. 5-9 (a), it means the 

driver is more alert than other stages and the reaction time is shorter than the other degrees 

while driving. The reaction time of the first stage is about 300 ms and the amplitude of 

time-frequency spectrum enhances 5 dB near 10 Hz against power spectrum of baseline 

before the onset of reaction time. Then the amplitude of time-frequency spectrum reduces 3 ~ 

5 dB near 10 Hz against power spectrum of baseline after the onset of reaction time. The 

results of ERSP analysis in the second stage as shown in Fig. 5-9 (b) are similar to the results 

in the first stage because the reaction times of these two conditions are much closed.  

In the third stage of the five degrees as shown in Fig. 5-9 (c), the enhancement of power 

spectrum near 10 Hz has duration with 500 ms due to the reaction time is slightly longer than 

the first two conditions. And the amplitude of time-frequency spectrum is reduced and it lasts 

about 1500 ms after the onset of reaction time. In the forth stage of the five degrees as shown 

in Fig. 5-9 (d) , the reaction time becomes a little later to previous conditions. Similar to the 

results in the third stage, the time-frequency spectrum of harmonic frequency in 10 Hz has the 

same response before and after the onset of the reaction time. Finally, in the last stage of the 

five degrees as shown in Fig. 5-9 (e), the reaction time is the latest of all conditions and the 

response of enhancement and reduction in 10Hz and harmonic frequency is more obvious 

than the results in the forth stage. The importance of the phenomenon in the five stages cannot 

be overemphasized. Although the driver is micro-drowsy and not fall into sleeping in driving, 

the feature of the magnitude in 10 Hz will change with the different drowsiness level. 
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5.2.2 The Dynamic Platform Influences Drowsiness ERP 

    Now, we consider the results of above procedure if the dynamic platform is motionless 

and it is shown in Fig. 5-10. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 5-10: The results of ERSP analysis in five different cognitive states if the dynamic 

platform is motionless. (a) Drowsiness level from 1 ~ 20 %, (b) Drowsiness level from 21 ~ 

40 %, (c) Drowsiness level from 41 ~ 60 %, (d) Drowsiness level from 61 ~ 80 %, (e) 

Drowsiness level from 81 ~ 100 %. 
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Here we can demonstrate the dynamic platform influencing the results of drowsiness 

ERP. The results of Experiment 1 produce evidence for the response of power spectrum near 

10 Hz by kinesthetic stimulus. As shown in Fig. 5-9, the feature of drowsiness single-trial in 

different cognitive states is also the power spectrum near 10 Hz. Fig. 5-10 tells us the 

influence of dynamic simulator on drowsiness experiment.  

    First of all, we compare with the two conditions of dynamic platform is motion and 

motionlessness for drowsiness experiment at the same time. The reaction times of the Fig. 5-9 

and Fig. 5-10 in the five degrees of drowsiness are almost equal. Then the durations of the 

response before the onset of the reaction time are similar in the five degrees. However, the 

spectral magnitude responses near 10 Hz in the motionless condition enhances less than the 

results in the motion condition for all degrees of drowsiness. In addition, the suppression 

response of 10 Hz after the onset of the reaction time almost disappears in the motionless 

condition. Therefore, the dynamic platform is necessary for the study of drowsiness 

experiments in the real world.  

 

5.3  The Performance of Adaptive Drowsiness Estimation 

We discuss the performance of the proposed adaptive drowsiness estimation of 

continuous driving in this section. First we demonstrate the dominant ICA components and 

EEG channels for drowsiness. Then we compare the results of estimating performance by 

using ICA components or EEG channels, selectivity experts or AFSM method feeding to 

linear regression model or SONFIN model. Finally, we also discuss the optimal length of the 

moving average windows for drowsiness experiments.  
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5.3.1 Relationship between the ICA/EEG Power Spectrum and Drowsiness 

First of all, we compare the correlation between log subband power spectra and driving 

performance for each frequency bands and individual ICA components to find the adaptive 

subbands and localization of electrodes according to the scalp topographies of ICA weighting 

matrices. Then we also show the correlation analysis results by using EEG channel signals. 

The two correlation coefficient spectra of Subject 3 are shown in Fig. 5-11.  

(a) (b) 

(c) (d) 

Fig. 5-11: The results of correlation coefficient analysis for Subject 3. (a) The correlation 

coefficient spectra of ICA components, (b) The correlation coefficient spectra of EEG channels, 

(c) The ICA component with highest correlation with the driving performance, (d) The EEG 

channel with highest correlation with the driving performance. 
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    The scalp topographies of all ICA components trained by EEG data of Subject 3 have 

been shown in Fig. 4-4. Hence, we will select two ICA components and two EEG channels 

which have the highest correlation coefficient with the driving performance index as the 

features for adaptive drowsiness estimation as shown in Fig. 5-11.  

 

  

(a) (b) 

  

(c) (d) 

Fig. 5-12: Two ICA components and two EEG channels with the highest correlation 

coefficient with the driving performance index. (a) ICA Component 11, (b) ICA Component 

13, (c) EEG Pz channel, (d) EEG P4 channel. 
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After ICA training and time-frequency analysis for each ICA component and EEG 

channel, we compute the spectral correlation coefficients between the ICA/EEG log subband 

power spectrum and the driving performance index. Fig. 5-11 (a)(b) shows the correlation 

spectra of Subject 3 in 33 ICA components and 33 EEG channels, respectively. The horizon 

axis indexes frequency bands between 1 ~ 60 Hz and the vertical axis indexes the EEG 

channels or ICA components. In Fig. 5-11 (a), the correlation spectra show a strong evidence 

between fluctuations in EEG bandpower of frequency bands within 10 ~ 14 Hz and driving 

performance with high positive correlations in most EEG channels. The driving deviation 

increases with the EEG bandpower as shown in Fig. 5-11 (c). We also investigate these 

relationships by plotting the correlation coefficients between bandpower of 33 ICA 

components and driving performance. A similar monotonic relationship exists in a wide 

frequency bands, especially the frequency bands from 9 to 25 Hz in ICA components 11 and 

13 achieve a high positive correlation with the driving deviation as shown in Fig. 5-11 (b).  

 

5.3.2 The Dominant ICA Components and EEG Channels for Drowsiness 

Fig. 5-12 show the spatial distributions in scalp topography weighting matrices W for 

dominant ICA component 11 that is centered near Pz channel location and ICA component 13 

that is centered near P4 channel location of the Subject 3. The two EEG signals of Pz and P4 

channels locations are selected for further analysis because these EEG signals have the 

highest correlation coefficients among all EEG channels according to Table 5-2, the sources 

of two ICA components, which we selected with the highest correlation coefficients, are near 

the two EEG channels locations selected by the same procedure of the five participants. The 

correlations are particularly strong at central and posterior areas, which are similar to the 

results of previous studies in the driving experiments [19,21,25]. The relatively high 
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correlation coefficients of near α-band (8 ~ 13 Hz) with driving performance suggests that 

α-band frequencies may be suitable for drowsiness estimation, where the subject’s cognitive 

state might fall into stage one of the NREM.  

Table 5-2 summarizes the scalp topographies of the two ICA components and two EEG 

channels we used for adaptive drowsiness system of the five participants.  

Table 5-2 

Two ICA components and two EEG channels of the five participants with the highest 
correlation coefficients with the driving deviation are selected for adaptive drowsiness 
estimation.  

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

  ICA 

Components 

  

  EEG 

Channels 
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5.3.3 Selection of Frequency Bands Based on Spectral Correlation and AFSM 

For subject 3, the correlation coefficients between different frequency bands from 8 to 15 

Hz of the ICA components 11 or 13 and the driving performance in different experimental 

sessions are shown in Table 5-3. The results of estimating system show that the optimal 

frequency bands of Subject 3 are from 10 to 14 Hz of the ICA component 11 and 13.  

Table 5-3 

The correlation coefficients between the log subband power spectra and the driving
performance of Subject 3 corresponding to the different frequency bands from 8 to 15 Hz of the 
ICA component 11 and 13 in the training and testing sessions that uses the same ICA weighting
matrix obtained from the training session. 

Frequency 8Hz 9 Hz 10 Hz 11 Hz 12 Hz 13 Hz 14 Hz 15 Hz
Training 
Session 

0.82 0.89 0.92 0.92 0.92 0.92 0.89 0.87 
Com 11 

Testing 
Session 

0.78 0.90 0.93 0.93 0.93 0.94 0.94 0.91 

Training 
Session 

0.77 0.88 0.90 0.91 0.92 0.91 0.90 0.86 
Com 13 

Testing 
Session 

0.76 0.89 0.91 0.92 0.93 0.92 0.92 0.89 

In this section, we use the correlation coefficients to find the optimal frequency bands 

and localizations of electrodes according to the scalp topographies of ICA weighting matrices. 

Previous studies [27-31] showed that it is not applicable to use full EEG frequency bands to 

accurately estimate individual changes in vigilance and performance. Because the artifacts 

and individual variability in the EEG dynamics accompanying loss of alertness even the 

information about alertness may be distributed over the entire EEG spectrum. Table 5-3 

shows the correlation coefficients between different frequency bands of the two ICA 

components and driving performance of Subject 3 in training and testing sessions. The results 
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show the better frequency bands of ICA components 11 and 13 are from 10 to 14 Hz with the 

correlation rate up to 0.94. Table 5-4 lists the correlation results for both sessions using the 

optimal frequency bands within 10~14 Hz in single ICA component of Subject 3. The results 

show that the frequency bands from 10 to 14 Hz of ICA components 11 and 13 have the 

highest correlation coefficients than the other components. 

 

Table 5-4 

The correlation coefficients between log subband power spectra and the driving performance of
subject 3 using the optimal frequency bands (from 10 to 14 Hz) corresponding to single 
component. 

ICA 
Component 

11 13 26 24 5 31 29 32 27 

Training 
Session 

0.92 0.91 0.88 0.82 0.80 0.78 0.78 0.77 0.76 

ICA 
Component 

11 13 26 5 33 24 28 29 31 

Testing 
Session 

0.93 0.92 0.89 0.84 0.83 0.82 0.82 0.82 0.79 

 

    Table 5-5 shows the frequency bands of the five participants which are selected by 

manual method and AFSM technology, respectively. The frequency bands selected by manual 

method are called the optimal frequency bands in this experiment. The optimal frequency 

bands means repeatedly testing to find the most appropriate frequency bands for the best 

estimating result. For Subject 3, the manual method and the AFSM technology determine the 

same frequency bands. 
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The frequency bands of the five participants are selected according to the two ICA 

components for both the manual methods and the AFSM technology. It is noted that these two 

methods also select the same frequency bands by using the EEG channels for the five 

participants. 

 

Table 5-5 

The frequency bands for the two ICA components in Table 5-2 selected by manual method and 
the AFSM technology corresponding to different subjects.  

Frequency Bands Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Manual Selection 5 ~ 8 Hz 8 ~ 13 Hz 10 ~ 14 Hz 4 ~ 7 Hz 8 ~ 13 Hz

AFSM Technique 4 ~ 8 Hz 8 ~ 12 Hz 10 ~ 14 Hz 5 ~ 9 Hz 9 ~ 13 Hz

 

Table 5-5 shows the optimal frequency bands ranges corresponding to different subjects 

according to the higher correlation coefficients and repeated testing [72]. And it also shows 

the frequency bands selected by the AFSM technique of all subjects. It shows that the better 

frequency bands are not necessarily the same for different subjects. The frequency bands 

selected by manual method and the AFSM technique are almost the same but slightly 

different for different subject. Hence, the results of driving error estimation by using the 

frequency bands selected by manual method and AFSM technique will be similar.  
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5.3.4 Drowsiness Estimation based on ICA Components or EEG Channels 

Fig. 5-13 shows the actual and estimated driving performance index of training and 

testing sessions with respect to Subject 3 using the optimal frequency bands selected 

manually combined with linear regression model. It can be found that the estimated driving 

performance matches well with the actual driving performance index with correlation 

coefficient r = 0.93 in the training and r = 0.92 in the testing by using two ICA components of 

subject 3.  

(a) (b) 

(c) (d) 

Fig. 5-13: Driving performance estimation of Subject 3 using linear regression model with the 

optimal frequency bands selected manually. (a) Result of training session by using ICA 

components, (b) Result of testing session by using ICA components, (c) Result of training 

session by using EEG channels, (d) Result of testing session by using EEG channels. 
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    In this study, we use a least-square linear regression model to estimate the subject’s 

driving performance based on the information obtained from the time-frequency power 

spectra analysis of ICA components or EEG channels. We used only two ICA components 

that performed the highest correlation between the ICA subband power spectrum and the 

driving performance such that the most artifacts can be removed and the available information 

of drowsiness estimation is extracted. Fig. 5-13 (a)(b) plots the estimated and actual driving 

performance of training and testing sessions for Subject 3. The linear regression model is 

trained with one session and tested against a separated session. As we can see, the estimated 

driving performance matched well with the actual driving performance with correlation 

coefficient r=0.93 in the training and r=0.92 in the testing. 

 

Table 5-6 

Driving performance estimation using the optimal frequency bands and linear regression model
of the five participants by two ICA components or two EEG channels. 

Performance of Results Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Average

Trainin 92 % 91 % 93 % 89 % 90 % 91 % 
ICA Components 

Testing 91 % 89 % 92 % 86 % 80 % 87.6 %

Trainin 88 % 90 % 91 % 87 % 94 % 90 % 
EEG Channels 

Testing 78 % 86 % 84 % 84 % 73 % 81 % 

 

Table 5-6 shows the statistics across ten sessions for five selected subjects. The mean 

correlation coefficient between actual driving performance time series and within training 

session estimation is 0.91±0.016, whereas the mean correlation coefficient between actual 

driving performance and cross testing session estimation is 0.876±0.048. These results 

suggest that continuous ICA-based driving performance estimation using a small number of 



 74 
 
 

frequency bands is feasible, and can give accurate information about minute-to-minute 

changes in operator’s alertness. 

The driving performance estimation of Subject 3 based on a linear regression model with 

frequency bands 10~14 Hz of EEG channels Pz and P4 as inputs features are shown in Fig. 

5-13 (c)(d). The correlation coefficient between estimated and actual driving performance is r 

= 0.91 in the training session and r = 0.84 in the testing session, which is just a little lower 

than those using corresponding ICA components. The mean correlation coefficient between 

actual driving performance time series and within training session estimation is 0.90±0.027, 

whereas the mean correlation coefficient between actual driving performance and cross 

testing session estimation is 0.81±0.054.  

 

5.3.5 Driving Performance Estimation based on AFSM and SONFIN 

To verify the correctness and effectiveness of the AFSM method, the optimal frequency 

bands of the ICA components in these critical bands were feed as the input features of the 

linear regression models. We also used the Self-cOnstructing Neuro-Fuzzy Inference Network 

(SONFIN) [71] model to estimate and predict the individual driver’s driving performance by 

taking the advantages of fuzzy reasoning, learning abilities, and flexibility of fuzzy neural 

networks. By the SONFIN technology, we expect to compensate the results of driving 

performance estimation by using the AFSM method for further application in the realistic 

driving environment in opposition to using the optimal frequency bands selected manually 

and linear regression model. 
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Table 5-7 shows the comparison results of driving performance estimation. Although the 

results of performance based on AFSM methods using linear regression models are somewhat 

lower than those selected manually, the adaptive feature selection mechanism has the 

advantages of saving time and cost when the whole system is applied for on-line alertness 

monitoring. 

 

Table 5-7 

Driving performance estimation using the frequency bands selected by manual method and the 
AFSM technology based on two dominant ICA components as input features of the linear
regression model and SONFIN models for five subjects. 

Performance of Results Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Average

Training 92 % 91 % 93 % 89 % 90 % 91 % Manual 
Selection Testing 91 % 89 % 92 % 86 % 80 % 87.6 %

Training 92 % 91 % 93 % 82 % 90 % 89.6 %

Linear 
Regression 

Model AFSM 
Technology Testing 91 % 88 % 92 % 78 % 80 % 85.8 %

Training 94 % 93 % 97 % 93 % 94 % 94.2 %Manual 
Selection Testing 93 % 87 % 94 % 88 % 83 % 89 % 

Training 92 % 92 % 96 % 87 % 91 % 91.6 %

SONFIN 
Model AFSM 

Technology Testing 91 % 89 % 94 % 83 % 85 % 88.4 %

 

    Table 5-7 also shows the estimating results based on AFSM methods combined with 

SONFIN. Compared to the results using linear regression models with manual method, using 

fuzzy neural network models can achieve higher estimating results and can compensate 

slightly by using AFSM technique. Therefore, these results suggest that continuous 

EEG-based driving performance estimation using a small number of frequency bands is 
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combined with both linear models and fuzzy neural models, and can give accurate 

information changes in operator’s alertness. 

 

5.3.6 Performance Comparison Using Different Moving-Average Window 

Length 

The correlation coefficients between two time series of the driving performance and 

EEG log bandpower spectrum from 9 ~ 15 Hz in Pz channel using moving average with 

different widow for Subject 3 is shown in Fig. 5-13. It shows that the 90-second moving 

average windows can perform the maximum correlation coefficient for continuous drowsiness 

analysis. 
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Fig. 5-14: Correlation coefficients between the driving performance and EEG log power 

spectrum from 9 ~ 15 Hz in Pz channel of subject 3 by using different moving averaged 

windows lengths. 
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5.4  The Brain Source of Drowsiness on the Cerebral Cortex 

In this session, the estimation of driving performance will be evaluated to analyze the 

number of EEG channels and the regions on the scalp. The experimental results also show the 

brain source of drowsiness on the cerebral cortex.  

5.4.1 Comparison with Using Different Number of EEG Channels 

    The driving performance estimation by the optimal frequency bands of two ICA 

components and EEG channels obtained using different number of EEG channels are shown 

in Table 5-8.  

Table 5-8 

Comparison of driving performance estimation obtained from different number EEG channels by 
using the optimal frequency bands of two EEG channels or ICA components as the features of linear 
regression model for the five participants.  

Five Conditions 30 channels 20 channels 15 channels 10 channels 6 channels 

Two ICA 
Components  

Performance 89 % 87 % 88 % 86 % 82 % 

Two EEG 
Channels  

Subject 1 

Performance 81 % 81 % 81 % 79 % 73 % 

Two ICA 
Components  

Performance 90 % 90 % 89 % 90 % 89 % 

Two EEG 
Channels  

Subject 2 

Performance 88 % 88 % 91 % 88 % 84 % 
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Five Conditions 30 channels 20 channels 15 channels 10 channels 6 channels 

Two ICA 
Components

Performance 92 % 91 % 89 % 91 % 91 % 

Two EEG 
Channels  

Subject 3 

Performance 84 % 84 % 87 % 84 % 85 % 

Two ICA 
Components  

Performance 88 % 88 % 87 % 84 % 88 % 

Two EEG 
Channels  

Subject 4 

Performance 84 % 84 % 84 % 83 % 84 % 

Two ICA 
Components  

Performance 77 % 76 % 72 % 74 % 72 % 

Two EEG 
Channels  

Subject 5 

Performance 72 % 72 % 72 % 70 % 70 % 

 

It can be found that the performance of drowsiness estimation decreases if less number 

of EEG channels were used. It is reasonable because the more EEG channels we used, the 

more information we extract. Hence we can observe the estimating results of the five 

participants in the final condition, which we only use six EEG channels, the performance is 

slightly reduction to the results in the first condition. For using six EEG channels of all 
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participants, the mean performance is 84.4±7.7 % by ICA components and the mean 

performance is 79.2±7.1 % by EEG channels.  

For example, we can compare with the estimating results of different tracking methods 

by using two ICA components and EEG channels for subject 1 as shown in Fig. 5-15.  

 

Fig. 5-15: Comparison of estimating results by using ICA components and EEG channels. 

 

For each subject, the sources of the ICA components are near the channel locations of 

EEG signals regardless of the number of EEG channels we used. Even we only have six EEG 

channels signals, this six EEG channels can still collect much information propagated from 

any source to the channels locations. Through ICA decomposition, we can also get desired 

ICA components by using six EEG channels. However, the less information from EEG 

signals we collect the fewer artifacts will be removed by ICA technology. For all participants, 

the more EEG channels we used, the advantage of ICA-based approach is more obvious. 

Therefore, only using six EEG channels can achieve high estimating results for reducing the 

calculation in the real-time applications. 
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5.4.2 Comparison of Using Different Region of EEG Channels 

The comparison of driving performance estimation using two EEG channels located at 

the four different regions by the optimal frequency bands combined with linear regression 

model for the five participants are shown in Table 5-9.  

 

Table 5-9 

Comparison of driving performance estimation using two EEG channels of the four different 
regions. 

Four Regions on the Scalp 
Parietal and 

Occipital 
Left Temporal Right Temporal Frontal 

One ICA 
Component 

 
Performance 90 % 93 % 84 % 73 % 

One EEG 
Channel 

 

Subject 1 

Performance 86 % 74 % 82 % 38 % 

One ICA 
Components 

 
Performance 90 % 93 % 94 % 92 % 

One EEG 
Channels 

 

Subject 2 

Performance 92 % 88 % 91 % 93 % 
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Four Regions on the Scalp 
Parietal and 

Occipital 
Left Temporal Right Temporal Frontal 

One ICA 
Components 

  
Performance 91 % 88 % 88 % 88 % 

One EEG 
Channels 

 

Subject 3 

Performance 86 % 83 % 84 % 89 % 

One ICA 
Components 

 
Performance 86 % 80 % 82 % 79 % 

One EEG 
Channels 

 

Subject 4 

Performance 84 % 78 % 74 % 82 % 

One ICA 
Components 

    
Performance 77 % 80 % 63 % 69 % 

One EEG 
Channels 

    

Subject 5 

Performance 82 % 72 % 69 % 68 % 

According to Table 5-8, the sources of all ICA components and locations of all EEG 

channels we selected for estimating drowsiness are near parietal and occipital regions on 

cerebral cortex. In this session, we want to find out the universal brain source of drowsiness 
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on cerebral cortex among our participants. By using one ICA component or one EEG channel 

of different regions on cerebral cortex, we can explore the better regions for drowsiness 

experiments according to the performance of estimating drowsiness. 

    Table 5-9 help us to understand the brain source of drowsiness on cerebral cortex of all 

participants. First, we consider about the parietal and occipital regions of the five subjects. 

There is no doubt about the EEG channels we selected are on the parietal and occipital 

regions on cerebral cortex. And the sources of ICA components we used indicate the same 

regions particularly near Pz and Oz channel locations. 

    Secondly, we discuss the left and right temporal regions of the five subjects. For 

selecting the EEG channels, the locations of the selected channels approach to parietal regions 

on cerebral cortex. For selecting the ICA components, the scalp topographies of all indicate 

the sources also approach to parietal regions on cerebral cortex. Through ICA weighting 

matrices W, the sources of spatial distributions in scalp topography may extend to the 

occipital regions on cerebral cortex. Therefore, the performance of estimating results is still 

excellent by using signals measured from temporal regions on cerebral cortex due to we can 

collect the source signals propagated from the parietal and occipital regions to the temporal 

regions through ICA decomposition.  

    Finally, for frontal region on cerebral cortex, it is clear that the FCz channel is selected 

for the five subjects by using EEG channel signals. Because of this channel is the nearest 

location to the parietal and occipital regions on cerebral cortex. Broadly speaking, the 

performance of drowsiness estimation is acceptable by only using FCz channel signals. 

Although the estimated result of using EEG channel at FCz is poor for subject 1, the result 

can be improved to be passable through ICA technique. The scalp topographies of ICA 

components indicate the sources of spatial distributions approach to occipital regions on 

cerebral cortex. The results of study using EEG channels on the frontal region for drowsiness 
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estimation are very important for further study of using the spiked dry electrodes. According 

to about discussion, we may conclude that the brain sources of drowsiness the parietal and 

occipital regions on cerebral cortex.  

 

5.5  Actual Application of the Spiked Dry Electrodes 

In this session, we first examine the performance of the spiked dry electrodes developed 

by the μ System & Control Lab, in the Brain Research Center of the University System of 

Taiwan. Fig. 5-16 shows electrode-skin-electrode impedance (ESEI) of three types the spiked 

dry electrodes is lower than the standard wet electrodes.  

 

(a) (b) 

Fig. 5-16: The ESEI comparison between dry electrodes and wet electrode with/without skin 

preparation. (a) Without skin preparation, (b) With/without skin preparation 

μSystem and Control Lab, Brain Research Center of the University System of Taiwan 

Then, the 32-channel EEG signals of Subject 2 measured by 2 spiked dry electrodes and 

30 standard electrodes are decomposed into 32 ICA components. The scalp topographies of 

these ICA components for Subject 2 are shown in Fig. 5-17. 
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Fig. 5-17: The scalp topographies of all ICA components trained by EEG data of Subject 2 

using 2 spiked dry electrodes and 30 wet electrodes. 

 

The first question of using the spiked dry electrodes is the height of probes limited by the 

MEMS technology. The second question is the movement without using the electrolytic gel. 

Fig. 5-18 (a) shows the EEG signals measured by the spiked dry electrodes on FP1 and FP2 

channels with moving activity noise. This problem can be solved by the ICA decomposition 

technique. For example, the ICA components 3 and 4 of Subject 2 in Fig. 5-19 can be 

regarded as the noise component of movement artifacts. In order to using the EEG signals 

measured by the spiked dry electrodes into drowsiness estimated system, we remove these 

components from the measured EEG signals and the resultant EEG signals are shown in Fig. 

5-18 (b). 
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(a) 

 
(b) 

Fig. 5-18: The raw EEG data are measured by placing the spiked dry electrodes at FP1 and 

FP2 channels using the standard electrodes for the others channels of Subject 2. (a) The 

EEG signals of FP1 and FP2 channels with movement artifacts, (b) The EEG signals after 

ICA-based artifact removal.  
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Similarly, we remove the other noise components from 1 to 11 for further analysis. Fig. 

5-19 shows the resultant EEG signals at FP1 and FP2 channels after removing the ICA 

components from 1 to 11.  

  

(a) (b) 

  

(c) (d) 

Fig. 5-19: The EEG signals measured by using the spiked dry electrodes before/after artifacts 

removal using ICA decomposition technology. (a) and (b) EEG power spectra signals of FP1 

and FP2 channels before removing all noise components, (c) and (d) EEG power spectra of 

FP1 and FP2 channels after removing all noise components. 

    Comparing Fig. 5-19 (a)(b) and (c)(d), it can be observed the small peak near 10 Hz of 

power spectrum appears after removing noise components by ICA technique. The features 
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propagated from the source on the parietal and occipital regions can be applied to the 

following drowsiness estimation.  

The correlation coefficients between log subband power spectra and driving performance 

for each frequency of all EEG channels after noise components removal is shown in Fig. 5-20. 

It is obvious that the correlation spectra shows a strong evidence between fluctuations in EEG 

bandpower of frequency bands within 8 ~ 13 Hz and driving performance with high positive 

correlations in most EEG channels including FP1 and FP2 channels. 

 
Fig. 5-20: Correlation coefficients spectra of all EEG channels after removing all noise 

components.  

 

The experimental results show in Table 5-10 demonstrate that it is feasible to using two 

EEG signals at frontal region acquired by dry electrodes for drowsiness estimation. 

Table 5-10 

Driving performance estimation of subject 2 by using two spiked dry electrodes. 
 Performance of Results 

Training Session 73 % 
Testing Session 70 % 
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Ⅵ.Conclusions 

    In this thesis, we propose an EEG-based drowsiness estimation technology based on 

independent component analysis, time-frequency spectral analysis, correlation analysis and 

the fuzzy neural network model to continuously and indirectly estimate fluctuations of human 

alertness level in the VR-based dynamic driving environment. The VR-based dynamic motion 

platform combined with the EEG measurement system is an innovation in brain and cognitive 

engineering researches. Our study provides good evidence to show that the VR-based 

dynamic motion platform is required for the study of human cognitive state in the real world. 

The kinesthetic stimuli obviously influence the cognitive states and it can be observed by 

analyzing the EEG signals. Using ICA decomposition technique, we also demonstrate the 

brain sources related to kinesthetic stimulus are symmetrical on the both sides near FC3 and 

FC4 channel locations on scalp, respectively.  

Secondly, we also compare the EEG changes related to different drowsiness levels in the 

dynamic and static environment. The experimental results show that the EEG power spectrum 

near α-band will change accompanying different drowsiness level. This is an important 

observation for the EEG-based drowsiness estimation. In addition, the dynamic motion 

platform obviously influences the cognitive states of drowsiness. 

    Thirdly, we demonstrate a close relationship between fluctuations in driving performance 

and the log subband power ICA and EEG spectrum. This relationship appears stable within 

individuals across sessions, but is somewhat variable between subjects. We also proposed a 

novel AFSM to solve the sorting problem of ICA components and to extract useful frequency 

bands based on the correlation analysis. The averaged accuracies of training and testing 

session for the five participants can achieve high to 92 % and 88%, respectively by using the 

AFSM technique combined with the fuzzy neural networks.  
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    We also observed that the brain sources of drowsiness locate in the brain parietal and 

occipital regions by analyzing the correlation of EEG signals on different regions and the 

drivers’ drowsiness index. For practical applications, we are the pioneers involving the spiked 

dry electrodes into the drowsiness estimation system. The experimental results show that it is 

feasible to put the spiked dry electrodes on the frontal region combined with ICA technique to 

estimate drivers’ drowsiness level. 

In the future, we can design more driving tasks to discuss the influence of kinesthetic 

stimulus on EEG dynamic changes. We can develop the EEG-based drowsiness estimation 

technology for the dynamic driving environment. It will be different from the method 

proposed in this thesis, since we have discovered that the drivers’ EEG α-band responses as 

different the dynamic platform is moving or motionless. We can also use the spiked dry 

electrodes array placed on frontal region combined with ICA technique to replace the scalp 

cap for practical application. 
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