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EEG-Based Drowsiness Estimation Using Independent
Component Analysis in Virtual-Reality
Dynamic Driving Simulator

Student :  Yu-Jie, Chen Advisor :  Prof. Chin-Teng, Lin

Institute of Electrical and Control Engineering
National Chiao Tung University

ABSTRACT

Preventing accidents caused by drowsiness has become a major focus of active safety
driving in recent years. It requires an optimal estimation system to online continuously detect
drivers’ cognitive state related to abilities in perception, recognition and vehicle control. The
propose of this thesis is to develop an adaptive drowsiness estimation system based on
electroencephalogram (EEG) by combining with'.independent component analysis (ICA),
time-frequency spectral analysis, cotrelation analysis and fuzzy neural network model to
estimate a driver’s cognitive state in Virtual-Reality (VR) dynamic driving simulator.
Moreover, the VR-based motion platform with EEG measured system is the innovation of
brain and cognitive engineering researches.

Firstly, there is good evidence to show that the necessary of VR-based motion platform
for brain research in driving simulation. This is an important fact to stress that the kinesthetic
stimuli obviously influence the cognitive states and the phenomenon can be indicated by the
EEG signals. Secondly, a single-trial event-related potential (ERP) is applied to recognize
different brain potentials by the five degrees of drowsiness in driving. And we demonstrate a
close relationship between the fluctuations in driving performance and the EEG signal log
bandpower spectrum. Our Experimental results show that it is feasible to accurately estimate
the driving performance. Then we observe that the brain source related to drowsiness is on
cerebral cortex. Finally, the spiked dry electrodes and the corresponding movement artifact
removal technology were designed to replace the regular wet electrode for the purpose of

applications in the realistic driving or working environments.

Keyword : Drowsiness, Electroencephalogram, Virtual Reality, Dynamic Platform, Cognitive
State, Event-Related Potential, Kinesthetic Stimulus, Independent Component Analysis, Dry
Electrode.



?’

FI* Pk 2 Jé’b et EE T BP
PSRRI

AN
P A“

FrAoim s B th R R i

'va

M
e
i

SRR R S I IE T DY R

¥ &

FE R PRI EROUEL N X E A X 2T AHE RGP AP F
T- BERILEOGR LR T TR E O RIE R R A Rk R )
BERDE A o AR P A B - ROl RAFA ARG R R JIF R T R

MELEEATH LT~ b S 2 AFT T IR AR M s 4700 R A SRR B AR

BREIRFEHERER (> B ER R pEpEd BB M AERT B ORE Y B
Erg BR G B E g T L B ERRARC AT T 0 AR R A ARAT L AR AL
— I AIET o

RA PRI AR RS EBET S0 e ER Y Ll L R

“mi

B R e 6 P BT PR G MBI AR o A ) H - sk enE B ARG T A
oo A B D AR T R E TR AR B I AR
BELARZ BB AET R X 0d TR T o I G MELA 5 R R
REREAREFT G AP APy Ak Vgt gpiplcn®d > (250 3%
Bo® ¥ (FH o AP EN DRSS L ) R R R TR Y MR

v ATEF P AR N R E RS L FRE Y -

MeEF © gEpEGR - Tk AT R B AT SRR TEpMT L BT

Foo st qo Tk e



® o #

AR A FARRE A R HEER L AEI A EF TR Rk
R FRirf &Ry > D R B A2 @iz

E4

R Y AR EEr ) PR s TR S A I Ty

ZFRBEY SR ) R P el Mfelms AT 4 F 5 % st S S

AF g é_;;k,pgz R, b SEREAS S g;.,ta]gﬁpé IR s Xl D SRR e 5 BIEag 4 o

AR B TR ALERFE RPEEL B

# =
PP b R R RRT R R FREF LI ER > BN

-

BGOSR REHRM A | o B i SR g

BUlR A R %G RIS A Gl ek

Bledn fe B AL P RELORE ST 2 E
BIF3 N C Az 2 5 BRI AFERN LS o T BB Fo 7l w

FE AL A EATT Y RS o T o > AL R R AL T

R B L A e B BB R RTE AR S L - £ i o

Fies o RBFE eI h2F 5 A nf P o
Bfs o NEBR B L PP A F i

—b

|J/ -ﬁg,if}\ﬁ,\%;/ g{"‘ r‘rj}iﬁﬂi l‘/"‘i;}"";}"-r’k’g

|

\\\

z’ftﬁﬂf’-"’“i’ﬁ‘l'} e ’ﬁg'/,] g %4 4%

WA R ARG DFA B  E e AR R P R SR

il



Content

W 0] L Uod B T =1 o] 1 SRS i
ADSEFrACE IN CRINESE ... i
o 0111 =T [0 T=T 1= o | S iii
(©10] 01 (=] o | AT TSP TT PR PRPRSPRPRN Y%
LISE OF TADIES ... s Vi
I TS o) T U 1SRRI vii
ADDIEVIALION ... X
I L INEFOTUCTION ..ttt b bbbt 1
1.1 Current Researches of Drowsiness Estimation.............ccooceevieeiieniienienieeniieeee 2

1.1.1 Detecting Physical Changes ............ccccceevieriiieniieiiienieeieesee e 3

1.1.2 Measuring Physiological Changes ............cccceviieiiienieeiienieeieesee e 5

1.2 Virtual Reality Dynamic SImulator...........ccccooviieiiieniiiiiienieeiieie e 7

1.3 Organization Of ThiS TheSISiahiihi e veerreerieeiierieeiierie ettt eeees 10

IT. SYStEM AFCNITECTUIE ... i s s sn s cki b ettt bbb ene e 12
2.1 3D Virtual Reality ERvIronmentl. i .ot e e 13

2.2 Stewart Motion Platform ... ...l e 15

23 EEG Data ACqUiSTtion.. .. o il s et eteeeeeeereesieeeteesieeeteeseeeenseesaneenseenenas 16

2.4 SUDJECE .ttt i idE0 e Sttt et et e e te e st e e bt e seeeenbeesaaeenbeessnesnseenaeeans 17

2.5 Spiked Dry EIECtrode .......ccvoiiii ettt et 18

I .EXPErimental DESION ........ooviiiiiiieiiiiteiiee e 20
3.1 The Influence of Kinesthetic Stimulus on Cognitive State ............ccceceevvieneenee. 21

3.2 Investigation of Drowsiness Event-Related Potentials...........c.cccoeviiniininnennene. 23

3.3 Adaptive Estimation of Continuous Driving Performance.............ccccceervrennennne. 24

34 Search for Brain Source of Drowsiness on Cerebral CorteX..........ccceeveveererennnnn. 25

3.5  Application of Dry Electrodes in the Drowsiness Experiment.................c..c........ 28
IV.DALA ANAIYSIS ...ttt bbb bbbt 29
4.1 Event-Related Potential (ERP) Analysis.......ccceeeviiniiiiiiiniieiiecieeieeieeee e 29

4.2 Analysis of Continuous EEG Data.........ccccoeoiiiiiiiiiiiieiiiiecee e 32

4.3 Independent Component Analysis (ICA) .....ccceeviieiieniieiieieeeee e 36

4.4  Time-Frequency Spectral ANalysis ......cccccceevieriienieiiiieiieeieerie et 40

4.5 Correlation ANALYSIS .....cccuieeiieriieeiieiie ettt ettt et eaes 42

4.6 Adaptive Feature Selection MechaniSm............ccceccveveiieriieniienieniieieeieeiee e 44

4.7 Self-cOnstructing Neuro-Fuzzy Inference Network (SONFIN) .........cccceeveneen. 45

v



V .RESUIES @Nd DiSCUSSIONS.....ceeeeeeeeeeeeeeeeeee e 49

5.1 The Influence of the VR-based Motion Platform on Cognitive States................. 49
5.1.1 The Brain Source of Kinesthetic Stimulus on the Cerebral Cortex.......... 49
5.1.2 Necessity of VR-based Motion Platform ...........cccccoeviieiiiniiiniienieeenne, 53

5.2 The Brain Activity of Drowsiness in Different Cognitive States............ccce..e... 59
521 The Degree of Cognitive States in Drowsiness.........cccceeecvveriieeieeneennnnn. 59
522 The Dynamic Platform Influences Drowsiness ERP............c.ccccceveneenee. 63

53 The Performance of Adaptive Drowsiness Estimation............ccccceeeveeeivenieeneenen. 64
53.1 Relationship between the ICA/EEG Power Spectrum and Drowsiness... 65
532 The Dominant ICA Components and EEG Channels for Drowsiness.....67
533 Selection of Frequency Bands Based on Spectral Correlation and AFSM

69
534 Drowsiness Estimation based on ICA Components or EEG Channels.... 72
535 Driving Performance Estimation based on AFSM and SONFIN............. 74
53.6 Performance Comparison Using Different Moving-Average Window
Length 76

5.4 The Brain Source of Drowsiness on.the Cerebral CorteX .........cccccveveveereruennenne 77
54.1 Comparison with Using Different Number of EEG Channels.................. 77
54.2 Comparison of Using Different Region of EEG Channels....................... 80

5.5  Actual Application of the Spiked Dry Electrodes ............ccccoevvievienciiiniieniieienne, 83

Reference.......ccooevnvvvveee o SGCEETTTT A 90



List of Tables

Table 1-1 Techniques for Detecting DIOWSINESS......c.eccviiuieriieiieeierieeie et eaeeeee e eanas 3
Table 5-1 The scalp topographies of two ICA components have different response in the two
CONAILIONS ..ttt sttt ettt ettt st et et sb e et e beesbeebeeabe s bt e bt eatesseenbeensesanens 52
Table 5-2 Two ICA components and two EEG channels of the five participants with the
highest correlation coefficients with the driving deviation are selected for adaptive
ArOWSINESS EStIMATION . ..c..vetientieiieeiterteete ettt ettt ettt sttt et sae et et e seeenbeenee s 68
Table 5-3 The correlation coefficients between the log subband power spectra and the driving
performance of Subject 3 corresponding to the different frequency bands from 8 to 15
Hz of the ICA component 11 and 13 in the training and testing sessions that uses the
same ICA weighting matrix obtained from the training S€SSiON ........c.ccecvevverieevennnene 69
Table 5-4 The correlation coefficients between log subband power spectra and the driving
performance of subject 3 using the optimal frequency bands (from 10 to 14 Hz)
corresponding to single component
Table 5-5 The frequency bands forithe two, ICA components in Table 5-2 selected by manual
method and the AFSM technologycorresponding to different subjects...................... 71
Table 5-6 Driving performance estimation using the optimal frequency bands and linear
regression model of the. five ‘participants by two ICA components or two EEG
CRANMELS .. ittt ettt ettt et ene s 73
Table 5-7 Driving performance estimation using the frequency bands selected by manual
method and the AFSM technology based on two dominant ICA components as input
features of the linear regression model and SONFIN models for five subjects............ 75
Table 5-8 Comparison of driving performance estimation obtained from different number
EEG channels by using the optimal frequency bands of two EEG channels or ICA
components as the features of linear regression model for the five participant........... 77
Table 5-9 Comparison of driving performance estimation using two EEG channels of the four
different regions

Table 5-10 Driving performance estimation of subject 2 by using two spiked dry electrodes87

vi



List of Figures

Fig. 1-1: The vestibular system and its measurement principles. ...........cecvevverievierieneseseeeenens 8
Fig. 2-1: The block diagram of the dynamic VR-based driving simulation environment with
the EEG-based physiological measurement SYStem. ........c..ceevveeeriieerieeeriieeenieeeevee e 12
Fig. 2-2: Flowchart of the VR-based highway scene development. The dynamic models and
shapes of the 3D objects in the VR scene are created and linked to the WTK library to
form a complete interactive VR simulated scene. ..........ccceeevveeriieeiiieeiiiecieeeee e 13
Fig. 2-3: The VR-based four-lane highway scenes are projected into 360 surround screen

with seven projectors. Several photos captured from different view angle at a fixed point

are connected to form this Wide figUIe. .......cccviveiiiieiiiececceece e 14
Fig. 2-4: The Stewart platform. (a) The sketch map for the Stewart platform. (b) The actual
Stewart platform. A driving cabin is mounted on this platform in our laboratory.......... 15

Fig. 2-5: The International 10-20 system of electrode placement. (a) A lateral view, (b) A top
VIBW. 1ttt ettt et ettt et e s ht e et e s bt e et e e ehteea b e e ea et et e e eh bt e bt e eh et e bt e e ht e e bt e bt e eabeeehbeenbeeenteentean 16
Fig 2-6: Corresponding equivalent citeuit illustrated below shows that spiked dry electrodes
can perform a low-impedanee interface better than the standard electrodes. (a) Standard
wet electrode, (b) Spiked diy electrode. il ..ol e 18
Fig. 2-7: Photographing of fabrication result of spiked dry electrodes busing optics

T ICTOSCOPC. «vveeuvrreenereerereesnssabaibnnesohanannssnesnssesidasienssseessseesssesesssesesssesessseessssessssessnsseennseees 19
Fig. 3-1: The flowchart of designs and goals-of all experiments. ............ccccovevieirineninennnne. 20
Fig. 3-2: The view of the driving cabin forward at rear in VR-based highway scene. ............ 21
Fig. 3-3: Illustration of the design for stop and start eXperiments. ............ceevevveveerieriesresneenenn. 22
Fig. 3-4: The width of highway is equally divided into 256 units and the width of the car is 32
UIHIES. ittt ettt ettt ettt ettt sb et e et e b e et eat e sb e et e et e bttt eat bt et eat e bt et sane bt b ennes 23

Fig. 3-5: The continuous driving performance of long-term recordings in the driving

simulation. (a) The distribution of driving performance, (b) Moving averaged driving

error in a 60-minute experiment with at least 2 drowsy periods. ........cccccveevveeirieerinnne 25
Fig. 3-6: Five conditions for different number of EEG channels. (a) 30 channels, (b) 20
channels, (c) 15 channels, (d) 10 channels, (€) 6 channels............cccceevviieriieinieeieienne 26
Fig. 3-7: Four clusters of electrodes on the scalp. (a) Frontal location, (b) Left temporal
location, (c) Right temporal location, (d) Parietal and occipital location........................ 27
Fig. 4-1: The flowchart of EEG data analysis in the first experiment.............ccccecevereirennnnne. 31
Fig. 4-5: Moving-averaged log power spectral analysis for i ICA component. ..................... 40

Fig. 4-6: Canonical correlation spectral matrix of subject 3. Note that the higher correlation

coefficients appear at 9 ~ 25 Hz in ICA components 11 and 13, respectively................ 43

vii



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

4-7: Example of the adaptive feature selection mechanism for subject 3. Note that the
band power of ICA components 11 and 13 at frequency bands 10 ~ 14 Hz are selected
as input feature of the eStMAtOrS. ........cccuieiiiiiiieiiieiee e 45
4-8: The network structure of SONFIN. .....cccccciiiiiiiiiiiiiieeeeeee e 46
5-1: The scalp topographies of all [CA components trained by EEG data from Subject 1.
......................................................................................................................................... 50

5-2: Two ICA components have different responses between the two conditions of all
events. (a) The source near FC3 location, (b) The source near FC4 location. ................ 50
5-3: The ERP and ERSP analyses of component 20 for stop event. (a) The ERP of
motion condition, (b) The ERP of motionless condition, (¢) Overplot power spectrum of
two conditions, (d) The ERSP of motion condition, (¢) The ERSP of motionless
COMAILION. 1.ttt sb e bt et s bt e bt et e sbe e bt entesbeenbeeatesaeens 54
5-4: The ERP and ERSP analyses of component 20 for start event. (a) The ERP of
motion condition, (b) The ERP of motionless condition, (¢) Overplot power spectrum of
two conditions, (d) The ERSP of motion condition, (¢) The ERSP of motionless
COMAILION. ..ottt h et et sb e bt et s bt e bt et e sbe e bt et e sbeenbeeatesseens 55
5-5: The ERP and ERSP analyses. of icomponent 20 for deviation event. (a) The ERP of
motion condition, (b) The ERP of motionless condition, (¢) Overplot power spectrum of
two conditions, (d) The ERSP of -motion, condition, (¢) The ERSP of motionless
CONAItioN. ....cceeevvereenneenee... L I L (B ettt saeees 56
5-6: The ERP analysis of component:20-for deviation event with reaction time. (a) The
ERP with reaction time of “metion condition, (b) The ERP with reaction time of
motionless condition, (¢) Aligning onset by reaction time from (a), (d) Aligning onset by
reaction time frOM (D)......cccueiiiuiiiiiieece et et e 57
5-7: The trials are sorted according to reaction time and equally divided into five groups
OF SUDJECE 4. .ottt ettt et e ettt e e bee st e esseeenbeessbeenseenneeens 59

5-8: One component is related to drowsiness and the ERP analysis with all single-trials.

5-9: The results of ERSP analysis in five different cognitive states. (a) Drowsiness level
from 1 ~ 20 %, (b) Drowsiness level from 21 ~ 40 %, (c) Drowsiness level from 41 ~ 60
%, (d) Drowsiness level from 61 ~ 80 %, (¢) Drowsiness level from 81 ~ 100 %. ........ 61
5-10: The results of ERSP analysis in five different cognitive states if the dynamic
platform is motionless. (a) Drowsiness level from 1 ~ 20 %, (b) Drowsiness level from
21 ~ 40 %, (c) Drowsiness level from 41 ~ 60 %, (d) Drowsiness level from 61 ~ 80 %,
(¢) Drowsiness level from 81 ~ 100 %0. ..c.eeeeiieeiiieeiieeee e 63
5-11: The results of correlation coefficient analysis for Subject 3. (a) The correlation
coefficient spectra of ICA components, (b) The correlation coefficient spectra of EEG
channels, (c) The ICA component with highest correlation with the driving performance,

(d) The EEG channel with highest correlation with the driving performance. ............... 65

viii



Fig.

Fig

Fig.

Fig
Fig

Fig

Fig

Fig

Fig.

5-12: Two ICA components and two EEG channels with the highest correlation
coefficient with the driving performance index. (a) ICA Component 11, (b) ICA
Component 13, (c) EEG Pz channel, (d) EEG P4 channel.............c.ccccooviiiiiniiinnen, 66

. 5-13: Driving performance estimation of Subject 3 using linear regression model with the

optimal frequency bands selected manually. (a) Result of training session by using ICA
components, (b) Result of testing session by using ICA components, (c) Result of
training session by using EEG channels, (d) Result of testing session by using EEG
CRANMNELS. ..ottt ettt et s 72
5-14: Correlation coefficients between the driving performance and EEG log power
spectrum from 9 ~ 15 Hz in Pz channel of subject 3 by using different moving averaged

WINAOWS TENEZLNS. ...ttt et e et e sseeenbeenaee e 76

. 5-15: Comparison of estimating results by using ICA components and EEG channels...79

. 5-16: The ESEI comparison between dry electrodes and wet electrode with/without skin

preparation. (a) Without skin preparation, (b) With/without skin preparation................ 83

. 5-17: The scalp topographies of all ICA components trained by EEG data of Subject 2

using 2 spiked dry electrodes and 30 wet electrodes..........c.cocvveviieriiniienieiiieieeeeen, 84

. 5-18: The raw EEG data are measured:by placing the spiked dry electrodes at FP1 and

FP2 channels using the standard electrodes for.the others channels of Subject 2. (a) The
EEG signals of FP1 and FP2 channels with movement artifacts, (b) The EEG signals
after [CA-based artifact removal. ... .l e 85

. 5-19: The EEG signals measured by using the spiked dry electrodes before/after artifacts

removal using ICA decomposition technology. (a) and (b) EEG power spectra signals of
FP1 and FP2 channels before removing all noise components, (¢) and (d) EEG power
spectra of FP1 and FP2 channels after removing all noise components. ........................ 86
5-20: Correlation coefficients spectra of all EEG channels after removing all noise

COMPOTICIIES. 1..teeiiieeiiteeeitteeiteeeiteesteeesateeesatteesateeesateeeaateeansseeensseesnsaeasnseeennseeennseesnnneesnns 87

X



Abbreviation

Subject Be an Abbreviation for

AFSM Adaptive Feature Selection Mechanism
API Application Programmer’s Interface
DOF Degree Of Freedom

ECG/EKG Electrocardiogram

EEG Electroencephalogram

EMG Electro Muscle-movement Graph
EOG Electrooculogram

ERP Event-Related Potential

ERSP Event-Related Spéctral Perturbation
FNN Fuzzy Neural Network

GSR Galvanic Skin'Response

HMD Head"Mounted Display

HRV Heart Rate Variability

ICA Independent Component Analysis
MEMS Micro Electro Mechanical Systems
NREM Non-Rapid Eye Movement

REM Rapid Eye Movement

SONFIN Self-cOnstructing Neuro-Fuzzy Inference Network
SVM Support Vector Machine

VR Virtual Reality

WTK WorldToolKit



I .Introduction

During the past few years, driving safely has received extensive attention from the
publics due to the growing number of traffic accidents. Drivers’ fatigue has been a causal
factor in many accidents because the marked decline in the drivers’ abilities of perception,
recognition and vehicle control abilities while sleepy. In the United States, according to the
National Highway Traffic Safety Administration’s (NHTSA) conservative estimation,
100,000 police-reported crashes are direct results of driver’s fatigue in each year [1], which
results in about 1,550 deaths, 71,000 injuries and $12.5 billion in monetary losses. The
National Science Foundation (NSF) also reported that 51% of adult drivers felt drowsy while
driving vehicles and 17% actually fall asleep in 2002 [2]. Although many governments and
vehicle manufacturers try to make policiesyrincluding strategies to address rates of speed,
alcohol consumption, promotion-ofusing helmets and seat belts, and enhancements of vehicle
structures, etc [3-4], to preventaccidents,~it-is difficult to avoid disasters resulted from

drivers’ loss of alertness and lack of attentions.

Driving under drowsiness will cause: (a) longer reaction time, which increases the risk of
crash, particularly at high speeds; (b) vigilance reduction, including no or delaying response
to emergency; (c) deficits in information processing, which will reduce accuracy in
decision-making tasks [5-7]. Many factors, including lack of sleep, long driving hours, use of
sedating medications, consumption of alcohol and some driving patterns such as driving at
midnight, early morning, or mid-afternoon hours, will cause drowsiness or fatigue in driving.
In addition, the nature of the task, such as driving in a monotonous environment, may also
cause fatigue. The improvement of vehicles has made drivers more and more effortless to
operate their vehicles on the road. An examination of the situations when drowsiness occurred

shows that most of the accidents occur on freeways [8]. Hence, accurate and non-intrusive



real-time monitoring of driver's drowsiness would be highly desirable, particularly if this

measure could be further used to predict changes in driver's performance capacity.

The purpose of this thesis is to develop an adaptive drowsiness estimation system based
on electroencephalogram by using independent component analysis. In the following session,
we first survey current researches of drowsiness estimation. Then we emphasize the
importance of the Virtual-Reality-based dynamic motion platform to brain research in driving

experiments. Finally, the organization of this thesis is summarized in the last section.

1.1 Current Researches of Drowsiness Estimation

Table 1-1 summarizes a number jofmethods that have been proposed to detect
drowsiness [8]. For the sensing ‘approaches of human physiological phenomena, these
methods can be categorized into“twormain'fields. For drowsiness estimation, these methods
can be further classified in two categories, non-contact and direct-contact. Direct-contact
methods require sensors attached to the driver’s body. Non-contact methods use optical
sensors or video cameras to detect vigilance changes and achieve a satisfactory recognition
rate. However, these parameters vary in different environmental situations and driving

conditions. It is necessary to devise different detection logic for different types of vehicles.



Table 1-1

Techniques for Detecting Drowsiness

Detection
Detection Techniques Description Practicality | Extendibility
Accuracy
Detection by Changes in Brain Waves, Blinking,
Physiological ) ) )
Sensing of Heart Rate, Pulse Rate, Skin Electric Potential, © X A
Signals
Human etc.
Physiological | Detection by Changes in Inclination Driver’s
Physica
Phenomena Head, Sagging posture, Frequency at Which Eyes| © O X
Reactions
Close, Gripping force on Steering Wheel, etc.

) N ~ |Detection by Changes in Driving Operations
Sensing of Driving Operation O © X
(Steering, Accelerator, Braking, Shift Lever, etc.)

Detection by Changes in Driving Behavior (Speed,
Sensing of Vehicle Behavior O © X
Lateral G, Yaw Rate, lzateral Position, etc.)

Response of Driver Detection by Periodie-Request for Response AN X

Detection*by Measurement*of Traveling Time and
Traveling Conditions - : T X O ©
Conditions (Daytime or Nighttime, Speed, etc.)

© ::Very Good O : Good /\ : Average X : Poor
Reference: Hiroshi Ueno and Masayuki Kaneda and Masataka Tsukino (1994) [8]

1.1.1 Detecting Physical Changes

The physical change during approaches detect of eye-closure over time, eye tracking as
quantization of drowsiness level, driver’s head movements, and steering wheel angle [8]. In
Hamouda’s study, all available information was collected by the police and recorded in the
accident report. It showed that the presence of driver fatigue relating drowsiness is an
important cause of truck accidents. This study also proposed to classify truck accident relating
fatigue and non-fatigue by neural network model [9]. Richard Grace, a researcher at the

Carnegie Mellon Driving Research Center, developed a driver monitoring system [11]. The



vehicle performance and physiological data were measured when drivers were driving trucks.
This research proposed two drowsiness detection methods, including a video-based system
that measures drowsiness associated with slow eye closure and the other based on vehicle
performance data. The video-based system measured eye closure to obtain the percentage of
eye-closure over time (PERCLOS) for detecting driver drowsiness in real time under
nighttime driving conditions. A video-based system (CCD), the PERCLOS Camera,
successfully measured eye closure and detect drowsiness in heavy vehicle truck operators [12].
Perez developed a non-invasive interface that tracks eye positions using digital image
processing techniques. This approach detected eyes positions using image processing
algorithms and a non-invasive interface and labeled eye tracking into five stages as a
quantization index of driver’s drowsiness. Only gray-level images were processed in this
research: 102 images from the Purdue University’s database and 897 images from a video
sequence were pre-processed using' face detection-algorithm and the results of correct

detection rates were very high. [13].

Pilutti proposed an identification ‘approach to assess driver’s state in lane-keeping tasks
[14]. This approach used a driver model to simulate a real highway driving situation,
including the perfectly smooth, asphalt, and concrete road surface. They obtained lateral
positions of vehicles to assess drivers’ performance, using driver steering wheel as the input
of the driver model, and extracted the parameters from the chosen candidate model (ARX
model). The model parameters are estimated for driving task and the results are good for
model fit with the ARX model to represent the relationship between vehicle lateral position
and the driver steering wheel angular position for detecting driving patterns, assessing driver
performance, and improving vehicle active safety [14]. Popieul proposed a set of drowsiness
indicators using evolution of driver’s head movements for monitoring drivers’ drowsiness

efficiently. They considered variables related to the head position and the driving performance.



The approach developed a driving simulator with basic highway section such as straight line,
right line, and left line. The driving performance (steering wheel angle) and physiological
signals (driver’s head movements) of the subjects participated in a long-term simulated

highway trip were measured. [15].

Ji et al. predicted driver’s fatigue by a real-time noninvasive monitoring system. They
remotely acquired video images of the driver by using charge-coupled-device (CCD) cameras
which are equipped with active infrared illuminators. Ji’s research team used the Support
Vector Machine (SVM) to catch eyes in the facial images and the Kalman filter to track eyes.
The approach indicated that the fatigue relating to eyelids’ movement of a person can be used
as driver’s drowsiness index. They quantized the fatigue of the eyelids’ movement with two
methods percentage of eye-closure over time (PERCLOS) and the average of eye-closure
speed (AECS). They used the Bayesian network:(BN) to model fatigue index, extract the level
of alertness of a person, infer the driver’s fatigue level, and systematically display the fatigue

level on fatigue evidence window:in real-time-[16].

1.1.2 Measuring Physiological Changes

The other field focused on measuring drivers’ physiological changes such as the heart
rate variability (HRV), the galvanic skin response (GSR), and especially the
electroencephalogram (EEG), as a means of detecting the human cognitive states [17-21].
Studies show that the human EEG generated by synchronous post-synaptic currents in large
populations of neurons in the cortex can reflect brain activities. It has been known that
abundant information in EEG recording can be related to drowsiness, arousal, sleep, and

attention [22]. Previous psychophysiological studies show that typical sleep rhythm regulated



by the circadian process can be divided into non-rapid-eye-movement (NREM) sleep and
rapid-eye-movement (REM) sleep [23-24]. NREM sleep is further subdivided into 4 stages. In
the first part of falling into sleep (micro-sleep at NREM), increasing amplitudes of slow alpha
waves of the EEG signals are observed with positive correlation at occipital sites (O1 and O2)
and negative correlation at central sites (C3 or C4) [25-26]. While the approaches based on
EEG signals have the advantages for making accurate and quantitative judgments of alertness
levels, relatively little information has been captured in real time until signal processing
methods and computer power are fast enough to extract the relevant information from the
EEG. Thus, it is practicable and appealing to know what information about human cognitive

state and behavior are available through analyzing complex EEG signals.

Roberts developed a tool to characterize the level of the vigilance of vehicle drivers by
recording the physiological signals in realstime [19]. This approach builds up a portable
device for the alertness detection ‘of vehicle drivers: by recording the EEG signals, then,
studying the implementation of“.a: decisionalgorithm based on Kohonen artificial neural
networks by the variations of alpha, beta, thetaand delta waves of the EEG signals according
to a data base of 12 files of 24-hour EEG registered in volunteers. They observed a negative
correlation between the score of vigilance and the percentage of the beta band and a positive
correlation between the score of vigilance and the percentage of the other EEG (theta, alpha,

and beta) spectral bands.

Wilson detected the instance at which a person had lost the level of alertness necessary to
assure safe operation of a vehicle or display vigilance. They proposed a neural network to
detect the driver’s alertness state. The input of the neural network system is a feature vector
composed of the Wavelet transforms representations of EEG signals at different scales, and
the output of the system is a binary decision to decide the EEG represents either an alert state

or a drowsy state [21]. In Parikh’s study, the subjects EEG data were recorded while driving a



vehicle simulator and the EEG data was analyzed using the four-ordered Wavelet Transform
as an indicator. The subjects were asked to observe their driving in the same position without
any movement. In this study, increasing amplitudes of slow alpha waves of the EEG signals
were observed during the monotony of the long distance driving because of repeating driving,

viewing of the same track, less tension, or the tendency to drowsiness [25].

Some issues remain in practical applications using EEG signals such as the handling of
artifacts. While driving, subjects move their hands, torso, head, and eyes, which create huge
muscle movements, eye movements, and blink artifacts. Low pass filtering cannot resolve this
problem. Another issue is individual difference in EEG dynamics accompanying loss of
alertness. It is not easy to accurately estimate or predict individual changes in alertness and

performance [27-31].

1.2 Virtual Reality Dynamic Simulator

Virtual reality (VR) technology is gradually being recognized as a useful tool for the
study and assessment of normal and abnormal brain function, as well as for cognitive
rehabilitation. Virtual Environments (VE) are created by powerful computers that generate
realistic animated graphics in three dimensions. The computers are configured with peripheral
devices, such as immersible head-mounted displays (HMDs) that allow complex interactions
within the VE with a sense of presence. Creating carefully controlled, dynamic, 3D stimulus
environments combined with physiological and behavioral response recording can be offer

more assessment options that are not available by traditional neuropsychological methods.

The VR technique allows subjects to interact directly with a virtual environment rather

than monotonic auditory and visual stimuli. It is an excellent strategy for brain research on



interactive and realistic tasks due to low cost and avoiding risk of operating on the actual
machines. In recent years, some researchers designed the VR senses to provide the
appropriate environments for brain activity study. In this study, a VR-based dynamic motion
platform combined with EEG measured system is an innovation in brain and cognitive
engineering researches. Without combining with dynamic motion platform, it is unable to
study the influence of kinesthetic stimulus on cognitive state. Human brain can deal with
complicated information. An example is the balance between optic scenes and kinesthetic
perception. If the simulator environments cannot produce visual and kinesthetic stimuli

simultaneously, the subjects may not correctly response in the real world.

Fig. 1-1: The vestibular system and its measurement principles.

Reference: Andras Kemeny and Francesco Panerai (2003) [32]

The relevant organ system of human body to kinesthetic perception is the vestibular
system [32]. The vestibular system is a sensory apparatus located bilaterally in the inner ears.
Its function is to detect the motion of the head and body in space [33]. A vestibular system is
composed of two functional parts shown as Fig. 1-1: (1) the otolith organs (Fig. 1-1, blue and
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green colored areas), and (2) the semicircular canals (Fig. 1-1, red, pink and orange areas),
which are selectively sensitive to linear and angular accelerations respectively. There are three
semicircular canals filled with a viscous liquid, the endolymph. The pressure on the cupula, a
specialized structure at the end of each canal, is increased by the liquid when the head moves.
Pressure stimuli are transformed into nerve discharge, encoding the angular acceleration of
the head. In the some way, the otolith receptors, composed of a mass of crystals floating in the
endolymph, encode both linear acceleration and tilt of the head. [34]. Moreover, the otoliths
signal the rotation of the head relative to gravity, that is, head tilt [35], which the nervous

system resolves from linear acceleration by means of internal models [36].

In many types of sensori-motor processes such as the postural control, normal
functioning of this system is essential. Additionally, vestibular information plays an important
role in perceptual tasks such as egomotionrestimation. [37]. Vestibular information was shown
to disambiguate the interpretation of dynamic visual information experienced simultaneously
during observer’s movement recently [38]-During.the simulation process of driving, the
absence of vestibular information increases 'steering reaction times to external movement
perturbations [39], and also decreases safety margins in the control of lateral acceleration in
curve driving [40]. In real driving, improper signals from disordered vestibular organs are
reported to determine inappropriate steering adjustment [41]. Furthermore, the presence of
vestibular information in driving simulators seems important because it influences the

perception of illusory self-tilt and illusory self-motion [42].



1.3 Organization of This Thesis

The purpose of this study is to develop methods of using EEG signals to accurately and
non-intrusively monitor the continuous fluctuations of driver's global level of drowsiness
accompanying changes in driver's performance near real-time in a realistic driving task. We
first construct a Virtual-Reality interactive driving environment consisting of a highway scene
and a six degree-of-freedom (6-DOF) motion platform. By several simple driving actions such
as deceleration, acceleration, and deviation, we demonstrate that distinct cognitive state
responses are discernible between the dynamic platform which is motion and motionless. This
is a good evidence to show that the dynamic motion platform is required for the study of
human cognitive state estimation. Secondly, we design a lane-keeping driving experiment to
indirectly quantify driver’s drowsiness levels[43]. Tt'helps to illustrate the changes of drowsy
event-related-potential (ERP) between different drowsiness states. After we recognize the
feature of brain activities in drowsiness, we-develop a novel adaptive feature selection
mechanism (AFSM) for EEG spectra. And ithen we build an individualized fuzzy neural

network models to assess the EEG dynamics accompanying loss of alertness for each subject.

Finally we consider the feasibility of the proposed method for practical applications. The
main issue is to use less EEG channels to perform satisfactory results. The main purpose of
the experiment is to investigate the cortical sources of drowsiness. The driving performance
can be estimated according to the analysis of the number of dominated EEG channels and the
source regions on the scalp. Finally, we try to use spiked dry electrodes to replace the
standard wet electrodes on the prior experiment. The reason is that driver may be difficult to

use electrodes cap and electrolytic gel in a realistic driving situation.

This thesis is organized as follows. Section II describes the details the EEG-based
drowsiness experimental setup, VR-based dynamic driving environment, EEG data collection,
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instructions, and spiked dry electrode. In Section III, we design a series of experiments for
drowsiness estimation for EEG processing. We explore the innovative methods by applying
ICA, time-frequency spectral analysis, correlation analysis, and fuzzy neural network in
Section IV. Detailed discussions of our experimental results are given in section V. Finally,

we conclude our findings in SectionVI.
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IT. System Architecture

In this chapter, a VR-based dynamic driving environment is designed and built up for
interactive driving experiments. It includes four major parts as shown in Fig. 2-1: (1) the 3D
highway driving scene based on the virtual reality technology, (2) the driving cabin simulator
mounted on a 6-DOF dynamic Stewart motion platform, (3) the EEG physiological signal
measurement system with 36-channel EEG/EOG/ECG sensors, and (4) the proposed signal
processing modules including ICA decomposition, power spectral analysis, and fuzzy neural
work model. This environment will be presented in details as follows. In addition, the novel

spiked dry electrodes used in our experiments for EEG acquisition are also being introduced.

Physiological Signal Recorder

J. ‘ -I

EEG/EOG + EG Dynamic Driving Simulator

Fig. 2-1: The block diagram of the dynamic VR-based driving simulation environment

with the EEG-based physiological measurement system.
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2.1 3D Virtual Reality Environment

In this thesis, a VR-based high-fidelity 3D interactive highway scene and its emulation
software, WorldToolKit (WTK) library and application programmer’s interface (API) are
developed [60]. The detailed development diagram of the VR-based scene is shown in Fig.
2-2. Firstly, we create the models of various objects (such as cars, roads, and trees, etc.) for
the scene and setup the corresponding positions, attitudes, and other relative parameters. Then
we develop the dynamic models among these virtual objects and build a complete highway

simulated scene of full functionality with the aid of the high-level C-based API program.

Create 3D Model WTK library

Visual CH++

Create Parameter
Model

FAL AR LD SO e A SB[l
FLegT
L}

e E> Dynamic
L e et L :\«{Ud'@l

Fig. 2-2: Flowchart of the VR-based highway scene development. The dynamic models
and shapes of the 3D objects in the VR scene are created and linked to the WTK library to

form a complete interactive VR simulated scene.
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Generally, the VR scenes are projected onto a curved screen or one or more flat screens,
and some simulators use head-mounted displays (HMDs) to provide stereoscopic viewing. In

our laboratory, the VR-based four-lane highway scenes are projected into the 360° surround

screen with seven projectors at different positions as shown in Fig. 2-3.

:a,
Fig. 2-3: The VR-based four-lané‘ff‘; gE]W

with seven projectors. Several ;ﬂﬁ)to& 1fferent view angle at a fixed point

-;: '.5-"""' L'\.\-:'{j 1

are connected to form this wide ﬁglﬁaq, o ":j
"a'a. LA

In order to increase stereoscopic perception and avoid the questions caused by using
HMDs such as uncomfortableness, a little oppression, and the overheated instrument, we use
two projectors to reach the binocular parallax. The VR scenes for the left and right eyes are
projected onto the frontal screen with two projectors, respectively. By wearing the light 3D

glasses, such configuration provides more stereoscopic VR scene than using HMDs.
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2.2 Stewart Motion Platform

Since Stewart developed a prototype of a six-degree-of-freedom (6-DOF) parallel
manipulator in 1953 [61]. It has attracted tremendous attention from researchers for
high-precision robotic tasks where the requirements of accuracy and sturdiness are more
essential than those of a large workspace and manoeuvrability [62-64]. A typical Stewart
platform has a lower base platform and an upper payload platform connected by six extensible
legs with ball joints at both ends, as shown in Fig. 2-4. The parallel manipulator has 6-DOF
including coordinates of X, Y, Z for position and roll, pitch, yaw for direction in space. In the
following, an inverse kinematics analysis of the Stewart platform will first be made. Then a
fuzzy control algorithm will be designed for, t_h; position control. Lastly, a washout filter is

designed for the angular velocity/ linear acqclgratioﬂ control of the Stewart platform [65].

Base Platform

(a) (b)

Fig. 2-4: The Stewart platform. (a) The sketch map for the Stewart platform. (b) The

actual Stewart platform. A driving cabin is mounted on this platform in our laboratory.
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2.3 EEG Data Acquisition

34 EEG/EOG channels (using sintered Ag/AgCl electrodes with an unipolar reference at
right earlobe), 2 ECG channels (bipolar connections between the right clavicle and left rib),
and one 8-bit digital signal produced form VR scene are simultaneously recorded by the Scan
NuAmps Express system (Compumedics Ltd., VIC, Australia). All EEG/EOG channels were
located based on a modified International 10-20 system as shown in Fig. 2-5 [66]. The 10-20
system is based on the relationship between the location of an electrode and the underlying
area of cerebral cortex. Before acquiring EEG data, the contact impedance between EEG
electrodes and skin was calibrated to be less than 5kQ by injecting NaCl based conductive gel.
The EEG data were recorded with 16-bit quantization levels at a sampling rate of 500 Hz and
were down sampled to 250 Hz for the simplicity of data processing. All EEG data were
preprocessed using a simple low-pass filter'with a cut-off frequency at 60 Hz in order to
remove the line noise and other-high-frequency noise. Similarly, a high-pass filter with a

cut-off frequency at 0.5 Hz was applied to remove baseline drifts for further analysis.

(a) (b)
Fig. 2-5: The International 10-20 system of electrode placement. (a) A lateral view, (b) A

top view [66].
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2.4 Subject

It is known that the drowsiness often occurs during late nights, early morning and
mid-afternoon. During these periods, alertness may easily diminish within one-hour
monotonous working [7-8]. In drowsiness experiments, the subjects participated in the

highway-driving simulation after lunch in the early afternoon.

All the subjects were instructed to keep the car at the center of the cruising lane by
controlling a steering wheel. In all sessions, the subjects drive the car continuously for 60
minutes and were asked to try their best to stay alert. Participants then returned on different
days to complete a second 60-minute driving session or more sessions if necessary. In
opposition to the drowsiness experiménts, for,the kinaesthetic stimulus experiments, we
arrange the experiment time in the morning or in.the-afternoon to keep the best condition for
subjects. Each subject has to participate in‘two 30-minute sessions which replace the order of
dynamic platform is motion and motionless of once-€xperiment. In the same way, participants
must return on different days to accumulate enough data to analyze. We collected EEG data
from 16 subjects (ages from 20 to 35 year old) participating in the VR-based driving task. In
drowsiness estimation experiment, we select participants who had two or more micro-sleeps
checked by video recordings in both driving sessions for further analysis. Based on these

criteria, five subjects were selected for further modeling and cross-session testing.
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2.5 Spiked Dry Electrode

In recent years, the fabrication and characterization of Micro-Electro-Mechanical
-Systems (MEMS) based silicon micro probe arrays, namely spiked dry electrodes, were
explored for EEG measurement applications. A series of practical in-vivo tests had showed
that the MEMS based spiked dry electrodes have more advantages and conveniences than the
conventional standard electrodes. Comparing to the standard wet electrodes, the spiked dry
electrodes can collect stronger signal intensity with a smaller device area, which means the
design of related amplifier circuit can be simpler and easier. In addition, the spiked dry
electrodes can be used without electrolytic gel, and they will not cause an uncomfortable

feeling for the tested subject [67].

(a) (b)

Fig 2-6: Corresponding equivalent circuit illustrated below shows that spiked dry electrodes

can perform a low-impedance interface better than the standard electrodes. (a) Standard wet
electrode, (b) Spiked dry electrode.

Reference: P. Griss, P. Enoksson, H. K.Tolvanen-Laakso, P. Merilainen, S. Ollmar (2001)
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Biopotential electrode for EEG transforms the bio-signals from skin tissue to the
amplifier circuit. Therefore, the most important characteristic of a biopotential electrode is
low electrode-skin interface impedance to propagate signals without attenuation or production
of noise. As the Fig. 2-6 indicates, the spiked dry electrode is designed to pierce the stratum
corneum (SC) into the electrically conducting tissue layer of stratum germinativum (SG) in

order to circumvent the high impedance characteristics of the SC.

In the Brain Research Center of the University System of Taiwan, the p System &
Control Lab led by Prof. J.C. Chiou had already developed the spiked dry electrodes. Three
types of spiked dry electrodes varied in dimension including 4x4 mm?, 3x3 mm? and 2X2
mm? are successfully fabricated using MEMS technology. Etch spiked dry electrode consists

of 20%20 micro probes with 35 um in di and 300 pum in height as shown in Fig. 2-7.
m%zgﬂ?ﬁ R

03-Mar-05 NCTUME WD26 .4mm 15 .0k¥ x30
1 System & Control Lab.

Fig. 2-7: Photographing of fabrication result of spiked dry electrodes busing optics

microscope.

19



Il .Experimental Design

This study investigates the feasibility of using multi-channel EEG data to estimate and
predict non-invasively the continuous fluctuations in human global level alertness in a
realistic driving task. For this purpose, our concern is to carefully design a series of
experiments for the scientific discovery and practical applications. Experimental designs are
important because correct designs of experiments will distinctly acquire the expectable and
incontrovertible results. Therefore, this chapter describes the design of each experiment in

details and the flowchart is shown in Fig. 3-1.

Experiment 1

Step 1 The Influence of Kinesthetic
Stimulus on Cognitive State

Necessity of VR-based Motion Platform

Experiment 2

Step 2

Investigation of Drowsiness
Event-Related Potentials

Feature Recognition of Brain Drowsy Activity

Experiment 3

Step 3 Adaptive Estimation of
Continuous Driving
Performance

Development of Drowsiness Estimating Technology

Experiment 4

Step 4 Search for Brain Source of
Drowsiness on Cerebral
Cortex

Feasibility of Practical Applications

Experiment 5

Step 5 Application of Dry
Electrodes in the Drowsiness
Experiment

Fig. 3-1: The flowchart of designs and goals of all experiments.

20



3.1 The Influence of Kinesthetic Stimulus on Cognitive State

This topic intends to investigate the influence of kinesthetic stimulus on cognitive state
and the purpose here is to justify the necessity of using VR-based motion platform. Through
the movements of 6-DOF motion platform, this configuration provides drivers dynamic
feeling with such as deceleration, acceleration, and deviation. We can investigate the
cognitive states of the same driving actions with or without platform motion. For this
fundamental research, we must simplify our concerned topic and reduce the other variations
between the experiment and control. We develop a VR-based highway environment with a
monotonic scene as shown in Fig. 3-2, because a complicated scene may bring unexpected
visual stimulus. We keep the driving speed of simulation at 100 km/hr in order to avoid the
stepping, that will cause large muscle activity.on the throttle or brake. Similarly, the driving
speed of simulation will automatically increase or décrease with the movements of motion

platform if the traffic light is displayed on thescreen.

Fig. 3-2: The view of the driving cabin forward at rear in VR-based highway scene.
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In this research, each subject participated in two 30-minute sessions in one single day of
experiment until enough EEG data for the ERP analysis were accumulated. The procedure of
this experiment which we must comply with is to alternate two conditions, with and without
platform movement. The motion and motionless will appear randomly to avoid expecting
effect with a fixed order of two conditions. During the session, the VR-based scene and the
car will be stopped, started and deviated according to the traffic lights in order to simulate the

driving situations in the real world.

One Stop and Start Trial

[ ] ]
I I I
| | |
| | |
| | |
|  Cue ———— Deceleration I > Stop I » Acceleration
| | |
| | |
| | |
| | |
I |
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|
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|
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Show Yellow Light Show Red Light Show No Light Show Green Light

Fig. 3-3: Illustration of the design for stop and start experiments.

One trial in this experiment is explained as a combination of a stop and a start event with
a 5 ~ 10 seconds time interval between two events. The stop and start events are maintained
for 3 seconds with the displayed traffic light in red and green, respectively. Simultaneously,
the movements of the platform, such as deceleration and acceleration, will depend on the
corresponding events. In addition, the yellow light is displayed for 1 second before each trial
so that the subject will not be shocked by the sudden deceleration of motion platform. The
time interval between the trial and deviation event is 10 ~ 15 seconds. The time course of

experiments is shown in Fig. 3-3.
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3.2 Investigation of Drowsiness Event-Related Potentials

First of all, we have to find the relationship between the measured EEG signals and the
subject’s behavioral performance. One point should be taken as a quantified level of the
subject’s alertness while driving. Hence, we define the subject’s driving performance index as
the deviation between the center of the vehicle and the center of the cruising lane [43]. By
examining the video recordings, the pilot experimental studies show that when the subject is
drowsy, the driving performance will decrease and vice versa. The four lanes from left to right
are separated by a median stripe in the VR-based scene. The distance from the left side to the
right side of the road is equally divided into 256 points for outputting digital signal from

WTK program, and the width of each lane and the car is 60 units and 32 units, respectively.

All the descriptions about the width'a ¢

Fig. 3-4: The width of highway is equally divided into 256 units and the width of the car is

32 units.

23



The refresh rate of highway scene was set properly to emulate a car cruising at a fixed
speed of 100 km/hr. The subject’s performance is defined as the deviations between the center
of the vehicle and the center of the cruising lane. The car is randomly drifted away from the
center of the cruising lane to mimic the consequences of a non-ideal road surface. So the
driver must maintain high attention to immediately correct the direction of vehicle in the
cruising lane. When the driver is drowsy, the reaction time between the onset of deviation and
steering wheel is increased. This event can be used for ERP analysis of different drowsiness
states using 30-channel EEG signals. The reaction time is continuously and simultaneously
measured by the WTK program and recorded in the physiological measurement system
accompanying with EEG/EOG/ECG physiological signals. In this design, the subjects are
asked to participate in the 60 minutes experiment twice for data accumulation. Although we
fix the experiment time in the early:afternoon hours such that drowsiness time often occurs,
the drivers must try to stay alert.and not to fall asleep. Otherwise the wrong cognitive state

will be erroneous judged due to intentionally sleepingin driving.

3.3 Adaptive Estimation of Continuous Driving Performance

In addition to recognize the feature of brain activity in drowsiness, we also want to
develop a drowsiness estimation system for driving. In differentiation to Experiment 2 of
single-trial analysis, we deal with the continuous 30-channel EEG signals of long-term
recordings. This design is similar to Experiment 2 because we use the same VR-based
highway scene and the same length of experimental time. Therefore, the subject’s
performance is also defined as the deviations between the center of the vehicle and the center
of the cruising lane. We select the participants who have two or more micro-sleeps checked
by video recordings in both driving sessions for further analysis. The individual model which
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estimates driving performance using the features will be established by the two sessions for

training and testing respectively. Fig. 3-5 shows driving performance recorded in a 60-minute

session of one subject.
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Fig. 3-5: The continuous driving performance of “long-term recordings in the driving
simulation. (a) The distribution of driving performance, (b) Moving averaged driving error in a

60-minute experiment with at least 2 drowsy periods.

3.4 Search for Brain Source of Drowsiness on Cerebral Cortex

After establishing the individual model to estimate driving performance, we will assess
the feasibility of proposed method for practical applications. The main purpose of this
experiment is to investigate the brain source of drowsiness. Hence we can use less EEG
channels on relative region to perform satisfactory result for estimating driving performance.

In this research, the estimation of driving performance will be evaluated to analyze the
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number of EEG channels and the regions on the scalp. We expect to find out the universal

brain source of drowsiness on cerebral cortex among our participators.

First we compare five results based on different number of EEG channels. These five
conditions include 30, 20, 15, 10 and 6 EEG channels proportionally distributed on scalp by
the International 10-20 system. We arbitrarily decide the locations of 6-channel EEG
electrodes because they are unable to proportionally distribute in the International 10-20
system. Therefore, six most frequently used channels for common experiment are selected in

this design. The detailed channel locations on scalp map we consider are shown as Fig. 3-6.

FIT FC3  FCZ  oFC4 PR

TE P3  PZ P4 TR

(d) (e)

Fig. 3-6: Five conditions for different number of EEG channels. (a) 30 channels, (b) 20

channels, (c¢) 15 channels, (d) 10 channels, (e) 6 channels.
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The Cz channel is the center of the International 10-20 system and the scalp is divided
into four regions according to the position of Cz channel in this experiment. The frontal
location is defined as the region from Cz to forehead as shown in Fig. 3-7 (a). The left and
right temporal locations are defined as the regions from Cz to temples respectively as shown
in Fig. 3-7 (b) (c). Finally, the parietal and occipital location is defined as the region including
parietal and occipital bone as shown in Fig. 3-7 (d). Each region contains 7 electrodes for

analysis.

(©) (d)

Fig. 3-7: Four clusters of electrodes on the scalp. (a) Frontal location, (b) Left temporal

location, (c) Right temporal location, (d) Parietal and occipital location.
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3.5 Application of Dry Electrodes in the Drowsiness Experiment

So far, we utilize a few channels from a region on the scalp to achieve a satisfactory
result of estimating driving performance through a series of experiments. Although the
estimation system has excellent performance in our experiments, it is difficult to apply the
electrode cap with electrolytic gel in the realistic driving situations. The spiked dry electrode
was designed in this experiment to replace the standard electrode to avoid using electrolytic
gel. However, it still has difficulty in using the spiked dry electrodes at present. The first
question is that the height of probes on the spiked dry electrodes, which are limited to the
MEMS technology, is too short. The probes are difficult to contact stratum germinativum
even stratum corneum because the thickness of human hair is usually about 80 um. The hair
elasticity also makes it difficult to*fix thesspiked dry.electrode on the scalp. Therefore we try
to fix the spiked dry electrodes in the places withotit hair in this experiment, such as the

forehead.

In order to test the feasibility of using the spiked dry electrodes, we replace the standard
electrodes on FP1 and FP2 channels with dry electrodes. We repeat the same experiment of
drowsiness estimation in this design, but the only difference is that it includes two spiked dry
electrodes as well as all EEG channels. The two EEG signals measured by the spiked dry
electrodes will be used in our drowsiness estimation system in this experiment. We have
adequate reason to believe that the cognitive state of drowsiness can be recognized in frontal
region of the cerebral cortex. The result of estimation performance will verify the feasibility

of practical application in the future.
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IV.Data Analysis

Our study includes five topics of experiments as described in Chapter II. Two
methodologies are used for data analysis. The first one is to deal with the single-trial EEG
signals for ERP analysis in Experiment 1 and Experiment 2. The second one is to analyze the
continuous EEG data of long-term recordings for the last three experiments. This chapter
describes the data analysis procedure of the five experiments in terms of these two
methodologies in details. The technology and algorithms applied in our experiments will also
be presented in this chapter, including Independent Component Analysis (ICA),
time-frequency spectral analysis, correlation analysis, adaptive feature selection mechanism

(AFSM) and Self-cOnstructing Neuro-Fuzzy, Inference Network (SONFIN).

4.1 Event-Related PotentialF(ERP) Analysis

Dawson first reported to record the evoked potentials (EP) from cerebral cortex by taking
pictures and accumulation skill in 1947 [66]. Dawson initiated the new field of
neuro-physiology by introducing the technology of averaging evoked potentials (AEP) in
1951. The AEP technology is extensively applied to many experiments due to the relative
stimulus, so the AEP is gradually named event-related potentials (ERP) in recent years. The
narrow definition of ERP is to present a specific region of perceptual systems and induce
potential changes on the cerebral cortex when the stimulus appears or disappears. The board

definition of ERP suggests the responses come from all neural system.

Generally, the ERP induced by the stimulus is 2 ~ 10 uV, much less than ongoing

potential of EEG amplitude, and it is hidden among the EEG signals. EEG signals are
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composed of small signals and big noise so that the ERP is cannot to be directly measured and
analyzed from EEG signal. In order to extract the ERP from EEG signal, the stimuli must be
presented to the subject repeatedly. ERP is obtained by averaging EEG signals of
accumulated single trials of the same condition. EEG signals across single trials are
considered random and independent of the stimulus. However, it is assumed that the
waveform and latency of ERP pattern are invariant to the same stimulus. After accumulating
all ERP, the ERP increases proportionally to the number of trials and the EEG amplitude is
the sum of adding according to random noise theorem. For example, if the number of trials for
condition is n, the ERP will be n times the amplitude of original wave pattern and the EEG
amplitude will only be+/n times of the initial signal. Therefore, the signal to noise ratio
(SNR) will be improved to Jn multiples of the original ratio. ERP is the average of n trials
of EEG epochs. Therefore, ERP sometimes can be.named AEP and this is the basic theorem

of extracting the ERP [68].

The ERP techniques are applied to Experiment 1 and Experiment 2 for analyzing events.
We also use event-related spectral perturbation (ERSP) analysis in these experiments. In first
experiment, we demonstrate the three events including stop, start and deviation events of
VR-based driving simulation. The dynamic platform is either in moving or motionless
conditions. For the stop and start events, the continuous EEG signals are extracted into several
epochs, each of which contains the sampled EEG data from -1500 ms to 4000 ms with a light
onset at 0 ms and the length of baseline is 500 ms foremost in each epoch. Similarly, the
duration of the deviation event is 3000ms, ranging from -1000 ms to 2000 ms, with deviation
onset at 0 ms. The baseline is computed from -1000 ms to 0 ms. Then we combine with the
four events including the stop and start event in two conditions and use ICA algorithm to
decompose 30-channel EEG signals into the 30 independent components. Simultaneously, we

apply the ICA mixing matrix from above result to the deviation event and indicate reaction
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time of each deviation event. Therefore we can compare with each component by ERP and
ERSP analysis of these three events in the two conditions to justify the necessity of VR-based
motion platform in driving simulation. The detailed flowchart of EEG data analysis is shown

as Fig. 4-1.
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Fig. 4-1: The flowchart of EEG data analysis in-the first experiment.
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For Experiment 2, we study the ERP and ERSP of drowsiness single-trial in different
cognitive states. From design point of view, the drowsiness event is similar to the deviation
event of above experiment because the stimulus of these two events is equal. The continuous
EEG signals are separated into several epochs where an epoch contains the sampled EEG data
from -500 ms to 3500 ms with deviation onset at 0 ms and the baseline region of each epoch
is before the onset. The duration of drowsiness event is longer than the deviation event
because the driver may need more reaction time while he/she is drowsy. Then we combine
with all drowsiness events of recordings from different day and use ICA algorithm to
decompose 30-channel EEG signals into the 30 independent components. The reaction time of
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each event is recorded for the analysis of drowsiness in different cognitive states. The reaction

time of each event is sorted in ascending order and the sorted trials are equally divided into

five groups, where each group has 20 percentages in order. Obviously, the first one group

indicates that the driver is more alert than other groups while driving. Therefore we can

compare with the five conditions of different cognitive states corresponding to the ERSP of

drowsiness related component. The detailed flowchart of analysis is shown as Fig. 4-2.
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4.2 Analysis of Continuous EEG Data
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We attempt to apply the analysis from single-trial into continuous EEG signals for

drowsiness for the last three experiments. By averaging accumulated single trials, the ERP

analysis reduces noise and makes characteristic more visible in EEG signals. When dealing

with the continuous EEG data, we must try to remove high-frequency noise by some
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technology and the simplest way we used is moving average filter. In Experiment 3 we
propose an adaptive alertness estimation methodology based on EEG, time-frequency spectral
analysis, Independent Component Analysis and FNN models for continuously monitoring
driver’s drowsiness level with concurrent changes in the driving performance. Fig. 4-3 shows

the flowchart of the proposed signal processing procedure.
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——————— Regression or |« Selection < Normalization
SONFIN Model Mechanism

Fig. 4-3: The flowchart of data processing procedure for the drowsy estimation system.

In this experiment, participants who demonstrated waves of drowsiness containing two
or more micro-sleep in both sessions were selected for training and testing, respectively. In
the training process, the 33-channel EEG signals are first applied to train the ICA model. By
applying ICA algorithm to the EEG recordings from the scalp, we attempt to achieve the twin
goals: removing artifacts and possible source separation based on stabilities of ICA spatial
weighting matrix and temporal independence between artifacts and EEG signals. The

effectiveness for removing eye blinking and other artifacts by using ICA had been
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demonstrated in many studies [52-59]. Secondly, we use time-frequency spectral analysis to

transfer all 33 ICA components into log subband power spectrum with time.

Since the fluctuates of drowsiness level have cycle lengths longer than 4 minutes [27-28,
30], the spectral signals of 33 components and driving performance are smoothed by a causal
90-second square moving average filter advancing at 2-second steps to eliminate variance at
cycle lengths shorter than 1~2 minutes. The correlation coefficients between the smoothed
driving error and the subband power spectra of all ICA components at each frequency band
form a correlation spectrum. The log subband power spectra of two ICA components with the
highest correlation coefficient are further selected as features. Then we use the AFSM
technology to select the log bandpower spectra of these two ICA components in some critical
bands as the normalized input features to the, linear regression or SONFIN model. Therefore
the training data will establish ‘the modeli.to estimate the individual subject’s driving

performance.

The ICA weighting matrix, the EEG critical bands of the drowsy related source and the
parameters of model in the training session were applied to estimate the individual subject’s
driving performance in the testing session. Finally, we use correlation analysis between the
estimated and actual driving performance to evaluate the performance of model. For
comparing with the result by ICA algorithm, the 33-channel EEG signals are directly used for
our procedure without using ICA decomposition. We also repeatedly test that finding the most
appropriate frequency bands for the best estimating result to prove the dependability of the
AFSM technology. Then the performance of estimating results will be discussed by using
linear regression or SONFIN to establish model. Detailed analyses are described in the

following sub sections.

After we developed an adaptive drowsiness estimation system for driving, we find that
this estimation system can get excellent results with only 2-channel EEG signals even with
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one single channel. In Experiment 4, the estimation of driving performance will be evaluated
to analyze the number of EEG channels and the regions on the scalp. For the discussion about
the number of EEG channels, only the optimal frequency bands of the two EEG channels or
ICA components with the highest correlation coefficient offered into our estimation system.
Then we only use linear regression model to evaluate the estimating results of the five
conditions. We expect to find the relationship between the estimated performance and the
number of channels with ICA decomposition, and to determine the number of channels should

used in our estimating system.

For the discussion about the regions on the scalp, we use the same way to evaluate the
brain source of drowsiness on cerebral cortex. The only difference is that we use single
channel in our estimating system for emphasizing the location of the four regions. By using a
single channel or component with-the highestestimating result in each of four regions, we

except to find the brain source of drowsiness on cerebral cortex.

Because it is difficult to apply. electrode cap.with electrolytic gel during realistic driving
situations, the spiked dry electrodes will be a preferred solution. However, the spiked dry
electrodes face the restriction to MEMS technology so that the electrodes may not be used to
measure EEG signals from the regions we concerned. Hence we replace the standard
electrodes on FP1 and FP2 channels with dry electrodes for testing the feasibility. By using
the ICA technology, we expect to extract the features from FP1 and FP2 channels which
might contain signals proposed from the brain source of drowsiness. We use two EEG signals
measured from two dry electrodes for our drowsiness estimation system and compare it with
the drowsiness estimation system that use the signals recorded by the standard electrodes in
nearby regions. It demonstrates the feasibility of the drowsiness estimation system by using

the spiked dry electrodes on the forehead according to the experimental results.
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4.3 Independent Component Analysis (ICA)

The joint problems of electroencephalographic (EEG) source segregation, identification,
and localization are very difficult since the EEG data collected from any point on the human
scalp includes activity generated within a large brain area. The problem of determining brain
electrical sources from potential patterns recorded on the scalp surface is mathematically
underdetermined. Although the resistivity between the skull and brain is different, the spatial
smearing of EEG data by volume conduction does not cause significant time delay and
suggests that the ICA algorithm is suitable for performing blind source separation on EEG
data. The ICA methods were extensively applied to blind source separation problem since
1990s [44-51]. In recent years, subsequent technical reports [52-59] demonstrated that ICA
was a suitable solution to the problem of EEG source segregation, identification, and
localization based on the following assumptions: (1)-The conduction of the EEG sensors is
instantaneous and linear such that theimeasured mixing signals are linear and the propagation
delays are negligible. (2) The signal source ofmuscle activity, eye, and, cardiac signals are
not time locked to the sources of EEG activity which is regarded as reflecting synaptic
activity of cortical neurons [52-53].

In this thesis, we attempt to completely separate the twin problems of source
identification and source localization by using a generally applicable ICA. Thus, the artifacts
including the eye-movement (EOQG), eye-blinking, heart-beating (EKG), muscle-movement
(EMG), and line noises can be successfully separated from EEG activities. The ICA is a

statistical “latent variables” model with generative form:
x(t)=As(t) (1)
where A is a linear transform called a mixing matrix and the S; are statistically mutually

independent. The ICA model describes how the observed data are generated by a process of
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mixing the components S, . The independent components S; (often abbreviated as I1Cs) are

latent variables, meaning that they cannot be directly observed. Also the mixing matrix A is
assumed to be unknown. All we observed are the random variables X;, and we must estimate

both the mixing matrix and the IC’s s, using the X;.
Therefore, given time series of the observed data X(t)= [Xl(t) X,(t) - xy(t )]T in

N-dimension, ICA will find a linear mapping W such that the unmixed signals u(t) are

statically independent.
u(t) =W x(t). (2)

Supposed the probability density function of the observations X can be expressed as:
p(x)=|det(W )p(u), (3)

the learning algorithm can be derived using the maximum likelihood formulation with the

log-likelihood function derived ds:
N
L(uW ) = log|det(W) + > log p;(u, ), (4)
=

Thus, an effective learning algorithm using natural gradient to maximize the log-likelihood

with respect to W gives:

AW o CEUW I\ my {1~ puya v )
oW
where the nonlinearity
ap(u) ap(u;) ap(uy) '
plu)=——Ps = ] (6)
p(u) p(u;) p(uy)

and W'W rescales the gradient, simplifies the learning rule and speeds the convergence

considerably. It is difficult to know a priori the parametric density function p(u), which
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plays an essential role in the learning process. If we choose to approximate the estimated
probability density function with an Edgeworth expansion or Gram-Charlier expansion for
generalizing the learning rule to sources with either sub- or super-Gaussian distributions, the

nonlinearity ¢(u) can be derived as:

U —tanh(u) : for super - gaussian sources,
p(u) = . (7)
U+ tanh(u): for sub - gaussian sources,
Then,
AW = [I —tanh(u)u’ —uu’ ]\N :super - gaussian, )
[I +tanh(u)u" —uu' |W :sub - gaussian,

Since there is no general definition for sub- and super-Gaussian sources, we choose
p(u):%(N(1,1)+ N(-l,l)) and p(u)=N(0,1)sech®(u) for sub- and super-Gaussian,

respectively, where N(,u,az) is‘a normal distribution. The learning rules differ in the sign

before the tanh function and canbe determined using a switching criterion as:

k. = 1l:super - gaussian,
AW o [I - K tanh(U)uT s uaf W, Where{ ‘ ber-gaus )
K, =—1:sub - gaussian,

where
x; = sign(Efsech? (u,)E {u? |- E {tanh(u, u, }) (10)

represents the elements of N-dimensional diagonal matrix K. After ICA training, we can
obtain 33 ICA components U(t) decomposed from the measured 33-channel EEG data X(t).

X (t) Wi, Wi, Wi 33
X, ()

W23

2 us . (1D

X33 (t) W33,1 W33,2 W33,33

W21 W22
X(t) = —Wu® =) @+ @+
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Fig. 4-4 shows an example of the scalp topographies of ICA weighting matrix W
corresponding to each ICA component by projecting each w;; onto the surface of the scalp,
which provides spatial information about the contribution of each ICA component (brain
source) to the EEG channels, e.g., eye activity was projected mainly to frontal sites, and the
drowsiness-related potential is on the parietal lobe and occipital lobe, etc. We can observe that
most artifacts and channel noises included in EEG recordings are effectively separated into
independent components 1 and 4 as shown in Fig. 4-4 and independent components 5, 11, and
13 may be considered as effective “sources” related to drowsiness in the VR-based driving

experiment.
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Fig. 4-4: Scalp topography of ICA weighting matrix W by spreading each w; into the

plane of the scalp corresponding to the J, ICA components based on International 10-20

system.
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4.4 Time-Frequency Spectral Analysis

Analysis of changes in spectral power and phase can characterize the perturbations in the
oscillatory dynamics of ongoing EEG. Applying such measures to the activity time courses of
separated independent component sources avoids confounds caused by miscancellation of
positive and negative potentials from different sources to the recording electrodes, and by
misallocation to the recording electrodes activity that originates in various and commonly

distant cortical sources. The spectral analysis for each ICA component or EEG channel signal

is shown in Fig 4-5.
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Fig. 4-5: Moving-averaged log power spectral analysis for it ICA component.

Detailed moving-averaged spectral analysis [69] of the ICA data was accomplished as

follows: The ICA component u,(t) was first divided into several epochs using a 750-point
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Hanning window with 250-point overlap, i.e., stepping in 2 seconds at sampling rate

Q. =250Hz.
(1) = h(t)u,(t+500(m~1)) a2)
wheret=1, 2, ..., 750, m is the index of m,, epoch, and N-point Hanning window is
(1) = {0.54 —0.46c08(>%_,)0<t< N -1
0 otherwise , (13)

Windowed 750-point epochs were sub-divided into several 125-point frames using Hanning

windows again, with 25-point step size.
(1) =h()py (t+25(n-1)) (14)

where t = 1, 2, ..., 125, and n is the index of 'n, frames. Each frame was extended to 256

points by zero-padding for a 256=point FFT.

on(K)= 3 a, (e 1
t=0 (15)
Where N=255, to normalize the expected multiplicative effects of sub cortical systems
involved in wake-sleep regulation of ICA data amplitudes, ICA data spectra were further
converted to a logarithmic scale for spectral calculation and driving performance estimation
[70]. Then we averaged the bandpower corresponding to each frequency band in all the

sub-windows to form a log bandpower spectrum.

Ba(K)= 1210109, (k)?)
= . (16)
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Thus, the time-frequency analysis of ICA component u,(t) of 1 ~ 60Hz stepping in 2
seconds can be expressed as P, (m,k), where m is the index of time-stepping, and K is the

index of Kk, frequency bands.

Pi(n,k)zMszﬁi(mn—l,k)
p el . (17)

Finally, a median filtering using a moving averaged 90-second window was used to further

minimize the presence of artifacts in the ICA/EEG signals.

4.5 Correlation Analysis

In order to find the relations between the ‘brain activities and subject’s driving
performance, and to quantify ‘the leyvel-of the" subject’s drowsiness, we computed the

correlation coefficient between the time course of minute-scale fluctuations in driving error
(D,(n)) and the concurrent changes in the ICA spectrum of EEG signals by using the

Pearson Correlation Coefficient defined as a statistical measure of the linear relationship
between two random variables:
2 (P(n.k) =R (K)(Dy(M-Dy)

CC(i,k) = n — —, (18)
\/Z(Pi(n,k)—Pi(k))z \/Z(D,,m)—Dp)z

where P (k) and D_p are the expected value of P(n,k) and D,(n), respectively.

Therefore, the correlation coefficients between the driving performance and the ICA

component i in the frequency band k can be expressed as a matrix:
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G 1 G 2 C1,60
cc(ik)=l 2 722 . 7% (19)

C33,1 C33,2 C33,60

Fig. 4-6 shows the results of correlation spectra of Subject 3 in 33 ICA components. The
horizon axis indexes frequency bands between 1 and 60 Hz and the vertical axis indexes the
ICA components. The correlation spectra shows a strong evidence between fluctuations in
ICA bandpower of frequency bands within 9 to 25 Hz and driving performance index with
high positive correlations in ICA components 11 and 13. As driving error increases, so does

ICA bandpower.
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Fig. 4-6: Canonical correlation spectral matrix of subject 3. Note that the higher correlation

coefficients appear at 9 ~ 25 Hz in ICA components 11 and 13, respectively.



4.6 Adaptive Feature Selection Mechanism

Signal features in many studies are extracted empirically and become a problem when
applied for an on-line monitoring system. To solve this problem, an adaptive feature
extracting mechanism is developed to extract useful frequency bands of representative ICA
component selection according to the information of the correlation coefficients between log
bandpower of ICA components and driving performance index. In this thesis, to extract the
most representative ICA component and frequency bands, we first sort the correlation

coefficients CC(i,k) in frequency bands k for each component i in descending order by:
SC(i,k) = S(?(rt(CC(i,k)) :{mkax(CC(i,k) mkin(CC(i,k))}, i=1,2,...33, (20)
where the corresponding matrix indices K(ijk) is:
K(,k)=arg Sokrt(CC(i,k)) 2 [arginax(CC(i, k)= arg:nin(CC(i,k))} , (21)

where the first five frequency bands with the largest correlation coefficients of iy, component
are expressed as SC(i,1)~SC(i,5) with frequency band index recorded in K(i,k), k=1~5.

We then sort the SC(i, k) in descending order in the column direction to select the ICA
components having the maximum value in the summations of the largest 5 correlation

coefficients in frequency bands as:
o 5
SC(i):sortGZSC(i,k)],i: 1,2,...,33, (22)
: k=1

where the component indices in K(i,k) is also updated. Therefore, the first 2 ICA components

with 5 largest correlation coefficients in the frequency bands can be derived as %(1) and
SC(2) with matrix index K(i,k), i = 1~2 and k = 1~5.

44



An example of the adaptive feature selection mechanism for subject 3 is given in Fig. 4-7.
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Fig. 4-7: Example of the adaptive feature selection mechanism for subject 3. Note that the
band power of ICA components 11 and d3rat-frequency bands 10 ~ 14 Hz are selected as

input feature of the estimators.

4.7 Self-cOnstructing Neuro-Fuzzy Inference Network (SONFIN)

We developed a Self-cOnstructing Neural Fuzzy Inference Network called SONFIN
shown in Fig. 4-8 and it is used for the drowsiness estimation in this thesis [71]. The SONFIN
can always find its optimal structure and parameters automatically. Both the structure and
parameter identification schemes are done simultaneously during on-line learning without any
assignment of fuzzy rules in advance. The SONFIN can always construct itself with an
economic network size, and the learning speed as well as the modeling ability is well

appreciated. Comparing with other neural networks in different areas including control,
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communication, and signal processing, the on-line learning capability of the SONFIN has

been demonstrated.
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Fig. 4-8: The network structure of SONFIN,

This 6-layered network realizes a fuzzy model of the following form:
Rulei : IF x; is Aj; and ... and X, is Ai,
THEN y is mg; + ajiXj + ..., (23)

where Ajj is a fuzzy set, Mo; 1s the center of a symmetric membership function on Yy, and a;i is a
consequent parameter. Unlike the traditional TSK model where all the input variables are
used in the output linear equation, only the significant ones are used in the SONFIN; i.e.,
some &;;$ in the above fuzzy rules are zero.

Each node in Layer 1, which corresponds to one input variable, only transmits input

values to the next layer directly. Each node in Layer 2 corresponds to one linguistic label
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(small, large, etc.) of one of the input variables in Layer 1. A node in Layer 3 represents one
fuzzy logic rule and performs precondition matching of a rule. The number of nodes in Layer
4 is equal to that in Layer 3, and the result (firing strength) calculated in Layer 3 is normalized
in this layer. Layer 5 is called the consequent layer. Two types of nodes are used in this layer,
and they are denoted as blank and shaded circles in Fig. 4-8, respectively. The node denoted
by a blank circle (blank node) is the essential node representing a fuzzy set of the output
variable. The shaded node is generated only when necessary. One of the inputs to a shaded
node is the output delivered from Layer 4, and the other possible inputs (terms) are the
selected significant input variables from Layer 1. Combining these two types of nodes in
Layer 5, we obtain the whole function performed by this layer as the linear equation on the
THEN part of the fuzzy logic rule in Eq. (23). Each node in Layer 6 corresponds to one output
variable. The node integrates all the-actions recommended by Layer 5 and acts as a defuzzifier
to produce the final inferred output.

Two types of learning, structure-and._parameter learning are used concurrently for
constructing the SONFIN. The strueture leatning includes both the precondition and
consequent structure identification of a fuzzy if-then rule. Here the precondition structure
identification corresponds to the input-space partitioning and can be formulated as a
combinational optimization problem with the following two objectives: to minimize the
number of rules generated and to minimize the number of fuzzy sets on the universe of
discourse of each input variable. As to the consequent structure identification, the main task is
to decide when to generate a new membership function for the output variable and which
significant terms (input variables) should be added to the consequent part (a linear equation)
when necessary. For the parameter learning based upon supervised learning algorithms, the
parameters of the linear equations in the consequent parts are adjusted by either LMS or RLS
algorithms and the parameters in the precondition part are adjusted by the back-propagation
algorithm to minimize a given cost function.
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The SONFIN can be used for normal operation at any time during the learning process
without repeated training on the input-output patterns when on-line operation is performed.
There are no rules (i.e., no nodes in the network except the input-output nodes) in the
SONFIN initially. They are created dynamically as learning proceeds upon receiving on-line
incoming training data by performing the following learning processes simultaneously: (1)
input/output space partitioning; (2) construction of fuzzy rules; (3) optimal consequent
structure identification; (4) parameter identification. In the above, learning processes (1), (2),

and (3) belong to the structure learning phase and 4) belongs to the parameter learning phase.
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V .Results and Discussions

The analysis procedures of the five experiments have been introduced in Chapter 4. In
this chapter, the corresponding results of all experiments are discussed in details. One or few
extension discussions are specified respecting to each experimental results. Moreover, the

comparisons between the experiments are also given in this chapter.

5.1 The Influence of the VR-based Motion Platform on Cognitive

States

In this section, we demonstrate the influence of kinesthetic stimulus on cognitive states.
Firstly, we show the brain source of kinesthetic stithulus on cerebral cortex by the scalp
topographies of the ICA components.Then-we-compare the results in two conditions, which
the dynamic platform is moving and motionless, by the analysis of ERP and ERSP. The
results of comparison indicate the necessity of VR-based motion platform for brain research

in driving simulation

5.1.1 The Brain Source of Kinesthetic Stimulus on the Cerebral Cortex

First of all, we compare each component by ERP and ERSP analysis of the three events
in the two conditions that the dynamic platform is moving and motionless. The scalp
topographies of 30 ICA components obtained from Subject 1 is shown in Fig. 5-1 and two

ICA components have different responses between the two conditions are shown in Fig. 5-2.
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Fig. 5-2: Two ICA components have different responses between the two conditions of all

events. (a) The source near FC3 location, (b) The source near FC4 location.
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There is evidence in plenty to show that the vestibular system is related to kinesthetic
perception of human body, and the brain can deal with the information of balance between
optic scenes and kinesthetic perception [32]. This cognitive state will respond on the cerebral
cortex and we can observe this phenomenon from EEG data. By the experiment design of the
experiment group and control group, we can compare with each ICA component by ERP or
ERSP analysis of two groups to determine the components related to kinesthetic stimulus.
Beside we have excluded the difference between two groups due to the appearing order of

experiments with the dynamic platform is moving and motionless.

All of the five participants of this experiment have exactly two ICA components related
to kinesthetic stimulus and the results are presented in Table 5-1. The two scalp topographies
of these ICA components are symmetrical on the left and right sides of all participants and the
sources of these ICA components are nearFC3 and FC4 channel locations, respectively.
Especially, the vestibular system is just about under: the sources we indicated on cerebral

cortex. These two ICA components we selected-are reasonable according to the results.
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Table 5-1 indicates that the only two ICA components of all have the difference in the

two conditions.

Table 5-1

The scalp topographies of two ICA components have different response in the two conditions.

ICA Components Near FC3 Location Near FC4 Location

Subject 1

Subject 2

Subject 3

Subject 4

Subject 5 12
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5.1.2 Necessity of VR-based Motion Platform

Then we select component 20 to demonstrate the results because the result of the other
one component is similar. The ERP and ERSP analysis for stop event between the two
conditions are shown in Fig. 5-3. We will begin with a sample observation for subject 1 as
shown in Fig. 5-3 (a)(b). For driving stop event, the amplitude of ERP is a little smaller in the
motion condition than the response in the motionless condition. The important point to note is
the power spectra of ERP in two conditions as shown in Fig. 5-3 (c). When the dynamic
platform is moving, the frequency near 10 Hz and its harmonic frequency will be obviously
suppressed. The same results can be observed in driving start and driving deviation events as

shown in Fig. 5-4 (¢) and Fig. 5-5 (¢).

Then we consider the ERSP=of driving stop event in two conditions as shown in Fig. 5-3
(d)(e). One may notice that long-lasting suppression of near 10 Hz is conspicuous while the
dynamic platform is in operation.“The power speetra of driving stop event in two conditions
are affected due to this phenomenon. There is other thing to note in driving stop event. When
the vehicle has exactly stopped at the third second in the motionless condition, the perception

of human is the most unbalanced corresponding to response of the ERSP analysis.

The influence of dynamic platform in driving start and driving deviation events are
similar to the driving stop event as shown in Fig.5-4 and Fig. 5-5. The differences are the
magnitude near 10 Hz and the amplitude of the response between the two conditions whether
the ERP analysis or ERSP analysis for these two events. It is noted that in ERSP analysis of
the driving start event as shown in Figs. 5-4 (d)(e), all frequency bands are suppressed
accompanying the vehicle is accelerating while the dynamic platform is in operation. During

the periods of acceleration, the driver may feel much centrifugal perception in the driving
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cabin by the dynamic platform. The influence on cognitive state of kinesthetic stimulus can be

also discussed in next experiment.
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Fig. 5-3: The ERP and ERSP analyses of component 20 for stop event. (a) The ERP of
motion condition, (b) The ERP of motionless condition, (¢) Overplot power spectrum of two

conditions, (d) The ERSP of motion condition, (¢) The ERSP of motionless condition.
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Fig. 5-6: The ERP analysis of component 20 for deviation event with reaction time. (a) The

ERP with reaction time of motion condition, (b) The ERP with reaction time of motionless

condition, (c) Aligning onset by reaction time from (a), (d) Aligning onset by reaction time

from (b).

There is further evidence to suggest that the ICA components we concern about are
related to the movement of the dynamic platform as shown in Fig. 5-6. The reaction time
represents when the subject steers wheel to keep the vehicle in the cruising lane following the
movement of dynamic platform. In Figs. 5-6 (a)(b), the black line at 0 ms is the onset of
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deviation and the black curve with sorted trials means the reaction time. The onset of
deviation and reaction time will company the movement of the dynamic platform if we
consider the kinesthetic stimulus. When the dynamic platform is motion, the response of ERP
with automatic vehicle deviation is larger and faster than the other condition. In Figs. 5-6
(c)(d), after aligning the onset of reaction time for two conditions, the response of steering
wheel only occurs in motion condition. Therefore, it makes sure that the ICA components we

concern about are related to the movement of the dynamic platform.

In addition to the results of Subject 1 in this experiment, the other four participants have
similar results of the different responses between the two conditions and the most obvious

difference is the spectral magnitude near 10 Hz.
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5.2 The Brain Activity of Drowsiness in Different Cognitive States

In this section, we investigate the event-related potential of drowsiness in different
cognitive states and we can recognize the features of brain drowsy activity for further analysis.
Then we also discuss the influence of the dynamic motion platform on drowsiness in this

section.

5.2.1 The Degree of Cognitive States in Drowsiness

Firstly, the trials are sorted according to the length of reaction time and equally divided
into five groups as the index for further amalysis. Each group has 20 percentages of trials in
order and an example of Subject4 is shown in Fig. 5-7. Then we select one component which

is related to drowsiness for analysis.as-shown'in-Fig: 5-8.
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Fig. 5-7: The trials are sorted according to reaction time and equally divided into five

groups of subject 4.
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Fig. 5-7 provides a start-point to observe the reaction time of all single-trials in this
experiment. When the driver is drowsy, the reaction time between the onset of deviation and
steering wheel is increasing. Because the onset of deviation is random and unanticipated in
each drowsiness single-trial, it has sufficient demonstration to show the reaction time can be
the index for the degree of drowsiness. By equally dividing all single-trials into five groups,
we can discuss five degrees of cognitive states in drowsiness prior to falling into micro-sleep
at NREM. We may indicate by Fig. 5-8 what the responses of cognitive states will follow the
reaction time and occur before the onset of reaction time and behind the onset of reaction

time.
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Fig. 5-9: The results of ERSP analysis in five different cognitive states. (a) Drowsiness level
from 1 ~ 20 %, (b) Drowsiness level from 21 ~ 40 %, (c) Drowsiness level from 41 ~ 60 %,

(d) Drowsiness level from 61 ~ 80 %, (e) Drowsiness level from 81 ~ 100 %.
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Fig. 5-9 is a series of five diagrams illustrating the different cognitive states in five
degrees of drowsiness. We can imply the approximate reaction time of ERSP analysis by Fig.
5-7 in all conditions. In the first stage of the five degrees as shown in Fig. 5-9 (a), it means the
driver is more alert than other stages and the reaction time is shorter than the other degrees
while driving. The reaction time of the first stage is about 300 ms and the amplitude of
time-frequency spectrum enhances 5 dB near 10 Hz against power spectrum of baseline
before the onset of reaction time. Then the amplitude of time-frequency spectrum reduces 3 ~
5 dB near 10 Hz against power spectrum of baseline after the onset of reaction time. The
results of ERSP analysis in the second stage as shown in Fig. 5-9 (b) are similar to the results

in the first stage because the reaction times of these two conditions are much closed.

In the third stage of the five degrees as shown in Fig. 5-9 (c), the enhancement of power
spectrum near 10 Hz has duration;with 500;ms<due to the reaction time is slightly longer than
the first two conditions. And thezamplitude of time-frequency spectrum is reduced and it lasts
about 1500 ms after the onset of teaction time.\In the forth stage of the five degrees as shown
in Fig. 5-9 (d) , the reaction time becomes a little later to previous conditions. Similar to the
results in the third stage, the time-frequency spectrum of harmonic frequency in 10 Hz has the
same response before and after the onset of the reaction time. Finally, in the last stage of the
five degrees as shown in Fig. 5-9 (e), the reaction time is the latest of all conditions and the
response of enhancement and reduction in 10Hz and harmonic frequency is more obvious
than the results in the forth stage. The importance of the phenomenon in the five stages cannot
be overemphasized. Although the driver is micro-drowsy and not fall into sleeping in driving,

the feature of the magnitude in 10 Hz will change with the different drowsiness level.

62



5.2.2 The Dynamic Platform Influences Drowsiness ERP

Now, we consider the results of above procedure if the dynamic platform is motionless

and it is shown in Fig. 5-10.
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Fig. 5-10: The results of ERSP analysis in five different cognitive states if the dynamic
platform is motionless. (a) Drowsiness level from 1 ~ 20 %, (b) Drowsiness level from 21 ~
40 %, (c) Drowsiness level from 41 ~ 60 %, (d) Drowsiness level from 61 ~ 80 %, (¢)

Drowsiness level from 81 ~ 100 %.

63



Here we can demonstrate the dynamic platform influencing the results of drowsiness
ERP. The results of Experiment 1 produce evidence for the response of power spectrum near
10 Hz by kinesthetic stimulus. As shown in Fig. 5-9, the feature of drowsiness single-trial in
different cognitive states is also the power spectrum near 10 Hz. Fig. 5-10 tells us the

influence of dynamic simulator on drowsiness experiment.

First of all, we compare with the two conditions of dynamic platform is motion and
motionlessness for drowsiness experiment at the same time. The reaction times of the Fig. 5-9
and Fig. 5-10 in the five degrees of drowsiness are almost equal. Then the durations of the
response before the onset of the reaction time are similar in the five degrees. However, the
spectral magnitude responses near 10 Hz in the motionless condition enhances less than the
results in the motion condition for all degrees of drowsiness. In addition, the suppression
response of 10 Hz after the onset of themreaction time almost disappears in the motionless
condition. Therefore, the dynamic platform is necessary for the study of drowsiness

experiments in the real world.

5.3 The Performance of Adaptive Drowsiness Estimation

We discuss the performance of the proposed adaptive drowsiness estimation of
continuous driving in this section. First we demonstrate the dominant ICA components and
EEG channels for drowsiness. Then we compare the results of estimating performance by
using ICA components or EEG channels, selectivity experts or AFSM method feeding to
linear regression model or SONFIN model. Finally, we also discuss the optimal length of the

moving average windows for drowsiness experiments.
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5.3.1 Relationship between the ICA/EEG Power Spectrum and Drowsiness

First of all, we compare the correlation between log subband power spectra and driving
performance for each frequency bands and individual ICA components to find the adaptive
subbands and localization of electrodes according to the scalp topographies of ICA weighting
matrices. Then we also show the correlation analysis results by using EEG channel signals.

The two correlation coefficient spectra of Subject 3 are shown in Fig. 5-11.

Coneclat on of ICA Pewer and Driving Perormancs Corrvkatl vn ol EE0 Puver 2l Jriving Pudenmeamay
-l ‘— u d
i 5 g
|| —l
0 1
£ g8 1
g g
S S 1
v 25 1
‘3D H 7
W aw w a0 @
= Frequency Bamds
(a) ' £ (b)
1 The Highest Carelation with Comelaction CaeMclants ‘ 1 The Highest Comrelatian with Correlactian Caefficlents
—— Driving Perfomance —— Driving Parfarmance
a8- —— ICA Companent 13 and F=12 Hz agr —— EEG Chennel 28 end F=12Hz
08- E a.s- =
Correlation = 0.92 ian = 0.81
07- 1 a7r E
5 08- 5 0.6
| g
2 05- S 06
; :
2 04- S04
03- a3t
02- 0.2t
at- a.t ﬂ<
“ 1000 2000 300a 4000 u(l 500 1000 1500 2000
Tima (Sac) Time (Sac)
() (d)

Fig. 5-11: The results of correlation coefficient analysis for Subject 3. (a) The correlation
coefficient spectra of ICA components, (b) The correlation coefficient spectra of EEG channels,
(c) The ICA component with highest correlation with the driving performance, (d) The EEG

channel with highest correlation with the driving performance.
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The scalp topographies of all ICA components trained by EEG data of Subject 3 have
been shown in Fig. 4-4. Hence, we will select two ICA components and two EEG channels

which have the highest correlation coefficient with the driving performance index as the

features for adaptive drowsiness estimation as shown in Fig. 5-11.
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Fig. 5-12: Two ICA components and two EEG channels with the highest correlation

coefficient with the driving performance index. (a) ICA Component 11, (b) ICA Component

13, (c¢) EEG Pz channel, (d) EEG P4 channel.
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After ICA training and time-frequency analysis for each ICA component and EEG
channel, we compute the spectral correlation coefficients between the ICA/EEG log subband
power spectrum and the driving performance index. Fig. 5-11 (a)(b) shows the correlation
spectra of Subject 3 in 33 ICA components and 33 EEG channels, respectively. The horizon
axis indexes frequency bands between 1 ~ 60 Hz and the vertical axis indexes the EEG
channels or ICA components. In Fig. 5-11 (a), the correlation spectra show a strong evidence
between fluctuations in EEG bandpower of frequency bands within 10 ~ 14 Hz and driving
performance with high positive correlations in most EEG channels. The driving deviation
increases with the EEG bandpower as shown in Fig. 5-11 (¢). We also investigate these
relationships by plotting the correlation coefficients between bandpower of 33 ICA
components and driving performance. A similar monotonic relationship exists in a wide
frequency bands, especially the frequency bands from 9 to 25 Hz in ICA components 11 and

13 achieve a high positive correlation with the driving-deviation as shown in Fig. 5-11 (b).

5.3.2 The Dominant ICA Components and EEG Channels for Drowsiness

Fig. 5-12 show the spatial distributions in scalp topography weighting matrices W for
dominant ICA component 11 that is centered near Pz channel location and ICA component 13
that is centered near P4 channel location of the Subject 3. The two EEG signals of Pz and P4
channels locations are selected for further analysis because these EEG signals have the
highest correlation coefficients among all EEG channels according to Table 5-2, the sources
of two ICA components, which we selected with the highest correlation coefficients, are near
the two EEG channels locations selected by the same procedure of the five participants. The
correlations are particularly strong at central and posterior areas, which are similar to the
results of previous studies in the driving experiments [19,21,25]. The relatively high
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correlation coefficients of near a-band (8 ~ 13 Hz) with driving performance suggests that
a-band frequencies may be suitable for drowsiness estimation, where the subject’s cognitive

state might fall into stage one of the NREM.

Table 5-2 summarizes the scalp topographies of the two ICA components and two EEG

channels we used for adaptive drowsiness system of the five participants.

Table 5-2

Two ICA components and two EEG channels of the five participants with the highest

correlation coefficients with the driving deviation are selected for adaptive drowsiness

estimation.
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
J |
ICA
Components
EEG
Channels A et i ot 851 et 1 Ot b R
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5.3.3 Selection of Frequency Bands Based on Spectral Correlation and AFSM

For subject 3, the correlation coefficients between different frequency bands from 8 to 15
Hz of the ICA components 11 or 13 and the driving performance in different experimental
sessions are shown in Table 5-3. The results of estimating system show that the optimal

frequency bands of Subject 3 are from 10 to 14 Hz of the ICA component 11 and 13.

Table 5-3

The correlation coefficients between the log subband power spectra and the driving
performance of Subject 3 corresponding to the different frequency bands from 8 to 15 Hz of the
ICA component 11 and 13 in the training and testing sessions that uses the same ICA weighting

matrix obtained from the training session.

Frequency 8Hz O9Hz | 10Hz | 11Hz | 12Hz | 13Hz | 14Hz | 15Hz
Training
. 0.82 0-89 0.92 0.92 0.92 0.92 0.89 0.87
Session
Com 11 -
Testing
. 0.78 0.90 0.93 0.93 0.93 0.94 0.94 0.91
Session
Training
. 0.77 0.88 0.90 0.91 0.92 0.91 0.90 0.86
Session
Com 13 :
Testing
. 0.76 0.89 0.91 0.92 0.93 0.92 0.92 0.89
Session

In this section, we use the correlation coefficients to find the optimal frequency bands
and localizations of electrodes according to the scalp topographies of ICA weighting matrices.
Previous studies [27-31] showed that it is not applicable to use full EEG frequency bands to
accurately estimate individual changes in vigilance and performance. Because the artifacts
and individual variability in the EEG dynamics accompanying loss of alertness even the
information about alertness may be distributed over the entire EEG spectrum. Table 5-3
shows the correlation coefficients between different frequency bands of the two ICA

components and driving performance of Subject 3 in training and testing sessions. The results
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show the better frequency bands of ICA components 11 and 13 are from 10 to 14 Hz with the
correlation rate up to 0.94. Table 5-4 lists the correlation results for both sessions using the
optimal frequency bands within 10~14 Hz in single ICA component of Subject 3. The results
show that the frequency bands from 10 to 14 Hz of ICA components 11 and 13 have the

highest correlation coefficients than the other components.

Table 5-4

The correlation coefficients between log subband power spectra and the driving performance of
subject 3 using the optimal frequency bands (from 10 to 14 Hz) corresponding to single

component.

ICA

Component]

11 13 26 24 5 31 29 32 27

Training
. 0.92 0.91 0.88 0.82 0.80 0.78 0.78 0.77 0.76
Session

ICA

Component]

11 13 26 S 33 24 28 29 31

Testing
_ 0.93 0.92 0.89 0.84 0.83 0.82 0.82 0.82 0.79
Session

Table 5-5 shows the frequency bands of the five participants which are selected by
manual method and AFSM technology, respectively. The frequency bands selected by manual
method are called the optimal frequency bands in this experiment. The optimal frequency
bands means repeatedly testing to find the most appropriate frequency bands for the best
estimating result. For Subject 3, the manual method and the AFSM technology determine the

same frequency bands.
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The frequency bands of the five participants are selected according to the two ICA
components for both the manual methods and the AFSM technology. It is noted that these two
methods also select the same frequency bands by using the EEG channels for the five

participants.

Table 5-5

The frequency bands for the two ICA components in Table 5-2 selected by manual method and
the AFSM technology corresponding to different subjects.

Frequency Bands Subject 1 | Subject2 | Subject3 | Subject4 | Subject5
Manual Selection 5~8Hz | 8~13Hz | 10~14Hz| 4~7Hz | §8~13Hz
AFSM Technique 4~8Hz || 8~12Hz |'10~14Hz| 5~9Hz | 9~13Hz

Table 5-5 shows the optimal frequency bands ranges corresponding to different subjects
according to the higher correlation coefficients and repeated testing [72]. And it also shows
the frequency bands selected by the AFSM technique of all subjects. It shows that the better
frequency bands are not necessarily the same for different subjects. The frequency bands
selected by manual method and the AFSM technique are almost the same but slightly
different for different subject. Hence, the results of driving error estimation by using the

frequency bands selected by manual method and AFSM technique will be similar.
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5.3.4 Drowsiness Estimation based on ICA Components or EEG Channels

Fig. 5-13 shows the actual and estimated driving performance index of training and
testing sessions with respect to Subject 3 using the optimal frequency bands selected
manually combined with linear regression model. It can be found that the estimated driving
performance matches well with the actual driving performance index with correlation

coefficient r = 0.93 in the training and r = 0.92 in the testing by using two ICA components of

subject 3.
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Fig. 5-13: Driving performance estimation of Subject 3 using linear regression model with the
optimal frequency bands selected manually. (a) Result of training session by using ICA
components, (b) Result of testing session by using ICA components, (c¢) Result of training

session by using EEG channels, (d) Result of testing session by using EEG channels.
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In this study, we use a least-square linear regression model to estimate the subject’s
driving performance based on the information obtained from the time-frequency power
spectra analysis of ICA components or EEG channels. We used only two ICA components
that performed the highest correlation between the ICA subband power spectrum and the
driving performance such that the most artifacts can be removed and the available information
of drowsiness estimation is extracted. Fig. 5-13 (a)(b) plots the estimated and actual driving
performance of training and testing sessions for Subject 3. The linear regression model is
trained with one session and tested against a separated session. As we can see, the estimated
driving performance matched well with the actual driving performance with correlation

coefficient r=0.93 in the training and r=0.92 in the testing.

Table 5-6

Driving performance estimation using the optimal frequency bands and linear regression model

of the five participants by two ICA components or.two EEG channels.

Performance of Results Subject 1{Subject 2|{Subject 3|Subject 4|Subject 5| Average
Trainin | 929% | 91% | 93% | 89% | 90% | 91%
Testing | 91 % 89 % 92 % 86 % 80% | 87.6%
Trainin | 889% | 90% | 91% | 87% | 94% | 90%
Testing | 78 % 86 % 84 % 84 % 73 % 81 %

ICA Components

EEG Channels

Table 5-6 shows the statistics across ten sessions for five selected subjects. The mean
correlation coefficient between actual driving performance time series and within training
session estimation is 0.91+0.016, whereas the mean correlation coefficient between actual
driving performance and cross testing session estimation is 0.876+0.048. These results

suggest that continuous ICA-based driving performance estimation using a small number of
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frequency bands is feasible, and can give accurate information about minute-to-minute

changes in operator’s alertness.

The driving performance estimation of Subject 3 based on a linear regression model with
frequency bands 10~14 Hz of EEG channels Pz and P4 as inputs features are shown in Fig.
5-13 (c)(d). The correlation coefficient between estimated and actual driving performance is r
= 0.91 in the training session and r = 0.84 in the testing session, which is just a little lower
than those using corresponding ICA components. The mean correlation coefficient between
actual driving performance time series and within training session estimation is 0.90+0.027,
whereas the mean correlation coefficient between actual driving performance and cross

testing session estimation is 0.81+0.054.

5.3.5 Driving Performance Estimation based on AFSM and SONFIN

To verify the correctness and effectiveness of the AFSM method, the optimal frequency
bands of the ICA components in these critical bands were feed as the input features of the
linear regression models. We also used the Self-cOnstructing Neuro-Fuzzy Inference Network
(SONFIN) [71] model to estimate and predict the individual driver’s driving performance by
taking the advantages of fuzzy reasoning, learning abilities, and flexibility of fuzzy neural
networks. By the SONFIN technology, we expect to compensate the results of driving
performance estimation by using the AFSM method for further application in the realistic
driving environment in opposition to using the optimal frequency bands selected manually

and linear regression model.
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Table 5-7 shows the comparison results of driving performance estimation. Although the
results of performance based on AFSM methods using linear regression models are somewhat
lower than those selected manually, the adaptive feature selection mechanism has the
advantages of saving time and cost when the whole system is applied for on-line alertness

monitoring.

Table 5-7

Driving performance estimation using the frequency bands selected by manual method and the
AFSM technology based on two dominant ICA components as input features of the linear

regression model and SONFIN models for five subjects.

Performance of Results Subject 1|Subjeét 2|Subject 3|Subject 4|Subject 5| Average

Manual | Training{ 92-% 91 % 93 % 89 % 90 % 91 %

X Lmeaf Selection | Testing? 91% | 89% [-92% | 8% | 80% | 87.6%
€gression
Model | AFSM |Training [92°% 1<91% f 93% | 82% | 90% | 89.6%

Technology| Testing | 91% [ 788% | 92% | 78% | 80% | 85.8%

Manual | Training | 94 % 93 % 97 % 93 % 94% | 942%

SONFIN | Selection | Testing | 93% | 87% | 94% | 88% | 83% | 89%

Model | ApgM | Training| 92% | 92% | 96% | 87% | 91% | 91.6%

Technology| Testing | 91% | 89% | 94% | 83% | 85% | 88.4%

Table 5-7 also shows the estimating results based on AFSM methods combined with
SONFIN. Compared to the results using linear regression models with manual method, using
fuzzy neural network models can achieve higher estimating results and can compensate
slightly by using AFSM technique. Therefore, these results suggest that continuous

EEG-based driving performance estimation using a small number of frequency bands is
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combined with both linear models and fuzzy neural models, and can give accurate

information changes in operator’s alertness.

5.3.6 Performance Comparison Using Different Moving-Average Window

Length

The correlation coefficients between two time series of the driving performance and
EEG log bandpower spectrum from 9 ~ 15 Hz in Pz channel using moving average with
different widow for Subject 3 is shown in Fig. 5-13. It shows that the 90-second moving
average windows can perform the maximum correlation coefficient for continuous drowsiness

analysis.
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Fig. 5-14: Correlation coefficients between the driving performance and EEG log power
spectrum from 9 ~ 15 Hz in Pz channel of subject 3 by using different moving averaged

windows lengths.

76



5.4 The Brain Source of Drowsiness on the Cerebral Cortex

In this session, the estimation of driving performance will be evaluated to analyze the

number of EEG channels and the regions on the scalp. The experimental results also show the

brain source of drowsiness on the cerebral cortex.

5.4.1 Comparison with Using Different Number of EEG Channels

The driving performance estimation by the optimal frequency bands of two ICA

components and EEG channels obtained using different number of EEG channels are shown

in Table 5-8.

Table:5-8

Comparison of driving performance estimation:obtained from different number EEG channels by

using the optimal frequency bands of two EEG channels or ICA components as the features of linear

regression model for the five participants;

Five Conditions 30 channels | 20 channels“| 15 channels | 10 channels 6 channels
.
Components ‘-’ - 2 \) & @
) Performance 89 % 87 % 88 % 86 % 82 %
Subject 1
EH O OIOOIO00O0OO0O00O0
Channels
Performance 81 % 81 % 81 % 79 % 73 %
T A | @) @ & @ O
Components| e ’ u & ' O
. Performance 90 % 90 % 89 % 90 % 89 %
Subject 2
O OO OO0 00
Channels
Performance 88 % 88 % 91 % 88 % 84 %
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Five Conditions 30 channels | 20 channels | 15 channels | 10 channels | 6 channels
Two ICA | A48 4 - 5 o Y ' '
Components @ G) @
Subject 3 Performance 92 % 91 % 89 % 91 % 91 %
Two EEG
Channels O O O O O O O O O O
Performance 84 % 84 % 87 % 84 % 85 %
Two ICA -
Components Q
Subject 4 Performance 88 % 88 % 87 % 84 % 88 %
Two EEG
Channels O Q O O O O O O O O
Performance 84 % 84 % 84 % 83 % 84 %
Two ICA . o
Components &)
Subject 5 Performance 77 % 76 % 72 % 74 % 72 %
Two EEG
Channels O O O O O O O O O O
Performance 72 % 72 % 72 % 70 % 70 %

It can be found that the performance of drowsiness estimation decreases if less number

of EEG channels were used. It is reasonable because the more EEG channels we used, the
more information we extract. Hence we can observe the estimating results of the five
participants in the final condition, which we only use six EEG channels, the performance is

slightly reduction to the results in the first condition. For using six EEG channels of all
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participants, the mean performance is 84.4+7.7 % by ICA components and the mean

performance is 79.24+7.1 % by EEG channels.

For example, we can compare with the estimating results of different tracking methods

by using two ICA components and EEG channels for subject 1 as shown in Fig. 5-15.
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Fig. 5-15: Comparison of estimating results by using ICA components and EEG channels.

For each subject, the sources of the ICA components are near the channel locations of
EEG signals regardless of the number of EEG channels we used. Even we only have six EEG
channels signals, this six EEG channels can still collect much information propagated from
any source to the channels locations. Through ICA decomposition, we can also get desired
ICA components by using six EEG channels. However, the less information from EEG
signals we collect the fewer artifacts will be removed by ICA technology. For all participants,
the more EEG channels we used, the advantage of ICA-based approach is more obvious.
Therefore, only using six EEG channels can achieve high estimating results for reducing the

calculation in the real-time applications.
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5.4.2 Comparison of Using Different Region of EEG Channels

The comparison of driving performance estimation using two EEG channels located at
the four different regions by the optimal frequency bands combined with linear regression

model for the five participants are shown in Table 5-9.

Table 5-9

Comparison of driving performance estimation using two EEG channels of the four different

regions.
) Parietal,and )
Four Regions on the Scalp 3 LEeft Temporal [Right Temporal Frontal
Oceipital
Conporml 7 mp Componant T map
One ICA
Component
i Performance 90 % 93 % 84 % 73 %
Subject 1 p— p—
One EEG
Channel
Performance 86 % 74 %
Comparen 2 mag Compewnl 2mp
One ICA ,' ! . .
Components l |
. Performance 90 % 93 % 94 % 92 %
Subject 2 p— —. — —
One EEG
Channels
Performance 92 % 88 % 91 % 93 %
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i Parietal and )
Four Regions on the Scalp Occivital Left Temporal Right Temporal Frontal
ccipita
Compemni 3 rmp Crapanat 7 mag Conpensrt T map Corsporsst £ mep
One ICA | ' . i G A
Components Q | ‘ | |
Subiect 3 Performance 91 % 88 % 88 % 88 %
One EEG
Channels
Performance 84 % 89 %
One ICA
Components
Subiect 4 Performance 86 % 80 % 82 % 79 %
u JeC s Tkt T ol Fozbemtbn
One EEG
Channels
Performance 84 % 78 % 74 % 82 %
Corpenast Zmmp Campanat 1 rap
One ICA , | , ,
Components o
Subiect 5 Performance 77 % 80 % 63 % 69 %
ubjec
One EEG
Channels
Performance 82 % 72 % 69 % 68 %

According to Table 5-8, the sources of all ICA components and locations of all EEG
channels we selected for estimating drowsiness are near parietal and occipital regions on

cerebral cortex. In this session, we want to find out the universal brain source of drowsiness
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on cerebral cortex among our participants. By using one ICA component or one EEG channel
of different regions on cerebral cortex, we can explore the better regions for drowsiness

experiments according to the performance of estimating drowsiness.

Table 5-9 help us to understand the brain source of drowsiness on cerebral cortex of all
participants. First, we consider about the parietal and occipital regions of the five subjects.
There is no doubt about the EEG channels we selected are on the parietal and occipital
regions on cerebral cortex. And the sources of ICA components we used indicate the same

regions particularly near Pz and Oz channel locations.

Secondly, we discuss the left and right temporal regions of the five subjects. For
selecting the EEG channels, the locations of the selected channels approach to parietal regions
on cerebral cortex. For selecting the €A ‘components, the scalp topographies of all indicate
the sources also approach to parietal regions on cerebral cortex. Through ICA weighting
matrices W, the sources of spatial distributions inscalp topography may extend to the
occipital regions on cerebral cortex. Therefore, the-performance of estimating results is still
excellent by using signals measured from temporal regions on cerebral cortex due to we can
collect the source signals propagated from the parietal and occipital regions to the temporal

regions through ICA decomposition.

Finally, for frontal region on cerebral cortex, it is clear that the FCz channel is selected
for the five subjects by using EEG channel signals. Because of this channel is the nearest
location to the parietal and occipital regions on cerebral cortex. Broadly speaking, the
performance of drowsiness estimation is acceptable by only using FCz channel signals.
Although the estimated result of using EEG channel at FCz is poor for subject 1, the result
can be improved to be passable through ICA technique. The scalp topographies of ICA
components indicate the sources of spatial distributions approach to occipital regions on
cerebral cortex. The results of study using EEG channels on the frontal region for drowsiness
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estimation are very important for further study of using the spiked dry electrodes. According
to about discussion, we may conclude that the brain sources of drowsiness the parietal and

occipital regions on cerebral cortex.

5.5 Actual Application of the Spiked Dry Electrodes

In this session, we first examine the performance of the spiked dry electrodes developed
by the p System & Control Lab, in the Brain Research Center of the University System of
Taiwan. Fig. 5-16 shows electrode-skin-electrode impedance (ESEI) of three types the spiked

dry electrodes is lower than the standard wet electrodes.
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Fig. 5-16: The ESEI comparison between dry electrodes and wet electrode with/without skin

preparation. (a) Without skin preparation, (b) With/without skin preparation

« System and Control Lab, Brain Research Center of the University System of Taiwan

Then, the 32-channel EEG signals of Subject 2 measured by 2 spiked dry electrodes and
30 standard electrodes are decomposed into 32 ICA components. The scalp topographies of

these ICA components for Subject 2 are shown in Fig. 5-17.
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©06 500

Fig. 5-17: The scalp topographies of all ICA components trained by EEG data of Subject 2

using 2 spiked dry electrodes and 30 wet electrodes.

The first question of using the spiked dry electrodes is the height of probes limited by the
MEMS technology. The second question is the movement without using the electrolytic gel.
Fig. 5-18 (a) shows the EEG signals measured by the spiked dry electrodes on FP1 and FP2
channels with moving activity noise. This problem can be solved by the ICA decomposition
technique. For example, the ICA components 3 and 4 of Subject 2 in Fig. 5-19 can be
regarded as the noise component of movement artifacts. In order to using the EEG signals
measured by the spiked dry electrodes into drowsiness estimated system, we remove these

components from the measured EEG signals and the resultant EEG signals are shown in Fig.

5-18 (b).
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Fig. 5-18: The raw EEG data are measured by placing the spiked dry electrodes at FP1 and
FP2 channels using the standard electrodes for the others channels of Subject 2. (a) The
EEG signals of FP1 and FP2 channels with movement artifacts, (b) The EEG signals after

ICA-based artifact removal.

85



Similarly, we remove the other noise components from 1 to 11 for further analysis. Fig.

5-19 shows the resultant EEG signals at FP1 and FP2 channels after removing the ICA

components from 1 to 11.
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Fig. 5-19: The EEG signals measured by using the spiked dry electrodes before/after artifacts

removal using ICA decomposition technology. (a) and (b) EEG power spectra signals of FP1

and FP2 channels before removing all noise components, (¢) and (d) EEG power spectra of

FP1 and FP2 channels after removing all noise components.

Comparing Fig. 5-19 (a)(b) and (c)(d), it can be observed the small peak near 10 Hz of
power spectrum appears after removing noise components by ICA technique. The features
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propagated from the source on the parietal and occipital regions can be applied to the

following drowsiness estimation.

The correlation coefficients between log subband power spectra and driving performance
for each frequency of all EEG channels after noise components removal is shown in Fig. 5-20.
It is obvious that the correlation spectra shows a strong evidence between fluctuations in EEG
bandpower of frequency bands within 8 ~ 13 Hz and driving performance with high positive

correlations in most EEG channels including FP1 and FP2 channels.

Ctrannels

Fraqaency Bands

Fig. 5-20: Correlation coefficients spectra of all EEG channels after removing all noise

components.

The experimental results show in Table 5-10 demonstrate that it is feasible to using two

EEG signals at frontal region acquired by dry electrodes for drowsiness estimation.

Table 5-10

Driving performance estimation of subject 2 by using two spiked dry electrodes.

Performance of Results

Training Session 73 %

Testing Session 70 %
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VI.Conclusions

In this thesis, we propose an EEG-based drowsiness estimation technology based on
independent component analysis, time-frequency spectral analysis, correlation analysis and
the fuzzy neural network model to continuously and indirectly estimate fluctuations of human
alertness level in the VR-based dynamic driving environment. The VR-based dynamic motion
platform combined with the EEG measurement system is an innovation in brain and cognitive
engineering researches. Our study provides good evidence to show that the VR-based
dynamic motion platform is required for the study of human cognitive state in the real world.
The kinesthetic stimuli obviously influence the cognitive states and it can be observed by
analyzing the EEG signals. Using ICA decomposition technique, we also demonstrate the
brain sources related to kinesthetic.stimulus are symmetrical on the both sides near FC3 and

FC4 channel locations on scalp, respectively.

Secondly, we also compare the EEG-¢ehanges related to different drowsiness levels in the
dynamic and static environment. The experimental results show that the EEG power spectrum
near a-band will change accompanying different drowsiness level. This is an important
observation for the EEG-based drowsiness estimation. In addition, the dynamic motion

platform obviously influences the cognitive states of drowsiness.

Thirdly, we demonstrate a close relationship between fluctuations in driving performance
and the log subband power ICA and EEG spectrum. This relationship appears stable within
individuals across sessions, but is somewhat variable between subjects. We also proposed a
novel AFSM to solve the sorting problem of ICA components and to extract useful frequency
bands based on the correlation analysis. The averaged accuracies of training and testing
session for the five participants can achieve high to 92 % and 88%, respectively by using the

AFSM technique combined with the fuzzy neural networks.
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We also observed that the brain sources of drowsiness locate in the brain parietal and
occipital regions by analyzing the correlation of EEG signals on different regions and the
drivers’ drowsiness index. For practical applications, we are the pioneers involving the spiked
dry electrodes into the drowsiness estimation system. The experimental results show that it is
feasible to put the spiked dry electrodes on the frontal region combined with ICA technique to

estimate drivers’ drowsiness level.

In the future, we can design more driving tasks to discuss the influence of kinesthetic
stimulus on EEG dynamic changes. We can develop the EEG-based drowsiness estimation
technology for the dynamic driving environment. It will be different from the method
proposed in this thesis, since we have discovered that the drivers” EEG a-band responses as
different the dynamic platform is moving or motionless. We can also use the spiked dry
electrodes array placed on frontal‘regionseombined with ICA technique to replace the scalp

cap for practical application.
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