
Chapter 2  

The mathematical model of a Brushless DC Motor 

In this chapter, the mathematical model of a brushless DC (BLDC) motor will be 

described by a set of dynamic equations, including electrical equations and 

mechanical equations. Using space vectors, Section 2.1 derives the dynamic equations 

for a p-pole 3-phase BLDC motor, which generally possesses stator windings and a 

rotor with surface-mounted magnets. Since the mathematical model is often 

established in three-axis system, which is more complicated than a two-axis system, 

called d-q coordinate system. Thus, the coordinate transition is necessary and will be 

proposed in Section 2.2. Furthermore, the state-space equation will be presented in 

Section 2.3. 

 

2.1 Dynamic equations of BLDC motors in vector space 

The dynamic equation of the BLDC motor with Y-connected stator winding will 

be introduced in this section. Assume that the permeability of iron is infinite. Besides, 

the slot effect, the iron lost, and the end winding effect are negligible. 

When the neutral point is isolated, the phase currents of the p-pole BLDC motor, 

ias(t), ibs(t), and ics(t) can be expressed as 

 ( ) ( ) ( ) 0=++ tititi csbsas  (2-1) 
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Because the three windings are distributed with 
3

2π  in electrical degree apart to 

each other, the stator current in vector space are generally represented as 

 ( ) ( ) ( ) ( ) 3
4

3
2 ππ j

cs

j

bsass etietititI ++=  (2-2) 

where , ( )tias ( ) 3
2πj

bs eti , and ( ) 3
4πj

cs eti  are the corresponding three phase currents.  

Let ( )teas ,θλ , ( tebs , )θλ  and ( )tecs ,θλ  be the fluxes related to the three phases 

of the stator and Lls, Lss, and Lms correspondingly represent the magnetic leakage, the 

self-inductance and the mutual inductance of the stator. Hence, the stator flux can be 

expressed as 
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where eθ  is the permanent magnetic electrical angle. Besides, pmλ  is the flux 

magnitude produced by the permanent magnets, which are assumed sinusoidally 

distributed in the air-gap. 

Based on the stator flux in (2-4)-(2-6), the stator voltages, vas(t), vbs(t), and vcs(t), 

can be formulated as  

 ( ) ( ) ( t
dt
dtiRtv easassas ,θλ+= )  (2-6) 

 ( ) ( ) ( t
dt
dtiRtv ebsbssbs ,θλ+= ) (2-7) 

 ( ) ( ) ( t
dt
dtiRtv ecscsscs ,θλ+= )  (2-8) 
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where Rs is the stator’s resistance of each phase. Furthermore, the last term in each 

equation illustrates the back-EMF eemf, which can be calculated as following 

 ( ) ( ) ( )
t

,tθλω
θ

,tθλ
dt

,tθdλe e
e

e

ee
emf ∂

∂
+

∂
∂

==  (2-9) 

with 
dt

dθω e
e =  as the electrical angular velocity. Actually, the back-EMF contains on 

the right-hand side of (2-11) corresponds to the motional voltage and the second to the 

transformer voltage. Rewriting the self-inductance as Ls=Lls+Lss and employing (2-9) 

are shown the back-EMF of each phase as following 

 ( ) ( ) ( ) ( ) epmecsmsbsmsasseas θλωtiLtiLtiL,tθλ sin
2
1

2
1

−−−= &&&&  (2-10) 
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⎠
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Then the dynamic mathematical equation of the 3-phase stator is represented as  
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where mss LL
2
1

+  is replaced by L. 

Besides, the two important things for a BLDC Motor are torque and rotational speed. 

The torque of a motor produces from the differential magnetic co-energy and the 

kinds of torque are separated by inductance, such as the reluctance torque and the 

cogging torque relate to the self-inductance, and the alignment torque relate to mutual 
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inductance. In BLDC motor, the alignment torque is concerned as reciprocal effect 

between stator and rotor. 

In order to investigate the electromagnetic torque of the BLDC motor, the 

synchronous AC motor should be considered first. It is possible to obtain an 

expression for the electromagnetic torque by putting the rate of change of the 

mechanical output energy equal to the mechanical power. 

 ee
mech

mech ωT
dt

dWP ==  (2-16) 

Let  be the input electrical energy,  be the stator and rotor losses energy, 

 be the magnetic energy stored in the field, and  be the mechanical 

output energy, the total energy and the differential mechanical output energy can be 

represented as (2-18) and (2-19), respectively. 

eW lossW

fieldW mechW

  (2-17) mechfieldlosse WWWW ++=

 fieldlossemech dWdWdWdW −−=  (2-18) 

In general, for a p-pole 3-phase machine, the differential input electrical energies 

could be expressed as 

 ( dtivivivRepdW *
csc

*
bsb

*
asae ++=

2
)  (2-19) 

The loss energies are due to heat dissipation across the stator winding resistance, 

hysteretic and eddy current losses within the magnetic material, friction loss between 

moving parts and either their bearings or the surrounding air, and dielectric loss in the 
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electric fields. However, if only the windings loss are considered, the differential loss 

energies related to the stator and rotor windings can be expressed as 

 ( dtiRiRiRpdW cssbssassloss
222

2
++= )  (2-20) 

The differential field energies can be obtained the induced stator and rotor transformer 

back-EMF, respectively. 
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 (2-21) 

Thus, differential mechanical energies can be calculated by using (2-6)-(2-8) and 

(2-19)-(2-21)  
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Therefore, the electromagnetic torque can be formulated by multiplying each phase of 

the stator current and back-EMF, such as  
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⎦
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According to the Newton law, the electromechanical equation can be expressed 

as 

 ( ) ( eLeme ωJ
p

TωB
p

T &
22

=++− )  (2-24) 

 ( eLemeLmmm TTωBωJ
p

TωBωJ =++=++ &&
2 )  (2-25) 

where J is the motor’s inertia, Bm is the viscous damping, TL is the load torque, mω  is 
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the mechanical angular velocity.  

Note that (2-13)-(2-15) and (2-25) are represented the whole dynamic equations 

of the BLDC motor. In these dynamic equations, there are four state variables, , 

, , and 

asi

bsi csi eω , and three input voltages, , , and , and one external load 

torque . It is difficult to design a BLDC motor controller using the three-axis 

system. In order to simplify the design process, three-axis system should reduce to 

two-axis system, called d-q axis system, and will be proposed in next section.  

asv bsv csv

LT

 

2.2 The coordinate transition process 

In this section, two transformations in the coordinate transition process will be 

proposed. First, the Clarke transformation transforms the three-axis system to 

stationary reference frame (α -  coordinate), shown in Figure. 2.1. Second, the Park 

transformation transforms stationary reference frame to rotating reference frame (d-q 

coordinate), shown in Figure. 2.2. 

β
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 bsf

 

 

Before introducing the Clarke transformation, the transformed coefficient is 

existed and it can be deduced from power. The total instantaneous power in the 

three-axis system and the stationary reference frame are expressed as follows 

 { }*
cscs

*
bsbs

*
asasabcs ivivivReP ++=  (2-26) 

 { }*
β

*
ααβ ivivReP βα +=  (2-27) 

Figure. 2.2 The Park transformation 
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When the neutral point is isolated, the balanced current and voltage of the stator are 

shown as 

 03
4

3
2

=++
ππ j
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j

bsas eieii  (2-28) 
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j

bsas evevv  (2-29) 

After employing above two equations, the total instantaneous power will be equal 

with each other. 

 abcsαβ PkP 2

2
3

=  (2-30) 

There are two methods to decide the transfer constant . First, called power invariant 

method,  is chosen as 

k

k
3
2 . Second, called non-power invariant,  is chosen as k

3
2 .  

In general case, the function ( )tsF  can be the current of the stator  or the 

voltage of the stator , and the each phase of the stator in three-axis system can 

be expressed as 

( )tsI

( )tsV

 ⎟⎟
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Assume that the α -axis coincide with the a-axis and  is the transfer constant, can 

be represented as 

k
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Suppose that the non-power invariant is chosen; 
3
2

=k , the Clarke 

transformation can be represented as  

  (33) 
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sT  is the transformation matrix and  is 

the zero-sequence component and it is equal to zero. Later, the inverse of , found 

as 
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sT , will be employed in calculating the 

differential of the flux.  

Next, the Park transformation will be deduced from which the angle between the 

stationary reference frame and the rotating reference frame is θ . From Figure (2), the 

quantity of d-axis and q-axis are composed of stationary reference frame respectively. 

 θθ βα sinfcosffd +=  (2-34) 

 ( ) θθ βα cosfsinffq +−=  (2-35) 

Then the matrix form of the Park transformation is denoted as  
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Integrating utilization of above two processing, the coordinate transformation from 

three-axis system to rotating reference frame is represented as  

  (2-37) 
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2.3 The state space equation in d-q coordinate 

In this section, the dynamic equations proposed in section 2.1 will be 

transformed into rotating reference frame. First, the voltage equations (2-6)-(2-8) can 

be re-expressed as  

 ( abcsabcsabcs dt
d ΛRIV += )  (2-38)  

where ,[ ]Tcsbsasabcs vvv=V [ ]Tcsbsasabcs iii=I , and 

.  [ ]Tcsbsasabcs λλλ=Λ
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By using the transformation matrix , (2-38) can be rearranged as sT

 ( 000 αβαβαβ ΛRIV
dt
d

+= ) (2-39) 

where ,  , [ ]Tabcss vvv 00 βααβ == VTV 1−= ssRTTR
dt

d e
e

θω =  , 

, and [ ]Tabcss iii 00 βααβ == ITI abcssΛTΛ =0αβ .  

After arrange the equations, the stator voltage equations and dynamic equations of the 

stationary reference frame are expressed respectively as  

 βααα λ
ω
L

v
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i
L
R

i es ++−=
1&  (2-40)  

 αβββ λ
ω
L

v
L

i
L
R

i es −+−=
1&  (2-41)  

where epm cosθλλα =  and epm sinθλλβ =  are the flux of the permanent magnet on 

the rotor decomposed into the stationary reference frame and the rotor position eθ  

can be calculated by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

α

β

λ
λ1tan . 

On the assumption that the d-axis is the magnet, θ  is equal to eθ . By using the 

transformation matrix , (2-38) can be rearranged as sK

 ( 000 dqdqdq dt
d ΛRIV += ) (2-42)  

where ,  , [ ]Tqdabcssdq vvv 00 == VKV 1−= ssRKKR
dt

d e
e

θω =  , 

, and [ ]Tqdabcssdq iii 00 == IKI abcssdq ΛKΛ =0 .  

After arrange the equations, the stator voltage equations and dynamic equations of the 

rotating reference frame are expressed respectively as  
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 pmedeqq
s

q L
iv

L
i

L
Ri λωω 11
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where pmd λλ =  and 0=qλ  are the flux of the permanent magnet decomposed into 

the rotating reference frame. 

Furthermore, the electromagnet torque will be transformed to stationary 

reference frame and rotating reference frame through the process presented before and 

the calculated result can be shown respectively as 

 [ eem cosisinipT θθλ βααβ +−=
22

3 ] (2-45)  

 qpmdq ipT λ
22

3
=  (2-46)  

and the dynamic equation of the electrical angular velocity can be shown as 
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