Chapter 2

The mathematical model of a Brushless DC Motor

In this chapter, the mathematical model of a brushless DC (BLDC) motor will be
described by a set of dynamic equations, including electrical equations and
mechanical equations. Using space vectors, Section 2.1 derives the dynamic equations
for a p-pole 3-phase BLDC motor, which generally possesses stator windings and a
rotor with surface-mounted magnets. Since the mathematical model is often
established in three-axis system, which is more complicated than a two-axis system,
called d-g coordinate system. Thus,sthe coordinate transition is necessary and will be
proposed in Section 2.2. Furthermore, the state-space equation will be presented in

Section 2.3.

2.1 Dynamic equations of BLDC motors in vector space

The dynamic equation of the BLDC motor with Y-connected stator winding will
be introduced in this section. Assume that the permeability of iron is infinite. Besides,
the slot effect, the iron lost, and the end winding effect are negligible.

When the neutral point is isolated, the phase currents of the p-pole BLDC motor,
ias(t), ins(t), and i (t) can be expressed as

ias (t)+ibs (l)+ics (t): O (2-1)



Because the three windings are distributed with ?ﬁ in electrical degree apart to

each other, the stator current in vector space are generally represented as

10)=1,, )+ (e +i () (2-2)
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where i (¢), i, (¢}’ ®,and i_(t)e’ ® are the corresponding three phase currents.

Let A,(6,,7), 4,(6.,1) and A_(6,,¢) be the fluxes related to the three phases

S

of the stator and L, Ly, and L,,, correspondingly represent the magnetic leakage, the
self-inductance and the mutual inductance of the stator. Hence, the stator flux can be

expressed as
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where 6, is the permanent magnetic electrical angle. Besides, 1, is the flux
magnitude produced by the permanent magnets, which are assumed sinusoidally
distributed in the air-gap.

Based on the stator flux in (2-4)-(2-6), the stator voltages, vu(t), va(t), and ve(t),

can be formulated as

_ri (N4 )
Vas (t)_ Rslas (t)+ dt ﬂ’as (ge’t) (2 6)
vbs (t) = Rs ibs (t) + % ﬂ’bs (06 ! t) (2_7)

_ri ()L )
v, (¢)=Ri(t)+ e (6,1 (2-8)



where R; is the stator’s resistance of each phase. Furthermore, the last term in each

equation illustrates the back-EMF e.,,, which can be calculated as following

_dio,1) _ ax(ee,r)w .\ aA0,.t)
ot o0, ot

(2-9)

with o, = d;; as the electrical angular velocity. Actually, the back-EMF contains on
the right-hand side of (2-11) corresponds to the motional voltage and the second to the
transformer voltage. Rewriting the self-inductance as L,=L;+L,, and employing (2-9)

are shown the back-EMF of each phase as following

/ias (ee’t) = le:as (t) - %Lmslzbs (t) - % Lmsl:cs (t) - a)ej’pm Sin ee (2-10)
) 1 : : 1 : . 2r
j“bs (ee’t) = _E Lmslas (t) % lebs (t)_ E Lmslcs (t) - weipm Sln(ee - ?j (2-11)
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Then the dynamic mathematical equation of the 3-phase stator is represented as

A
0= =21, + 0+ 2 sine, (2-13)
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0=~ 0 T )+ 2 s 0, 2 (-14)
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where L +%Lms is replaced by L.

Besides, the two important things for a BLDC Motor are torque and rotational speed.
The torque of a motor produces from the differential magnetic co-energy and the
kinds of torque are separated by inductance, such as the reluctance torque and the

cogging torque relate to the self-inductance, and the alignment torque relate to mutual



inductance. In BLDC motor, the alignment torque is concerned as reciprocal effect

between stator and rotor.

In order to investigate the electromagnetic torque of the BLDC motor, the

synchronous AC motor should be considered first. It is possible to obtain an

expression for the electromagnetic torque by putting the rate of change of the

mechanical output energy equal to the mechanical power.

aw
P — mech — T ) 2-16
mech dt e e ( )

be the stator and rotor losses energy,
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Let W, be the input electrical energy, W,

W ... be the magnetic energy stored in the field, and W,,, be the mechanical

nech
output energy, the total energy-and the differential mechanical output energy can be
represented as (2-18) and (2-19), respectively.

We=Wios W paa W,

loss mech

(2-17)

dw,

mech — dWe - dI/VI - dWﬁeld (2-18)

In general, for a p-pole 3-phase machine, the differential input electrical energies
could be expressed as

dw, = %Re(vai; +vbi,fs +vci; )dt (2-19)
The loss energies are due to heat dissipation across the stator winding resistance,

hysteretic and eddy current losses within the magnetic material, friction loss between

moving parts and either their bearings or the surrounding air, and dielectric loss in the
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electric fields. However, if only the windings loss are considered, the differential loss
energies related to the stator and rotor windings can be expressed as

dw =£(Rsi “+RJi,|"+R Z)dt (2-20)

loss 2

lbs lcs

as

The differential field energies can be obtained the induced stator and rotor transformer

back-EMF, respectively.

dWﬁe]d — £|:ias d(Lia.s ) + ibs d(lev ) + l'm d(Llcv ):|dt (2_21)
dt dt dt

Thus, differential mechanical energies can be calculated by using (2-6)-(2-8) and
(2-19)-(2-21)

AW _g{_a) A Sin@, 2@ A i, sin(&e —%}—a} Al Sin(ee —%Hdt

mech ~— e’“mas e’*m’cs

(2-22)
Therefore, the electromagnetic torque can-be formulated by multiplying each phase of

the stator current and back-EMF, such as
p .. .. 2T\ . . A
T.(r)= —E/lpm i, sin6,+i, sin| 0, Y +1i, sin| 0, 3 (2-23)

According to the Newton law, the electromechanical equation can be expressed

as
2 2, .
T-=(+B,0,+T,)="(J,) (2-24)
p p
Jo, +B o +T, :E(Jcbe +B,0,+T,)=T, (2-25)

p

where J is the motor’s inertia, B, is the viscous damping, 7 is the load torque, @, is
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the mechanical angular velocity.
Note that (2-13)-(2-15) and (2-25) are represented the whole dynamic equations
of the BLDC motor. In these dynamic equations, there are four state variables, i,

A

i, i,,and ,, and three input voltages, v, v, ,and v_, and one external load

torque 7). It is difficult to design a BLDC motor controller using the three-axis
system. In order to simplify the design process, three-axis system should reduce to

two-axis system, called d-q axis system, and will be proposed in next section.

2.2 The coordinate transition process

In this section, two transformations in-the coordinate transition process will be
proposed. First, the Clarke transformation transforms the three-axis system to
stationary reference frame (« - f coordinate), shown in Figure. 2.1. Second, the Park
transformation transforms stationary reference frame to rotating reference frame (d-g

coordinate), shown in Figure. 2.2.
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Figure. 2.1 The Clarke transformation

Figure. 2.2 The Park transformation

Before introducing the Clarke transformation, the transformed coefficient is
existed and it can be deduced from power. The total instantaneous power in the

three-axis system and the stationary reference frame are expressed as follows

.

+v, i Vi (2-26)
bs"bs

P, = Re{v b

abcs as las

P, = Re{vai; + vﬂi;} (2-27)
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When the neutral point is isolated, the balanced current and voltage of the stator are

shown as
2 n
i, +ie ®+ie? =0 (2-28)
2 ar
v.+tv.e®+ve =0 (2-29)

After employing above two equations, the total instantaneous power will be equal
with each other.

P, =3k?p

o 2 abces

(2-30)
There are two methods to decide the transfer constant % . First, called power invariant
method, & is chosen as \E Second, called non-power invariant, £ is chosen as
2
3

In general case, the function .F(¢) can be thecurrent of the stator I (¢) or the

voltage of the stator V. (t) and the each phase of the stator in three-axis system can

S

be expressed as

Assume that the « -axis coincide with the a-axis and k& is the transfer constant, can

be represented as

27 A
F =f+jf,= k(fas +fne P Sl J (2-32)
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Suppose that the non-power invariant is chosen; k=§, the Clarke

transformation can be represented as

Ja Jas
To | = T| S (33)
o Jes

where Tf% sin(0) s (Zﬁj (—j is the transformation matrix and f; is

as (T.)"= cos(%[j —Sin[z—”j 1|, will be zemployed in calculating the

differential of the flux.

Next, the Park transformation will be deduced from which the angle between the
stationary reference frame and the rotating reference frame is &. From Figure (2), the
quantity of d-axis and g-axis are composed of stationary reference frame respectively.

fy=f,cos0+ f,sin0 (2-34)

f,=f,(~sin0)+ f; cos 6 (2-35)
Then the matrix form of the Park transformation is denoted as

e )]
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Integrating utilization of above two processing, the coordinate transformation from

three-axis system to rotating reference frame is represented as

Ja Jas
Sy |= K| S (2-37)
fo Jes

cos O cos(@ - 2—”) cos[é’ + 2—”]
3 3

where K, :é —sin@ —sin[@—%rj —sin(0+2?”) . Later, the inverse of K _,

1 1 1
| 2 2 2 ]
cos @ —sin@ 1

found as K. ' = cos(ﬁ—%rj —sin(@—%rj 1|, will be employed in calculating
cos(@ + 2—”] = sin(@ + 2—”) 1
- 3 3 —

the differential of the flux.

2.3 The state space equation in d-g coordinate

In this section, the dynamic equations proposed in section 2.1 will be
transformed into rotating reference frame. First, the voltage equations (2-6)-(2-8) can
be re-expressed as

LN

V abes E

abcs

= RI Aabcs) (2-38)

Where Vabcs = [Vas vbs vcs ]T ! Iabcs = [ias ibs ics ]T ! and
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By using the transformation matrix T, (2-38) can be rearranged as

d
Vo = RI ;0 + E(A“m) (2-39)
Where Vaﬂo — TsVach = [Va Vﬂ VO ]T , R = TSRT\,_]' y a)e = ddete I}

I, =TI, =i, i, iJ.and A, =TA

s* abcs s““abcs "

After arrange the equations, the stator voltage equations and dynamic equations of the

stationary reference frame are expressed respectively as

i, =— LS i, +ZV“ +Teﬂﬂ (2-40)
. R, . 1 o,
i =—Tlﬂ +Zvﬂ -3 A, (2-41)

where 4, =4, cos0, and A, =4, sind, -are the flux of the permanent magnet on

the rotor decomposed into the stationary reference frame and the rotor position 6,

A
can be calculated by tan{f} .

a

On the assumption that the d-axis is the magnet, & isequal to 6,. By using the

transformation matrix K _, (2-38) can be rearranged as

d
quo = Rquo + E(Aqu) (242)
Where quO = KsVabcs = [Vd Vq VO]T’ R =K;RK;1 f a)e = ddee ]
t

. . . |r
quO = KsIabcs = [ld lq ZO] ! and Aqu = KSAabcs )
After arrange the equations, the stator voltage equations and dynamic equations of the

rotating reference frame are expressed respectively as
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_ R %vd ra, (2-43)

: R, . 1
I,=— i i, +qu —w,i, —Za)e/'tpm (2-44)

where 1,=4,, and A =0 are the flux of the permanent magnet decomposed into
the rotating reference frame.
Furthermore, the electromagnet torque will be transformed to stationary

reference frame and rotating reference frame through the process presented before and

the calculated result can be shown respectively as

T, = %gﬂm [— i, sin6, +i, cos ﬁe] (2-45)
3p, .
qu :Ezﬂpmlq (2_46)

and the dynamic equation of the electrical angularvelocity can be shown as

. 3p°, . B 1
o= 3 i Z@o T 2-47
eTg g Tl T e (2-47)
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