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摘要 

 
 

當人們在工作中或是在駕駛的環境中，打瞌睡是造成意外事故最常見的因素

之一，為了避免類似的意外發生，我們提出了一個非侵入式的昏睡偵測演算法來

避免因為侵入式的方法而造成受測者的不舒適感。本文是根據駕駛者眼睛閉合的

程度與眨眼頻率兩種偵測資訊來判斷出受測者的昏睡程度。我們首先研究觀察的

時間間隔對於利用眼睛閉合程度與眨眼頻率來偵測昏睡狀態的影響，並且找出最

佳的觀察時間間隔。為了提高偵測的準確度，我們利用模糊積分的觀念，發展出

上述兩種偵測資訊整合的技術，此技術可解決兩種偵測資訊在判斷上發生衝突與

模稜兩可的情況。我們也將本文所提出的方法與眼睛閉合程度、眨眼頻率二種方

法做比較，根據結果顯示，我們提出的方法的準確率高達 95.1%。我們也將所提

的方法應用在偵測駕駛者的精神狀態，由結果證明，此實驗是非常成功且有效率

的。另一方面，有許多駕駛者有戴墨鏡的習慣，尤其是在夏天，所以我們針對墨

鏡的區域來做影像增強以去除墨鏡對眼睛偵測與昏睡偵測的干擾。  
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ABSTRACT 
 
 

Drowsiness is often reported to be one of the most important factors causing 

danger on various occasions such as work fields and vehicle driving. To avoid this 

danger, we thesis in this thesis a non-intrusive vision-based drowsiness detection 

algorithm. Visual techniques are adopted such that we can prevent people from 

feeling uncomfortable due to intrusive signal acquisition. In this study, we utilize 

the Long Duration Blink Frequency (LDBF) and the PERcentage of eyelid 

CLOSure (PERCLOS) as features of drowsiness detection, which are commonly 

used in visual drowsiness detection system. We first investigated the effect of 

Observing Time Interval (OTI) on the separability of sample distributions of LDBF 

and PERCLOS under drowsy and conscious states to select the best OTI. In order 

to increase the accuracy of drowsiness detection, we use fuzzy integral to combine 

two different information sources from LDBF and PERCLOS features. The 

proposed fuzzy integral approach can resolve the conditional unreliability and 

uncertainty encountered in using LDBF or PERCLOS singly. To show the 
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superiority of our method in drowsiness detection accuracy, we compared our 

proposed method to LDBF and PERCLOS, respectively. According to the 

experiment result, the proposed algorithm has the best average detection accuracy 

of 95.1%. In practice, we also implemented our algorithm to determine people’s 

vigilance in a driver monitor and warning system. The test in driver drowsiness 

detection and warning was successful and satisfactory. On the other hand, many 

drivers have the needs and habits to wear sunglasses, especially in summer. We 

also develop image enhancement techniques to eliminate the effect caused by 

sunglasses in eye detection and drowsiness detection. 
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Chapter 1  

Introduction 
 

 

Driver fatigue is a significant factor in a large number of vehicle accidents. The 

ever-increasing number of traffic accidents in the US due to a diminished driver’s 

vigilance level has become a problem of serious concern to society. Drivers with a 

diminished vigilance level suffer from a marked decline in their abilities of perception, 

recognition, and vehicle control, and therefore pose serious danger to their own life 

and the lives of other people. Statistics show that a leading cause for fatal or 

injury-causing traffic accidents is due to drivers with a diminished vigilance level. In 

the trucking industry, 57% fatal truck accidents are due to driver fatigue. It is the 

number 1 cause for heavy truck crashes. Seventy percent of American drivers report 

driving fatigued. With the ever-growing traffic conditions, this problem will further 

deteriorate. For this reason, developing systems actively monitoring a driver’s level of 

vigilance and alerting the driver of any insecure driving conditions is essential to 

prevent accidents. 

 

 

1.1  Previous Work                                                          

 

There are various methods that can be used to detect drowsy driving. These 

detection methods can be broadly divided into two categories. One category makes 

use of information about the driver such as psychological signals; the other category 

uses information about the vehicle such as the operation of vehicle motions. Typical 
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examples of physiological signals include brain waves, eye electric potential, heart 

rate, and skin electric potential. Driving operations such as the movement of the 

steering wheel or the operation of the accelerator or brake pedal can be sensed, and 

characteristics for identifying drowsy driving can be detected. Detectable vehicle 

motions stemming from drowsy driving include the vehicle speed, lateral acceleration, 

yaw rate, and lateral displacement.  

 

Measurement of physiological signals provides a rather accurate means of 

detecting drowsy driving, but it is necessary to attach sensors directly to the driver’s 

body. Methods based on the use of vehicle information offer the advantage of 

noncontact detection, but they are subject to severe limitations depending on the 

characteristics of the vehicle or the driving environment. 

 

Taking these issues into account, it was decided to use image processing 

technology [1]-[3] to detect drowsy driving. The reason for this choice is that it offers 

the advantages of not causing the driver any discomfort or annoyance and of 

providing high detection accuracy. 

 

 

1.2  Our Approach 

 

A flowchart of the major functions of the drowsiness detection system is shown 

in Fig. 1.1. The functions of the system can be broadly divided into an eye and eyeball 

detection function, comprising the first half of the processing routine, and a 

drowsiness detection function, comprising the second half of this thesis. Our 

experimental results show the feasibility of our approach and the validity for the 
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method is extended to drivers wearing sunglasses. 

 

1.2.1 Eyeball Detection Module 

 

We uses color as a feature [4] to identify a human face in an image. This is 

feasible because human faces have a special color distribution that differs 

significantly (although not entirely) from those of the background objects. After 

locating a face area, we try to extract the eye region such that we could measure eye 

features for drowsiness detection. A brief explanation is given here of the eyeball 

detection procedure [5]-[7]. After inputting a facial image, preprocessing is first 

performed to binarize the image and remove noise, which makes it possible for the 

image to be accepted by the image processor. 

 

The maximum width of the face is then detected so that the right and left edges 

of the face can be identified. After that, the vertical position of each eye is detected 

independently within an area defined by the center line of the face width and lines 

running through the outermost points of the face. On that basis, the area in which each 

eye is present is determined. The degree of eye openness is output with the 

establishment of the area of eye presence. That value is used to determine whether the 

eyes are open or closed. 
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1.2.2 Drowsiness Detection Module 

 

(1) Determination of whether eyes are open/closed 

A window is defined on the basis of the eye. The area of the eye indicates 

the degree of eye openness and is used as the basis to determine whether the 

eyes are open or closed. 

 

(2) Criterion for estimating eye open/closed state 

A threshold value is established for each driver to estimate whether the 

person’s eyes are open or closed. That criterion [8]-[9] is based on the 

percentage of the eye closure observed for a certain time interval. 

 

(3) Criterion for estimating the eye blinking rate 

As the level of alertness drops, rapid blinking gives way to the 

appearance of long intervals when the eyes are closed, which provided a basis 

for detecting drowsiness by Long Duration Blink Frequency (LDBF). 

 

(4) On determining alertness level 

To integrate into knowledge from the two sources (PERCLOS and long 

duration blink), a fuzzy integral based method [10]-[12] will be devised to 

determine the level of alertness. 
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1.3 Thesis Outline 

 

The rest of this thesis is organized as follows. In Chapter 2, the face location 

detection and the eye position detection will first be described. Then, the method of 

determining whether the driver’s eyes are open or closed will be introduced. In 

Chapter 3, we will introduce two drowsiness detection measures—PERCLOS and 

long duration blink frequency, and to combine PERCLOS and the long duration blink 

frequency using fuzzy integral is also described. In Chapter 4, we show our 

experimental results and compare the detection accuracy of our proposed method with 

that of PERCLOS and long duration blink frequency, respectively. Finally, some 

concluding remarks will be drawn in Chapter 5. 
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                  Fig. 1.1.  Flow chart of system. 

 6



Chapter 2  

Feature Extraction for Drowsiness Detection 
 

 

2.1  Introduction to Feature Extraction 

 

For drowsiness detection, it is necessary to preprocess the captured image 

sequences for a subject. The preprocessing operation includes face detection and eye 

detection aiming for eye area detection to estimate the degree of eye openness. 

 

 

2.2  Face Segmentation Algorithm 

 

The algorithm in [4] is an unsupervised segmentation algorithm, and hence no 

manual adjustment of any design parameter is needed in order to suit any particular 

input image. The only principal assumption is that the person’s face must be present 

in the given image, since we are locating and not detecting whether there is a face. 

The algorithm we use is consists of four stages, as outlined in Fig. 2.1. 
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Input Image: An Image Including A Face 

Color 
Segmentation 

Density 
Regularization 

Geometric 
Correction 

Contour 
Extraction 

Output Image: Segmented Facial Region 
 

Fig. 2.1.  Outline of face-segmentation algorithm. 

 

A. Color Segmentation 

 

The first stage of the algorithm is to classify the pixels of the input image to skin 

region and non-skin region. To do this, we reference a skin-color reference map in 

 color space. We denote  and R  as the respective ranges of  and 

 values that correspond to skin color, and they have tested are , 

and . With the skin-color reference map, we got the color 

segmentation result O

YCrCb RCr Cb
Cr

Cb RCr
= [133, 173]

RCb
= [77, 127]

A as 

 

OA(x, y) =
1, if [Cr(x , y) ∈ RCr ]

T
[Cb(x , y) ∈ RCb]

0, otherwise

ú
(2.1) 
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where x = 0, … , M/2–1 and y = 0, … , N/2–1 and M, N are the height and width of 

the picture respectively. An example to illustrate the classification of the original 

image Fig. 2.2 is shown in Fig. 2.3. 

 

 
Fig. 2.2.  Original image. 

 

 
Fig. 2.3.  Image after filtered by skin-color map in stage A. 

 

B. Density Regularization 

 

This stage considers the bitmap produced by the previous stages to contain the 

facial region that is corrupted by noise. The noise may appear as small holes on the 

facial region due to undetected facial features such as eyes, mouth, even glasses, or it 
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may also appear as objects with skin-color appearance in the background scene.  

 

Therefore, this stage performs simple morphological operations such as dilation 

to fill in any small hole in the facial area and erosion to remove any small object in 

the background area. A density map is calculus as follows. 

 

D
à
x, y

á
=

P
i=0

3 P
j=0

3

OA

à
4x+ i, 4y+ j

á
                 (2.2) 

 

According to the density value, we classify each point into three types, namely, 

zero (D = 0), intermediate (0 < D < 16), and full (D = 16). The density map of an 

example with three density classifications is depicted in Fig. 2.4. The point of zero 

density is shown in white, intermediate density in green, and full density in black. 

 

Once the density map is derived, we can then begin the process that we termed as 

density regularization. This involves the following three steps. 

1) Discard all points at the edge of the density map, i.e., set D(0, y) = D(M/8–1, y) 

= D(x, 0) = D(x, N/8–1) for all x = 0, …, M/8–1 and y = 0, …, N/8–1. 

2) Erode any full-density point (i.e., set to zero) if it is surrounded by less than five 

other full-density points in its local 3×3 neighborhood. 

3) Dilate any point of either zero or intermediate density (i.e., set to 16) if there are 

more than two full-density points in its local 3×3 neighborhood. 

 

After this process, the density map is converted to the output bitmap of stage B 

as 

    O           (2.3) B(x, y) =
1, if D(x, y) = 16
0, otherwise

ú
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for all x = 0, …, M/8–1 and y = 0, …, N/8–1. 

 

The result of the previous example is displayed in Fig. 2.5. 

 

 
Fig. 2.4.  Density map after classified to three classes. 

 

 
Fig. 2.5.  Image produced by stage B. 

 

C. Geometric Correction 

 

We performed a horizontal and vertical scanning process to identify the presence 

of any odd structure in the previously obtained bitmap, OB(x,y), and subsequently 

removed it. A pixel in OB(x,y) with the values of one will remain as a detected pixel if 

there are more than three other pixels, in its local 3×3 neighborhood, with the same 

value. At the same time, a pixel in OB(x,y) with a value of zero will be reconverted to 

a value of one (i.e., as a potential pixel of the facial region) if it is surrounded by more 

than five pixels, in its local 3×3 neighborhood, with a value of one.  

We then commence the horizontal scanning process on the “filtered” bitmap. We 
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search for any short continuous run of pixels that are assigned with the value of one. 

Any group of less than four horizontally connected pixels with the value of one will 

be eliminated and assigned to zero. A similar process is then performed in the vertical 

direction. As a result the output bitmap of this stage should contain the facial region 

with minimal or no noise, as demonstrated in Fig. 2.6. 

 

 
Fig. 2.6.  Image produced by stage C. 

 

D. Contour Extraction 

 

In this final stage, we convert the output bitmap of stage C back to the extracted 

face region. To achieve the increase in spatial resolution, we utilize the edge 

information that is already made available by the color segmentation in stage A. The 

representative output bitmap of this final stage of the algorithm is shown in Fig. 2.7. 
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Fig. 2.7.  Image produced by stage D. 
 

 
 

2.3  Eye Position Detection 

 

After locating a face area, we try to extract the eye position such that we could 

measure eye features for drowsiness detection.  

 

In order to determine the position where the eyes are present, the maximum 

width of the subject’s face on the captured image must be estimated first. Based on the 

fact that the eyeball is about one-fourth of the facial width, we can easily obtain the 

lateral eye position on the face. Next, we explain how to determine the vertical 

positions of the eyes. To this end, we draw two vertical lines, or more if necessary, 

around one-fourth of the facial width: one line  is not across the bulb of the eye 

and another line  is across the bulb of the eye as shown in Fig. 2.8. Fig. 2.9 

depicts the gray-level variations versus the position of the scaling lines of  or X  

of the facial image. In particular, we observe the two darkest candidates along these 

Xa

Xb

Xa b
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two lines. Whenever the gray-level value falls to the local minimum, it may 

correspond to the position where the eyebrow or eyeball possibly locates. Since the 

eyebrow corresponds to a lower gray value, we can know that the valleys  and 

 are the eyebrows in Figs. 2.9(a) and 2.9(b), respectively. It is also known that the 

eyeballs would have the darkest in the gray value. In consequence, we can expect that 

A1

B1

 

 

Fig. 2.8. The image of a subject’s face: line  does not cross the eyeball and line 

 crosses the eyeball. 

Xa

Xb
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(a) 

 
(b) 

Fig. 2.9. Gray-level value variations along lines (a)  and (b) 

 

Xa Xb . 
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2.4  Eye Detection with Sunglasses  

 

e performance of extracting eye feature 

ecause the sunglasses may overlap with the eyes such that we could not separate the 

eyes

.4.1  Sunglasses Segmentation 

from the input image. We select the seeded region 

rowing (SRG) [13] technique for sunglasses segmentation. It has been demonstrated 

 

onventional postulate of region growing algorithms where the criteria of similarity of 

Sometimes, individual sets will consist of single points. It is in the 

The presence of sunglasses will affect th

b

 from the detected eye regions easily. In this thesis, we apply image processing 

techniques to eliminate the effect of caused by sunglasses in eye detection.  

 

 

2

 

    We detect the sunglasses area 

g

that, for several sets of images, region growing processes best perform than clustering 

or thresholding approaches because they deal with spatial repartition of color 

information. Seeded region growing algorithms typically start with seed pixels, then 

iteratively add to regions unassigned neighboring pixels which satisfy one or several 

homogeneity criteria. Thus, we can define a region as being a set of connected pixels 

which satisfy some homogeneity criteria. The SRG algorithm is described as follows. 

 

    Seeded region growing algorithm is a new approach which is based on

c

pixels is applied, but the mechanism of growing regions is closer to the watershed 

algorithm. Instead of controlling region growing by tuning homogeneity parameters, 

SRG is controlled by choosing a usually small number of pixels, known as seeds. So, 

we start with a number of seeds which have been grouped into n sets, say, 

A1, A2, . . ., An.  
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choice of seeds that the decision of what is a feature of interest and what is irrelevant 

or noise is embedded. Given the seeds, SRG then finds a tessellation of the image into 

 property that each connected component of a region meets 

(nonempty intersection with) exactly one of the Ai and, subject to this constraint, the 

regions are chosen to be as homogeneous as possible. 

 

    At each step of the algorithm we add one pixel to some of the sets 

A1, A2, . . ., An.  Each step of the algorithm involv

e a 

regions with the

es the addition of one pixel to 

ets. Consider now the state of sets i after m steps. Let T be the 

 

here is the set of immediate neighbors of the pixel . In the examples to be 

presented in this correspondence, we will us rectang

neighbors being those which are 8-connected to the pixel . If, for 

one of the above s A

set of all as-yet unallocated pixels which border at least one of the regions 

 T = x∈/ S
i=1

n

Ai

⏐⏐N(x) ∩ S
i=1

n

Ai 6=                  (2.4) 

  

þ

( )

ular grid with immediate 

w N(x) x

x x ∈ T  we have 

mthat N eets just one of the Ai, then we define i(x) ∈ 1, 2, . . ., n{ }  to be that 

index such that N x( ) ∩ Ai x

(x) 

( ) 6= þ  and define î(x)  to be a measure of how 

different x  is from the region it adjoins. The simplest definition for s 

 

î(

î(x) 

eany∈Ai(x)
g([ ]

⏐⏐                   (2.5) 

 

i

x) =
⏐⏐ y)g(x)àm

x) meets Ai and î(x) is 

where is the gray value of the image point . If meets two or more of  

the , we take  to be a value of  such that 

minimized. We then take a ∈

g(x) x N(x) 

Ai i(x) i N(

z T

 

î(z) =
x∈T
min î(x){ }                        (2.6) 

 such th  at
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and append z  to .  

 

    This completes step m+1. The process is repeated until all pixels have been 

e process commences with each being just one of the seed sets. The 

efinition (2.5) and (2.6) ensure that the final segmentation is into region as 

of the pixels and distance 

from their neighboring regions are stored. When we consider a new pixel we take it 

t

 seed points (the initial T ) in the SSL. 

While SSL is not empty do 

Ai(z)

allocated. Th Ai 

homogeneous as possible given the connectivity constraint. 

 

    In programming SRG, we make use of a data structure which we will term a 

Sequentially Sorted List (SSL). In that list only coordinates 

d

î  

from the SSL and process it. Because of the fact that all pixels are neighbors of 

already created regions and that they are put into SSL and processed by taking first of 

hem from the list we have an impression that all border pixels of all regions are 

processed in parallel. When we add pixel to the list we have to add it according to its 

distance from the neighboring region. 

 

    The algorithm for implementing SRG (boundary flagging case) is as follows: 

Initialization:  

Label seed points according to their initial grouping. 

Put neighbors of

Region Growing: 

Remove first pixel y from the SSL. 
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Test the neighbors of this point:  

 y which are already labeled (other than boundary label) 

o  y which are neither already set nor already in the  

rding to their value of   

else 

 

Note that previous entries in the SSL are not updated to reflect their differences 

from the new ligible difference in the results, but 

reatly enhanced speed. 

h at each visit we also view each of the neighbors. Hence, it 

makes for a very rapid program. Fig. 2.10 gives a visual demonstration of the region 

grow

if all neighbors of

have the same labelà 

Set y to this label.  

Update running mean of corresponding region.  

Add neighbors f

SSL to the SSL acco î

 

Flag y with the boundary label.  

 region mean. This leads to neg

g

 

This stepwise description shows that, in executing the algorithm, each pixels is 

visited just once, althoug

ing mechanism.  

 

 

 

 

 

 

 

 

 19



 

    

(a)                                (b) 

 

(c)                                (d) 

marked (cyan diamonds). (b) The sunglasses n 

allocated by SRG. ( ve been allocated. 

ment Technique 

After segmenting the sunglasses regions by SRG, we try to enhance the 

 the eye region. Many image 

nhancement methods have been proposed. Typical methods in such ones are an auto 

gain/

n of the human vision. Obviously it is not only a model, but also could be 

 

Fig. 2.10.  Segmentation results of sunglasses. (a) Original image with 10 seeds 

region after 30% of pixels have bee

c) The sunglasses region after 50% of pixels ha

(d) The final sunglasses region. 

 

 

2.4.2  Retinex Image Enhance

 

sunglasses region such that we could extract

e

offset correction method, a histogram equalization method, a homomorphic 

filtering method, and retinex image enhancement method. These methods have their 

different characteristics. Of these methods the retinex one is the most popular and 

most widely used because of its simplicity in use and its powerful ability to enhance 

images. 

 

Land [14] first proposed the idea of retinex as a model of lightness and color 

perceptio
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developed to algorithms of image enhancement. Land gave more contributions on 

retin

t depending on the special scale, it 

can either provide dynamic range compression (small scale) or tonal rendition (large 

scale

lap 

ex algorithm, evolving the concept from a random walk computation [15], to his 

latest version of a center/surround spatially opponent operation [16]. The 

center/surround opponent operation is related to the neurophysiological functions of 

neurons in the primate retina, lateral geniculate nucleus, and cerebral cortex. Hurlbert 

[17] studied the lightness theories and found that they have a common mathematical 

foundation. Also the leaning problems for artificial neural networks suggested a 

solution with center/surround form. But that is not enough. The human vision does 

not determine the relative reflectances, but rather content dependent relative 

reflectances for arbitrary illumination conditions. 

 

Jobson and his coworkers [18] defined a Single-Scale Retinex (SSR), which is 

an implementation of center/surround retinex. Bu

). Superposition of weighted different scale SSR is obvious a choice to balance 

these two effects. This is Multi-Scale Retinex (MSR) [19]. For color images, if the 

content is out of “gray world,” which means the spatial averages of three color bands 

are far from equal, the output will be forced to be gray by MSR. This problem could 

be solved by introducing weight factor for different channels in Multi-Scale Retinex 

With Color Restoration (MSRCR) [20]. After MSRCR, generally the outputs will be 

out of the range of display. Auto gain/offset can be used to shift and compressed the 

histogram of MSRCR outputs to the display domain. But the histograms of MSRCR 

outputs show typical shapes and the gain/offset parameters could be “canonical”.  

 

In this thesis, we will implement MSRCR with gain/offset. We adjust the 

gain/offset parameters to adjust most of the pixels values to display domain and c
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small part of the values to improve the contrast. The following content was excerpted 

from “Jobson et al. [20]”.  

 

The basic form of MSR is given by 

 

Ri(x1,x2)=
P
k=1

K

Wk logIi x1,x2( )àlog Fk x1,x2( )ãIi x1,x2( )
â ãà á

i=1,...,N

 the latter 

    (2.7) 

 

where the sub-index  represents the i-th spectral band, N is the number of spectral 

bands—N = 1 for grayscale images and N = 3 for typical color images. In

ase, —I is the input image, R is the output of the MSR process, 

or. The surr

here are the scales that control the extent of the surround smaller values of 

lead to narrower surrounds and 
ñ

e de

tween dynamic range comp ssion and tonal rendition. 

he number of scales used for the MSR is, of course, application dependent. We have 

foun

i

i ∈ R,G,B Fk  

represents the k-th surround function, Wk  are the weights associated with Fk , K is 

the number of surround functions, or scales, and ã  represents the convolution 

operat ound functions, Fk  are given as: 

 

Fk(x1, x2) = k exp à (x2
1
+ x2

2
)/û2

k

h i
                 (2.8) 

 

c

w ûk  à ûk  

k = 1/
P

x1

P
x2
F(x1, x2)

ð
. 

As mentioned above, we found that multiple surrounds w re necessary in or r 

to achieve a graceful balance be re

 

T

d empirically, however, that a combination of three scales representing narrow, 

medium, and wide surrounds is sufficient to provide both dynamic range compression 

and tonal rendition. Fig. 2.11 shows the input image, the output of the MSR and the 

outputs when the different surround functions are applied to the original image. As is 
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evident from Fig. 2.11, none of the individual scales attains the goal that we are trying 

to achieve: visual realism. The narrow and medium surround cases are 

self-explanatory. The wide-surround case deserves some discussion because it is a 

“nice” output image. However, the lack of dynamic range obscures the features that 

were visible to the observer, hence it fails the test. The MSR processed image uses 

features from all three scales to provide simultaneous dynamic range and tonal 

rendition.  

 

      

                                (

 

                                (

Fig. 2.11. (a) The original input. (b) Na  surround (15 pixels). (c) Medium 

surround (80 pixels). (d) W

narrow-surround acts as a high-pass filter  in the image 

(a) b) 

     

(c) d) 

 

  (e) 

rrow

ide surround (250 pixels). (e) MSR output. The 

, capturing all the fine details

but at a severe loss of tonal information. The wide-surround captures all the fine tonal 

information but at the cost of dynamic range. The medium-surround captures both 

dynamic range and tonal information. The MSR is the average of the three renditions. 
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The general effect of retinex processing on images with regional or global 

gray-world violations is a “graying out” of the image either in specific regions or 

globally. This desaturation of color can, in some cases, be severe therefore we can 

cons

 models and is felt to describe only the 

-called “aperture mode” of color perception, i.e., restricted to the perception of 

color

,i i n
n

x x f I x x I x xα
=

= ⎜ ⎟
⎝ ⎠

∑                (2.9) 

 

where is the color restoration coefficient in the i-th spectral band, N is the 

numb  is the i-th spectral band in the input image, and  is 

ider the desired color computation as a color restoration, which should produce 

good color rendition for images with any degree of graying. In addition we would like 

for the correction to preserve a reasonable degree of color constancy since that is one 

of the basic motivations for the retinex. Color constancy is known to be imperfect in 

human visual perception, so some level of illuminant color dependency is acceptable 

provided it is much lower than the physical spectrophotometric variations. Ultimately 

this is a matter of image quality and color dependency is tolerable to the extent that 

the visual defect is not visually too strong. 

 

We consider the foundations of colorimetry even though it is often considered to 

be in direct opposition to color constancy

so

 lights rather than color surfaces. The reason for this choice is simply that it 

serves as a foundation for creating a relative color space and in doing this uses ratios 

that are less dependent on illuminant spectral distributions than raw 

spectrophotometry. We compute a color restoration factor, α based on the following 

transform: 

 

N⎛ ⎞( ) ( ) ( )1 2 1 2 1 2
1

, , /

ëi(x1, x2) 

er of spectral bands, Ii f()
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some mapping function. In a purely empirical fashion this was tested on several

d image

ation to the “monochrome” images are shown in 

Fig. 2.12. Fig. 2.13 shows the sunglasses image enhanced using MSRCR. 

 

retinexe s to gain a sense of the visual impact. This proved to restore color 

rendition, encompassing both saturated and less saturated colors. Adding this to 

Equation (2.7), the MSRCR is given by: 

 

Ri(x1, x2) = ëi(x1, x2)
K

Wk log Ii(x1, x2)à log Fk(x1, x2) ã Ii(x1, x2)[ ]( )   (2.10) 

 

P
k=1

The results of applying this transform

 

 
Fig. 2.12. (Top row) Scenes that violate the gray-world assumption; (Middle row) the 

MSR output; note the graying of large areas of monochromes; (Bottom row) The 

MSRCR output; note that color constancy is diluted in order to achieve correct tonal 

rendition. 
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(a)   (b) 

) 

age after MSRCR. 

 

al color computation a “restoration” we have 

oticed in retrospect that depending upon the form of , this can be considered as a 

al analog to the spatial operation of the retinex itself. If we use 

 

,
⎝ ⎠

 

then the internal form of the retinex process and the color restoration process is 

essentially the same. This mathematical and philosophical

since it suggests that there may be a unifying principle at work. Both computations 

capable of such elusive goals as resilient object recognition. 

Fig. 2.13.  The sunglasses image enhanced using MSRCR. (a) Original image. (b

The im

 

While we have called this addition

n f()

( ) ( ) ( )1 2 1 2, log , /
N

i i n
n

x x I x x I x xα
=

⎛ ⎞
= ⎜ ⎟∑                (2.11) 

spectr

1 2
1

 symmetry is intriguing 

are contextual in nature and highly relative and nonlinear. We can venture the 

speculation that the visual representation of wide ranging scenes must be a 

compressed mesh of contextual relationships even at the stage of lightness and color 

representation. This sort of information representation would certainly be expected at 

more abstract levels of visual processing such as form information composed of edges, 

links, and the like but is surprising for a representation so closely related to the raw 

image. Perhaps in some way this front-end computation can serve later stages in a 

presumed hierarchy of machine vision operations that would ultimately need to be 
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2.4.3  Histogram Equalization Enhancement Technique 

 

In order to analyze the performance of the retinex image enhancement 

techniques, we compare the retinex result with histogram equalization technique. 

apping the histogram of 

e scene to a histogram that has a near-uniform probability density function. This 

resul

Histogram equalization technique is based on the idea of rem

th

ts in reassigning dark regions to brighter values and bright regions to darker 

values. As a result, the histogram equalization technique heavily depend on input 

images. Histogram equalization works well for scenes that have unimodal or weakly 

bi-modal histograms (i.e. very dark, or very bright), but not so well for those images 

with strongly bi-modal histograms (i.e. scenes that contain very dark and very bright 

regions). Fig. 2.14(a) show a bi-mode image, and Fig. 2.14(b) shows its histogram. 

The image is dominated by large, dark areas, resulting in a histogram characterized by 

a large concentration of pixels in the dark end of the gray scale. At first glance, one 

might conclude that histogram equalization would be a good approach to enhance this 

image, so that details in the dark areas become more visible. However, the result in 

Fig. 2.14(c), obtained using the command shows that histogram equalization in fact 

did not produce a particularly good result in this case. The reason for this can be seen 

by studying the histogram of the equalized image, show in Fig. 2.14(d). Here, we see 

that that the intensity levels have been shifted to the upper one-half of the gray scale, 

thus giving the image a washed-out appearance. The cause of the shift is the large 

concentration of dark components at or near 0 in the original histogram. In turn, the 

cumulative transformation function obtained from this histogram is steep, thus 

mapping the large concentration of pixels in the low end of the gray scale to the high 

end of the scale. Fig. 2.15 shows a sunglasses image that compares the output of the 

MSRCR with histogram equalization. As can be seen, the MSRCR provided the best 
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overall visual quality. We have also tried local histogram equalization approach, but it 

usually cause too much block effect in the equalized image. By our experience, eye 

region enhancement by histogram equalization does not perform consistently, i.e., 

sometimes good and sometime bad. However the MSRCR approach performs 

constantly good. 

 

 

(a)                         (b) 

 

(c)                         (d) 

Fig. 2.14.  Illustration of histogram equalization. (a) Original image. (b) Histogram. 

(c) Histogram equalized image. (d) Histogram of (c). 
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(a) 

                          

                               (

Fig. 2.15.  A comparison of histogram equa

image. (b) Histogram equalization. (c) MSRCR. 

 

 

The remaining question is how to locate eyes without sunglasses. We begin with 

e region that contains the eyes and sunglasses. First, we compute the color edge of 

model and do erosion and dilation to get the rough edge 

ap of sunglasses. The color edge detection method proposed by Fan et al. [21] use 

entro

(b) c) 

lization and the MSRCR. (a) Original 

2.4.4  Eyeball Extraction 

 

th

the eye region in HSV color 

m

pic thresholding technique to obtain an optimal threshold that is adaptive to the 

image contents, and this technique has been proved to be highly efficient for two-class 
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data classification problem [22]. Then, we convert the image of eye region from RGB 

color space to YCrCb  color space. It is easy to see that in YCrCb  color model 

domain, the intervals of the Cr and Cb  components of skin-color are always very 

different from sunglasses and can easily be clustered to two classes. However, for 

kinds of sunglasses, such as metallic and thin-frame, the color of sunglasses frame 

sometimes lies in kin-color interval in YCrCb  color model because the metallic 

reflection and the noise caused by low resolution CCD. In order to deal with these 

problems, we add extra information of RGB gradient edge detector. Therefore, we 

combine the three evidences to guarantee that the sunglasses have completely been 

extracted, despite some noises caused by hai ebrows to be included in the map. 

Fig. 2.15 show an example of edge detection while one worn sunglasses. 

 

After getting the edge map of detected eye region, we use geometry and 

projections to eliminate the sunglasses region and locate accurately the eyes position. 

When we apply erosion to the edge image of wearing sunglasses image, t

 the s

r or ey

he edge will 

break into small pieces and then the eye can be separated from sunglasses contour 

easily by selecting the largest connected component which has the smallest standard 

deviation to each center of the component. The hair and eyebrows components also 

can be recognize because it is always from the top to the bottom and begin with the 

top of the eye region we have set. The extracted eye result from edge map of wearing 

sunglasses examples in Fig. 2.15 demonstrates in Fig. 2.16. 
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(a)                               (b) 

 

 

 

 

(c) (d) 

 

 

 

 

(e) 

Fig. 2.16.  An example of edge detection. (a) Original image. (b) Edge detection 

using gradient operator in RGB color space. (c) Edge detection using gradient 

operator in Hue component of HSV color space. (d) Non-skin-color region. (e) The 

resultant edge map union the previous three edge map. 
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(a)                               (b) 

 

 

 

 

(c)                               (d) 

Fig. 2.17.  Eye extraction from edge map of Fig. 2.16. (a) Edge map of eye region. (b) 

Edge map with eliminating the hair region. (c) Edge map which eliminating hair 

region with twice erosion. (d) Extraction the pupil position. 
 

 

2.5  Detection of Open/Closed State of The Eyes 

 

The degree of eye openness leading to define the opened/closed state of the eyes 

will be established for each concerned subject. Besides, the size of each subject’s eyes 

also varies with the relative distance between the camera and the subject’s face. Based 

on the eye detection routines stated in Section 2.3, we can circumscribe the eye by a 

rectangle as shown in Fig. 2.17. We then determine the degree of eye openness by 

their vertical pupil lengths. The openness of each subject’s eye is the ratio value of 

eyeball expansion, , normalized by the maximum, i.e., normal, vertical expansion, 

, when his eye is fully open. As a result, the ratio is equivalent to the eye openness 

percentage, as shown in Fig. 2.17. A threshold value is established for considering 

d2

d1
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whether the subject’s eye is open or closed: if the ratio is smaller than 0.2, the 

threshold used in this study, of the normal expansion, the eye of the subject in this 

image frame is defined to be closed; otherwise, it is defined to be open.  

 

To proceed, the point where the eye center locates is set as the reference 

coordinates for consecutive facial image frame processing. It is not necessary to 

detect the eye every image frame because the eye position in the subsequent frame 

will correspond to the near-by eye coordinates of the eye detected in the previous 

image frame. Hence, we will, in general, carry the coordinate to the next facial image 

frame for quick eye locating. It is to be noted that the varying degree of the eye 

openness will be always within the range [0, 1]. If the computed eye openness value is 

outside this value, it can be concluded that the detected eye position is incorrect. In 

such a case, we have to restart the step of eye detection procedure of Section 2.3 over 

the current facial image frame. 

 

 d1 d2

 

Fig. 2.18. The open/closed state of the eye openness.  is the maximum vertical 

scale of the complete eye openness, and  is another sampled openness of the same 

subject’s eye.   

d1

d2
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Chapter 3 

Drowsiness Detection 
 
 

3.1  Introduction to Drowsiness Detection 

 

Technology may be able to provide earlier or more robust warnings of degraded 

driving status so as to preclude a drowsy driving-related crash. Drowsy driver 

detection algorithms and approaches have been a topic of considerable research in 

recent years. A key ingredient in the development of such algorithms is to select an 

appropriate “criterion” measure for drowsiness. Such a measure of drowsiness should 

ideally be valid (i.e., relate to observed performance decrements in meaningful ways) 

and reliable (i.e., consistently vary with levels of sleepiness, circadian troughs, or time 

on task). Numerous physiological measures of driver arousal or wakefulness exist. 

These include electroencephalograms (EEGs), heart rate and heart rate variability, 

core body temperature, and various measures of the eyes 

 

In this thesis, one measuring feature used for the drowsiness detection is 

PERCLOS [8], [9], [23]. The other measuring feature to be employed to determine the 

level of a driver’s alertness, is to calculate the Long Duration Blink Frequency of the 

driver’s eyes [24]. Information fusion is an important aspect of any intelligent system. 

Our proposed system is capable of integrating two different evidence sources 

(PERCLOS and Long Duration Blink Frequency) into a knowledgeable decision, to 

determine a driver is drowsy or not. The fuzzy integral combines objective evidence 

with the system’s expectation of the importance of that evidence.  
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3.2  Long Duration Blink Frequency Feature for Drowsiness Detection 

 

Ogawa and Shimotani [24] studied the relationship between the 

conscious/drowsy state of a testee and his blinking behavior by testing ten subjects in 

a driving simulator. The blinking duration is quite short when a subject is in a 

conscious condition. On the contrary, the blink duration becomes longer in the drowsy 

condition [25], [26]. To evaluate the drowsiness detection performance in these tests, 

they measured LDBF of the eye closure over certain time duration. LDBF is defined 

as the number of long eye blinks, in which the eye is closed exceeding a duration 

longer than usual, within a certain time interval. The eye closure is defined as the eye 

is more than 80% closed with respect to its usual, which is identical to the definition 

stated in Section 2.5. To this end, we define a long duration blink if one’s eye closure 

time lasts for more than 0.5 second inclusive in this research. It is to be remarked that 

the LDBF of the eye closure varies with the observation time interval and the 

processing frame rate of the captured video sequences. 

 
 

3.3  PERCLOS Feature for Drowsiness Detection 

 

Eyelid closure has been recently proven to be a very reliable and meaningful 

indicator of drowsiness while driving. Wierwille et al. [9] found that it is indicative of 

a subject at the onset of drowsiness leading to poor response. If a driver’s eyelids are 

closed during driving, his ability to operate a vehicle would be greatly hampered. The 

researchers demonstrated that PERCLOS, defined as the proportion of time that the 

eyes of the subject are closed over a specified period, can be used as a physiological 

indicator of drowsiness. Accordingly, a subject can be said to be drowsy if he has a 

high PERCLOS value. For example, suppose the eye of one subject is detected to be 
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in the closed state, 80% closed as defined previously, for six seconds within one 

minute. The PERCLOS will be 6/60 = 10%. That is, the subject closes his eyes in 

10% of one minute. 

 

Figs. 3.1 and 3.2 show a typical night of observed drowsiness for these two 

drivers. Each plot spans the portion of the night’s run where the bout was observed 

(time is indicated on the horizontal axis), and the peaks and troughs of the plot itself 

represent the proportion of time PERCLOS was 80% or greater within each minute.
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22:30

     
23:00

     
23:30

     
0:00

     
0:30 

Fig. 3.1.  One night of observed drowsiness for Driver A. 

 

 

1:15
     

1:45
     

2:15
     

2:45 

Fig. 3.2.  One night of observed drowsiness for Driver B. 
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3.4  Information Fusion Using Fuzzy Integral 
 

LDBF or PERCLOS feature alone face their own difficulties in reliably detecting 

drowsiness. First, for LDBF approach, subjects in severely drowsy state will have 

LDBF value near zero due to their seldom eye blinks. However, subjects in conscious 

state also have LDBF value near zero because their eye blink time is so short that 

almost all the blinks will not last exceeding the duration specified in Section 3.2. 

Consequently, low LDBF can easily cause false detection. Secondly, PERCLOS is 

also weak in some cases to detect drowsiness according to the Pearson correlation 

coefficients as reported in the Dinges and Grace’s work [25]. Fuzzy integral based 

information fusion, on the other hand, can make use of the two feature values of 

PERCLOS and LDBF cooperatively to remedy the limitation from one dimensional 

thresholding. That is, a decision boundary is established such that either LDBF or 

PERCLOS can become more discriminative in classifying a subject’s vigilance state 

depending on the relative importance of the features’ evidences. As a result, LDBF 

and PERCLOS can support each other to increase the drowsiness detection accuracy. 

The fuzzy integral is defined as follows. 

 

Definition: Let (  be a measurable space and let: X → [0,1] be a X,Ω)

Ω -measurable function. The fuzzy integral over A  of the function h with 

respect to a fuzzy measure g defined by  

òX

 R
A h(x) î g(á )= ë∈[0,1]

sup [min(ë, g(A
T
Fë))], 

where 

Fë = {x : h(x) õ ë}. 
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The following is the interpretation of the fuzzy integral that will be adopted in 

this paper. Suppose that an object is evaluated from the point of view of a set of 

sources X. Let  denote the decision for the object when source  

is considered and let  denote the degree of importance of this source. Now, 

suppose the object is evaluated using sources from x . It is reasonable to 

consider a quantity 

h(x) ∈ [0, 1] x ∈ X

g({x})

∈ X

∈ ô ô

 

W(A) = x∈A
min h(x), 

 

is the best security decision that the object provides and g(A) expresses the grade of 

importance of this subset of sources. The value obtained from comparing these two 

quantities in terms of the min operator is interpreted as the grade of agreement 

between real possibilities, h(x), and the expectations, g. Hence, fuzzy integration is 

interpreted as searching for the maximal grade of agreement between the objective 

evidence and the expectation. 

 

The following properties of fuzzy integral are easy to prove.  

1)  If h , for all  then (x) = c x X, 0 c 1,

 R
X h(x) î g(á ) = c. 

 

2)  If h , for all , then 1(x) h2(x)ô ∈x X

 R
X h1(x) î g(á ) ô

R
X h2(x) î g(á ). 
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3)  If A , then úB

 R
A h(x) î g(á ) ô

R
B h(x) î g(á ). 

 

4)  Let {  be a partition of the set X. Then Ai : i= 1, , ná á á }

 R
X h(x) î g(á ) õmax(e1, á á á, en), 

 

where  is the fuzzy integral of h with respect to g over Aei

õ õ á á á õ

{ á á á }

i. The interpretation of all 

these properties related to the fuzzy integral as an information fusion technique should 

be obvious. 

 

The calculation of the fuzzy integral when X is a finite set is easily given. Let 

 be a finite set and let h: X→[0,1] be a function. Suppose 

, (if not, X is rearranged so that this relation holds). Then 

a fuzzy integral, e, with respect to a fuzzy measure g over X can be computed by  

X= {x1, x2, á á á, xn}

h(x1) h(x2) h(xn)

 

))],(),([min(max
1 ii

n

i
Agxhe

=
=                    (3.1) 

 

where . Ai = x1, , xi

Note that when g is a gõ à fuzzy measure, the values of g  can be 

determined recursively as  

(Ai)

 

g(A1) = g({x1}) = g1 .                                              (3.2) 
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g(Ai) = gi + g(Ai 1) + õgig(Ai 1),à à ô     for  1                  (3.3) < i n.

Thus the calculation of the fuzzy integral with respect to a fuzzy measure would 

only require the knowledge of the density function, where i-th density, g

gõ à
i , is 

interpreted as the degree of importance of the source xi for i=1,2,…,n. Furthermore, 

the degree of importance may be interpreted as a belief if  

 P
i=1

n

gi < 1
 
,
 

 

and a plausibility value if this sum is greater than 1. 
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Chapter 4 

Simulation and Results 
 
 

The eye-detection algorithm was tested on a number of people in order to 

confirm the validity. First, we capture frontal face images of people by a CCD camera, 

and then we will validate the algorithm via these images. In Section 4.1, the algorithm 

will be tested of people wearing sunglasses. We will give the step-by-step result of 

finding the eyes. In Section 4.2, we will first evaluated the drowsiness detection rate 

by LDBF and PERCLOS, respectively. Then we tested our proposed algorithm as a 

drowsiness detection system. 

 
 
4.1  Experiment Results of Eye Detection with Sunglasses 
 

We take frontal face images of four students in laboratory to test the eye 

extraction algorithm. The size of images is 640×480 and the simulation is processing 

on a Pentium IV 2.4GHz personal computer. Figs. 4.1– 4.4 show these four examples. 

In each example, we will show the original face image in sub-image (a), and face 

extraction result in (b). The input and output images of Seeded Region Growing (SRG) 

are given in sub-image (c) and (d) respectively. Sub-image (e) and (f) are the 

enhanced images using histogram equalization and MSRCR respectively, while (g) 

and (h) show the eye extraction result. The accuracy of the result for finding eye 

location is 100%. 
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(a)                                  (b) 

 

          
(c)                                  (d) 

 

          
(e)                                  (f) 

 

          
(g)                                  (h) 

Fig. 4.1.  Images of Example 1 for face detection and eye location. (a) The input 

image. (b) Face extraction result. (c) The input image for SRG. (d) The output image 

of SRG. (e) The sunglasses image enhanced using histogram equalization. (f) The 

sunglasses image enhanced using MSRCR. (g) The eye extracted from (e). (h) The 

eye extracted from (f). 

 43



               

(a)                                  (b) 

 

          
(c)                                  (d) 

 

          
(e)                                  (f) 

 

          
(g)                                  (h) 

Fig. 4.2.  Images of Example 2 for face detection and eye location. (a) The input 

image. (b) Face extraction result. (c) The input image for SRG. (d) The output image 

of SRG. (e) The sunglasses image enhanced using histogram equalization. (f) The 

sunglasses image enhanced using MSRCR. (g) The eye extracted from (e). (h) The 

eye extracted from (f). 
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(a)                                  (b) 

 

          
(c)                                  (d) 

 

          
(e)                                  (f) 

 

          
(g)                                  (h) 

Fig. 4.3.  Images of Example 3 for face detection and eye location. (a) The input 

image. (b) Face extraction result. (c) The input image for SRG. (d) The output image 

of SRG. (e) The sunglasses image enhanced using histogram equalization. (f) The 

sunglasses image enhanced using MSRCR. (g) The eye extracted from (e). (h) The 

eye extracted from (f). 
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(a)                                  (b) 

 

           
(c)                                  (d) 

 

           
(e)                                  (f) 

 

           
(g)                                  (h) 

Fig. 4.4.  Images of Example 4 for face detection and eye location. (a) The input 

image. (b) Face extraction result. (c) The input image for SRG. (d) The output image 

of SRG. (e) The sunglasses image enhanced using histogram equalization. (f) The 

sunglasses image enhanced using MSRCR. (g) The eye extracted from (e). (h) The 

eye extracted from (f). 
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4.2  Experiment Results of Drowsiness Detection 

 
For safety and imitating the drowsiness condition in a sense of reality, we 

selected 18 testees as subjects and did our experiments in a driving simulator which 

consisted of a car body and a projector. The car body was the control unit included a 

wheel-house with a driver seat, a steering wheel, a throttle, and brakes. The projector 

would project road scene images of driving. As shown in Fig. 4.5, a driver was 

steering the simulator having night-time highway scenery projected on the screen and 

controlled the steering wheel in the vehicle when the car diverging from the lane in 

the scene. We mounted on the dashboard a CCD camera with infrared lamps, which 

acted as auxiliary light sources to compensate for insufficient illumination, to capture 

the subjects’ face image sequences during the driving period of two hours: all subjects 

were first under consciousness and finally became drowsiness. The resolution of 

frames and the video sampling rate were set to be 320×240 pixels and 15 frames per 

second, respectively. Some captured image sequences of the subjects were shown in 

Fig. 4.6. Image frames were firstly preprocessed using the steps described in Chapter 

2. For illustration, two typical results after the eye open/closed state determination 

procedure of Chapter 2 under conscious state are shown in Table I. Similarly, two 

processed sequences under drowsy state of a subject are shown in Table II. Note that 

the eye state detection accuracy of the image frames processed by the method stated 

in Section 2.3 is also checked by manual inspection and demonstrates a high 

consistence rate of 97.1%. 
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Fig. 4.5.  A subject was steering the driving simulator through night-time highway 

scenery projected on the screen. 

 

     

     

     

     

Fig. 4.6.  Some captured image sequences of the 18 subjects in this experiment. 
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Table I.  Two eye’s open/closed state sequences of the testee under consciousness 

Frame 227 228 229 230 231 232 233 234 

Eye open open open open close close open open 

frame 265 266 267 268 269 270 271 272 

eye open open close close open open open open 

Table II.  Two eye’s open/closed state sequence of the testee under drowsiness 

frame 205 206 207 208 209 210 211 212 

eye open close close close close close open open 

frame 310 311 312 313 314 315 316 317 

eye open close close close close close close close 
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4.3  The Best OTI Determination for LDBF and PERCLOS 

 

Determining a suitable Observing Time Interval (OTI) to compute LDBF and 

PERCLOS for drowsiness evaluation is very important because, in practical 

application such as a driver drowsiness detection system, we need a reliable and fast 

algorithm which can in time alert people to prevent them from possible dangers 

caused by the loss of vigilance. To this end, we first analyzed respectively LDBF and 

PERCLOS distributions of drowsiness and consciousness of testees to select the best 

OTI leading to the highest discrimination from the distribution curves. Moreover, we 

also adopted a sliding window data update formation to speed up the drowsiness 

detection output rate. 

 

4.3.1  The Best OTI Determination Procedure 

 

In the following, we first describe the procedure of selecting the best OTI for 

LDBF feature. For each OTI changing from one second to ten seconds, we counted 

respectively LDBF under drowsiness and consciousness states of the image frames of 

testees and plotted the distributions of these two states. We had found that the best 

separability between drowsiness and consciousness states of the testees occurred 

when OTI was between 8 to 9 seconds. Continuing this strategy, the search procedure 

above was applied between 8 and 9 seconds and repeated up to a quarter of second 

accuracy. It leaded to the OTI of 8.25 seconds to yield the best 

drowsiness/consciousness separation by the of LDBF feature. To show the 

effectiveness of the OTI selection, we have plotted in Fig. 4.7 the distribution of 

LDBF for the best OTI equal to 8.25 seconds, in comparison to Fig. 4.8 of other 

random selection of OTI equal to 2 seconds. From these two figures, the superiority of 
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OTI equal to 8.25 seconds is obvious. Following similar procedure above, we could 

also find the best OTI of PERCLOS feature for drowsiness detection. We have found 

that the good OTI range for PERCLOS was wider and fell between 6 to 9 seconds. To 

be consistent with LDBF feature, we have chosen the OTI for PERCLOS equal to 

8.25 seconds, too. The probability of PERCLOS feature under drowsiness and 

consciousness states of the testees for OTI equal to 8.25 and 2 seconds are plotted in 

Figs. 4.9 and 4.10, respectively. Likewise, the superiority of Fig. 4.9, in 

discriminating drowsiness from consciousness is evident. For this best OTI, it follows 

from Figs. 4.7 and 4.9 that the thresholds of LDBF and PERCLOS can be chosen to 

be 0.8 and 0.202, respectively, as shown in the first two columns of Table III. 

 

 
Fig. 4.7.  The histograms of LDBF under consciousness and drowsiness for OTI = 

8.25 seconds 
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Fig. 4.8.  The histograms of LDBF under consciousness and drowsiness for OTI = 2 

seconds 

 

Fig. 4.9.  The histograms of PERCLOS under consciousness and drowsiness for OTI 

= 8.25 seconds. 
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Fig. 4.10.  The histograms of PERCLOS under consciousness and drowsiness for 

OTI = 2 seconds. 

 

Table III.  Parameter settings of the three algorithms for conscious/drowsy states 

Method 
Subject  
State 

LDBF PERCLOS 
Our Method 

by Fuzzy 
Integral e 

Conscious < 0.8 < 0.202 < 0.380 

Drowsy ≥ 0.8 ≥ 0.202 ≥ 0.380 
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4.3.2  Drowsiness Detection Throughput Rate Speeding Up Using Sliding 

Window Strategy  

 

For on-line drowsiness detection, in each processing iteration of the image frame, 

we deleted the oldest eye open/closed state, shifted all the remaining eye states one 

position left, and stored the most recent eye open/closed states of a subject for 8.25 

seconds, which was the best OTI we have chosen above. Then, with our frame 

processing rate of 15 frames per second in mind, the LDBF and PERCLOS could be 

computed from the new 124 open/closed state of a subject and subsequently his 

consciousness/drowsiness state could thus be determined. Under this strategy, we 

could update LDBF and PERCLOS values and then make a conscious/drowsy state 

determination at image frame rate of 15
1  seconds rather than OTI of 8.25 seconds. It 

is to be noted that the drowsiness detection throughput rate by our sliding window 

strategy via image frame updating scheme was much quicker than those reported in 

[24] and [9]. 

 

 

4.4  The Drowsiness Detection Accuracy Comparison 

 

To combine information from LDBF and PERCLOS, we first computed the two 

means of the drowsiness and consciousness classes for each feature and then obtained 

the corresponding objective evidence function, h(x) [27]. By assigning the desired 

sum of fuzzy densities equal to 1.2 and using the LDBF and PERCLOS features’ 

drowsiness detection accuracies as a basis [27], we obtained the degrees of 
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importance as  and 0.625})LDBF({ =g 0.575,)({PERCLOS} =g  respectively. With 

the above g and h functions defined, we fused LDBF and PERCLOS features and 

plotted the drowsiness and consciousness data of test subjects versus fuzzy integral 

values, as shown in Fig. 4.11. From this figure, the subject was conscious if the fused 

fuzzy integral value e was less than or equal to 0.380, whereas the subject was drowsy 

if the fuzzy integral value e was larger than 0.380. The detection accuracy of the 

proposed method was 95.1% and the equivalent decision boundary by the fuzzy 

integral approach is shown in Fig. 4.12. This boundary was dominantly determined by 

PERCLOS value of 0.202 if LDBF was inside the range [0, 0.8], and the sample 

points summarizing the processed video image frames of subjects were almost 

classified to drowsiness category if LDBF value was larger than 0.8. The drowsiness 

recognition accuracies of LDBF, PERCLOS, and the proposed method were 91.8%, 

86.8%, and 95.1%, respectively, as summarized in Table IV. Our method 

outperformed LDBF and PERCLOS by 3.3% and 8.3%, respectively. More insights 

into the function of fuzzy integral method will be given below. 
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Fig. 4.11.  The histograms of the fuzzy integral value e under consciousness and 

drowsiness. 

 
Fig. 4.12.  The decision boundary between drowsiness and consciousness classes for 

the fuzzy integral method. ○  and □  represent drowsiness and consciousness 

samples, respectively. 
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Table IV.  The drowsiness detection accuracy comparison 

 
Number of 
Samples 

Number of 
Errors  

Error 
Rate(%) 

Accuracy 
(%) 

LDBF 122 10 8.2 91.8 

PERCLOS 122 16 13.2 86.8 

Our Method 122 6 4.9 95.1 

 

 

4.4.1  Examples to Illustrate the Fuzzy Integral Improvement in Drowsiness 

Detection Accuracy 

 

In the following, we will demonstrate that by either LDBF or PERCLOS method 

may fail due to single feature utilization, and it could be corrected by incorporating 

the other feature through fuzzy integral approach. To this end, we illustrate our fuzzy 

integral improvement by six drowsy samples and six conscious ones among the 18 

test subjects as shown in Table V. According to the experiments, LDBF method failed 

with one test sample, sample L in drowsy condition, and PERCLOS failed with two 

samples, sample B in conscious condition and sample J in drowsy condition. Our 

proposed method, however, outperformed these two methods producing no erroneous 

recognition. Sample L, in severely drowsy condition, was falsely determined to be 
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conscious by the LDBF feature alone and could be accurately classified to be drowsy 

owing to its high PERCLOS value by our fuzzy integral. Sample B was falsely 

detected to be drowsy by PERCLOS feature only due to its PERCLOS value greater 

than 0.202, and this error could be corrected using its LDBF value. Sample J was 

falsely detected to be conscious due to its low PERCLOS value only. Likewise, this 

mis-classification could be corrected by its proper LDBF value. 

Table V.  A few comparisons of sampled testees by the three detection algorithms 

Subject 
State 

 Method  
Conscious Condition 

Subject A B C D E F 

LDBF 0 0 0 0 0 0 

PERCLOS 0.169 0.218 0.048 0.177 0.105 0.02 

Our Method 0.177 0.346 0.164 0.205 0.097 0.198 

Subject 
State 

Method  Drowsy Condition 

Subject G H I J K L 

LDBF 2 3 1 3 4 0 

PERCLOS 0.735 0.638 0.420 0.194 0.460 0.993 

Our Method 1.000 1.000 0.575 0.625 1.000 0.575 
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4.5  The Implementation for a driver drowsiness detection system 

 

Owing to the satisfactory testing result above, the proposed algorithm was 

implemented in a real-world driver drowsiness detection and warning system. As 

shown in Fig. 4.13, the system was realized on a Centrino 1.5 GHz notebook with 

Sony EVI-D100 camera, which is mounted on the dashboard of the car. The captured 

and processed images of the real-time monitoring of a driver’s vigilance are shown in 

Fig. 4.14. To alert the driver to drowsiness, the system would keep on alarming by 

beepers if he is in sleepy state. 

 

 
Fig. 4.13.  The setups of driver drowsiness detection system: a CCD camera 

mounted on the dashboard and connected to a notebook. 
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Fig. 4.14.  The real-time monitoring of a driver’s vigilance: as shown in the program 

window, a driver’s facial image is captured and processed further to locate one of the 

eyeballs. 
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Chapter 5  

Conclusion 
 

This thesis presented a method to drowsiness detection system via eye detection, 

which is also applicable to wearing glasses or sunglasses causes. In particular the eye 

detection module consists of three parts, sunglasses area detection, sunglasses region 

enhancement, and eyeball extraction, by image processing techniques such as image 

segmentation, image enhancement, and edge detection. Extensive experiments have 

been carried out to demonstrate the effectiveness of the proposed method. Besides, 

our drowsiness detection system utilizes LDBF and PERCLOS features to determine 

the driver’s visual attention level. We first investigated the conscious/drowsy 

distributions of these two features under different OTI’s and then selected the best 

OTI for these two features altogether. For real-time drowsiness detection, the 

drowsiness detection throughput rate is greatly enhanced by our sliding window 

strategy via every image frame updating strategy. Afterwards, we employed a fuzzy 

integral to combine these two features and raised the drowsiness detection accuracy. 

Our fuzzy integral based approach outperformed LDBF and PERCLOS approaches by 

3.3% and 8.3%, respectively. The proposed method provides a safe, reliable, and 

effective means for drowsiness detection. In practice, we have also applied our 

algorithm in the real-world driver safety monitoring systems. The test result of 

drivers’ drowsiness detection is successful and satisfactory. 

 

For future work, we try to solve the noise caused by shadows, light reflection of 

lenses and frames of metallic sunglasses, and the overlapping of eyes, eyebrows, and 

sunglasses. Besides, there are still a number of issues that remain to be addressed in 
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the drowsiness detection system. These include improvement of its adaptability to 

changes in ambient brightness, assurance of reliability and attainment of a compact 

system design. 
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