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a b s t r a c t

Wafer yield is an important index of efficiency in integrated circuit (IC) production. The number and clus-
ter intensity of wafer defects are two key determinants of wafer yield. As wafer sizes increase, the defect
cluster phenomenon becomes more apparent. Cluster indices currently used to describe this phenome-
non have major limitations. Causes of process variation can sometimes be identified by analyzing wafer
defect patterns. However, human recognition of defect patterns can be time-consuming and inaccurate.
This study presents a novel recognition system using multi-class support vector machines with a new
defect cluster index to efficiently and accurately recognize wafer defect patterns. A simulated case dem-
onstrates the effectiveness of the proposed model.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

As an important index for evaluating the production efficiency
of integrated circuits (IC) manufacturers, wafer yield refers to the
probability that a chip on a wafer is defect-free. Defects are phys-
ical anomalies which result in circuit faults. A common method of
monitoring wafer yield is on-line defect detecting in IC manufac-
turing. Wafers are inspected during manufacturing by retrieving
information about defect patterns by manually inspecting or auto-
matically classifying defects (Merino, Cruceta, Garcia, & Recio,
2000). Each of these patterns is associated with a well known man-
ufacturing problem and can provide process and product engineers
with valuable clues for identifying the underlying cause and there-
by improve yield (Friedman, Hansen, Nair, & James, 1997).

Stapper (1985) indicated that defects are typically clustered
rather than dispersed randomly over a wafer, and these clusters
become more evident as wafer size increases. Many cluster indices
have been developed to depict the intensity of defects scattered on
a wafer (Stapper, 1973; Tyagi & Bayoumi, 1992, 1994). The nega-
tive binomial yield model (Stapper, 1973) utilizes a cluster param-
eter a to evaluate the intensity of defects clustered. Cluster
parameter a can be quite scattered and sometimes negative (Cunn-
ingham, 1990). Tyagi and Bayoumi (1992, 1994) proposed a vari-
ance/mean ratio V/M to measure the intensity of defects
ll rights reserved.
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clustered. The values of V/M depend on how the grids are selected
and cannot indicate the gradualness of cross-wafer defect density
variations (Tyagi & Bayoumi, 1992, 1994). Jun, Hong, Kim, Park,
and Park (1999) proposed a cluster index CI to evaluate the inten-
sity of defects clustered on a wafer. In some cases, CI values calcu-
lated from different defect patterns may be similar.

Constructing a wafer defect recognition system is a very impor-
tant issue in IC manufacturing. Three fundamental approaches to
solving pattern recognition problems are statistical approach, heu-
ristic approach and simulation approach (Nieddu & Patrizi, 2000).
The statistical approach classifies patterns based on an extracted
features set and an underlying statistical model for generating
these patterns. The heuristic approach utilizes soft computing
schemes such as genetic algorithms and fuzzy sets to perform pat-
tern recognition. However, genetic systems typically require
expensive evaluation processes to achieve optimal solutions (Bha-
nu, Lee, & Ming, 1995). Further, a major limitation of the fuzzy logic
controller is that the linguistic control rules are hard to generate.
The fuzzy logic controller also requires knowledge and experience
of human experts (Chen & Chang, 1998). The simulation approach
emulates the computational paradigm of a biological system, sub-
sequently leading to a class of artificial neural systems termed neu-
ral networks (Jain, Duin, & Mao, 2000; Nieddu & Patrizi, 2000).
However, a major limitation of neural networks is their inability
to determine the number of layers and number of neurons per
layer (Fiesler, 1994).

Support vector machines (SVMs) have been widely used for pat-
tern recognition in recent years. Several studies report that the
SVM classification is more accurate than existing classification
algorithms (Hsu & Lin, 2002; Joachims, 1998). The SVM has proven
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very effective for pattern recognition (Burges, 1998). Zhou, Su,
Jiang, Deng, and Li (2007) presented a novel face and fingerprint
authentication system based on multi-route detection. Fusion of
face and fingerprint recognition by SVM improved authentication
accuracy. Nemmour and Chibani (2006) applied SVM for detecting
land cover changes. An SVM-based change detection approach has
also been used for mapping urban growth. A combination frame-
work was then used to improve change detection accuracy. Jiang,
Huang, Ye, and Gao (2006) proposed an SVM scheme for selecting
traditional Chinese paintings from general images and categorizing
them as Gongbi (traditional Chinese realistic painting) or Xieyi
(freehand style). David and Lerner (2005) presented an SVM-based
image classification system for genetic syndrome diagnosis. In the
David system, a percentage of the miss-classified patterns are re-
jected to reduce the expected risk by thresholding the distance of
patterns from the hyperplane separating the classes.

Given the limitations of previous cluster indices for wafer de-
fects and the importance of an accurate wafer defect recognition
system to the IC industry, this study presents a novel recognition
system using multi-class support vector machines with a new de-
fect cluster index. A simulation demonstrates the effectiveness of
the proposed model. The new defect cluster index is compared
with three existing cluster indices, and the recognition system is
compared with existing neural network-based recognition
systems.
2. Related literature

This section surveys pertinent literature. The defect cluster indi-
ces which are utilized to depict the intensity of defects clustered on
a wafer are introduced. Approaches to solving pattern recognition
problems are then surveyed.

2.1. Defect cluster index

The intensity of defects clustered on a wafer can be depicted by
a defect cluster index. The cluster parameter a of the negative
binomial model, the variance/mean ratio V/M and the non-param-
eters assumption cluster index CI are commonly used. The negative
binomial yield model is as follows:

Y ¼ 1
ð1þ k=aÞa

ð1Þ

where parameter a, the cluster parameter, is calculated as

a ¼
�k2

ðr2 � �kÞ
; ð2Þ

k is the mean number of defects per chip, and r2 is the variance in
defects per chip. Earlier reports show that cluster parameter a in
the negative binomial model may be quite scattered and may even
have a negative value when the model is used to predict yield
(Cunningham, 1990). Tyagi and Bayoumi (1992, 1994) utilized var-
ious grid sizes superimposed on a wafer map to measure the inten-
sity of defects distributed on a wafer. The defects contained within
each grid can be used to judge the spatial distribution of defects.
The distribution of defects follows a Poisson distribution if the de-
fects are randomly distributed. Because both variance (V) and mean
(M) are equal in the Poisson distribution, the value of V/M equals 1 if
the wafer defects are randomly scattered. The value of V/M exceeds
1 if the defects distributed on a wafer are clustered. The values of V/
M depend on how the grids are selected and cannot indicate the
gradualness of cross-wafer defect density variations. Jun et al.
(1999) proposed a cluster index based on the projected x and y
coordinates of defect locations on a wafer. Defect clustering tends
to show clumps in the x and the y coordinates, which result in a
large variance in defect intervals. However, showing clumps either
on the x-axis or on the y-axis does not necessarily represent the clus-
tered defects. The clustering index CI can be calculated as

CI ¼min
s2
v

v2 ;
s2

w

w2

� �
ð3Þ

where vi and wi are a sequence of defect intervals on the x-axis and
y-axis defined as

v i ¼ xðiÞ � xði�1Þ; i ¼ 1;2; . . . ;n ð4Þ
wi ¼ yðiÞ � yði�1Þ; i ¼ 1;2; . . . ;n ð5Þ

where x(i) and y(i) denote the ith smallest defect coordinates on the x
-axis and y-axis, respectively; v and s2

v represent the sample mean
and the sample variance of vi, respectively; w and s2

w denote the
sample mean and the sample variance of wi, respectively. The value
of CI is close to 1 if the defects are randomly scattered, and the value
of CI exceeds 1 if defects are clustered. However, in some cases, the
CI of different defect patterns may have similar values. Thus, the
intensity of defects clustered on a wafer may be erroneously recog-
nized when using cluster index CI.

In summary, existing wafer cluster indices have the following
drawbacks: cluster parameter a of the negative binomial model
may be substantially scattered and sometimes negative; the same
defect pattern may have different V/M values when the selected
grids differ; further, the CI values for different defect patterns
may also be similar. Such drawbacks affect performance when
these cluster indices are employed to depict defect cluster
intensity.

2.2. Recognizing defect patterns

Wafer defect patterns may be random or systematic. Ideally,
manufacturing defects should be randomly distributed, and sys-
tematic pattern defects should be minimal (Kaempf, 1995). Conse-
quently, the yield loss caused by random defects remains constant
(Friedman et al., 1997). Some of the many techniques used for wa-
fer defect pattern recognition are statistical approach, heuristic ap-
proach and simulation approach (Nieddu & Patrizi, 2000). The
statistical approach classifies patterns based on an extracted fea-
ture set and an underlying statistical model for generating these
patterns. These features are a set of characteristic measurements
extracted from the input data and are used to assign each feature
vector to one of c classes. The statistical approach can be viewed
as determining a strategy for classifying samples based on the
measurement of feature vector, such that classification error is
minimized. The heuristic approach attempts to clarify the essential
problem and use available personal knowledge to solve it with the
assistance of soft computing schemes such as genetic algorithms
and fuzzy sets. However, genetic systems usually require the eval-
uation of numerous candidate solutions. In application domains in
which the evaluation process is expensive, the computational ef-
fort required to perform numerous evaluations may be prohibitive
(Bhanu et al., 1995). Further, a major limitation of the fuzzy logic
controller is that the linguistic control rules are hard to generate.
The fuzzy logic controller also requires knowledge and experience
of human experts (Chen & Chang, 1998). The simulation approach
emulates the computational paradigm of a biological system. Cur-
rent knowledge of cerebral processes is transferred from a neuro-
physiological medium to an electronic one. This leads to a class
of artificial neural systems termed neural networks (Jain et al.,
2000; Nieddu & Patrizi, 2000). The networks most frequently uti-
lized to perform the pattern recognition are the feed-forward net-
works (Jain, Mao, & Mohiuddin, 1996). However, a major drawback
of neural networks is the lack of knowledge for determining net-
work topology (number of layers and number of neurons per layer)
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(Fiesler, 1994). The radial basis function (RBF) neural network
(Duda & Hart, 1973) is a new technique for pattern recognition
and has been successful applied to many fields. The RBF neural net-
work can reduce training time and enhance network learning effi-
ciency. Therefore, the RBF network is utilized for comparing with
the proposed method in this study.

2.2.1. Radial basis function
The RBF neural network (Duda & Hart, 1973) is a supervised

learning network. As Fig. 1 shows, the network architecture con-
sists of three layers: input layer, hidden layer and output layer.
The transformation from the input layer to the hidden layer is non-
linear whereas the transformation from the hidden layer to the
output layer is linear. The hidden layer is typically a single layer
of processing elements, and the number of hidden nodes in the
RBF networks is usually determined experimentally. The hidden
layer units that use Gaussian transfer functions are called the ker-
nel. The Gaussian transfer function can be described in the follow-
ing form:

hj ¼ exp �ðxp � cjÞTðxp � cjÞ
2rj

" #
j ¼ 1;2; . . . N ð6Þ

where hj is the output of the jth node in the hidden layer, xp is the
input pattern, cj is the center of the Gaussian function for node j, rj

is the width associated with the Gaussian function of node j, and N
is the number of hidden layer nodes.

Training in an RBF network involves finding the centers and
widths associated with each kernel function and weights connect-
ing the hidden neurons to the output neurons. The k-means clus-
tering algorithm (Pandys & Macy, 1996) is often used to search
for the appropriate center of the kernel function. A node in the
hidden layer will produce a great output when the presented in-
put pattern is closed to its center. After the cluster centers of the
kernel function are found, appropriate width parameters are se-
lected. These parameters control the extent of overlap in kernel
functions. For Gaussian kernel functions, the width parameter
represents the standard deviation of the function. The width
parameter is most commonly made equal to the average distance
between the cluster centers and the training patterns. The learn-
ing in the output layer is conducted after the hidden layer learn-
ing is complete, and the Least Mean Squares (LMS) algorithm is
used to train the RBF network. The LMS algorithm uses the delta
rule to adjust connection strengths. Output layer node values are
calculated as follows:
Fig. 1. RBF neural network.
ok ¼
XN

j¼1

ðwjk � hjÞ ð7Þ

where ok is the output of the kth node in the output layer, wjk is the
weight of the jth hidden layer neuron to the kth output layer neu-
ron, hj is the output of the jth node in the hidden layer, and N is
the number of nodes in the hidden layer. The output, ok, is formed
by a weighted linear combination of the output from the hidden
layer without nonlinear transformation.

The RBF network is applied to many areas. Su, Yang, and Ke
(2002) utilized the RBF network for semiconductor wafer post-
sawing inspection. The pros and cons of their technique in compar-
ison with two other inspection methods, visual inspection and fea-
ture extraction inspection, were discussed. Doganis, Alexandridis,
Patrinos, and Sarimveis (2006) proposed a time series sales fore-
casting method for short shelf-life food products by combining
the RBF network and a specially designed genetic algorithm. The
technique was applied successfully to sales data for fresh milk. Sar-
imveis, Doganis, and Alexandridis (2006) combined the RBF net-
work with fuzzy means algorithm to propose a new classification
method. The method is particularly useful for manufacturing pro-
cesses, particularly in cases where on-line sensors for classifying
product quality are unavailable. Yu, Wang, and Lai (2008) utilized
the RBF network and the Lagrange multiplier theory to develop a
model for solving mean–variance–skewness tradeoffs to optimize
portfolio selection.

2.2.2. Support vector machines
The support vector machines (SVM) technique was introduced

by Cortes and Vapnik (1995). The original intent of the SVM algo-
rithm was to use a linear separating hyperplane to build a classifier.
As Fig. 2 (Schölkopf & Smola, 2002) shows, for all hyperplanes sep-
arating data, there exists a unique optimal hyperplane distin-
guished by the maximum margin of separation between any
training point and the hyperplane. The optimal hyperplane is
shown as a solid line in Fig. 2.

A training set of instance-label pairs is given as follows:

ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxm; ymÞ; xi 2 Rn; yi 2 fþ1;�1g

The training set can be divided into two classes by the hyperplane.
The hyperplane can be expressed as

hw;xi þ b ¼ 0 ð8Þ

where handi are the operators of dot product, w is a weight vector
orthogonal to the hyperplane, and b is a threshold. The w and b are
rescaled such that the points closest to the hyperplane satisfy:

hw; x1i þ b ¼ þ1 ð9Þ

hw; x2i þ b ¼ �1 ð10Þ

Combining Eqs. (9) and (10) obtains Eq. (11):

w
jjwjj ; ðx1 � x2Þ
� �

¼ 2
jjwjj ð11Þ

where ||w|| is the length of a vector w. The distance from the closest
point to the hyperplane, called the margin, equals 1

jjwjj. If the optimal
hyperplane exists, Eqs. (9) and (10) imply:

yiðhxi;wi þ bÞP 1; i ¼ 1; . . . ;m ð12Þ

The optimal hyperplane which generalizes well can thus be con-
structed by solving the following problem:

Min: sðwÞ ¼ 1
2
kwk2

; ð13Þ

s:t: yiðhxi;wi þ bÞP 1; i ¼ 1; . . . ;m ð14Þ



Fig. 2. Optimal hyperplane (Schölkopf & Smola, 2002).
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In this case, the dual is more convenient for calculation and is de-
rived by the Lagrangian function as follows:

Lðw; b;aÞ ¼ 1
2
kwk2 �

Xm

1

aiðyiðhxi;wi þ bÞ � 1Þ; ð15Þ

with Lagrange multipliers ai P 0. The Lagrange L must be maxi-
mized with respect to ai and minimized with respect to w and b.
Consequently, at this saddle point, the derivatives of L are

@

@w
Lðw; b;aÞ ¼ 0; ð16Þ

@

@b
Lðw; b;aÞ ¼ 0; ð17Þ

Eqs. (16) and (17) get

Xm

1

aiyi ¼ 0; ð18Þ

w ¼
Xm

1

aiyixi: ð19Þ

The solution vector thus has an expansion in terms of training
examples. The instances xi, for which ai > 0, are called Support Vec-
tors. Substituting Eqs. (18) and (19) into Eq. (15), the dual form of
the optimization problem, gets

Max: WðaÞ ¼
Xm

i¼1

ai �
1
2

Xm

i;j¼1

aiajyiyjhxi; xji; ð20Þ

s:t: ai P 0; i ¼ 1; . . . ;m ð21Þ

Xm

1

aiyi ¼ 0; ð22Þ

Once ai is found, the optimal hyperplane can be found. The decision
function of the optimal hyperplane can thus be expressed as

f ðxÞ ¼
Xm

1

aiyixi;x

* +
þ b ð23Þ
To allow the possibility of examples violating Eq. (14), the slack
variables ni P 0 are used to relax the separation constraints, and
the optimal hyperplane can thus be constructed by solving the fol-
lowing problem:

Min: sðw; nÞ ¼ 1
2
kwk2 þ C

Xm

i¼1

ni; ð24Þ

s:t: yiðhxi;wi þ bÞP 1� ni; i ¼ 1; . . . ;m ð25Þ

ni P 0 ð26Þ

where the constant C > 0 is the penalty parameter of the error term
and determines the tradeoff between margin maximization and
training error minimization.

If the training set of instance-label pairs are nonlinearly separa-
ble, the linear SVM may not work well again. The nonlinear kernel
can then solve the classification problem. The most commonly ap-
plied nonlinear kernels are the polynomial kernel, the Gaussian
kernel and the sigmoid kernel. The classification problem can ob-
tain reasonable results when the Gaussian kernel is applied to
map samples into a higher dimensional space (Keerthi & Lin,
2003). Therefore, the Gaussian kernel selected for sample mapping
in this study can be described as

Kðxi;xjÞ ¼ expð�cjjxi � xjjj2Þ; c > 0 ð27Þ

where c is the kernel parameter. The penalty parameter C and the
kernel parameter c are the most critical parameters while the
SVM technique is used to classify samples. The grid search in
cross-validation can be used to select the best (C,c) parameter com-
bination. Applying this parameter combination to the training and
testing data can enhance generalization accuracy.

2.2.3. Multi-class SVM
The classification problem mentioned above refers to binary

classification, in which class labels can only take two values: �1
or +1. Many real-world problems, however, have more than two
classes. This study utilizes a multi-class SVM for wafer defect pat-
tern recognition. Methods of multi-class classification are
compared.



Fig. 3. Sketch diagram of CIE.

10162 L.-C. Chao, L.-I. Tong / Expert Systems with Applications 36 (2009) 10158–10167
The one-against-all method (Bottou et al., 1994) constructs m
binary SVM classifiers where m is the number of classes. Each clas-
sifier is trained to separate one class from the rest, and the ith SVM
is trained with all examples in the ith class with +1 labels as well as
all other examples with �1 labels. Solving the optimal solution of
the one-against-all method can get m decision functions. The un-
known x is in the class with the largest decision function value.
The one-against-one method (KreBel, 1999) trains a classifier for
each possible pair of classes and constructs m(m � 1)/2 binary clas-
sifiers. The one-against-one method can get m(m � 1)/2 decision
functions when solving the optimal solution. The unknown x is
classified to the class with the highest number of votes. A vote
for a given class is defined as the sample frequency attributed by
a classifier. The Directed Acyclic Graph solution (Platt, Cristianini,
& Shawe-Taylor, 2000) is the same as the one-against-one solution
for m(m � 1)/2 binary SVMs in the training phase. However, in the
testing phase, Directed Acyclic Graph method uses a rooted binary
directed acyclic graph which includes m(m � 1)/2 internal nodes
and m leaves. Each internal node represents a binary SVM, and
each leaf represents a class. The unknown x starts at the root and
moves through a path to either the left node or right node depend-
ing on the output value before reaching a leaf node. The unknown x
is then classified to the appropriate class. Vapnik (1998) proposed
a method for simultaneously considering all data in multi-class
problems by solving a single optimization problem. Solving the
optimal solution of the all-data method can get m decision func-
tions. Each decision function can separate one class from the rest.
However, the optimal solutions of the m decision functions are not
derived from m optimal problems but are obtained by solving one
problem. The unknown x is in the class with the largest decision
function value. Because the training time of the one-against-one
method is the shortest of these methods (Hsu & Lin, 2002), this
method is used for wafer defect pattern recognition in this study.
Fig. 4. Defect clustering patterns (Friedman et al., 1997).
3. Proposed approach

3.1. A new cluster index

Section 2.1 introduced several defect cluster indices for depict-
ing the intensity of defects clustered on a wafer. This study pro-
poses a new cluster index for depicting the varying intensity of
wafer cluster defects. The proposed cluster index CIE is

CIEðp1; p2; . . . ;psÞ ¼
Xs

i¼1

pi � log2
1
pi

� �� �
ð28Þ

where s represents the number of defect clusters; pi represents the
proportion of defects in the ith cluster to total number of wafer de-
fects. Fig. 3 is the sketch diagram of the proposed cluster index in
this study. The more profound the cluster phenomenon, the larger
the CIE, as Fig. 3a1 shows, and vice versa, as Fig. 3b1 and c1 shows.
If several wafers have the same total defect number, the more pro-
found the cluster phenomenon, the smaller the CIE, as Fig. 3a2
shows, and vice versa, as Fig. 3b2 and c2 shows. Clearly, the pro-
posed cluster index CIE possesses the advantage of accurately
detecting the intensity of clustering defects.

3.2. Constructing the defect pattern recognition system

A major cause affecting yield is the degree to which defects are
clustered (Friedman et al., 1997; Stapper, Armstrong, & Saji, 1983).
In addition to the random pattern in Fig. 4a, common wafer defect
clustering patterns include bull’s eye pattern, crescent moon pat-
tern, bottom pattern and edge pattern, as Fig. 4b–e shows (Fried-
man et al., 1997). The specific defect distribution pattern must be
determined when wafer yield is medium or low. The manufactur-
ing process can be moderately adjusted by recognizing defect
patterns.

Wafers with medium or low yield must be further analyzed to
determine whether a specific defect pattern causes the medium
or low yield. Therefore, the factors affecting yield are selected as
the features for recognizing the five defect patterns.

Yield models are generally a function of D, the average number
of defects per unit area, and A, the chip area. Yield models can be
described as

Y ¼ f ðD;A;KÞ ð29Þ

where K represents an empirical correction factor for chip area A
(Cunningham, 1990). The average number of defects per unit area
D can be used to describe the intensity of the defect-dense areas
on a wafer. The average number of defects per unit area D can be
used as a feature factor for recognizing defect patterns.

Further, the angle variation CVA and the distance variation CVD

obtained by measuring the angle variation and the distance varia-
tion of the individual defect on a wafer are also utilized as feature
factors. Fig. 5 depicts the angle and distance of defects observed in
this study. The CVA and CVD can be derived as follows:



Fig. 6. Recognition system framework.
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Step 1: Determine the positive angle hi, which is the angle be-
tween the coordinates of individual defect and the x-axis. The hi

can be described as

hi ¼ tan�1 yi

xi

� �
; i ¼ 1;2; :::;n ð30Þ

where xi and yi denote the x and the y coordinates, respectively, of
the ith defect in the x–y plant. Sorting hi in ascending order obtains
h(i). A sequence of angle differences is defined as

Ai ¼ hðiÞ � hði�1Þ; i ¼ 1;2; :::;n ð31Þ

where h(0) = 0.
Step 2: Determine Li as the distance between the individual de-

fect and the origin in the coordinate axes. The Li can be described as

Li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
i

q
; i ¼ 1;2; :::;n ð32Þ

Sorting Li in ascending order obtains L(i). The sequence of distance
differences is defined by

Di ¼ LðiÞ � Lði�1Þ; i ¼ 1;2; :::;n ð33Þ

where L(0) = 0.
Step 3: The CVA and CVD are defined as

CVA ¼
S2

A
�A2

ð34Þ

CVD ¼
S2

D
�D2

ð35Þ

where �A and S2
A denote the sample mean and the sample variance of

Ai, respectively, and �D and S2
D denote the sample mean and the sam-

ple variance of Di, respectively. The variations of the angle differ-
ences and the distance differences are smaller when defects are
randomly distributed than when defects are clustered. One of these
two variations is increased regardless of the defect pattern. There-
fore, the wafer map presents certain patterns of defect clusters as
long as one of these differences posses a large variation. Therefore,
CVA and CVD can provide feature factors for recognizing defect pat-
terns. Finally, given the superior accuracy of the proposed cluster
index CIE in detecting cluster defect intensity, CIE is employed as
the feature factor for recognizing defect patterns.

Four feature factors (D, CVA, CVD and CIE) are suggested for rec-
ognizing defect patterns. A multi-class SVM classifies wafer defect
Fig. 5. Angle and distance of wafer defects.
patterns by employing these four feature factors as inputs and one
of five defect patterns as output. The relationships between these
feature factors and defect patterns can be constructed by present-
ing the adequate training and testing samples in the multi-class
SVM. The multi-class SVM can be used to classify wafers with med-
ium or low yield. Fig. 6 shows the framework of the proposed sys-
tem for recognizing wafer defect patterns.

4. Implementation

4.1. Simulation study

Fig. 4 shows the common wafer defect cluster patterns. In this
study, Borland Delphi programming language is employed to sim-
ulate various defect cluster patterns in 8-in. wafers. This study em-
ploys three design factors to simulate defect cluster patterns:
defect number, percentage of defects located in grey regions and
size of grey regions. The following briefly describes these three de-
sign factors.

(1) Defect number: The number of defects distributed over the
entire wafer. Five factor levels for 25, 50, 100, 200 and 300
defects are simulated.

(2) Percentage of defects located in grey region: The grey region
represents the defect-dense areas on a wafer. In the four
clustering patterns, four percentages, 80%, 85%, 90% and
95%, of the total number of defects are located in grey
regions, and the remaining defects are distributed randomly.
Distribution of defects for the four clustering patterns
depends on the percentage of defects located in grey regions.

(3) Size of grey region: Three sizes of grey regions considered are:
25, 49 and 81 cm2.

According to the above three design factors, 15 factor-level
combinations exhibit random pattern and 60 factor-level combina-
tions exhibit the other four defect patterns. Each trial of factor-le-
vel combination is replicated five times, to obtain 1275 simulation
trials. Specifically, there are 1275 simulated wafer maps. In order
to compare the differences between the proposed cluster index
CIE and the other cluster indices. There are four responses, namely
a, V/M, CI and CIE, are used for each simulation trial. Moreover, to
utilize the proposed multi-class SVM for classifying defect patterns
and comparing the accuracy of the method with RBF neural net-
work, four feature factors (D, CVA, CVD and CIE) are obtained for
each simulation trial by simple calculation.

4.2. Relationship between cluster indices and design factors

The influences of the three designed factors, which are defect
number, percentage of defects located in grey region and size of
grey region, are analyzed for each defect pattern. The 1275 simu-
lated wafer maps described in Section 4.1 are used to calculate
the value of the following four cluster indices: a, V/M, CI and CIE.
The cluster intensity presented on a specific defect pattern is uti-
lized to analyze the effectiveness of those cluster indices.

First, consider five levels for the defect number factor: 25, 50,
100, 200 and 300. The more serious the cluster phenomenon, the
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larger the proposed CIE, and vice versa. Fig. 7 depicts the relation-
ship between the cluster indices and defect number for five defect
patterns. Fig. 7 shows that cluster parameter a is quite scattered
and even negative for some levels, and the other cluster indices
can reflect the cluster intensity when the defect number is in-
creased. Further, the cluster index CI cannot clearly reflect the clus-
ter intensity for the crescent moon pattern and the edge pattern.
However, the proposed cluster index CIE can clearly reflect the
cluster intensity for all defect patterns.

Second, consider four different percentages of defects located in
the grey region factor: 80%, 85%, 90% and 95%. The remaining de-
fects are distributed randomly. If several wafers have the same
number of total defects, the more serious the cluster phenomenon,
the smaller the proposed CIE, and vice versa. Fig. 8 depicts the rela-
tionship between the cluster indices and the four different defect
percentages for five defect patterns. Fig. 8 shows that cluster
parameter a is quite scattered and even negative for some levels.
The cluster index V/M cannot clearly reflect the cluster intensity
for the edge pattern. The cluster index CI cannot clearly reflect
the cluster intensity for crescent moon pattern, bottom pattern
and edge pattern. However, the proposed cluster index CIE can
clearly reflect the cluster intensity for all defect patterns.

Finally, consider three levels for the size of grey region factor:
25, 49 and 81 cm2. The smaller the size of the grey region, the more
serious the cluster phenomenon. If several wafers have the same
total number of defects, the more serious the cluster phenomenon,
the smaller the proposed CIE, and vice versa. Fig. 9 depicts the rela-
tionship between the cluster indices and the three levels of region
size for five defect patterns. Fig. 9 shows that cluster parameter a is
quite scattered and even negative. The cluster index V/M cannot
clearly reflect the cluster intensity of the edge pattern. The cluster
index CI also cannot clearly reflect the cluster intensity of the cres-
cent moon pattern or the edge pattern. However, the proposed
cluster index CIE can clearly reflect the cluster intensity for all de-
Fig. 7. Relationship between cluster i
fect patterns. The above discussion of cluster indices and these
three design factors shows that the proposed cluster index CIE de-
tects the cluster intensity for the five defect patterns more accu-
rately than the other cluster indices.

4.3. Multi-class SVM wafer pattern recognition

A wafer must be further diagnosed to detect whether there ex-
ists a specific clustering pattern of defects when the wafer presents
a medium or low yield. To recognize wafer defect patterns, the
1275 simulated wafer maps described in Section 4.1 were utilized
as samples for constructing the multi-class SVM. The 1275 wafers
were divided into two parts: one part containing 1020 wafers used
to train the multi-class SVM; the second part containing 255 wa-
fers used to test the accuracy of the multi-class SVM. Four feature
factors, D, CVA, CVD and CIE, are obtained for each simulation wafer
by simple calculation. These four feature factors and the respective
defect pattern of the 1275 wafer maps are utilized as inputs and
outputs for the proposed multi-class SVM. The trained multi-class
SVM can then be used to classify wafers presenting a specific defect
pattern. Fig. 10 shows some of the defect patterns observed in this
study. Cluster intensity is not considered for random pattern.
Fig. 10a shows three wafers with 50 defects and three wafers with
100 defects for random pattern. For cluster intensity of 90%, Figs.
10b–10e show three wafers with 50 defects and three wafers with
100 defects for the other defect patterns.

The classification accuracy of the proposed multi-class SVM is
compared with that of RBF neural network. The classification accu-
racy for a specific defect pattern is employed to analyze the perfor-
mance of these two classification techniques. Software utilized in
this study for multi-class SVM and RBF neural network were LIB-
SVM (Chang & Lin, 2004; Hsu & Lin, 2002) and NeuroSolutions
5.0, respectively. To obtain the generalization results for wafer pat-
tern recognition, fivefold cross-validation was used to determine
ndices and defect number factor.



Fig. 8. Relationship between cluster indices and defect percentage factor.

Fig. 9. Relationship between cluster indices and grey size factor.
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Fig. 10a. Random patterns for defect number 50 and 100.

Fig. 10b. Bull’s eye patterns with cluster intensity of 90% for defect number 50 and
100.

Fig. 10c. Crescent moon patterns with cluster intensity of 90% for defect number 50
and 100.

Fig. 10d. Bottom patterns with cluster intensity of 90% for defect number 50 and
100.

Fig. 10e. Edge patterns with cluster intensity of 90% for defect number 50 and 100.
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optimal parameter combinations for these two classification tech-
niques. The penalty parameter C and the kernel parameter c are the
most critical parameters for multi-SVM. In this study, the optimal
parameter combinations for penalty parameter C and kernel
parameter c were 2048 and 0.03125, respectively. Of 255 wafers,
233 could be accurately classified into respective classes. Restated,
recognition accuracy when using the proposed multi-class SVM is
91.3725%. Similarly, the same four feature factors and the respec-
tive defect pattern of the 1275 wafer were also utilized as the input
and output for the RBF neural network. The optimal combination of
parameters is obtained by using the following stop criteria: maxi-
mum training of 105 epochs or mean square error is less than 10�6.
The RBF neural network is used to classify wafers which present a
specific defect pattern. Of the 255 wafers, 160 can be accurately
classified into respective classes. Restated, the recognition accu-
racy rate achieved by utilizing the RBF neural network is
62.7451%. The classification results for wafer defect pattern recog-
nition shows that the proposed multi-class SVM achieves a more
accurate recognition rate than the RBF neural network.

5. Conclusion

As wafer sizes increase, the defect cluster phenomenon in-
creases. Both defect number and defect clustering affect wafer
yield. Some proposed defect cluster indices monitor whether a wa-
fer exhibits the cluster phenomenon. The cluster parameter a of
the negative binomial model can be quite scattered and sometimes
negative. The values of cluster index V/M depend on how the grids
are selected. The CI values for different defect patterns may also be
similar. Among the techniques for recognizing wafer defect pat-
terns, genetic systems usually require expensive evaluation pro-
cesses to achieve optimized solutions; the linguistic control rules
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for the fuzzy logic controller are hard to generate; neural networks
lack the knowledge for determining the number of layers and num-
ber of neurons per layer.

This study presents a novel recognition system that utilizes
multi-class support vector machines incorporating a new defect
cluster index for recognizing wafer defect patterns. A simulated
case is applied to demonstrate the effectiveness of the proposed
model by constructing a new defect cluster index and a new recog-
nition system. The new defect cluster index is compared with three
existing cluster indices, and the recognition system is compared
with one constructed by neural network.

The merits of the proposed approach are summarized as
follows:

1. The proposed cluster index CIE is more accurate than other clus-
ter indices (a, V/M and CI) in terms of detecting the cluster
intensity for five various defect patterns.

2. The proposed method utilizes four relevant variables: D, CVA,
CVD and CIE as input for constructing the wafer defect recogni-
tion system. The classification results for wafer defect patterns
show that the proposed multi-class SVM achieves more accu-
rate recognition than RBF neural network.

3. The proposed system can be integrated with KLA inspection
machines to recognize wafers presenting medium or low yield
to minimize improvement time.
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